WO2017012253A1 - 微镜阵列和应用其的背光模组及显示装置 - Google Patents

微镜阵列和应用其的背光模组及显示装置 Download PDF

Info

Publication number
WO2017012253A1
WO2017012253A1 PCT/CN2015/097108 CN2015097108W WO2017012253A1 WO 2017012253 A1 WO2017012253 A1 WO 2017012253A1 CN 2015097108 W CN2015097108 W CN 2015097108W WO 2017012253 A1 WO2017012253 A1 WO 2017012253A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
mirror
driving
driving voltage
micromirror
Prior art date
Application number
PCT/CN2015/097108
Other languages
English (en)
French (fr)
Inventor
王尚
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/107,586 priority Critical patent/US10571684B2/en
Publication of WO2017012253A1 publication Critical patent/WO2017012253A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/312Driving therefor
    • H04N9/3126Driving therefor for spatial light modulators in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0021Transducers for transforming electrical into mechanical energy or vice versa
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/357Electrostatic force
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7458Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of deformable mirrors, e.g. digital micromirror device [DMD]

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a micro mirror array and a backlight module and a display device using the same.
  • a micromirror array is a MEMS (Micro Electro Mechanical Systems) device whose basic principle is to change the direction or phase of the input light by rotating or translating the movable micromirror surface by a driving force (for example, electrostatic force or magnetic force).
  • MEMS Micro Electro Mechanical Systems
  • Micromirror arrays have been widely used in various fields such as optical switching, spectral analysis instruments, and projection imaging in optical communication.
  • the application of the micromirror array in the projector is based on a front projection arrangement, which is a different application from the rear projection field of large screen and flat panel display.
  • an electrostatically driven deflecting micromirror array comprising: a substrate; and a plurality of micromirror units formed on the substrate, each of the plurality of micromirror units comprising a mirror that is deflectable about a first yaw axis and a second yaw axis that is perpendicular to the first yaw axis, respectively; a frame that supports the mirror by means of a first hinge and a second hinge, the first a hinge and the second hinge define the first yaw axis; a first struts and a second struts that support the frame by a third hinge and a fourth hinge, respectively, the third hinge and the fourth hinge Defining the second yaw axis; a first electrode pair including a first drive electrode and a second drive electrode, the first drive electrode and the second drive electrode being on the substrate with respect to the first yaw axis Projection symmetry; a first electrode pair including a first drive electrode and a second
  • the micromirror array may further include an insulating layer formed on the substrate and providing insulation between the mirror electrode and the first electrode pair and the second electrode pair.
  • the insulating layer can reduce the interference between the electrodes.
  • each of the plurality of micromirror units may further include a guard electrode disposed around the first electrode pair and the second electrode pair, the guard electrode being applied with the mirror The same drive voltage of the electrodes.
  • the mirror, the first, second, third, fourth hinges and the frame may be integrally formed from aluminum.
  • the mirrors can be square. Such a mirror can achieve efficient use of the gap between the micromirror units and thus increase its reflection area.
  • a backlight module of a display panel includes: a light source; a micromirror array including a plurality of micromirror units, each of the plurality of micromirror units having a separately rotatable a first deflection axis and a mirror deflected perpendicular to the second deflection axis of the first deflection axis, the deflection angle of each of the mirrors is continuously and continuously controllable; and a control unit for responding Adjusting a deflection angle of each of the mirrors in the micromirror array such that the micromirror array uniformly reflects light emitted by the light source to the entire surface of the display screen depending on the backlight control signal Or converge on one or more areas of the display screen.
  • the background module can control the distribution of backlight energy (intensity) to provide a backlight output having ultra-high brightness in one or more local regions.
  • the micromirror array can be an electrostatically driven deflecting micromirror array as described in the first aspect of the invention.
  • control unit may include: a deflection angle determining unit that is a target area to be illuminated on the display screen according to the backlight control signal, and is each mirror in the micro mirror array Determining a respective deflection angle, the deflection angle comprising a first deflection component corresponding to the first deflection axis and corresponding to the second bias a second deflection component of the rotation axis; an angle-drive voltage conversion unit that converts a respective first deflection component and a second deflection component for each mirror into a first electrode pair for driving the mirror and a driving voltage value of the second electrode pair; and a micro mirror array driver that drives the first electrode pair and the second electrode pair corresponding to each of the mirrors according to the driving voltage value converted by the angle-driving voltage converting unit The respective drive voltages are applied separately.
  • the mirror in the micromirror array is mechanically deflected compared to the scheme of electrically adjusting the light intensity of the light source of the backlight module, and thus has no effect on the lifetime of the light source, resulting in the life of the backlight module Longer.
  • all of the mirror electrodes in the array of micromirrors can be applied with the same reference voltage.
  • the first driving electrode is applied with a first driving voltage
  • the second driving electrode is applied with a driving voltage that is opposite to the first driving voltage
  • the first driving voltage is proportional to the reference voltage as a function of the first deflection component
  • the third driving electrode is applied with a second driving voltage
  • the fourth driving electrode is applied with the first A driving voltage in which the driving voltage is inverted, the second driving voltage being proportional to the reference voltage as a function of the second deflection component.
  • each of the micromirror units may have a corresponding two digital to analog converters and two corresponding voltage inverters, one of the two digital to analog converters being a first driving electrode provides the first driving voltage, another provides the second driving voltage for the third driving electrode, and one of the two voltage inverters provides a second driving electrode The driving voltage of the first driving voltage is inverted, and the other is a driving voltage for the fourth driving electrode to be inverted from the second driving voltage.
  • the light source can be a parallel light source.
  • parallel light sources the optical efficiency of the backlight module can be improved.
  • the backlight module may further include a projection lens disposed on the reflected light path of the micro mirror array for diverging the reflected light from the micro mirror array to match the size of the display screen. Due to the divergence of light by the projection lens, the reflected light path can be shortened, resulting in a reduction in the size of the backlight module.
  • the backlight module may further include a diffusing plate disposed on a back side of the display screen.
  • the diffuser can improve the properties of the light that ultimately illuminates the display screen, such as providing uniform brightness.
  • a display device comprising the present invention The backlight module described in the second aspect.
  • FIG. 1 schematically illustrates a backlight module in accordance with an embodiment of the present invention
  • FIG. 2 schematically illustrates an operational state in which a non-uniform backlight is provided using the backlight module illustrated in FIG. 1;
  • FIG. 3(a) and 3(b) respectively schematically show a cross-sectional view and a top view of one micromirror unit in an electrostatically driven deflecting micromirror array according to an embodiment of the present invention
  • FIG. 3(c) is schematically illustrated Illustratively showing a top view of the structure of the first electrode pair and the second electrode pair of the micromirror unit;
  • FIG. 4 schematically illustrates a backlight direction adjustment principle for a backlight module according to an embodiment of the present invention
  • FIG. 5 schematically illustrates a backlight module in accordance with another embodiment of the present invention.
  • FIG. 1 schematically illustrates a backlight module 100 in accordance with an embodiment of the present invention.
  • the backlight module 100 includes a light source 110, a micro mirror array 120, and a control unit (not shown). Light emitted from the light source 110 is reflected by a plurality of micromirrors in the micromirror array 120 to the rear of the display screen 130 to provide backlighting for, for example, a liquid crystal display.
  • a point source such as a UHP lamp or a metal halide lamp can be employed as the light source 110.
  • a suitable optical path design after the divergent beam emitted from the point source is reflected by the mirror, a larger area, such as the entire display screen 130, can be covered.
  • Micromirror array 120 includes a plurality of micromirror units (represented by a plurality of grids on micromirror array 120 in FIG. 1). In the default state, the individual micromirrors are not deflected and thus form a planar mirror as a whole. In this case, the light reflected by the micromirror array 120 can be evenly distributed on the display screen 130 to provide a uniform backlight (as shown in FIG. 1). However, each of the micromirrors is deflectable about a first yaw axis and a second yaw axis that is perpendicular to the first yaw axis, respectively.
  • each of the plurality of micromirrors to the rear of display screen 130 is adjustable in both the lateral position and the longitudinal position. That is, you can change The intensity of light reflected by the micromirror array 20 is distributed over the display screen 130, resulting in a non-uniform backlight.
  • the deflection angle of the mirror of each of the plurality of micromirror units can be individually and continuously controllable, rather than being discretely controllable on a line-by-row or column-by-column basis. In other words, the deflection angle of each mirror can be finely adjusted, rather than being limited to a fixed value, such as ⁇ 10°.
  • the backlight can be concentrated on a separate area (or multiple separate areas) on the display screen 30, where a backlight with ultra-high brightness (due to the superposition of the light intensity reflected by each micro-mirror) is provided.
  • the backlight module 100 further includes a control unit (discussed later) for adjusting the deflection angle of the mirror of each of the plurality of micromirror units in response to a backlight control signal (eg, from a display panel).
  • a control unit for adjusting the deflection angle of the mirror of each of the plurality of micromirror units in response to a backlight control signal (eg, from a display panel).
  • FIG. 2 schematically illustrates an operational state in which a non-uniform backlight is provided using the backlight module 100 illustrated in FIG. 1.
  • the micromirror array 120 can uniformly reflect the light emitted by the light source 110 to the entire surface of the display screen 130 or to one or more regions of the display screen 130 (in FIG. 2). It shows an area).
  • the micromirror array used in the embodiment of the present invention will be described in detail below.
  • the micromirror array may include a deformable type and a deflected type according to the working principle, and may be of a heat drive type, an electromagnetic drive type, and an electrostatic drive type in a driving manner.
  • a deflecting micromirror array facilitates applications in which the direction of light is controlled, and electrostatic driving is one of the most common methods.
  • 3(a) and 3(b) are schematic cross-sectional side and top views, respectively, of one of the micromirror units 200 in an electrostatically driven deflection micromirror array in accordance with one embodiment of the present invention; A top view of the structure of the first electrode pair and the second electrode pair of the micromirror unit 200 is schematically shown.
  • the micromirror unit 200 is formed on the substrate 201 and includes a mirror 202, a frame 203, a first hinge 204 and a second hinge 205, first and second pillars 206 and 207, a third hinge 208, and a fourth hinge 209, A driving electrode 210 and a second driving electrode 211, a third driving electrode 212 and a fourth driving electrode 213, and a mirror electrode 214.
  • the mirrors 202 are deflectable about a first yaw axis and a second yaw axis perpendicular to the first yaw axis, respectively, wherein the first yaw axis is defined by the first hinge 204 and the second hinge 205, and the second yaw axis is defined by The third hinge 208 and the fourth hinge 209 are defined.
  • the frame 203 supports the mirror 202 by means of the first hinge 204 and the second hinge 205, and the first pillar 206
  • the frame 203 is supported by the second strut 207 by means of a third hinge 208 and a fourth hinge 209, respectively.
  • a first electrode pair composed of the first driving electrode 210 and the second driving electrode 211 may be formed on the substrate 201, wherein projection symmetry of the first driving electrode 210 and the second driving electrode 211 on the substrate 201 with respect to the first yaw axis .
  • a second electrode pair composed of the third driving electrode 212 and the fourth driving electrode 213 may be formed on the substrate 201, wherein the projection of the third driving electrode 212 and the fourth driving electrode 213 on the substrate 201 with respect to the second yaw axis .
  • the mirror electrode 214 is electrically coupled to the mirror 202 by a first leg 206 and a second leg 207. Further, as shown in FIG.
  • the substrate 201 may be covered with an insulating layer 215 that provides insulation between the driving electrodes 210, 211, 212, 213 and the mirror electrode 214.
  • the mirror electrode 214 may be formed on the insulating layer 215.
  • the driving electrodes 210, 211, 212, 213 and the mirror electrode 214 may be formed in different electrode layers.
  • an electrostatic field formed between the first electrode pair and the mirror 202 can generate a driving torque, which in turn can drive the mirror 202 around the first
  • the yaw axis is deflected.
  • a voltage Vr may be applied to the mirror electrode 214
  • a voltage ⁇ Vr and a voltage ⁇ Vr may be applied to the first driving electrode 210 and the second driving electrode 211, respectively, where ⁇ is used to control the first yaw axis.
  • the coefficient of the deflection angle is used to control the first yaw axis.
  • the electrostatic field formed between the second electrode pair and the mirror 202 can generate a driving torque, which in turn can drive the mirror 202.
  • the voltage ⁇ Vr and the voltage ⁇ Vr may be applied to the third driving electrode 212 and the fourth driving electrode 213, respectively, where ⁇ is a coefficient for controlling the deflection angle around the second yaw axis.
  • the first electrode pair and the second electrode pair in the different micromirror units 200 may have respective electrode leads such that different driving voltages may be applied to the driving electrodes of the different micro mirror units 200.
  • the deflection angle of each of the mirrors 202 in the array of micromirrors is individually and continuously controllable.
  • an undesired abrupt change in the driving voltage may occur, resulting in an excessive deflection angle of the mirror 202 and thus causing damage thereto.
  • the guard electrode may or may not be located in the same electrode layer as the drive electrodes 210, 211, 212, 213.
  • a guard electrode is formed over the insulating layer 215.
  • a plurality of micromirror units 200 are arranged on the substrate 201 to form a micromirror array.
  • the mirror 202 may be square, compared to, for example, a circle. It is advantageous to make better use of the area between the micromirror units 200, thereby increasing the effective reflection area. Of course, other shapes are also possible.
  • the substrate 201 is typically a semiconductor silicon material because of its good stability and ease of processing.
  • the mirror 202 can be made of single crystal silicon, polycrystalline silicon or aluminum, with aluminum having the highest reflection coefficient, resulting in high optical efficiency.
  • a fabrication process of a micromirror array according to an embodiment of the present invention will be described below with reference to an exemplary design as shown in FIG. 3(a).
  • PECVD plasma enhanced chemical vapor deposition
  • a predetermined number (e.g., 32 x 48) of micromirror units 200 in the form of an array can be fabricated on a silicon substrate, depending on the particular design requirements.
  • the parameters of the micromirror unit 200 can be as follows:
  • a square mirror 202 a side length l 1 of 60 ⁇ m, a thickness of 650 nm;
  • outer side length l 2 is 88 ⁇ m
  • inner side length l 2 ' is 72 ⁇ m
  • thickness is 150 nm
  • the first hinge 204 and the second hinge 205 have a length l 3 of 6 ⁇ m, a width w 3 of 4 ⁇ m, and a thickness of 150 nm;
  • a third hinge 208, a fourth hinge 209 a length l 4 of 8 ⁇ m, a width w 4 of 6 ⁇ m, a thickness of 150 nm;
  • the first pillar 206 and the second pillar 207 have a length l 5 of 16 ⁇ m, a width w 5 of 12 ⁇ m, and a height of 10 ⁇ m.
  • the maximum deflection angle of such a mirror 202 is approximately ⁇ 18 degrees. It should be understood that it can be changed by changing the heights of the first pillar 206 and the second pillar 207, if necessary. The maximum allowable deflection angle of mirror 202.
  • the backlight module further includes a control unit (not shown) including a deflection angle determining unit, an angle-driving voltage converting unit, and a micro mirror array. driver.
  • FIG. 4 schematically illustrates a backlight direction adjustment principle for a backlight module in accordance with an embodiment of the present invention.
  • the micromirror array uniformly reflects the light emitted from the light source to the display screen, each mirror having a corresponding area on the display screen.
  • the deflection angle determining unit may reflect each of the positions according to a positional relationship between the currently illuminated area and the target illuminated area.
  • the mirror determines a deflection angle. The determination is based on the principle of light reflection as shown in FIG.
  • the deflection angle determined by the deflection angle determining unit may include a first deflection component corresponding to the first deflection axis and a second deflection component corresponding to the second deflection axis.
  • the angle-drive voltage conversion unit converts the respective first and second deflection components for each of the mirrors into drive voltage values for driving the first pair of electrodes and the second pair of electrodes corresponding to the mirror, respectively.
  • the micromirror array driver applies respective driving voltages to the first electrode pair and the second electrode pair corresponding to each of the mirrors according to the converted driving voltage value.
  • all of the mirror electrodes in the micromirror array can be applied with the same reference voltage Vr.
  • the first driving electrode is applied with a first driving voltage ( ⁇ Vr)
  • the second driving electrode is applied with a driving voltage (- ⁇ Vr) that is inverted from the first driving voltage.
  • the first drive voltage is proportional to the reference voltage Vr as a function of the first deflection component.
  • the third driving electrode is applied with the second driving voltage ( ⁇ Vr)
  • the fourth driving electrode is applied with the driving voltage (- ⁇ Vr) inverted from the second driving voltage.
  • the second drive voltage is proportional to the reference voltage Vr as a function of the second deflection component.
  • ⁇ and ⁇ are coefficients that control the deflection angles of the mirrors about the first yaw axis and the second yaw axis, respectively. In one example, ⁇ and ⁇ can be between 0.1 and 0.9.
  • the micromirror array driver can include a plurality of digital to analog converters and a plurality of voltage inverters.
  • the digital-to-analog converter outputs an analog voltage to be applied to the driving electrode according to the driving voltage value converted by the angle-driving voltage converting unit, and the voltage inverter is used to invert the analog voltage output from the digital-to-analog converter.
  • Implementation of both digital-to-analog converter and voltage inverter The manners are all known in the art.
  • Each of the micromirror units has a corresponding two digital to analog converters and corresponding two voltage inverters.
  • One of the two digital-to-analog converters supplies the first driving voltage ( ⁇ Vr) to the first driving electrode, and the other provides the second driving voltage ( ⁇ Vr) to the third driving electrode.
  • One of the two voltage inverters provides a driving voltage (- ⁇ Vr) that is opposite to the first driving voltage for the second driving electrode, and the other provides the fourth driving electrode with the driving voltage A driving voltage (- ⁇ Vr) in which the second driving voltage is inverted.
  • light source 110 has been described as a point source.
  • the direction of light emitted by the point source is disordered, which is not conducive to improving optical efficiency.
  • the light source in the backlight module can be a parallel light source.
  • parallel light sources can be provided by a combination of point sources (UHP, LEDs, etc.) and convex lenses (and possibly reflectors, concentrating posts, etc.).
  • the backlight module may further include a projection lens.
  • FIG. 5 schematically illustrates a backlight module 500 in accordance with another embodiment of the present invention.
  • the backlight module 500 has a light source 510 as a parallel light source, and further includes a projection lens 540.
  • the projection lens 540 is disposed on the reflected light path of the micromirror array 520 for diverging the reflected light from the micromirror array 520 to match the size of the display screen 530.
  • the backlight module 100 may also include a projection lens. Due to the divergence of light by the projection lens, the reflected light path can be greatly shortened, resulting in a reduction in the size of the backlight module.
  • the projection lens can also correct the distortion of the reflected light.
  • the backlight module 100, 500 may further include a diffusing plate (not shown) that may be disposed on the back side of the display screens 130, 530 for improving the properties of the light that ultimately illuminates the display screen, such as providing Uniform brightness.
  • a diffusing plate (not shown) that may be disposed on the back side of the display screens 130, 530 for improving the properties of the light that ultimately illuminates the display screen, such as providing Uniform brightness.
  • the display device can be a liquid crystal display, a liquid crystal television, a digital photo frame, a cell phone, a tablet, or any other product or component having a liquid crystal display device.
  • control unit described in connection with the embodiments disclosed herein can be implemented as electronic hardware or a combination of both electronic and computer software.
  • Some of the embodiments and implementations have been described above in terms of functions and/or modules and various processing steps. However, it should be appreciated that such functionality or modules may be implemented by any number of hardware, software, and/or firmware components configured to perform the specified functions. Whether such functionality is implemented as hardware or software depends on the particular application and design constraints imposed on the overall system.
  • the described functionality may be implemented by a skilled person in a variety of ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the invention.
  • control unit may employ various integrated circuit components, such as memory elements, digital signal processing elements, logic elements, look-up tables, etc., which may be executed under the control of one or more microprocessors or other control devices A variety of features. Additionally, those skilled in the art will appreciate that the embodiments described herein are merely exemplary implementations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种微镜阵列和应用其的背光模组及显示装置,微镜阵列(120)中的每一个反射镜(202)具有第一偏转轴和垂直于第一偏转轴的第二偏转轴,并且偏转角度单独连续可控。背光模组(100)包括光源(110)、微镜阵列以及控制单元。控制单元响应于背光控制信号来调节微镜阵列中的每一个反射镜的偏转角度,使得微镜阵列取决于背光控制信号将光源发射的光均匀地反射到显示屏幕(130)的整个表面或者汇聚于显示屏幕的一个或多个区域。所提供的背光模组通过利用基于反射原理的微镜阵列可以对背光强度的分布进行灵活地控制。特别地,微镜阵列中的反射镜是机械式地偏转,并且因此对于光源的寿命没有影响,可以延长背光模组的寿命。

Description

微镜阵列和应用其的背光模组及显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种微镜阵列和应用其的背光模组及显示装置。
背景技术
微镜阵列是一种MEMS(微机电***)器件,其基本原理是通过驱动力(例如,静电力或磁力)使可以活动的微镜面发生转动或平动,从而改变输入光的传播方向或相位。微镜阵列已经广泛用于光通讯中的光交换、光谱分析仪器和投影成像等各种领域。特别地,微镜阵列在投影机中的应用是基于前投布置方式,与大屏幕和平板显示的背投领域属于不同的应用。
在液晶显示技术领域中,对背光能量和方向的调节正处于研究之中。将背光强度集中于一个区域以在局部区域提供超高亮度的技术在某些应用场合下(例如,大屏幕展示)是有利的。还没有使用微镜阵列来为液晶显示器提供具有可调强度分布的背光的现有技术。
发明内容
本发明的目的是提供一种微镜阵列和应用该微镜阵列的背光模组及显示装置。
根据本发明的第一方面,提供了一种静电驱动的偏转式微镜阵列,包括:基板;以及形成于所述基板上的多个微镜单元,所述多个微镜单元中的每一个包括:反射镜,其可分别绕第一偏转轴和垂直于所述第一偏转轴的第二偏转轴偏转;框架,其借助于第一铰链和第二铰链支撑所述反射镜,所述第一铰链和所述第二铰链限定所述第一偏转轴;第一支柱和第二支柱,其分别借助于第三铰链和第四铰链支撑所述框架,所述第三铰链和所述第四铰链限定所述第二偏转轴;第一电极对,其包括第一驱动电极和第二驱动电极,所述第一驱动电极和所述第二驱动电极关于所述第一偏转轴在所述基板上的投影对称;第二电极对,其包括第三驱动电极和第四驱动电极,所述第三驱动电极和所述第四驱动电极关于所述第二偏转轴在所述基板上的投影对称;以及反射镜 电极,其通过所述第一支柱和所述第二支柱与所述反射镜电连接;其中,在所述第一电极对与所述反射镜之间形成静电场,使得所述反射镜可绕所述第一偏转轴偏转,并且,在所述第二电极对与所述反射镜之间形成静电场,使得所述反射镜可绕所述第二偏转轴偏转;其中,所述多个微镜单元中的每一个的反射镜的偏转角度单独连续可控。有利地,所述微镜阵列可以提供反射光方向的灵活调整。
在一个实现方式中,所述微镜阵列还可以包括形成于所述基板上并在所述反射镜电极与所述第一电极对和所述第二电极对之间提供绝缘的绝缘层。绝缘层可以减少电极之间的干扰。
在一个实现方式中,所述多个微镜单元中的每一个还可以包括环绕所述第一电极对和所述第二电极对布置的保护电极,所述保护电极被施加与所述反射镜电极相同的驱动电压。
在一个实现方式中,所述反射镜、所述第一、第二、第三、第四铰链和所述框架可以由铝一体地制成。
在一个实现方式中,所述反射镜可以为正方形。这样的反射镜可以实现高效利用微镜单元之间的空隙,并且因此增大其反射面积。
根据本发明的第二方面,提供了一种显示面板的背光模组,包括:光源;微镜阵列,其包括多个微镜单元,所述多个微镜单元中的每一个具有可分别绕第一偏转轴和垂直于所述第一偏转轴的第二偏转轴偏转的反射镜,所述微镜阵列中的每一个反射镜的偏转角度单独连续可控;以及控制单元,其用于响应于背光控制信号来调节所述微镜阵列中的每一个反射镜的偏转角度,使得所述微镜阵列取决于所述背光控制信号将所述光源发射的光均匀地反射到显示屏幕的整个表面或者汇聚于显示屏幕的一个或多个区域。有利地,所述背景模组可以对背光能量(强度)的分布进行控制,提供在一个或多个局部区域具有超高亮度的背光输出。
在一个实现方式中,所述微镜阵列可以为如本发明的第一方面中描述的静电驱动的偏转式微镜阵列。
在一个实现方式中,所述控制单元可以包括:偏转角度确定单元,其根据所述背光控制信号所指示的在显示屏幕上要照亮的目标区域为所述微镜阵列中的每一个反射镜确定一个相应的偏转角度,所述偏转角度包括对应于所述第一偏转轴的第一偏转分量和对应于所述第二偏 转轴的第二偏转分量;角度-驱动电压转换单元,其将用于每一个反射镜的相应第一偏转分量和第二偏转分量分别转换为用于驱动对应于该反射镜的第一电极对和第二电极对的驱动电压值;以及微镜阵列驱动器,其根据所述角度-驱动电压转换单元所转换的驱动电压值向对应于每一个反射镜的所述第一电极对和第二电极对分别施加相应的驱动电压。特别地,与电学地调节背光模组的光源的光强度的方案相比,所述微镜阵列中的反射镜是机械式地偏转,并且因此对于光源的寿命没有影响,导致背光模组的寿命更长。
在一个实现方式中,所述微镜阵列中的所有反射镜电极可以被施加一个相同的参考电压。在所述微镜阵列的每一个微镜单元中,所述第一驱动电极被施加第一驱动电压,而所述第二驱动电极被施加与所述第一驱动电压反相的驱动电压,所述第一驱动电压作为所述第一偏转分量的函数而与所述参考电压成比例,并且所述第三驱动电极被施加第二驱动电压,而所述第四驱动电极被施加与所述第二驱动电压反相的驱动电压,所述第二驱动电压作为所述第二偏转分量的函数而与所述参考电压成比例。
在一个实现方式中,所述微镜单元中的每一个都可以具有相应的两个数模转换器和相应的两个电压反相器,所述两个数模转换器中的一个为所述第一驱动电极提供所述第一驱动电压,另一个为所述第三驱动电极提供所述第二驱动电压,并且所述两个电压反相器中的一个为所述第二驱动电极提供与所述第一驱动电压反相的驱动电压,另一个为所述第四驱动电极提供与所述第二驱动电压反相的驱动电压。
在一个实现方式中,所述光源可以为平行光源。通过使用平行光源,可以提高背光模组的光学效率。
在一个实现方式中,所述背光模组可以还包括投影透镜,其布置于所述微镜阵列的反射光路上,用于使来自所述微镜阵列的反射光发散以匹配显示屏幕的尺寸。由于投影透镜进行的光的发散,反射光路可以被缩短,从而导致背光模组的尺寸减小。
在一个实现方式中,所述背光模组可以还包括布置于显示屏幕的背侧的散光板。散光板可以改善最终照射到显示屏幕的光的性质,例如提供均匀的亮度。
根据本发明的第三方面,提供了一种显示装置,其包括如本发明 的第二方面中描述的背光模组。
根据在下文中所描述的实施例,本发明的优点、特征和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
图1示意性地图示了根据本发明实施例的一种背光模组;
图2示意性地图示了其中利用图1所示的背光模组提供非均匀背光的操作状态;
图3(a)和3(b)分别示意性地示出了根据本发明的一个实施例的静电驱动的偏转式微镜阵列中的一个微镜单元的截面视图和俯视图;图3(c)示意性地示出了该微镜单元的第一电极对和第二电极对的结构的俯视图;
图4示意性地图示了用于根据本发明的实施例的背光模组的背光方向调节原理;以及
图5示意性地图示了根据本发明另一实施例的一种背光模组。
具体实施方式
以下结合附图对本发明的各实施例进行详细描述。
图1示意性地图示了根据本发明实施例的一种背光模组100。该背光模组100包括光源110、微镜阵列120以及控制单元(未示出)。从光源110发射的光被微镜阵列120中的多个微反射镜反射到显示屏幕130的后方,从而为例如液晶显示器提供背光照明。
可以采用诸如UHP灯、金属卤化物灯等点光源作为光源110。如已知的,借助于适当的光路设计,从点光源发射的发散光束经反射镜反射之后,可以覆盖较大的区域,例如整个显示屏幕130。
微镜阵列120包括多个微镜单元(用图1中微镜阵列120上的多个格栅表示)。在默认状态下,各个微反射镜不偏转,并且因此整体形成一面平面反射镜。在这种情况下,由微镜阵列120反射的光可以均匀地分布于显示屏幕130,从而提供均匀背光(如图1所示)。然而,每一个微反射镜可分别绕第一偏转轴和垂直于所述第一偏转轴的第二偏转轴偏转。这样,由多个微反射镜中的每一个照射到显示屏幕130后方的光在横向位置和纵向位置两者上都是可调的。也即,可以改变 由微镜阵列20反射的光强度在显示屏幕130上分布状态,从而导致非均匀的背光。进一步地,多个微镜单元中的每一个的反射镜的偏转角度可以单独连续可控,而不是在逐行或逐列的基础上离散地可控。换言之,每个反射镜的偏转角度可以被精细地调节,而不是限于固定的值,例如±10°。因此,可以实现对各个微反射镜所反射的光的方向的更灵活的控制。例如,可以将背光汇聚在显示屏幕30上的一个单独的区域(或者多个分离的区域),其中提供了超高亮度(由于每个微反射镜反射的光强度叠加的原因)的背光。
为此目的,背光模组100还包括控制单元(后面讨论),其用于响应于背光控制信号(例如,来自显示面板)来调节多个微镜单元中的每一个的反射镜的偏转角度。
图2示意性地图示了其中利用图1所示的背光模组100提供非均匀背光的操作状态。如前所述,取决于所述背光控制信号,微镜阵列120可以将光源110发射的光均匀地反射到显示屏幕130的整个表面或者汇聚于显示屏幕130的一个或多个区域(在图2中图示了一个区域)。
下面对本发明的实施例中使用的微镜阵列进行详细描述。如已知的,微镜阵列按工作原理可以包括可变形类型和偏转式类型,并且按驱动方式可以包括热驱动类型、电磁驱动类型和静电驱动类型。一般地,偏转式微镜阵列有利于其中对光的方向进行控制的应用,并且静电驱动方式是最常用的一种方式。
图3(a)和3(b)分别示意性地示出了根据本发明的一个实施例的静电驱动的偏转式微镜阵列中的一个微镜单元200的截面侧视图和俯视图;图3(c)示意性地示出了该微镜单元200的第一电极对和第二电极对的结构的俯视图。
微镜单元200形成于基板201上,并且包括反射镜202、框架203、第一铰链204和第二铰链205、第一支柱206和第二支柱207、第三铰链208和第四铰链209、第一驱动电极210和第二驱动电极211、第三驱动电极212和第四驱动电极213以及反射镜电极214。
反射镜202可分别绕第一偏转轴和垂直于所述第一偏转轴的第二偏转轴偏转,其中,第一偏转轴由第一铰链204和第二铰链205限定,并且第二偏转轴由第三铰链208和第四铰链209限定。框架203借助于第一铰链204和第二铰链205支撑反射镜202,并且,第一支柱206 和第二支柱207分别借助于第三铰链208和第四铰链209支撑框架203。
由第一驱动电极210和第二驱动电极211组成的第一电极对可以形成于基板201上,其中,第一驱动电极210和第二驱动电极211关于第一偏转轴在基板201上的投影对称。由第三驱动电极212和第四驱动电极213组成的第二电极对可以形成于基板201上,其中,第三驱动电极212和第四驱动电极213关于第二偏转轴在基板201上的投影对称。反射镜电极214通过第一支柱206和第二支柱207与反射镜202电连接。此外,如图3(a)所示,基板201可以覆盖有绝缘层215,其在驱动电极210、211、212、213与反射镜电极214之间提供绝缘。反射镜电极214可以形成于绝缘层215上。换言之,驱动电极210、211、212、213与反射镜电极214可以形成于不同的电极层。
通过向第一电极对与反射镜电极214分别施加相应的驱动电压,形成于第一电极对与反射镜202之间的静电场可以产生驱动力矩,该驱动力矩进而可以驱动反射镜202绕第一偏转轴偏转。例如,可以向反射镜电极214施加电压Vr,并且分别向第一驱动电极210和第二驱动电极211施加电压α·Vr和电压-α·Vr,其中α为用于控制绕第一偏转轴的偏转角度的系数。同样地,通过向第二电极对与反射镜电极214分别施加相应的驱动电压,形成于第二电极对与反射镜202之间的静电场可以产生驱动力矩,该驱动力矩进而可以驱动反射镜202绕第二偏转轴偏转。例如,可以分别向第三驱动电极212和第四驱动电极213施加电压β·Vr和电压-β·Vr,其中β为用于控制绕第二偏转轴的偏转角度的系数。此外,不同微镜单元200中的第一电极对和第二电极对可以具有各自的电极引线,使得可以向不同微镜单元200的驱动电极施加不同的驱动电压。换言之,微镜阵列中的每一个反射镜202的偏转角度单独连续可控。另外,在一些情况下,驱动电压可能发生不期望的突变,导致反射镜202的过大的偏转角度并且因此导致其损坏。因此有利的是提供保护电极,其可以环绕第一电极对和第二电极对布置(如图3(c)中的虚线所示),并且被施加与反射镜电极214相同的驱动电压。保护电极可以或可以不位于与驱动电极210、211、212、213相同的电极层。在一个实现方式中,保护电极形成在绝缘层215上。
像这样地,多个微镜单元200在基板201上排布以形成微镜阵列。如图3(b)所示,反射镜202可以为正方形,与例如圆形相比,其有 利于更好地利用微镜单元200之间的面积,从而增大有效反射面积。当然,其他形状也是可能的。基板201通常为半导体硅材料,因为它有着良好的稳定性和易加工性。反射镜202可以由单晶硅、多晶硅或铝制成,其中铝的反射系数最高,导致高的光学效率。
下面参考如图3(a)所示的示例性设计描述根据本发明的实施例的微镜阵列的制作工艺。
(1)在硅基片上沉积金属薄膜,形成驱动电极层;
(2)采用例如等离子体增强化学汽相沉积(PECVD)形成绝缘层;
(3)在绝缘层上沉积金属薄膜,形成反射镜电极层(以及可选的保护电极层);
(4)旋涂非光敏聚酰亚胺作为牺牲层,对牺牲层进行光刻并且在其中湿蚀刻出用于容纳要沉积的支柱的沟槽;
(5)利用无电镀在沟槽中填充镍以形成用于支撑反射镜(并且更具体地框架)且提供反射镜与反射镜电极之间的电连接的支柱;
(6)在牺牲层上旋涂光刻胶光刻出第一、第二、第三和第四铰链以及框架的图案,并且沉积铝以形成铰链和框架层;再次旋涂光刻胶光刻出反射镜图案,并且沉积铝以形成反射镜层;
(7)释放聚酰亚胺牺牲层以得到偏转式微镜阵列。
取决于具体的设计要求,可以在硅基片上制作阵列形式的预定数目(例如32×48)的微镜单元200。在如图3(b)所示的示例中,该微镜单元200的参数可以如下:
正方形反射镜202:边长l1为60μm,厚度为650nm;
(空心)正方形框架203:外边长l2为88μm,内边长l2′为72μm,厚度为150nm;
第一铰链204、第二铰链205:长l3为6μm,宽w3为4μm,厚度为150nm;
第三铰链208、第四铰链209:长l4为8μm,宽w4为6μm,厚度为150nm;
第一支柱206、第二支柱207:长l5为16μm,宽w5为12μm,高度为10μm。
这样的反射镜202的最大偏转角大约为±18度。应当理解,如果需要的话,可以通过改变第一支柱206和第二支柱207的高度来改变 反射镜202的允许的最大偏转角。
为了驱动微镜阵列中的各反射镜202中的每一个偏转特定的角度,背光模组还包括控制单元(未示出),其包括偏转角度确定单元、角度-驱动电压转换单元和微镜阵列驱动器。
图4示意性地图示了用于根据本发明的实施例的背光模组的背光方向调节原理。在默认状态下,微镜阵列将从光源发射的光均匀地反射到显示屏幕,每一个反射镜在显示屏幕上具有一个对应的区域。当(例如从显示面板)接收到指示在显示屏幕上要照亮的目标区域的背光控制信号时,偏转角度确定单元可以根据当前照亮区域与目标照亮区域之间的位置关系为每一个反射镜确定一个偏转角度。所述确定基于如图4所示的光反射原理。如图所示,在反射镜偏转±θ的情况下,反射到显示屏幕上的光可以移动最多Δd。出于解释的目的,图4中仅图示了反射镜绕一个偏转轴偏转的情况。然而,由偏转角度确定单元确定的偏转角度可以包括对应于第一偏转轴的第一偏转分量和对应于第二偏转轴的第二偏转分量。角度-驱动电压转换单元将用于每一个反射镜的相应第一偏转分量和第二偏转分量分别转换为用于驱动对应于该反射镜的第一电极对和第二电极对的驱动电压值。微镜阵列驱动器根据所转换的驱动电压值向对应于每一个反射镜的第一电极对和第二电极对分别施加相应的驱动电压。
具体地,微镜阵列中的所有反射镜电极可以被施加一个相同的参考电压Vr。在微镜阵列的每一个微镜单元中,第一驱动电极被施加第一驱动电压(α·Vr),而第二驱动电极被施加与第一驱动电压反相的驱动电压(-α·Vr)。第一驱动电压作为第一偏转分量的函数而与所述参考电压Vr成比例。类似地,第三驱动电极被施加第二驱动电压(β·Vr),而第四驱动电极被施加与第二驱动电压反相的驱动电压(-β·Vr)。第二驱动电压作为第二偏转分量的函数而与所述参考电压Vr成比例。α和β为控制反射镜分别绕第一偏转轴和第二偏转轴的偏转角度的系数。在一个示例中,α和β可以介于0.1与0.9之间。
为此目的,微镜阵列驱动器可以包括多个数模转换器和多个电压反相器。数模转换器根据角度-驱动电压转换单元所转换的驱动电压值输出要被施加到驱动电极的模拟电压,并且电压反相器用来将数模转换器输出的模拟电压进行反相。数模转换器和电压反相器两者的实现 方式都是本领域中已知的。微镜单元中的每一个都具有相应的两个数模转换器和相应的两个电压反相器。所述两个数模转换器中的一个为第一驱动电极提供所述第一驱动电压(α·Vr),另一个为所述第三驱动电极提供所述第二驱动电压(β·Vr)。所述两个电压反相器中的一个为所述第二驱动电极提供与所述第一驱动电压反相的驱动电压(-α·Vr),另一个为所述第四驱动电极提供与所述第二驱动电压反相的驱动电压(-β·Vr)。
在前面的实施例中,关于静电驱动的偏转式微镜阵列描述了背光方向调节的原理。应当理解,该原理同样地适用于利用其他驱动方式的任何微镜阵列,只要该微镜阵列中的每一个反射镜具有相互垂直的两个偏转轴,并且其偏转角度单独连续可控。
现在继续对根据本发明的实施例的背光模组中其他部件的讨论。在前面的描述中,光源110被描述为点光源。然而,点光源发射的光方向杂乱,不利于提高光学效率。在另一实施例中,背光模组中的光源可以为平行光源。如已知的,平行光源可以通过点光源(UHP、LED等)与凸透镜(以及可能地反射罩,聚光柱等)的组合来提供。这样,在默认状态下,照射到反射镜的光和从反射镜反射的光都为平行光,使得由于微镜阵列的尺寸较小(并且因此反射面积较小)的原因而能够被微镜阵列所提供的反射光照亮的显示屏幕的面积较小。因此,背光模组可以还包括投影透镜。
图5示意性地图示了根据本发明另一实施例的一种背光模组500。与图1所示的背光模组100不同,背光模组500具有作为平行光源的光源510,并且还包括投影透镜540。在这种情况下,投影透镜540布置于微镜阵列520的反射光路上,用于使来自微镜阵列520的反射光发散以匹配显示屏幕530的尺寸。当然,在光源为点光源的情况下(如图1所示的),背光模组100也可以包括投影透镜。由于投影透镜进行的光的发散,反射光路可以被大大缩短,从而导致背光模组的尺寸减小。此外,投影透镜还可以对反射光的畸变进行校正。
无论哪种情况,背光模组100、500可以还包括散光板(未示出),其可以布置于显示屏幕130、530的背侧,用于改善最终照射到显示屏幕的光的性质,例如提供均匀的亮度。
根据本发明的一个方面,还提供了一种显示装置,其包括前面描 述的背光模组100、500中的任一个。以示例的方式,显示装置可以是液晶显示器、液晶电视、数码相框、手机、平板电脑或任何其他具有液晶显示器件的产品或者部件。
本领域技术人员将意识到,结合本文中公开的实施例而描述的控制单元可以被实现为电子硬件或电子硬件与计算机软件两者的组合。上文按照功能和/或模块以及各种处理步骤描述了实施例和实现方式中的一些。然而,应当意识到的是,可以由被配置成施行指定功能的任何数目的硬件、软件和/或固件组件来实现这样的功能或模块。这样的功能被实现为硬件还是软件取决于特定应用和施加于总体***的设计约束。技术人员可以针对每一个特定应用以多种多样的方式实现所描述的功能,但是这样的实现决定不应当被解释为引起偏离本发明的范围。例如,控制单元的实施例可以采用各种集成电路组件,例如存储器元件、数字信号处理元件、逻辑元件、查找表等等,其可以在一个或多个微处理器或其他控制设备的控制下执行各种各样的功能。另外,本领域技术人员将意识到的是,本文中描述的实施例仅仅是示例性的实现方式。
虽然前面的讨论包含若干特定的实现细节,但是这些不应解释为对任何发明或者可能要求保护的范围的限制,而应解释为对可能仅限于特定发明的特定实施例的特征的描述。在本说明书中不同的实施例中描述的特定特征也可以在单个实施例中以组合形式实现。与此相反,在单个实施例中描述的不同特征也可以在多个实施例中分别地或者以任何适当的子组合形式实现。此外,尽管前面可能将特征描述为以特定组合起作用,甚至最初也被如此要求保护,但是来自所要求保护的组合中的一个或多个特征在某些情况下也可以从该组合中排除,并且该要求保护的组合可以被导向子组合或子组合的变型。
因此,应当理解,本发明的实施例并不限于所公开的特定实施例,并且修改和其他的实施例也意图被包含在所附权利要求书的范围内。尽管此处使用了特定术语,但是它们仅在通用和描述性意义上使用,而非为了限制的目的。

Claims (14)

  1. 一种静电驱动的偏转式微镜阵列,包括:
    基板;以及
    形成于所述基板上的多个微镜单元,所述多个微镜单元中的每一个包括:
    反射镜,其可分别绕第一偏转轴和垂直于所述第一偏转轴的第二偏转轴偏转;
    框架,其借助于第一铰链和第二铰链支撑所述反射镜,所述第一铰链和所述第二铰链限定所述第一偏转轴;
    第一支柱和第二支柱,其分别借助于第三铰链和第四铰链支撑所述框架,所述第三铰链和所述第四铰链限定所述第二偏转轴;
    第一电极对,其包括第一驱动电极和第二驱动电极,所述第一驱动电极和所述第二驱动电极关于所述第一偏转轴在所述基板上的投影对称;
    第二电极对,其包括第三驱动电极和第四驱动电极,所述第三驱动电极和所述第四驱动电极关于所述第二偏转轴在所述基板上的投影对称;以及
    反射镜电极,其通过所述第一支柱和所述第二支柱与所述反射镜电连接;
    其中,在所述第一电极对与所述反射镜之间形成静电场,使得所述反射镜可绕所述第一偏转轴偏转,并且,在所述第二电极对与所述反射镜之间形成静电场,使得所述反射镜可绕所述第二偏转轴偏转;
    其中,所述多个微镜单元中的每一个的反射镜的偏转角度单独连续可控。
  2. 根据权利要求1所述的微镜阵列,还包括形成于所述基板上并在所述反射镜电极与所述第一电极对和所述第二电极对之间提供绝缘的绝缘层。
  3. 根据权利要求2所述的微镜阵列,其中,所述多个微镜单元中的每一个还包括环绕所述第一电极对和所述第二电极对布置的保护电极,所述保护电极被施加与所述反射镜电极相同的驱动电压。
  4. 根据权利要求1所述的微镜阵列,其中,所述反射镜、所述第 一、第二、第三、第四铰链和所述框架由铝一体地制成。
  5. 根据权利要求1所述的微镜阵列,其中,所述反射镜为正方形。
  6. 一种显示面板的背光模组,包括:
    光源;
    微镜阵列,其包括多个微镜单元,所述多个微镜单元中的每一个具有可分别绕第一偏转轴和垂直于所述第一偏转轴的第二偏转轴偏转的反射镜,所述微镜阵列中的每一个反射镜的偏转角度单独连续可控;以及
    控制单元,其用于响应于背光控制信号来调节所述微镜阵列中的每一个反射镜的偏转角度,使得所述微镜阵列取决于所述背光控制信号将所述光源发射的光均匀地反射到显示屏幕的整个表面或者汇聚于显示屏幕的一个或多个区域。
  7. 根据权利要求6所述的背光模组,其中,所述微镜阵列为权利要求1-5中任一项所述的静电驱动的偏转式微镜阵列。
  8. 根据权利要求7所述的背光模组,其中,所述控制单元包括:
    偏转角度确定单元,其根据所述背光控制信号所指示的在显示屏幕上要照亮的目标区域为所述微镜阵列中的每一个反射镜确定一个相应的偏转角度,所述偏转角度包括对应于所述第一偏转轴的第一偏转分量和对应于所述第二偏转轴的第二偏转分量;
    角度-驱动电压转换单元,其将用于每一个反射镜的相应第一偏转分量和第二偏转分量分别转换为用于驱动对应于该反射镜的第一电极对和第二电极对的驱动电压值;以及
    微镜阵列驱动器,其根据所述角度-驱动电压转换单元所转换的驱动电压值向对应于每一个反射镜的所述第一电极对和第二电极对分别施加相应的驱动电压。
  9. 根据权利要求8所述的背光模组,其中,所述微镜阵列中的所有反射镜电极被施加一个相同的参考电压,并且其中,在所述微镜阵列的每一个微镜单元中,所述第一驱动电极被施加第一驱动电压,而所述第二驱动电极被施加与所述第一驱动电压反相的驱动电压,所述第一驱动电压作为所述第一偏转分量的函数而与所述参考电压成比例,并且所述第三驱动电极被施加第二驱动电压,而所述第四驱动电极被施加与所述第二驱动电压反相的驱动电压,所述第二驱动电压作 为所述第二偏转分量的函数而与所述参考电压成比例。
  10. 根据权利要求9所述的背光模组,其中,所述微镜单元中的每一个都具有相应的两个数模转换器和相应的两个电压反相器,并且其中,所述两个数模转换器中的一个为所述第一驱动电极提供所述第一驱动电压,另一个为所述第三驱动电极提供所述第二驱动电压,并且所述两个电压反相器中的一个为所述第二驱动电极提供与所述第一驱动电压反相的驱动电压,另一个为所述第四驱动电极提供与所述第二驱动电压反相的驱动电压。
  11. 根据权利要求6所述的背光模组,其中,所述光源为平行光源。
  12. 根据权利要求6或11所述的背光模组,还包括投影透镜,布置于所述微镜阵列的反射光路上,用于使来自所述微镜阵列的反射光发散以匹配显示屏幕的尺寸。
  13. 根据权利要求6所述的背光模组,还包括布置于显示屏幕的背侧的散光板。
  14. 一种显示装置,包括如权利要求6-13中任一项所述的背光模组。
PCT/CN2015/097108 2015-07-17 2015-12-11 微镜阵列和应用其的背光模组及显示装置 WO2017012253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/107,586 US10571684B2 (en) 2015-07-17 2015-12-11 Micro-mirror array having pillars which form portions of electrical paths between mirror electrodes and mirrors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510421259.8A CN104932098B (zh) 2015-07-17 2015-07-17 微镜阵列和应用其的背光模组及显示装置
CN201510421259.8 2015-07-17

Publications (1)

Publication Number Publication Date
WO2017012253A1 true WO2017012253A1 (zh) 2017-01-26

Family

ID=54119335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097108 WO2017012253A1 (zh) 2015-07-17 2015-12-11 微镜阵列和应用其的背光模组及显示装置

Country Status (3)

Country Link
US (1) US10571684B2 (zh)
CN (1) CN104932098B (zh)
WO (1) WO2017012253A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932098B (zh) * 2015-07-17 2017-04-05 京东方科技集团股份有限公司 微镜阵列和应用其的背光模组及显示装置
CN107355730A (zh) * 2017-07-17 2017-11-17 上海小糸车灯有限公司 车灯用mems智能照明***、车灯总成及汽车
CN107388155A (zh) * 2017-07-17 2017-11-24 上海小糸车灯有限公司 基于mems微镜的车灯调光方法和***、车灯总成及汽车
CN108803005A (zh) * 2018-06-08 2018-11-13 北京大汉正源科技有限公司 一种二维mems振镜控制方法
CN110790216B (zh) * 2018-08-01 2023-06-27 华域视觉科技(上海)有限公司 透射式mems芯片及照明***
CN110632754B (zh) * 2019-09-12 2023-06-20 西北工业大学 一种线型微机械双向扭转镜阵列及其制作方法
CN112305753B (zh) * 2020-11-11 2024-03-26 中国科学院上海技术物理研究所 一种微镜结构和制作方法、微镜阵列及探测器
CN112987187B (zh) * 2021-03-31 2023-01-17 武汉光迅科技股份有限公司 一种光开关***
CN114779464A (zh) * 2022-05-24 2022-07-22 北京有竹居网络技术有限公司 光学信号调制器、控制方法及投影设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397816A (zh) * 2001-07-18 2003-02-19 日本电气株式会社 光学开关
US20040004775A1 (en) * 2002-07-08 2004-01-08 Turner Arthur Monroe Resonant scanning mirror with inertially coupled activation
JP2004302121A (ja) * 2003-03-31 2004-10-28 Canon Inc 立体画像表示装置、及び立体画像撮像装置
CN103048782A (zh) * 2011-09-09 2013-04-17 杜比实验室特许公司 包括mems/imod组件的高动态范围显示器
CN104932098A (zh) * 2015-07-17 2015-09-23 京东方科技集团股份有限公司 微镜阵列和应用其的背光模组及显示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2421510Y (zh) 2000-04-13 2001-02-28 南京春辉科技实业有限公司 光纤背光照明装置
CN1620626A (zh) * 2002-01-21 2005-05-25 松下电器产业株式会社 光学开关及其制造方法、使用该开关的信息传送装置
CN2639915Y (zh) * 2003-09-12 2004-09-08 清华大学 一种mems扫描微镜
US7245415B2 (en) * 2003-10-23 2007-07-17 Spatial Photonics, Inc. High contrast spatial light modulator
CN2687711Y (zh) 2003-12-16 2005-03-23 南京春辉科技实业有限公司 液晶显示用光纤背光源
US6850352B1 (en) * 2004-01-08 2005-02-01 Hewlett-Packard Development Company, L.P. Method and system for generating color using a low-resolution spatial color modulator and a high-resolution modulator
EP2461201B1 (en) * 2005-01-05 2017-06-14 Nippon Telegraph And Telephone Corporation Mirror device
KR100634681B1 (ko) 2005-05-23 2006-10-13 엘지전자 주식회사 편광판, 백라이트 장치 및 이에 사용되는 편광판의제조방법
CN201081152Y (zh) 2007-08-04 2008-07-02 鹤山丽得电子实业有限公司 一种光纤背光源
JP2009244330A (ja) * 2008-03-28 2009-10-22 Funai Electric Co Ltd 投射型画像表示装置
US8334946B2 (en) 2009-01-16 2012-12-18 Corporation For Laser Optics Research Laser illuminated backlight for liquid crystal displays
US20100291410A1 (en) 2009-05-13 2010-11-18 Spatial Photonics, Inc. Corrosion Protection and Lubrication of MEMS Devices
WO2012027410A1 (en) * 2010-08-23 2012-03-01 Lighttime, Llc Ladar using mems scanning
CN102354052B (zh) * 2011-09-30 2013-07-10 上海丽恒光微电子科技有限公司 数字微镜器件及其形成方法
JP2013195940A (ja) * 2012-03-22 2013-09-30 Hitachi Media Electoronics Co Ltd 光走査ミラーデバイス及びその制御方法、並びに、当該デバイスを利用した画像描画装置
CN103336363B (zh) * 2013-06-06 2015-08-19 上海交通大学 全铝型静电驱动微镜及其制备方法
CN103399402B (zh) * 2013-08-13 2015-07-08 北京纳米能源与***研究所 一种电磁驱动微型二维扫描镜装置
CN104760921B (zh) * 2015-04-09 2016-05-18 上海新微技术研发中心有限公司 一种数字化控制的mems可调光衰减器及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397816A (zh) * 2001-07-18 2003-02-19 日本电气株式会社 光学开关
US20040004775A1 (en) * 2002-07-08 2004-01-08 Turner Arthur Monroe Resonant scanning mirror with inertially coupled activation
JP2004302121A (ja) * 2003-03-31 2004-10-28 Canon Inc 立体画像表示装置、及び立体画像撮像装置
CN103048782A (zh) * 2011-09-09 2013-04-17 杜比实验室特许公司 包括mems/imod组件的高动态范围显示器
CN104932098A (zh) * 2015-07-17 2015-09-23 京东方科技集团股份有限公司 微镜阵列和应用其的背光模组及显示装置

Also Published As

Publication number Publication date
CN104932098B (zh) 2017-04-05
US20180196254A1 (en) 2018-07-12
US10571684B2 (en) 2020-02-25
CN104932098A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2017012253A1 (zh) 微镜阵列和应用其的背光模组及显示装置
WO2020140392A1 (zh) 线偏振光转换元件、制备方法和线偏振光转换***
TWI603154B (zh) 微影中用於投射曝光裝置之組合反射鏡
JP4347654B2 (ja) 可変形状反射鏡及びその製造方法
KR100642178B1 (ko) 집적 회로 액츄에이터를 사용하는 공간 광 변조기 및 이를제조하고 사용하는 방법
US9804501B2 (en) Optical component
US20040201908A1 (en) Variable-shape reflection mirror and method of manufacturing the same
US8699116B2 (en) Microactuator, optical device, display apparatus, exposure apparatus, and method for producing device
WO2005098512A1 (en) Microelectromechanical device with reset electrode
KR20160062007A (ko) 특히, 마이크로리소그래픽 투영 노광 장치를 위한 거울
TWI798391B (zh) 光路調整機構及其製造方法
US10606168B2 (en) Mask, masking exposure method, mask system and pattern control device
US20090109560A1 (en) Polyimide deformable mirror
US7319552B2 (en) Micro-electro mechanical light modulator device
KR102379333B1 (ko) 적어도 하나의 광학 구성요소를 변위시키기 위한 방법
JPH0784196A (ja) 光偏向器およびそれを用いた表示装置
US20150116684A1 (en) Spatial light modulator and exposure apparatus
US20080030840A1 (en) Sloped cantilever beam electrode for a MEMS device
CN112088322A (zh) 反射镜,特别是微光刻投射曝光***的反射镜
US20180003951A1 (en) Multi-mirror array
TW202210953A (zh) 反射鏡、特別是用於微影投射曝光裝置的反射鏡
WO1998045746A1 (en) An electromagnetic wave modulator
US8432597B2 (en) Micro-mirror hinge
TWI493274B (zh) 微鏡結構以及投影裝置
TWI806993B (zh) 光路調整機構及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898809

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15898809

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15898809

Country of ref document: EP

Kind code of ref document: A1