WO2017010612A1 - 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법 - Google Patents

의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법 Download PDF

Info

Publication number
WO2017010612A1
WO2017010612A1 PCT/KR2015/009311 KR2015009311W WO2017010612A1 WO 2017010612 A1 WO2017010612 A1 WO 2017010612A1 KR 2015009311 W KR2015009311 W KR 2015009311W WO 2017010612 A1 WO2017010612 A1 WO 2017010612A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
classifier
tagged
tag information
analysis
Prior art date
Application number
PCT/KR2015/009311
Other languages
English (en)
French (fr)
Inventor
김효은
황상흠
백승욱
이정인
장민홍
유동근
팽경현
박승균
Original Assignee
주식회사 루닛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루닛 filed Critical 주식회사 루닛
Publication of WO2017010612A1 publication Critical patent/WO2017010612A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to a system and method for predicting pathological diagnosis based on medical image analysis. More particularly, the present invention relates to a medical image analysis-based pathological predictive prediction system capable of reliably and efficiently performing pathological diagnosis by analyzing medical images. And to a method.
  • Pathology is the field of medicine in which tissue samples are examined by naked eye or under a microscope and analyzed to determine abnormalities. For example, in order to diagnose cancer, a tissue sample of a suspected tissue is examined by a pathologist and a doctor through a microscope and diagnosed by determining the presence of cancer cells. This is called pathology diagnosis, and this pathology diagnosis is a final step of diagnosis as a confirmation procedure for diagnosis of a suspected lesion of a patient.
  • an existing image for comparing and analyzing an input query image and an image and pathological diagnosis data in which a corresponding pathological diagnosis result is databased are required.
  • the database to be analyzed should store the normal / abnormal images, the medical image including information on whether the lesion is present, the pathological diagnosis of the lesion, and the location of the lesion. Comparative analysis should be performed on query images. The presence or absence of such lesions, pathological diagnosis results and location information of the lesions may be referred to as tag information.
  • the database to be subjected to the comparative analysis will have more reliability as more images including the tag information exist. In particular, by using the image including the tag information such as machine learning (learning) to learn from a large amount of data to ensure that only the information optimized for prediction to always maintain more accurate results It can be predicted.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a system and a method capable of efficiently and efficiently analyzing a location of a lesion and a pathological diagnosis result of the lesion with respect to a medical image.
  • Another object of the present invention is to provide a system and method for improving analysis accuracy by keeping a classifier always up to date by performing learning based on machine learning for medical image analysis.
  • the present invention provides a system and method for improving the learning efficiency and reliability by appropriately utilizing the location information of the small amount of lesions, the presence or absence of relatively large amount of lesion information and the pathological diagnosis of the lesions for the learning of the classifier. To do it for another purpose.
  • the present invention provides a pathological diagnosis prediction system based on medical image analysis, comprising: an untagged image database storing untagged images without tag information; A tagged image database storing a tagged image having tag information; A classifier configured to output a classification result for the input image; A learning unit learning the classifier based on a tagged image stored in the tagged image database; An image processing unit for receiving the query image, storing the image in the untagged image database, and transmitting the image to the classifier; And an analyzer configured to generate an analysis result of the query image based on the classification result of the query image output from the classifier.
  • the tag information is preferably first tag information indicating the presence or absence of a lesion on a corresponding image and a pathological diagnosis result of the lesion.
  • the tag information may further include second tag information indicating a location of a lesion with respect to the corresponding image.
  • the classifier may be configured to extract feature data of an input image, and to probabilistically predict and output a classification result of pathology based on the extracted feature data.
  • the classifier may further include a feature extractor which extracts feature data of an input image; A feature vector converter converting the extracted feature data into a feature vector; And a classification unit configured to output a classification result of pathological diagnosis on an input image based on the feature vector.
  • a feature extraction variable for extracting feature data from the feature extraction unit a conversion variable for transforming a feature vector in the feature vector converter, and a classification variable for determining a classification result in the classification unit are tagged.
  • the tag image stored in the image database may be configured to be learned by the learner.
  • the learning unit may estimate the feature extraction variable based on the second tag information of the tag image, and estimate the conversion variable and the classification variable based on at least one of the first tag information and the second tag information of the tag image. It may be configured to train the classifier.
  • the analysis result generated by the analysis unit may be configured to include final pathological diagnosis information including a classification result of the pathological diagnosis output from the classifier and information related to the classification result of the pathological diagnosis.
  • the image processing unit receives the query image, stored in the untagged image database and transmitted to the classifier A first step of doing; A second step of outputting a classification result of pathological diagnosis on an image input by the classifier; And a third step of generating an analysis result based on the classification result of the pathological diagnosis outputted by the analysis unit.
  • the image processing unit receives the tagged image and transmits it to the tagged image database; And training the classifier based on the tagged image stored in the tagged image.
  • the present invention can provide a system and method that can improve the accuracy of analysis by keeping the classifier (up-to-date) by performing the learning based on machine learning for medical image analysis.
  • the present invention can provide a system and method that can increase the learning efficiency and reliability by appropriately using a small amount of location information of the lesion, the presence of a relatively large amount of lesions and pathological diagnosis information of the lesion for learning the classifier. Can be.
  • FIG. 1 is a view showing a connection relationship of the pathological diagnosis prediction system 100 according to the present invention.
  • FIG. 2 is a diagram illustrating an internal configuration of the pathological diagnosis prediction system 100.
  • 3 is a diagram illustrating an embodiment of a configuration of the classifier 130.
  • FIGS. 1 to 3 is a flowchart illustrating an embodiment of a method performed by the pathological diagnosis prediction system 100 according to the present invention described with reference to FIGS. 1 to 3.
  • FIG. 5 is a flowchart illustrating an example of a learning process of the classifier 130 performed in the pathological diagnosis prediction system 100 according to the present invention.
  • FIG. 6 is a flowchart illustrating another example of a learning process of the classifier 130 performed in the pathological diagnosis prediction system 100 according to the present invention.
  • FIG. 1 is a diagram illustrating a connection relationship between a pathology diagnosis prediction system 100 based on medical image analysis according to the present invention.
  • a pathology diagnosis prediction system 100 based on medical image analysis (hereinafter, simply referred to as “pathology diagnosis prediction system 100”) is connected to a client terminal 200 through a network.
  • the network means a known internet network, a wired or wireless communication network, or a combination thereof.
  • the client terminal 200 is a means for transmitting the medical image to be analyzed to the pathological diagnosis prediction system 100, for example, a medical image supply system such as a picture archiving and communication system (PACS), or an MRI, CT, X-ray photographing apparatus. It means various medical equipment such as. In addition, it may be a computer that is connected to such medical equipment or independently stores a medical image, or a smartphone or tablet PC that can be connected to them.
  • a medical image supply system such as a picture archiving and communication system (PACS), or an MRI, CT, X-ray photographing apparatus.
  • PACS picture archiving and communication system
  • MRI magnetic resonance imaging
  • CT magnetic resonance imaging
  • X-ray photographing apparatus e.g., X-ray photographing apparatus
  • It means various medical equipment such as.
  • it may be a computer that is connected to such medical equipment or independently stores a medical image, or a smartphone or tablet PC that can be connected to them.
  • the client terminal 200 performs a pathology through a network on a query image, which is a medical image for analyzing lesion information such as the presence or absence of a lesion, the pathological diagnosis result of the lesion, or the location of the lesion, in the pathology diagnosis prediction system 100.
  • the diagnostic prediction system 100 analyzes the received Curie image and analyzes the received Curie image and transmits analysis results including lesion information such as the presence or absence of the lesion and the pathological diagnosis result of the lesion or the location of the lesion. Send to 200.
  • FIG. 2 is a diagram illustrating an internal configuration of the pathological diagnosis prediction system 100.
  • the pathological diagnosis prediction system 100 includes an untagged image database 110, a tagged image database 120, a classifier 130, a learner 140, an image processor 150, and an analyzer. 160.
  • the untagged image database 110 stores an untagged image without tag information
  • the tagged image database 120 is a means for storing a tagged image with tag information. .
  • tag information refers to additional information associated with a corresponding image, for example, information indicating whether a lesion exists in the image, information indicating a pathological diagnosis result of the lesion, information indicating a location of the lesion, Means information related to the corresponding image, such as comment information of the diagnoser.
  • an image having such tag information is called a tagged image
  • an image without tag information is called an untagged image
  • these are respectively tagged image database 120 and untagged image database.
  • the present invention relates to a system for predicting a diagnosis of pathology by analyzing a medical image, in particular, among the tag information, the presence or absence of pathology information and pathological diagnosis information indicating the presence or absence of a lesion on the image and the pathology diagnosis result of the first
  • the location information indicating the location of the lesion in the image, called tag information is called a second tag.
  • the lesion presence information may be information on whether a tumor exists in the corresponding image
  • the pathological diagnosis information refers to pathological diagnostic information on whether the tumor is malignant or benign.
  • the second tag information which is the lesion position information
  • the tagged image has only the presence or absence information of the lesion and the first tag information that is pathological diagnosis information, or has the first tag information that is the lesion presence information and the pathological diagnosis information and the second tag information that is the lesion position information.
  • a tag having only the presence tag information and the pathological diagnosis information, the first tag information is called a weak tag
  • the tag having the location information of the lesion together with the first tag information is called a rich tag. I'll call you.
  • an image having a weak tag is called a weak tag image and an image having a rich tag is called a rich tag image.
  • the untagged image database 110 is a means for storing an untagged image without the tag information as described above.
  • the untagged image may be received from the client terminal 200 or collected from other medical imaging equipment. Save only untagged images without information.
  • the tagged image database 120 separately stores only tagged images having tag information.
  • the tagged images may also be received from the client terminal 200 or collected from other medical imaging equipment.
  • the classifier 130 performs a function of outputting a classification result for the input image.
  • the classifier 130 extracts a pattern or feature data of an input image, and probably predicts and outputs a classification result based on the extracted pattern or feature data.
  • the classifier 130 may be learned based on an image including reliable classification results accumulated in the past. This learning is made by the learning unit 140 described later.
  • the classifier 130 may include a tagged image database (eg, a tag image database) in the learning unit 140 according to a learning method such as, for example, an artificial neural network, a support vector machine (SVM), and the like known in the art.
  • the classification result of the input image may be more accurately determined by periodically learning the images stored in the reference numeral 120.
  • 3 is a diagram illustrating an embodiment of a configuration of the classifier 130.
  • the classifier 130 includes a feature extractor 131, a feature vector converter 132, and a classifier 133.
  • the feature extractor 131 extracts feature data of an input image, and the feature vector converter 132 converts the extracted feature data into a feature vector.
  • the classification unit 133 outputs a classification result of the input image based on the feature vector.
  • the feature extractor 131 extracts feature data representing a feature of the input image from the input image
  • the feature vector converter 132 extracts the extracted feature data from a predetermined dimension ( to a feature vector of dimension).
  • the classifier 133 outputs the classification result of the corresponding image based on the probability value based on the feature vector.
  • the classifier 130 includes a feature extraction parameter for extracting feature data and a classification parameter for predicting a classification result.
  • the learner 140 learns periodically based on image data including reliable classification results accumulated in the past. This learning method will be described below with respect to the learning unit 140.
  • the classifier 130 maintains the latest state through such learning, extracts feature data from an input image, converts the extracted feature data into a feature vector, and determines a classification result of the transformed feature vector.
  • the classification result may be information on the presence or absence of the lesion, such as the first tag information, pathological diagnosis information on the lesion, and location information of the lesion, such as the second tag information.
  • the presence information of the lesion, pathological diagnosis information and location information of the lesion may be generated based on the probability value.
  • the learner 140 performs a function of learning the classifier 130 based on the tagged images stored in the tagged image database 120.
  • the classifier 130 includes a feature extraction variable for extracting feature data and a classification variable for determining a classification result.
  • the learner 140 stores existing data, that is, the tagged image database 120. These variables are trained periodically or whenever needed.
  • the tagged image refers to an image having tag information
  • the tag information includes first tag information indicating the presence or absence of a lesion and pathological diagnosis information of the lesion, and second tag information indicating the location information of the lesion.
  • first tag information indicating the presence or absence of a lesion and pathological diagnosis information of the lesion
  • second tag information indicating the location information of the lesion.
  • the learner 140 estimates a feature extraction variable to be used by the feature extractor 131 based on the tag image having the second tag information, that is, the location information of the lesion, and at least one of the first tag information and the second tag information. After estimating the conversion variable in the feature vector converter 132 using the tag image having any one, the classifier 133 using the tag image having at least one of the first tag information and the second tag information.
  • the classifier 130 may be trained by using the plurality of first tag information and the plurality of second tag information together by estimating the classification variable to be used in the.
  • a specific method of estimating each variable may use a conventionally known learning algorithm, which is not a direct object of the present invention, and thus detailed description thereof will be omitted.
  • the above-described learning method in the learning unit 140 is also exemplary and other learning methods may be used.
  • the image processor 150 receives a query image and stores the query image in an untagged image database.
  • the query image is transmitted from the client terminal 200, and the query image is a medical image to be analyzed for lesion information such as the presence or absence of a lesion, the diagnosis result of the lesion, or the location of the lesion. It is a tagged image or a tagged image having only first tag information on the presence or absence of a lesion.
  • the image processor 150 receives the query image and stores it in the untagged image database 110.
  • the image processor 150 is suitable for pre-processing the query image and storing the queried image in the untagged image database 110. It is desirable to perform the process of structuring into a form.
  • a preprocessing process for example, interpolation, color / gamma correction, and color space conversion for converting a raw data for a query image into a high quality color image signal (eg, YCbCr) ) May be included. It may also include processes such as histogram equalization, image filtering, edge / contour detection, and the like. This preprocessing process may be configured as a combination of various detailed steps as necessary, and may be processed by the client terminal 200.
  • the image processor 150 transmits the preprocessed and structured image to the classifier 130, and the classifier 130 operates as described above to output the classification result for the query image.
  • the analyzer 160 is responsible for generating an analysis result for the query image based on the classification result for the query image output from the classifier 130. In addition, the analyzer 160 transmits the generated analysis result to the client terminal 200.
  • the classifier 130 outputs a classification result with respect to the input query image, wherein the classification result is lesion presence information indicating the presence or absence of the lesion and pathological diagnosis result information of the lesion, or the lesion indicating the position of the lesion together with these information.
  • the location information can be output as a probability value.
  • the analysis unit 160 receives the classification result, generates, processes, and processes other analysis information related to the classification result to generate a final analysis result for the query image, and transmits it to the client terminal 200.
  • the other analysis information may include comprehensive diagnostic information (such as abnormality) including a final pathological diagnosis result in consideration of the number of lesion positions and the number of lesion positions on the query image.
  • the final pathological diagnosis result information may be expressed as a probability value based on the probability value of the lesion output from the classifier 130.
  • FIGS. 1 to 3 is a flowchart illustrating an embodiment of a method performed by the pathological diagnosis prediction system 100 according to the present invention described with reference to FIGS. 1 to 3.
  • the client terminal 200 transmits a query image, that is, a medical image to be analyzed in the pathological diagnosis prediction system 100, to the pathological diagnosis prediction system 100 (S100).
  • a query image that is, a medical image to be analyzed in the pathological diagnosis prediction system 100
  • S100 pathological diagnosis prediction system 100
  • the Curie image processing unit 150 of the pathological diagnosis prediction system 100 receives the query image, performs a predetermined preprocessing and structuring process as described above, and stores the query image in the untagged image database 110 ( S110, S120).
  • the image processor 150 transmits the query image to the classifier 130.
  • the classifier 130 receives the query image and outputs a classification result through the process as described above (S130).
  • the output classification result is transmitted to the analysis unit 140 and the analysis unit 140 generates an analysis result as described above (S140), and transmits the generated analysis result to the client terminal 200 (S150).
  • the client terminal 200 When the client terminal 200 receives the analysis result, the client terminal 200 performs necessary processing such as parsing the received analysis result (S160), for example, displays it on the display unit and provides the result to the user (S170).
  • necessary processing such as parsing the received analysis result (S160), for example, displays it on the display unit and provides the result to the user (S170).
  • FIG. 5 is a flowchart illustrating an example of a learning process of the classifier 130 performed in the pathological diagnosis prediction system 100 according to the present invention.
  • the pathology diagnosis prediction system 100 receives a tagged image from the client terminal 200 (S200).
  • the tagged image may be a weak tag image having only the presence information and the first tag information, which is pathological diagnosis information, or the rich tag image having the second tag information, which is location information of the lesion, in addition to the first tag information. Can be.
  • the tagged image is stored in the tagged image database 120 through preprocessing and structuring in the Curie image processor 150 (S210 and S220).
  • the learner 150 trains the classifier 130 based on the tagged image including the tagged image newly stored in the tagged image database 120 (S230).
  • This learning process means learning feature extraction variables, transformation variables, and classification variables used in the classifier 130 using the weak tag image or the rich tag image as described above.
  • the learning process of the classifier 130 includes a verification process for evaluating whether learning has been well performed through the verification data and repeats the learning / verification process.
  • the classifier 130 is updated to the latest version (S240).
  • FIG. 6 is a flowchart illustrating another example of a learning process of the classifier 130 performed in the pathological diagnosis prediction system 100 according to the present invention.
  • the user terminal 200 obtains an untagged image from the untagged image database 110 of the pathological diagnosis prediction system 100 (S300), and the diagnostic information is tagged with the tag for the untagged image. Except for attaching the tag information in the form of recording (S310), the following process is the same as the embodiment of FIG.
  • the tagged image may be secured by attaching tag information of a diagnosis person using an untagged image, and the classifier 130 may be trained using the tagged image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

본 발명은 의료 영상 분석 기반의 병리 진단 예측 시스템으로서, 태그 정보가 없는 언태그드 영상을 저장하는 언태그드 영상 데이터베이스; 태그 정보를 갖는 태그드 영상을 저장하는 태그드 영상 데이터베이스; 입력 영상에 대한 분류 결과를 출력하는 분류기; 상기 태그드 영상 데이터베이스에 저장된 태그드 영상에 기초하여 상기 분류기를 학습시키는 학습부; 쿼리 영상을 수신하여 언태그드 영상 데이터베이스에 저장하고 분류기로 전송하는 영상 처리부; 및 상기 분류기로부터 출력되는 쿼리 영상에 대한 분류 결과에 기초하여 쿼리 영상에 대한 분석 결과를 생성하는 분석부를 포함하는 의료 영상 분석 기반의 병리 진단 예측 시스템 및 이를 이용한 방법을 제공한다.

Description

의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법
본 발명은 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법에 관한 것으로서, 보다 상세하게는 의료 영상을 분석함으로써 병리학적 진단을 보다 신뢰성 있게 또한 효율적으로 수행할 수 있는 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법에 관한 것이다.
병리학(pathology)이란, 조직 샘플을 육안이나 현미경을 통해 검사하고 이를 분석하여 이상 여부를 판별하는 의학의 분야이다. 예컨대, 암 진단 여부를 위해서는 해당 의심 조직의 조직 샘플을 현미경을 통해 병리학과 의사가 검사하고 암 세포의 존재 여부를 판단함으로써 암 진단을 내리게 된다. 이를 병리 진단이라고 하며, 이러한 병리 진단은 환자의 의심 병변에 대한 진단의 확정 절차로서 진단의 최종 단계라고 할 수 있다.
이러한 병리학적 진단을 컴퓨터 등의 장비에 의해 자동적으로 수행하기 위해서는, 입력되는 쿼리 영상을 비교 분석할 기존의 영상 및 그에 해당하는 병리 진단결과가 데이터베이스화된 영상 및 병리 진단 데이터가 필요하다.
분석 대상이 될 데이터베이스는, 정상 영상/이상 영상들과, 병변이 존재하는지의 여부, 병변의 병리 진단 결과와 해당 병변이 존재하는 위치에 대한 정보가 포함된 의료 영상을 저장해두어야 하며, 이것들과 입력되는 쿼리 영상에 대한 비교 분석을 수행해야 한다. 이러한 병변 존재 유무, 병변의 병리 진단 결과 및 위치 정보를 태그(tag) 정보라고 할 수 있는데, 비교 분석 대상이 될 데이터베이스는 이러한 태그 정보가 포함된 영상이 많으면 많을수록 보다 신뢰성을 가지게 될 것이다. 특히, 이러한 태그 정보가 포함된 영상을 이용하여 예컨대 머쉰-러닝(machine learning) 등과 같은 기술을 활용하여 방대한 양의 데이터로부터 학습을 수행하도록 하여 예측에 최적화된 정보만을 항상 유지하도록 하면 보다 정확한 결과를 예측해 낼 수 있다.
그러나, 종래의 기술로서는 이와 같이 의료 영상 분야에서 머쉰-러닝 등과 같은 학습 기술을 사용하여 의료 영상에 대한 분석 및 진단을 효율적으로 수행하여 병변의 병리 진단 결과를 예측할 수 있는 기술이 아직 제안되어 있지 않은 실정이다.
또한, 기존의 의료 시설에서 사용되는 각종 의료 영상들은 데이터베이스화되어 있지 않거나 체계화되어 있지 않은 경우가 많다. 특히, 영상 자체는 존재하더라도 해당 영상에 병변이 존재하는지의 여부, 병변의 병리 진단 결과와 병변의 위치에 대한 정보 즉, 태그 정보가 없는 경우가 대부분이다. 또한, 태그 정보가 존재하는 경우라도 병변의 위치 정보 없이 병변이 존재하는지의 여부 또는 해당 병변의 병리 진단 결과만을 나타내는 태그 정보만 존재하는 경우가 많아서 신뢰성 있는 데이터베이스를 구축하는데는 많은 어려움이 있다.
본 발명은 상기한 바와 같은 과제를 해결하기 위한 것으로서, 의료 영상에 대해 병변의 위치 및 해당 병변의 병리 진단 결과를 높은 신뢰성을 가지고 효율적으로 분석할 수 있는 시스템 및 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 의료 영상 분석을 위해 머쉰 러닝에 기초한 학습을 수행함으로써 분류기(classifier)를 항상 최신으로 유지함으로써 분석 정확도를 높일 수 있는 시스템 및 방법을 제공하는 것을 또 다른 목적으로 한다.
또한, 본 발명은 분류기의 학습을 위해 적은 양의 병변의 위치 정보와 상대적으로 많은 양의 병변 유무 정보 및 병변의 병리 진단 결과를 적절하게 활용함으로써 학습 효율과 신뢰성을 높일 수 있는 시스템 및 방법을 제공하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 과제를 해결하기 위하여 본 발명은, 의료 영상 분석 기반의 병리 진단 예측 시스템으로서, 태그 정보가 없는 언태그드 영상을 저장하는 언태그드 영상 데이터베이스; 태그 정보를 갖는 태그드 영상을 저장하는 태그드 영상 데이터베이스; 입력 영상에 대한 분류 결과를 출력하는 분류기; 상기 태그드 영상 데이터베이스에 저장된 태그드 영상에 기초하여 상기 분류기를 학습시키는 학습부; 쿼리 영상을 수신하여 언태그드 영상 데이터베이스에 저장하고 분류기로 전송하는 영상 처리부; 및 상기 분류기로부터 출력되는 쿼리 영상에 대한 분류 결과에 기초하여 쿼리 영상에 대한 분석 결과를 생성하는 분석부를 포함하는 의료 영상 분석 기반의 병리 진단 예측 시스템을 제공한다.
여기에서, 상기 태그 정보는 해당 영상에 대한 병변 유무 및 해당 병변의 병리 진단 결과를 나타내는 제1 태그 정보인 것이 바람직하다.
또한, 상기 태그 정보는 해당 영상에 대한 병변의 위치를 나타내는 제2 태그 정보를 더 포함할 수 있다.
또한, 상기 분류기는, 입력되는 영상에 대한 특징 데이터를 추출하고, 추출된 특징 데이터에 기초하여 병리 진단의 분류 결과를 확률적으로 예측하여 출력하도록 구성할 수 있다.
또한, 상기 분류기는, 입력되는 영상에 대한 특징 데이터를 추출하는 특징 추출부; 상기 추출된 특징 데이터를 특징 벡터로 변환하는 특징 벡터 변환부; 및 상기 특징 벡터에 기초하여 입력 영상에 대한 병리 진단의 분류 결과를 출력하는 분류부를 포함하도록 할 수도 있다.
또한, 상기 특징 추출부에서 특징 데이터를 추출하기 위한 특징 추출 변수와, 상기 특징 벡터 변환부에서 특징 벡터를 변환하기 위한 변환 변수와, 상기 분류부에서 분류 결과를 판단하기 위한 분류 변수는 상기 태그드 영상 데이터베이스에 저장된 태그 영상을 통해 학습부에 의해 학습되도록 구성할 수도 있다.
또한, 상기 학습부는, 태그 영상의 제2 태그 정보에 의해 특징 추출 변수를 추정하고, 태그 영상의 제1 태그 정보 및 제2 태그 정보 중 적어도 어느 하나에 의해 상기 변환 변수와 상기 분류 변수를 추정함으로써 상기 분류기를 학습시키도록 구성할 수도 있다.
또한, 상기 분석부에서 생성되는 분석 결과는, 분류기에서 출력된 병리 진단의 분류 결과 및 상기 병리 진단의 분류 결과와 관련된 정보를 포함하는 최종 병리 진단 정보를 포함하도록 구성할 수도 있다.
본 발명의 다른 측면에 의하면, 상기한 바와 같은 의료 영상 분석 기반의 병리 진단 예측 시스템에서 병리 진단을 예측하는 방법에 있어서, 영상 처리부가 쿼리 영상을 수신하여 언태그드 영상 데이터베이스에 저장하고 분류기로 전송하는 제1 단계; 분류기가 입력되는 영상에 대해 병리 진단의 분류 결과를 출력하는 제2 단계; 및 분석부가 출력된 병리 진단의 분류 결과에 기초하여 분석 결과를 생성하는 제3 단계를 포함하는 병리 진단 예측 방법을 제공한다.
여기에서, 제1 단계 이전에, 영상 처리부가 태그드 영상을 수신하여 태그드 영상 데이터베이스에 전송하는 단계; 및 학습부가 태그드 영상에 저장된 태그드 영상에 기초하여 분류기를 학습시키는 단계를 더 포함하도록 구성할 수도 있다.
본 발명에 의하면, 의료 영상에 대해 병변의 위치 및 해당 병변의 병리 진단 결과를 높은 신뢰성을 가지고 효율적으로 분석할 수 있는 시스템 및 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 의료 영상 분석을 위해 머쉰 러닝에 기초한 학습을 수행함으로써 분류기(classifier)를 항상 최신으로 유지함으로써 분석 정확도를 높일 수 있는 시스템 및 방법을 제공할 수 있다.
또한, 본 발명은 분류기의 학습을 위해 적은 양의 병변의 위치 정보와 상대적으로 많은 양의 병변 유무 및 병변의 병리 진단 정보를 적절하게 활용함으로써 학습 효율과 신뢰성을 높일 수 있는 시스템 및 방법을 제공할 수 있다.
도 1은 본 발명에 의한 병리 진단 예측 시스템(100)의 연결 관계를 나타낸 도면이다.
도 2는 병리 진단 예측 시스템(100)의 내부 구성을 나타낸 도면이다.
도 3은 분류기(130)의 구성의 일실시예를 나타낸 도면이다.
도 4는 도 1 내지 도 3에서 설명한 본 발명에 의한 병리 진단 예측 시스템(100)에서 수행되는 방법의 일실시예를 나타낸 흐름도이다.
도 5는 본 발명에 의한 병리 진단 예측 시스템(100)에서 이루어지는 분류기(130)의 학습 과정의 일예를 설명하기 위한 흐름도이다.
도 6은 본 발명에 의한 병리 진단 예측 시스템(100)에서 이루어지는 분류기(130)의 학습 과정의 또 다른 예를 설명하기 위한 흐름도이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예들을 상세하게 설명하기로 한다.
도 1은 본 발명에 의한 의료 영상 분석 기반의 병리 진단 예측 시스템(100)의 연결 관계를 나타낸 도면이다.
도 1을 참조하면, 의료 영상 분석 기반의 병리 진단 예측 시스템(100, 이하 간단히 "병리 진단 예측 시스템(100)"이라 한다)은 네트워크를 통해 클라이언트 단말기(200)와 연결된다.
여기에서, 네트워크는 공지의 인터넷 망이나 유무선 통신망 또는 이들의 결합을 의미한다.
클라이언트 단말기(200)는 분석 대상인 의료 영상을 병리 진단 예측 시스템(100)으로 전송하기 위한 수단으로서, 예컨대 PACS(Picture Archiving and Communication System) 등과 같은 의료 영상 공급 시스템이나 MRI, CT, X-ray 촬영 장치 등과 같은 각종 의료 장비를 의미한다. 또한, 이러한 의료 장비와 연결되어 있거나 독립적으로 의료 영상을 저장하는 컴퓨터 또는 이들과 연결될 수 있는 스마트폰이나 태블릿 PC일 수도 있다.
클라이언트 단말기(200)는 병리 진단 예측 시스템(100)에서 병변의 유무와 병변의 병리 진단 결과 또는 병변의 위치 등과 같은 병변 정보를 분석할 대상이 되는 의료 영상인 쿼리(query) 영상을 네트워크를 통해 병리 진단 예측 시스템(100)으로 전송하고, 병리 진단 예측 시스템(100)은 수신된 퀴리 영상을 분석하고 병변의 유무와 병변의 병리 진단 결과 또는 병변의 위치와 같은 병변 정보를 포함하는 분석 결과를 클라이언트 단말기(200)로 전송한다.
도 2는 병리 진단 예측 시스템(100)의 내부 구성을 나타낸 도면이다.
도 2를 참조하면, 병리 진단 예측 시스템(100)은 언태그드 영상 데이터베이스(110), 태그드 영상 데이터베이스(120), 분류기(130), 학습부(140), 영상 처리부(150) 및 분석부(160)를 포함한다.
언태그드(untagged) 영상 데이터베이스(110)는 태그(tag) 정보가 없는 언태그드 영상을 저장하고, 태그드(tagged) 영상 데이터베이스(120)는 태그 정보를 갖는 태그드 영상을 저장하는 수단이다.
여기에서 태그(tag) 정보라 함은 해당 영상과 연관된 부가 정보를 말하는데 예컨대 해당 영상에 병변이 존재하는지의 여부를 나타내는 정보, 병변의 병리 진단 결과를 나타내는 정보, 병변이 존재하는 위치를 나타내는 정보, 진단자의 주석(comment) 정보 등과 같이 해당 영상과 관련된 정보를 의미한다.
본 발명에서는 이러한 태그 정보를 갖는 영상을 태그드(tagged) 영상이라 하고, 태그 정보가 없는 영상을 언태그드(untagged) 영상이라 하며, 이들을 각각 태그드 영상 데이터베이스(120)와 언태그드 영상 데이터베이스(110)에 구분하여 저장한다.
한편, 본 발명은 의료 영상을 분석하여 병리 진단을 예측하기 위한 시스템에 관한 것이므로, 태그 정보 중에서 특히 영상에 대한 병변의 유무 및 해당 병변의 병리 진단 결과를 나타내는 병변 유무 정보 및 병리 진단 정보를 제1 태그 정보라 하고, 영상에서 병변이 위치한 곳을 나타내는 병변 위치 정보를 제2 태그라고 한다.
여기에서, 병변 유무 정보는 해당 영상에서 종양이 존재하는지에 대한 정보일 수 있고, 병리 진단 정보는 해당 종양이 악성인지 양성인지에 대한 병리학적인 진단 정보를 의미한다.
한편, 병변 위치 정보인 제2 태그 정보는 생략될 수 있다. 즉, 태그드 영상은 병변의 유무 정보와 병리 진단 정보인 제1 태그 정보만을 가지거나 병변 유무 정보 및 병리 진단 정보인 제1 태그 정보와 병변 위치 정보인 제2 태그 정보를 갖는다.
한편, 본 명세서에서는 병변 유무 정보 및 병리 진단 정보인 제1 태그 정보만을 갖는 태그를 위크 태그(weak tag)라고 하고 제1 태그 정보와 함께 병변의 위치 정보까지 갖는 태그를 리치 태그(rich tag)라고 부르기로 한다. 또한, 위크 태그를 갖는 영상을 위크 태그 영상이라 하고 리치 태그를 갖는 영상을 리치 태그 영상이라 한다.
언태그드 영상 데이터베이스(110)는 전술한 바와 같은 태그 정보가 없는 언태그드 영상을 저장하는 수단으로서, 언태그드 영상은 클라이언트 단말기(200)로부터 수신되거나 기타 의료 영상 장비로부터 수집될 수 있으며 태그 정보가 없는 언태그드 영상만을 저장한다.
태그드 영상 데이터베이스(120)는 태그 정보를 갖는 태그드 영상만을 별도로 저장하는데 태그드 영상 또한 클라이언트 단말기(200)로부터 수신되거나 기타 의료 영상 장비로부터 수집될 수 있다.
분류기(130, classifier)는 입력 영상에 대한 분류 결과를 출력하는 기능을 수행한다. 이러한 분류기(130)는 입력되는 영상에 대한 패턴 혹은 특징 데이터(feature data)를 추출하고, 추출된 패턴 혹은 특징 데이터를 바탕으로 분류 결과를 확률적으로 예측하여 출력하도록 동작한다.
분류기(130)가 입력되는 영상에 대한 분류 결과를 보다 정확하게 예측하기 위해서는, 과거에 축적된 신뢰할 수 있는 분류 결과를 포함하는 영상을 기반으로 학습(learning)되는 것이 바람직하다. 이러한 학습은 후술하는 학습부(140)에 의해 이루어진다.
본 발명에서의 분류기(130)는 예컨대 종래 기술에 의해 알려진 인공 신경망(artificial neural network), 서포트 벡터 머쉰(Support Vector Machine,SVM) 등과 같은 학습 방법에 따라 학습부(140)에서 태그드 영상 데이터베이스(120)에 저장된 영상들을 참조하여 이를 주기적으로 학습하도록 함으로써 입력 영상에 대한 분류 결과를 보다 정확하게 판별할 수 있다.
도 3은 분류기(130)의 구성의 일실시예를 나타낸 도면이다.
도 3을 참조하면, 분류기(130)는 특징 추출부(131), 특징 벡터 변환부(132) 및 분류부(133)를 포함한다.
특징 추출부(131)는 입력되는 영상에 대한 특징 데이터(feature data)를 추출하는 기능을 수행하고, 특징 벡터 변환부(132)는 상기 추출된 특징 데이터를 특징 벡터로 변환하는 기능을 수행한다. 또한, 분류부(133)는 상기 특징 벡터에 기초하여 입력 영상에 대한 분류 결과를 출력하는 기능을 수행한다.
즉, 분류기(130)에 영상이 입력되면, 특징 추출부(131)는 입력 영상으로부터 입력 영상의 특징을 나타내는 특징 데이터를 추출하고 특징 벡터 변환부(132)는 추출된 특징 데이터를 미리 설정된 차원(dimension)의 특징 벡터로 변환한다. 그리고 분류부(133)는 특징 벡터에 기초하여 해당 영상에 대한 분류 결과를 확률값에 기초하여 출력한다.
이러한 분류기(130)가 동작하기 위해서는, 특징 데이터를 추출하기 위한 특징 추출 변수(feature extraction parameter)와 분류 결과를 예측하기 위한 분류 변수(classification parameter)를 포함하는데 이러한 특징 추출 변수와 분류 변수는 후술하는 학습부(140)에 의해 과거에 축적된 신뢰할 수 있는 분류 결과를 포함하는 영상 데이터에 기초하여 주기적으로 학습된다. 이러한 학습 방식에 대해서는 이하에서 학습부(140)에 대해서 함께 설명하기로 한다.
한편, 분류기(130)는 이러한 학습을 통해 최신 상태를 유지하고 있다가 입력되는 영상에 대해 특징 데이터를 추출하고 추출된 특징 데이터를 특징 벡터로 변환하고 변환된 특징 벡터에 대한 분류 결과를 판단하게 된다. 이 때 분류 결과는 본 발명에서는 제1 태그 정보와 같은 병변의 유무 정보 및 병변의 병리 진단 정보와 제2 태그 정보와 같은 병변의 위치 정보일 수 있다. 이 때, 병변의 유무 정보, 병리 진단 정보 및 병변의 위치 정보는 확률값에 기초하여 생성될 수 있다.
학습부(140)는 태그드 영상 데이터베이스(120)에 저장된 태그드 영상에 기초하여 상기 분류기(130)를 학습시키는 기능을 수행한다.
전술한 바와 같이, 분류기(130)는 특징 데이터를 추출하기 위한 특징 추출 변수와 분류 결과를 판단하기 위한 분류 변수를 포함하는데 학습기(140)는 기존의 데이터 즉, 태그드 영상 데이터베이스(120)에 저장되어 있는 태그드 영상을 통해 이들 변수를 주기적으로 또는 필요할 때마다 학습시킨다.
전술한 바와 같이 태그드 영상은 태그 정보를 갖는 영상을 의미하며, 태그 정보는 병변의 유무 및 병변의 병리 진단 정보를 나타내는 제1 태그 정보와 병변의 위치 정보를 나타내는 제2 태그 정보를 포함한다. 이 때, 분류기(130)의 보다 효과적인 학습을 위해서는 병변의 위치 정보까지 있는 제2 태그 정보를 이용하는 것이 바람직할 것이다.
일반적으로, 기존에 존재하는 의료 영상은 대부분 태그 정보가 없거나 병변의 유무 및 병변의 병리 진단 결과만을 나타내는 제1 태그 정보만을 갖는 경우가 대부분이고 병변의 위치 정보인 제2 태그 정보를 갖는 경우는 상대적으로 적은 편이다. 따라서, 적은 숫자의 제2 태그 정보만으로는 분류기(130)를 충분한 신뢰도를 가질 정도까지 학습시키기 어려울 것이지만, 본 발명은 적은 수의 제2 태그 정보와 다수의 제1 태그 정보를 함께 활용함으로써 분류기(130)를 학습시킬 수 있다.
즉, 학습부(140)는 제2 태그 정보 즉 병변의 위치 정보까지 갖는 태그 영상에 기초하여 특징 추출부(131)에서 사용할 특징 추출 변수를 추정하고, 제1 태그 정보와 제2 태그 정보 중 적어도 어느 하나를 갖는 태그 영상을 이용하여 특징 벡터 변환부(132)에서의 변환 변수를 추정한 후, 제1 태그 정보와 제2 태그 정보 중 적어도 어느 하나를 갖는 태그 영상을 이용하여 분류부(133)에서 사용할 분류 변수를 추정하도록 함으로써 다수의 제1 태그 정보와 소수의 제2 태그 정보를 함께 사용하여 분류기(130)를 학습시킬 수 있다.
한편, 각각의 변수들을 추정하는 구체적인 방법은 종래 알려져 있는 학습 알고리듬을 이용할 수 있으며 이 자체는 본 발명의 직접적인 목적은 아니므로 여기에서는 상세 설명은 생략한다.
또한, 전술한 학습부(140)에서의 학습 방법 또한 예시적인 것이며 기타 다른 방법의 학습 방법을 사용할 수도 있음은 물론이다.
다음으로, 다시 도 2를 참조하여 영상 처리부(150)에 대해 설명한다.
영상 처리부(150)는 쿼리 영상을 수신하여 언태그드 영상 데이터베이스에 저장하는 기능을 수행한다. 쿼리(query) 영상은 클라이언트 단말기(200)로부터 전송되며, 쿼리 영상은 병변의 유무와 병변의 병리 진단 결과 또는 병변의 위치 등과 같은 병변 정보를 분석할 대상이 되는 의료 영상으로서, 태그 정보가 없는 언태그드 영상이거나 병변의 유무에 대한 제1 태그 정보만을 갖는 태그 영상이다.
영상 처리부(150)는 쿼리 영상을 수신하면 이를 언태그드 영상 데이터베이스(110)에 저장하는데, 이를 위해 해당 쿼리 영상을 전처리(pre-process)하고 언태그드 영상 데이터베이스(110)에 저장하기에 적합한 형태로 구조화(structuring)하는 과정을 수행하는 것이 바람직하다.
여기에서, 전처리 과정으로서는, 예컨대 쿼리 영상에 대한 신호(raw data)를 고품질의 컬러영상신호(예컨대, YCbCr)로 변환하기 위한 보간(interpolation), 보정(color/gamma correction), 변환(color space conversion) 등의 과정을 포함할 수 있다. 또한, 예컨대 히스토그램 이퀄라이제이션(histogram equalization), 이미지 필터링(image filtering), 에지/컨투어 검출(edge/contour detection) 등과 같은 과정을 포함할 수 있다. 이러한 전처리 과정은 필요에 따라 여러 세부 단계의 조합으로 구성할 수 있으며, 클라이언트 단말기(200)에서 처리하도록 할 수도 있다.
영상 처리부(150)는 전처리 및 구조화 과정을 거친 영상을 분류기(130)로 전송하고, 분류기(130)는 전술한 바와 같이 동작함으로써 쿼리 영상에 대한 분류 결과를 출력한다.
분석부(160)는 분류기(130)로부터 출력되는 쿼리 영상에 대한 분류 결과에 기초하여 쿼리 영상에 대한 분석 결과를 생성하는 기능을 담당한다. 또한, 분석부(160)는 생성된 분석 결과를 클라이언트 단말기(200)로 전송한다.
전술한 바와 같이, 분류기(130)는 입력된 쿼리 영상에 대해 분류 결과를 출력하는데 분류 결과는 병변의 유무를 나타내는 병변 유무 정보 및 병변의 병리 진단 결과 정보이거나 이들 정보와 함께 병변의 위치를 나타내는 병변 위치 정보를 확률값으로 출력할 수 있다. 분석부(160)는 이러한 분류 결과를 전달받아 분류 결과와 관련된 기타 분석 정보를 생성, 처리 및 가공하여 쿼리 영상에 대한 최종 분석 결과를 생성하고 이를 클라이언트 단말기(200)로 전송한다.
여기에서, 기타 분석 정보는 쿼리 영상에 대한 병변 위치의 갯수, 병변 위치의 갯수를 고려한 최종 병리 진단 결과를 포함하는 종합적인 진단 정보(이상 여부 등)를 포함할 수 있다. 또한, 분류기(130)에서 출력되는 병변의 확률값에 기초하여 최종 병리 진단 결과 정보를 확률값으로 표현하여 포함할 수도 있다.
도 4는 도 1 내지 도 3에서 설명한 본 발명에 의한 병리 진단 예측 시스템(100)에서 수행되는 방법의 일실시예를 나타낸 흐름도이다.
도 4를 참조하면, 우선 클라이언트 단말기(200)는 쿼리 영상 즉, 병리 진단 예측 시스템(100)에서 분석 대상이 되는 의료 영상을 병리 진단 예측 시스템(100)으로 전송한다(S100).
병리 진단 예측 시스템(100)의 퀴리 영상 처리부(150)는 쿼리 영상을 수신하고 전술한 바와 같이 소정의 전처리 과정 및 구조화 과정을 수행하고, 쿼리 영상을 언태그드 영상 데이터베이스(110)에 저장한다(S110, S120). 그리고, 영상 처리부(150)는 쿼리 영상을 분류기(130)로 전달한다.
다음으로, 분류기(130)는 쿼리 영상을 수신하고 이를 전술한 바와 같은 과정을 통해 분류 결과를 출력한다(S130).
출력된 분류 결과는 분석부(140)로 전송되고 분석부(140)는 전술한 바와 같이 분석 결과를 생성하고(S140), 생성된 분석 결과를 클라이언트 단말기(200)로 전송한다(S150).
클라이언트 단말기(200)는 분석 결과를 수신하면, 수신된 분석 결과를 파싱하는 등의 필요한 처리를 수행하고(S160) 예컨대 디스플레이부를 통해 표시하여 사용자에게 제공하도록 한다(S170).
도 5는 본 발명에 의한 병리 진단 예측 시스템(100)에서 이루어지는 분류기(130)의 학습 과정의 일예를 설명하기 위한 흐름도이다.
도 5를 참조하면, 병리 진단 예측 시스템(100)은 클라이언트 단말기(200)로부터 태그드 영상을 수신한다(S200). 여기서 태그드 영상은 전술한 바와 같이 병변의 유무 정보 및 병변의 병리 진단 정보인 제1 태그 정보만을 갖는 위크 태그 영상이거나 제1 태그 정보 이외에 병변의 위치 정보인 제2 태그 정보를 갖는 리치 태그 영상일 수 있다.
이러한 태그드 영상은 퀴리 영상 처리부(150)에서 전처리 및 구조화 과정을 거쳐 태그드 영상 데이터베이스(120)에 저장된다(S210,S220).
그리고, 학습부(150)는 태그드 영상 데이터베이스(120)에 새로 저장된 태그드 영상을 포함하는 태그드 영상에 기초하여 분류기(130)를 학습시킨다(S230). 이 학습 과정은 전술한 바와 같이 위크 태그 영상 또는 리치 태그 영상을 이용하여 분류기(130)에서 사용되는 특징 추출 변수, 변환 변수, 분류 변수를 학습시키는 것을 의미한다. 또한, 분류기(130)의 학습 과정은 검증용 데이터를 통해 학습이 잘 되었는지를 평가하기 위한 검증(verification) 과정을 포함하며 이러한 학습/검증 과정을 반복 수행한다.
이러한 과정이 완료되면 분류기(130)가 최신판으로 업데이트된다(S240).
도 6은 본 발명에 의한 병리 진단 예측 시스템(100)에서 이루어지는 분류기(130)의 학습 과정의 또 다른 예를 설명하기 위한 흐름도이다.
도 6의 실시예는 사용자 단말기(200)가 병리 진단 예측 시스템(100)의 언태그드 영상 데이터베이스(110)에서 언태그드 영상을 획득하고(S300) 진단자가 해당 언태그드 영상에 대해 태그 정보를 기록하는 형태로 태그 정보를 부착(S310)한다는 점을 제외하고 이후의 과정은 도 5의 실시예와 동일하다.
도 6의 실시예에 의하면 언태그드 영상을 이용하여 진단자의 태그 정보 부착에 의해 태그드 영상을 확보하고 이를 이용하여 분류기(130)를 학습시킬 수 있게 된다.
이상에서, 본 발명의 바람직한 실시예를 참조하여 본 발명을 설명하였으나 본 발명은 상기 실시예에 한정되는 것이 아님은 물론이다.

Claims (10)

  1. 의료 영상 분석 기반의 병리 진단 예측 시스템으로서,
    태그 정보가 없는 언태그드 영상을 저장하는 언태그드 영상 데이터베이스;
    태그 정보를 갖는 태그드 영상을 저장하는 태그드 영상 데이터베이스;
    입력 영상에 대한 분류 결과를 출력하는 분류기;
    상기 태그드 영상 데이터베이스에 저장된 태그드 영상에 기초하여 상기 분류기를 학습시키는 학습부;
    쿼리 영상을 수신하여 언태그드 영상 데이터베이스에 저장하고 분류기로 전송하는 영상 처리부; 및
    상기 분류기로부터 출력되는 쿼리 영상에 대한 분류 결과에 기초하여 쿼리 영상에 대한 분석 결과를 생성하는 분석부
    를 포함하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  2. 제1항에 있어서,
    상기 태그 정보는 해당 영상에 대한 병변 유무 및 해당 병변의 병리 진단 결과를 나타내는 제1 태그 정보인 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  3. 제2항에 있어서,
    상기 태그 정보는 해당 영상에 대한 병변의 위치를 나타내는 제2 태그 정보를 더 포함하는 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  4. 제1항에 있어서,
    상기 분류기는, 입력되는 영상에 대한 특징 데이터를 추출하고, 추출된 특징 데이터에 기초하여 병리 진단의 분류 결과를 확률적으로 예측하여 출력하는 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  5. 제4항에 있어서,
    상기 분류기는,
    입력되는 영상에 대한 특징 데이터를 추출하는 특징 추출부;
    상기 추출된 특징 데이터를 특징 벡터로 변환하는 특징 벡터 변환부; 및
    상기 특징 벡터에 기초하여 입력 영상에 대한 병리 진단의 분류 결과를 출력하는 분류부
    를 포함하는 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  6. 제5항에 있어서,
    상기 특징 추출부에서 특징 데이터를 추출하기 위한 특징 추출 변수와, 상기 특징 벡터 변환부에서 특징 벡터를 변환하기 위한 변환 변수와, 상기 분류부에서 분류 결과를 판단하기 위한 분류 변수는 상기 태그드 영상 데이터베이스에 저장된 태그 영상을 통해 학습부에 의해 학습되는 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  7. 제6항에 있어서,
    상기 학습부는,
    태그 영상의 제2 태그 정보에 의해 특징 추출 변수를 추정하고,
    태그 영상의 제1 태그 정보 및 제2 태그 정보 중 적어도 어느 하나에 의해 상기 변환 변수와 상기 분류 변수를 추정함으로써 상기 분류기를 학습시키는 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  8. 제1항에 있어서,
    상기 분석부에서 생성되는 분석 결과는, 분류기에서 출력된 병리 진단의 분류 결과 및 상기 병리 진단의 분류 결과와 관련된 정보를 포함하는 최종 병리 진단 정보를 포함하는 것을 특징으로 하는 의료 영상 분석 기반의 병리 진단 예측 시스템.
  9. 제1항 내지 제8항 중 어느 한 항에 의한 의료 영상 분석 기반의 병리 진단 예측 시스템에서 병리 진단을 예측하는 방법에 있어서,
    영상 처리부가 쿼리 영상을 수신하여 언태그드 영상 데이터베이스에 저장하고 분류기로 전송하는 제1 단계;
    분류기가 입력되는 영상에 대해 병리 진단의 분류 결과를 출력하는 제2 단계; 및
    분석부가 출력된 병리 진단의 분류 결과에 기초하여 분석 결과를 생성하는 제3 단계
    를 포함하는 병리 진단 예측 방법.
  10. 제9항에 있어서,
    제1 단계 이전에,
    영상 처리부가 태그드 영상을 수신하여 태그드 영상 데이터베이스에 전송하는 단계; 및
    학습부가 태그드 영상에 저장된 태그드 영상에 기초하여 분류기를 학습시키는 단계
    를 더 포함하는 것을 특징으로 하는 병리 진단 예측 방법.
PCT/KR2015/009311 2015-07-10 2015-09-03 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법 WO2017010612A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150098659 2015-07-10
KR10-2015-0098659 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010612A1 true WO2017010612A1 (ko) 2017-01-19

Family

ID=57757478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009311 WO2017010612A1 (ko) 2015-07-10 2015-09-03 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법

Country Status (1)

Country Link
WO (1) WO2017010612A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629777A (zh) * 2018-04-19 2018-10-09 麦克奥迪(厦门)医疗诊断***有限公司 一种数字病理全切片图像病变区域自动分割方法
CN110444297A (zh) * 2019-08-06 2019-11-12 重庆仙桃前沿消费行为大数据有限公司 医疗信息推荐方法、装置、设备及可读存储介质
US11037295B2 (en) 2018-11-09 2021-06-15 Oxipit, Uab Methods, systems and use for detecting irregularities in medical images by means of a machine learning model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090002123A (ko) * 2007-06-18 2009-01-09 금오공과대학교 산학협력단 영상 기반의 아토피 진단 지원 방법 및 장치
KR20100110840A (ko) * 2007-12-27 2010-10-13 제임스 쥐. 막스 워크 플로우 프로세싱을 위한 시스템 및 방법
KR101352999B1 (ko) * 2013-04-03 2014-02-05 주식회사 인피니트헬스케어 특성정보를 활용하는 의료영상 북마크 장치 및 방법
KR20140101205A (ko) * 2013-02-08 2014-08-19 삼성전자주식회사 효율적인 진단 정보 제공을 통한 진단 지원 장치 및 방법과, 진단 시스템
JP2014521137A (ja) * 2011-06-27 2014-08-25 コーニンクレッカ フィリップス エヌ ヴェ 画像データにおける所見の解剖学的タグ付けの方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090002123A (ko) * 2007-06-18 2009-01-09 금오공과대학교 산학협력단 영상 기반의 아토피 진단 지원 방법 및 장치
KR20100110840A (ko) * 2007-12-27 2010-10-13 제임스 쥐. 막스 워크 플로우 프로세싱을 위한 시스템 및 방법
JP2014521137A (ja) * 2011-06-27 2014-08-25 コーニンクレッカ フィリップス エヌ ヴェ 画像データにおける所見の解剖学的タグ付けの方法
KR20140101205A (ko) * 2013-02-08 2014-08-19 삼성전자주식회사 효율적인 진단 정보 제공을 통한 진단 지원 장치 및 방법과, 진단 시스템
KR101352999B1 (ko) * 2013-04-03 2014-02-05 주식회사 인피니트헬스케어 특성정보를 활용하는 의료영상 북마크 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629777A (zh) * 2018-04-19 2018-10-09 麦克奥迪(厦门)医疗诊断***有限公司 一种数字病理全切片图像病变区域自动分割方法
US11037295B2 (en) 2018-11-09 2021-06-15 Oxipit, Uab Methods, systems and use for detecting irregularities in medical images by means of a machine learning model
CN110444297A (zh) * 2019-08-06 2019-11-12 重庆仙桃前沿消费行为大数据有限公司 医疗信息推荐方法、装置、设备及可读存储介质

Similar Documents

Publication Publication Date Title
WO2020207377A1 (zh) 一种图像识别模型训练及图像识别方法、装置及***
WO2018074739A1 (ko) 뇌졸중 진단 및 예후 예측 방법 및 시스템
WO2017095014A1 (ko) Dnn 학습을 이용한 세포이상 여부 진단시스템 및 그 진단관리 방법
WO2017022882A1 (ko) 의료 영상의 병리 진단 분류 장치 및 이를 이용한 병리 진단 시스템
WO2019088462A1 (ko) 혈압 추정 모델 생성 시스템 및 방법과 혈압 추정 시스템 및 방법
WO2017022908A1 (ko) 심층신경망을 이용한 골 연령 산출방법 및 프로그램
WO2019103440A1 (ko) 피검체의 의료 영상의 판독을 지원하는 방법 및 이를 이용한 장치
WO2019132168A1 (ko) 수술영상데이터 학습시스템
US20170061608A1 (en) Cloud-based pathological analysis system and method
WO2015072818A1 (ko) 뇌질환 진단 서비스 장치 및 뇌질환 진단 서비스 방법
WO2019098415A1 (ko) 자궁경부암에 대한 피검체의 발병 여부를 판정하는 방법 및 이를 이용한 장치
CN109460717B (zh) 消化道共聚焦激光显微内镜病变图像识别方法及装置
WO2016159726A1 (ko) 의료 영상으로부터 병변의 위치를 자동으로 감지하는 장치 및 그 방법
WO2013151289A1 (ko) 가시적 무손실 압축을 이용한 의료 영상 압축 시스템 및 방법
WO2017010612A1 (ko) 의료 영상 분석 기반의 병리 진단 예측 시스템 및 방법
CN112309566A (zh) 影像智能识别与医学智能推理的远程自动诊断***及方法
WO2021034138A1 (ko) 치매 평가 방법 및 이를 이용한 장치
WO2020032562A2 (ko) 생체 이미지 진단 시스템, 생체 이미지 진단 방법, 및 이를 수행하기 위한 단말
WO2013077558A1 (ko) 뇌전도를 이용한 로봇기반 자폐진단 장치 및 그 방법
WO2022197044A1 (ko) 뉴럴 네트워크를 이용한 방광병변 진단 방법 및 그 시스템
WO2014157796A1 (ko) 진단 보조용 내시경 시스템 및 그 제어 방법
CN111226287B (zh) 用于分析医学成像数据集的方法、***、程序产品和介质
WO2020179950A1 (ko) 딥러닝 기반 뇌 질환 진행 예측 방법 및 장치
WO2021054700A1 (ko) 치아 병변 정보 제공 방법 및 이를 이용한 장치
WO2016204535A1 (ko) 의료 검사를 위한 이미지 분석 관리 방법 및 서버

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898373

Country of ref document: EP

Kind code of ref document: A1