WO2017010542A1 - 吸蔵量推定装置 - Google Patents

吸蔵量推定装置 Download PDF

Info

Publication number
WO2017010542A1
WO2017010542A1 PCT/JP2016/070813 JP2016070813W WO2017010542A1 WO 2017010542 A1 WO2017010542 A1 WO 2017010542A1 JP 2016070813 W JP2016070813 W JP 2016070813W WO 2017010542 A1 WO2017010542 A1 WO 2017010542A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
amount
occlusion
sox
exhaust
Prior art date
Application number
PCT/JP2016/070813
Other languages
English (en)
French (fr)
Inventor
輝男 中田
隆行 坂本
長岡 大治
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201680041455.5A priority Critical patent/CN107835892B/zh
Publication of WO2017010542A1 publication Critical patent/WO2017010542A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters

Definitions

  • the present invention relates to an occlusion amount estimation device, and more particularly to estimation of an NOx occlusion amount in a NOx occlusion reduction type catalyst.
  • a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine.
  • the NOx occlusion reduction catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and harmless NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. And release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purge that makes the exhaust gas rich must be periodically performed to recover the NOx occlusion capability (see, for example, Patent Document 1). .
  • the NOx occlusion reduction type catalyst also occludes sulfur oxide (hereinafter referred to as SOx) contained in the exhaust gas.
  • SOx sulfur oxide
  • the SOx occlusion amount increases, there is a problem that the NOx purification ability of the NOx occlusion reduction type catalyst is lowered. For this reason, when the SOx occlusion amount reaches a predetermined amount, so-called SOx purge that raises the exhaust gas temperature to the SOx desorption temperature is periodically performed in order to desorb SOx from the NOx occlusion reduction catalyst and recover from sulfur poisoning. It is necessary to do this (for example, see Patent Document 2).
  • the NOx occlusion characteristic is impaired as the SOx occlusion amount increases.
  • the knowledge that this NOx occlusion characteristic changes depending on the catalyst temperature as well as the SOx occlusion amount was obtained. That is, the knowledge that the NOx occlusion characteristics change according to the catalyst temperature even when the SOx occlusion amount does not change was obtained by experiments.
  • the occlusion amount estimation device of the present disclosure aims to improve the accuracy of estimation of the NOx occlusion amount of the NOx occlusion reduction type catalyst.
  • An occlusion amount estimation device is provided in an exhaust system of an internal combustion engine.
  • the NOx occlusion reduction type catalyst is configured to occlude NOx in exhaust gas in an exhaust lean state and reduce and purify NOx occluded in an exhaust rich state.
  • a storage amount estimation device, a NOx equivalent acquisition means for acquiring a NOx equivalent of SOx stored in the NOx storage reduction catalyst based on a temperature of the NOx storage reduction catalyst, and the NOx storage reduction catalyst Total NOx occlusion amount estimation means for estimating the total NOx occlusion amount occluded in the NOx occlusion reduction catalyst based on the amount of NOx accumulated in the NOx and the NOx equivalent.
  • the storage amount estimation device of the present disclosure it is possible to improve the accuracy of estimation of the NOx storage amount of the NOx storage reduction catalyst.
  • FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment.
  • FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment.
  • FIG. 3 is a block diagram showing the MAF target value setting process during SOx purge lean control according to the present embodiment.
  • FIG. 4 is a block diagram showing a target injection amount setting process during SOx purge rich control according to the present embodiment.
  • FIG. 5 is a timing chart illustrating the catalyst temperature adjustment control of the SOx purge control according to the present embodiment.
  • FIG. 6 is a block diagram showing the end processing of the SOx purge control according to the present embodiment.
  • FIG. 7 is a timing chart illustrating the NOx purge control according to this embodiment.
  • FIG. 1 is an overall configuration diagram showing an exhaust purification system according to the present embodiment.
  • FIG. 2 is a timing chart for explaining the SOx purge control according to the present embodiment.
  • FIG. 3 is a block diagram showing the MAF target value setting process during SOx
  • FIG. 8 is a block diagram showing the start / end processing of the NOx purge control according to this embodiment.
  • FIG. 9 is a block diagram showing the NOx accumulation rate calculation process of the NOx occlusion amount calculation unit according to the present embodiment.
  • FIG. 10 is a conceptual diagram of MAP schematically showing the conversion rate of the catalyst temperature and the NOx equivalent according to the present embodiment.
  • FIG. 11 is a block diagram showing the total NOx storage amount calculation process of the NOx storage amount calculation unit according to the present embodiment.
  • FIG. 12 is a conceptual diagram of the MAP schematically showing the relationship between the NOx accumulation rate and the second storage efficiency according to the present embodiment.
  • FIG. 13 is a block diagram showing the MAF target value setting process during NOx purge lean control according to this embodiment.
  • FIG. 14 is a block diagram showing a target injection amount setting process during NOx purge rich control according to the present embodiment.
  • FIG. 15 is a block diagram showing processing for correcting the injection amount of the in-cylinder injector according to the present embodiment.
  • FIG. 16 is a flowchart for explaining the calculation processing of the learning correction coefficient of the in-cylinder injector according to the present embodiment.
  • FIG. 17 is a block diagram showing MAF correction coefficient setting processing according to this embodiment.
  • each cylinder of a diesel engine (hereinafter simply referred to as “engine”) 10 is provided with an in-cylinder injector 11 that directly injects high-pressure fuel that is stored in a common rail (not shown) into each cylinder. Yes.
  • the fuel injection amount and fuel injection timing of each in-cylinder injector 11 are controlled according to an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.
  • ECU electronice control unit
  • An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B.
  • an air cleaner 14 an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side.
  • MAF sensor 40 intake air amount sensor
  • the exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side.
  • reference numeral 41 denotes an engine speed sensor
  • reference numeral 42 denotes an accelerator opening sensor
  • reference numeral 46 denotes a boost pressure sensor.
  • the EGR (Exhaust gas recirculation) device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools the EGR gas, and an EGR valve 24 that adjusts the EGR amount.
  • the exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A.
  • the exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust injector 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. Yes.
  • the oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure.
  • a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
  • the filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. .
  • the filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter regeneration is performed to remove the combustion.
  • Filter regeneration is performed by supplying unburned fuel to the upstream oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
  • the first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31.
  • the second exhaust temperature sensor 44 is provided between the NOx storage reduction catalyst 32 and the filter 33 and detects the exhaust temperature flowing into the filter 33.
  • the NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and detects the NOx value and lambda value (hereinafter also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 46 are input to the ECU 50. Further, the ECU 50 partially includes a filter regeneration control unit 51, a SOx purge control unit 60, a NOx purge control unit 70, a MAF follow-up control unit 80, an injection amount learning correction unit 90, and a MAF correction coefficient calculation unit 95. As a functional element. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
  • the filter regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount exceeds a predetermined upper limit threshold. And the regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the regeneration flag F DPF is turned on, an instruction signal for performing exhaust pipe injection is transmitted to the exhaust injector 34, or an instruction signal for performing post injection is transmitted to each in-cylinder injector 11, and the exhaust gas is exhausted. The temperature is raised to the PM combustion temperature (for example, about 550 ° C.).
  • the regeneration flag F DPF is, PM deposition estimation amount is turned off drops to a predetermined lower limit threshold indicating the burn off (determination threshold value) (see time t 2 in FIG. 2).
  • the SOx purge control unit 60 makes the exhaust rich and raises the exhaust temperature to a sulfur desorption temperature (for example, about 600 ° C.) to recover the NOx occlusion reduction type catalyst 32 from SOx poisoning (hereinafter, this control). (Referred to as SOx purge control).
  • FIG. 2 shows a timing chart of the SOx purge control of this embodiment.
  • SOx purge flag F SP to start SOx purge control is turned on at the same time off the regeneration flag F DPF (see time t 2 in FIG. 2).
  • F DPF regeneration flag
  • the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control.
  • SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
  • FIG. 3 is a block diagram illustrating a process for setting the MAF target value MAF SPL_Trgt during the SOx purge lean control.
  • the first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q,
  • the excess air ratio target value ⁇ SPL_Trgt (first target excess air ratio) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.
  • the excess air ratio target value ⁇ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 62. Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt during the SOx purge lean control based on the following formula (1).
  • Equation (1) Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
  • MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63.
  • the ramp processing unit 63 reads the ramp coefficient from each of the ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF SPL_Trgt_Ramp to which the ramp coefficient is added as the valve control unit 64. To enter.
  • the valve control unit 64 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF SPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF SPL_Trgt is set based on the excess air ratio target value ⁇ SPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each in-cylinder injector 11.
  • the air system operation is feedback-controlled based on the MAF target value MAF SPL_Trgt .
  • the MAF target value MAF SPL_Trgt can be set by feedforward control. It is possible to effectively eliminate influences such as deterioration, characteristic changes, and individual differences.
  • FIG. 4 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control.
  • the second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ SPR_Trgt (second target excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt during the SOx purge rich control based on the following formula (2).
  • MAF SPL_Trgt is the MAF target value at the SOx purge lean, and is input from the above-described MAF target value calculation unit 62.
  • Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later,
  • Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and
  • Maf_corr is a MAF correction coefficient described later. Show.
  • the target injection amount Q SPR_Trgt calculated by the injection amount target value calculation unit 66 is transmitted as an injection instruction signal to the exhaust injector 34 or each in-cylinder injector 11 when a SOx purge rich flag F SPR described later is turned on.
  • the target injection amount Q SPR_Trgt is set based on the air excess rate target value ⁇ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of each in-cylinder injector 11. It is supposed to be.
  • the sensor value of the lambda sensor is not used. The exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.
  • the target injection amount Q SPR_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.
  • the exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx that performs exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG.
  • the purge rich flag F SPR is controlled by alternately switching on / off (rich / lean).
  • the SOx purge rich flag FSPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).
  • the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like.
  • an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.
  • the interval T F_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ⁇ T between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag FSPR is turned off, and the time integral value of the deviation ⁇ T are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ⁇ T.
  • the target catalyst temperature is set at a temperature at which SOx can be removed from the NOx storage reduction catalyst 32.
  • the estimated catalyst temperature is, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, and the oxidation catalyst 31. It may be estimated based on the exothermic reaction in the NOx occlusion reduction type catalyst 32 or the like.
  • the injection period TF_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from the map referred to based on the operating state of the engine 10,
  • the interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.
  • FIG. 6 is a block diagram showing the end processing of the SOx purge control.
  • the SOx occlusion amount calculation unit 67 is based on the following mathematical formula (3), and is calculated based on the following equation (3).
  • the total SOx occlusion amount when it is assumed that the entire amount is generated in the exhaust and occluded in the occlusion material of the NOx occlusion reduction type catalyst 32 SOx_TTL (g) is calculated.
  • the amount of SOx SOx _Oil from SOx amount SOx _Fuel and engine oil derived fuels is calculated on the basis of the operating state of the internal combustion engine.
  • the SOx release amount SOx_out is calculated based on the catalyst temperature of the NOx storage reduction catalyst 32 and the like.
  • the catalyst temperature is based on the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, the HC / CO heat generation amount inside the oxidation catalyst 31 and the NOx storage reduction catalyst 32, the heat release amount to the outside, and the like. Can be estimated.
  • the SOx release amount SOx_out is expressed as a negative value.
  • the total amount (i.e., total amount of SOx occlusion SOx_ TTL) is not necessarily occluded in the occlusion material of the NOx occlusion-reduction catalyst 32, the other materials and precious metals other than occlusion material Occluded.
  • SOx occlusion amount calculation unit 67 as shown in the following formula (4), the total amount of SOx occlusion SOx_ TTL, predetermined storage rate coefficient C a (0 ⁇ C ⁇ 1) The multiplied value is estimated as the SOx occlusion amount SOx_STR (g) in the occlusion material of the NOx occlusion reduction type catalyst 32.
  • the occlusion ratio coefficient C may be a constant obtained in advance through experiments or the like, or may be a variable read from a map referenced by the catalyst temperature and the heat history.
  • the SOx occlusion amount SOx_STR in the occlusion material of the NOx occlusion reduction catalyst 32 is estimated in consideration of the SOx adsorption amount other than the occlusion material, so that the NOx occlusion reduction catalyst 32 of the NOx occlusion reduction catalyst 32 can be more accurately estimated.
  • the SOx occlusion amount in the occlusion material can be estimated.
  • SOx purge control termination instruction section 68 (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, (2) When the elapsed time measured from the start of the SOx purge control reaches a predetermined upper threshold time, (3) the SOx occlusion amount SOx_STR in the occlusion material of the NOx occlusion reduction type catalyst 32 calculated by the SOx occlusion amount calculation unit 67 is If any of the conditions in the case of lowered to a predetermined threshold value indicating a SOx removal success is established, SOx purge flag F SP to clear the end the SOx purge control (time t 4 in FIG. 2, the time t n see FIG. 5 ).
  • the SOx occlusion amount SOx_STR can be estimated with high accuracy, so that the end of the SOx purge process is appropriately controlled by performing control using the SOx occlusion amount SOx_STR. Can do.
  • the cumulative injection amount and the upper limit of the elapsed time are set as the SOx purge control end condition, so that the fuel consumption is excessive when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented.
  • NOx purge control restores the NOx storage capability of the NOx storage reduction catalyst 32 by making the exhaust atmosphere rich and detoxifying and releasing NOx stored in the NOx storage reduction catalyst 32 by reduction purification. Control (hereinafter, this control is referred to as NOx purge control) is executed.
  • FIG. 8 is a block diagram showing the start / end processing of the NOx purge control.
  • the NOx occlusion amount calculation unit 77 includes a first operation unit 77a and a second operation unit 77c, and calculates the amount of SOx occluded in the NOx occlusion reduction type catalyst 32 (SOx occlusion amount).
  • SOx occlusion amount The total NOx occlusion amount considered ( NOx_STR , see FIG. 11) is estimated.
  • the first computing unit 77 a is configured to store the catalyst temperature of the NOx storage reduction catalyst 32, the SOx storage amount ( SOx_STR ) of the NOx storage reduction catalyst 32, and the NOx stored in the NOx storage reduction catalyst 32.
  • NOx storage rate ( NOx_LEV ) stored in the NOx storage reduction catalyst 32 is acquired based on the amount of NOx storage amount NOx_STR_old and the maximum NOx storage amount in the NOx storage reduction catalyst 32.
  • the first computing unit 77a acquires the NOx equivalent of SOx stored in the NOx storage reduction catalyst 32.
  • the NOx equivalent means a NOx occlusion amount equivalent to the SOx occlusion amount.
  • the 1st calculating part 77a acquires NOx equivalent according to catalyst temperature with reference to conversion factor MAP77b.
  • the conversion rate MAP77b defines the relationship between the conversion rate of the SOx occlusion amount to the NOx equivalent and the catalyst temperature.
  • the conversion factor corresponding to the catalyst temperature a ° C. is 0.5.
  • the first calculation unit 77a obtains the NOx equivalent by multiplying the SOx occlusion amount by the conversion rate at the catalyst temperature.
  • the first calculator 77a acquires 0.5 g / L as the NOx equivalent.
  • the first computing unit 77a uses the NOx accumulation amount ( NOx_STR_old ) when acquiring the NOx accumulation rate.
  • This NOx accumulation amount is calculated by subtracting the NOx reduction amount from the total NOx occlusion amount.
  • the total NOx occlusion amount used here is the previous value of the total NOx occlusion amount calculated by the NOx occlusion amount calculation unit 77.
  • the NOx reduction amount is the product of the air flow rate during NOx purge control and the NOx reduction efficiency of the NOx storage reduction catalyst 32.
  • a model formula or MAP that defines the reduction efficiency is created based on actually measured data and the NOx reduction efficiency is acquired.
  • the first calculation unit 77a calculates the NOx accumulation rate based on the NOx accumulation amount, the NOx equivalent amount, and the maximum NOx occlusion amount. For example, the first calculation unit 77a obtains an addition value of the NOx accumulation amount and the NOx equivalent, and obtains the ratio of the obtained addition value to the maximum NOx occlusion amount as the NOx accumulation rate.
  • the maximum NOx occlusion amount also changes according to the catalyst temperature. For this reason, the 1st calculating part 77a acquires the largest NOx occlusion amount according to catalyst temperature from a model formula or MAP.
  • the second calculator 77c estimates the total NOx occlusion amount ( NOx_STR ) based on the catalyst temperature, MAF value, NOx accumulation rate ( NOx_LEV ), and engine outlet NOx amount. For example, the second calculation unit 77c acquires the first storage efficiency based on the catalyst temperature and the intake air amount by referring to the first storage efficiency MAP77d that defines the relationship between the catalyst temperature and the MAF value and the first storage efficiency. . Similarly, the second calculation unit 77c refers to the second storage efficiency MAP 77e that defines the relationship between the NOx storage rate degree and the MAF value and the second storage efficiency, so that the second storage unit based on the NOx storage rate degree and the MAF value. Get efficiency. Further, the second calculation unit 77c estimates the total NOx storage amount by multiplying the engine outlet NOx amount by the first storage efficiency and the second storage efficiency.
  • the NOx accumulation rate of the symbol b is determined based on the addition value obtained by adding the NOx accumulation amount and the NOx equivalent.
  • the NOx accumulation rate of the symbol b ′ is determined based only on the NOx accumulation amount without considering the NOx equivalent. That is, the difference between the NOx accumulation rate b and the NOx accumulation rate b ′ corresponds to the change in the accumulation rate due to the NOx equivalent (SOx poisoning). Therefore, it can be said that the second occlusion efficiency of the symbol c is higher in accuracy than the second occlusion efficiency of the symbol c ′ because the SOx poisoning amount corresponding to the catalyst temperature is taken into consideration.
  • the set of the second calculation unit 77c and the first calculation unit 77a is based on the NOx accumulation amount ( NOx_STR_old ) and the NOx equivalent.
  • the total NOx occlusion amount occluded in the NOx occlusion reduction type catalyst 32 is estimated. Since the NOx equivalent is determined based on the SOx occlusion amount and the catalyst temperature, an appropriate value corresponding to the catalyst temperature can be acquired. As a result, the estimation accuracy of the NOx occlusion amount in the NOx occlusion reduction type catalyst 32 can be improved.
  • the total amount of SOx occlusion SOx_ TTL without since the SOx occlusion amount SOx_ STR which is estimated to be occluded by the occluding material of the NOx occlusion-reduction catalyst 32 is used in the calculation, also in this respect The estimation accuracy of the NOx occlusion amount can be improved.
  • the conversion rate to NOx equivalent corresponding to the catalyst temperature is acquired from the conversion rate MAP77b, and the NOx equivalent is acquired by multiplying the acquired conversion rate by the SOx occlusion amount.
  • the conversion rate MAP may be a three-dimensional MAP with the catalyst temperature and the SOx occlusion amount as inputs. If comprised in this way, the NOx equivalent which considered each of catalyst temperature and SOx occlusion amount can be acquired, and the estimation precision of NOx occlusion amount can be improved further.
  • NOx purge start / end instruction section 78 the following cases (1) to (3), check the NOx purge flag F NP starting the NOx purge control.
  • a predetermined threshold value reference time t 1 in FIG. 7.
  • NOx purification by the NOx occlusion reduction type catalyst 32 calculated from the NOx emission amount on the upstream side of the catalyst estimated from the operating state of the engine 10 and the NOx amount on the downstream side of the catalyst detected by the NOx / lambda sensor 45 When the rate is lower than a predetermined threshold.
  • the NOx occlusion amount NOx_STR can be estimated with high accuracy. Therefore, the start of the NOx purge process is appropriately controlled by performing control using the NOx occlusion amount NOx_STR. be able to.
  • the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control.
  • NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the third target excess air ratio to the fourth target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9).
  • the details of the NOx purge lean control and the NOx purge rich control will be described below.
  • FIG. 13 is a block diagram showing processing for setting the MAF target value MAF NPL_Trgt during NOx purge lean control.
  • the third target excess air ratio setting map 71 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ NPL_Trgt (third excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air ratio setting map 71 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 72. Entered. Further, the MAF target value calculation unit 72 calculates the MAF target value MAF NPL_Trgt during NOx purge lean control based on the following formula (5).
  • Equation (5) Q fnl_cord represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a theoretical air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
  • the MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 72 is input to the ramp processing unit 73 when the NOx purge flag F NP is turned on (see time t 1 in FIG. 7).
  • the ramp processing unit 73 reads the ramp coefficient from the ramp coefficient maps 73A and 73B using the engine speed Ne and the accelerator opening Q as input signals, and uses the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as a valve control unit 74. To enter.
  • the valve control unit 74 throttles the intake throttle valve 16 to the close side and opens the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value ⁇ NPL_Trgt read from the third target excess air ratio setting map 71 and the fuel injection amount of each in-cylinder injector 11.
  • the air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt .
  • the MAF target value MAF NPL_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.
  • FIG. 14 is a block diagram showing processing for setting the target injection amount Q NPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in NOx purge rich control.
  • the fourth target excess air ratio setting map 75 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the air excess rate target value ⁇ NPR_Trgt (fourth target air excess rate) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPR_Trgt at the time of NOx purge rich control is read from the fourth target excess air ratio setting map 75 using the engine speed Ne and the accelerator opening Q as input signals, and the injection amount target value calculation section 76 is performed. Is input. Further, the injection amount target value calculation unit 76 calculates a target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (6).
  • MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 72 described above.
  • Q fnl_cord is a fuel injection amount (excluding post-injection) before application of learning corrected MAF tracking control described later,
  • Ro Fuel is fuel specific gravity, AFR sto is a theoretical air-fuel ratio, and
  • Maf_corr is a MAF correction coefficient described later. Show.
  • the target injection amount Q NPR_Trgt calculated by the injection amount target value calculation unit 76 is transmitted as an injection instruction signal to the exhaust injector 34 or each in-cylinder injector 11 when the NOx purge flag F NP is turned on (time t in FIG. 7). 1 ). This transmission of the injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 7) by the end determination of NOx purge control described later.
  • the target injection amount Q NPR_Trgt is set based on the excess air ratio target value ⁇ NPR_Trgt read from the fourth target excess air ratio setting map 75 and the fuel injection amount of each in-cylinder injector 11. It is supposed to be.
  • the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
  • the target injection amount Q NPR_Trgt can be set by feedforward control. Effects such as deterioration and characteristic changes can be effectively eliminated.
  • the ECU 50 feedback-controls the opening degree of the intake throttle valve 16 and the EGR valve 24 based on the sensor value of the MAF sensor 40 in the region where the operating state of the engine 10 is on the low load side. On the other hand, in the region where the operating state of the engine 10 is on the high load side, the ECU 50 feedback-controls the supercharging pressure by the variable displacement supercharger 20 based on the sensor value of the boost pressure sensor 46 (hereinafter, this region is referred to as “high”). (Referred to as boost pressure FB control region).
  • the excess air ratio target value ⁇ NPR_Trgt the excess air ratio target value necessary for the NOx purge.
  • the NOx purge control unit 70 of the present embodiment prohibits NOx purge lean control for adjusting the opening of the intake throttle valve 16 and the EGR valve 24 in the boost pressure FB control region, and The excess air ratio is reduced to the fourth target excess air ratio (the excess air ratio target value ⁇ NPR_Trgt ) only by injection or post injection.
  • the MAF target value set based on the operating state of the engine 10 may be applied to the MAF target value MAF NPL_Trgt of the above-described equation (5).
  • the NOx purge start / end instructing unit 78 (1) accumulates the injection amount of the exhaust pipe injection or the post injection from the ON of the NOx purge flag F NP , and when this accumulated injection amount reaches a predetermined upper limit threshold amount, (2 ) If the elapsed time has timed from the start of the NOx purge control has reached a predetermined upper limit threshold time, (3) NOx occlusion amount NOx_ STR of the NOx occlusion reduction type catalyst 32 is calculated by the NOx occlusion amount calculation unit 77 NOx removal If any of the conditions in the case of successful drops to a predetermined threshold value indicating a is satisfied, it turns off the NOx purge flag F NP terminate the NOx purge process (see time in FIG. 7 t 2).
  • the NOx occlusion amount NOx_STR can be estimated with high accuracy, so that the end of the NOx purge process is appropriately controlled by performing control using the NOx occlusion amount NOx_STR. be able to.
  • the cumulative injection amount and the upper limit of the elapsed time are provided as the NOx purge control end condition, so that the fuel consumption is excessive when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. Can be reliably prevented.
  • the MAF follow-up control unit 80 includes (1) a period for switching from a lean state in normal operation to a rich state by SOx purge control or NOx purge control, and (2) lean in normal operation from a rich state by SOx purge control or NOx purge control. During the switching period to the state, control (MAF follow-up control) for correcting the fuel injection timing and the fuel injection amount of each in-cylinder injector 11 according to the MAF change is executed.
  • the in-cylinder injector learning correction unit 90 includes a learning correction coefficient calculation unit 91, an injection amount correction unit 92, and a learning correction prohibition unit 93.
  • the learning correction coefficient calculation unit 91 performs injection of each in-cylinder injector 11 based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 and the estimated lambda value ⁇ Est during the lean operation of the engine 10.
  • An amount learning correction coefficient F Corr is calculated.
  • the actual lambda value ⁇ Act in the exhaust gas that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45 matches the estimated lambda value ⁇ Est in the exhaust gas discharged from the engine 10. Conceivable. That is, when an error ⁇ occurs between the actual lambda value ⁇ Act and the estimated lambda value ⁇ Est , it can be assumed that the difference is between the instructed injection amount for each in-cylinder injector 11 and the actual injection amount.
  • the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A as an input signal.
  • the estimated lambda value ⁇ Est may be estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q.
  • the learning value map 91B is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and a plurality of learning areas partitioned according to the engine speed Ne and the accelerator opening Q on the map. Is set. These learning regions are set to have a narrower range as the region is used more frequently, and are set to a wider region as the region is used less frequently. As a result, learning accuracy is improved in areas where the usage frequency is high, and unlearning is effectively prevented in areas where the usage frequency is low.
  • the learning prohibition flag F Pro is either (1) the SOx purge flag F SP is on, (2) the NOx purge flag F NP is on, (3) the filter regeneration flag F DPF is on, or (4) the engine 10 It is turned on during a period in which any one of the operation states is transient operation. This is because when these conditions are satisfied, the error ⁇ increases due to the change in the actual lambda value ⁇ Act , and the update of the learning value map 91B based on the accurate learning value F CorrAdpt cannot be performed.
  • Whether or not the engine 10 is in a transient operation state is determined based on, for example, the time change amount of the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 when the time change amount is larger than a predetermined threshold value. What is necessary is just to determine with a transient operation state.
  • prohibits updating of the learning value map 91B during on the learning prohibition flag F Pro may be configured to prohibit the operation of the learning value F CorrAdpt.
  • step S300 it is determined whether the engine 10 is in a lean operation state based on the engine speed Ne, the accelerator opening Q, and the like. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.
  • step S320 it is determined whether or not the absolute value
  • step S330 it is determined whether or not the learning prohibition flag FPro is turned off by the learning correction prohibition unit 93.
  • the learning prohibition flag F Pro is off (Yes)
  • the present control proceeds to step S340 to update the learning value map 91B.
  • the learning prohibition flag FPro is on (No)
  • this control is returned without updating the learning value map 91B.
  • step S340 the learning value map 91B (see FIG. 15) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
  • the learning correction coefficient F Corr is input to the injection amount correction unit 92 shown in FIG.
  • the injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr. The injection amount is corrected. In this way, by correcting the fuel injection amount to each in-cylinder injector 11 with the learning value corresponding to the error ⁇ between the estimated lambda value ⁇ Est and the actual lambda value ⁇ Act , It becomes possible to effectively eliminate variations such as individual differences.
  • MAF correction coefficient calculating unit 95 MAF is used to set the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt during SOx purge control and the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control A correction coefficient Maf_corr is calculated.
  • the fuel injection amount of each in-cylinder injector 11 is corrected based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 and the estimated lambda value ⁇ Est .
  • the factor of error ⁇ is not necessarily the only effect of the difference between the commanded injection amount and the actual injection amount for each in-cylinder injector 11. That is, there is a possibility that the error of the MAF sensor 40 as well as the in-cylinder injectors 11 affects the lambda error ⁇ .
  • FIG. 17 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95.
  • the correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q.
  • the MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG.
  • the correction coefficient Maf_corr is set in advance based on experiments or the like.
  • the MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and outputs the MAF correction coefficient Maf_corr to the MAF target value calculation unit 62, 72 and the injection amount target value calculation units 66 and 76.
  • SOx purge control when the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt, the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control effectively the sensor characteristics of the MAF sensor 40 It becomes possible to reflect.
  • the storage amount estimation device of the present invention is useful in that it can improve the accuracy of estimation of the NOx storage amount of the NOx storage reduction catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

エンジン10の排気系に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒32の吸蔵量推定装置であって、ECU50は、NOx吸蔵還元型触媒32の温度に基づいて、NOx吸蔵還元型触媒32に吸蔵されているSOxのNOx当量を取得すると共に、NOx吸蔵還元型触媒32に蓄積されているNOxの量とNOx当量に基づいて、NOx吸蔵還元型触媒32に吸蔵されている総NOx吸蔵量を推定するNOx吸蔵量演算部77を備える。

Description

吸蔵量推定装置
 本発明は、吸蔵量推定装置に関し、特に、NOx吸蔵還元型触媒におけるNOx吸蔵量の推定に関する。
 従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。NOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合は、NOx吸蔵能力を回復させるべく、排気をリッチ状態にする所謂NOxパージを定期的に行う必要がある(例えば、特許文献1参照)。
 また、NOx吸蔵還元型触媒には、排気中に含まれる硫黄酸化物(以下、SOxという)も吸蔵される。SOx吸蔵量が増加すると、NOx吸蔵還元型触媒のNOx浄化能力を低下させる課題がある。このため、SOx吸蔵量が所定量に達した場合は、NOx吸蔵還元型触媒からSOxを離脱させて硫黄被毒から回復させるべく、排気温度をSOx離脱温度まで上昇させる所謂SOxパージを定期的に行う必要がある(例えば、特許文献2参照)。
日本国特開2008-202425号公報 日本国特開2009-47086号公報
 NOx吸蔵還元型触媒では、SOx吸蔵量の増加に伴ってNOx吸蔵特性が損なわれる。このNOx吸蔵特性は、SOx吸蔵量の他、触媒温度によっても変化するという知見が得られた。すなわち、SOx吸蔵量が変わらなくても、触媒温度に応じてNOx吸蔵特性が変化するという知見が、実験によって得られた。
 本開示の吸蔵量推定装置は、NOx吸蔵還元型触媒のNOx吸蔵量の推定の精度を向上させることを目的とする。
 本開示の吸蔵量推定装置は、内燃機関の排気系に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒の吸蔵量推定装置であって、前記NOx吸蔵還元型触媒の温度に基づいて、前記NOx吸蔵還元型触媒に吸蔵されているSOxのNOx当量を取得するNOx当量取得手段と、前記NOx吸蔵還元型触媒に蓄積されているNOxの量と前記NOx当量に基づいて、前記NOx吸蔵還元型触媒に吸蔵されている総NOx吸蔵量を推定する総NOx吸蔵量推定手段と、を備える。
 本開示の吸蔵量推定装置によれば、NOx吸蔵還元型触媒のNOx吸蔵量の推定の精度を向上させることができる。
図1は、本実施形態に係る排気浄化システムを示す全体構成図である。 図2は、本実施形態に係るSOxパージ制御を説明するタイミングチャート図である。 図3は、本実施形態に係るSOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 図4は、本実施形態に係るSOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 図5は、本実施形態に係るSOxパージ制御の触媒温度調整制御を説明するタイミングチャート図である。 図6は、本実施形態に係るSOxパージ制御の終了処理を示すブロック図である。 図7は、本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。 図8は、本実施形態に係るNOxパージ制御の開始/終了処理を示すブロック図である。 図9は、本実施形態に係るNOx吸蔵量演算部のNOx蓄積率演算処理を示すブロック図である。 図10は、本実施形態に係る触媒温度とNOx当量の換算率を模式的に示すMAPの概念図である。 図11は、本実施形態に係るNOx吸蔵量演算部の総NOx吸蔵量演算処理を示すブロック図である。 図12は、本実施形態に係るNOx蓄積率と第2吸蔵効率の関係を模式的に示すMAPの概念図である。 図13は、本実施形態に係るNOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 図14は、本実施形態に係るNOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 図15は、本実施形態に係る筒内インジェクタの噴射量学習補正の処理を示すブロック図である。 図16は、本実施形態に係る筒内インジェクタの学習補正係数の演算処理を説明するフロー図である。 図17は、本実施形態に係るMAF補正係数の設定処理を示すブロック図である。
 以下、添付図面に基づいて、本発明の一実施形態に係る吸蔵量推定装置及び、当該吸蔵量推定装置が適用された排気浄化システムを説明する。
 図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射する筒内インジェクタ11がそれぞれ設けられている。これら各筒内インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。
 エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。
 EGR(Exhaust gas Recirculation)装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。
 排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気インジェクタ34が設けられている。
 酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気インジェクタ34の排気管噴射又は筒内インジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。
 NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。
 フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ再生が実行される。フィルタ再生は、排気管噴射あるいは、ポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。
 第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、NOx吸蔵還元型触媒32とフィルタ33との間に設けられており、フィルタ33に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。
 ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40~46のセンサ値が入力される。また、ECU50は、フィルタ再生制御部51と、SOxパージ制御部60と、NOxパージ制御部70と、MAF追従制御部80、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
 [フィルタ再生制御]
 フィルタ再生制御部51は、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると再生フラグFDPFをオンにする(図2の時刻t参照)。再生フラグFDPFがオンにされると、排気インジェクタ34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各筒内インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t参照)。なお、再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
 [SOxパージ制御]
 SOxパージ制御部60は、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
 図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、再生フラグFDPFのオフと同時にオンにされる(図2の時刻t参照)。これにより、フィルタ33の再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。
 本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。
 [SOxパージリーン制御の空気系制御]
 図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。
Figure JPOXMLDOC01-appb-M000001
 数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFSPL_Trgt_Rampをバルブ制御部64に入力する。
 バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFSPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
 このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λSPL_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFSPL_Trgtを設定し、このMAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFSPL_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化、個体差等の影響を効果的に排除することができる。
 また、MAF目標値MAFSPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
 [SOxパージリッチ制御の燃料噴射量設定]
 図4は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。
Figure JPOXMLDOC01-appb-M000002
 数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 噴射量目標値演算部66によって演算された目標噴射量QSPR_Trgtは、後述するSOxパージリッチフラグFSPRがオンになると、排気インジェクタ34又は、各筒内インジェクタ11に噴射指示信号として送信される。
 このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QSPR_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
 [SOxパージ制御の触媒温度調整制御]
 SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t~tに示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
 本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。
 インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の目標触媒温度と推定触媒温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。目標触媒温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部での発熱反応等に基づいて推定すればよい。
 図5の時刻tに示すように、フィルタ再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図5の時刻t~t参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。
 次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図5の時刻t~t参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図5の時刻t~t参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図5の時刻t参照)にされるまで繰り返し実行される。
 このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。
 [SOxパージ制御の終了判定]
 図6は、SOxパージ制御の終了処理を示すブロック図である。SOx吸蔵量演算部67は、以下の数式(3)に基づいて、排気中に発生してその全量がNOx吸蔵還元型触媒32の吸蔵材に吸蔵されるものと仮定した場合の総SOx吸蔵量SOx_TTL(g)を演算する。
Figure JPOXMLDOC01-appb-M000003
 数式(3)で示すように、総SOx吸蔵量SOx_TTLは、燃料由来のSOx量SOx_Fuel(g/s)とエンジンオイル由来のSOx量SOx_oil(g/s)とSOx放出量SOx_out(g/s)との総和を積分したものである。ここで、燃料由来のSOx量SOx_Fuelとエンジンオイル由来のSOx量SOx_oilとは、内燃機関の運転状態に基づいて演算される。SOx放出量SOx_outは、NOx吸蔵還元型触媒32の触媒温度等に基づいて演算される。触媒温度は、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部でのHC・CO発熱量、外部への放熱量等に基づいて推定すればよい。SOx放出量SOx_outは負の値で表現されている。
 ところで、排気中に発生したSOxは、その全量(すなわち、総SOx吸蔵量SOx_TTL)がNOx吸蔵還元型触媒32の吸蔵材に吸蔵されているわけではなく、吸蔵材以外の他材や貴金属に吸蔵されている。
 そこで、本実施形態において、SOx吸蔵量演算部67は、以下の数式(4)に示すように、総SOx吸蔵量SOx_TTLに対して、所定の吸蔵割合係数C(0<C<1)を乗じた値を、NOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量SOx_STR(g)と推定している。
Figure JPOXMLDOC01-appb-M000004
 ここで、吸蔵割合係数Cは、予め実験等により求めた定数であってもよく、触媒温度と熱履歴とによって参照されるマップから読みだされる変数等であってもよい。
 このように、吸蔵材以外へのSOx吸着量を考慮して、NOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量SOx_STRを推定しているので、より高精度にNOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量を推定することができる。
 SOxパージ制御終了指示部68は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)SOx吸蔵量演算部67により演算されたNOx吸蔵還元型触媒32の吸蔵材におけるSOx吸蔵量SOx_STRがSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにしてSOxパージ制御を終了させる(図2の時刻t、図5の時刻t参照)。
 本実施形態では、上述のように、精度よくSOx吸蔵量SOx_STRを推定することができるので、SOx吸蔵量SOx_STRを用いた制御を行うことにより、SOxパージ処理の終了を適切に制御することができる。
 また、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。
 [NOxパージ制御]
 NOxパージ制御部70は、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御(以下、この制御をNOxパージ制御という)を実行する。
 図8は、NOxパージ制御の開始/終了処理を示すブロック図である。同図に示すように、NOx吸蔵量演算部77は、第1演算部77aと第2演算部77cを備えており、NOx吸蔵還元型触媒32に吸蔵されたSOxの量(SOx吸蔵量)を考慮した総NOx吸蔵量(NOx_STR,図11参照)を推定する。
 図9に示すように、第1演算部77aは、NOx吸蔵還元型触媒32の触媒温度、NOx吸蔵還元型触媒32のSOx吸蔵量(SOx_STR)、NOx吸蔵還元型触媒32に蓄積されたNOxの量(NOx蓄積量NOx_STR_old)、NOx吸蔵還元型触媒32における最大NOx吸蔵量に基づいて、NOx吸蔵還元型触媒32に吸蔵されているNOx蓄積率(NOx_LEV)を取得する。
 NOx蓄積率の取得に際し、第1演算部77a(本発明のNOx当量取得手段の一例)は、NOx吸蔵還元型触媒32に吸蔵されているSOxのNOx当量を取得する。NOx当量とは、SOx吸蔵量と等価なNOx吸蔵量を意味する。
 NOx当量は、SOx吸蔵量が一定であっても触媒温度に応じて変化する。このため、第1演算部77aは、換算率MAP77bを参照し、触媒温度に応じたNOx当量を取得する。図10に示すように、換算率MAP77bは、SOx吸蔵量のNOx当量への換算率と触媒温度の関係を規定している。この例では、触媒温度a℃に対応する換算率が0.5となっている。第1演算部77aは、SOx吸蔵量にその触媒温度における換算率を乗じることでNOx当量を取得する。触媒温度がa℃、SOx吸蔵量が1g/Lであった場合、第1演算部77aは、NOx当量として0.5g/Lを取得する。
 図9に示すように、第1演算部77aは、NOx蓄積率の取得に際してNOx蓄積量(NOx_STR_old)を用いる。このNOx蓄積量は、総NOx吸蔵量からNOx還元量を減算することで演算される。なお、ここで使用される総NOx吸蔵量は、NOx吸蔵量演算部77で演算された総NOx吸蔵量の前回値である。また、NOx還元量は、NOxパージ制御時の空気流量とNOx吸蔵還元型触媒32のNOx還元効率の積である。本実施形態では、還元効率を規定するモデル式やMAPを、実測データ等に基づいて作成してNOx還元効率を取得する。
 第1演算部77aは、NOx蓄積量とNOx当量と最大NOx吸蔵量に基づいてNOx蓄積率を演算する。例えば、第1演算部77aは、NOx蓄積量とNOx当量の加算値を求め、求めた加算値の最大NOx吸蔵量に対する比率をNOx蓄積率として取得する。ここで、最大NOx吸蔵量もまた触媒温度に応じて変化する。このため、第1演算部77aは、触媒温度に応じた最大NOx吸蔵量をモデル式やMAPから取得する。
 図11に示すように、第2演算部77cは、触媒温度、MAF値、NOx蓄積率(NOx_LEV)、エンジン出口NOx量に基づいて、総NOx吸蔵量(NOx_STR)を推定する。例えば、第2演算部77cは、触媒温度及びMAF値と第1吸蔵効率の関係を規定する第1吸蔵効率MAP77dを参照することで、触媒温度と吸入空気量に基づく第1吸蔵効率を取得する。同様に、第2演算部77cは、NOx蓄積率度及びMAF値と第2吸蔵効率の関係を規定する第2吸蔵効率MAP77eを参照することで、NOx蓄積率度とMAF値に基づく第2吸蔵効率を取得する。さらに、第2演算部77cは、エンジン出口NOx量に対して、第1吸蔵効率及び第2吸蔵効率を乗算することにより、総NOx吸蔵量を推定する。
 図12に示すように、符号bのNOx蓄積率は、NOx蓄積量とNOx当量が加算された加算値に基づいて定められたものである。これに対し、符号b´のNOx蓄積率は、NOx当量を考慮せずにNOx蓄積量のみに基づいて定められたものである。すなわち、NOx蓄積率bとNOx蓄積率b´の差がNOx当量(SOx被毒)に起因する蓄積率の変化分に相当する。従って、符号cの第2吸蔵効率は、符号c´の第2吸蔵効率よりも、触媒温度に応じたSOx被毒量が考慮されている分だけ精度が高いといえる。
 このように、本実施形態では、第2演算部77cと第1演算部77aの組(本発明の総NOx吸蔵量推定手段の一例)が、NOx蓄積量(NOx_STR_old)とNOx当量に基づいて、NOx吸蔵還元型触媒32に吸蔵されている総NOx吸蔵量を推定している。そして、NOx当量は、SOx吸蔵量と触媒温度に基づいて定められていることから、触媒温度に応じた適切な値を取得できる。その結果、NOx吸蔵還元型触媒32におけるNOx吸蔵量の推定精度を向上させることができる。
 また、本実施形態では、総SOx吸蔵量SOx_TTLではなく、NOx吸蔵還元型触媒32の吸蔵材に吸蔵されていると推定されるSOx吸蔵量SOx_STRを演算に用いているので、この点でもNOx吸蔵量の推定精度を向上させることができる。
 なお、本実施形態では、触媒温度に対応するNOx当量への換算率を換算率MAP77bから取得し、取得した換算率にSOx吸蔵量を乗じることでNOx当量を取得しているが、この構成に限定されるものではない。例えば、換算率MAPを、触媒温度及びSOx吸蔵量を入力とする3次元MAPとしてもよい。このように構成すると、触媒温度とSOx吸蔵量のそれぞれを考慮したNOx当量を取得でき、NOx吸蔵量の推定精度を一層向上させることができる。
 NOxパージ開始/終了指示部78は、以下の(1)~(3)の場合に、NOxパージフラグFNPをオンにしてNOxパージ制御を開始させる。(1)エンジン10の運転状態から推定される単位時間当たりのNOx排出量を累積計算した推定累積値ΣNOxが所定の閾値を超えた場合(図7の時刻t参照)。(2)エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とから演算されるNOx吸蔵還元型触媒32によるNOx浄化率が、所定の判定閾値よりも低くなった場合。(3)NOx吸蔵還元型触媒32のNOx吸蔵量NOx_STRが所定の閾値を超えた場合。
 本実施形態では、上述のように、精度よくNOx吸蔵量NOx_STRを推定することができるので、このNOx吸蔵量NOx_STRを用いた制御を行うことにより、NOxパージ処理の開始を適切に制御することができる。
 本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第3目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第3目標空気過剰率からリッチ側の第4目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。
 [NOxパージリーン制御のMAF目標値設定]
 図13は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第3目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第3目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第3目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(5)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。
Figure JPOXMLDOC01-appb-M000005
 数式(5)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFNPがオン(図7の時刻t参照)になるとランプ処理部73に入力される。ランプ処理部73は、各ランプ係数マップ73A,73Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部74に入力する。
 バルブ制御部74は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
 このように、本実施形態では、第3目標空気過剰率設定マップ71から読み取られる空気過剰率目標値λNPL_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
 また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
 [NOxパージリッチ制御の燃料噴射量設定]
 図14は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第4目標空気過剰率設定マップ75は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第4目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第4目標空気過剰率設定マップ75から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部76に入力される。さらに、噴射量目標値演算部76では、以下の数式(6)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。
Figure JPOXMLDOC01-appb-M000006
 数式(6)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、Qfnl_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 噴射量目標値演算部76によって演算される目標噴射量QNPR_Trgtは、NOxパージフラグFNPがオンになると、排気インジェクタ34又は各筒内インジェクタ11に噴射指示信号として送信される(図7の時刻t)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図7の時刻t)にされるまで継続される。
 このように、本実施形態では、第4目標空気過剰率設定マップ75から読み取られる空気過剰率目標値λNPR_Trgtと、各筒内インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各筒内インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各筒内インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
 [NOxパージ制御の空気系制御禁止]
 ECU50は、エンジン10の運転状態が低負荷側の領域では、MAFセンサ40のセンサ値に基づいて吸気スロットルバルブ16やEGRバルブ24の開度をフィードバック制御している。一方、エンジン10の運転状態が高負荷側の領域では、ECU50はブースト圧センサ46のセンサ値に基づいて可変容量型過給機20による過給圧をフィードバック制御している(以下、この領域をブースト圧FB制御領域という)。
 このようなブースト圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の制御が可変容量型過給機20の制御と干渉してしまう現象が生じる。このため、上述の数式(5)で設定されるMAF目標値MAFNPL_Trgtに基づいて空気系をフィードバック制御するNOxパージリーン制御を実行しても、吸入空気量をMAF目標値MAFNPL_Trgtに維持できない課題がある。その結果、ポスト噴射や排気管噴射を実行するNOxパージリッチ制御を開始しても、空気過剰率をNOxパージに必要な第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させられない可能性がある。
 このような現象を回避すべく、本実施形態のNOxパージ制御部70は、ブースト圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の開度を調整するNOxパージリーン制御を禁止し、排気管噴射又はポスト噴射のみで空気過剰率を第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させる。これにより、ブースト圧FB制御領域においても、NOxパージを確実に行うことが可能になる。なお、この場合、上述の数式(5)のMAF目標値MAFNPL_Trgtには、エンジン10の運転状態に基づいて設定されるMAF目標値を適用すればよい。
 [NOxパージ制御の終了判定]
 NOxパージ開始/終了指示部78は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)NOx吸蔵量演算部77により演算されるNOx吸蔵還元型触媒32のNOx吸蔵量NOx_STRがNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにしてNOxパージ処理を終了させる(図7の時刻t参照)。
 本実施形態では、上述のように、精度よくNOx吸蔵量NOx_STRを推定することができるので、このNOx吸蔵量NOx_STRを用いた制御を行うことにより、NOxパージ処理の終了を適切に制御することができる。
 また、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。
 [MAF追従制御]
 MAF追従制御部80は、(1)通常運転のリーン状態からSOxパージ制御又はNOxパージ制御によるリッチ状態への切り替え期間及び、(2)SOxパージ制御又はNOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各筒内インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(MAF追従制御)を実行する。
 [筒内インジェクタの噴射量学習補正]
 図15に示すように、筒内インジェクタ学習補正部90は、学習補正係数演算部91と、噴射量補正部92と、学習補正禁止部93とを備えている。
 学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて、各筒内インジェクタ11の噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、排気中のHC濃度が非常に低いので、酸化触媒31でHCの酸化反応による排気ラムダ値の変化は無視できるほど小さい。このため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。すなわち、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各筒内インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。
 学習補正係数演算部91は、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptを演算する(FCorrAdpt=(λEst-λAct)×K×K)。本実施形態において、補正感度係数Kは、補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。また、推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態等から推定演算すればよい。
 学習補正係数演算部91によって演算された学習値FCorrAdptは、学習値マップ91Bに送信されて、後述する学習禁止フラグFProがオフ(FPro=0)の時に学習値マップ91Bの更新が実行される。
 学習値マップ91Bは、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、そのマップ上にはエンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上されると共に、使用頻度が少ない領域では未学習が効果的に防止されるようになっている。
 学習補正禁止部93は、排気のラムダ値が一定期間継続して所定範囲内に収まらないラムダ不安定状態になると、学習値マップ91Bの更新を禁止する学習禁止フラグFProをオン(FPro=1)にする。
 本実施形態において、学習禁止フラグFProは、(1)SOxパージフラグFSPがオン、(2)NOxパージフラグFNPがオン、(3)フィルタ再生フラグFDPFがオン又は、(4)エンジン10の運転状態が過渡運転の何れかの条件が成立する期間はオンにされる。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習値FCorrAdptに基づいた学習値マップ91Bの更新の更新を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。
 なお、本実施形態では、学習禁止フラグFProのオン時に学習値マップ91Bの更新を禁止するものとして説明したが、学習値FCorrAdptの演算を禁止するように構成してもよい。
 次に、図16に基づいて、本実施形態に係る筒内インジェクタ11の噴射量学習補正の制御フローを説明する。
 ステップS300では、エンジン回転数Ne及びアクセル開度Q等に基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。
 ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK及び補正感度係数Kを乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst-λAct)×K×K)。
 ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。
 ステップS330では、学習補正禁止部93による学習禁止フラグFProがオフにされているか否かが判定される。学習禁止フラグFProがオフの場合(Yes)、本制御は学習値マップ91Bの更新を実行すべくステップS340に進む。一方、学習禁止フラグFProがオンの場合(No)、本制御は学習値マップ91Bの更新を行うことなくリターンされる。
 ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図15参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。
 ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図15に示す噴射量補正部92に入力される。
 噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各筒内インジェクタ11に燃料噴射量を補正することで、各インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。
 [MAF補正係数]
 MAF補正係数演算部95は、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定及び、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
 本実施形態において、各筒内インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各筒内インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各筒内インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。
 図17は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。
 MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62,72及び噴射量目標値演算部66,76に送信する。これにより、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgt、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。
 [その他]
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 本出願は、2015年07月16日付で出願された日本国特許出願(特願2015-142049)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の吸蔵量推定装置は、NOx吸蔵還元型触媒のNOx吸蔵量の推定の精度を向上させることができるという点において有用である。
 10 エンジン
 11 筒内インジェクタ
 12 吸気通路
 13 排気通路
 16 吸気スロットルバルブ
 24 EGRバルブ
 31 酸化触媒
 32 NOx吸蔵還元型触媒
 33 フィルタ
 34 排気インジェクタ
 40 MAFセンサ
 45 NOx/ラムダセンサ
 50 ECU

Claims (5)

  1.  内燃機関の排気系に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒の吸蔵量推定装置であって、
     前記NOx吸蔵還元型触媒の温度に基づいて、前記NOx吸蔵還元型触媒に吸蔵されているSOxのNOx当量を取得するNOx当量取得手段と、
     前記NOx吸蔵還元型触媒に蓄積されているNOxの量と前記NOx当量に基づいて、前記NOx吸蔵還元型触媒に吸蔵されている総NOx吸蔵量を推定する総NOx吸蔵量推定手段と、を備える
     吸蔵量推定装置。
  2.  前記NOx当量取得手段は、前記NOx吸蔵還元型触媒の温度に応じた値に定められ、前記SOxの吸蔵量を前記NOx当量に換算する換算率に基づいて、前記NOx当量を取得する
     請求項1に記載の吸蔵量推定装置。
  3.  前記総NOx吸蔵量推定手段は、前記NOxの蓄積量と前記NOx当量とを加算した加算値と、前記NOx吸蔵還元型触媒の最大NOx吸蔵量に基づいて、前記NOx吸蔵還元型触媒におけるNOx蓄積率を取得し、当該NOx蓄積率に基づいて前記総NOx吸蔵量を推定する
     請求項1又は2に記載の吸蔵量推定装置。
  4.  前記総NOx吸蔵量推定手段は、前記NOx蓄積率と、前記NOx吸蔵還元型触媒の温度と、吸入空気量と、前記内燃機関から排出されるNOx排出量に基づいて、前記総NOx吸蔵量を推定する
     請求項3に記載の吸蔵量推定装置。
  5.  内燃機関の排気系に設けられ、排気リーン状態で排気中のNOxを吸蔵すると共に、排気リッチ状態で吸蔵されていたNOxを還元浄化するNOx吸蔵還元型触媒の吸蔵量推定装置であって、
     制御ユニットと、
     温度センサと、を備え、
     前記制御ユニットは以下の処理を実行するように動作する:
     前記温度センサによって検出された前記NOx吸蔵還元型触媒の温度に基づいて、前記NOx吸蔵還元型触媒に吸蔵されているSOxのNOx当量を取得する取得処理と、
     前記NOx吸蔵還元型触媒に蓄積されているNOxの量と前記NOx当量に基づいて、前記NOx吸蔵還元型触媒に吸蔵されている総NOx吸蔵量を推定する推定処理。
PCT/JP2016/070813 2015-07-16 2016-07-14 吸蔵量推定装置 WO2017010542A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680041455.5A CN107835892B (zh) 2015-07-16 2016-07-14 吸收量推定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015142049A JP6550996B2 (ja) 2015-07-16 2015-07-16 吸蔵量推定装置
JP2015-142049 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010542A1 true WO2017010542A1 (ja) 2017-01-19

Family

ID=57757383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070813 WO2017010542A1 (ja) 2015-07-16 2016-07-14 吸蔵量推定装置

Country Status (3)

Country Link
JP (1) JP6550996B2 (ja)
CN (1) CN107835892B (ja)
WO (1) WO2017010542A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265825A (ja) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2003184545A (ja) * 2001-12-20 2003-07-03 Toyota Motor Corp 内燃機関の排気浄化触媒還元量検出方法、排気浄化管理方法、排気浄化触媒NOx吸蔵量算出方法及び装置
JP2009085018A (ja) * 2007-09-27 2009-04-23 Toyota Motor Corp 内燃機関の排気浄化システム
US20120095666A1 (en) * 2010-10-17 2012-04-19 Southwest Research Institute Adaptive Desulfation and Regeneration Methods for Lean NOx Trap

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892159A3 (en) * 1997-07-17 2000-04-26 Hitachi, Ltd. Exhaust gas cleaning apparatus and method for internal combustion engine
JP2006169997A (ja) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd 触媒の劣化判定装置
JP2008202425A (ja) * 2007-02-16 2008-09-04 Mitsubishi Motors Corp 排ガス浄化装置
JP5067614B2 (ja) * 2007-08-21 2012-11-07 株式会社デンソー 内燃機関の排気浄化装置
JP5258319B2 (ja) * 2008-02-15 2013-08-07 ボッシュ株式会社 酸化触媒の故障診断装置及び酸化触媒の故障診断方法、並びに内燃機関の排気浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265825A (ja) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2003184545A (ja) * 2001-12-20 2003-07-03 Toyota Motor Corp 内燃機関の排気浄化触媒還元量検出方法、排気浄化管理方法、排気浄化触媒NOx吸蔵量算出方法及び装置
JP2009085018A (ja) * 2007-09-27 2009-04-23 Toyota Motor Corp 内燃機関の排気浄化システム
US20120095666A1 (en) * 2010-10-17 2012-04-19 Southwest Research Institute Adaptive Desulfation and Regeneration Methods for Lean NOx Trap

Also Published As

Publication number Publication date
CN107835892B (zh) 2020-03-13
JP2017025721A (ja) 2017-02-02
JP6550996B2 (ja) 2019-07-31
CN107835892A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
JP2016133050A (ja) 排気浄化システム
JP2016160867A (ja) 排気浄化システム
WO2016039452A1 (ja) 排気浄化システム
JP2016133064A (ja) 排気浄化システム
JP6439334B2 (ja) 排気浄化システム
JP2017025718A (ja) 排気浄化システム
JP6432411B2 (ja) 排気浄化システム
JP6455237B2 (ja) 排気浄化システム
JP2016118135A (ja) 排気浄化システム
JP6604034B2 (ja) 排気浄化装置
JP6405816B2 (ja) 排気浄化システム
WO2016039453A1 (ja) 排気浄化システム及び、その制御方法
WO2016039450A1 (ja) 排気浄化システム及び、その制御方法
WO2016104802A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6550996B2 (ja) 吸蔵量推定装置
JP6435730B2 (ja) 内燃機関の制御装置
JP2016200077A (ja) 排気浄化システム
JP6455070B2 (ja) 排気浄化システム
JP2016180383A (ja) 触媒温度推定装置
JP2016125374A (ja) 排気浄化システム
WO2016039454A1 (ja) 排気浄化システム
WO2017047702A1 (ja) 排気浄化システム
JP2016183565A (ja) 吸蔵量推定装置
WO2016117612A1 (ja) 排気浄化システム及び触媒再生方法
JP2016153638A (ja) 排気浄化システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824522

Country of ref document: EP

Kind code of ref document: A1