WO2017012221A1 - 电容感测电路及自容式触控面板 - Google Patents

电容感测电路及自容式触控面板 Download PDF

Info

Publication number
WO2017012221A1
WO2017012221A1 PCT/CN2015/094467 CN2015094467W WO2017012221A1 WO 2017012221 A1 WO2017012221 A1 WO 2017012221A1 CN 2015094467 W CN2015094467 W CN 2015094467W WO 2017012221 A1 WO2017012221 A1 WO 2017012221A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
capacitance
channels
sensing circuit
output signal
Prior art date
Application number
PCT/CN2015/094467
Other languages
English (en)
French (fr)
Inventor
杨孟达
梁颖思
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2017012221A1 publication Critical patent/WO2017012221A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the invention belongs to the technical field of touch screens, and in particular relates to a capacitive sensing circuit and a self-capacitive touch panel capable of eliminating crosstalk between channels.
  • the operating interface of various electronic products has gradually become more humanized in recent years.
  • the touch panel usually consists of a sensing panel and a display disposed under the sensing panel.
  • the electronic product judges the meaning of the touch according to the position touched by the user on the sensing panel and the picture presented by the display at that time, and performs the corresponding operation result.
  • the existing capacitive touch technology can be divided into two types: Self-Capacitance and Mutual-Capacitance.
  • the self-capacitive touch panel is realized by a simple single-layer electrode structure, and has the advantages of low cost, and thus is widely used in electronic products.
  • the self-capacitive touch panel can be composed of a sensing circuit and a plurality of channels arranged in a matrix form, and the sensing circuit can sense the electrical signals of the channels and convert them into digital formd sensing data values to determine the touch. event.
  • FIG. 1 is a schematic diagram of a self-capacitive touch panel 10 .
  • the self-capacitive touch panel 10 includes vertical channels X 1 -X m , horizontal channels Y 1 -Y n and a sensing circuit 100.
  • the vertical channels X 1 -X m and the horizontal channels Y 1 -Y n are interlaced with axes (Axis Intersect) is arranged in a lattice-like matrix form.
  • Each channel can be formed by a one-dimensional structure in which a plurality of capacitive sensing units are connected in series, thereby detecting the capacitance value of each channel, thereby determining whether there is touch. The event happened.
  • the capacitance values of the vertical channel X a and the horizontal channel Y b to the ground before the touch occur are C a and C b
  • the amount of capacitance change is ⁇ C
  • the sensing circuit 100 detects the capacitance values of the vertical channel X a and the horizontal channel Y b (C a + ⁇ C) and (C b + ⁇ C) When it is, it means that the finger is touching the boundary on the vertical channel X a and the horizontal channel Y b .
  • a capacitive sensing circuit comprising:
  • At least one buffer unit any buffer unit coupled between one of the plurality of channels to be tested and another channel;
  • the channel to be tested receives an input signal and generates an output signal, and the channel to be tested transmits the output signal to a capacitance judging module, and the capacitor judging module judges according to the output signal
  • the capacitance of the channel to be tested changes.
  • the present invention further discloses a self-capacity (Self-Capacitance) touch panel, comprising:
  • At least one capacitive sensing circuit any of the capacitive sensing circuits includes:
  • At least one buffer unit any buffer unit coupled between one of the plurality of channels to be tested and another channel;
  • the channel to be tested is coupled to the input signal generator to receive an input signal, and the channel to be tested generates an output signal and transmits the output signal to the capacitance determining module, where the capacitance determining module is The output signal determines a change in capacitance of the channel to be tested.
  • the capacitance sensing circuit uses a unity gain buffer coupled between the channel to be tested and its adjacent channel to reduce the potential difference between the channel to be tested and its adjacent channel, and reduce the input signal.
  • the capacitance sensing circuit in the embodiment of the invention can reduce the trouble caused by the crosstalk capacitance when correcting the inconsistency between the channels, and can correctly correct the factors such as the circuit routing or the manufacturing process between the channels. Inconsistent.
  • FIG. 1 is a schematic diagram of a self-capacitive touch panel.
  • FIG. 2 is a schematic diagram of a capacitance sensing circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a first-order circuit model of the capacitance sensing circuit of FIG. 2.
  • FIG. 4 is a schematic diagram of a capacitance sensing circuit according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a three self-capacitive touch panel according to an embodiment of the present invention.
  • the capacitive sensing circuit and the self-capacitive touch panel applicable electronic products include, but are not limited to, mobile phones, tablet computers, notebook computers, and electronic readers.
  • the specific implementation of the present invention will be described in detail below with reference to specific embodiments.
  • FIG. 2 is a schematic diagram of a capacitive sensing circuit 20 according to an embodiment of the present invention.
  • the capacitance sensing circuit 20 only schematically includes channels CH_K-1, CH_K, CH_K+1 and buffers BUF1, BUF2, and channels CH_K-1, CH_K, CH_K+1, each channel is composed of multiple
  • the capacitance sensing unit 200 is connected in series, and the capacitance sensing unit 200 has an equivalent resistance R S and an equivalent capacitance C S .
  • a capacitive sensing circuit 20 as an example, channel CH_K channel is measured, in other words, the channel receives an input signal V TX CH_K through resistor R TX and produces an output signal V O, V TX to the input signal and the output signal Vo
  • the capacitance value of the channel CH_K is judged.
  • the channels CH_K-1 and CH_K+1 are adjacent and parallel to the channel CH_K, and form a crosstalk capacitance C C with the channel CH_K.
  • the crosstalk capacitance C C causes trouble.
  • the present embodiment couples the buffers BUF1 and BUF2 between the channel to be tested and its adjacent channel.
  • the buffer BUF1 is coupled between the channel CH_K and the channel CH_K-1
  • the buffer BUF2 is coupled between the channel CH_K and the channel CH_K+1
  • the buffers BUF1 and BUF2 are unity gain buffers (Unity Gain). Buffer)
  • the buffers BUF1, BUF2 are used to make the voltages V K-1 , V K+1 of the channel CH_K-1 and the channel CH_K +1 equal to the output signal Vo of the channel CH_K, so that both ends of the crosstalk capacitor C C Without the potential difference, the crosstalk capacitance C C does not store the charge, which eliminates the crosstalk effect caused by the crosstalk capacitor C C .
  • FIG. 3 is a schematic diagram of a first-order circuit model of the capacitance sensing circuit 20.
  • the channels CH_K-1, CH_K, and CH_K+1 have equivalent resistances R_K-1, R_K, R_K+1, and the like, respectively.
  • the overall crosstalk capacitance between the effective capacitors C_K-1, C_K, C_K+1, channel CH_K-1 and channel CH_K can be equivalent to the crosstalk capacitance C C _1, and the overall crosstalk capacitance between the channel CH_K and the channel CH_K+1 can be equal. effect of crosstalk capacitance C C _2.
  • KCL Kirchhoff's Current Law
  • Equation 2 It can be seen from Equation 2 that when the phase differences ⁇ 1 and ⁇ 2 are not 0, the crosstalk capacitances C C _1 and C C _2 still affect the output signal Vo, and the frequency ⁇ of the input signal V TX can be made. Below a certain frequency, to suppress the influence of the crosstalk capacitors C C _1, C C _2 on the output signal Vo.
  • the capacitance sensing circuit uses a unity gain buffer coupled between the channel to be tested and its adjacent channel to reduce the potential difference between the channel to be tested and its adjacent channel, and simultaneously reduce The frequency of the input signal to reduce the crosstalk effect between the channels.
  • the capacitance sensing circuit in the embodiment of the invention can reduce the trouble caused by the crosstalk capacitance when correcting the inconsistency between the channels, and can correctly correct the factors such as the circuit routing or the manufacturing process between the channels. Inconsistent.
  • FIG. 4 is a schematic diagram of a capacitance sensing circuit 40 according to a second embodiment of the present invention.
  • the capacitance sensing circuit 40 includes channels CH_K-L to CH_K+R and a plurality of unity gain buffers BUF.
  • the circuit model of the crosstalk capacitor in each channel, and the rectangular block represents the channel CH_K-L ⁇ CH_K+R, where the channel CH_K is the to-be-side channel.
  • the buffer BUF can be controlled by a control signal corresponding to each buffer BUF to control the enable state of each buffer BUF.
  • Each buffer BUF is coupled between any one of the non-measurement channels (ie, one of the channels CH_K-L to CH_K-1 and one of the channels CH_K+1 to CH_K+R) and the to-be-side channel CH_K, so that each non- The output voltage of the channel to be tested is equal to the output signal V O of the side channel CH_K, which also meets the requirements of the present invention.
  • FIG. 5 is a schematic diagram of a self-capacitive touch panel 50 according to an embodiment of the present invention.
  • the self-capacitive touch panel 50 includes an input signal generator 500, a capacitance determination module 502, and capacitance sensing circuits 52_1 to 52_N.
  • the input signal generator 500 is used to generate an input signal V TX
  • the capacitance determination module 502 is configured to receive a capacitive sense.
  • the output signals V O _1 ⁇ V O _N generated by the circuits 52_1 ⁇ 52_N are used to determine the capacitance values of the side channels of the capacitance sensing circuits 52_1 ⁇ 52_N, and the circuit structures and capacitance sensing circuits of the capacitance sensing circuits 52_1 ⁇ 52_N 40, no longer repeat here.
  • the capacitive sensing circuit of the embodiment of the present invention uses a unity gain buffer to eliminate the potential difference between the channel to be tested and its adjacent channel in the self-capacitive touch panel, and reduces the frequency of the input signal to reduce the channel.
  • the crosstalk effect between the two can reduce the confusion caused by the crosstalk capacitance when correcting the channel inconsistency, and correctly correct the inconsistency caused by factors such as circuit traces or manufacturing processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明属于触摸屏技术领域,提供了一种电容感测电路,包含多个通道;以及至少一个缓冲单元,任一缓冲单元耦接于多个通道中的一个待测信道和另一信道之间;其中,该待测信道接收输入信号并产生输出信号,该待测信道将该输出信号传递至电容判断模块,该电容判断模块根据该输出信号判断该待测通道的电容变化,本发明利用耦接于待测信道及其相邻信道间的单位增益缓冲器,来降低待测信道及其相邻信道之间的电位差,同时降低输入信号的频率,以降低信道之间的串扰效应,可降低在纠正通道间不一致时因串扰电容所造成的困扰,更能正确地纠正信道间因电路走线或制作工艺等因素所产生的不一致。

Description

电容感测电路及自容式触控面板 技术领域
本发明属于触摸屏技术领域,尤其涉及一种可消除通道之间串扰的电容感测电路及自容式触控面板。
背景技术
随着科技日益进步,近年来各种电子产品的操作界面逐渐人性化。举例而言,透过触控面板,使用者可直接以手指或触控笔在屏幕上操作、输入信息/文字/图样,省去使用键盘或按键等输入设备的麻烦。实际上,触控面板通常是由感应面板和设置于感应面板下方的显示器组成。电子产品是根据用户在感应面板上所触碰的位置,以及当时显示器所呈现的画面,来判断该次触碰的意思,并执行相对应的操作结果。
现有的电容式触控技术可分为自容式(Self-Capacitance)和互容式(Mutual-Capacitance)两种。相较于互容式触控面板,自容式触控面板由制程较单纯的单层电极结构实现,具有低成本的优点,因此被广泛应用在电子产品中。自容式触控面板可由感测电路和多个以矩阵形式排列的通道所组成,感测电路可感测这些通道的电气信号,并将之转换为数字形式的感应数据值,以判断触碰事件。
详细来说,请参看图1,图1为一自容式触控面板10的示意图。自容式触控面板10包含有垂直通道X1~Xm、水平通道Y1~Yn及感测电路100,垂直信道X1~Xm和水平通道Y1~Yn以轴线交错(Axis Intersect)的方式排列成格 子网状的矩阵形式,每一通道可由多个电容感应单元所串接成的一维结构所形成,由此检测每一通道的电容值,据以判断是否有触控事件发生。举例来说,假设触碰发生前垂直信道Xa和水平信道Yb对地的电容值为Ca及Cb,当使用者的手指接触到垂直信道Xa和水平信道Yb交界处某一电容感应单元时,即产生电容变化量为△C,若感测电路100侦测到垂直信道Xa和水平信道Yb之电容值为(Ca+△C)和(Cb+△C)时,即表示手指正在触摸垂直信道Xa和水平信道Yb上的交界处。
现有技术中,由于电路走线或者其本身的互容,通道之间会存在有串扰效应,影响对每一通道电容变化的判断,造成误判。更进一步地,因通道间的自容或屏体电阻会因为电路走线或制作工艺等因素而产生不一致性,而实际上需要对其不一致性进行纠正,而串扰效应的存在会使纠正通道间一致性更加困难,而影响对通道电容变化的判断,甚至造成误判。
发明内容
本发明实施例的目的在于提供一种可消除通道间串扰的电容感测电路及自容式触控面板。
为了解决上述技术问题,本发明是这样实现的:一种电容感测电路,包含有:
多个通道;以及
至少一个缓冲单元,任一缓冲单元耦接于所述多个通道中的一个待测信道和另一信道之间;
其中,所述待测信道接收输入信号并产生输出信号,所述待测信道将所述输出信号传递至电容判断模块,所述电容判断模块根据所述输出信号判断所述 待测信道的电容变化。
本发明另揭露一种自容式(Self-Capacitance)触控面板,包含有:
输入信号产生器;
电容判断模块;
至少一电容感测电路,任一电容感测电路包含有:
多个通道;以及
至少一个缓冲单元,任一缓冲单元耦接于所述多个通道中的一个待测信道和另一信道之间;
其中,所述待测信道耦接于所述输入信号产生器以接收输入信号,所述待测信道产生输出信号并将所述输出信号传递至所述电容判断模块,所述电容判断模块根据所述输出信号判断所述待测信道的电容变化。
在本发明实施例中,电容感测电路利用耦接于待测信道及其相邻信道间的单位增益缓冲器,来降低待测信道及其相邻信道之间的电位差,同时降低输入信号的频率,以降低信道之间的串扰效应。相较于现有技术,本发明实施例中的电容感测电路可降低在纠正通道间不一致时因串扰电容所造成的困扰,更能正确地纠正信道间因电路走线或制作工艺等因素所产生的不一致。
附图说明
图1为自容式触控面板的示意图。
图2为本发明实施例一电容感测电路的示意图。
图3为图2中电容感测电路的一阶电路模型示意图。
图4为本发明实施例二电容感测电路的示意图。
图5为本发明实施例三自容式触控面板的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,电容感测电路及自容式触控面板可应用的电子产品包括但不限于是手机、平板计算机、笔记本电脑以及电子阅读器等。以下结合具体实施例对本发明的具体实现进行详细描述。
如图2所示,为本发明实施例一电容感测电路20的示意图。为了方便说明,电容感测电路20仅示意性地包含通道CH_K-1、CH_K、CH_K+1及缓冲器BUF1、BUF2,通道CH_K-1、CH_K、CH_K+1中,每一通道是由多个电容感应单元200串接而成,而电容感应单元200具有等效电阻RS和等效电容CS
以电容感测电路20为例,信道CH_K为待测信道,换句话说,信道CH_K透过电阻RTX接收输入信号VTX并产生输出信号VO,根据输入信号VTX和输出信号Vo即可判断信道CH_K的电容值。然而,信道CH_K-1和CH_K+1相邻并平行于信道CH_K,且与信道CH_K之间形成串扰电容CC,在纠正每个通道的不一致时,串扰电容CC会造成困扰。为了解决串扰电容CC所造成的困扰,本实施例在待测信道与其相邻信道之间耦接缓冲器BUF1、BUF2。详细来说,缓冲器BUF1耦接于信道CH_K和信道CH_K-1之间,缓冲器BUF2耦接于信道CH_K和信道CH_K+1之间,缓冲器BUF1、BUF2皆为单位增益缓冲器(Unity Gain Buffer),缓冲器BUF1、BUF2用来使信道CH_K-1、信道CH_K+1的电压VK-1、VK+1等于信道CH_K的输出信号Vo,如此一来,串扰电容CC的 两端没有电位差,串扰电容CC即不会储存电荷,可消除串扰电容CC所造成的串扰效应。
另一方面,在实际应用中,串扰电容CC的两端虽然没有电位差,然而,由于缓冲器BUF1、BUF2的带宽有限,串扰电容CC的两端(即输出信号Vo与电压VK-1、VK+1之间)可能存在相位差,而可能会影响到输出信号Vo。在此情形下,可通过降低输入信号VTX的频率来降低串扰电容CC对输出信号Vo所造成的影响。详细来说,请参看图3,图3为电容感测电路20的一阶电路模型示意图,通道CH_K-1、CH_K、CH_K+1分别具有等效电阻R_K-1、R_K、R_K+1和等效电容C_K-1、C_K、C_K+1,信道CH_K-1和信道CH_K之间的整体串扰电容可等效为串扰电容CC_1,信道CH_K和信道CH_K+1之间的整体串扰电容可等效为串扰电容CC_2。在图3中,根据克希荷夫电流定律(Kirchhoff's Current Law,KCL),流经节点A的电流满足:
Figure PCTCN2015094467-appb-000001
     (式1);
其中,ω系为输入信号VTX的频率,其可为输入信号VTX的驱动频率。若输出信号Vo和电压VK-1、VK+1之间的相位差分别为φ1和φ2,电压VK-1和电压VK+1可表示为Vk-1=VO exp{jωφ1}和Vk+1=VO exp{jωφ2},将前述电压VK-1和电压VK+1的表示式代入式1可得
Figure PCTCN2015094467-appb-000002
   (式2); 由式2可知,当相位差φ1、φ2不为0时,串扰电容CC_1、CC_2仍然会对输出信号Vo产生影响,可使输入信号VTX的频率ω低于一特定频率,以抑制串扰电容CC_1、CC_2对输出信号Vo所产生的影响。
由上述可知,本发明实施例中电容感测电路利用耦接于待测信道及其相邻信道间的单位增益缓冲器,来降低待测信道及其相邻信道之间的电位差,同时降低输入信号的频率,以降低信道之间的串扰效应。相较于现有技术,本发明实施例中的电容感测电路可降低在纠正通道间不一致时因串扰电容所造成的困扰,更能正确地纠正信道间因电路走线或制作工艺等因素所产生的不一致。
需注意的是,前述实施例是用以说明本发明的概念,本领域具通常知识者当可据以做不同的修饰,而不限于此。
举例来说,电容感测电路20仅包含3个通道,事实上,电容感测电路中所包含的信道个数并未有所限制。请参考图4,图4为本发明实施例二电容感测电路40的示意图,电容感测电路40包含信道CH_K-L~CH_K+R及多个单位增益缓冲器BUF,为求简洁,故省略每一通道中串扰电容的电路模型,而以矩形方块代表信道CH_K-L~CH_K+R,其中信道CH_K为待侧信道。缓冲器BUF可受控于对应于每一缓冲器BUF的控制信号,以控制每一缓冲器BUF的使能(Enable)状态。每一缓冲器BUF耦接于任一个非待测信道(即信道CH_K-L~CH_K-1与信道CH_K+1~CH_K+R其中之一信道)与待侧信道CH_K之间,使得每一个非待测信道的输出电压与待侧信道CH_K的输出信号VO相等,亦符合本发明的要求。
另外,电容感测电路40可应用至自容式触控面板中。请参考图5,图5为本发明实施例三自容式触控面板50的示意图。自容式触控面板50包含有输入信号产生器500、电容判断模块502和电容感测电路52_1~52_N,输入信号 产生器500用来产生输入信号VTX,电容判断模块502用来接收电容感测电路52_1~52_N所产生的输出信号VO_1~VO_N,以判断电容感测电路52_1~52_N中待侧通道的电容值,电容感测电路52_1~52_N的电路结构与电容感测电路40,在此不再赘述。
综上所述,本发明实施例的电容感测电路利用单位增益缓冲器消除自容式触控面板中待测信道与其相邻信道之间的电位差,同时降低输入信号的频率,以降低信道之间的串扰效应,可降低在纠正通道间不一致时因串扰电容所造成的困扰,进而正确地纠正信道间因电路走线或制作工艺等因素所产生的不一致。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电容感测电路,其特征在于,包含有:
    多个通道;以及
    至少一个缓冲单元,任一缓冲单元耦接于所述多个通道中的一个待测信道和另一信道之间;
    其中,所述待测信道接收输入信号并产生输出信号,所述待测信道将所述输出信号传递至电容判断模块,所述电容判断模块根据所述输出信号判断所述待测信道的电容变化。
  2. 如权利要求1所述的电容感测电路,其特征在于,所述输入信号具有特定频率。
  3. 如权利要求2所述的电容感测电路,其特征在于,所述特定频率小于一阈值。
  4. 如权利要求1所述的电容感测电路,其特征在于,所述至少一个缓冲单元受控于至少一控制信号,所述至少一控制信号用来控制所述至少一个缓冲单元的使能状态。
  5. 如权利要求1所述的电容感测电路,其特征在于,所述至少一个缓冲单元具有单位增益(Unity Gain)。
  6. 一种自容式(Self-Capacitance)触控面板,其特征在于,包含有:
    输入信号产生器;
    电容判断模块;
    至少一电容感测电路,任一电容感测电路包含有:
    多个通道;以及
    至少一个缓冲单元,任一缓冲单元耦接于所述多个通道中的一个待测信道和另一信道之间;
    其中,所述待测信道耦接于所述输入信号产生器以接收输入信号,所述待测信道产生输出信号并将所述输出信号传递至所述电容判断模块,所述电容判断模块根据所述输出信号判断所述待测信道的电容变化。
  7. 如权利要求6所述的触控面板,其特征在于,所述输入信号具有特定频率。
  8. 如权利要求7所述的触控面板,其特征在于,所述特定频率小于一阈值。
  9. 如权利要求6所述的触控面板,其特征在于,所述至少一个缓冲单元受控于至少一控制信号,所述至少一控制信号用来控制所述至少一个缓冲单元的使能状态。
  10. 如权利要求6所述的触控面板,其特征在于,所述至少一缓冲单元具有单位增益(Unity Gain)。
PCT/CN2015/094467 2015-07-17 2015-11-12 电容感测电路及自容式触控面板 WO2017012221A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510424652.2 2015-07-17
CN201510424652.2A CN106708337B (zh) 2015-07-17 2015-07-17 电容感测电路及自容式触控面板

Publications (1)

Publication Number Publication Date
WO2017012221A1 true WO2017012221A1 (zh) 2017-01-26

Family

ID=57833792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094467 WO2017012221A1 (zh) 2015-07-17 2015-11-12 电容感测电路及自容式触控面板

Country Status (2)

Country Link
CN (1) CN106708337B (zh)
WO (1) WO2017012221A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349957A (zh) * 2008-07-29 2009-01-21 友达光电股份有限公司 显示装置及其数据读取控制器
CN102799325A (zh) * 2012-06-21 2012-11-28 敦泰科技有限公司 一种自电容触摸屏检测方法、装置和***
CN103902116A (zh) * 2012-12-30 2014-07-02 比亚迪股份有限公司 用于电容检测的抗干扰方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193032A (zh) * 2010-03-08 2011-09-21 上海海栎创微电子有限公司 一种具有高精度高稳定性的自电容变化测量电路
CN102799322B (zh) * 2011-05-27 2016-06-01 晨星软件研发(深圳)有限公司 电容感测装置与控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349957A (zh) * 2008-07-29 2009-01-21 友达光电股份有限公司 显示装置及其数据读取控制器
CN102799325A (zh) * 2012-06-21 2012-11-28 敦泰科技有限公司 一种自电容触摸屏检测方法、装置和***
CN103902116A (zh) * 2012-12-30 2014-07-02 比亚迪股份有限公司 用于电容检测的抗干扰方法和装置

Also Published As

Publication number Publication date
CN106708337B (zh) 2019-11-15
CN106708337A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
US10139950B2 (en) Flexible display device and driving method thereof
US8618818B2 (en) Electrostatic capacity type touch sensor
US11481066B2 (en) Providing a baseline capacitance for a capacitance sensing channel
US9069399B2 (en) Gain correction for fast panel scanning
US10345980B2 (en) Capacitive detection device, method and pressure detection system
US9933879B2 (en) Reconfigurable circuit topology for both self-capacitance and mutual capacitance sensing
KR101105279B1 (ko) 터치 센서 ic
US8736578B2 (en) Sensing circuit and method for a capacitive touch panel
US20110181519A1 (en) System and method of driving a touch screen
US20160299633A1 (en) Touch positioning method for touch panel
US8654089B2 (en) Touch sensing circuit and touch sensing method
US20150054777A1 (en) Position sensing method of touch panel and integrated circuit
US20210294454A1 (en) Noise suppression circuit
US8872791B2 (en) Touch sensing device and method thereof
CN106371648B (zh) 校正方法与电容式感测装置
KR101103288B1 (ko) 터치 센서 ic
WO2014017077A1 (ja) タッチ入力デバイス制御装置およびタッチ入力デバイス制御方法
WO2017012221A1 (zh) 电容感测电路及自容式触控面板
US9507454B1 (en) Enhanced linearity of gestures on a touch-sensitive surface
TWI507960B (zh) 觸控系統及其座標修正方法
KR102020280B1 (ko) 터치 패널 장치와 이의 구동 방법
CN104102397A (zh) 自容式触控面板
KR101926546B1 (ko) 터치 패널의 위치 검출 방법 및 집적회로
KR101926535B1 (ko) 터치 패널
WO2018112861A1 (zh) 电容检测电路及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898777

Country of ref document: EP

Kind code of ref document: A1