WO2017014431A1 - Preparation method of microparticles comprising biodegradable polymer - Google Patents

Preparation method of microparticles comprising biodegradable polymer Download PDF

Info

Publication number
WO2017014431A1
WO2017014431A1 PCT/KR2016/006209 KR2016006209W WO2017014431A1 WO 2017014431 A1 WO2017014431 A1 WO 2017014431A1 KR 2016006209 W KR2016006209 W KR 2016006209W WO 2017014431 A1 WO2017014431 A1 WO 2017014431A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable polymer
microparticles
flow
solution
polymer solution
Prior art date
Application number
PCT/KR2016/006209
Other languages
French (fr)
Korean (ko)
Inventor
김주희
Original Assignee
(주)인벤티지랩
김주희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160013221A external-priority patent/KR101726559B1/en
Application filed by (주)인벤티지랩, 김주희 filed Critical (주)인벤티지랩
Publication of WO2017014431A1 publication Critical patent/WO2017014431A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a method for preparing microparticles containing a biodegradable polymer, and more particularly, to a method for preparing microparticles having easy size control, having a constant size distribution, and capable of producing microparticles with high yield.
  • Collagen plays a role in maintaining the structure of the tissue, but it does not always maintain a constant shape, but is continuously degraded and reconstituted by an enzyme called collagenase, and reduced by age and photoaging by ultraviolet irradiation.
  • This reduction in collagen is known to be closely associated with the formation of wrinkles in the skin (Arthur K. Balin et al., "Aging and the skin", 1989).
  • the face part is the most prone to photo-aging in the whole body, and in photo-aged skin, the proliferative activity of fibroblasts, which are the major cells in the dermis, and the synthesis of collagen and the like decrease, and the turnover rate of collagen is also slow. As a result, the skin loses its elasticity, wrinkles occur, and the skin ages.
  • products using hyaluronic acid gel has a very good biocompatibility, and has the advantage that there is little biotoxicity as confirmed by various clinical.
  • hyaluronic acid has a sustainability problem because reabsorption in vivo occurs very quickly between two weeks and two months.
  • products that extend the resorption period in vivo up to 6 months by cross-linking hyaluronic acid and crosslinking material are the mainstream of the market.
  • these crosslinked products have also been reported to have problems due to the toxicity of the crosslinking material.
  • Sculptra a tissue repair product using biocompatible polymer microparticles that can be degraded in vivo, and this product has polylactic acid as its main raw material. About two years, the effect of tissue repair lasts about two years.
  • This product differs in that the hyaluronic acid or collagen product is efficacious due to the hydrated volume of the inserted substance, whereas the inserted polylactic acid forms the patient's own tissue cells and is effective.
  • the polylactic acid microspheres or particulates are suspended and injected into carboxymethylcellulose, wherein the microspheres or particulates must be at least 20 ⁇ m in diameter so as not to be attracted to the macrophage phagocytes.
  • this product does not show efficacy immediately after infusion and shows efficacy after about 3 months.
  • the carboxymethyl cellulose used as a suspending agent takes a long time to hydrate and dissolve in water has a disadvantage that must be dissolved in water before 2 to 24 hours before the procedure, clogging the syringe needle due to the particle size of the microspheres It also has a lot of problems. Thus, without causing any unwanted reactions in the human body, it is possible to avoid aggregation, needle clogging and nodule forming at the time of infusion, and due to spherical microspheres There is a need to develop slow resorbable biodegradable fillers such as flow characteristics.
  • Korean Patent No. 10-1517258 relates to a method for preparing microparticles using a solvent extraction-evaporation method including polycaprolactone, and a method for preparing microparticles using the solvent extraction-evaporation method includes:
  • the disadvantage is that the size is not uniform and the size distribution is relatively wide. Therefore, in order to obtain the microparticles of the desired size, a separate size purification process is required, and since the microparticles of unnecessary size are also produced, there is a problem in that the final yield falls.
  • An object of the present invention is to provide a method for producing microparticles containing a biodegradable polymer.
  • the present invention can control the size according to the water injection rate, the water injection angle, the biodegradable polymer solution injection rate and the biodegradable polymer solution concentration, the method of producing a microparticle containing a biodegradable polymer having a constant size distribution. To provide another purpose.
  • Another object of the present invention is to provide a spherical microparticle having a spherical microparticle for injection into the skin.
  • the present invention comprises the steps of (1) dissolving the biodegradable polymer in an organic solvent to prepare a biodegradable polymer solution; (2) dissolving the surfactant in purified water to prepare an aqueous solution; (3) injecting the biodegradable polymer solution of step (1) in one direction to allow flow; (4) injecting the aqueous phase solution in the flow direction of step (3) to allow the first and second streams to flow, and the intersection of the flow of step (3), the first flow of the aqueous phase solution, and the second flow.
  • step (8) relates to a method for producing a microparticle comprising a biodegradable polymer comprising the step of secondary drying the spherical microparticles of step (7) by vacuum or freeze drying.
  • the manufacturing method can be largely divided into three flow stems.
  • the first flow stem is a flow stem of a biodegradable polymer solution prepared by dissolving the biodegradable polymer in an organic solvent.
  • the second flow stem is the flow stem of the aqueous solution prepared by dissolving the surfactant in purified water.
  • the third flow stem is a flow stem generated as one flow after the first flow stem and the second flow stem create an intersection point.
  • the first flow stem and the third flow stem flow in the same direction, and the second flow stem is more specifically distinguished into the first flow and the second flow of the aqueous phase solution, and flows in the direction of creating an intersection with the first flow.
  • the flow rate of the three flow stems and the injection angle of the second flow will affect the size, size distribution and production yield of the resulting microparticles.
  • the relationship between the aqueous solution injection rate (mL), the biodegradable polymer solution injection rate (mL) and the biodegradable polymer solution concentration of the present invention is represented by the following equation 1, the following equation 1 is 2.5 It relates to a method for producing a microparticle having a value of from 15 to 15.
  • Equation 1 water phase injection rate (mL)
  • OF biodegradable polymer solution injection rate (mL)
  • OC biodegradable polymer solution concentration (% by weight)
  • K proportional constant (proportional factor). If the value of Equation 1 is less than 2.5 or more than 15, the size and size of the microparticles may be due to the low shear stress due to the change of the injection rate of the biodegradable polymer solution, the difference in the shear force applied to the biodegradable polymer solution, and the like. The distribution increased.
  • the aqueous solution of step (2) of the present invention has a surfactant concentration of 0.25 to 0.5% by weight.
  • Increasing the surfactant concentration of the aqueous phase solution can suppress the aggregation of microparticles in the manufacturing process, and the low interfacial tension produces microparticles with a narrow size distribution.
  • the surfactant concentration of the aqueous solution is less than 0.25% by weight, there is a problem that the size distribution of the microparticles is widened.
  • a problem of relatively difficult washing and removing of the surfactant in the generated microparticles may occur.
  • the biodegradable polymer solution of step (3) of the present invention is to flow at a rate of 50 to 200ul / min.
  • the biodegradable polymer solution is allowed to flow at a rate of less than 50 ⁇ l / min, the size of the microparticles may be small, so that they may be absorbed into the body, and the size distribution may be widened. If the flow exceeds 200 ⁇ l / min, the size of the microparticles increases, so that a wound may occur when injected into the skin, and there is a problem that the size distribution is widened.
  • the biodegradable polymer solution of step (3) of the present invention has a concentration of 5 to 30% by weight.
  • concentration of the biodegradable polymer solution is less than 5% by weight, the concentration of the biodegradable polymer is too low, there is a problem that the production of microparticles is difficult, and when it exceeds 30% by weight there is a problem that it is difficult to produce spherical microparticles .
  • the first flow and the second flow of the aqueous phase solution of step (4) is a flow of 30 to 90 degrees to both sides based on the flow of the step (3).
  • the flow of the biodegradable polymer solution in step (3) is a flow having a direction from the starting point (a) to the injection into the biodegradable polymer solution to a certain point (b),
  • the flow of the solution is a flow to generate the intersection (d) and the flow of the biodegradable polymer solution from the starting point (c, c ') to be injected and flowed.
  • the aqueous phase solution of step (4) is to flow at a rate of 100 to 2000ul / min.
  • the first and second streams of the aqueous phase solution are allowed to flow at a rate of 100 to 2000 ⁇ l / min, preferably at a rate of 500 to 1000 ⁇ l / min. If the rate of the aqueous solution is less than 500 ⁇ l / min, a problem arises in that the size range of the microparticles is widened. If so, there is a problem that the biodegradation period is too short because it is rapidly decomposed.
  • the relatively slow biodegradable polymer solution at the intersection of the biodegradable polymer solution stream and the aqueous phase solution stream is squeezed by the relatively high aqueous phase solution on both sides of the device, so that a small amount of the biodegradable polymer solution is disconnected and surrounded by the aqueous phase solution. do.
  • the small amount of biodegradable polymer solution immediately takes the form of spherical microparticles due to the surface tension.
  • the step of collecting the spherical microparticles produced in the single stream after the intersection and the intersection of step (5) of the present invention is collected in a receiver solution containing a surfactant.
  • the capture in the receiver solution containing the surfactant is to prevent the spherical microparticles from agglomerating with each other.
  • step (5) collects spherical microparticles in a negative pressure environment. Negative pressure environment means maintaining a pressure lower than atmospheric pressure. Therefore, when the microparticles are collected in a negative pressure environment, the low pressure acts to pull the flow of the biodegradable polymer solution and the water phase solution, which causes the pump to flow the biodegradable polymer solution and the aqueous solution.
  • step (6) of the present invention is to first dry the spherical microparticles collected in step (5) at 20 to 25 °C. If the emulsion in droplet form is held at a temperature below the boiling point of the organic solvent for a period of time, for example 12 to 48 hours, the organic solvent can be extracted from the biodegradable polymer solution in the form of droplets. As the organic solvent is extracted from the biodegradable polymer solution in the form of droplets, it can be solidified to form spherical microparticles.
  • step (7) of the present invention is to filter and wash the dried spherical microparticles of step (6), the microparticles in purified water at least once, preferably 1 to 3 times Washing can remove the surfactant and solvent and again filter to obtain washed particulates.
  • the washing step to remove remaining surfactant and solvent can be repeated several times.
  • step (8) of the present invention is to secondary dry the spherical microparticles of step (7), in the step (8), the drying method is not particularly limited, but preferably In order to minimize the damage of the biodegradable polymer by heat, it may be carried out through vacuum drying or freeze drying.
  • the average diameter of the microparticles of the present invention is 10 to 150 mu m, preferably 15 to 90 mu m, more preferably 20 to 70 mu m.
  • Micro particles are spherical micro particles, when the diameter is less than 10 ⁇ m injected into the body, there is a problem that the biodegradation period is too short to form enough tissue cells because the biodegradation is too short. If the diameter exceeds 150 ⁇ m, there is a problem that the injection into the skin is not easy.
  • the microparticles of the present invention is a method for producing microparticles comprising a biodegradable polymer having a size distribution of 1 or less (span value) according to Equation 2 below:
  • the biodegradable polymer of the present invention is polylactic acid (Polylactic acid, PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Poly (lactic-co-glycolic acid) ), PLGA), polycaprolactone (PCL) and derivatives thereof, and at least one selected from the group consisting of polycaprolactone, preferably polycaprolactone, but not limited to the examples.
  • the number average molecular weight of the biodegradable polymer is not particularly limited, but is 5,000 to 300,000, preferably 8,000 to 250,000, and more preferably 10,000 to 200,000.
  • the organic solvent of the present invention has a boiling point of 120 ° C. or less and is not mixed with water, for example, with dichloromethane, chloroform, chloroethane, dichloroethane, trichloroethane and mixtures thereof. At least one selected from the group consisting of, preferably dichloromethane, but is not limited to the examples.
  • the surfactant is not particularly limited in kind, and may be used as long as the biodegradable polymer solution can help to form a stable emulsion.
  • the method for producing microparticles containing the biodegradable polymer of the present invention can be used to apply the microfluidic method. That is, a microchannel through which the biodegradable polymer solution and the aqueous solution may flow is made in the device, and the biodegradable polymer solution and the aqueous solution are injected through the microchannel to flow.
  • the channel is formed using a deep ion reactive etching (DRIE) process on a silicon wafer to etch in a vertical direction to form a valley, and then anodically bond and seal the glass thereon.
  • the microchannel is prepared to have a width of 300 ⁇ m and a depth of 150 ⁇ m to 200 ⁇ m. The reason why the DRIE is used in the manufacturing process is that when performing the etching of 50 ⁇ m or more as described above, it is possible to etch the surface shape vertically differently from other wet etching.
  • Preparation of microparticles using a solvent extraction-evaporation method as in the prior art has disadvantages in that the size of the microparticles is not uniform and the size distribution is relatively wide. Therefore, in order to obtain the microparticles of the desired size, a separate size purification process is required, and since the microparticles of unnecessary size are also produced, there is a problem in that the final yield falls.
  • the phase separation property of the biodegradable polymer solution and the surfactant solution is the intersection and cross point of the biodegradable polymer solution and the aqueous solution Implemented in a single flow thereafter, it is easier to control the size than the conventional solvent extraction-evaporation method, has a high final production yield, and has excellent mechanical strength and shape of microparticles.
  • it is easy to control the degree of biodegradation, less penetrability and foreign body feeling.
  • the microparticles containing the biodegradable polymer prepared by the production method of the present invention is not particularly limited in use thereof, for example, a skin cosmetic or medical filler that requires in vivo resorption It can be used as, but is not limited to, examples, especially as an injectable subcutaneous or intradermal injectable filler.
  • the in vivo reabsorption period of the microparticles containing the biodegradable polymer prepared according to the preparation method of the present invention is not particularly limited, but may be considered to be used as a biodegradable skin cosmetic or medical filler. At this time, it is preferable that the bioabsorbable can be revived within 1 to 3 years.
  • the present invention is a method for producing microparticles containing a biodegradable polymer, specifically a method for producing spherical microparticles for injection into the skin. Due to the manufacturing method described above, it is possible to control the size of the microparticles, and to produce microparticles having a constant size distribution. As microparticles containing biodegradable polymers can be produced to have a narrow size range, high production yields can be exhibited. In addition, in consideration of the characteristic that the decomposition rate varies depending on the size of the microparticles, the rate of decomposition of the microparticles in the body can be controlled by adjusting the size of the microparticles to be injected as necessary.
  • the molecular weight of the polymer means number average molecular weight (Mn).
  • Mn number average molecular weight
  • the number average molecular weight means an average molecular weight obtained by averaging the molecular weights of the component molecular species of the polymer compound having a molecular weight distribution by a moisture content or a mole fraction.
  • the tissue repair refers to the mechanism of restoring the tissue to its original state when necrosis or defect occurs in the tissue due to trauma or inflammation.
  • the biodegradable polymer means a property that the medical material is harmless and easy to adapt to a living body.
  • the living organisms are broadly divided into blood, various tissues and organs, and thus are divided into blood compatibility (antithrombogenic) and tissue compatibility.
  • the biodegradable polymer means a polymer that can be widely applied.
  • the present invention comprises the steps of (1) dissolving the biodegradable polymer in an organic solvent to prepare a biodegradable polymer solution; (2) dissolving the surfactant in purified water to prepare an aqueous solution; (3) injecting the biodegradable polymer solution of step (1) in one direction to allow flow; (4) injecting the aqueous phase solution in the flow direction of step (3) to allow the first and second streams to flow, and the intersection of the flow of step (3), the first flow of the aqueous phase solution, and the second flow.
  • step (8) relates to a method for producing a microparticle comprising a biodegradable polymer comprising the step of secondary drying the spherical microparticles of step (7) by vacuum or freeze drying.
  • the manufacturing method can be largely divided into three flow stems.
  • the first flow stem is a flow stem of a biodegradable polymer solution prepared by dissolving the biodegradable polymer in an organic solvent.
  • the second flow stem is the flow stem of the aqueous solution prepared by dissolving the surfactant in purified water.
  • the third flow stem is a flow stem generated as one flow after the first flow stem and the second flow stem create an intersection point.
  • the first flow stem and the third flow stem flow in the same direction, and the second flow stem is more specifically distinguished into the first flow and the second flow of the aqueous phase solution, and flows in the direction of creating an intersection with the first flow.
  • the flow rate of the three flow stems and the injection angle of the second flow will affect the size, size distribution and production yield of the resulting microparticles.
  • the relationship between the aqueous solution injection rate (mL), the biodegradable polymer solution injection rate (mL) and the biodegradable polymer solution concentration of the present invention is represented by the following equation 1, the following equation 1 is 2.5 It relates to a method for producing a microparticle having a value of from 15 to 15.
  • Equation 1 water phase injection rate (mL)
  • OF biodegradable polymer solution injection rate (mL)
  • OC biodegradable polymer solution concentration (% by weight)
  • K proportional constant (proportional factor). If the value of Equation 1 is less than 2.5 or more than 15, the size and size of the microparticles may be due to the low shear stress due to the change of the injection rate of the biodegradable polymer solution, the difference in the shear force applied to the biodegradable polymer solution, and the like. The distribution increased.
  • the aqueous solution of step (2) of the present invention has a surfactant concentration of 0.25 to 0.5% by weight.
  • Increasing the surfactant concentration of the aqueous phase solution can suppress the aggregation of microparticles in the manufacturing process, and the low interfacial tension produces microparticles with a narrow size distribution.
  • the surfactant concentration of the aqueous solution is less than 0.25% by weight, there is a problem that the size distribution of the microparticles is widened.
  • a problem of relatively difficult washing and removing of the surfactant in the generated microparticles may occur.
  • the biodegradable polymer solution of step (3) of the present invention is to flow at a rate of 50 to 200ul / min.
  • the biodegradable polymer solution is allowed to flow at a rate of less than 50 ⁇ l / min, the size of the microparticles may be small, so that they may be absorbed into the body, and the size distribution may be widened. If the flow exceeds 200 ⁇ l / min, the size of the microparticles increases, so that a wound may occur when injected into the skin, and there is a problem that the size distribution is widened.
  • the biodegradable polymer solution of step (3) of the present invention has a concentration of 5 to 30% by weight.
  • concentration of the biodegradable polymer solution is less than 5% by weight, the concentration of the biodegradable polymer is too low, there is a problem that the production of microparticles is difficult, and when it exceeds 30% by weight there is a problem that it is difficult to produce spherical microparticles .
  • the first flow and the second flow of the aqueous phase solution of step (4) is a flow of 30 to 90 degrees to both sides based on the flow of the step (3).
  • the flow of the biodegradable polymer solution in step (3) is a flow having a direction from the starting point (a) to the injection into the biodegradable polymer solution to a certain point (b),
  • the flow of the solution is a flow to generate the intersection (d) and the flow of the biodegradable polymer solution from the starting point (c, c ') to be injected and flowed.
  • the aqueous phase solution of step (4) is to flow at a rate of 100 to 2000ul / min.
  • the first and second streams of the aqueous phase solution are allowed to flow at a rate of 100 to 2000 ⁇ l / min, preferably at a rate of 500 to 1000 ⁇ l / min. If the rate of the aqueous solution is less than 500 ⁇ l / min, a problem arises in that the size range of the microparticles is widened. If so, there is a problem that the biodegradation period is too short because it is rapidly decomposed.
  • the relatively slow biodegradable polymer solution at the intersection of the biodegradable polymer solution stream and the aqueous phase solution stream is squeezed by the relatively high aqueous phase solution on both sides of the device, so that a small amount of the biodegradable polymer solution is disconnected and surrounded by the aqueous phase solution. do.
  • the small amount of biodegradable polymer solution immediately takes the form of spherical microparticles due to the surface tension.
  • the step of collecting the spherical microparticles produced in a single stream after the intersection and the intersection of step (5) of the present invention is collected in a receiver solution containing a surfactant.
  • the capture in the receiver solution containing the surfactant is to prevent the spherical microparticles from agglomerating with each other.
  • step (5) collects spherical microparticles in a negative pressure environment. Negative pressure environment means maintaining a pressure lower than atmospheric pressure. Therefore, when the microparticles are collected in a negative pressure environment, the low pressure acts to pull the flow of the biodegradable polymer solution and the water phase solution, which causes the pump to flow the biodegradable polymer solution and the aqueous solution.
  • step (6) of the present invention is to first dry the spherical microparticles collected in step (5) at 20 to 25 °C. If the emulsion in droplet form is maintained at a temperature below the boiling point of the organic solvent for a period of time, for example 12 to 48 hours, the organic solvent can be extracted from the biodegradable polymer solution in the form of droplets. As the organic solvent is extracted from the biodegradable polymer solution in the form of droplets, it can be solidified to form spherical microparticles.
  • step (7) of the present invention is to filter and wash the dried spherical microparticles of step (6), the microparticles in purified water at least once, preferably 1 to 3 times Washing can remove the surfactant and solvent and again filter to obtain washed particulates.
  • the washing step to remove remaining surfactant and solvent can be repeated several times.
  • step (8) of the present invention is to secondary dry the spherical microparticles of step (7), in the step (8), the drying method is not particularly limited, but preferably In order to minimize the damage of the biodegradable polymer by heat, it may be carried out through vacuum drying or freeze drying.
  • the average diameter of the microparticles of the present invention is 10 to 150 mu m, preferably 15 to 90 mu m, more preferably 20 to 70 mu m.
  • Micro particles are spherical micro particles, when the diameter is less than 10 ⁇ m injected into the body, there is a problem that the biodegradation period is too short to form enough tissue cells because the biodegradation is too short. If the diameter exceeds 150 ⁇ m, there is a problem that the injection into the skin is not easy.
  • the microparticles of the present invention is a method for producing microparticles comprising a biodegradable polymer having a size distribution of 1 or less (span value) according to Equation 2 below:
  • the biodegradable polymer of the present invention is polylactic acid (Polylactic acid, PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Poly (lactic-co-glycolic acid) ), PLGA), polycaprolactone (PCL) and derivatives thereof, and at least one selected from the group consisting of polycaprolactone, preferably polycaprolactone, but not limited to the examples.
  • the number average molecular weight of the biodegradable polymer is not particularly limited, but is 5,000 to 300,000, preferably 8,000 to 250,000, and more preferably 10,000 to 200,000.
  • the organic solvent of the present invention has a boiling point of 120 ° C. or less and is not mixed with water, for example, with dichloromethane, chloroform, chloroethane, dichloroethane, trichloroethane and mixtures thereof. At least one selected from the group consisting of, preferably dichloromethane, but is not limited to the examples.
  • the surfactant is not particularly limited in kind, and may be used as long as the biodegradable polymer solution can help to form a stable emulsion.
  • the method for producing microparticles containing the biodegradable polymer of the present invention can be used to apply the microfluidic method. That is, a microchannel through which the biodegradable polymer solution and the aqueous solution may flow is made in the device, and the biodegradable polymer solution and the aqueous solution are injected through the microchannel to flow.
  • the channel is formed using a deep ion reactive etching (DRIE) process on a silicon wafer to etch in a vertical direction to form a valley, and then anodically bond and seal the glass thereon.
  • the microchannel is prepared to have a width of 300 ⁇ m and a depth of 150 ⁇ m to 200 ⁇ m. The reason why the DRIE is used in the manufacturing process is that when performing the etching of 50 ⁇ m or more as described above, it is possible to etch the surface shape vertically differently from other wet etching.
  • Preparation of microparticles using a solvent extraction-evaporation method as in the prior art has disadvantages in that the size of the microparticles is not uniform and the size distribution is relatively wide. Therefore, in order to obtain the microparticles of the desired size, a separate size purification process is required, and since the microparticles of unnecessary size are also produced, there is a problem in that the final yield falls.
  • the phase separation property of the biodegradable polymer solution and the surfactant solution is the intersection and cross point of the biodegradable polymer solution and the aqueous solution Implemented in a single flow thereafter, it is easier to control the size than the conventional solvent extraction-evaporation method, has a high final production yield, and has excellent mechanical strength and shape of microparticles.
  • it is easy to control the degree of biodegradation, less penetrability and foreign body feeling.
  • the microparticles containing the biodegradable polymer prepared by the production method of the present invention is not particularly limited in use thereof, for example, a skin cosmetic or medical filler that requires in vivo resorption It can be used as, but is not limited to, examples, especially as an injectable subcutaneous or intradermal injectable filler.
  • the in vivo reabsorption period of the microparticles containing the biodegradable polymer prepared according to the preparation method of the present invention is not particularly limited, but may be considered to be used as a biodegradable skin cosmetic or medical filler. At this time, it is preferable that the bioabsorbable can be revived within 1 to 3 years.
  • a biodegradable polymer solution 10 mL of a biodegradable polymer solution was prepared by dissolving polycaprolactone (PCL), Mn 45,000, in 15 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C.).
  • PCL polycaprolactone
  • Mn 45,000 molecular weight of 85,000 to 124,000 was dissolved in purified water at 0.25% by weight to prepare 250 mL of an aqueous solution.
  • PVA polyvinyl alcohol
  • a dispersed phase in the form of droplets was formed.
  • the dispersed phase in the form of droplets was dissolved in purified water at 0.25% by weight of polyvinyl alcohol (PVA), collected in 100 mL of a receiver solution, and left at room temperature (25 ° C.) for about 24 hours to extract a dichloromethane solvent.
  • PVA polyvinyl alcohol
  • the aqueous solution containing microparticles is filtered and the microparticles are washed to remove residual polyvinyl alcohol and dichloromethane solution. Thereafter, the microparticles were dried to finally prepare a microparticle including a spherical biodegradable polymer.
  • Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1, except that 10 mL of a biodegradable polymer solution was prepared by dissolving 10 wt% in a dichloromethane (boiling point: 39.6 ° C.) solvent.
  • Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1, except that 10 mL of a biodegradable polymer solution was prepared by dissolving in a solvent of dichloromethane (boiling point: 39.6 ° C.) at 30% by weight.
  • Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow rate was 50 ⁇ l / min.
  • Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow at a rate of 200 ⁇ l / min.
  • the preparation was carried out in the same manner as in Preparation Example 1, except that the surfactant concentration of the aqueous phase solution was dissolved at 0.5% by weight.
  • Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1 except that 10 mL of a biodegradable polymer solution was prepared by dissolving 5 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C.).
  • Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1, except that 10 mL of a biodegradable polymer solution was prepared by dissolving 45 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C).
  • Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow rate was 25 ⁇ l / min.
  • Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow at a rate of 300 ⁇ l / min.
  • the preparation was carried out in the same manner as in Preparation Example 1, except that the surfactant concentration of the aqueous solution was dissolved at 0.1 wt%.
  • the preparation was carried out in the same manner as in Preparation Example 1, except that the surfactant concentration of the aqueous solution was prepared by dissolving at 1.0 wt%.
  • the biodegradable polymer solution was prepared in the same manner as in Preparation Example 3 except that the flow was flowed at a rate of 200 ⁇ l / min, and the first and second flows of the aqueous phase solution were flowed at a rate of 2000 ⁇ l / min.
  • the biodegradable polymer solution was prepared in the same manner as in Preparation Example 3 except that the flow was flowed at a rate of 50 ⁇ l / min, and the first and second flows of the aqueous phase solution were flowed at a rate of 2000 ⁇ l / min.
  • a biodegradable polymer solution 10 mL of a biodegradable polymer solution was prepared by dissolving polycaprolactone (PCL), Mn 45,000, in 15 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C.).
  • PCL polycaprolactone
  • Mn 45,000 10 wt%
  • a solvent of dichloromethane solvent of dichloromethane
  • Mw 85,000-124,000 polyvinyl alcohol (PVA) was dissolved as 0.25% wt in purified water to prepare 100 mL of an aqueous solution.
  • the biodegradable polymer solution was then mixed with the surfactant aqueous phase solution and then stirred rapidly to form a dispersed phase in the form of droplets.
  • the dispersed phase in the form of droplets dispersed in the surfactant aqueous phase solution was then stirred for a period of time and the temperature was added to extract the solvent and solidified to form microparticles. Thereafter, the solidified microparticles were filtered and washed with purified water to remove residual surfactant. Subsequently, the washed microparticles are obtained, followed by a drying process to finally form spherical biodegradable microparticles.
  • the size and distribution of the microparticles containing the biodegradable polymer were measured by repeating three times for 10 seconds after dispersing the microparticles in a dispersion medium using a Helos particle size analyzer (Sympatec) as a measuring device.
  • a Helos particle size analyzer Sympatec
  • Biodegradable Polymer Molecular Weight Mn
  • Biodegradable polymer solution concentration % by weight
  • Biodegradation Polymer Solution Injection Rate ⁇ l / min
  • Water phase injection rate ⁇ l / min
  • Microparticle size D10 / D50 / D90, um
  • Span value Preparation Example 1 45,000 15 100 1,000 25/40/51, 0.65 Comparative Example 1 14,000 15 100 1,000 32/48/75, 0.90 Comparative Example 2 80,000 15 100 1,000 23/31/42, 0.61
  • polycaprolactone (Polycaprolactone, PCL) microparticles having a molecular weight of Mn 45,000 were confirmed to have a uniform size and a perfect spherical shape, the bioabsorption period to be developed in the present invention could be secured.
  • polycaprolactone (PCL) microparticles having a molecular weight of Mn 14,000 have a wide size distribution and do not show perfect spherical shape due to low molecular weight.
  • PCL polycaprolactone
  • Biodegradable Polymer Molecular Weight Mn
  • Biodegradable polymer solution concentration % by weight
  • Biodegradation Polymer Solution Injection Rate ⁇ l / min
  • Water phase injection rate ⁇ l / min
  • Microparticle size D10 / D50 / D90, um
  • Span value Optimization Constant OC
  • the microparticles having a concentration of 10 to 30% by weight of the biodegradable polymer solution in Preparation Examples 1 to 3 were uniform in size and were able to confirm the perfect spherical shape.
  • the concentration of the biodegradable polymer solution in Comparative Example 3 is 5% by weight, very small sized microparticles are generated due to the low concentration, and the produced microparticles are porous and do not meet the purpose of this study.
  • Comparative Example 4 when the concentration of the biodegradable polymer solution was 45% by weight, it was difficult to form spherical microparticles due to the high concentration.
  • Biodegradable Polymer Molecular Weight Mn
  • Biodegradable polymer solution concentration % by weight
  • Biodegradation Polymer Solution Injection Rate ⁇ l / min
  • Water phase injection rate ⁇ l / min
  • Microparticle size D10 / D50 / D90, um
  • Span value Optimization constant OC
  • the microparticles of the injection rate of the biodegradable polymer solution in Preparation Examples 1, 4, 5 is 50 to 200 ⁇ l / min is a perfect sphere of the desired size (20 ⁇ 70 ⁇ m) intended in this study I could confirm the form.
  • the injection rate of the biodegradable polymer solution in Comparative Example 5 is 25 ⁇ l / min, small microparticles are generated, but the size distribution of the microparticles is increased.
  • Comparative Example 6 when the injection rate of the biodegradable polymer solution was 300 ⁇ l / min, the size and size distribution of the microparticles were increased due to the low shear stress.
  • Biodegradable polymer solution concentration (% by weight) Biodegradation Polymer Solution Injection Rate ( ⁇ l / min) Water phase injection rate ( ⁇ l / min) Water solution injection angle Microparticle size (D10 / D50 / D90, um) and Span value Optimization constant (OC)
  • Preparation Example 1 15 100 1,000 90 25/40/51, 0.65 6.1
  • Preparation Example 6 15 100 1,000 60 28/44/59, 0.70 2.7
  • Comparative Example 7 15 100 1,000 30 34/43/74, 0.93 0.7 Comparative Example 8 15 100 1,000 150 29/44/71, 0.95 16.9
  • Biodegradable polymer solution concentration (% by weight) Biodegradation Polymer Solution Injection Rate ( ⁇ l / min) Water phase injection rate ( ⁇ l / min) Water solution injection angle Microparticle size (D10 / D50 / D90, um) and Span value Optimization constant (OC)
  • Preparation Example 1 15 100 1,000 90 25/40/51, 0.65 6.1
  • Preparation Example 7 15 100 750 90 27/42/63, 0.86 3.4
  • Comparative Example 9 15 100 500 90 34/52/83, 0.94 1.5 Comparative Example 10 15 100 2,000 90 16/29/49, 1.14 24.3
  • microparticles having an injection rate of 750 to 1000 ⁇ l / min were confirmed to have a uniform size and a perfect spherical shape.
  • the injection rate of the aqueous phase solution in Comparative Example 9 is 500 ⁇ l / min because the shear force applied to the polymer solution is insufficient to form a spherical microparticles, the size of the microparticles are large and does not take the perfect spherical shape.
  • the injection rate of the aqueous phase solution in Comparative Example 10 is 2000 ⁇ l / min, small microparticles are generated due to high shear force, but the size distribution was confirmed to be increased.
  • Biodegradable polymer solution concentration (% by weight) Biodegradation Polymer Solution Injection Rate ( ⁇ l / min) Water phase injection rate ( ⁇ l / min) Aqueous solution concentration (% by weight) Microparticle size (D10 / D50 / D90, um) and Span value Optimization constant (OC)
  • Preparation Example 1 15 100 1,000 0.25 25/40/51, 0.65 6.1
  • Preparation Example 8 15 100 1,000 0.5 22/36/46, 0.67 12.2
  • Comparative Example 11 15 100 1,000 0.1 29/44/71, 0.95 2.4
  • Comparative Example 12 15 100 1,000 One 21/33/41, 0.61 24.3
  • the microparticles having a concentration of 0.25 to 0.5% by weight of the aqueous solution could be confirmed to have a uniform size and a perfect spherical shape.
  • the concentration of the aqueous solution in Comparative Example 11 is 0.1% by weight
  • the surface tension of the microparticles is increased due to the low surfactant concentration, which results in an increase in the size of the generated microparticles.
  • the concentration of the aqueous phase solution in Comparative Example 12 is 1.0% by weight, it is possible to suppress the agglomeration of the microparticles during the manufacturing process, and microparticles having a narrow size distribution are generated due to the low interfacial tension.
  • the PVA concentration of the aqueous phase solution is 1.0% wt or more, it is difficult to wash and remove PVA from the produced microparticles.
  • Biodegradable Polymer Molecular Weight Mn
  • Biodegradable polymer solution concentration % by weight
  • Biodegradation Polymer Solution Injection Rate ⁇ l / min
  • Water phase injection rate ⁇ l / min
  • Microparticle size D10 / D50 / D90, um
  • Span value Optimization constant OC
  • a biodegradable polymer solution was prepared and injected using a device having a microchannel, and the aqueous phase solution was injected at an angle of 90 ° to form microparticles, followed by filtration and Microparticles obtained through washing were prepared by drying.
  • the microparticles were prepared from the biodegradable polymer solution of the same concentration using polycaprolactone (PCL) having the same molecular weight as that of Preparation Example 1 by a solvent extraction-evaporation method, which is a general method for preparing microparticles. It was.
  • PCL polycaprolactone
  • Comparative Example 16 prepared by the solvent extraction-evaporation method unlike the Preparation Example 1, the size of the microparticles was large, and it was confirmed that the size distribution was relatively wide.
  • the present invention relates to a method for preparing microparticles containing a biodegradable polymer, and more particularly, to a method for preparing microparticles having easy size control, having a constant size distribution, and capable of producing microparticles with high yield.

Abstract

The present invention relates to a preparation method of microparticles comprising a biodegradable polymer wherein the microparticles prepared according to the present invention are spherical microparticles for injection into the skin. The size of the microparticles can be controlled by using the preparation method. In addition, the microparticles comprising a biodegradable polymer can be produced in a narrow range of size and thus can exhibit a high production yield rate. Considering the characteristic in which a dissolution rate varies according to the size of the microparticles, the dissolution rate can be controlled after injecting the microparticles, prepared according to the present invention, into a body.

Description

생분해성 고분자를 포함하는 마이크로파티클의 제조방법Method for producing microparticles containing biodegradable polymer
본 발명은 생분해성 고분자를 포함하는 마이크로파티클의 제조방법에 관한 것으로, 구체적으로 마이크로파티클의 크기 조절이 용이하여, 일정한 크기 분포를 가지며, 높은 수율로 마이크로파티클의 제조가 가능한 제조 방법에 관한 것이다.The present invention relates to a method for preparing microparticles containing a biodegradable polymer, and more particularly, to a method for preparing microparticles having easy size control, having a constant size distribution, and capable of producing microparticles with high yield.
콜라겐은 조직의 구조를 유지해 주는 역할을 하지만, 항상 일정한 형태를 유지하는 것이 아니라 콜라게나아제(collagenase)라 불리는 효소에 의해 연속적으로 분해되고 재구성되며, 연령 및 자외선 조사에 의한 광노화에 의해서도 감소하는데, 이러한 콜라겐의 감소는 피부의 주름 형성과 밀접한 연관이 있다고 알려져 있다 있다(Arthur K. Balin et al., "Aging and the skin", 1989). 특히, 안면부는 전신에서 가장 광노화가 진행하기 쉬운 부위이며, 광노화한 피부에서는 진피에 있어서의 주요한 세포인 선유아 세포의 증식 활성이나 콜라겐 등의 합성 기능이 저하하여, 콜라겐 등의 턴오버 속도도 늦어지며, 그 결과로 피부의 탄력이 없어져 주름이 발생하고, 피부의 노화가 진행한다.Collagen plays a role in maintaining the structure of the tissue, but it does not always maintain a constant shape, but is continuously degraded and reconstituted by an enzyme called collagenase, and reduced by age and photoaging by ultraviolet irradiation. This reduction in collagen is known to be closely associated with the formation of wrinkles in the skin (Arthur K. Balin et al., "Aging and the skin", 1989). In particular, the face part is the most prone to photo-aging in the whole body, and in photo-aged skin, the proliferative activity of fibroblasts, which are the major cells in the dermis, and the synthesis of collagen and the like decrease, and the turnover rate of collagen is also slow. As a result, the skin loses its elasticity, wrinkles occur, and the skin ages.
주름을 제거하는 방법의 하나로, 주름의 원인을 제공하는 근육을 보톡스로 마비시키는 방법이 많이 사용되고 있으나, 보톡스를 사용할 경우, 부자연스러운 표정이 만들어지며 눈 밑이나 아랫입술, 팔자주름 등에 사용하기가 어렵고 굵거나 깊은 주름에는 한계가 있으며 효과가 3 내지 6개월밖에 가지 않는 문제가 있다. 다른 방법으로 필러를 주입하는 방법이다. 필러는 예를 들어, 주사형 소 콜라겐(injectable bovine collagen)과 같은 다수의 메디컬 필러(medical fillers)들이 있지만, 상기의 메디컬 필러는 알러지(allergy) 및 크로이츠펠드 야콥병(Kreutzfeld Jacob's disease)과 같은 부작용의 문제가 있다. As one of the methods of removing wrinkles, there are many methods of paralyzing muscles that provide the cause of wrinkles with Botox.However, when Botox is used, it creates an unnatural expression and is difficult to use under the eyes, lower lip or elbow wrinkles. Thick or deep wrinkles are limited and the effect is only 3 to 6 months has a problem. Another way is to inject filler. The fillers have a number of medical fillers, such as, for example, injectable bovine collagen, but the medical fillers have side effects such as allergy and Creutzfeld Jacob's disease. there is a problem.
또한, 히알루론산 젤을 이용한 제품들은 생체 적합성이 매우 우수하며, 여러 임상을 통해 확인한 결과 생체 독성이 거의 없다는 장점을 가지고 있다. 하지만, 히알루론산은 2주에서 2달 사이에 매우 빠르게 생체 내 재흡수가 일어나기 때문에 지속력에 문제가 있다. 이러한 문제를 해결하기 위해, 히알루론산과 가교물질을 서로 가교 결합하여 최대 6개월까지 생체 내 재흡수 기간을 연장시킨 제품이 시장의 주류를 이루고 있다. 그러나 이러한 가교제품도 가교물질의 독성으로 인한 문제점이 보고되고 있다.In addition, products using hyaluronic acid gel has a very good biocompatibility, and has the advantage that there is little biotoxicity as confirmed by various clinical. However, hyaluronic acid has a sustainability problem because reabsorption in vivo occurs very quickly between two weeks and two months. In order to solve this problem, products that extend the resorption period in vivo up to 6 months by cross-linking hyaluronic acid and crosslinking material are the mainstream of the market. However, these crosslinked products have also been reported to have problems due to the toxicity of the crosslinking material.
이에, 사노피(Sanofi)사에서는 생체 내 분해가 가능한 생체 적합성 고분자 미립자를 이용한 조직 수복용 제품인 스컬트라(Sculptra)를 개발하였는데, 이 제품은 폴리락트산을 주원료로 하고 있으며, 고분자의 생체 내 분해속도가 2년 정도여서 조직 수복 효과도 2년 정도 지속이 된다. 이 제품은 히알루론산이나 콜라겐 제품이 삽입된 물질의 수화된 부피로 인해 효능을 발휘하는 것에 반해, 삽입된 폴리락트산이 환자 자신의 조직세포를 형성해 효능을 발휘한다는 점에서 차별성이 있다. 폴리락트산 미소구체 또는 미립자는 카르복시메틸셀룰로스에 현탁되어 주사되는데, 이때 미소구체 또는 미립자는 마크로파지 탐식세포에 흡인되지 않도록 그 직경이 20 ㎛이상이어야 한다. 그러나, 이 제품은 콜라겐이나 히알루론산 제품과 다르게 주입 즉시 효능을 나타내지 않고 3개월 정도 경과된 이후에 효능을 나타내게 된다는 단점을 가지고 있다. Therefore, Sanofi has developed Sculptra, a tissue repair product using biocompatible polymer microparticles that can be degraded in vivo, and this product has polylactic acid as its main raw material. About two years, the effect of tissue repair lasts about two years. This product differs in that the hyaluronic acid or collagen product is efficacious due to the hydrated volume of the inserted substance, whereas the inserted polylactic acid forms the patient's own tissue cells and is effective. The polylactic acid microspheres or particulates are suspended and injected into carboxymethylcellulose, wherein the microspheres or particulates must be at least 20 μm in diameter so as not to be attracted to the macrophage phagocytes. However, unlike collagen and hyaluronic acid products, this product does not show efficacy immediately after infusion and shows efficacy after about 3 months.
또한, 현탁제로 사용된 카르복시메틸셀룰로오스가 물에 수화되어 녹는데 오랜 시간이 걸려 시술 2시간에서 24시간 전에 미리 물에 녹여두어야 하는 단점이 있고, 미소구체의 입자크기로 인해 주사기 바늘이 막히는 현상이 자주 나타나는 문제점도 가지고 있다. 따라서, 사람의 몸에서 어떠한 원하지 않는 반응도 유발하지 않고, 주입 시, 응집(aggregation), 니들 클로깅(needle clogging) 및 단괴 형성(nodule forming)을 회피할 수 있으며, 미소구체(spherical microspheres)로 인한 흐름 특성과 같은 느린 재흡수성의 생분해성 필러의 개발이 요구되고 있다.In addition, the carboxymethyl cellulose used as a suspending agent takes a long time to hydrate and dissolve in water has a disadvantage that must be dissolved in water before 2 to 24 hours before the procedure, clogging the syringe needle due to the particle size of the microspheres It also has a lot of problems. Thus, without causing any unwanted reactions in the human body, it is possible to avoid aggregation, needle clogging and nodule forming at the time of infusion, and due to spherical microspheres There is a need to develop slow resorbable biodegradable fillers such as flow characteristics.
가장 널리 사용되는 생분해성 필러용 마이크로파티클 제조방법은 상 분리법(phase separation), 분무 건조법(spray drying), 및 용매 추출-증발법(solvent extraction-evaporation)이 있다. 한국 등록특허 제10-1517258호는 폴리카프로락톤을 포함하는 용매 추출-증발법을 이용하여 마이크로입자를 제조하는 방법에 관한 것으로, 용매 추출-증발법을 이용한 마이크로입자 제조방법은 제조된 마이크로입자의 크기가 균일하지 않고 비교적 크기 분포가 넓은 단점이 있다. 따라서, 원하는 크기의 마이크로입자를 얻기 위해서는 별도의 크기 정제 과정이 필요하며, 불필요한 크기의 마이크로입자도 제조되기 때문에 최종 수율이 떨어지는 문제가 발생한다.The most widely used methods for preparing microparticles for biodegradable fillers are phase separation, spray drying, and solvent extraction-evaporation. Korean Patent No. 10-1517258 relates to a method for preparing microparticles using a solvent extraction-evaporation method including polycaprolactone, and a method for preparing microparticles using the solvent extraction-evaporation method includes: The disadvantage is that the size is not uniform and the size distribution is relatively wide. Therefore, in order to obtain the microparticles of the desired size, a separate size purification process is required, and since the microparticles of unnecessary size are also produced, there is a problem in that the final yield falls.
이에 제조 과정에서 크기 조절이 용이하며, 좁은 크기 분포를 가지고 수율을 높일 수 있는 생분해성 고분자를 포함하는 마이크로파티클의 제조 방법의 개발이 요구되고 있다. Accordingly, there is a need for development of a method for preparing microparticles including a biodegradable polymer which can be easily controlled in a manufacturing process and has a narrow size distribution and can increase yield.
본 발명은 생분해성 고분자를 포함하는 마이크로파티클의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing microparticles containing a biodegradable polymer.
본 발명은 수상용액 주입속도, 수상용액의 주입각도, 생분해성 고분자용액 주입속도 및 생분해성 고분자용액 농도에 따라 크기 조절이 가능며, 일정한 크기 분포를 가지는 생분해성 고분자를 포함하는 마이크로 파티클의 제조방법을 제공하는 것을 다른 목적으로 한다.The present invention can control the size according to the water injection rate, the water injection angle, the biodegradable polymer solution injection rate and the biodegradable polymer solution concentration, the method of producing a microparticle containing a biodegradable polymer having a constant size distribution. To provide another purpose.
본 발명은 피부에 주입하기 위한 구형의 마이크로파티클의 제조방법으로, 분해 속도를 조절할 수 있는 구형의 마이크로파티클을 제공하는 것을 또 다른 목적으로 한다. Another object of the present invention is to provide a spherical microparticle having a spherical microparticle for injection into the skin.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become apparent from the following detailed description and claims.
본 발명의 일 구체예에서, 본 발명은 (1) 생분해성 고분자를 유기 용매에 용해시켜 생분해성 고분자 용액을 제조하는 단계; (2) 계면활성제를 정제수에 용해시켜 수상 용액을 제조하는 단계; (3) 상기 (1) 단계의 생분해성 고분자 용액을 한 방향으로 주입하여, 흐르게 하는 단계; (4) 상기 (3) 단계의 흐름 방향으로, 수상 용액을 주입하여, 제1 흐름 및 제2 흐름으로 흐르게 하고, (3) 단계의 흐름, 수상 용액의 제1 흐름 및 제2 흐름의 교차점을 생성하고, 상기 교차점 이후에 단일 흐름을 생성하여 흐르게 하는 단계; (5) 상기 (4) 단계의 교차점 및 교차점 이후의 단일 흐름에서 생성되는 구형의 마이크로파티클을 포집하는 단계; (6) 상기 (5) 단계에서 포집한 구형의 마이크로파티클을 20 내지 25℃에서 1차 건조시키는 단계; (7) 상기 (6) 단계의 건조한 구형의 마이크로파티클을 여과하고 세척하는 단계; 및 (8) 상기 (7) 단계의 구형의 마이크로파티클을 진공 또는 동결 건조의 방법으로, 2차 건조시키는 단계를 포함하는 생분해성 고분자를 포함하는 마이크로파티클의 제조방법에 관한 것이다. In one embodiment of the present invention, the present invention comprises the steps of (1) dissolving the biodegradable polymer in an organic solvent to prepare a biodegradable polymer solution; (2) dissolving the surfactant in purified water to prepare an aqueous solution; (3) injecting the biodegradable polymer solution of step (1) in one direction to allow flow; (4) injecting the aqueous phase solution in the flow direction of step (3) to allow the first and second streams to flow, and the intersection of the flow of step (3), the first flow of the aqueous phase solution, and the second flow. Generating and flowing a single flow after the intersection; (5) collecting spherical microparticles produced in a single stream after the intersection and the intersection of step (4); (6) first drying the spherical microparticles collected in step (5) at 20 to 25 ° C; (7) filtering and washing the dried spherical microparticles of step (6); And (8) relates to a method for producing a microparticle comprising a biodegradable polymer comprising the step of secondary drying the spherical microparticles of step (7) by vacuum or freeze drying.
구체적으로 상기 제조 방법은 크게 3개의 흐름 줄기로 구분할 수 있다. 첫 번째 흐름 줄기는 생분해성 고분자를 유기 용매에 용해시켜 제조한 생분해성 고분자 용액의 흐름 줄기이다. 두 번째 흐름 줄기는 계면활성제를 정제수에 용해시켜 제조한 수상 용액의 흐름 줄기이다. 세 번째 흐름 줄기는 상기 첫 번째 흐름 줄기와 두 번째 흐름 줄기가 교차점을 생성한 이후, 하나의 흐름으로 생성되는 흐름 줄기이다. 첫 번째 흐름 줄기와 세 번째 흐름 줄기는 같은 방향으로 흐르고, 두 번째 줄기는 보다 구체적으로 수상 용액의 제1 흐름 및 제2 흐름으로 구별되고, 첫 번째 흐름과 교차점을 생성하는 방향으로 흐르게 된다. 상기의 3개의 흐름 줄기의 흐름 속도 및 두 번째 흐름의 주입 각도에 따라, 생성되는 마이크로파티클의 크기, 크기 분포 및 생산 수율에 영향을 미친다고 할 것이다.Specifically, the manufacturing method can be largely divided into three flow stems. The first flow stem is a flow stem of a biodegradable polymer solution prepared by dissolving the biodegradable polymer in an organic solvent. The second flow stem is the flow stem of the aqueous solution prepared by dissolving the surfactant in purified water. The third flow stem is a flow stem generated as one flow after the first flow stem and the second flow stem create an intersection point. The first flow stem and the third flow stem flow in the same direction, and the second flow stem is more specifically distinguished into the first flow and the second flow of the aqueous phase solution, and flows in the direction of creating an intersection with the first flow. The flow rate of the three flow stems and the injection angle of the second flow will affect the size, size distribution and production yield of the resulting microparticles.
본 발명의 일 구체예에서, 본 발명의 수상용액 주입속도(mL), 생분해성 고분자용액 주입속도(mL) 및 생분해성 고분자용액 농도의 관계는 하기 수학식 1에 의하며, 하기 수학식 1은 2.5 내지 15의 값을 가지는 마이크로파티클의 제조방법에 관한 것이다.In one embodiment of the present invention, the relationship between the aqueous solution injection rate (mL), the biodegradable polymer solution injection rate (mL) and the biodegradable polymer solution concentration of the present invention is represented by the following equation 1, the following equation 1 is 2.5 It relates to a method for producing a microparticle having a value of from 15 to 15.
[수학식 1][Equation 1]
Figure PCTKR2016006209-appb-I000001
Figure PCTKR2016006209-appb-I000001
여기서, WF: 수상용액 주입속도(mL), OF: 생분해성 고분자용액 주입속도(mL), OC: 생분해성 고분자용액 농도(중량%), K: 비례상수(proportional factor)이다. 수학식 1의 값이 2.5 미만이거나, 15 초과인 경우, 생분해성 고분자용액의 주입속도의 변화로 인한 낮은 전단응력, 생분해성 고분자 용액에 가해지는 전단력의 차이 등으로 인해, 마이크로파티클의 크기 및 크기 분포가 증가하였다.Here, WF: water phase injection rate (mL), OF: biodegradable polymer solution injection rate (mL), OC: biodegradable polymer solution concentration (% by weight), K: proportional constant (proportional factor). If the value of Equation 1 is less than 2.5 or more than 15, the size and size of the microparticles may be due to the low shear stress due to the change of the injection rate of the biodegradable polymer solution, the difference in the shear force applied to the biodegradable polymer solution, and the like. The distribution increased.
본 발명의 일 구체예에서, 본 발명의 (2) 단계의 수상 용액은 계면활성제 농도가 0.25 내지 0.5 중량%이다. 수상 용액의 계면활성제 농도가 증가하면 제조 과정에서 마이크로파티클의 응집을 억제할 수 있으며, 낮은 계면장력으로 인해 크기 분포가 좁은 마이크로파티클이 생성된다. 수상 용액의 계면활성제 농도가 0.25 중량% 미만에서는 마이크로파티클의 크기 분포가 넓어지는 문제가 있다. 하지만, 1.0 중량% 이상에서는 생성된 마이크로파티클에서 계면활성제의 세척 및 제거가 상대적으로 어려운 문제점이 발생할 수 있다. In one embodiment of the present invention, the aqueous solution of step (2) of the present invention has a surfactant concentration of 0.25 to 0.5% by weight. Increasing the surfactant concentration of the aqueous phase solution can suppress the aggregation of microparticles in the manufacturing process, and the low interfacial tension produces microparticles with a narrow size distribution. If the surfactant concentration of the aqueous solution is less than 0.25% by weight, there is a problem that the size distribution of the microparticles is widened. However, at 1.0 wt% or more, a problem of relatively difficult washing and removing of the surfactant in the generated microparticles may occur.
본 발명의 일 구체예에서, 본 발명의 (3) 단계의 생분해성 고분자 용액은 50 내지 200㎕/min의 속도로 흐르게 하는 것이다. 생분해성 고분자 용액이 50㎕/min 미만의 속도로 흐르게 할 경우에는, 마이크로파티클의 크기가 작아 체내에 흡수가 되어 버릴 수 있으며, 크기 분포가 넓어지는 문제가 있다. 200㎕/min을 초과하여 흐르게 할 경우에는 마이크로파티클의 크기가 커져 피부에 주입할 경우 상처가 발생할 수 있으며, 크기 분포가 넓어지는 문제가 있다.In one embodiment of the present invention, the biodegradable polymer solution of step (3) of the present invention is to flow at a rate of 50 to 200ul / min. When the biodegradable polymer solution is allowed to flow at a rate of less than 50 μl / min, the size of the microparticles may be small, so that they may be absorbed into the body, and the size distribution may be widened. If the flow exceeds 200 μl / min, the size of the microparticles increases, so that a wound may occur when injected into the skin, and there is a problem that the size distribution is widened.
본 발명의 일 구체예에서, 본 발명의 (3) 단계의 생분해성 고분자 용액은 농도가 5 내지 30 중량%이다. 생분해성 고분자 용액의 농도가 5 중량% 미만일 경우, 생분해성 고분자의 농도가 너무 낮아 마이크로파티클의 제조가 어려운 문제가 있으며, 30 중량%를 초과할 경우에는 구형의 마이크로파티클을 제조하기 어려운 문제가 있다.In one embodiment of the invention, the biodegradable polymer solution of step (3) of the present invention has a concentration of 5 to 30% by weight. When the concentration of the biodegradable polymer solution is less than 5% by weight, the concentration of the biodegradable polymer is too low, there is a problem that the production of microparticles is difficult, and when it exceeds 30% by weight there is a problem that it is difficult to produce spherical microparticles .
본 발명의 일 구체예에서, (4) 단계의 수상 용액의 제1 흐름 및 제2 흐름은 상기 (3) 단계의 흐름을 기준으로 양쪽으로 30 내지 90°만큼 벌어져 흐르는 것이다. 구체적으로, 하기의 화살표를 참조하면, (3) 단계의 생분해성 고분자 용액의 흐름은 생분해성 고분자 용액을 주입하여 흐르게 하는 출발점(a)으로부터 일정 지점(b)으로 향하는 방향을 가지는 흐름이며, 수상 용액의 흐름은 주입하여 흐르게 하는 출발점(c, c')으로부터 생분해성 고분자 용액의 흐름과 교차점(d)을 생성하게 하기 위한 흐름이다. In one embodiment of the present invention, the first flow and the second flow of the aqueous phase solution of step (4) is a flow of 30 to 90 degrees to both sides based on the flow of the step (3). Specifically, referring to the arrow below, the flow of the biodegradable polymer solution in step (3) is a flow having a direction from the starting point (a) to the injection into the biodegradable polymer solution to a certain point (b), The flow of the solution is a flow to generate the intersection (d) and the flow of the biodegradable polymer solution from the starting point (c, c ') to be injected and flowed.
Figure PCTKR2016006209-appb-I000002
Figure PCTKR2016006209-appb-I000002
수상 용액의 제1 흐름(c) 및 제2 흐름(c')이 생분해성 고분자 용액의 흐름과 30° 미만으로 벌어져 흐르는 것일 경우에는, 마이크로파티클의 크기 분포가 넓어지는 문제가 발생하며, 90°초과하여 흐르는 경우에도 마이크로파티클의 크기 분포가 넓어지는 문제가 발생한다. 결과적으로, 수상 용액의 흐름은 생분해성 고분자 용액의 흐름과 30 내지 90°의 범위에서 벌어져 흐를 경우에, 좁은 범위의 크기 분포를 가지는 마이크로파티클의 제조가 가능하다. When the first flow (c) and the second flow (c ') of the aqueous phase solution flow through the biodegradable polymer solution at less than 30 °, a problem arises in that the size distribution of the microparticles is widened. Even when the excess flow occurs, the size distribution of the microparticles is widened. As a result, when the flow of the aqueous phase solution flows in the range of 30 to 90 ° with the flow of the biodegradable polymer solution, it is possible to prepare microparticles having a narrow size distribution.
본 발명의 일 구체예에서, (4) 단계의 수상 용액은 100 내지 2000㎕/min의 속도로 흐르게 하는 것이다. 수상 용액의 제1 흐름 및 제2 흐름은 100 내지 2000㎕/min의 속도로 흐르게 하며, 바람직하게는 500 내지 1000㎕/min의 속도이다. 수상 용액의 속도가 500㎕/min 미만일 경우에는 마이크로파티클의 크기 범위가 넓어지는 문제가 발생하며, 2000㎕/min 초과할 경우에는 10㎛ 이하의 직경을 가지는 마이크로파티클이 제조됨으로 인해, 체내에 주입될 경우, 빠르게 분해가 되어 생분해 기간이 너무 짧아지는 문제가 있다. 생분해성 고분자 용액 흐름 및 수상 용액 흐름의 교차점에서 상대적으로 저속인 생분해성 고분자 용액은 디바이스 양쪽 옆에서 비교적 고속의 수상 용액에 의해 압착되고, 결국 소량의 생분해성 고분자 용액은 단절되어 수상 용액에 둘러싸이게 된다. 이때 소량의 생분해성 고분자 용액은 표면장력으로 인하여 즉시 구형의 마이크로파티클 형태를 취하게 된다.In one embodiment of the present invention, the aqueous phase solution of step (4) is to flow at a rate of 100 to 2000ul / min. The first and second streams of the aqueous phase solution are allowed to flow at a rate of 100 to 2000 μl / min, preferably at a rate of 500 to 1000 μl / min. If the rate of the aqueous solution is less than 500 μl / min, a problem arises in that the size range of the microparticles is widened. If so, there is a problem that the biodegradation period is too short because it is rapidly decomposed. The relatively slow biodegradable polymer solution at the intersection of the biodegradable polymer solution stream and the aqueous phase solution stream is squeezed by the relatively high aqueous phase solution on both sides of the device, so that a small amount of the biodegradable polymer solution is disconnected and surrounded by the aqueous phase solution. do. In this case, the small amount of biodegradable polymer solution immediately takes the form of spherical microparticles due to the surface tension.
본 발명의 일 구체예에서, 본 발명의 (5) 단계의 교차점 및 교차점 이후의 단일 흐름에서 생성되는 구형의 마이크로 파티클을 포집하는 단계는 계면활성제가 포함된 리시버(receiver) 용액에서 수집한다. 계면활성제가 포함된 리시버(receiver) 용액에서 포집하는 것은, 구형의 마이크로파티클을 서로 응집되지 않도록 하기 위함이다. 또한, (5) 단계는 음압 환경에서 구형의 마이크로 파티클을 포집한다. 음압 환경은 대기압 보다 낮은 압력 상태를 유지하는 것을 의미한다. 따라서, 음압 환경에서 마이크로 파티클을 포집할 경우, 낮은 압력으로 인해 생분해성 고분자 용액의 흐름 및 수상 용액의 흐름을 당기는 작용을 하게 되며, 이러한 작용으로 인해 생분해성 고분자 용액 및 수상 용액을 흐르게 하기 위한 펌프의 부하를 줄일 수 있다. 추가적으로, 음압 환경 하에서 생분해성 고분자 용액 및 수상 용액의 흐름에 대한 정확한 유속 제어가 가능하며, 흐름 내의 막힘 연상을 억제할 수 있어, 마이크로 파티클을 제조하기 위한 시스템의 운영 효율을 높일 수 있다.In one embodiment of the present invention, the step of collecting the spherical microparticles produced in the single stream after the intersection and the intersection of step (5) of the present invention is collected in a receiver solution containing a surfactant. The capture in the receiver solution containing the surfactant is to prevent the spherical microparticles from agglomerating with each other. In addition, step (5) collects spherical microparticles in a negative pressure environment. Negative pressure environment means maintaining a pressure lower than atmospheric pressure. Therefore, when the microparticles are collected in a negative pressure environment, the low pressure acts to pull the flow of the biodegradable polymer solution and the water phase solution, which causes the pump to flow the biodegradable polymer solution and the aqueous solution. Can reduce the load. In addition, accurate flow rate control of the flow of biodegradable polymer and aqueous solutions in a negative pressure environment is possible, and confinement in the flow can be suppressed, thereby increasing the operating efficiency of the system for producing microparticles.
본 발명의 일 구체예에서, 본 발명의 (6) 단계는 (5) 단계에서 포집한 구형의 마이크로 파티클을 20 내지 25℃에서 1차 건조시키는 것이다. 액적 형태의 에멀젼을 유기 용매의 비등점 미만의 온도에서 일정 시간, 예를 들면, 12시간 내지 48시간 동안 유지하면, 액적 형태의 생분해성 고분자 용액으로부터 유기 용매가 추출될 수 있다. 액적 형태의 생분해성 고분자 용액으로부터 유기 용매가 추출되면서, 고형화되어 구형의 마이크로파티클을 형성할 수 있다. In one embodiment of the present invention, step (6) of the present invention is to first dry the spherical microparticles collected in step (5) at 20 to 25 ℃. If the emulsion in droplet form is held at a temperature below the boiling point of the organic solvent for a period of time, for example 12 to 48 hours, the organic solvent can be extracted from the biodegradable polymer solution in the form of droplets. As the organic solvent is extracted from the biodegradable polymer solution in the form of droplets, it can be solidified to form spherical microparticles.
본 발명의 일 구체예에서, 본 발명의 (7) 단계는 (6) 단계의 건조한 구형의 마이크로 파티클을 여과하고 세척하는 것으로, 마이크로파티클을 정제수로 1회 이상, 바람직하게는 1회 내지 3회 세척하여 계면활성제 및 용매를 제거하며, 다시 여과시켜 세척된 미립자를 수득할 수 있다. 잔존하는 계면활성제 및 용매를 제거하기 위한 세척 단계는 수 회에 걸쳐 반복할 수 있다.In one embodiment of the invention, step (7) of the present invention is to filter and wash the dried spherical microparticles of step (6), the microparticles in purified water at least once, preferably 1 to 3 times Washing can remove the surfactant and solvent and again filter to obtain washed particulates. The washing step to remove remaining surfactant and solvent can be repeated several times.
본 발명의 일 구체예에서, 본 발명의 (8) 단계는 (7) 단계의 구형의 마이크로파티클을 2차 건조시키는 것으로, 상기 단계 (8)에서, 건조 방법은 특별히 제한되지 않지만, 바람직하게는 열에 의한 생분해성 고분자의 손상을 최소화하기 위해, 진공 건조 또는 동결 건조를 통해 수행될 수 있다. In one embodiment of the present invention, step (8) of the present invention is to secondary dry the spherical microparticles of step (7), in the step (8), the drying method is not particularly limited, but preferably In order to minimize the damage of the biodegradable polymer by heat, it may be carried out through vacuum drying or freeze drying.
본 발명의 일 구체예에서, 본 발명의 마이크로파티클의 평균 직경은 10 내지 150㎛이며, 바람직하게는 15 내지 90㎛이며, 더욱 바람직하게는 20 내지 70㎛이다. 마이크로 파티클은 구형의 마이크로 파티클로, 직경이 10㎛ 미만일 경우에는 체내에 주입되어, 빠르게 분해가 되어 생분해 기간이 너무 짧아 충분히 조직 세포를 형성하지 못하는 문제가 있다. 직경이 150㎛ 초과할 경우에는 피부 내 주입이 용이하지 않은 문제가 있다. In one embodiment of the present invention, the average diameter of the microparticles of the present invention is 10 to 150 mu m, preferably 15 to 90 mu m, more preferably 20 to 70 mu m. Micro particles are spherical micro particles, when the diameter is less than 10㎛ injected into the body, there is a problem that the biodegradation period is too short to form enough tissue cells because the biodegradation is too short. If the diameter exceeds 150㎛, there is a problem that the injection into the skin is not easy.
본 발명의 일 구체예에서, 본 발명의 마이크로파티클은 하기의 수학식 2에 따른 크기 분포도가 1 이하(span value)인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법이다:In one embodiment of the invention, the microparticles of the present invention is a method for producing microparticles comprising a biodegradable polymer having a size distribution of 1 or less (span value) according to Equation 2 below:
[수학식 2][Equation 2]
Figure PCTKR2016006209-appb-I000003
Figure PCTKR2016006209-appb-I000003
여기서, Dv0 .1 = 마이크로파티클 분포가 10% 이내인 크기이고, Dv0 .5 = 마이크로파티클 분포가 50% 이내인 크기이며, Dv0 .9 = 마이크로파티클 분포가 90% 이내인 크기이다. 크기 분포도가 1을 초과하는 경우에는 크기 분포가 고르지 못해, 마이크로파티클의 수율이 낮은 것을 의미한다 할 것이다.Here, Dv = 0 .1 and micro particle size distribution is less than 10%, Dv = 0 .5 micro particle distribution and size within 50%, Dv 0.9 = 0 the micro particle distribution within the 90% size. If the size distribution exceeds 1, the size distribution is uneven, which means that the yield of microparticles is low.
본 발명의 일 구체예에서, 본 발명의 생분해성 고분자는 폴리락트산(Polylactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA), 폴리락트산-글리콜산 공중합체(Poly (lactic-co-glycolic acid), PLGA), 폴리카프로락톤(Polycaprolactone, PCL) 및 이들의 유도체로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 폴리카프로락톤이지만, 예시에 국한되는 것은 아니다. 상기 생분해성 고분자의 수평균분자량은 특별히 제한되지 않지만, 5,000 내지 300,000이며, 바람직하게는 8,000 내지 250,000이며, 보다 바람직하게는 10,000 내지 200,000이다.In one embodiment of the present invention, the biodegradable polymer of the present invention is polylactic acid (Polylactic acid, PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Poly (lactic-co-glycolic acid) ), PLGA), polycaprolactone (PCL) and derivatives thereof, and at least one selected from the group consisting of polycaprolactone, preferably polycaprolactone, but not limited to the examples. The number average molecular weight of the biodegradable polymer is not particularly limited, but is 5,000 to 300,000, preferably 8,000 to 250,000, and more preferably 10,000 to 200,000.
본 발명의 일 구체예에서, 본 발명의 유기 용매는 비등점이 120℃이하이고, 물과 섞이지 않는 것이며, 예를 들면, 디클로로메탄, 클로로포름, 클로로에탄, 디클로로에탄, 트리클로로에탄 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 디클로로메탄이지만, 예시에 국한되는 것은 아니다. In one embodiment of the present invention, the organic solvent of the present invention has a boiling point of 120 ° C. or less and is not mixed with water, for example, with dichloromethane, chloroform, chloroethane, dichloroethane, trichloroethane and mixtures thereof. At least one selected from the group consisting of, preferably dichloromethane, but is not limited to the examples.
본 발명의 일 구체예에서, 계면활성제는 계면활성제의 종류는 특별히 제한되지 않고, 생분해성 고분자 용액이 안정한 에멀젼 형성을 도와줄 수 있는 것이라면 어느 것이라도 사용할 수 있다. 구체적으로 비이온성 계면활성제, 음이온성 계면활성제, 양이온성 계면활성제 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 더욱 구체적으로 메틸셀룰로오스, 폴리비닐피롤리돈, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 피마자유 유도체, 라우릴 황산 나트륨, 스테아르산 나트륨, 에스테르 아민, 리니어 디아민, 패티 아민 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 폴리비닐알코올이지만, 예시에 국한되지는 않는다.In one embodiment of the present invention, the surfactant is not particularly limited in kind, and may be used as long as the biodegradable polymer solution can help to form a stable emulsion. Specifically, at least one selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants, and mixtures thereof, more specifically methylcellulose, polyvinylpyrrolidone, lecithin, gelatin, polyvinyl alcohol, At least one selected from the group consisting of polyoxyethylene sorbitan fatty acid esters, polyoxyethylene castor oil derivatives, sodium lauryl sulfate, sodium stearate, ester amines, linear diamines, patty amines and mixtures thereof, preferably poly Vinyl alcohol, but not limited to examples.
본 발명의 일 구체예에서, 본 발명의 생분해성 고분자를 포함하는 마이크로파티클의 제조방법은 미세유체법을 적용한 장치를 이용할 수 있다. 즉, 디바이스에 생분해성 고분자 용액 및 수상 용액이 흐를 수 있는 마이크로 채널을 만들어, 상기 마이크로 채널을 통해 생분해성 고분자 용액 및 수상 용액을 주입하여 흐르게 한다. 채널의 생성은 실리콘 웨이퍼에 DRIE(deep ion reactive etching)공정을 이용하여, 수직 방향으로 식각(etching)하여 골을 만든 후, 그 위에 유리를 양극 접합(anodic bonding)하고 밀봉한다. 상기 마이크로 채널은 너비 300㎛, 깊이 150~200㎛가 되도록 제조한다. 본 제조 과정에서 DRIE를 사용하는 이유는 위와 같이 50㎛ 이상의 식각을 수행 할 때, 다른 습식 식각(wet etching)과 다르게 수직이면서 표면형질이 우수하게 식각할 수 있기 때문이다.In one embodiment of the present invention, the method for producing microparticles containing the biodegradable polymer of the present invention can be used to apply the microfluidic method. That is, a microchannel through which the biodegradable polymer solution and the aqueous solution may flow is made in the device, and the biodegradable polymer solution and the aqueous solution are injected through the microchannel to flow. The channel is formed using a deep ion reactive etching (DRIE) process on a silicon wafer to etch in a vertical direction to form a valley, and then anodically bond and seal the glass thereon. The microchannel is prepared to have a width of 300 μm and a depth of 150 μm to 200 μm. The reason why the DRIE is used in the manufacturing process is that when performing the etching of 50 μm or more as described above, it is possible to etch the surface shape vertically differently from other wet etching.
종래 기술과 같은 용매 추출-증발법을 이용한 마이크로파티클의 제조는 마이크로파티클의 크기가 균일하지 않고 비교적 크기 분포가 넓은 단점이 있다. 따라서, 원하는 크기의 마이크로파티클을 얻기 위해서는 별도의 크기 정제 과정이 필요하며, 불필요한 크기의 마이크로파티클도 제조되기 때문에 최종 수율이 떨어지는 문제가 발생한다. 그러나, 본 발명의 일 구체예와 같은 제조 방법에 따라 생분해성 고분자를 포함하는 마이크로파티클을 제조할 경우, 생분해성 고분자 용액과 계면활성제 용액의 상분리 성질을 생분해성 고분자 용액 및 수상 용액의 교차점 및 교차점 이후의 단일 흐름에서 구현하여, 기존의 용매 추출-증발법보다 크기 제어가 용이하며, 최종 생산 수율이 높고, 마이크로파티클의 기계적 강도 및 형상이 우수하다. 또한, 체내로 주사를 통해 주입될 경우, 생분해 되는 정도를 제어하기 용이하고, 통침성 및 이물감이 적다.Preparation of microparticles using a solvent extraction-evaporation method as in the prior art has disadvantages in that the size of the microparticles is not uniform and the size distribution is relatively wide. Therefore, in order to obtain the microparticles of the desired size, a separate size purification process is required, and since the microparticles of unnecessary size are also produced, there is a problem in that the final yield falls. However, when preparing microparticles containing a biodegradable polymer according to a manufacturing method as in one embodiment of the present invention, the phase separation property of the biodegradable polymer solution and the surfactant solution is the intersection and cross point of the biodegradable polymer solution and the aqueous solution Implemented in a single flow thereafter, it is easier to control the size than the conventional solvent extraction-evaporation method, has a high final production yield, and has excellent mechanical strength and shape of microparticles. In addition, when injected into the body via injection, it is easy to control the degree of biodegradation, less penetrability and foreign body feeling.
본 발명의 일 구체예에서, 본 발명의 제조 방법으로 제조된 생분해성 고분자를 포함하는 마이크로파티클은 그 사용 용도가 특별히 제한되지 않지만, 예를 들면, 생체 내 재흡수를 요하는 피부 미용 또는 의료용 필러로서 사용될 수 있으며, 특히 생체 내 투여 가능한 피하 또는 피부 내 주사형 필러로서 사용될 수 있지만, 예시에 국한되는 것은 아니다. In one embodiment of the present invention, the microparticles containing the biodegradable polymer prepared by the production method of the present invention is not particularly limited in use thereof, for example, a skin cosmetic or medical filler that requires in vivo resorption It can be used as, but is not limited to, examples, especially as an injectable subcutaneous or intradermal injectable filler.
본 발명의 일 구체예에서, 본 발명의 제조 방법에 따라 제조된 생분해성 고분자를 포함하는 마이크로파티클의 생체 내 재흡수 기간은 특별히 제한되지 않지만, 생분해성 피부 미용 또는 의료용 필러로서 사용되는 용도를 고려할 때, 1년 내지 3년 이내에 생체 내 재흡수 가능한 것이 바람직하다.In one embodiment of the present invention, the in vivo reabsorption period of the microparticles containing the biodegradable polymer prepared according to the preparation method of the present invention is not particularly limited, but may be considered to be used as a biodegradable skin cosmetic or medical filler. At this time, it is preferable that the bioabsorbable can be revived within 1 to 3 years.
본 발명은 생분해성 고분자를 포함하는 마이크로파티클의 제조방법으로, 구체적으로는 피부에 주입하기 위한 구형의 마이크로파티클의 제조방법이다. 상기의 제조방법에 의해 제조함으로 인해, 마이크로파티클의 크기 조절이 가능하며, 일정한 크기 분포를 가지는 마이크로파티클을 제조할 수 있다. 생분해성 고분자를 포함하는 마이크로파티클이 좁은 크기 범위를 가지도록 생산할 수 있음에 따라, 높은 생산 수율을 나타낼 수 있다. 또한, 마이크로파티클의 크기에 따라 분해 속도가 달라지는 특징을 고려하면, 필요에 따라 주입되는 마이크로파티클의 크기를 조절하여, 체내에서의 마이크로파티클의 분해 속도를 조절할 수 있다.The present invention is a method for producing microparticles containing a biodegradable polymer, specifically a method for producing spherical microparticles for injection into the skin. Due to the manufacturing method described above, it is possible to control the size of the microparticles, and to produce microparticles having a constant size distribution. As microparticles containing biodegradable polymers can be produced to have a narrow size range, high production yields can be exhibited. In addition, in consideration of the characteristic that the decomposition rate varies depending on the size of the microparticles, the rate of decomposition of the microparticles in the body can be controlled by adjusting the size of the microparticles to be injected as necessary.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형상으로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art, the following examples can be modified in various other shapes, the scope of the present invention is It is not limited to an Example. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the inventive concept to those skilled in the art.
또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.In addition, the thickness or size of each layer in the drawings is exaggerated for convenience and clarity, the same reference numerals in the drawings refer to the same elements. As used herein, the term "and / or" includes any and all combinations of one or more of the listed items.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형상은 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형상을 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms may include the plural forms, unless the context clearly indicates otherwise. Also, as used herein, "comprise" and / or "comprising" specifies the presence of the mentioned shapes, numbers, steps, actions, members, elements and / or groups of these. It is not intended to exclude the presence or the addition of one or more other shapes, numbers, acts, members, elements and / or groups.
본 발명에서 고분자 분자량은 수평균분자량(Number Average Molecular Weight, Mn)을 의미한다. 수평균분자량이란 분자량 분포를 갖는 고분자 화합물의 성분 분자종의 분자량을 수분율 혹은 몰 분율로 평균하여 얻게 되는 평균 분자량을 의미한다.In the present invention, the molecular weight of the polymer means number average molecular weight (Mn). The number average molecular weight means an average molecular weight obtained by averaging the molecular weights of the component molecular species of the polymer compound having a molecular weight distribution by a moisture content or a mole fraction.
본 발명에서 조직 수복이란 피부 조직 등이 외상이나 염증 등의 원인으로 조직에 괴사, 결손이 생겼을 대에 그 조직을 본래의 상태로 되돌리려고 하는 기전을 수복이라고 한다. In the present invention, the tissue repair refers to the mechanism of restoring the tissue to its original state when necrosis or defect occurs in the tissue due to trauma or inflammation.
구체적으로, 생분해성 고분자는 생체에 있어 의료용 재료가 무해하며 적응되기 쉬운 성질을 의미한다. 대상이 되는 생체는 혈액을 비롯하여 각종 조직과 기관 등 광범위하므로 혈액 적합성(항혈전성), 조직 적합성 등으로 세분화되어 나타내지나, 상기의 생분해성 고분자는 광범위하게 적용 가능한 고분자를 의미한다. Specifically, the biodegradable polymer means a property that the medical material is harmless and easy to adapt to a living body. The living organisms are broadly divided into blood, various tissues and organs, and thus are divided into blood compatibility (antithrombogenic) and tissue compatibility. However, the biodegradable polymer means a polymer that can be widely applied.
본 발명의 일 구체예에서, 본 발명은 (1) 생분해성 고분자를 유기 용매에 용해시켜 생분해성 고분자 용액을 제조하는 단계; (2) 계면활성제를 정제수에 용해시켜 수상 용액을 제조하는 단계; (3) 상기 (1) 단계의 생분해성 고분자 용액을 한 방향으로 주입하여, 흐르게 하는 단계; (4) 상기 (3) 단계의 흐름 방향으로, 수상 용액을 주입하여, 제1 흐름 및 제2 흐름으로 흐르게 하고, (3) 단계의 흐름, 수상 용액의 제1 흐름 및 제2 흐름의 교차점을 생성하고, 상기 교차점 이후에 단일 흐름을 생성하여 흐르게 하는 단계; (5) 상기 (4) 단계의 교차점 및 교차점 이후의 단일 흐름에서 생성되는 구형의 마이크로파티클을 포집하는 단계; (6) 상기 (5) 단계에서 포집한 구형의 마이크로파티클을 20 내지 25℃에서 1차 건조시키는 단계; (7) 상기 (6) 단계의 건조한 구형의 마이크로파티클을 여과하고 세척하는 단계; 및 (8) 상기 (7) 단계의 구형의 마이크로파티클을 진공 또는 동결 건조의 방법으로, 2차 건조시키는 단계를 포함하는 생분해성 고분자를 포함하는 마이크로파티클의 제조방법에 관한 것이다. In one embodiment of the present invention, the present invention comprises the steps of (1) dissolving the biodegradable polymer in an organic solvent to prepare a biodegradable polymer solution; (2) dissolving the surfactant in purified water to prepare an aqueous solution; (3) injecting the biodegradable polymer solution of step (1) in one direction to allow flow; (4) injecting the aqueous phase solution in the flow direction of step (3) to allow the first and second streams to flow, and the intersection of the flow of step (3), the first flow of the aqueous phase solution, and the second flow. Generating and flowing a single flow after the intersection; (5) collecting spherical microparticles produced in a single stream after the intersection and the intersection of step (4); (6) first drying the spherical microparticles collected in step (5) at 20 to 25 ° C; (7) filtering and washing the dried spherical microparticles of step (6); And (8) relates to a method for producing a microparticle comprising a biodegradable polymer comprising the step of secondary drying the spherical microparticles of step (7) by vacuum or freeze drying.
구체적으로 상기 제조 방법은 크게 3개의 흐름 줄기로 구분할 수 있다. 첫 번째 흐름 줄기는 생분해성 고분자를 유기 용매에 용해시켜 제조한 생분해성 고분자 용액의 흐름 줄기이다. 두 번째 흐름 줄기는 계면활성제를 정제수에 용해시켜 제조한 수상 용액의 흐름 줄기이다. 세 번째 흐름 줄기는 상기 첫 번째 흐름 줄기와 두 번째 흐름 줄기가 교차점을 생성한 이후, 하나의 흐름으로 생성되는 흐름 줄기이다. 첫 번째 흐름 줄기와 세 번째 흐름 줄기는 같은 방향으로 흐르고, 두 번째 줄기는 보다 구체적으로 수상 용액의 제1 흐름 및 제2 흐름으로 구별되고, 첫 번째 흐름과 교차점을 생성하는 방향으로 흐르게 된다. 상기의 3개의 흐름 줄기의 흐름 속도 및 두 번째 흐름의 주입 각도에 따라, 생성되는 마이크로파티클의 크기, 크기 분포 및 생산 수율에 영향을 미친다고 할 것이다.Specifically, the manufacturing method can be largely divided into three flow stems. The first flow stem is a flow stem of a biodegradable polymer solution prepared by dissolving the biodegradable polymer in an organic solvent. The second flow stem is the flow stem of the aqueous solution prepared by dissolving the surfactant in purified water. The third flow stem is a flow stem generated as one flow after the first flow stem and the second flow stem create an intersection point. The first flow stem and the third flow stem flow in the same direction, and the second flow stem is more specifically distinguished into the first flow and the second flow of the aqueous phase solution, and flows in the direction of creating an intersection with the first flow. The flow rate of the three flow stems and the injection angle of the second flow will affect the size, size distribution and production yield of the resulting microparticles.
본 발명의 일 구체예에서, 본 발명의 수상용액 주입속도(mL), 생분해성 고분자용액 주입속도(mL) 및 생분해성 고분자용액 농도의 관계는 하기 수학식 1에 의하며, 하기 수학식 1은 2.5 내지 15의 값을 가지는 마이크로파티클의 제조방법에 관한 것이다.In one embodiment of the present invention, the relationship between the aqueous solution injection rate (mL), the biodegradable polymer solution injection rate (mL) and the biodegradable polymer solution concentration of the present invention is represented by the following equation 1, the following equation 1 is 2.5 It relates to a method for producing a microparticle having a value of from 15 to 15.
[수학식 1][Equation 1]
Figure PCTKR2016006209-appb-I000004
Figure PCTKR2016006209-appb-I000004
여기서, WF: 수상용액 주입속도(mL), OF: 생분해성 고분자용액 주입속도(mL), OC: 생분해성 고분자용액 농도(중량%), K: 비례상수(proportional factor)이다. 수학식 1의 값이 2.5 미만이거나, 15 초과인 경우, 생분해성 고분자용액의 주입속도의 변화로 인한 낮은 전단응력, 생분해성 고분자 용액에 가해지는 전단력의 차이 등으로 인해, 마이크로파티클의 크기 및 크기 분포가 증가하였다.Here, WF: water phase injection rate (mL), OF: biodegradable polymer solution injection rate (mL), OC: biodegradable polymer solution concentration (% by weight), K: proportional constant (proportional factor). If the value of Equation 1 is less than 2.5 or more than 15, the size and size of the microparticles may be due to the low shear stress due to the change of the injection rate of the biodegradable polymer solution, the difference in the shear force applied to the biodegradable polymer solution, and the like. The distribution increased.
본 발명의 일 구체예에서, 본 발명의 (2) 단계의 수상 용액은 계면활성제 농도가 0.25 내지 0.5 중량%이다. 수상 용액의 계면활성제 농도가 증가하면 제조 과정에서 마이크로파티클의 응집을 억제할 수 있으며, 낮은 계면장력으로 인해 크기 분포가 좁은 마이크로파티클이 생성된다. 수상 용액의 계면활성제 농도가 0.25 중량% 미만에서는 마이크로파티클의 크기 분포가 넓어지는 문제가 있다. 하지만, 1.0 중량% 이상에서는 생성된 마이크로파티클에서 계면활성제의 세척 및 제거가 상대적으로 어려운 문제점이 발생할 수 있다. In one embodiment of the present invention, the aqueous solution of step (2) of the present invention has a surfactant concentration of 0.25 to 0.5% by weight. Increasing the surfactant concentration of the aqueous phase solution can suppress the aggregation of microparticles in the manufacturing process, and the low interfacial tension produces microparticles with a narrow size distribution. If the surfactant concentration of the aqueous solution is less than 0.25% by weight, there is a problem that the size distribution of the microparticles is widened. However, at 1.0 wt% or more, a problem of relatively difficult washing and removing of the surfactant in the generated microparticles may occur.
본 발명의 일 구체예에서, 본 발명의 (3) 단계의 생분해성 고분자 용액은 50 내지 200㎕/min의 속도로 흐르게 하는 것이다. 생분해성 고분자 용액이 50㎕/min 미만의 속도로 흐르게 할 경우에는, 마이크로파티클의 크기가 작아 체내에 흡수가 되어 버릴 수 있으며, 크기 분포가 넓어지는 문제가 있다. 200㎕/min을 초과하여 흐르게 할 경우에는 마이크로파티클의 크기가 커져 피부에 주입할 경우 상처가 발생할 수 있으며, 크기 분포가 넓어지는 문제가 있다.In one embodiment of the present invention, the biodegradable polymer solution of step (3) of the present invention is to flow at a rate of 50 to 200ul / min. When the biodegradable polymer solution is allowed to flow at a rate of less than 50 μl / min, the size of the microparticles may be small, so that they may be absorbed into the body, and the size distribution may be widened. If the flow exceeds 200 μl / min, the size of the microparticles increases, so that a wound may occur when injected into the skin, and there is a problem that the size distribution is widened.
본 발명의 일 구체예에서, 본 발명의 (3) 단계의 생분해성 고분자 용액은 농도가 5 내지 30 중량%이다. 생분해성 고분자 용액의 농도가 5 중량% 미만일 경우, 생분해성 고분자의 농도가 너무 낮아 마이크로파티클의 제조가 어려운 문제가 있으며, 30 중량%를 초과할 경우에는 구형의 마이크로파티클을 제조하기 어려운 문제가 있다.In one embodiment of the invention, the biodegradable polymer solution of step (3) of the present invention has a concentration of 5 to 30% by weight. When the concentration of the biodegradable polymer solution is less than 5% by weight, the concentration of the biodegradable polymer is too low, there is a problem that the production of microparticles is difficult, and when it exceeds 30% by weight there is a problem that it is difficult to produce spherical microparticles .
본 발명의 일 구체예에서, (4) 단계의 수상 용액의 제1 흐름 및 제2 흐름은 상기 (3) 단계의 흐름을 기준으로 양쪽으로 30 내지 90°만큼 벌어져 흐르는 것이다. 구체적으로, 하기의 화살표를 참조하면, (3) 단계의 생분해성 고분자 용액의 흐름은 생분해성 고분자 용액을 주입하여 흐르게 하는 출발점(a)으로부터 일정 지점(b)으로 향하는 방향을 가지는 흐름이며, 수상 용액의 흐름은 주입하여 흐르게 하는 출발점(c, c')으로부터 생분해성 고분자 용액의 흐름과 교차점(d)을 생성하게 하기 위한 흐름이다. In one embodiment of the present invention, the first flow and the second flow of the aqueous phase solution of step (4) is a flow of 30 to 90 degrees to both sides based on the flow of the step (3). Specifically, referring to the arrow below, the flow of the biodegradable polymer solution in step (3) is a flow having a direction from the starting point (a) to the injection into the biodegradable polymer solution to a certain point (b), The flow of the solution is a flow to generate the intersection (d) and the flow of the biodegradable polymer solution from the starting point (c, c ') to be injected and flowed.
Figure PCTKR2016006209-appb-I000005
Figure PCTKR2016006209-appb-I000005
수상 용액의 제1 흐름(c) 및 제2 흐름(c')이 생분해성 고분자 용액의 흐름과 30° 미만으로 벌어져 흐르는 것일 경우에는, 마이크로파티클의 크기 분포가 넓어지는 문제가 발생하며, 90°초과하여 흐르는 경우에도 마이크로파티클의 크기 분포가 넓어지는 문제가 발생한다. 결과적으로, 수상 용액의 흐름은 생분해성 고분자 용액의 흐름과 30 내지 90°의 범위에서 벌어져 흐를 경우에, 좁은 범위의 크기 분포를 가지는 마이크로파티클의 제조가 가능하다. When the first flow (c) and the second flow (c ') of the aqueous phase solution flow through the biodegradable polymer solution at less than 30 °, a problem arises in that the size distribution of the microparticles is widened. Even when the excess flow occurs, the size distribution of the microparticles is widened. As a result, when the flow of the aqueous phase solution flows in the range of 30 to 90 ° with the flow of the biodegradable polymer solution, it is possible to prepare microparticles having a narrow size distribution.
본 발명의 일 구체예에서, (4) 단계의 수상 용액은 100 내지 2000㎕/min의 속도로 흐르게 하는 것이다. 수상 용액의 제1 흐름 및 제2 흐름은 100 내지 2000㎕/min의 속도로 흐르게 하며, 바람직하게는 500 내지 1000㎕/min의 속도이다. 수상 용액의 속도가 500㎕/min 미만일 경우에는 마이크로파티클의 크기 범위가 넓어지는 문제가 발생하며, 2000㎕/min 초과할 경우에는 10㎛ 이하의 직경을 가지는 마이크로파티클이 제조됨으로 인해, 체내에 주입될 경우, 빠르게 분해가 되어 생분해 기간이 너무 짧아지는 문제가 있다. 생분해성 고분자 용액 흐름 및 수상 용액 흐름의 교차점에서 상대적으로 저속인 생분해성 고분자 용액은 디바이스 양쪽 옆에서 비교적 고속의 수상 용액에 의해 압착되고, 결국 소량의 생분해성 고분자 용액은 단절되어 수상 용액에 둘러싸이게 된다. 이때 소량의 생분해성 고분자 용액은 표면장력으로 인하여 즉시 구형의 마이크로파티클 형태를 취하게 된다.In one embodiment of the present invention, the aqueous phase solution of step (4) is to flow at a rate of 100 to 2000ul / min. The first and second streams of the aqueous phase solution are allowed to flow at a rate of 100 to 2000 μl / min, preferably at a rate of 500 to 1000 μl / min. If the rate of the aqueous solution is less than 500 μl / min, a problem arises in that the size range of the microparticles is widened. If so, there is a problem that the biodegradation period is too short because it is rapidly decomposed. The relatively slow biodegradable polymer solution at the intersection of the biodegradable polymer solution stream and the aqueous phase solution stream is squeezed by the relatively high aqueous phase solution on both sides of the device, so that a small amount of the biodegradable polymer solution is disconnected and surrounded by the aqueous phase solution. do. In this case, the small amount of biodegradable polymer solution immediately takes the form of spherical microparticles due to the surface tension.
본 발명의 일 구체예에서, 본 발명의 (5) 단계의 교차점 및 교차점 이후의 단일 흐름에서 생성되는 구형의 마이크로 파티클을 포집하는 단계는 계면활성제가 포함된 리시버 (receiver) 용액에서 수집한다. 계면활성제가 포함된 리시버(receiver) 용액에서 포집하는 것은, 구형의 마이크로파티클을 서로 응집되지 않도록 하기 위함이다. 또한, (5) 단계는 음압 환경에서 구형의 마이크로 파티클을 포집한다. 음압 환경은 대기압 보다 낮은 압력 상태를 유지하는 것을 의미한다. 따라서, 음압 환경에서 마이크로 파티클을 포집할 경우, 낮은 압력으로 인해 생분해성 고분자 용액의 흐름 및 수상 용액의 흐름을 당기는 작용을 하게 되며, 이러한 작용으로 인해 생분해성 고분자 용액 및 수상 용액을 흐르게 하기 위한 펌프의 부하를 줄일 수 있다. 추가적으로, 음압 환경 하에서 생분해성 고분자 용액 및 수상 용액의 흐름에 대한 정확한 유속 제어가 가능하며, 흐름 내의 막힘 연상을 억제할 수 있어, 마이크로 파티클을 제조하기 위한 시스템의 운영 효율을 높일 수 있다.In one embodiment of the present invention, the step of collecting the spherical microparticles produced in a single stream after the intersection and the intersection of step (5) of the present invention is collected in a receiver solution containing a surfactant. The capture in the receiver solution containing the surfactant is to prevent the spherical microparticles from agglomerating with each other. In addition, step (5) collects spherical microparticles in a negative pressure environment. Negative pressure environment means maintaining a pressure lower than atmospheric pressure. Therefore, when the microparticles are collected in a negative pressure environment, the low pressure acts to pull the flow of the biodegradable polymer solution and the water phase solution, which causes the pump to flow the biodegradable polymer solution and the aqueous solution. Can reduce the load. In addition, accurate flow rate control of the flow of biodegradable polymer and aqueous solutions in a negative pressure environment is possible, and confinement in the flow can be suppressed, thereby increasing the operating efficiency of the system for producing microparticles.
본 발명의 일 구체예에서, 본 발명의 (6) 단계는 (5) 단계에서 포집한 구형의 마이크로 파티클을 20 내지 25℃에서 1차 건조시키는 것이다. 액적 형태의 에멀젼을 유기 용매의 비등점 미만의 온도에서 일정 시간, 예를 들면, 12 시간 내지 48 시간 동안 유지하면, 액적 형태의 생분해성 고분자 용액으로부터 유기 용매가 추출될 수 있다. 액적 형태의 생분해성 고분자 용액으로부터 유기 용매가 추출되면서, 고형화되어 구형의 마이크로파티클을 형성할 수 있다. In one embodiment of the present invention, step (6) of the present invention is to first dry the spherical microparticles collected in step (5) at 20 to 25 ℃. If the emulsion in droplet form is maintained at a temperature below the boiling point of the organic solvent for a period of time, for example 12 to 48 hours, the organic solvent can be extracted from the biodegradable polymer solution in the form of droplets. As the organic solvent is extracted from the biodegradable polymer solution in the form of droplets, it can be solidified to form spherical microparticles.
본 발명의 일 구체예에서, 본 발명의 (7) 단계는 (6) 단계의 건조한 구형의 마이크로 파티클을 여과하고 세척하는 것으로, 마이크로파티클을 정제수로 1회 이상, 바람직하게는 1회 내지 3회 세척하여 계면활성제 및 용매를 제거하며, 다시 여과시켜 세척된 미립자를 수득할 수 있다. 잔존하는 계면활성제 및 용매를 제거하기 위한 세척 단계는 수 회에 걸쳐 반복할 수 있다.In one embodiment of the invention, step (7) of the present invention is to filter and wash the dried spherical microparticles of step (6), the microparticles in purified water at least once, preferably 1 to 3 times Washing can remove the surfactant and solvent and again filter to obtain washed particulates. The washing step to remove remaining surfactant and solvent can be repeated several times.
본 발명의 일 구체예에서, 본 발명의 (8) 단계는 (7) 단계의 구형의 마이크로파티클을 2차 건조시키는 것으로, 상기 단계 (8)에서, 건조 방법은 특별히 제한되지 않지만, 바람직하게는 열에 의한 생분해성 고분자의 손상을 최소화하기 위해, 진공 건조 또는 동결 건조를 통해 수행될 수 있다. In one embodiment of the present invention, step (8) of the present invention is to secondary dry the spherical microparticles of step (7), in the step (8), the drying method is not particularly limited, but preferably In order to minimize the damage of the biodegradable polymer by heat, it may be carried out through vacuum drying or freeze drying.
본 발명의 일 구체예에서, 본 발명의 마이크로파티클의 평균 직경은 10 내지 150㎛이며, 바람직하게는 15 내지 90㎛이며, 더욱 바람직하게는 20 내지 70㎛이다. 마이크로 파티클은 구형의 마이크로 파티클로, 직경이 10㎛ 미만일 경우에는 체내에 주입되어, 빠르게 분해가 되어 생분해 기간이 너무 짧아 충분히 조직 세포를 형성하지 못하는 문제가 있다. 직경이 150㎛ 초과할 경우에는 피부 내 주입이 용이하지 않은 문제가 있다. In one embodiment of the present invention, the average diameter of the microparticles of the present invention is 10 to 150 mu m, preferably 15 to 90 mu m, more preferably 20 to 70 mu m. Micro particles are spherical micro particles, when the diameter is less than 10㎛ injected into the body, there is a problem that the biodegradation period is too short to form enough tissue cells because the biodegradation is too short. If the diameter exceeds 150㎛, there is a problem that the injection into the skin is not easy.
본 발명의 일 구체예에서, 본 발명의 마이크로파티클은 하기의 수학식 2에 따른 크기 분포도가 1 이하(span value)인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법이다:In one embodiment of the invention, the microparticles of the present invention is a method for producing microparticles comprising a biodegradable polymer having a size distribution of 1 or less (span value) according to Equation 2 below:
[수학식 2][Equation 2]
Figure PCTKR2016006209-appb-I000006
Figure PCTKR2016006209-appb-I000006
여기서, Dv0 .1 = 마이크로파티클 분포가 10% 이내인 크기이고, Dv0 .5 = 마이크로파티클 분포가 50% 이내인 크기이며, Dv0 .9 = 마이크로파티클 분포가 90% 이내인 크기이다. 크기 분포도가 1을 초과하는 경우에는 크기 분포가 고르지 못해, 마이크로파티클의 수율이 낮은 것을 의미한다 할 것이다.Here, Dv = 0 .1 and micro particle size distribution is less than 10%, Dv = 0 .5 micro particle distribution and size within 50%, Dv 0.9 = 0 the micro particle distribution within the 90% size. If the size distribution exceeds 1, the size distribution is uneven, which means that the yield of microparticles is low.
본 발명의 일 구체예에서, 본 발명의 생분해성 고분자는 폴리락트산(Polylactic acid, PLA), 폴리글리콜산(Polyglycolic acid, PGA), 폴리락트산-글리콜산 공중합체(Poly (lactic-co-glycolic acid), PLGA), 폴리카프로락톤(Polycaprolactone, PCL) 및 이들의 유도체로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 폴리카프로락톤이지만, 예시에 국한되는 것은 아니다. 상기 생분해성 고분자의 수평균분자량은 특별히 제한되지 않지만, 5,000 내지 300,000이며, 바람직하게는 8,000 내지 250,000이며, 보다 바람직하게는 10,000 내지 200,000이다.In one embodiment of the present invention, the biodegradable polymer of the present invention is polylactic acid (Polylactic acid, PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Poly (lactic-co-glycolic acid) ), PLGA), polycaprolactone (PCL) and derivatives thereof, and at least one selected from the group consisting of polycaprolactone, preferably polycaprolactone, but not limited to the examples. The number average molecular weight of the biodegradable polymer is not particularly limited, but is 5,000 to 300,000, preferably 8,000 to 250,000, and more preferably 10,000 to 200,000.
본 발명의 일 구체예에서, 본 발명의 유기 용매는 비등점이 120℃이하이고, 물과 섞이지 않는 것이며, 예를 들면, 디클로로메탄, 클로로포름, 클로로에탄, 디클로로에탄, 트리클로로에탄 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 디클로로메탄이지만, 예시에 국한되는 것은 아니다. In one embodiment of the present invention, the organic solvent of the present invention has a boiling point of 120 ° C. or less and is not mixed with water, for example, with dichloromethane, chloroform, chloroethane, dichloroethane, trichloroethane and mixtures thereof. At least one selected from the group consisting of, preferably dichloromethane, but is not limited to the examples.
본 발명의 일 구체예에서, 계면활성제는 계면활성제의 종류는 특별히 제한되지 않고, 생분해성 고분자 용액이 안정한 에멀젼 형성을 도와줄 수 있는 것이라면 어느 것이라도 사용할 수 있다. 구체적으로 비이온성 계면활성제, 음이온성 계면활성제, 양이온성 계면활성제 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 더욱 구체적으로 메틸셀룰로오스, 폴리비닐피롤리돈, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 피마자유 유도체, 라우릴 황산 나트륨, 스테아르산 나트륨, 에스테르 아민, 리니어 디아민, 패티 아민 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것이며, 바람직하게는 폴리비닐알코올이지만, 예시에 국한되지는 않는다.In one embodiment of the present invention, the surfactant is not particularly limited in kind, and may be used as long as the biodegradable polymer solution can help to form a stable emulsion. Specifically, at least one selected from the group consisting of nonionic surfactants, anionic surfactants, cationic surfactants, and mixtures thereof, more specifically methylcellulose, polyvinylpyrrolidone, lecithin, gelatin, polyvinyl alcohol, At least one selected from the group consisting of polyoxyethylene sorbitan fatty acid esters, polyoxyethylene castor oil derivatives, sodium lauryl sulfate, sodium stearate, ester amines, linear diamines, patty amines and mixtures thereof, preferably poly Vinyl alcohol, but not limited to examples.
본 발명의 일 구체예에서, 본 발명의 생분해성 고분자를 포함하는 마이크로파티클의 제조방법은 미세유체법을 적용한 장치를 이용할 수 있다. 즉, 디바이스에 생분해성 고분자 용액 및 수상 용액이 흐를 수 있는 마이크로 채널을 만들어, 상기 마이크로 채널을 통해 생분해성 고분자 용액 및 수상 용액을 주입하여 흐르게 한다. 채널의 생성은 실리콘 웨이퍼에 DRIE(deep ion reactive etching)공정을 이용하여, 수직 방향으로 식각(etching)하여 골을 만든 후, 그 위에 유리를 양극 접합(anodic bonding)하고 밀봉한다. 상기 마이크로 채널은 너비 300㎛, 깊이 150~200㎛가 되도록 제조한다. 본 제조 과정에서 DRIE를 사용하는 이유는 위와 같이 50㎛ 이상의 식각을 수행 할 때, 다른 습식 식각(wet etching)과 다르게 수직이면서 표면형질이 우수하게 식각할 수 있기 때문이다.In one embodiment of the present invention, the method for producing microparticles containing the biodegradable polymer of the present invention can be used to apply the microfluidic method. That is, a microchannel through which the biodegradable polymer solution and the aqueous solution may flow is made in the device, and the biodegradable polymer solution and the aqueous solution are injected through the microchannel to flow. The channel is formed using a deep ion reactive etching (DRIE) process on a silicon wafer to etch in a vertical direction to form a valley, and then anodically bond and seal the glass thereon. The microchannel is prepared to have a width of 300 μm and a depth of 150 μm to 200 μm. The reason why the DRIE is used in the manufacturing process is that when performing the etching of 50 μm or more as described above, it is possible to etch the surface shape vertically differently from other wet etching.
종래 기술과 같은 용매 추출-증발법을 이용한 마이크로파티클의 제조는 마이크로파티클의 크기가 균일하지 않고 비교적 크기 분포가 넓은 단점이 있다. 따라서, 원하는 크기의 마이크로파티클을 얻기 위해서는 별도의 크기 정제 과정이 필요하며, 불필요한 크기의 마이크로파티클도 제조되기 때문에 최종 수율이 떨어지는 문제가 발생한다. 그러나, 본 발명의 일 구체예와 같은 제조 방법에 따라 생분해성 고분자를 포함하는 마이크로파티클을 제조할 경우, 생분해성 고분자 용액과 계면활성제 용액의 상분리 성질을 생분해성 고분자 용액 및 수상 용액의 교차점 및 교차점 이후의 단일 흐름에서 구현하여, 기존의 용매 추출-증발법보다 크기 제어가 용이하며, 최종 생산 수율이 높고, 마이크로파티클의 기계적 강도 및 형상이 우수하다. 또한, 체내로 주사를 통해 주입될 경우, 생분해 되는 정도를 제어하기 용이하고, 통침성 및 이물감이 적다.Preparation of microparticles using a solvent extraction-evaporation method as in the prior art has disadvantages in that the size of the microparticles is not uniform and the size distribution is relatively wide. Therefore, in order to obtain the microparticles of the desired size, a separate size purification process is required, and since the microparticles of unnecessary size are also produced, there is a problem in that the final yield falls. However, when preparing microparticles containing a biodegradable polymer according to a manufacturing method as in one embodiment of the present invention, the phase separation property of the biodegradable polymer solution and the surfactant solution is the intersection and cross point of the biodegradable polymer solution and the aqueous solution Implemented in a single flow thereafter, it is easier to control the size than the conventional solvent extraction-evaporation method, has a high final production yield, and has excellent mechanical strength and shape of microparticles. In addition, when injected into the body via injection, it is easy to control the degree of biodegradation, less penetrability and foreign body feeling.
본 발명의 일 구체예에서, 본 발명의 제조 방법으로 제조된 생분해성 고분자를 포함하는 마이크로파티클은 그 사용 용도가 특별히 제한되지 않지만, 예를 들면, 생체 내 재흡수를 요하는 피부 미용 또는 의료용 필러로서 사용될 수 있으며, 특히 생체 내 투여 가능한 피하 또는 피부 내 주사형 필러로서 사용될 수 있지만, 예시에 국한되는 것은 아니다. In one embodiment of the present invention, the microparticles containing the biodegradable polymer prepared by the production method of the present invention is not particularly limited in use thereof, for example, a skin cosmetic or medical filler that requires in vivo resorption It can be used as, but is not limited to, examples, especially as an injectable subcutaneous or intradermal injectable filler.
본 발명의 일 구체예에서, 본 발명의 제조 방법에 따라 제조된 생분해성 고분자를 포함하는 마이크로파티클의 생체 내 재흡수 기간은 특별히 제한되지 않지만, 생분해성 피부 미용 또는 의료용 필러로서 사용되는 용도를 고려할 때, 1년 내지 3년 이내에 생체 내 재흡수 가능한 것이 바람직하다.In one embodiment of the present invention, the in vivo reabsorption period of the microparticles containing the biodegradable polymer prepared according to the preparation method of the present invention is not particularly limited, but may be considered to be used as a biodegradable skin cosmetic or medical filler. At this time, it is preferable that the bioabsorbable can be revived within 1 to 3 years.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 실시적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more practically, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. will be.
[실시예 1]Example 1
생분해성 고분자를 포함하는 마이크로파티클의 제조Preparation of Microparticles Including Biodegradable Polymers
[제조예 1][Production Example 1]
Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL)을 디클로로메탄(비등점: 39.6℃) 용매에 15 중량%로 용해시켜 생분해성 고분자 용액 10mL을 제조하였다. 계면활성제로써 분자량이 85,000 ~ 124,000인 폴리비닐알코올(PVA)을 정제수에 0.25 중량%로 용해시켜 수상 용액 250mL을 제조하였다. 상기 생분해성 고분자 용액을 마이크로채널에 주입하여, 100㎕/min로 흐르게 하고, 상기 수상 용액을 생분해성 고분자 용액의 흐름에서 양쪽으로 90°만큼 벌어진 채로 제1 흐름 및 제2 흐름으로 흐르게 주입하여, 1000㎕/min의 속도로 흐르게 한다. 10 mL of a biodegradable polymer solution was prepared by dissolving polycaprolactone (PCL), Mn 45,000, in 15 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C.). As a surfactant, polyvinyl alcohol (PVA) having a molecular weight of 85,000 to 124,000 was dissolved in purified water at 0.25% by weight to prepare 250 mL of an aqueous solution. Injecting the biodegradable polymer solution into the microchannel, flowing at 100 μl / min, and injecting the aqueous solution into the first flow and the second flow while opening 90 ° to both sides in the flow of the biodegradable polymer solution, Flow at 1000 μl / min.
생분해성 고분자 용액 및 수상 용액의 교차점 및 교차점 이후의 단일 흐름에서 액적 형태의 분산상이 형성되었다. 액적 형태의 분산상은 폴리비닐알코올(PVA)을 정제수에 0.25 중량% 로 용해시켜 리시버(receiver) 용액 100mL에서 수집하고, 약 24시간 동안 실온(25℃)에 방치하여 디클로로메탄 용매를 추출하였다. 마이크로파티클을 포함하는 수상 용액을 여과시킨 후 마이크로파티클을 세척하여 잔류 폴리비닐알코올과 디클로로메탄 용액을 제거한다. 그 후 마이크로파티클을 건조 과정을 거쳐 최종적으로 구형의 생분해성 고분자를 포함하는 마이크로파티클을 제조하였다. In the single stream after and at the intersection of the biodegradable polymer solution and the aqueous phase solution, a dispersed phase in the form of droplets was formed. The dispersed phase in the form of droplets was dissolved in purified water at 0.25% by weight of polyvinyl alcohol (PVA), collected in 100 mL of a receiver solution, and left at room temperature (25 ° C.) for about 24 hours to extract a dichloromethane solvent. The aqueous solution containing microparticles is filtered and the microparticles are washed to remove residual polyvinyl alcohol and dichloromethane solution. Thereafter, the microparticles were dried to finally prepare a microparticle including a spherical biodegradable polymer.
[제조예 2][Production Example 2]
Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL)을 디클로로메탄(비등점: 39.6℃) 용매에 10 중량%로 용해시켜 생분해성 고분자 용액 10mL을 제조한 것을 제외하고, 제조예 1과 동일하게 제조하였다.Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1, except that 10 mL of a biodegradable polymer solution was prepared by dissolving 10 wt% in a dichloromethane (boiling point: 39.6 ° C.) solvent.
[제조예 3][Manufacture example 3]
Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL)을 디클로로메탄(비등점: 39.6℃) 용매에 30 중량%로 용해시켜 생분해성 고분자 용액 10mL을 제조한 것을 제외하고, 제조예 1과 동일하게 제조하였다.Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1, except that 10 mL of a biodegradable polymer solution was prepared by dissolving in a solvent of dichloromethane (boiling point: 39.6 ° C.) at 30% by weight.
[제조예 4][Production Example 4]
생분해성 고분자 용액을 50㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow rate was 50 μl / min.
[제조예 5]Production Example 5
생분해성 고분자 용액을 200㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow at a rate of 200 μl / min.
[제조예 6][Manufacture example 6]
생분해성 고분자 용액의 흐름에서 양쪽으로 60°만큼 벌어진 채로 수상용액의 제1 흐름 및 제2 흐름을 흐르게 주입한 것을 제외하고 제조예 1과 동일하게 제조하였다.It was prepared in the same manner as in Preparation Example 1 except that the first flow and the second flow of the aqueous phase solution were injected in a flow of 60 ° to both sides in the flow of the biodegradable polymer solution.
[제조예 7][Manufacture example 7]
수상 용액의 제1 흐름 및 제2 흐름을 750㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Prepared in the same manner as in Preparation Example 1 except that the first flow and the second flow of the aqueous phase solution were flowed at a rate of 750 μl / min.
[제조예 8][Manufacture example 8]
수상 용액의 계면활성제 농도를 0.5 중량%로 용해시켜 제조하는 것을 제외하고 제조예 1과 동일하게 제조하였다.The preparation was carried out in the same manner as in Preparation Example 1, except that the surfactant concentration of the aqueous phase solution was dissolved at 0.5% by weight.
[비교예 1] Comparative Example 1
Mn 14,000인 폴리카프로락톤(Polycaprolactone, PCL)을 사용한 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using polycaprolactone (Polycaprolactone, PCL) of Mn 14,000 it was prepared in the same manner as in Preparation Example 1.
[비교예 2]Comparative Example 2
Mn 80,000인 폴리카프로락톤(Polycaprolactone, PCL)을 사용한 것을 제외하고, 제조예 1과 동일하게 제조하였다.Except for using polycaprolactone (Polycaprolactone, PCL) of Mn 80,000 It was prepared in the same manner as in Preparation Example 1.
[비교예 3]Comparative Example 3
Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL)을 디클로로메탄(비등점: 39.6℃) 용매에 5 중량%로 용해시켜 생분해성 고분자 용액 10mL을 제조한 것을 제외하고, 제조예 1과 동일하게 제조하였다.Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1 except that 10 mL of a biodegradable polymer solution was prepared by dissolving 5 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C.).
[비교예 4][Comparative Example 4]
Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL)을 디클로로메탄(비등점: 39.6℃) 용매에 45 중량%로 용해시켜 생분해성 고분자 용액 10mL을 제조한 것을 제외하고, 제조예 1과 동일하게 제조하였다.Polycaprolactone (Polycaprolactone, PCL) of Mn 45,000 was prepared in the same manner as in Preparation Example 1, except that 10 mL of a biodegradable polymer solution was prepared by dissolving 45 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C).
[비교예 5][Comparative Example 5]
생분해성 고분자 용액을 25㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow rate was 25 μl / min.
[비교예 6]Comparative Example 6
생분해성 고분자 용액을 300㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Biodegradable polymer solution was prepared in the same manner as in Preparation Example 1 except that the flow at a rate of 300 μl / min.
[비교예 7]Comparative Example 7
생분해성 고분자 용액의 흐름에서 양쪽으로 30°만큼 벌어진 채로 수상용액의 제1 흐름 및 제2 흐름을 흐르게 주입한 것을 제외하고 제조예 1과 동일하게 제조하였다.It was prepared in the same manner as in Preparation Example 1 except that the first flow and the second flow of the aqueous phase solution were injected in the flow of the biodegradable polymer solution by 30 ° on both sides.
[비교예 8]Comparative Example 8
생분해성 고분자 용액의 흐름에서 양쪽으로 150°만큼 벌어진 채로 수상용액의 제1 흐름 및 제2 흐름을 흐르게 주입한 것을 제외하고 제조예 1과 동일하게 제조하였다.It was prepared in the same manner as in Preparation Example 1 except that the first flow and the second flow of the aqueous phase solution were injected in a flow of 150 ° to both sides in the flow of the biodegradable polymer solution.
[비교예 9]Comparative Example 9
수상 용액의 제1 흐름 및 제2 흐름을 500㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Prepared in the same manner as in Preparation Example 1 except that the first and second streams of the aqueous phase solution were allowed to flow at a rate of 500 μl / min.
[비교예 10]Comparative Example 10
수상 용액의 제1 흐름 및 제2 흐름을 2000㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.Prepared in the same manner as in Preparation Example 1, except that the first flow and the second flow of the aqueous phase solution were flowed at a rate of 2000 μl / min.
[비교예 11] Comparative Example 11
수상 용액의 계면활성제 농도를 0.1 중량%로 용해시켜 제조하는 것을 제외하고 제조예 1과 동일하게 제조하였다.The preparation was carried out in the same manner as in Preparation Example 1, except that the surfactant concentration of the aqueous solution was dissolved at 0.1 wt%.
[비교예 12] Comparative Example 12
수상 용액의 계면활성제 농도를 1.0 중량%로 용해시켜 제조하는 것을 제외하고 제조예 1과 동일하게 제조하였다.The preparation was carried out in the same manner as in Preparation Example 1, except that the surfactant concentration of the aqueous solution was prepared by dissolving at 1.0 wt%.
[비교예 13] Comparative Example 13
생분해성 고분자 용액을 200㎕/min의 속도로 흐르게 하고, 수상 용액의 제1 흐름 및 제2 흐름을 2000㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 1과 동일하게 제조하였다.It was prepared in the same manner as in Preparation Example 1 except that the biodegradable polymer solution was flowed at a rate of 200 μl / min, and the first and second streams of the aqueous phase solution were flowed at a rate of 2000 μl / min.
[비교예 14] Comparative Example 14
생분해성 고분자 용액을 200㎕/min의 속도로 흐르게 하고, 수상 용액의 제1 흐름 및 제2 흐름을 2000㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 3과 동일하게 제조하였다.The biodegradable polymer solution was prepared in the same manner as in Preparation Example 3 except that the flow was flowed at a rate of 200 μl / min, and the first and second flows of the aqueous phase solution were flowed at a rate of 2000 μl / min.
[비교예 15] Comparative Example 15
생분해성 고분자 용액을 50㎕/min의 속도로 흐르게 하고, 수상 용액의 제1 흐름 및 제2 흐름을 2000㎕/min의 속도로 흐르게 하는 것을 제외하고 제조예 3과 동일하게 제조하였다.The biodegradable polymer solution was prepared in the same manner as in Preparation Example 3 except that the flow was flowed at a rate of 50 μl / min, and the first and second flows of the aqueous phase solution were flowed at a rate of 2000 μl / min.
[비교예 16] 용매 추출-증발법에 의한 PCL 마이크로파티클 제조Comparative Example 16 Preparation of PCL Microparticles by Solvent Extraction-Evaporation
Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL)을 디클로로메탄(비등점: 39.6℃) 용매에 15 중량%로 용해시켜 생분해성 고분자 용액 10mL을 제조하였다. 또한 계면활성제로써 Mw 85,000 ~ 124,000의 폴리비닐알코올(PVA)을 정제수에 0.25%wt로 용해시켜 수상 용액 100mL을 제조하였다. 이어서, 상기 생분해성 고분자 용액을 계면활성제 수상 용액에 혼합한 후 고속 교반하여 액적 형태의 분산상을 형성하였다. 이후 상기 계면활성제 수상 용액에 분산되어 있는 액적 형태의 분산상은 일정 시간 교반하고 온도를 가해서 용매를 추출하고, 고형화를 통해 마이크로파티클을 형성하였다. 그 후, 고형화된 마이크로파티클을 여과하고 정제수로 세척하여 잔류 계면활성제를 제거하였다. 이어서, 상기 세척된 마이크로파티클을 수득한 후, 건조 과정을 거쳐 최종적으로 구형의 생분해성 마이크로파티클을 완성한다. 10 mL of a biodegradable polymer solution was prepared by dissolving polycaprolactone (PCL), Mn 45,000, in 15 wt% in a solvent of dichloromethane (boiling point: 39.6 ° C.). In addition, Mw 85,000-124,000 polyvinyl alcohol (PVA) was dissolved as 0.25% wt in purified water to prepare 100 mL of an aqueous solution. The biodegradable polymer solution was then mixed with the surfactant aqueous phase solution and then stirred rapidly to form a dispersed phase in the form of droplets. The dispersed phase in the form of droplets dispersed in the surfactant aqueous phase solution was then stirred for a period of time and the temperature was added to extract the solvent and solidified to form microparticles. Thereafter, the solidified microparticles were filtered and washed with purified water to remove residual surfactant. Subsequently, the washed microparticles are obtained, followed by a drying process to finally form spherical biodegradable microparticles.
[실시예 2]Example 2
생분해성 고분자를 포함하는 마이크로파티클의 크기 및 분포도의 측정Measurement of the Size and Distribution of Microparticles Containing Biodegradable Polymers
생분해성 고분자를 포함하는 마이크로파티클의 크기 및 분포도는 측정 장비로 Helos particle size analyzer(Sympatec)를 이용하여 분산매에 마이크로파티클을 분산시킨 후 10초 동안 3회 반복하여 측정하였다. The size and distribution of the microparticles containing the biodegradable polymer were measured by repeating three times for 10 seconds after dispersing the microparticles in a dispersion medium using a Helos particle size analyzer (Sympatec) as a measuring device.
측정 결과에 따른 크기 분포도 값(span value)과 마이크로파티클 제조 공정 변수에 따른 최적화 상수(Optimum constant)를 산출하였다.Span values according to the measurement results and optimization constants according to microparticle manufacturing process variables were calculated.
Figure PCTKR2016006209-appb-I000007
Figure PCTKR2016006209-appb-I000007
WF: 수상용액 주입속도(mL)WF: Water solution injection rate (mL)
OF: 생분해성 고분자용액 주입속도(mL)OF: Injection rate of biodegradable polymer solution (mL)
OC: 생분해성 고분자용액 농도(중량%)OC: Biodegradable polymer solution concentration (% by weight)
K: 비례상수(proportional factor)K: proportional factor
[시험예 1] [Test Example 1]
제조예 1 및 비교예 1, 2에서 폴리카프로락톤(Polycaprolactone, PCL) 분자량에 따라 제조한 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.The size and distribution of the microparticles prepared according to the molecular weight of polycaprolactone (Polycaprolactone (PCL)) in Preparation Example 1 and Comparative Examples 1 and 2 are shown in the following table.
생분해성 고분자 분자량(Mn)Biodegradable Polymer Molecular Weight (Mn) 생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value
제조예 1Preparation Example 1 45,00045,000 1515 100100 1,0001,000 25/40/51, 0.6525/40/51, 0.65
비교예 1Comparative Example 1 14,00014,000 1515 100100 1,0001,000 32/48/75, 0.9032/48/75, 0.90
비교예 2Comparative Example 2 80,00080,000 1515 100100 1,0001,000 23/31/42, 0.6123/31/42, 0.61
상기 표 1에 기재된 바와 같이, 제조예 1에서 분자량이 Mn 45,000인 폴리카프로락톤(Polycaprolactone, PCL) 마이크로파티클은 크기가 균일하고 완벽한 구형의 형태를 확인할 수 있었으며, 본 발명에서 개발하고자 하는 생체 흡수 기간을 확보할 수 있었다. 반면에 비교예 1에서 분자량이 Mn 14,000 인 폴리카프로락톤(Polycaprolactone, PCL) 마이크로파티클은 크기 분포가 넓고, 낮은 분자량으로 인해 완벽한 구형의 형태를 보이지 않는다. 또한, 비교예 2에서 분자량이 Mn 80,000인 폴리카프로락톤(Polycaprolactone, PCL) 마이크로파티클은 크기가 균일하고 완벽한 구형의 형태를 확인할 수 있지만, 본 발명에서 개발하고자 하는 생체 흡수 기간에 적합하지 않는 문제가 있다.As shown in Table 1, in Preparation Example 1, polycaprolactone (Polycaprolactone, PCL) microparticles having a molecular weight of Mn 45,000 were confirmed to have a uniform size and a perfect spherical shape, the bioabsorption period to be developed in the present invention Could be secured. On the other hand, in Comparative Example 1, polycaprolactone (PCL) microparticles having a molecular weight of Mn 14,000 have a wide size distribution and do not show perfect spherical shape due to low molecular weight. In addition, in Comparative Example 2, polycaprolactone (PCL) microparticles having a molecular weight of Mn 80,000 can be confirmed to have a uniform and perfect spherical shape, but there is a problem that is not suitable for the bioabsorption period to be developed in the present invention. have.
[시험예 2] [Test Example 2]
제조예 1~3 및 비교예 3, 4에서 생분해성 고분자 용액의 농도에 따라 제조한 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.The size and distribution of the microparticles prepared according to the concentration of the biodegradable polymer solution in Preparation Examples 1 to 3 and Comparative Examples 3 and 4 are shown in the following table.
생분해성 고분자 분자량(Mn)Biodegradable Polymer Molecular Weight (Mn) 생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value 최적화상수(OC)Optimization Constant (OC)
제조예 1Preparation Example 1 45,00045,000 1515 100100 1,0001,000 25/40/51, 0.6525/40/51, 0.65 6.16.1
제조예 2Preparation Example 2 45,00045,000 1010 100100 1,0001,000 31/43/61, 0.7031/43/61, 0.70 9.19.1
제조예 3Preparation Example 3 45,00045,000 3030 100100 1,0001,000 23/31/42, 0.6123/31/42, 0.61 3.03.0
비교예 3Comparative Example 3 45,00045,000 55 100100 1,0001,000 38/53/94, 1.0438/53/94, 1.04 18.218.2
비교예 4Comparative Example 4 45,00045,000 4545 100100 1,0001,000 16/35/49, 0.9416/35/49, 0.94 2.02.0
상기 표 2에 기재된 바와 같이, 제조예 1~3에서 생분해성 고분자 용액의 농도가 10~30 중량%인 마이크로파티클은 크기가 균일하고 완벽한 구형의 형태를 확인할 수 있었다. 반면에 비교예 3에서 생분해성 고분자 용액의 농도가 5중량%인 경우 낮은 농도로 인해 매우 작은 크기의 마이크로파티클이 생성되며, 생성된 마이크로파티클은 다공이 많은 성상으로 본 연구의 목적과 부합되지 않는다. 또한, 비교예 4에서 생분해성 고분자 용액의 농도가 45중량%인 경우 높은 농도로 인해 구형의 마이크로파티클 형성에 어려움이 있었다.As shown in Table 2, the microparticles having a concentration of 10 to 30% by weight of the biodegradable polymer solution in Preparation Examples 1 to 3 were uniform in size and were able to confirm the perfect spherical shape. On the other hand, when the concentration of the biodegradable polymer solution in Comparative Example 3 is 5% by weight, very small sized microparticles are generated due to the low concentration, and the produced microparticles are porous and do not meet the purpose of this study. . In addition, in Comparative Example 4, when the concentration of the biodegradable polymer solution was 45% by weight, it was difficult to form spherical microparticles due to the high concentration.
[시험예 3] [Test Example 3]
제조예 1, 4, 5 및 비교예 5, 6에서 생분해성 고분자 용액의 주입속도에 따라 제조한 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.The size and distribution of the microparticles prepared according to the injection rate of the biodegradable polymer solution in Preparation Examples 1, 4, 5 and Comparative Examples 5, 6 are shown in the following table.
생분해성 고분자 분자량(Mn)Biodegradable Polymer Molecular Weight (Mn) 생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value 최적화상수(OC)Optimization constant (OC)
제조예 1Preparation Example 1 45,00045,000 1515 100100 1,0001,000 25/40/51, 0.6525/40/51, 0.65 6.16.1
제조예 4Preparation Example 4 45,00045,000 1515 5050 1,0001,000 21/35/47, 0.7421/35/47, 0.74 12.212.2
제조예 5Preparation Example 5 45,00045,000 1515 200200 1,0001,000 28/37/62, 0.9228/37/62, 0.92 3.03.0
비교예 5Comparative Example 5 45,00045,000 1515 2525 1,0001,000 23/32/56, 1.0323/32/56, 1.03 24.324.3
비교예 6Comparative Example 6 45,00045,000 1515 300300 1,0001,000 43/55/97, 0.9843/55/97, 0.98 2.02.0
상기 표 3에 기재된 바와 같이, 제조예 1, 4, 5에서 생분해성 고분자 용액의 주입속도가 50 내지 200㎕/min인 마이크로파티클은 본 연구에서 의도하는 바람직한 크기(20~70㎛)의 완벽한 구형 형태를 확인할 수 있었다. 반면에 비교예 5에서 생분해성 고분자 용액의 주입속도가 25㎕/min인 경우 크기가 작은 마이크로파티클이 생성되지만, 마이크로파티클의 크기 분포가 증가하는 결과를 보이고 있다. 또한, 비교예 6에서 생분해성 고분자 용액의 주입속도가 300㎕/min인 경우 낮은 전단응력으로 인해 마이크로파티클의 크기 및 크기 분포가 증가하는 결과를 확인할 수 있었다. As shown in Table 3, the microparticles of the injection rate of the biodegradable polymer solution in Preparation Examples 1, 4, 5 is 50 to 200μl / min is a perfect sphere of the desired size (20 ~ 70㎛) intended in this study I could confirm the form. On the other hand, when the injection rate of the biodegradable polymer solution in Comparative Example 5 is 25 μl / min, small microparticles are generated, but the size distribution of the microparticles is increased. In addition, in Comparative Example 6, when the injection rate of the biodegradable polymer solution was 300 μl / min, the size and size distribution of the microparticles were increased due to the low shear stress.
[시험예 4] [Test Example 4]
제조예 1, 6, 및 비교예 7, 8에서 수상 용액의 주입각도에 따라 제조한 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.The size and distribution of the microparticles prepared according to the injection angle of the aqueous phase solution in Preparation Examples 1, 6, and Comparative Examples 7, 8 are shown in the following table.
생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 수상 용액 주입 각도Water solution injection angle 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value 최적화상수(OC)Optimization constant (OC)
제조예 1Preparation Example 1 1515 100100 1,0001,000 9090 25/40/51, 0.6525/40/51, 0.65 6.16.1
제조예 6Preparation Example 6 1515 100100 1,0001,000 6060 28/44/59, 0.7028/44/59, 0.70 2.72.7
비교예 7Comparative Example 7 1515 100100 1,0001,000 3030 34/43/74, 0.9334/43/74, 0.93 0.70.7
비교예 8Comparative Example 8 1515 100100 1,0001,000 150150 29/44/71, 0.9529/44/71, 0.95 16.916.9
상기 표 4에 기재된 바와 같이, 제조예 1, 6에서 수상 용액의 주입각도가 60 내지 90°인 마이크로파티클은 크기가 균일하고 완벽한 구형의 형태를 확인할 수 있었다. 반면에 비교예 7, 8에서 수상 용액의 주입각도가 30°또는 150°인 경우 수상 용액의 주입각도에 따라 생분해성 고분자 용액에 가해지는 전단력의 차이로 인해 마이크로파티클의 크기 및 크기 분포가 증가하는 결과를 확인할 수 있었다. As shown in Table 4, in Preparation Examples 1 and 6, the microparticles having an injection angle of 60 to 90 ° were uniform in size and could be confirmed to have perfect spherical shapes. On the other hand, in Comparative Examples 7 and 8, when the injection angle of the aqueous phase solution was 30 ° or 150 °, the size and size distribution of the microparticles were increased due to the difference in the shear force applied to the biodegradable polymer solution according to the injection angle of the aqueous phase solution. The results could be confirmed.
[시험예 5] [Test Example 5]
제조예 1, 7 및 비교예 9, 10에서 수상 용액의 주입속도에 따라 제조한 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.The size and distribution of the microparticles prepared according to the injection rate of the aqueous phase solution in Preparation Examples 1 and 7 and Comparative Examples 9 and 10 are shown in the following table.
생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 수상 용액 주입 각도Water solution injection angle 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value 최적화상수(OC)Optimization constant (OC)
제조예 1Preparation Example 1 1515 100100 1,0001,000 9090 25/40/51, 0.6525/40/51, 0.65 6.16.1
제조예 7Preparation Example 7 1515 100100 750750 9090 27/42/63, 0.8627/42/63, 0.86 3.43.4
비교예 9Comparative Example 9 1515 100100 500500 9090 34/52/83, 0.9434/52/83, 0.94 1.51.5
비교예 10Comparative Example 10 1515 100100 2,0002,000 9090 16/29/49, 1.1416/29/49, 1.14 24.324.3
상기 표 5에 기재된 바와 같이, 제조예 1, 7에서 수상 용액의 주입속도가 750 내지 1000㎕/min 인 마이크로파티클은 크기가 균일하고 완벽한 구형의 형태를 확인할 수 있었다. 반면에 비교예 9에서 수상 용액의 주입속도가 500㎕/min 인 경우 고분자 용액에 가해지는 전단력이 구형의 마이크로파티클을 형성하기에 부족하기 때문에 마이크로파티클의 크기가 크고 완벽한 구형의 형태를 취하지 못한다. 또한, 비교예 10에서 수상 용액의 주입속도가 2000㎕/min인 경우 높은 전단력으로 인해 크기가 작은 마이크로파티클이 생성되지만, 크기 분포가 증가하는 결과를 확인할 수 있었다. As shown in Table 5, in Preparation Examples 1 and 7, microparticles having an injection rate of 750 to 1000 µl / min were confirmed to have a uniform size and a perfect spherical shape. On the other hand, if the injection rate of the aqueous phase solution in Comparative Example 9 is 500 µl / min because the shear force applied to the polymer solution is insufficient to form a spherical microparticles, the size of the microparticles are large and does not take the perfect spherical shape. In addition, when the injection rate of the aqueous phase solution in Comparative Example 10 is 2000 μl / min, small microparticles are generated due to high shear force, but the size distribution was confirmed to be increased.
[시험예 6] [Test Example 6]
제조예 1, 8 및 비교예 11, 12에서 수상 용액의 주입속도에 따라 제조한 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.The size and distribution of the microparticles prepared according to the injection rate of the aqueous phase solution in Preparation Examples 1 and 8 and Comparative Examples 11 and 12 are shown in the following table.
생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 수상 용액 농도(중량 %)Aqueous solution concentration (% by weight) 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value 최적화상수(OC)Optimization constant (OC)
제조예 1Preparation Example 1 1515 100100 1,0001,000 0.250.25 25/40/51, 0.6525/40/51, 0.65 6.16.1
제조예 8Preparation Example 8 1515 100100 1,0001,000 0.50.5 22/36/46, 0.6722/36/46, 0.67 12.212.2
비교예 11Comparative Example 11 1515 100100 1,0001,000 0.10.1 29/44/71, 0.9529/44/71, 0.95 2.42.4
비교예 12Comparative Example 12 1515 100100 1,0001,000 1One 21/33/41, 0.6121/33/41, 0.61 24.324.3
상기 표 6에 기재된 바와 같이, 제조예 1, 8에서 수상 용액의 농도가 0.25 내지 0.5 중량% 인 마이크로파티클은 크기가 균일하고 완벽한 구형의 형태를 확인할 수 있었다. 반면에 비교예 11에서 수상 용액의 농도가 0.1 중량%인 경우 낮은 계면활성제 농도로 인해 마이크로파티클의 표면장력이 증가해서 생성되는 마이크로파티클의 크기가 증가하는 결과를 보인다. 또한, 비교예 12에서 수상 용액의 농도가 1.0 중량%인 경우 제조 과정에서 마이크로파티클의 응집을 억제할 수 있으며, 낮은 계면장력으로 인해 크기 분포가 좁은 마이크로파티클이 생성된다. 하지만, 수상 용액의 PVA 농도가 1.0%wt 이상에서는 생성된 마이크로파티클에서 PVA의 세척 및 제거가 어려운 문제점이 있다.As shown in Table 6, in Preparation Examples 1 and 8, the microparticles having a concentration of 0.25 to 0.5% by weight of the aqueous solution could be confirmed to have a uniform size and a perfect spherical shape. On the other hand, when the concentration of the aqueous solution in Comparative Example 11 is 0.1% by weight, the surface tension of the microparticles is increased due to the low surfactant concentration, which results in an increase in the size of the generated microparticles. In addition, when the concentration of the aqueous phase solution in Comparative Example 12 is 1.0% by weight, it is possible to suppress the agglomeration of the microparticles during the manufacturing process, and microparticles having a narrow size distribution are generated due to the low interfacial tension. However, when the PVA concentration of the aqueous phase solution is 1.0% wt or more, it is difficult to wash and remove PVA from the produced microparticles.
[시험예 7] [Test Example 7]
제조예 1 및 비교예 13에서 마이크로파티클의 제조방법에 따른 마이크로파티클의 크기 및 분포는 하기 표에 기재하였다.In Preparation Example 1 and Comparative Example 13, the size and distribution of the microparticles according to the preparation method of the microparticles are shown in the following table.
생분해성 고분자 분자량(Mn)Biodegradable Polymer Molecular Weight (Mn) 생분해성 고분자용액 농도(중량 %)Biodegradable polymer solution concentration (% by weight) 생분해섯 고분자용액 주입 속도(㎕/min)Biodegradation Polymer Solution Injection Rate (µl / min) 수상 용액 주입 속도(㎕/min)Water phase injection rate (μl / min) 마이크로파티클 크기(D10/D50/D90, um) 및 분포도(Span value) Microparticle size (D10 / D50 / D90, um) and Span value 최적화상수(OC)Optimization constant (OC)
제조예 1Preparation Example 1 45,00045,000 1515 100100 10001000 25/40/51, 0.6525/40/51, 0.65 6.16.1
비교예 16Comparative Example 16 45,00045,000 1515 -- -- 18/69/114, 1.3918/69/114, 1.39 --
상기 표 7에 기재된 바와 같이, 제조예 1의 경우, 마이크로채널을 가지는 디바이스를 사용하여 생분해성 고분자 용액을 제조하여 주입하고, 수상 용액을 90°각도로 주입하여 마이크로파티클을 형성한 후, 여과 및 세척을 통해 수득된 마이크로파티클을 건조시켜 제조하였다. 반면 비교예 16의 경우 마이크로파티클을 제조하는 일반적인 방법인 용매 추출-증발법으로 제조예 1과 동일한 분자량의 폴리카프로락톤(Polycaprolactone, PCL)을 사용하여 동일 농도의 생분해성 고분자 용액으로 마이크로파티클을 제조하였다. 용매 추출-증발법으로 제조한 비교예 16의 경우 제조예 1과 달리 마이크로파티클의 크기가 크며, 크기 분포가 비교적 넓게 분포하는 것을 확인하였다.As shown in Table 7, in the case of Preparation Example 1, a biodegradable polymer solution was prepared and injected using a device having a microchannel, and the aqueous phase solution was injected at an angle of 90 ° to form microparticles, followed by filtration and Microparticles obtained through washing were prepared by drying. On the other hand, in Comparative Example 16, the microparticles were prepared from the biodegradable polymer solution of the same concentration using polycaprolactone (PCL) having the same molecular weight as that of Preparation Example 1 by a solvent extraction-evaporation method, which is a general method for preparing microparticles. It was. In Comparative Example 16 prepared by the solvent extraction-evaporation method, unlike the Preparation Example 1, the size of the microparticles was large, and it was confirmed that the size distribution was relatively wide.
본 발명은 생분해성 고분자를 포함하는 마이크로파티클의 제조방법에 관한 것으로, 구체적으로 마이크로파티클의 크기 조절이 용이하여, 일정한 크기 분포를 가지며, 높은 수율로 마이크로파티클의 제조가 가능한 제조 방법에 관한 것이다.The present invention relates to a method for preparing microparticles containing a biodegradable polymer, and more particularly, to a method for preparing microparticles having easy size control, having a constant size distribution, and capable of producing microparticles with high yield.

Claims (14)

  1. (1) 생분해성 고분자를 유기 용매에 용해시켜 생분해성 고분자 용액을 제조하는 단계;(1) dissolving the biodegradable polymer in an organic solvent to prepare a biodegradable polymer solution;
    (2) 계면활성제를 정제수에 용해시켜 수상 용액을 제조하는 단계;(2) dissolving the surfactant in purified water to prepare an aqueous solution;
    (3) 상기 (1) 단계의 생분해성 고분자 용액을 한 방향으로 주입하여, 흐르게 하는 단계; (3) injecting the biodegradable polymer solution of step (1) in one direction to allow flow;
    (4) 상기 (3) 단계의 흐름 방향으로, 수상 용액을 주입하여, 제1 흐름 및 제2 흐름으로 흐르게 하고, (3) 단계의 흐름, 수상 용액의 제1 흐름 및 제2 흐름의 교차점을 생성하고, 상기 교차점 이후에 단일 흐름을 생성하여 흐르게 하는 단계; (4) injecting the aqueous phase solution in the flow direction of step (3) to allow the first and second streams to flow, and the intersection of the flow of step (3), the first flow of the aqueous phase solution, and the second flow. Generating and flowing a single flow after the intersection;
    (5) 상기 (4) 단계의 교차점 및 교차점 이후의 단일 흐름에서 생성되는 구형의 마이크로파티클을 포집하는 단계;(5) collecting spherical microparticles produced in a single stream after the intersection and the intersection of step (4);
    (6) 상기 (5) 단계에서 포집한 구형의 마이크로파티클을 20 내지 25℃에서 1차 건조시키는 단계;(6) first drying the spherical microparticles collected in step (5) at 20 to 25 ° C;
    (7) 상기 (6) 단계의 건조한 구형의 마이크로파티클을 여과하고 세척하는 단계; 및(7) filtering and washing the dried spherical microparticles of step (6); And
    (8) 상기 (7) 단계의 구형의 마이크로파티클을 진공 또는 동결 건조의 방법으로, 2차 건조시키는 단계를 포함하는 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.(8) A method for producing a microparticle comprising a biodegradable polymer comprising the step of secondary drying the spherical microparticles of step (7) by vacuum or freeze drying.
  2. 제 1항에 있어서,The method of claim 1,
    상기 수상용액 주입속도(mL), 생분해성 고분자용액 주입속도(mL) 및 생분해성 고분자용액 농도의 관계는 하기 수학식 1에 의하며,The relationship between the aqueous solution injection rate (mL), the biodegradable polymer solution injection rate (mL) and the biodegradable polymer solution concentration is based on the following equation 1,
    하기 수학식 1은 2.5 내지 15의 값을 가지는 마이크로파티클의 제조방법:Equation 1 is a method for producing a microparticle having a value of 2.5 to 15:
    [수학식 1][Equation 1]
    Figure PCTKR2016006209-appb-I000008
    Figure PCTKR2016006209-appb-I000008
    여기서,here,
    WF: 수상용액 주입속도(mL)WF: Water solution injection rate (mL)
    OF: 생분해성 고분자용액 주입속도(mL)OF: Injection rate of biodegradable polymer solution (mL)
    OC: 생분해성 고분자용액 농도(중량%)OC: Biodegradable polymer solution concentration (% by weight)
    K: 비례상수(proportional factor)K: proportional factor
  3. 제 1항에 있어서,The method of claim 1,
    상기 (3) 단계의 생분해성 고분자 용액은 50 내지 200㎕/min의 속도로 흐르게 하는 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The biodegradable polymer solution of step (3) is a method for producing a microparticle comprising a biodegradable polymer that is to flow at a rate of 50 to 200㎛ / min.
  4. 제 1항에 있어서,The method of claim 1,
    상기 (3) 단계의 생분해성 고분자 용액은 농도가 5 내지 30 중량%인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The biodegradable polymer solution of step (3) is a method for producing microparticles containing a biodegradable polymer having a concentration of 5 to 30% by weight.
  5. 제 1항에 있어서,The method of claim 1,
    상기 (4) 단계의 수상 용액의 제1 흐름 및 제2 흐름은 상기 (3) 단계의 흐름을 기준으로 양쪽으로 30 내지 90°만큼 벌어져 흐르는 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The first flow and the second flow of the aqueous phase solution of the step (4) is a microparticle manufacturing method comprising a biodegradable polymer that flows apart by 30 to 90 ° to both sides based on the flow of the step (3).
  6. 제 1항에 있어서,The method of claim 1,
    상기 (4) 단계의 수상 용액은 100 내지 2000㎕/min의 속도로 흐르게 하는 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The aqueous solution of step (4) is a method for producing a microparticle comprising a biodegradable polymer that is to flow at a rate of 100 to 2000ul / min.
  7. 제 1항에 있어서,The method of claim 1,
    상기 (5) 단계는 음압 환경에서 구형의 마이크로 파티클을 포집하는 마이크로파티클의 제조방법.Step (5) is a method for producing microparticles to collect spherical microparticles in a negative pressure environment.
  8. 제 1항에 있어서,The method of claim 1,
    상기 마이크로 파티클의 평균 직경은 10 내지 150㎛인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The microparticles have an average diameter of 10 to 150㎛ microparticles manufacturing method comprising a biodegradable polymer.
  9. 제 1항에 있어서,The method of claim 1,
    상기 마이크로 파티클은 하기의 수학식 2에 따른 크기 분포도(span value)가 1이하인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법:The micro particle is a method for producing a micro particle comprising a biodegradable polymer having a size distribution (span value) of 1 or less according to Equation 2 below:
    [수학식 2][Equation 2]
    Figure PCTKR2016006209-appb-I000009
    Figure PCTKR2016006209-appb-I000009
    여기서,here,
    Dv0 .1 = 마이크로파티클 분포가 10% 이내인 크기Dv 0 .1 = micro particle size distribution of 10%
    Dv0 .5 = 마이크로파티클 분포가 50% 이내인 크기Dv 0 .5 = micro particle size distribution is less than 50%
    Dv0 .9 = 마이크로파티클 분포가 90% 이내인 크기Dv 0 .9 = micro particle size distribution is less than 90%
  10. 제 1항에 있어서,The method of claim 1,
    상기 마이크로파티클은 체내 주입 이후, 1 내지 3년 이내에 생체 흡수되는 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The microparticles are bioabsorbable method of producing microparticles, which will be bioabsorbed within 1 to 3 years after injection in the body.
  11. 제 1항에 있어서,The method of claim 1,
    상기 생분해성 고분자는 폴리락트산, 폴리글리콜산, 폴리락트산-글리콜산 공중합체, 폴리카프로락톤 및 이들의 유도체로 이루어진 군으로부터 선택된 어느 하나 이상의 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The biodegradable polymer is polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, polycaprolactone and a method for producing a microparticle comprising a biodegradable polymer selected from the group consisting of derivatives thereof.
  12. 제 1항에 있어서,The method of claim 1,
    상기 유기 용매는 디클로로메탄, 클로로포름, 클로로에탄, 디클로로에탄, 트리클로로에탄 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.Wherein said organic solvent is at least one selected from the group consisting of dichloromethane, chloroform, chloroethane, dichloroethane, trichloroethane, and mixtures thereof.
  13. 제 1항에 있어서,The method of claim 1,
    상기 계면활성제는 비이온성 계면활성제, 음이온성 계면활성제, 양이온성 계면활성제 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The surfactant is a nonionic surfactant, anionic surfactant, cationic surfactant and a method for producing a microparticle comprising a biodegradable polymer of any one or more selected from the group consisting of a mixture thereof.
  14. 제 13항에 있어서,The method of claim 13,
    상기 계면활성제는 메틸셀룰로오스, 폴리비닐피롤리돈, 레시틴, 젤라틴, 폴리비닐알코올, 폴리옥시에틸렌 소르비탄 지방산 에스테르, 폴리옥시에틸렌 피마자유 유도체, 라우릴 황산 나트륨, 스테아르산 나트륨, 에스테르 아민, 리니어 디아민, 패티 아민 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나 이상의 것인 생분해성 고분자를 포함하는 마이크로파티클의 제조방법.The surfactant is methyl cellulose, polyvinylpyrrolidone, lecithin, gelatin, polyvinyl alcohol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene castor oil derivative, sodium lauryl sulfate, sodium stearate, ester amine, linear diamine , Patty amine and mixtures thereof, any one or more selected from the group consisting of biodegradable polymers comprising the microparticles.
PCT/KR2016/006209 2015-07-17 2016-06-10 Preparation method of microparticles comprising biodegradable polymer WO2017014431A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0101511 2015-07-17
KR20150101511 2015-07-17
KR10-2016-0013221 2016-02-03
KR1020160013221A KR101726559B1 (en) 2015-07-17 2016-02-03 Method for manufacturing microparticle including biodegradable polymer

Publications (1)

Publication Number Publication Date
WO2017014431A1 true WO2017014431A1 (en) 2017-01-26

Family

ID=57834074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006209 WO2017014431A1 (en) 2015-07-17 2016-06-10 Preparation method of microparticles comprising biodegradable polymer

Country Status (1)

Country Link
WO (1) WO2017014431A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681323A (en) * 2019-08-26 2020-01-14 上海摩漾生物科技有限公司 Golf ball type degradable microsphere with micro-topological structure and preparation method thereof
EP3570970A4 (en) * 2016-11-14 2021-05-05 Inventage Lab. Inc. Optimization of the designing of apparatus and processes for mass production of monodisperse biodegradable polymer-based microspheres and biodegradable polymer-based drug delivery systems
CN114146020A (en) * 2022-02-10 2022-03-08 中国远大集团有限责任公司 Injection beauty product and preparation method and application thereof
US20230071710A1 (en) * 2020-02-03 2023-03-09 Inventage Lab Inc. Microparticle producing system which comprises carrying fluid, and a controlling method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014441A2 (en) * 2007-07-26 2009-01-29 Aqtis Ip Bv Microparticles comprising pcl and uses thereof
KR20110121320A (en) * 2010-04-30 2011-11-07 삼일제약주식회사 Nano particle, method and device of manufacturing the same
JP2012011268A (en) * 2010-06-29 2012-01-19 Okayama Univ Biodegradable hollow fine particle and method for producing the same
KR20140013533A (en) * 2012-07-25 2014-02-05 황재광 Manufacturing apparatus and method thereof of brush for cosmetic
KR20140128553A (en) * 2013-04-26 2014-11-06 공주대학교 산학협력단 Microparticle with surface dimples capable of embodying active ingredients and preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014441A2 (en) * 2007-07-26 2009-01-29 Aqtis Ip Bv Microparticles comprising pcl and uses thereof
KR20110121320A (en) * 2010-04-30 2011-11-07 삼일제약주식회사 Nano particle, method and device of manufacturing the same
JP2012011268A (en) * 2010-06-29 2012-01-19 Okayama Univ Biodegradable hollow fine particle and method for producing the same
KR20140013533A (en) * 2012-07-25 2014-02-05 황재광 Manufacturing apparatus and method thereof of brush for cosmetic
KR20140128553A (en) * 2013-04-26 2014-11-06 공주대학교 산학협력단 Microparticle with surface dimples capable of embodying active ingredients and preparation thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3570970A4 (en) * 2016-11-14 2021-05-05 Inventage Lab. Inc. Optimization of the designing of apparatus and processes for mass production of monodisperse biodegradable polymer-based microspheres and biodegradable polymer-based drug delivery systems
CN110681323A (en) * 2019-08-26 2020-01-14 上海摩漾生物科技有限公司 Golf ball type degradable microsphere with micro-topological structure and preparation method thereof
CN110681323B (en) * 2019-08-26 2021-12-21 上海摩漾生物科技有限公司 Golf ball type degradable microsphere with micro-topological structure and preparation method thereof
US20230071710A1 (en) * 2020-02-03 2023-03-09 Inventage Lab Inc. Microparticle producing system which comprises carrying fluid, and a controlling method thereof
US11731100B2 (en) * 2020-02-03 2023-08-22 Inventage Lab Inc. Microparticle producing system which comprises carrying fluid, and a controlling method thereof
CN114146020A (en) * 2022-02-10 2022-03-08 中国远大集团有限责任公司 Injection beauty product and preparation method and application thereof
CN114146020B (en) * 2022-02-10 2022-04-29 中国远大集团有限责任公司 Injection beauty product and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2017014431A1 (en) Preparation method of microparticles comprising biodegradable polymer
WO2013180458A1 (en) Crosslinked hydrogel for drug delivery, and method for preparing the hydrogel
WO2016209062A1 (en) Two-component bioink, 3d biomaterial comprising the same and method for preparing the same
WO2021132858A1 (en) Method for manufacturing biodegradable polymer microparticles for filler, and method for manufacturing injection comprising same
WO2021235767A1 (en) Method for obtaining collagen peptide from starfish, elastic liposome comprising starfish-derived collagen peptide, and cosmetic composition comprising same
WO2012008722A2 (en) Filler composition for tissue reinforcement
WO2020197185A1 (en) Compositions of dispersed phase for preparation of apixaban-loaded microspheres and biocompatible polymer-based apixaban-loaded microspheres prepared therefrom
WO2020241984A1 (en) Method for producing biodegradable polymer filler, and method for producing injection containing same
WO2016043547A1 (en) Tissue repair composition and preparation method therefor
WO2020197190A1 (en) Method for preparing biocompatible polymer-based apixaban-loaded microspheres
WO2021029541A1 (en) Elastic liposome composition comprising sucrose-based surfactant and cosmetic composition containing same
WO2020184916A1 (en) Eye drops containing chitosan nanoparticles in which pdrn is encapsulated, and preparation method therefor
WO2022050783A1 (en) Sustained-release microparticles for sustained release of drug
WO2020242234A1 (en) Injectable composition containing prodrug of caspase inhibitors, and preparation method therefor
WO2019074314A1 (en) Hydrogel comprising cross-linked product of graft copolymer and method for preparing same
WO2021194202A1 (en) Super absorbent resin film and preparation method thereof
WO2011004936A1 (en) Method for producing bioactive cellulose membrane from skin horny layer of ascidiacea and bioactive cellulose membrane obtained thereby
WO2012081944A2 (en) Dental membrane and method of manufacturing the same
WO2023101348A1 (en) Microparticles containing leuprolide, and preparation method thereof
WO2022019461A1 (en) Edible sheet-like article
WO2012134187A2 (en) Pharmaceutical composition for preventing or treating macular degeneration
WO2020184915A1 (en) Chitosan nanofilm comprising pdrn-encapsulated chitosan nanoparticles and method for manufacturing same
WO2021040141A1 (en) Animal adipose tissue-derived extracellular matrix, and preservation solution of animal adipose tissue-derived extracellular matrix
WO2022119008A1 (en) Method for producing scaffold composition for tissue regeneration using non-spontaneous emulsion dispersion method
WO2021246764A1 (en) Method of preparing polymeric microparticles, polymeric microparticles, and medical composition, cosmetic composition, medical article, and cosmetic article each comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 23-04-18 9

122 Ep: pct application non-entry in european phase

Ref document number: 16827935

Country of ref document: EP

Kind code of ref document: A1