WO2017006947A1 - Blood purifying device and method of calculating flow rate in access blood vessel using blood purifying device - Google Patents

Blood purifying device and method of calculating flow rate in access blood vessel using blood purifying device Download PDF

Info

Publication number
WO2017006947A1
WO2017006947A1 PCT/JP2016/069950 JP2016069950W WO2017006947A1 WO 2017006947 A1 WO2017006947 A1 WO 2017006947A1 JP 2016069950 W JP2016069950 W JP 2016069950W WO 2017006947 A1 WO2017006947 A1 WO 2017006947A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
flow rate
access
blood vessel
circuit
Prior art date
Application number
PCT/JP2016/069950
Other languages
French (fr)
Japanese (ja)
Inventor
将弘 豊田
晋也 長谷川
雅宏 甲
篤司 森實
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Publication of WO2017006947A1 publication Critical patent/WO2017006947A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood

Definitions

  • the present invention punctures a patient's access blood vessel with an arterial puncture needle and a venous side puncture needle, respectively, and drives the blood pump to rotate forward, thereby circulating the patient's blood extracorporeally in the blood circuit and using the blood purification means.
  • the present invention relates to a blood purification apparatus capable of purification treatment and a method for calculating a flow rate of an access blood vessel by the blood purification apparatus.
  • a blood circuit composed of a flexible tube is used to circulate a patient's blood extracorporeally.
  • This blood circuit has an arterial blood circuit in which an arterial puncture needle for collecting blood from a patient is attached to the tip, and a venous blood circuit in which a venous puncture needle for returning blood to the patient is attached to the tip.
  • the first conventional technique obtained from the access recirculation rate and the second technique of puncturing the artery side puncture needle and the vein side puncture needle in reverse.
  • Conventional techniques have been proposed. That is, the first conventional technique gradually increases or decreases the extracorporeal blood volume by the blood pump until the access recirculation occurs or disappears, and obtains the access flow rate from the flow rate at which the access recirculation occurs or disappears.
  • the second prior art provides an access flow rate by changing the concentration of blood circulating extracorporeally with a venous puncture needle upstream of the access blood vessel and an arterial puncture needle downstream. It is what you want.
  • the above prior art has the following problems.
  • the first prior art since it is necessary to gradually increase or decrease the extracorporeal blood volume, it takes a long time to obtain the flow rate of the access blood vessel, and the flow rate of the access blood vessel If the flow rate is higher than the flow rate, there is a problem that the flow rate of the access blood vessel cannot be obtained.
  • the second prior art at the start of treatment, it is necessary to puncture the access side blood vessel with an arterial puncture needle upstream and a venous puncture needle downstream, and the puncture needle must be re-punctured. Since it does not become necessary, there is a problem that it takes time and workability is poor.
  • the present invention has been made in view of such circumstances, and can provide a blood purification device capable of accurately obtaining a flow rate of an access blood vessel in a short time regardless of the flow rate of the access blood vessel, and an access blood vessel of the blood purification device. It is to provide a flow rate calculation method.
  • the invention according to claim 1 has an arterial blood circuit with an arterial puncture needle attached to the distal end and a venous blood circuit with a venous puncture needle attached to the distal end, and can circulate patient blood extracorporeally.
  • a blood purification unit that is connected between the blood circuit, the arterial blood circuit, and the venous blood circuit, and purifies blood flowing through the blood circuit; a blood pump disposed in the arterial blood circuit;
  • An index change applying means for applying a characteristic change to an index of blood circulating extracorporeally in the blood circuit; and a detecting means capable of detecting the specific change applied by the index change providing means.
  • Blood purification treatment can be performed by the blood purification means while circulating the patient's blood extracorporeally in the blood circuit by puncturing the arterial puncture needle and the venous side puncture needle, respectively, and driving the blood pump in the forward direction.
  • the blood pump is used for blood purification treatment in a state where the arterial puncture needle is punctured upstream of the access blood vessel and the vein side puncture needle is punctured downstream of the access blood vessel.
  • a calculating unit capable of calculating a flow rate of the access blood vessel based on the specific change given by the giving unit and the specific change detected by the detecting unit after flowing through the access blood vessel;
  • the calculation means includes a flow rate when the blood pump is driven in reverse rotation, and a characteristic change given by the index change giving means. And the flow rate of the access blood vessel can be calculated on the basis of the ratio of the specific change detected by the detection means.
  • an air trap chamber connected to the arterial blood circuit or the venous blood circuit and capable of removing bubbles, and the air trap chamber Liquid level adjusting means capable of adjusting the liquid level by arbitrarily raising or lowering the liquid level, and the control means drives the blood pump to rotate in reverse to calculate the flow rate of the access blood vessel.
  • the liquid level of the air trap chamber is raised by the surface adjusting means.
  • the invention according to claim 4 is the blood purification apparatus according to any one of claims 1 to 3, further comprising a flow meter capable of measuring a flow rate by reverse rotation driving of the blood pump, and is measured by the flow meter.
  • the flow rate of the access blood vessel can be calculated as the flow rate when the blood pump is driven to rotate in the reverse direction.
  • the invention according to claim 5 is the blood purification apparatus according to any one of claims 1 to 4, wherein the detection means includes first detection means disposed in the artery-side blood circuit, and the vein side. A second detection unit disposed in the blood circuit, and the flow rate of the access blood vessel can be calculated by the calculation unit based on the specific change detected by the first detection unit and the second detection unit.
  • the invention according to claim 6 has an arterial blood circuit with an arterial puncture needle attached to the tip and a venous blood circuit with a venous puncture needle attached to the tip, and can circulate the patient's blood extracorporeally.
  • a blood purification unit that is connected between the blood circuit, the arterial blood circuit, and the venous blood circuit, and purifies blood flowing through the blood circuit; a blood pump disposed in the arterial blood circuit;
  • An index change applying means for applying a characteristic change to an index of blood circulating extracorporeally in the blood circuit; and a detecting means capable of detecting the specific change applied by the index change providing means.
  • Blood purification treatment is possible with the blood purification means while circulating the patient's blood extracorporeally in the blood circuit by puncturing the arterial puncture needle and the venous side puncture needle respectively and driving the blood pump forward
  • the blood in a state where the arterial puncture needle is punctured upstream of the access blood vessel and the venous puncture needle is punctured downstream of the access blood vessel.
  • the blood to which the characteristic change is applied by the index change applying means can flow through the access blood vessel, and the flow rate when the blood pump is driven in the reverse rotation And the flow rate of the access blood vessel can be calculated based on the specific change given by the index change giving means and the specific change detected by the detection means after flowing through the access blood vessel.
  • the invention according to claim 7 is the flow rate calculation method of the access blood vessel by the blood purification apparatus according to claim 6, wherein the blood pump is driven in reverse rotation and the characteristic change given by the index change giving means.
  • the flow rate of the access blood vessel can be calculated based on the ratio between the size of the blood vessel and the size of the characteristic change detected by the detection means.
  • the invention according to claim 8 is the access blood vessel flow rate calculation method by the blood purification apparatus according to claim 6 or claim 7, wherein the blood purification apparatus is connected to the arterial blood circuit or venous blood circuit, And an air trap chamber that can be adjusted by arbitrarily raising or lowering the liquid level of the air trap chamber, and driving the blood pump in a reverse rotation direction to rotate the access blood vessel.
  • the liquid level of the air trap chamber is raised by the liquid level adjusting means.
  • the invention according to claim 9 is the access blood vessel flow rate calculation method by the blood purification device according to any one of claims 6 to 8, wherein the blood purification device measures the flow rate by reverse rotation driving of the blood pump.
  • the flow rate of the access blood vessel can be calculated as a flow rate when the blood pump is driven to rotate reversely with the flow rate measured by the flow meter.
  • a tenth aspect of the present invention is the access blood vessel flow rate calculation method by the blood purification apparatus according to any one of the sixth to ninth aspects, wherein the detection means is a first circuit disposed in the arterial blood circuit.
  • the flow rate of the access blood vessel is calculated based on the characteristic change detected by the first detection unit and the second detection unit, and the detection unit and the second detection unit disposed in the venous blood circuit. It is characterized by obtaining.
  • the blood pump when the arterial puncture needle is punctured upstream of the access blood vessel and the venous puncture needle is punctured downstream of the access blood vessel, the blood pump is used for blood purification treatment.
  • the reverse rotation drive allows blood that has undergone a specific change in the index change applying means to flow in the access blood vessel, and the flow rate when the blood pump is driven in reverse rotation and the index change applying means. Therefore, the flow rate of the access blood vessel can be calculated based on the specific change and the specific change detected by the detection means after flowing through the access blood vessel. The flow rate of the access blood vessel can be obtained well.
  • the flow rate when the blood pump is driven to rotate in reverse the magnitude of the specific change given by the index change giving means, and the magnitude of the specific change detected by the detection means. Since the flow rate of the access blood vessel can be calculated based on the ratio, the flow rate of the access blood vessel can be obtained with higher accuracy in a shorter time.
  • the liquid level of the air trap chamber is raised by the liquid level adjusting means. It is possible to suppress the bubbles in the air trap chamber from flowing into the blood circuit when calculating.
  • the flow rate of the access blood vessel can be calculated more accurately because the flow rate measured by the flow meter can be calculated as the flow rate when the blood pump is driven in reverse rotation. be able to.
  • the detection means includes the first detection means disposed in the arterial blood circuit and the second detection means disposed in the venous blood circuit. Since the flow rate of the access blood vessel can be calculated based on the specific change detected by the detection means and the second detection means, the specific change given by the index change giving means is not known (preset value). In addition, the flow rate of the access blood vessel can be accurately calculated.
  • FIG. 1 is an overall schematic view showing a blood purification apparatus according to an embodiment of the present invention.
  • the schematic diagram which shows the state which punctured the artery side puncture needle in the upstream of an access blood vessel, and the vein side puncture needle in the downstream of an access blood vessel in the blood purification apparatus, respectively.
  • Flow chart showing control contents in the blood purification apparatus
  • index change provision means water removal pump
  • index change provision means water removal pump
  • index change provision means water removal pump
  • index change provision means (compound pump) in the blood purification apparatus The graph which shows the characteristic change (when raising blood concentration) provided by the index change provision means in the blood purification apparatus. The graph which shows the characteristic change (when blood concentration is raised) detected by the detection means in the blood purification apparatus The graph which shows the characteristic change (when blood concentration is lowered) given by the index change giving means in the blood purification apparatus The graph which shows the characteristic change (when blood concentration is reduced) detected by the detection means in the blood purification apparatus
  • the blood purification apparatus includes a dialysis apparatus for performing dialysis treatment, and as shown in FIG. 1, an arterial blood circuit 1a having an arterial puncture needle a attached to the distal end and a venous side at the distal end.
  • a blood circuit 1b having a venous blood circuit 1b to which a puncture needle b is attached and capable of circulating the patient's blood extracorporeally; and connected between the arterial blood circuit 1a and the venous blood circuit 1b; 1.
  • a dialyzer 2 blood purification means for purifying blood flowing through 1, a blood pump 3 disposed in an arterial blood circuit 1a, and arterial air connected to the arterial blood circuit 1a and the venous blood circuit 1b, respectively.
  • the dialysate is introduced into the trap chamber 4 and the venous air trap chamber 5, index change imparting means for imparting a characteristic change to the blood index, the first detection means E 1 and the second detection means E 2, and the dialyzer 2.
  • a dialysate inlet line L1 to a dialysate discharge line L2 that discharges drainage from the dialyzer 2, a liquid level adjusting unit 10, the control unit 11 is configured to include a calculation unit 12.
  • the arterial blood circuit 1a has a connector connected to the tip thereof, and the arterial puncture needle a can be connected via the connector, and the iron-type blood pump 3 and the arterial air trap chamber 4 in the middle. Is arranged.
  • a connector is connected to the distal end of the venous blood circuit 1b, the venous puncture needle b can be connected via the connector, and the venous air trap chamber 5 is connected in the middle. .
  • the blood pump 3 is driven while the patient is punctured with the arterial puncture needle a connected to the distal end of the arterial blood circuit 1a and the venous puncture needle b connected to the distal end of the venous blood circuit 1b.
  • the blood of the patient reaches the dialyzer 2 through the arterial blood circuit 1a while being defoamed (removal of bubbles) in the arterial air trap chamber 4, and blood purification is performed by the dialyzer 2.
  • defoaming is performed in the venous air trap chamber 5 and the venous air circuit 1b returns to the patient's body.
  • the blood of the patient can be purified by the dialyzer 2 while circulating externally from the tip of the arterial blood circuit 1a of the blood circuit 1 to the tip of the venous blood circuit 1b.
  • the dialyzer 2 has a blood inlet 2a (blood inlet port), a blood outlet 2b (blood outlet port), a dialysate inlet 2c (dialysate channel inlet: dialysate inlet port) and a dialysate in its casing.
  • a lead-out port 2d dialysate flow channel outlet: dialysate lead-out port
  • the dialysate inlet 2c and the dialysate outlet 2d are connected to the dialysate inlet line L1 and the dialysate outlet line L2, respectively.
  • a plurality of hollow fiber membranes are accommodated in the dialyzer 2, and the hollow fibers constitute a blood purification membrane for purifying blood.
  • a blood flow path (flow path between the blood inlet 2 a and the blood outlet 2 b) through which the patient's blood flows through a blood purification membrane and a dialysate flow path (dialysate) through which the dialysate flows.
  • a flow path between the inlet 2c and the dialysate outlet 2d) is formed.
  • the hollow fiber membrane constituting the blood purification membrane is formed with a number of minute holes (pores) penetrating the outer peripheral surface and the inner peripheral surface to form a hollow fiber membrane. Impurities and the like in the blood can pass through the dialysate.
  • Bubble detectors (D1, D2) capable of detecting bubbles
  • Such bubble detectors (D1, D2) are mounted in a predetermined unit together with, for example, a blood discriminator (not shown) and clamping means (V8, V9) (for example, electromagnetic valves).
  • the bubble detectors (D1, D2) are composed of sensors capable of detecting bubbles (air) flowing through a flexible tube constituting the arterial blood circuit 1a or the venous blood circuit 1b.
  • ultrasonic vibrations composed of piezoelectric elements.
  • An element and an ultrasonic receiving element made of a piezoelectric element are provided. Then, ultrasonic waves can be irradiated from the ultrasonic vibration element toward the flexible tube constituting the arterial blood circuit 1a or the venous blood circuit 1b, and the vibration can be received by the ultrasonic reception element. ing.
  • the ultrasonic receiving element is configured to change the voltage according to the received vibration, and is configured to detect that the bubble has flowed when the detected voltage exceeds a predetermined threshold. Yes. In other words, since the attenuation rate of ultrasonic waves is higher than that of blood or replacement fluid, it is detected that bubbles (gas) have flowed when the voltage detected by the ultrasonic receiving element exceeds a predetermined threshold. It is done.
  • the first detection means E1 is a hematocrit sensor attached to a predetermined part of the artery side blood circuit 1a (between the position where the blood pump 3 is disposed and the position where the artery side air trap chamber 4 is connected in this embodiment).
  • the blood concentration flowing through the blood circuit 1 (arterial blood circuit 1a) can be detected during blood purification treatment.
  • the second detection means E2 is a hematocrit sensor attached to a predetermined part of the venous blood circuit 1b (between the position where the bubble detector D2 is disposed and the connection position of the venous air trap chamber 5 in this embodiment). It is comprised so that the density
  • the first detection means E1 and the second detection means E2 are configured to have a pair of light emitting elements and light receiving elements.
  • the light emitting element is made of, for example, an LED that can irradiate near infrared rays (near infrared LED), and the light receiving element is made of a photodiode.
  • the light emitting element When light is emitted from the light emitting element, the light reaches the flexible tube constituting the arterial blood circuit 1a or the venous blood circuit 1b via the slit, and is reflected by the blood flowing inside the light tube. It is configured to receive light (a so-called reflective sensor configuration).
  • a hematocrit value indicating the blood concentration can be obtained based on the light reception voltage generated by the light receiving element. That is, each component of blood such as red blood cells and plasma has its own light absorption characteristics, and this property is used to quantify the red blood cells necessary for measuring the hematocrit value electro-optically. Thus, the hematocrit value can be obtained.
  • the first detection means E1 and the second detection means E2 are constituted by the so-called reflection type sensors as described above.
  • the light emitting element emits light and transmits the blood.
  • the hematocrit value (blood concentration) may be measured based on the received light voltage obtained by receiving the received light with the light receiving element.
  • the dialysate introduction line L1 and the dialysate discharge line L2 allow the dialysate 2 to be discharged together with the dialysate while discharging dialysate prepared at a predetermined concentration to the dialyzer 2 and discharge the wastes and the like.
  • a dual pump 6 is connected. That is, the dual pump 6 is disposed across the dialysate introduction line L1 and the dialysate discharge line L2. By driving the dual pump 6, the dialysate is introduced into the dialysate 2 via the dialysate introduction line L1. The dialysis fluid can be discharged through the introduction and dialysis fluid discharge line L2.
  • the dialysate introduction line L1 is connected to solenoid valves V1, V3 and filtration filters F1, F2.
  • the dialysate introduced into the dialyzer 2 can be filtered by the filtration filters F1, F2, and the solenoid valve V1. , V3 can be blocked or opened at any timing.
  • the dialysate introduction line L1 is connected to the dialysate discharge line L2 via bypass lines L4 and L5, and electromagnetic valves V4 and V5 are connected to the bypass lines L4 and L5, respectively.
  • bypass lines L3 and L6 that bypass the duplex pump 6 are connected to the dialysate discharge line L2, and an electromagnetic valve V6 is connected to the bypass line L6, and a water removal pump 7 is connected to the bypass line L3. Is connected.
  • the water removal pump 7 is driven in the course of extracorporeal circulation of the patient's blood in the blood circuit 1, so that water can be removed from the blood flowing through the dialyzer 2.
  • a pressure pump 8 for adjusting the fluid pressure of the dialysate discharge line L2 in the duplex pump 6 is connected to the upstream side (left side in FIG. 1) of the duplex pump 6 in the dialysate discharge line L2.
  • An open line L ⁇ b> 7 extends between the pressurizing pump 8 and the duplex pump 6 through a degassing chamber 9.
  • Solenoid valves V2 and V7 are respectively connected to the dialysate discharge line L2 and the open line L7 branched from the dialysate discharge line L2, and the dialysate flow path can be shut off or opened at an arbitrary timing.
  • connection line L8 has one end connected to a sampling port P (sample port) formed at a predetermined portion of the dialysate introduction line L1 (between the electromagnetic valve V1 and the filtration filter F2 in the present embodiment) The other end is connected to the arterial blood circuit 1a, and the flow path can supply the dialysate in the dialysate introduction line L1 to the arterial blood circuit 1a.
  • the connection line L8 is connected to an electromagnetic valve V10. By opening the electromagnetic valve V10, the dialysate in the dialysate introduction line L1 is supplied to the blood circuit 1 (arterial blood circuit 1a). To get.
  • the control means 11 is composed of a microcomputer electrically connected to various actuators and sensors provided in the blood purification apparatus.
  • the dialysate pipes such as the dialysate introduction line L1 and the dialysate discharge line L2 are dialyzed.
  • a gas purge step for filling with a liquid a blood removal step for extracting the patient's blood into the blood circuit 1, a dialysis step (blood purification treatment step) for purifying the patient's blood with the dialyzer 2 while circulating the patient's blood extracorporeally, and a blood circuit
  • a blood return step for returning the blood in 1 to the patient, a drainage fluid for discharging the liquid in the blood circuit 1 (a liquid in which a small amount of blood is mixed in the replacement fluid at the time of blood return) to the dialysate discharge line L2.
  • the liquid level adjusting means 10 includes an extended tube La extending from the upper portion (air layer) of the vein-side air trap chamber 5 and an extended tube extending from the upper portion (air layer) of the artery-side air trap chamber 4.
  • Lb a connecting tube Lc connected to the extending tubes La and Lb, an open tube Ld having one end connected to the connecting tube Lc and the other end open to the atmosphere, and a liquid level disposed in the open tube Ld
  • a regulating pump 10a a regulating pump 10a.
  • an electromagnetic valve Va that opens and closes the extended tube La side
  • an electromagnetic valve Vb that opens and closes the extended tube Lb side are attached to the connection tube Lc.
  • the liquid level adjustment pump 10a is composed of a squeezing pump capable of forward rotation (rotation drive in the ⁇ direction (counterclockwise) in FIG. 1) and reverse rotation drive (rotation drive in the ⁇ direction (clockwise) in FIG. 1).
  • the open tube Ld is squeezed in the longitudinal direction so that air can be arbitrarily introduced into or discharged from the upper part of the arterial air trap chamber 4 or the upper part of the venous air trap chamber 5.
  • the liquid level adjustment pump 10a is driven to rotate in the forward direction, air is sucked from the tip of the open tube Ld. Therefore, when the electromagnetic valve Va is in the open state, the vein-side air trap chamber 5 is passed through the extension tube La.
  • an index change giving means for giving a characteristic change to an index of blood circulating outside the blood circuit 1, and as such an index change giving means, for example, a water removal pump 7 (see FIG. 4).
  • the open line L7, the electromagnetic valve V7 (see FIG. 5), and the dual pump 6 (see FIG. 6) can be used.
  • the water removal pump 7 is used as the index change applying means, as shown in FIG. 4, the water removal pump 7 is controlled by the control means 11 while the electromagnetic valves V1 to V3 are opened and the electromagnetic valves V4 to V7 are closed. Is rapidly driven only for a short time, the blood flowing through the blood flow path of the dialyzer 2 is quickly and rapidly dehydrated and concentrated instantaneously. Thereby, as shown in FIG. 7, the blood concentration as a blood index can be instantaneously increased to give a specific change (Sa).
  • the electromagnetic valves V1 to V3 are opened and the electromagnetic valves V4 to V6 are closed by the control of the control means 11, as shown in FIG.
  • the discharge pressure of the pressurizing pump 8 is released to the atmosphere, and the blood flowing through the blood flow path of the dialyzer 2 is subjected to rapid and rapid water removal for a moment. Concentrate.
  • the blood concentration as a blood index can be instantaneously increased to give a specific change (Sa).
  • a specific change As shown in FIG. 2, when the blood concentration is instantaneously increased using the dewatering pump 7, the open line L7, and the electromagnetic valve V7 as the index change applying means, a specific change (Sa) is applied.
  • the artery side puncture needle a is punctured on the upstream side of the access blood vessel (near the shunt portion C where the artery A and the vein B are joined), and the vein on the downstream side of the access blood vessel (downstream side from the vicinity of the shunt portion C).
  • the blood pump 3 is driven in reverse rotation under the control of the control means 11 (as indicated by the arrows in FIGS. 4 to 6).
  • the blood to which the specific change is given by the index change giving means can be made to flow in the access blood vessel.
  • the first detection means E1 detects a specific change (Sa) as shown in FIG. 7, and the second detection means E2 is diluted with blood flowing through the access blood vessel as shown in FIG. A (weakened) specific change (Sv) will be detected. That is, the first detection means E1 and the second detection means E2 according to the present embodiment are capable of detecting a specific change (specific change with respect to blood concentration) given by the index change giving means. .
  • the dual pump 6 when used as the index change providing means, as shown in FIG. 6, the solenoid valves V1, V3, V6 are opened and the solenoid valves V2, V4, V5 are closed by the control of the control means 11, as shown in FIG.
  • the dialysate is rapidly and rapidly injected into the blood flowing through the blood flow path of the dialyzer 2 to dilute instantaneously.
  • the blood concentration as a blood index can be instantaneously reduced to give a specific change (Sa).
  • the dual concentration pump 6 is used as the index change providing means to instantaneously lower the blood concentration and apply a specific change (Sa), and as shown in FIG. While the arterial puncture needle a is punctured in the vicinity of the shunt portion C (joint portion between the artery A and the vein B), the venous puncture needle is downstream of the access blood vessel (the vein B downstream of the shunt portion C). In the state where b is punctured, the blood pressure of the blood pump 3 is reversed (driven in the direction opposite to that during blood purification treatment) under the control of the control means 11 (however, the clamp means V8 and V9 are in the open state), and the index changes.
  • a specific change
  • Blood to which a specific change is imparted by the imparting means can be made to flow in the access blood vessel.
  • the first detection means E1 detects a specific change (Sa) as shown in FIG. 9, and the second detection means E2 is diluted with blood flowing through the access blood vessel as shown in FIG. A (weakened) specific change (Sv) will be detected.
  • the calculation means 12 is detected by the detection means (second detection means E2) after flowing through the access blood vessel, the flow rate when the blood pump 3 is driven in reverse rotation, the specific change given by the index change giving means, and the access blood vessel.
  • the flow rate of the access blood vessel can be calculated based on the specific change.
  • the calculation means 12 according to the present embodiment includes a flow rate (Qb) when the blood pump 3 is driven in reverse rotation, a specific change magnitude (Sa) given by the index change giving means, and a second detection means E2.
  • the flow rate (Qa) of the access blood vessel can be calculated on the basis of the ratio with the detected magnitude of the specific change (Sv).
  • control means 11 drives the blood pump 3 in the reverse rotation to calculate the flow rate of the access blood vessel, so that the liquid level adjustment means 10 causes the arterial air trap chamber 4 and the venous air trap chamber 5 to It is comprised so that a liquid level may be raised. That is, when the blood pump 3 is driven to rotate backward, the electromagnetic valve Va and the electromagnetic valve Vb are opened, and the liquid level adjusting pump 10a is driven to rotate backward, so that the arterial side is provided via the extended tubes La and Lb. Air can be discharged from the air trap chamber 4 and the venous air trap chamber 5 to raise the liquid level.
  • Fluid replacement step S1 for filling dialysate pipes such as dialysate introduction line L1 and dialysate discharge line L2 with dialysate, priming fluid (physiological saline solution or dialysate) in blood circuit 1 and blood flow path in dialyzer 2
  • the gas purge step S3 for filling the dialysate flow path in the dialyzer 2 with the dialysate
  • the blood removal step S4 for taking the patient's blood into the blood circuit 1
  • the arterial puncture needle a is punctured on the upstream side (near the shunt part C where the artery A and the vein B are joined)
  • the venous side is downstream of the access blood vessel (the vein B downstream from the vicinity of the shunt part C).
  • a dialysis process blood
  • the liquid level adjusting means 10 is operated to drive the liquid level adjusting pump 10a in reverse rotation, and air is discharged from the arterial side air trap chamber 4 and the venous side air trap chamber 5 to reduce the liquid level. Increase (S6). Thereafter, the blood pump 3 is driven to rotate in the reverse direction (S7), and the index change applying means is operated to apply a characteristic change to the index of blood circulating outside the blood circuit 1 (S8).
  • a specific change (specific change in the arterial blood circuit 1a) given by the index change giving means is detected by the first detection means E1 (S9), and a characteristic change in the blood after flowing through the access blood vessel is detected.
  • Changes (characteristic changes in the venous blood circuit 1b) are detected by the second detection means E2 (S10), and the characteristic changes detected by the first detection means E1 and the second detection means E2 and the blood pump 3 are detected.
  • the flow rate of the access blood vessel is calculated by the calculation means 12 based on the flow rate of blood when the reverse rotation is driven (S11).
  • the blood return step S15 for returning the blood in the blood circuit 1 to the patient, and the liquid in the blood circuit 1 (the liquid in which a slight amount of blood is mixed in the replacement liquid at the time of return) is dialyzed.
  • a cleaning / disinfecting step S17 for cleaning and disinfecting the inside of the dialysis apparatus, and a preset step S18 for waiting until the next liquid replacement step S1 are performed are sequentially performed.
  • the blood pump 3 is subjected to blood purification treatment in a state where the arterial puncture needle a is punctured upstream of the access blood vessel and the venous puncture needle b is punctured downstream of the access blood vessel.
  • the access blood vessel flow rate can be calculated, the access blood vessel flow rate can be obtained accurately in a short time regardless of the flow rate of the access blood vessel.
  • the liquid level adjustment means 10 causes the air trap chamber (in this embodiment, the artery side air trap chamber 4 and the vein side air trap chamber 5 The liquid level of both) is raised so that bubbles in the air trap chamber (arterial side air trap chamber 4 and venous side air trap chamber 5) flow into the blood circuit 1 when calculating the flow rate of the access blood vessel. Can be suppressed.
  • the air trap chamber is connected to each of the arterial blood circuit 1a and the venous blood circuit 1b.
  • a device in which the air trap chamber is connected to only one of them may be used.
  • the liquid level in the air trap chamber is raised by the liquid level adjusting means 10.
  • the blood pump 3 when the blood pump 3 is driven to rotate in the reverse direction, it is unlikely that bubbles inside the blood circuit 1 will flow into the blood circuit 1 (for example, as shown in FIGS. 11 and 12, it flows through the blood circuit 1). If blood is introduced from the lower part of the air trap chamber and led out from the lower part, the air trap chamber by the liquid level adjusting means 10 (in this embodiment, the artery side air trap chamber 4 and the vein side) are used. It is unnecessary to increase the liquid level in both the air trap chamber 5).
  • the liquid level adjusting means 10 in this embodiment, the artery side air trap chamber 4 and the vein side
  • the detection means includes first detection means E1 disposed in the arterial blood circuit 1a and second detection means E2 disposed in the venous blood circuit 1b. Since the flow rate of the access blood vessel can be calculated based on the specific change detected by the first detection means E1 and the second detection means E2, the specific change given by the index change giving means is known (preset value). Even if it is not, the flow rate of the access blood vessel can be calculated with high accuracy.
  • the blood purification apparatus comprises a dialysis apparatus for performing dialysis treatment.
  • the blood circuit 1, dialyzer 2 (blood purification means), blood Dialysate is supplied to the pump 3, the arterial air trap chamber 4 ′ and the venous air trap chamber 5 ′, index change applying means for applying a characteristic change to the blood index, the second detecting means E 2, and the dialyzer 2.
  • the dialysis fluid introduction line L1 to be introduced, the dialysis fluid discharge line L2 for discharging the effluent from the dialyzer 2, the control means 11, and the calculation means 12 are configured.
  • symbol is attached
  • the second detection means E2 provided in the venous blood circuit 1b is provided, the first detection means E1 is arranged in the arterial blood circuit 1a as in the previous embodiment. Not set up. That is, the characteristic change given by the index change giving means according to the present embodiment has a known magnitude (Sa) (preset value), and the calculation means 12 is the reverse of the blood pump 3. Access blood vessel based on the ratio of the flow rate (Qb) when it is rotationally driven and the known specific change magnitude (Sa) and the specific change magnitude (Sv) detected by the second detection means E2. It is possible to calculate the flow rate (Qa).
  • the artery side air trap chamber 4 ′ and the vein side air trap chamber 5 ′ are configured to introduce blood from the lower part of the air trap chamber while introducing blood flowing through the blood circuit 1 from the lower part.
  • the blood pump 3 is driven in reverse rotation, bubbles inside the artery side air trap chamber 4 ′ or the vein side air trap chamber 5 ′ can be prevented from flowing into the blood circuit 1. It is possible to eliminate the rise in the liquid level in the air trap chamber by the liquid level adjusting means 10 in the embodiment.
  • the blood purification apparatus comprises a dialysis apparatus for performing dialysis treatment.
  • blood circuit 1 dialyzer 2 (blood purification means), blood A pump 3, an arterial air trap chamber 4 ′ and a venous air trap chamber 5 ′, index change applying means for applying a characteristic change to the blood index, first detection means E1 and second detection means E2, A dialysate introduction line L1 for introducing dialysate into the dialyzer 2, a dialysate discharge line L2 for discharging drainage from the dialyzer 2, a control means 11, and a calculation means 12 are provided.
  • symbol is attached
  • a flow meter R that can measure the flow rate of the blood pump 3 driven by the reverse rotation is provided, and the flow rate when the blood pump 3 is reversely driven by the flow rate measured by the flow meter R.
  • the flow rate of the access blood vessel can be calculated. That is, even when an error occurs between the actual flow rate and the flow rate determined by the rotation speed or driving time of the blood pump 3, the flow rate when the blood pump 3 is reversely driven by the flow meter R It can be detected with high accuracy.
  • the flow rate of the access blood vessel can be calculated as the flow rate when the blood pump 3 is driven in reverse rotation, the flow rate of the access blood vessel can be calculated with higher accuracy.
  • the present invention is not limited to this, and as an index change providing unit, for example, the operating speed of a dialysate infusion pump (not shown) connected to the dialysate introduction line L1 is changed only for a short time.
  • the dialyzer 2 is given a specific change by instantaneously changing the composition of the dialysate flowing through the dialyzer 2, and the heating temperature by the heater H connected to the dialysate introduction line L1 is increased or decreased for a short time. 2 that gives a specific change by instantaneously raising or lowering the temperature of the dialysate flowing through 2, manually applied to a predetermined part of the blood circuit 1 (on the dialyzer 2 side from the first detection means E1 in the arterial blood circuit 1a). It is good also as what gives a peculiar change instantaneously by inject
  • the detection means is capable of detecting the composition diffused from the dialysate into the blood.
  • the detection means can detect the temperature of the blood.
  • the temperature change is integrated over time, the amount of heat given to the blood can be understood, so an index change is given.
  • the flow rate of the access blood vessel is calculated from the magnitude of the heat amount, the magnitude of the heat amount detected on the venous blood circuit 1b side, and the flow rate at the time of reverse rotation driving of the blood pump 3. be able to.
  • the calculation means 12 is based on the ratio between the flow rate when the blood pump 3 is driven in reverse rotation and the specific change magnitude given by the index change giving means and the specific change magnitude detected by the detection means.
  • the flow rate when the blood pump 3 is driven in reverse rotation, the specific change given by the index change giving means, and the detection means after flowing through the access blood vessel are not limited to those for calculating the access blood vessel flow rate. It suffices if the flow rate of the access blood vessel can be calculated based on the changed characteristic.
  • the present invention is applied to a dialysis apparatus used at the time of dialysis treatment, but other blood purification apparatuses (for example, blood filtration dialysis method, blood filtration method, AFBF, which can purify the patient's blood while circulating it extracorporeally). And may be applied to blood purification devices, plasma adsorption devices, etc.
  • blood purification apparatuses for example, blood filtration dialysis method, blood filtration method, AFBF, which can purify the patient's blood while circulating it extracorporeally.
  • blood purification devices for example, blood filtration dialysis method, blood filtration method, AFBF, which can purify the patient's blood while circulating it extracorporeally.
  • plasma adsorption devices etc.
  • the index change is applied by driving the blood pump in the reverse direction of the blood purification treatment while the artery side puncture needle is punctured upstream of the access blood vessel and the vein side puncture needle is punctured downstream of the access blood vessel.
  • Blood that has been given a specific change by the means can flow in the access blood vessel, the flow rate when the blood pump is driven in reverse rotation, the specific change given by the index change giving means, and after flowing through the access blood vessel.
  • the blood purification device capable of calculating the flow rate of the access blood vessel based on the specific change detected by the detection means and the access blood vessel flow rate calculation method by the blood purification device, the appearance shape is different or other
  • the present invention can also be applied to those with functions added.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Anesthesiology (AREA)
  • Urology & Nephrology (AREA)
  • Physiology (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Provided are a blood purifying device and a method of calculating the flow rate in an access blood vessel using said blood purifying device, with which it is possible to obtain the flow rate in the access blood vessel accurately and in a short time, irrespective of the flow rate in the access blood vessel. This blood purifying device is provided with: a control means 11 for causing a blood pump 3 to be driven in the opposite direction to the direction during blood purification treatment, in a state in which an upstream side of an access blood vessel has been punctured using an arterial puncture needle, and a downstream side of the access blood vessel has been punctured using a venous puncture needle, thereby making it possible for blood to which a specific change has been imparted using a indicator-change imparting means to flow through the access blood vessel; and a calculating means 12 capable of calculating the flow rate in the access blood vessel on the basis of the flow rate when the blood pump 3 is driven in said opposite direction, the specific change imparted using the indicator-change imparting means, and a specific change detected by a detecting means E1 after the blood has flowed through the access blood vessel.

Description

血液浄化装置及びその血液浄化装置によるアクセス血管の流量算出方法Blood purification apparatus and access blood vessel flow rate calculation method using the blood purification apparatus
 本発明は、患者のアクセス血管に動脈側穿刺針及び静脈側穿刺針をそれぞれ穿刺して血液ポンプを正回転駆動させることによって血液回路にて患者の血液を体外循環させつつ血液浄化手段にて血液浄化治療が可能とされた血液浄化装置及びその血液浄化装置によるアクセス血管の流量算出方法に関するものである。 The present invention punctures a patient's access blood vessel with an arterial puncture needle and a venous side puncture needle, respectively, and drives the blood pump to rotate forward, thereby circulating the patient's blood extracorporeally in the blood circuit and using the blood purification means. The present invention relates to a blood purification apparatus capable of purification treatment and a method for calculating a flow rate of an access blood vessel by the blood purification apparatus.
 一般に、血液浄化治療、例えば透析治療においては、患者の血液を体外循環させるべく可撓性チューブから成る血液回路が使用されている。この血液回路は、患者から血液を採取する動脈側穿刺針が先端に取り付けられた動脈側血液回路と、患者に血液を戻す静脈側穿刺針が先端に取り付けられた静脈側血液回路とを有して構成されており、これら動脈側血液回路と静脈側血液回路との間にダイアライザを接続するとともに動脈側血液回路に血液ポンプを配設することにより、血液を体外循環させつつ血液浄化治療が可能とされている。 Generally, in blood purification treatment, for example, dialysis treatment, a blood circuit composed of a flexible tube is used to circulate a patient's blood extracorporeally. This blood circuit has an arterial blood circuit in which an arterial puncture needle for collecting blood from a patient is attached to the tip, and a venous blood circuit in which a venous puncture needle for returning blood to the patient is attached to the tip. By connecting a dialyzer between the arterial blood circuit and the venous blood circuit and disposing a blood pump in the arterial blood circuit, blood purification treatment is possible while circulating blood extracorporeally. It is said that.
 しかるに、血液浄化治療を行う際、動脈側穿刺針及び静脈側穿刺針をそれぞれ患者のアクセス血管に穿刺し、患者の血液を体外循環させる必要があるので、アクセス血管の流量よりも体外循環させる流量の方が多い場合、動脈側血液回路(脱血側の血液回路)が陰圧となって血液ポンプの吐出量が低下してしまう、或いは体外循環量の不足を補うために静脈側穿刺針にて体内に戻された血液が動脈側穿刺針にて再び脱血されてしまうアクセス再循環が生じてしまい、血液浄化治療の効率が低下してしまうという不具合があった。 However, when blood purification treatment is performed, it is necessary to puncture the patient's access blood vessel with the arterial puncture needle and the venous side puncture needle, and to circulate the patient's blood extracorporeally. If there are more, the arterial blood circuit (blood circuit on the blood removal side) has a negative pressure and the discharge rate of the blood pump decreases, or the venous puncture needle is used to compensate for the lack of extracorporeal circulation. As a result, access recirculation occurs in which the blood returned to the body is exsanguinated again by the arterial puncture needle, and the efficiency of blood purification treatment is reduced.
 上記の如き不具合を回避するため、血液の体外循環時、アクセス血管の流量を正確に求めることが極めて重要とされている。このように、アクセス血管の流量を求めるための技術として、アクセス再循環率から求める第1の従来技術(特許文献1参照)及び動脈側穿刺針及び静脈側穿刺針を逆に穿刺する第2の従来技術(特許文献2参照)が提案されている。すなわち、第1の従来技術は、アクセス再循環が発生又は消滅する状態まで血液ポンプによる体外循環血液量を徐々に増加又は低下させ、そのアクセス再循環が発生又は消滅した流量からアクセス流量を求めるものであり、第2の従来技術は、アクセス血管に対して上流側に静脈側穿刺針、下流側に動脈側穿刺針をそれぞれ穿刺した状態で体外循環する血液に濃度変化を付与してアクセス流量を求めるものである。 In order to avoid the above problems, it is extremely important to accurately obtain the flow rate of the access blood vessel during the extracorporeal circulation of blood. As described above, as a technique for obtaining the flow rate of the access blood vessel, the first conventional technique (see Patent Document 1) obtained from the access recirculation rate and the second technique of puncturing the artery side puncture needle and the vein side puncture needle in reverse. Conventional techniques (see Patent Document 2) have been proposed. That is, the first conventional technique gradually increases or decreases the extracorporeal blood volume by the blood pump until the access recirculation occurs or disappears, and obtains the access flow rate from the flow rate at which the access recirculation occurs or disappears. The second prior art provides an access flow rate by changing the concentration of blood circulating extracorporeally with a venous puncture needle upstream of the access blood vessel and an arterial puncture needle downstream. It is what you want.
特開2007-105149号公報JP 2007-105149 A 特表平10-505766号公報JP 10-505766 Gazette
 しかしながら、上記従来技術においては、以下の如き問題があった。
 第1の従来技術においては、体外循環血液量を徐々に増加又は低下させる必要があることから、アクセス血管の流量を求めるために長時間が必要とされるとともに、アクセス血管の流量が血液ポンプの流量より多い場合はアクセス血管の流量を求めることができないという問題がある。また、第2の従来技術においては、治療開始時、アクセス血管に対して上流側に動脈側穿刺針、下流側に静脈側穿刺針をそれぞれ穿刺する必要があり、穿刺針を再穿刺させなければならないことから、手間がかかって作業性が悪いという問題がある。
However, the above prior art has the following problems.
In the first prior art, since it is necessary to gradually increase or decrease the extracorporeal blood volume, it takes a long time to obtain the flow rate of the access blood vessel, and the flow rate of the access blood vessel If the flow rate is higher than the flow rate, there is a problem that the flow rate of the access blood vessel cannot be obtained. In the second prior art, at the start of treatment, it is necessary to puncture the access side blood vessel with an arterial puncture needle upstream and a venous puncture needle downstream, and the puncture needle must be re-punctured. Since it does not become necessary, there is a problem that it takes time and workability is poor.
 本発明は、このような事情に鑑みてなされたもので、アクセス血管の流量に関わらず、短時間で精度よくアクセス血管の流量を求めることができる血液浄化装置及びその血液浄化装置によるアクセス血管の流量算出方法を提供することにある。 The present invention has been made in view of such circumstances, and can provide a blood purification device capable of accurately obtaining a flow rate of an access blood vessel in a short time regardless of the flow rate of the access blood vessel, and an access blood vessel of the blood purification device. It is to provide a flow rate calculation method.
 請求項1記載の発明は、先端に動脈側穿刺針が取り付けられた動脈側血液回路、及び先端に静脈側穿刺針が取り付けられた静脈側血液回路を有し、患者の血液を体外循環させ得る血液回路と、前記動脈側血液回路と静脈側血液回路との間に接続され、当該血液回路を流れる血液を浄化する血液浄化手段と、前記動脈側血液回路に配設された血液ポンプと、前記血液回路を体外循環する血液の指標に特有の変化を付与する指標変化付与手段と、該指標変化付与手段で付与された特有の変化を検出し得る検出手段とを具備し、患者のアクセス血管に前記動脈側穿刺針及び静脈側穿刺針をそれぞれ穿刺して前記血液ポンプを正回転駆動させることによって前記血液回路にて患者の血液を体外循環させつつ前記血液浄化手段にて血液浄化治療が可能とされた血液浄化装置において、前記アクセス血管の上流側に前記動脈側穿刺針が穿刺されつつ当該アクセス血管の下流側に前記静脈側穿刺針が穿刺された状態で前記血液ポンプを血液浄化治療時とは逆回転駆動させることにより、前記指標変化付与手段で特有の変化が付与された血液を前記アクセス血管にて流し得る制御手段と、前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化と、前記アクセス血管を流れた後に前記検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得る算出手段とを備えたことを特徴とする。 The invention according to claim 1 has an arterial blood circuit with an arterial puncture needle attached to the distal end and a venous blood circuit with a venous puncture needle attached to the distal end, and can circulate patient blood extracorporeally. A blood purification unit that is connected between the blood circuit, the arterial blood circuit, and the venous blood circuit, and purifies blood flowing through the blood circuit; a blood pump disposed in the arterial blood circuit; An index change applying means for applying a characteristic change to an index of blood circulating extracorporeally in the blood circuit; and a detecting means capable of detecting the specific change applied by the index change providing means. Blood purification treatment can be performed by the blood purification means while circulating the patient's blood extracorporeally in the blood circuit by puncturing the arterial puncture needle and the venous side puncture needle, respectively, and driving the blood pump in the forward direction. In the blood purification apparatus thus constructed, the blood pump is used for blood purification treatment in a state where the arterial puncture needle is punctured upstream of the access blood vessel and the vein side puncture needle is punctured downstream of the access blood vessel. Is a reverse rotation drive, by which the blood to which the characteristic change is imparted by the index change imparting means can flow in the access blood vessel, the flow rate when the blood pump is reversely driven, and the index change A calculating unit capable of calculating a flow rate of the access blood vessel based on the specific change given by the giving unit and the specific change detected by the detecting unit after flowing through the access blood vessel; Features.
 請求項2記載の発明は、請求項1記載の血液浄化装置において、前記算出手段は、前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化の大きさと前記検出手段で検出された特有の変化の大きさとの比に基づいて前記アクセス血管の流量を算出し得ることを特徴とする。 According to a second aspect of the present invention, in the blood purification apparatus according to the first aspect, the calculation means includes a flow rate when the blood pump is driven in reverse rotation, and a characteristic change given by the index change giving means. And the flow rate of the access blood vessel can be calculated on the basis of the ratio of the specific change detected by the detection means.
 請求項3記載の発明は、請求項1又は請求項2記載の血液浄化装置において、前記動脈側血液回路又は静脈側血液回路に接続され、気泡を除去し得るエアトラップチャンバと、該エアトラップチャンバの液面を任意に上昇又は下降させて調整し得る液面調整手段とを具備するとともに、前記制御手段は、前記血液ポンプを逆回転駆動させて前記アクセス血管の流量を算出する際、前記液面調整手段によって前記エアトラップチャンバの液面を上昇させることを特徴とする。 According to a third aspect of the present invention, in the blood purification apparatus according to the first or second aspect, an air trap chamber connected to the arterial blood circuit or the venous blood circuit and capable of removing bubbles, and the air trap chamber Liquid level adjusting means capable of adjusting the liquid level by arbitrarily raising or lowering the liquid level, and the control means drives the blood pump to rotate in reverse to calculate the flow rate of the access blood vessel. The liquid level of the air trap chamber is raised by the surface adjusting means.
 請求項4記載の発明は、請求項1~3の何れか1つに記載の血液浄化装置において、前記血液ポンプの逆回転駆動による流量を計測可能な流量計を具備し、当該流量計で計測された流量を前記血液ポンプが逆回転駆動したときの流量として前記アクセス血管の流量を算出し得ることを特徴とする。 The invention according to claim 4 is the blood purification apparatus according to any one of claims 1 to 3, further comprising a flow meter capable of measuring a flow rate by reverse rotation driving of the blood pump, and is measured by the flow meter. The flow rate of the access blood vessel can be calculated as the flow rate when the blood pump is driven to rotate in the reverse direction.
 請求項5記載の発明は、請求項1~4の何れか1つに記載の血液浄化装置において、前記検出手段は、前記動脈側血液回路に配設された第1検出手段、及び前記静脈側血液回路に配設された第2検出手段を有するとともに、当該第1検出手段及び第2検出手段で検出された特有の変化に基づいて前記算出手段によって前記アクセス血管の流量を算出し得ることを特徴とする。 The invention according to claim 5 is the blood purification apparatus according to any one of claims 1 to 4, wherein the detection means includes first detection means disposed in the artery-side blood circuit, and the vein side. A second detection unit disposed in the blood circuit, and the flow rate of the access blood vessel can be calculated by the calculation unit based on the specific change detected by the first detection unit and the second detection unit. Features.
 請求項6記載の発明は、先端に動脈側穿刺針が取り付けられた動脈側血液回路、及び先端に静脈側穿刺針が取り付けられた静脈側血液回路を有し、患者の血液を体外循環させ得る血液回路と、前記動脈側血液回路と静脈側血液回路との間に接続され、当該血液回路を流れる血液を浄化する血液浄化手段と、前記動脈側血液回路に配設された血液ポンプと、前記血液回路を体外循環する血液の指標に特有の変化を付与する指標変化付与手段と、該指標変化付与手段で付与された特有の変化を検出し得る検出手段とを具備し、患者のアクセス血管に前記動脈側穿刺針及び静脈側穿刺針をそれぞれ穿刺して前記血液ポンプを正回転駆動させることによって前記血液回路にて患者の血液を体外循環させつつ前記血液浄化手段にて血液浄化治療が可能とされた血液浄化装置によるアクセス血管の流量算出方法において、前記アクセス血管の上流側に前記動脈側穿刺針が穿刺されつつ当該アクセス血管の下流側に前記静脈側穿刺針が穿刺された状態で前記血液ポンプを血液浄化治療時とは逆回転駆動させることにより、前記指標変化付与手段で特有の変化が付与された血液を前記アクセス血管にて流し得るとともに、前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化と、前記アクセス血管を流れた後に前記検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得ることを特徴とする。 The invention according to claim 6 has an arterial blood circuit with an arterial puncture needle attached to the tip and a venous blood circuit with a venous puncture needle attached to the tip, and can circulate the patient's blood extracorporeally. A blood purification unit that is connected between the blood circuit, the arterial blood circuit, and the venous blood circuit, and purifies blood flowing through the blood circuit; a blood pump disposed in the arterial blood circuit; An index change applying means for applying a characteristic change to an index of blood circulating extracorporeally in the blood circuit; and a detecting means capable of detecting the specific change applied by the index change providing means. Blood purification treatment is possible with the blood purification means while circulating the patient's blood extracorporeally in the blood circuit by puncturing the arterial puncture needle and the venous side puncture needle respectively and driving the blood pump forward In the access blood vessel flow rate calculation method performed by the blood purification apparatus, the blood in a state where the arterial puncture needle is punctured upstream of the access blood vessel and the venous puncture needle is punctured downstream of the access blood vessel. By driving the pump in a reverse rotation from that during blood purification treatment, the blood to which the characteristic change is applied by the index change applying means can flow through the access blood vessel, and the flow rate when the blood pump is driven in the reverse rotation And the flow rate of the access blood vessel can be calculated based on the specific change given by the index change giving means and the specific change detected by the detection means after flowing through the access blood vessel. And
 請求項7記載の発明は、請求項6記載の血液浄化装置によるアクセス血管の流量算出方法において、前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化の大きさと前記検出手段で検出された特有の変化の大きさとの比に基づいて前記アクセス血管の流量を算出し得ることを特徴とする。 The invention according to claim 7 is the flow rate calculation method of the access blood vessel by the blood purification apparatus according to claim 6, wherein the blood pump is driven in reverse rotation and the characteristic change given by the index change giving means. The flow rate of the access blood vessel can be calculated based on the ratio between the size of the blood vessel and the size of the characteristic change detected by the detection means.
 請求項8記載の発明は、請求項6又は請求項7記載の血液浄化装置によるアクセス血管の流量算出方法において、前記血液浄化装置は、前記動脈側血液回路又は静脈側血液回路に接続され、気泡を除去し得るエアトラップチャンバと、該エアトラップチャンバの液面を任意に上昇又は下降させて調整し得る液面調整手段とを具備するとともに、前記血液ポンプを逆回転駆動させて前記アクセス血管の流量を算出する際、前記液面調整手段によって前記エアトラップチャンバの液面を上昇させることを特徴とする。 The invention according to claim 8 is the access blood vessel flow rate calculation method by the blood purification apparatus according to claim 6 or claim 7, wherein the blood purification apparatus is connected to the arterial blood circuit or venous blood circuit, And an air trap chamber that can be adjusted by arbitrarily raising or lowering the liquid level of the air trap chamber, and driving the blood pump in a reverse rotation direction to rotate the access blood vessel. When calculating the flow rate, the liquid level of the air trap chamber is raised by the liquid level adjusting means.
 請求項9記載の発明は、請求項6~8の何れか1つに記載の血液浄化装置によるアクセス血管の流量算出方法において、前記血液浄化装置は、前記血液ポンプの逆回転駆動による流量を計測可能な流量計を具備し、当該流量計で計測された流量を前記血液ポンプが逆回転駆動したときの流量として前記アクセス血管の流量を算出し得ることを特徴とする。 The invention according to claim 9 is the access blood vessel flow rate calculation method by the blood purification device according to any one of claims 6 to 8, wherein the blood purification device measures the flow rate by reverse rotation driving of the blood pump. The flow rate of the access blood vessel can be calculated as a flow rate when the blood pump is driven to rotate reversely with the flow rate measured by the flow meter.
 請求項10記載の発明は、請求項6~9の何れか1つに記載の血液浄化装置によるアクセス血管の流量算出方法において、前記検出手段は、前記動脈側血液回路に配設された第1検出手段、及び前記静脈側血液回路に配設された第2検出手段を有するとともに、当該第1検出手段及び第2検出手段で検出された特有の変化に基づいて前記アクセス血管の流量を算出し得ることを特徴とする。 A tenth aspect of the present invention is the access blood vessel flow rate calculation method by the blood purification apparatus according to any one of the sixth to ninth aspects, wherein the detection means is a first circuit disposed in the arterial blood circuit. The flow rate of the access blood vessel is calculated based on the characteristic change detected by the first detection unit and the second detection unit, and the detection unit and the second detection unit disposed in the venous blood circuit. It is characterized by obtaining.
 請求項1、6の発明によれば、アクセス血管の上流側に動脈側穿刺針が穿刺されつつ当該アクセス血管の下流側に前記静脈側穿刺針が穿刺された状態で血液ポンプを血液浄化治療時とは逆回転駆動させることにより、指標変化付与手段で特有の変化が付与された血液をアクセス血管にて流し得るとともに、血液ポンプが逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化と、アクセス血管を流れた後に前記検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得るので、アクセス血管の流量に関わらず、短時間で精度よくアクセス血管の流量を求めることができる。 According to the first and sixth aspects of the present invention, when the arterial puncture needle is punctured upstream of the access blood vessel and the venous puncture needle is punctured downstream of the access blood vessel, the blood pump is used for blood purification treatment. The reverse rotation drive allows blood that has undergone a specific change in the index change applying means to flow in the access blood vessel, and the flow rate when the blood pump is driven in reverse rotation and the index change applying means. Therefore, the flow rate of the access blood vessel can be calculated based on the specific change and the specific change detected by the detection means after flowing through the access blood vessel. The flow rate of the access blood vessel can be obtained well.
 請求項2、7の発明によれば、血液ポンプが逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化の大きさと検出手段で検出された特有の変化の大きさとの比に基づいてアクセス血管の流量を算出し得るので、より短時間で精度よくアクセス血管の流量を求めることができる。 According to the second and seventh aspects of the present invention, the flow rate when the blood pump is driven to rotate in reverse, the magnitude of the specific change given by the index change giving means, and the magnitude of the specific change detected by the detection means. Since the flow rate of the access blood vessel can be calculated based on the ratio, the flow rate of the access blood vessel can be obtained with higher accuracy in a shorter time.
 請求項3、8の発明によれば、前記血液ポンプを逆回転駆動させて前記アクセス血管の流量を算出する際、液面調整手段によってエアトラップチャンバの液面を上昇させるので、アクセス血管の流量の算出時、エアトラップチャンバ内の気泡が血液回路に流動してしまうのを抑制することができる。 According to the third and eighth aspects of the present invention, when the flow rate of the access blood vessel is calculated by driving the blood pump to rotate backward, the liquid level of the air trap chamber is raised by the liquid level adjusting means. It is possible to suppress the bubbles in the air trap chamber from flowing into the blood circuit when calculating.
 請求項4、9の発明によれば、流量計で計測された流量を血液ポンプが逆回転駆動したときの流量としてアクセス血管の流量を算出し得るので、より精度よくアクセス血管の流量を算出することができる。 According to the fourth and ninth aspects of the present invention, the flow rate of the access blood vessel can be calculated more accurately because the flow rate measured by the flow meter can be calculated as the flow rate when the blood pump is driven in reverse rotation. be able to.
 請求項5、10の発明によれば、検出手段は、動脈側血液回路に配設された第1検出手段、及び静脈側血液回路に配設された第2検出手段を有するとともに、当該第1検出手段及び第2検出手段で検出された特有の変化に基づいてアクセス血管の流量を算出し得るので、指標変化付与手段で付与される特有の変化が既知(予め設定された値)でなくても、アクセス血管の流量を精度よく算出することができる。 According to the fifth and tenth aspects of the present invention, the detection means includes the first detection means disposed in the arterial blood circuit and the second detection means disposed in the venous blood circuit. Since the flow rate of the access blood vessel can be calculated based on the specific change detected by the detection means and the second detection means, the specific change given by the index change giving means is not known (preset value). In addition, the flow rate of the access blood vessel can be accurately calculated.
本発明の実施形態に係る血液浄化装置を示す全体模式図1 is an overall schematic view showing a blood purification apparatus according to an embodiment of the present invention. 同血液浄化装置における動脈側穿刺針をアクセス血管の上流側及び静脈側穿刺針をアクセス血管の下流側にそれぞれ穿刺した状態を示す模式図The schematic diagram which shows the state which punctured the artery side puncture needle in the upstream of an access blood vessel, and the vein side puncture needle in the downstream of an access blood vessel in the blood purification apparatus, respectively. 同血液浄化装置における制御内容を示すフローチャートFlow chart showing control contents in the blood purification apparatus 同血液浄化装置における指標変化付与手段(除水ポンプ)により血液の指標に特有の変化を付与する状態を示した模式図The schematic diagram which showed the state which gives the characteristic change to the parameter | index of the blood by the parameter | index change provision means (water removal pump) in the blood purification apparatus. 同血液浄化装置における指標変化付与手段(開放バルブ)により血液の指標に特有の変化を付与する状態を示した模式図The schematic diagram which showed the state which provides the change peculiar to the parameter | index of the blood with the parameter | index change provision means (open valve) in the blood purification apparatus. 同血液浄化装置における指標変化付与手段(複式ポンプ)により血液の指標に特有の変化を付与する状態を示した模式図The schematic diagram which showed the state which gives the characteristic change to the parameter | index of blood by the parameter | index change provision means (compound pump) in the blood purification apparatus 同血液浄化装置における指標変化付与手段で付与された特有の変化(血液濃度を上昇させた場合)を示すグラフThe graph which shows the characteristic change (when raising blood concentration) provided by the index change provision means in the blood purification apparatus 同血液浄化装置における検出手段で検出された特有の変化(血液濃度を上昇させた場合)を示すグラフThe graph which shows the characteristic change (when blood concentration is raised) detected by the detection means in the blood purification apparatus 同血液浄化装置における指標変化付与手段で付与された特有の変化(血液濃度を低下させた場合)を示すグラフThe graph which shows the characteristic change (when blood concentration is lowered) given by the index change giving means in the blood purification apparatus 同血液浄化装置における検出手段で検出された特有の変化(血液濃度を低下させた場合)を示すグラフThe graph which shows the characteristic change (when blood concentration is reduced) detected by the detection means in the blood purification apparatus 本発明の他の実施形態に係る血液浄化装置を示す全体模式図Overall schematic view showing a blood purification apparatus according to another embodiment of the present invention. 本発明の更に他の実施形態に係る血液浄化装置を示す全体模式図Overall schematic view showing a blood purification apparatus according to still another embodiment of the present invention.
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 本実施形態に係る血液浄化装置は、透析治療を行うための透析装置から成り、図1に示すように、先端に動脈側穿刺針aが取り付けられた動脈側血液回路1a、及び先端に静脈側穿刺針bが取り付けられた静脈側血液回路1bを有し、患者の血液を体外循環させ得る血液回路1と、動脈側血液回路1aと静脈側血液回路1bとの間に接続され、当該血液回路1を流れる血液を浄化するダイアライザ2(血液浄化手段)と、動脈側血液回路1aに配設された血液ポンプ3と、動脈側血液回路1a及び静脈側血液回路1bにそれぞれ接続された動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5と、血液の指標に特有の変化を付与する指標変化付与手段と、第1検出手段E1及び第2検出手段E2と、ダイアライザ2に透析液を導入する透析液導入ラインL1と、ダイアライザ2から排液を排出する透析液排出ラインL2と、液面調整手段10と、制御手段11と、算出手段12とを有して構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The blood purification apparatus according to this embodiment includes a dialysis apparatus for performing dialysis treatment, and as shown in FIG. 1, an arterial blood circuit 1a having an arterial puncture needle a attached to the distal end and a venous side at the distal end. A blood circuit 1b having a venous blood circuit 1b to which a puncture needle b is attached and capable of circulating the patient's blood extracorporeally; and connected between the arterial blood circuit 1a and the venous blood circuit 1b; 1. A dialyzer 2 (blood purification means) for purifying blood flowing through 1, a blood pump 3 disposed in an arterial blood circuit 1a, and arterial air connected to the arterial blood circuit 1a and the venous blood circuit 1b, respectively. The dialysate is introduced into the trap chamber 4 and the venous air trap chamber 5, index change imparting means for imparting a characteristic change to the blood index, the first detection means E 1 and the second detection means E 2, and the dialyzer 2. A dialysate inlet line L1 to a dialysate discharge line L2 that discharges drainage from the dialyzer 2, a liquid level adjusting unit 10, the control unit 11 is configured to include a calculation unit 12.
 動脈側血液回路1aは、その先端にコネクタが接続されており、当該コネクタを介して動脈側穿刺針aが接続可能とされるとともに、途中にしごき型の血液ポンプ3及び動脈側エアトラップチャンバ4が配設されている。一方、静脈側血液回路1bは、その先端にコネクタが接続されており、当該コネクタを介して静脈側穿刺針bが接続可能とされるとともに、途中に静脈側エアトラップチャンバ5が接続されている。 The arterial blood circuit 1a has a connector connected to the tip thereof, and the arterial puncture needle a can be connected via the connector, and the iron-type blood pump 3 and the arterial air trap chamber 4 in the middle. Is arranged. On the other hand, a connector is connected to the distal end of the venous blood circuit 1b, the venous puncture needle b can be connected via the connector, and the venous air trap chamber 5 is connected in the middle. .
 そして、動脈側血液回路1aの先端に接続された動脈側穿刺針a及び静脈側血液回路1bの先端に接続された静脈側穿刺針bを患者に穿刺した状態で、血液ポンプ3を駆動(正回転駆動)させると、患者の血液は、動脈側エアトラップチャンバ4で除泡(気泡の除去)がなされつつ動脈側血液回路1aを通ってダイアライザ2に至り、該ダイアライザ2によって血液浄化が施された後、静脈側エアトラップチャンバ5で除泡(気泡の除去)がなされつつ静脈側血液回路1bを通って患者の体内に戻るようになっている。これにより、患者の血液を血液回路1の動脈側血液回路1aの先端から静脈側血液回路1bの先端まで体外循環させつつダイアライザ2にて浄化し得るのである。 Then, the blood pump 3 is driven while the patient is punctured with the arterial puncture needle a connected to the distal end of the arterial blood circuit 1a and the venous puncture needle b connected to the distal end of the venous blood circuit 1b. When the patient's blood is rotated, the blood of the patient reaches the dialyzer 2 through the arterial blood circuit 1a while being defoamed (removal of bubbles) in the arterial air trap chamber 4, and blood purification is performed by the dialyzer 2. After that, defoaming (removal of bubbles) is performed in the venous air trap chamber 5 and the venous air circuit 1b returns to the patient's body. As a result, the blood of the patient can be purified by the dialyzer 2 while circulating externally from the tip of the arterial blood circuit 1a of the blood circuit 1 to the tip of the venous blood circuit 1b.
 ダイアライザ2は、その筐体部に、血液導入口2a(血液導入ポート)、血液導出口2b(血液導出ポート)、透析液導入口2c(透析液流路入口:透析液導入ポート)及び透析液導出口2d(透析液流路出口:透析液導出ポート)が形成されており、このうち血液導入口2aには動脈側血液回路1aが、血液導出口2bには静脈側血液回路1bがそれぞれ接続されている。また、透析液導入口2c及び透析液導出口2dは、透析液導入ラインL1及び透析液排出ラインL2とそれぞれ接続されている。 The dialyzer 2 has a blood inlet 2a (blood inlet port), a blood outlet 2b (blood outlet port), a dialysate inlet 2c (dialysate channel inlet: dialysate inlet port) and a dialysate in its casing. A lead-out port 2d (dialysate flow channel outlet: dialysate lead-out port) is formed, of which the arterial blood circuit 1a is connected to the blood introduction port 2a, and the venous blood circuit 1b is connected to the blood lead-out port 2b. Has been. The dialysate inlet 2c and the dialysate outlet 2d are connected to the dialysate inlet line L1 and the dialysate outlet line L2, respectively.
 ダイアライザ2内には、複数の中空糸膜(不図示)が収容されており、この中空糸が血液を浄化するための血液浄化膜を構成している。かかるダイアライザ2内には、血液浄化膜を介して患者の血液が流れる血液流路(血液導入口2aと血液導出口2bとの間の流路)及び透析液が流れる透析液流路(透析液導入口2cと透析液導出口2dとの間の流路)が形成されている。そして、血液浄化膜を構成する中空糸膜には、その外周面と内周面とを貫通した微小な孔(ポア)が多数形成されて中空糸膜を形成しており、該膜を介して血液中の不純物等が透析液内に透過し得るよう構成されている。 A plurality of hollow fiber membranes (not shown) are accommodated in the dialyzer 2, and the hollow fibers constitute a blood purification membrane for purifying blood. In the dialyzer 2, a blood flow path (flow path between the blood inlet 2 a and the blood outlet 2 b) through which the patient's blood flows through a blood purification membrane and a dialysate flow path (dialysate) through which the dialysate flows. A flow path between the inlet 2c and the dialysate outlet 2d) is formed. The hollow fiber membrane constituting the blood purification membrane is formed with a number of minute holes (pores) penetrating the outer peripheral surface and the inner peripheral surface to form a hollow fiber membrane. Impurities and the like in the blood can pass through the dialysate.
 さらに、本実施形態に係る動脈側血液回路1aの先端部及び静脈側血液回路1bの先端部には、血液浄化治療中、動脈側血液回路1a又は静脈側血液回路1bを流れる血液中の気体(気泡)を検出し得る気泡検出器(D1、D2)が接続されている。かかる気泡検出器(D1、D2)は、例えば図示しない血液判別器及びクランプ手段(V8、V9)(例えば、電磁弁)と共に所定のユニット内に取り付けられている。 Furthermore, the blood in the blood flowing through the artery-side blood circuit 1a or the vein-side blood circuit 1b during blood purification treatment (at the tip of the artery-side blood circuit 1a and the tip of the vein-side blood circuit 1b according to the present embodiment) Bubble detectors (D1, D2) capable of detecting bubbles) are connected. Such bubble detectors (D1, D2) are mounted in a predetermined unit together with, for example, a blood discriminator (not shown) and clamping means (V8, V9) (for example, electromagnetic valves).
 気泡検出器(D1、D2)は、動脈側血液回路1a又は静脈側血液回路1bを構成する可撓性チューブを流れる気泡(エア)を検出可能なセンサから成り、例えば圧電素子から成る超音波振動素子と、圧電素子から成る超音波受信素子とを具備している。そして、動脈側血液回路1a又は静脈側血液回路1bを構成する可撓性チューブに向けて超音波振動素子から超音波を照射させ得るとともに、その振動を超音波受信素子にて受け得るようになっている。 The bubble detectors (D1, D2) are composed of sensors capable of detecting bubbles (air) flowing through a flexible tube constituting the arterial blood circuit 1a or the venous blood circuit 1b. For example, ultrasonic vibrations composed of piezoelectric elements. An element and an ultrasonic receiving element made of a piezoelectric element are provided. Then, ultrasonic waves can be irradiated from the ultrasonic vibration element toward the flexible tube constituting the arterial blood circuit 1a or the venous blood circuit 1b, and the vibration can be received by the ultrasonic reception element. ing.
 この超音波受信素子は、その受信した振動に応じて電圧が変化するよう構成されており、検出される電圧が所定の閾値を超えたことにより気泡が流動したことを検出し得るよう構成されている。すなわち、血液や置換液に比べ気泡の方が超音波の減衰率が高いので、超音波受信素子により検出された電圧が所定の閾値を超えたことにより、気泡(気体)が流動したことが検出されるのである。 The ultrasonic receiving element is configured to change the voltage according to the received vibration, and is configured to detect that the bubble has flowed when the detected voltage exceeds a predetermined threshold. Yes. In other words, since the attenuation rate of ultrasonic waves is higher than that of blood or replacement fluid, it is detected that bubbles (gas) have flowed when the voltage detected by the ultrasonic receiving element exceeds a predetermined threshold. It is done.
 第1検出手段E1は、動脈側血液回路1aの所定部位(本実施形態においては、血液ポンプ3の配設位置と動脈側エアトラップチャンバ4の接続位置との間)に取り付けられたヘマトクリットセンサから成るもので、血液浄化治療中、血液回路1(動脈側血液回路1a)を流れる血液の濃度を検出し得るよう構成されている。第2検出手段E2は、静脈側血液回路1bの所定部位(本実施形態においては、気泡検出器D2の配設位置と静脈側エアトラップチャンバ5の接続位置との間)に取り付けられたヘマトクリットセンサから成るもので、血液浄化治療中、血液回路1(静脈側血液回路1b)を流れる血液の濃度を検出し得るよう構成されている。 The first detection means E1 is a hematocrit sensor attached to a predetermined part of the artery side blood circuit 1a (between the position where the blood pump 3 is disposed and the position where the artery side air trap chamber 4 is connected in this embodiment). The blood concentration flowing through the blood circuit 1 (arterial blood circuit 1a) can be detected during blood purification treatment. The second detection means E2 is a hematocrit sensor attached to a predetermined part of the venous blood circuit 1b (between the position where the bubble detector D2 is disposed and the connection position of the venous air trap chamber 5 in this embodiment). It is comprised so that the density | concentration of the blood which flows through the blood circuit 1 (venous side blood circuit 1b) can be detected during blood purification treatment.
 より具体的には、本実施形態に係る第1検出手段E1及び第2検出手段E2は、一対の発光素子及び受光素子を有して構成されている。発光素子は、例えば近赤外線を照射し得るLED(近赤外線LED)から成り、受光素子は、フォトダイオードから成るものとされている。そして、発光素子から光を照射すると、その光がスリットを介して動脈側血液回路1a又は静脈側血液回路1bを構成する可撓性チューブに至り、その内部を流れる血液に反射して受光素子で受光されるよう構成(所謂反射型センサの構成)されている。 More specifically, the first detection means E1 and the second detection means E2 according to the present embodiment are configured to have a pair of light emitting elements and light receiving elements. The light emitting element is made of, for example, an LED that can irradiate near infrared rays (near infrared LED), and the light receiving element is made of a photodiode. When light is emitted from the light emitting element, the light reaches the flexible tube constituting the arterial blood circuit 1a or the venous blood circuit 1b via the slit, and is reflected by the blood flowing inside the light tube. It is configured to receive light (a so-called reflective sensor configuration).
 しかして、受光素子で生じた受光電圧に基づき、血液の濃度を示すヘマトクリット値を求めることができる。すなわち、血液を構成する赤血球や血漿などの各成分は、それぞれ固有の吸光特性を持っており、この性質を利用してヘマトクリット値を測定するのに必要な赤血球を電子光学的に定量化することにより当該ヘマトクリット値を求めることができるのである。なお、本実施形態においては、第1検出手段E1及び第2検出手段E2が上記の如き所謂反射型センサにて構成されているが、発光素子にて光を照射するとともに、血液に対して透過した光を受光素子にて受光して得られる受光電圧に基づきヘマトクリット値(血液濃度)を測定し得るものとしてもよい。 However, a hematocrit value indicating the blood concentration can be obtained based on the light reception voltage generated by the light receiving element. That is, each component of blood such as red blood cells and plasma has its own light absorption characteristics, and this property is used to quantify the red blood cells necessary for measuring the hematocrit value electro-optically. Thus, the hematocrit value can be obtained. In the present embodiment, the first detection means E1 and the second detection means E2 are constituted by the so-called reflection type sensors as described above. However, the light emitting element emits light and transmits the blood. The hematocrit value (blood concentration) may be measured based on the received light voltage obtained by receiving the received light with the light receiving element.
 一方、透析液導入ラインL1及び透析液排出ラインL2には、所定濃度に調製された透析液をダイアライザ2に送液しつつ、当該ダイアライザ2から透析液と共に老廃物等(排液)を排出させる複式ポンプ6が接続されている。すなわち、透析液導入ラインL1及び透析液排出ラインL2に跨って複式ポンプ6が配設されており、かかる複式ポンプ6を駆動させることにより、ダイアライザ2に対して透析液導入ラインL1にて透析液を導入及び透析液排出ラインL2にて透析液を排出させ得るよう構成されているのである。 On the other hand, the dialysate introduction line L1 and the dialysate discharge line L2 allow the dialysate 2 to be discharged together with the dialysate while discharging dialysate prepared at a predetermined concentration to the dialyzer 2 and discharge the wastes and the like. A dual pump 6 is connected. That is, the dual pump 6 is disposed across the dialysate introduction line L1 and the dialysate discharge line L2. By driving the dual pump 6, the dialysate is introduced into the dialysate 2 via the dialysate introduction line L1. The dialysis fluid can be discharged through the introduction and dialysis fluid discharge line L2.
 また、透析液導入ラインL1には、電磁弁V1、V3及び濾過フィルタF1、F2が接続されており、ダイアライザ2に導入する透析液を濾過フィルタF1、F2にて濾過し得るとともに、電磁弁V1、V3にて任意タイミングで流路を遮断又は開放可能とされている。なお、透析液導入ラインL1は、バイパスラインL4、L5にて透析液排出ラインL2と接続されており、これらバイパスラインL4、L5には、電磁弁V4、V5がそれぞれ接続されている。 The dialysate introduction line L1 is connected to solenoid valves V1, V3 and filtration filters F1, F2. The dialysate introduced into the dialyzer 2 can be filtered by the filtration filters F1, F2, and the solenoid valve V1. , V3 can be blocked or opened at any timing. The dialysate introduction line L1 is connected to the dialysate discharge line L2 via bypass lines L4 and L5, and electromagnetic valves V4 and V5 are connected to the bypass lines L4 and L5, respectively.
 さらに、透析液排出ラインL2には、複式ポンプ6を迂回する迂回ラインL3、L6が接続されており、迂回ラインL6には電磁弁V6が接続されるとともに、迂回ラインL3には除水ポンプ7が接続されている。しかして、血液回路1にて患者の血液を体外循環させる過程で除水ポンプ7を駆動させることにより、ダイアライザ2を流れる血液から水分を取り除いて除水し得るようになっている。 Further, bypass lines L3 and L6 that bypass the duplex pump 6 are connected to the dialysate discharge line L2, and an electromagnetic valve V6 is connected to the bypass line L6, and a water removal pump 7 is connected to the bypass line L3. Is connected. Thus, the water removal pump 7 is driven in the course of extracorporeal circulation of the patient's blood in the blood circuit 1, so that water can be removed from the blood flowing through the dialyzer 2.
 また、透析液排出ラインL2における複式ポンプ6より上流側(図1中左側)には、当該複式ポンプ6における透析液排出ラインL2の液圧調整を行う加圧ポンプ8が接続されており、当該加圧ポンプ8と複式ポンプ6との間からは、脱ガスチャンバ9を介して開放ラインL7が延設されている。透析液排出ラインL2及びそこから分岐する開放ラインL7には、電磁弁V2、V7がそれぞれ接続されており、任意タイミングで透析液の流路を遮断又は開放可能とされている。 Further, a pressure pump 8 for adjusting the fluid pressure of the dialysate discharge line L2 in the duplex pump 6 is connected to the upstream side (left side in FIG. 1) of the duplex pump 6 in the dialysate discharge line L2. An open line L <b> 7 extends between the pressurizing pump 8 and the duplex pump 6 through a degassing chamber 9. Solenoid valves V2 and V7 are respectively connected to the dialysate discharge line L2 and the open line L7 branched from the dialysate discharge line L2, and the dialysate flow path can be shut off or opened at an arbitrary timing.
 接続ラインL8は、一端が透析液導入ラインL1の所定部位(本実施形態においては、電磁弁V1と濾過フィルタF2との間)に形成された採取口P(サンプルポート)に接続されるとともに、他端が動脈側血液回路1aに接続され、当該透析液導入ラインL1の透析液を動脈側血液回路1aに供給させ得る流路から成るものである。この接続ラインL8には、電磁弁V10が接続されており、当該電磁弁V10を開状態とすることにより、透析液導入ラインL1の透析液を血液回路1(動脈側血液回路1a)に供給し得るようになっている。 The connection line L8 has one end connected to a sampling port P (sample port) formed at a predetermined portion of the dialysate introduction line L1 (between the electromagnetic valve V1 and the filtration filter F2 in the present embodiment) The other end is connected to the arterial blood circuit 1a, and the flow path can supply the dialysate in the dialysate introduction line L1 to the arterial blood circuit 1a. The connection line L8 is connected to an electromagnetic valve V10. By opening the electromagnetic valve V10, the dialysate in the dialysate introduction line L1 is supplied to the blood circuit 1 (arterial blood circuit 1a). To get.
 制御手段11は、血液浄化装置が具備する種々アクチュエータやセンサ等と電気的に接続されたマイコンから成るもので、例えば透析液導入ラインL1や透析液排出ラインL2等の透析液配管内を透析液で満たす液置換工程、血液回路1内とダイアライザ2内の血液流路とをプライミング液(生理食塩液又は透析液等)に置換して充填させるプライミング工程、ダイアライザ2内の透析液流路を透析液で満たすガスパージ工程、患者の血液を血液回路1内に取り出す脱血工程、血液回路1にて患者の血液を体外循環させつつダイアライザ2にて浄化する透析工程(血液浄化治療工程)、血液回路1内の血液を患者に戻す返血工程、血液回路1内の液体(返血時の置換液に僅かな血液が混在した液体)を透析液排出ラインL2に排出する排液工程、透析装置1の配管内を洗浄及び消毒する洗浄消毒工程、次回の液置換工程が行われるまで待機するプリセット工程の順に各工程が行われるよう制御可能とされている。 The control means 11 is composed of a microcomputer electrically connected to various actuators and sensors provided in the blood purification apparatus. For example, the dialysate pipes such as the dialysate introduction line L1 and the dialysate discharge line L2 are dialyzed. The fluid replacement step of filling with, the priming step of replacing the blood flow path in the blood circuit 1 and the dialyzer 2 with a priming solution (such as physiological saline or dialysate), and dialysis of the dialysate flow channel in the dialyzer 2 A gas purge step for filling with a liquid, a blood removal step for extracting the patient's blood into the blood circuit 1, a dialysis step (blood purification treatment step) for purifying the patient's blood with the dialyzer 2 while circulating the patient's blood extracorporeally, and a blood circuit A blood return step for returning the blood in 1 to the patient, a drainage fluid for discharging the liquid in the blood circuit 1 (a liquid in which a small amount of blood is mixed in the replacement fluid at the time of blood return) to the dialysate discharge line L2. Degree, washing and disinfecting process of cleaning and disinfecting the inside of the dialyzer 1 pipe, each step in the order of preset step of waiting until the next liquid replacement step is carried out there is a controllable to be performed.
 液面調整手段10は、静脈側エアトラップチャンバ5の上部(空気層)から延設された延設チューブLaと、動脈側エアトラップチャンバ4の上部(空気層)から延設された延設チューブLbと、延設チューブLa及びLbに接続された接続チューブLcと、一端が接続チューブLcに接続されるとともに他端が大気開放された開放チューブLdと、開放チューブLdに配設された液面調整ポンプ10aとを有して構成されている。なお、接続チューブLcには、延設チューブLa側を開閉する電磁弁Va及び延設チューブLb側を開閉する電磁弁Vbがそれぞれ取り付けられている。 The liquid level adjusting means 10 includes an extended tube La extending from the upper portion (air layer) of the vein-side air trap chamber 5 and an extended tube extending from the upper portion (air layer) of the artery-side air trap chamber 4. Lb, a connecting tube Lc connected to the extending tubes La and Lb, an open tube Ld having one end connected to the connecting tube Lc and the other end open to the atmosphere, and a liquid level disposed in the open tube Ld And a regulating pump 10a. Note that an electromagnetic valve Va that opens and closes the extended tube La side and an electromagnetic valve Vb that opens and closes the extended tube Lb side are attached to the connection tube Lc.
 液面調整ポンプ10aは、正回転駆動(図1中α方向(左回り)の回転駆動)及び逆回転駆動(図1中β方向(右回り)の回転駆動)可能なしごき型ポンプから成るもので、開放チューブLdをその長手方向に向かってしごくことで、動脈側エアトラップチャンバ4の上部又は静脈側エアトラップチャンバ5の上部に対する空気の導入又は排出を任意に行い得るよう構成されている。しかして、液面調整ポンプ10aを正回転駆動させると、開放チューブLdの先端から空気が吸引されるので、電磁弁Vaが開状態のとき、延設チューブLaを介して静脈側エアトラップチャンバ5に空気が導入されて液面を下降させることができるとともに、液面調整ポンプ10aを逆回転駆動させると、開放チューブLdの先端から空気が排出されるので、電磁弁Vaが開状態のとき、延設チューブLaを介して静脈側エアトラップチャンバ5から空気が排出されて液面を上昇させることができる。 The liquid level adjustment pump 10a is composed of a squeezing pump capable of forward rotation (rotation drive in the α direction (counterclockwise) in FIG. 1) and reverse rotation drive (rotation drive in the β direction (clockwise) in FIG. 1). Thus, the open tube Ld is squeezed in the longitudinal direction so that air can be arbitrarily introduced into or discharged from the upper part of the arterial air trap chamber 4 or the upper part of the venous air trap chamber 5. Thus, when the liquid level adjustment pump 10a is driven to rotate in the forward direction, air is sucked from the tip of the open tube Ld. Therefore, when the electromagnetic valve Va is in the open state, the vein-side air trap chamber 5 is passed through the extension tube La. When the liquid level adjusting pump 10a is driven to rotate in reverse, air is discharged from the tip of the open tube Ld. Therefore, when the solenoid valve Va is open, Air can be discharged from the vein-side air trap chamber 5 through the extension tube La to raise the liquid level.
 同様に、液面調整ポンプ10aを正回転駆動させると、開放チューブLdの先端から空気が吸引されるので、電磁弁Vbが開状態のとき、延設チューブLbを介して動脈側エアトラップチャンバ4に空気が導入されて液面を下降させることができるとともに、液面調整ポンプ10aを逆回転駆動させると、開放チューブLdの先端から空気が排出されるので、電磁弁Vbが開状態のとき、延設チューブLbを介して動脈側エアトラップチャンバ4から空気が排出されて液面を上昇させることができる。 Similarly, when the liquid level adjusting pump 10a is driven to rotate in the forward direction, air is sucked from the tip of the open tube Ld. Therefore, when the electromagnetic valve Vb is in the open state, the artery side air trap chamber 4 is passed through the extension tube Lb. When the liquid level adjusting pump 10a is driven to rotate in reverse, air is discharged from the tip of the open tube Ld, so that when the solenoid valve Vb is open, Air can be discharged from the artery side air trap chamber 4 through the extension tube Lb to raise the liquid level.
 本実施形態においては、血液回路1を体外循環する血液の指標に特有の変化を付与する指標変化付与手段を具備しており、かかる指標変化付与手段として、例えば除水ポンプ7(図4参照)、開放ラインL7及び電磁弁V7(図5参照)、複式ポンプ6(図6参照)を用いることができる。指標変化付与手段として除水ポンプ7を用いる場合、図4に示すように、制御手段11による制御によって、電磁弁V1~V3を開状態及び電磁弁V4~V7を閉状態としつつ除水ポンプ7を短時間だけ急激に駆動させることにより、ダイアライザ2の血液流路を流れる血液に対して短時間且つ急激な除水を行って瞬間的に濃縮する。これにより、図7に示すように、血液の指標としての血液濃度を瞬間的に上昇させて特有の変化(Sa)を付与することができる。 In the present embodiment, there is provided an index change giving means for giving a characteristic change to an index of blood circulating outside the blood circuit 1, and as such an index change giving means, for example, a water removal pump 7 (see FIG. 4). The open line L7, the electromagnetic valve V7 (see FIG. 5), and the dual pump 6 (see FIG. 6) can be used. When the water removal pump 7 is used as the index change applying means, as shown in FIG. 4, the water removal pump 7 is controlled by the control means 11 while the electromagnetic valves V1 to V3 are opened and the electromagnetic valves V4 to V7 are closed. Is rapidly driven only for a short time, the blood flowing through the blood flow path of the dialyzer 2 is quickly and rapidly dehydrated and concentrated instantaneously. Thereby, as shown in FIG. 7, the blood concentration as a blood index can be instantaneously increased to give a specific change (Sa).
 また、指標変化付与手段として開放ラインL7及び電磁弁V7を用いる場合、図5に示すように、制御手段11による制御によって、電磁弁V1~V3を開状態及び電磁弁V4~V6を閉状態としつつ電磁弁V7を短時間だけ開状態とすることにより、加圧ポンプ8の吐出圧を大気開放とし、ダイアライザ2の血液流路を流れる血液に対して短時間且つ急激な除水を行って瞬間的に濃縮する。これにより、図7に示すように、血液の指標としての血液濃度を瞬間的に上昇させて特有の変化(Sa)を付与することができる。 Further, when the open line L7 and the electromagnetic valve V7 are used as the index change applying means, as shown in FIG. 5, the electromagnetic valves V1 to V3 are opened and the electromagnetic valves V4 to V6 are closed by the control of the control means 11, as shown in FIG. However, by opening the electromagnetic valve V7 for a short time, the discharge pressure of the pressurizing pump 8 is released to the atmosphere, and the blood flowing through the blood flow path of the dialyzer 2 is subjected to rapid and rapid water removal for a moment. Concentrate. Thereby, as shown in FIG. 7, the blood concentration as a blood index can be instantaneously increased to give a specific change (Sa).
 上記のように、指標変化付与手段として除水ポンプ7や開放ラインL7及び電磁弁V7を用いて血液濃度を瞬間的に上昇させて特有の変化(Sa)を付与する場合、図2に示すように、アクセス血管の上流側(動脈Aと静脈Bとの接合部であるシャント部C近傍)に動脈側穿刺針aが穿刺されつつ当該アクセス血管の下流側(シャント部C近傍より下流側の静脈B)に静脈側穿刺針bが穿刺された状態において、制御手段11による制御によって血液ポンプ3を逆回転駆動(図4~6中矢印で示すように、血液浄化治療時とは逆方向の駆動)させる(但し、クランプ手段V8、V9は開状態)と、指標変化付与手段で特有の変化が付与された血液をアクセス血管にて流すことができる。このとき、第1検出手段E1においては、図7に示す如く特有の変化(Sa)が検出されるとともに、第2検出手段E2においては、図8に示す如くアクセス血管を流れる血液で希釈された(弱まった)特有の変化(Sv)が検出されることとなる。すなわち、本実施形態に係る第1検出手段E1及び第2検出手段E2は、指標変化付与手段で付与された特有の変化(血液濃度に対する特有の変化)を検出し得るものとされているのである。 As shown in FIG. 2, when the blood concentration is instantaneously increased using the dewatering pump 7, the open line L7, and the electromagnetic valve V7 as the index change applying means, a specific change (Sa) is applied. In addition, the artery side puncture needle a is punctured on the upstream side of the access blood vessel (near the shunt portion C where the artery A and the vein B are joined), and the vein on the downstream side of the access blood vessel (downstream side from the vicinity of the shunt portion C). In the state where the venous puncture needle b is punctured in B), the blood pump 3 is driven in reverse rotation under the control of the control means 11 (as indicated by the arrows in FIGS. 4 to 6). ) (However, the clamp means V8 and V9 are in the open state), the blood to which the specific change is given by the index change giving means can be made to flow in the access blood vessel. At this time, the first detection means E1 detects a specific change (Sa) as shown in FIG. 7, and the second detection means E2 is diluted with blood flowing through the access blood vessel as shown in FIG. A (weakened) specific change (Sv) will be detected. That is, the first detection means E1 and the second detection means E2 according to the present embodiment are capable of detecting a specific change (specific change with respect to blood concentration) given by the index change giving means. .
 さらに、指標変化付与手段として複式ポンプ6を用いる場合、図6に示すように、制御手段11による制御によって、電磁弁V1、V3、V6を開状態及び電磁弁V2、V4、V5を閉状態としつつ複式ポンプ6を短時間だけ急激に駆動させることにより、ダイアライザ2の血液流路を流れる血液に対して短時間且つ急激に透析液を注入して瞬間的に希釈する。これにより、図9に示すように、血液の指標としての血液濃度を瞬間的に低下させて特有の変化(Sa)を付与することができる。 Further, when the dual pump 6 is used as the index change providing means, as shown in FIG. 6, the solenoid valves V1, V3, V6 are opened and the solenoid valves V2, V4, V5 are closed by the control of the control means 11, as shown in FIG. However, by rapidly driving the duplex pump 6 for a short time, the dialysate is rapidly and rapidly injected into the blood flowing through the blood flow path of the dialyzer 2 to dilute instantaneously. As a result, as shown in FIG. 9, the blood concentration as a blood index can be instantaneously reduced to give a specific change (Sa).
 上記のように、指標変化付与手段として複式ポンプ6を用いて血液濃度を瞬間的に低下させて特有の変化(Sa)を付与する場合、そして、図2に示すように、アクセス血管の上流側(動脈Aと静脈Bとの接合部であるシャント部C近傍)に動脈側穿刺針aが穿刺されつつ当該アクセス血管の下流側(シャント部C近傍より下流側の静脈B)に静脈側穿刺針bが穿刺された状態において、制御手段11による制御によって血液ポンプ3を逆回転駆動(血液浄化治療時とは逆方向の駆動)させる(但し、クランプ手段V8、V9は開状態)と、指標変化付与手段で特有の変化が付与された血液をアクセス血管にて流すことができる。このとき、第1検出手段E1においては、図9に示す如く特有の変化(Sa)が検出されるとともに、第2検出手段E2においては、図10に示す如くアクセス血管を流れる血液で希釈された(弱まった)特有の変化(Sv)が検出されることとなる。 As described above, when the dual concentration pump 6 is used as the index change providing means to instantaneously lower the blood concentration and apply a specific change (Sa), and as shown in FIG. While the arterial puncture needle a is punctured in the vicinity of the shunt portion C (joint portion between the artery A and the vein B), the venous puncture needle is downstream of the access blood vessel (the vein B downstream of the shunt portion C). In the state where b is punctured, the blood pressure of the blood pump 3 is reversed (driven in the direction opposite to that during blood purification treatment) under the control of the control means 11 (however, the clamp means V8 and V9 are in the open state), and the index changes. Blood to which a specific change is imparted by the imparting means can be made to flow in the access blood vessel. At this time, the first detection means E1 detects a specific change (Sa) as shown in FIG. 9, and the second detection means E2 is diluted with blood flowing through the access blood vessel as shown in FIG. A (weakened) specific change (Sv) will be detected.
 算出手段12は、血液ポンプ3が逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化と、アクセス血管を流れた後に検出手段(第2検出手段E2)で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得るものである。本実施形態に係る算出手段12は、血液ポンプ3が逆回転駆動したときの流量(Qb)と、指標変化付与手段で付与された特有の変化の大きさ(Sa)と第2検出手段E2で検出された特有の変化の大きさ(Sv)との比に基づいてアクセス血管の流量(Qa)を算出し得るものとされている。 The calculation means 12 is detected by the detection means (second detection means E2) after flowing through the access blood vessel, the flow rate when the blood pump 3 is driven in reverse rotation, the specific change given by the index change giving means, and the access blood vessel. The flow rate of the access blood vessel can be calculated based on the specific change. The calculation means 12 according to the present embodiment includes a flow rate (Qb) when the blood pump 3 is driven in reverse rotation, a specific change magnitude (Sa) given by the index change giving means, and a second detection means E2. The flow rate (Qa) of the access blood vessel can be calculated on the basis of the ratio with the detected magnitude of the specific change (Sv).
 すなわち、血液ポンプ3を逆回転駆動させることによって、指標変化付与手段で特有の変化が付与された血液をアクセス血管にて流す際、アクセス血管における血液の流量は、Qb/(Qa+Qb)に希釈されるので、指標変化付与手段で付与された特有の変化の大きさ(Sa)と第2検出手段E2で検出された特有の変化の大きさ(Sv)との比(Sa/Sb)は、Qb/(Qa+Qb)と等しい。したがって、Qa=Qb(Sa/Sv-1)なる演算式を得ることができ、この演算式にてアクセス血管の流量を算出することができる。なお、Sa及びSbは、それぞれ特有の変化の大きさであり、例えば検出されたヘマトクリット値のベース値からの変化を時間で積分することにより求めることができるが、ピーク値の比を求めてもよい。 That is, when the blood pump 3 is driven to rotate in the reverse direction, when blood having a specific change applied by the index change applying means flows through the access blood vessel, the blood flow rate in the access blood vessel is diluted to Qb / (Qa + Qb). Therefore, the ratio (Sa / Sb) between the specific change magnitude (Sa) given by the index change grant means and the specific change magnitude (Sv) detected by the second detection means E2 is Qb. / (Qa + Qb). Therefore, an arithmetic expression Qa = Qb (Sa / Sv−1) can be obtained, and the flow rate of the access blood vessel can be calculated using this arithmetic expression. Sa and Sb each have a specific magnitude of change, and can be obtained, for example, by integrating the change from the base value of the detected hematocrit value with time, but even if the ratio of peak values is obtained. Good.
 さらに、本実施形態に係る制御手段11は、血液ポンプ3を逆回転駆動させてアクセス血管の流量を算出する際、液面調整手段10によって動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5の液面を上昇させるよう構成されている。すなわち、血液ポンプ3を逆回転駆動させる際、電磁弁Va及び電磁弁Vbを開状態とするとともに、液面調整ポンプ10aを逆回転駆動させることにより、延設チューブLa、Lbを介して動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5から空気が排出されて液面を上昇させることができる。 Further, the control means 11 according to the present embodiment drives the blood pump 3 in the reverse rotation to calculate the flow rate of the access blood vessel, so that the liquid level adjustment means 10 causes the arterial air trap chamber 4 and the venous air trap chamber 5 to It is comprised so that a liquid level may be raised. That is, when the blood pump 3 is driven to rotate backward, the electromagnetic valve Va and the electromagnetic valve Vb are opened, and the liquid level adjusting pump 10a is driven to rotate backward, so that the arterial side is provided via the extended tubes La and Lb. Air can be discharged from the air trap chamber 4 and the venous air trap chamber 5 to raise the liquid level.
 次に、本実施形態に係る血液浄化装置によるアクセス血管の流量算出方法について、図3のフローチャートに基づいて説明する。
 透析液導入ラインL1や透析液排出ラインL2等の透析液配管内を透析液で満たす液置換工程S1、血液回路1内とダイアライザ2内の血液流路とをプライミング液(生理食塩液又は透析液等)に置換して充填させるプライミング工程S2、ダイアライザ2内の透析液流路を透析液で満たすガスパージ工程S3、患者の血液を血液回路1内に取り出す脱血工程S4を経た後、アクセス血管の上流側(動脈Aと静脈Bとの接合部であるシャント部C近傍)に動脈側穿刺針aが穿刺されつつ当該アクセス血管の下流側(シャント部C近傍より下流側の静脈B)に静脈側穿刺針bが穿刺した状態として、血液回路1にて患者の血液を体外循環させつつダイアライザ2にて浄化する透析工程(血液浄化治療工程)が開始される(S5)。
Next, an access blood vessel flow rate calculation method by the blood purification apparatus according to the present embodiment will be described based on the flowchart of FIG.
Fluid replacement step S1 for filling dialysate pipes such as dialysate introduction line L1 and dialysate discharge line L2 with dialysate, priming fluid (physiological saline solution or dialysate) in blood circuit 1 and blood flow path in dialyzer 2 After the priming step S2 to be replaced and filled, the gas purge step S3 for filling the dialysate flow path in the dialyzer 2 with the dialysate, and the blood removal step S4 for taking the patient's blood into the blood circuit 1, While the arterial puncture needle a is punctured on the upstream side (near the shunt part C where the artery A and the vein B are joined), the venous side is downstream of the access blood vessel (the vein B downstream from the vicinity of the shunt part C). In a state where the puncture needle b has been punctured, a dialysis process (blood purification treatment process) for purifying the patient's blood with the dialyzer 2 while circulating the patient's blood in the blood circuit 1 is started (S5).
 透析工程が開始されると、液面調整手段10が作動して液面調整ポンプ10aを逆回転駆動させ、動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5から空気が排出されて液面を上昇させる(S6)。その後、血液ポンプ3を逆回転駆動させ(S7)るとともに、指標変化付与手段を作動させ、血液回路1を体外循環する血液の指標に特有の変化を付与する(S8)。 When the dialysis process is started, the liquid level adjusting means 10 is operated to drive the liquid level adjusting pump 10a in reverse rotation, and air is discharged from the arterial side air trap chamber 4 and the venous side air trap chamber 5 to reduce the liquid level. Increase (S6). Thereafter, the blood pump 3 is driven to rotate in the reverse direction (S7), and the index change applying means is operated to apply a characteristic change to the index of blood circulating outside the blood circuit 1 (S8).
 そして、指標変化付与手段で付与された特有の変化(動脈側血液回路1aにおける特有の変化)を第1検出手段E1にて検出する(S9)とともに、アクセス血管を流れた後の血液における特有の変化(静脈側血液回路1bにおける特有の変化)を第2検出手段E2にて検出し(S10)、これら第1検出手段E1及び第2検出手段E2にて検出された特有の変化と血液ポンプ3が逆回転駆動した際の血液の流量とに基づいて、算出手段12にてアクセス血管の流量を算出する(S11)。 Then, a specific change (specific change in the arterial blood circuit 1a) given by the index change giving means is detected by the first detection means E1 (S9), and a characteristic change in the blood after flowing through the access blood vessel is detected. Changes (characteristic changes in the venous blood circuit 1b) are detected by the second detection means E2 (S10), and the characteristic changes detected by the first detection means E1 and the second detection means E2 and the blood pump 3 are detected. The flow rate of the access blood vessel is calculated by the calculation means 12 based on the flow rate of blood when the reverse rotation is driven (S11).
 かかるアクセス血管の流量が異常であるか否かがS12にて判定され、アクセス血管の流量が異常の場合は、S19に進んで、その旨(アクセス血管の流量が治療に影響がある程度に過大又は過少である旨)を報知する(S19)とともに、アクセス血管の流量が異常でない場合は、S13に進んで、血液ポンプ3を正回転駆動させることにより、患者の血液を血液回路1にて体外循環させつつ血液浄化治療が行われる。 It is determined in S12 whether or not the flow rate of the access blood vessel is abnormal. If the flow rate of the access blood vessel is abnormal, the process proceeds to S19, and that fact (the flow rate of the access blood vessel is excessively affected to the extent of treatment or (S19) and if the flow rate of the access blood vessel is not abnormal, the process proceeds to S13, and the blood pump 3 is driven to rotate in the forward direction, whereby the patient's blood is extracorporeally circulated in the blood circuit 1. Blood purification treatment is performed.
 その後、S14にて透析工程が終了すると、血液回路1内の血液を患者に戻す返血工程S15、血液回路1内の液体(返血時の置換液に僅かな血液が混在した液体)を透析液排出ラインL2に排出する排液工程S16、透析装置の配管内を洗浄及び消毒する洗浄消毒工程S17、次回の液置換工程S1が行われるまで待機するプリセット工程S18が順次行われることとなる。 Thereafter, when the dialysis step is completed in S14, the blood return step S15 for returning the blood in the blood circuit 1 to the patient, and the liquid in the blood circuit 1 (the liquid in which a slight amount of blood is mixed in the replacement liquid at the time of return) is dialyzed. A draining step S16 for discharging to the liquid discharging line L2, a cleaning / disinfecting step S17 for cleaning and disinfecting the inside of the dialysis apparatus, and a preset step S18 for waiting until the next liquid replacement step S1 are performed are sequentially performed.
 上記実施形態によれば、アクセス血管の上流側に動脈側穿刺針aが穿刺されつつ当該アクセス血管の下流側に静脈側穿刺針bが穿刺された状態で血液ポンプ3を血液浄化治療時とは逆回転駆動させることにより、指標変化付与手段で特有の変化が付与された血液をアクセス血管にて流し得るとともに、血液ポンプ3が逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化(本実施形態においては、第1検出手段E1で検出された特有の変化)と、アクセス血管を流れた後に第2検出手段E2で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得るので、アクセス血管の流量に関わらず、短時間で精度よくアクセス血管の流量を求めることができる。 According to the above-described embodiment, the blood pump 3 is subjected to blood purification treatment in a state where the arterial puncture needle a is punctured upstream of the access blood vessel and the venous puncture needle b is punctured downstream of the access blood vessel. By performing reverse rotation driving, blood to which a specific change is imparted by the index change imparting means can flow through the access blood vessel, and the flow rate when the blood pump 3 is reversely driven and the index change imparting means Based on the characteristic change (the characteristic change detected by the first detection means E1 in this embodiment) and the characteristic change detected by the second detection means E2 after flowing through the access blood vessel, the access Since the blood vessel flow rate can be calculated, the access blood vessel flow rate can be obtained accurately in a short time regardless of the flow rate of the access blood vessel.
 特に、本実施形態によれば、血液ポンプ3が逆回転駆動したときの流量(Qb)と、指標変化付与手段で付与された特有の変化の大きさ(Sa)と検出手段(第2検出手段E2)で検出された特有の変化の大きさ(Sv)との比(Sa/Sb)に基づいてアクセス血管の流量を算出(本実施形態においては、Qa=Qb(Sa/Sv-1)なる演算式を用いて算出)し得るので、より短時間で精度よくアクセス血管の流量を求めることができる。 In particular, according to the present embodiment, the flow rate (Qb) when the blood pump 3 is driven to rotate backward, the magnitude (Sa) of the specific change given by the index change giving means, and the detection means (second detection means) The flow rate of the access blood vessel is calculated based on the ratio (Sa / Sb) to the specific change magnitude (Sv) detected in E2) (in this embodiment, Qa = Qb (Sa / Sv-1) Therefore, the flow rate of the access blood vessel can be obtained with higher accuracy in a shorter time.
 さらに、血液ポンプ3を逆回転駆動させてアクセス血管の流量を算出する際、液面調整手段10によってエアトラップチャンバ(本実施形態においては、動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5の両方)の液面を上昇させるので、アクセス血管の流量の算出時、エアトラップチャンバ(動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5)内の気泡が血液回路1に流動してしまうのを抑制することができる。本実施形態においては、動脈側血液回路1a及び静脈側血液回路1bにそれぞれエアトラップチャンバが接続されているが、何れか一方のみにエアトラップチャンバが接続されたものを用いてもよく、その場合、そのエアトラップチャンバの液面を液面調整手段10によって上昇させることとなる。 Furthermore, when the blood pump 3 is driven to rotate backward to calculate the flow rate of the access blood vessel, the liquid level adjustment means 10 causes the air trap chamber (in this embodiment, the artery side air trap chamber 4 and the vein side air trap chamber 5 The liquid level of both) is raised so that bubbles in the air trap chamber (arterial side air trap chamber 4 and venous side air trap chamber 5) flow into the blood circuit 1 when calculating the flow rate of the access blood vessel. Can be suppressed. In this embodiment, the air trap chamber is connected to each of the arterial blood circuit 1a and the venous blood circuit 1b. However, a device in which the air trap chamber is connected to only one of them may be used. The liquid level in the air trap chamber is raised by the liquid level adjusting means 10.
 なお、血液ポンプ3が逆回転駆動した際、内部の気泡が血液回路1に流動してしまう可能性が低い形態のエアトラップチャンバ(例えば、図11、12に示すように、血液回路1を流れる血液をエアトラップチャンバの下部から導入しつつ下部から導出する形態等)を用いるようにすれば、液面調整手段10によるエアトラップチャンバ(本実施形態においては、動脈側エアトラップチャンバ4及び静脈側エアトラップチャンバ5の両方)の液面の上昇は不要とされる。 Note that when the blood pump 3 is driven to rotate in the reverse direction, it is unlikely that bubbles inside the blood circuit 1 will flow into the blood circuit 1 (for example, as shown in FIGS. 11 and 12, it flows through the blood circuit 1). If blood is introduced from the lower part of the air trap chamber and led out from the lower part, the air trap chamber by the liquid level adjusting means 10 (in this embodiment, the artery side air trap chamber 4 and the vein side) are used. It is unnecessary to increase the liquid level in both the air trap chamber 5).
 またさらに、本実施形態に係る検出手段は、動脈側血液回路1aに配設された第1検出手段E1、及び静脈側血液回路1bに配設された第2検出手段E2を有するとともに、当該第1検出手段E1及び第2検出手段E2で検出された特有の変化に基づいてアクセス血管の流量を算出し得るので、指標変化付与手段で付与される特有の変化が既知(予め設定された値)でなくても、アクセス血管の流量を精度よく算出することができる。 Furthermore, the detection means according to the present embodiment includes first detection means E1 disposed in the arterial blood circuit 1a and second detection means E2 disposed in the venous blood circuit 1b. Since the flow rate of the access blood vessel can be calculated based on the specific change detected by the first detection means E1 and the second detection means E2, the specific change given by the index change giving means is known (preset value). Even if it is not, the flow rate of the access blood vessel can be calculated with high accuracy.
 次に、本発明に係る他の実施形態について説明する。
 本実施形態に係る血液浄化装置は、先の実施形態と同様、透析治療を行うための透析装置から成り、図11に示すように、血液回路1と、ダイアライザ2(血液浄化手段)と、血液ポンプ3と、動脈側エアトラップチャンバ4’及び静脈側エアトラップチャンバ5’と、血液の指標に特有の変化を付与する指標変化付与手段と、第2検出手段E2と、ダイアライザ2に透析液を導入する透析液導入ラインL1と、ダイアライザ2から排液を排出する透析液排出ラインL2と、制御手段11と、算出手段12とを有して構成されている。なお、先の実施形態と同様の構成要素には、同一の符号を付し、それらの詳細な説明を省略する。
Next, another embodiment according to the present invention will be described.
As in the previous embodiment, the blood purification apparatus according to the present embodiment comprises a dialysis apparatus for performing dialysis treatment. As shown in FIG. 11, the blood circuit 1, dialyzer 2 (blood purification means), blood Dialysate is supplied to the pump 3, the arterial air trap chamber 4 ′ and the venous air trap chamber 5 ′, index change applying means for applying a characteristic change to the blood index, the second detecting means E 2, and the dialyzer 2. The dialysis fluid introduction line L1 to be introduced, the dialysis fluid discharge line L2 for discharging the effluent from the dialyzer 2, the control means 11, and the calculation means 12 are configured. In addition, the same code | symbol is attached | subjected to the component similar to previous embodiment, and those detailed description is abbreviate | omitted.
 ここで、本実施形態においては、静脈側血液回路1bに配設された第2検出手段E2を具備しているものの、先の実施形態の如く動脈側血液回路1aに第1検出手段E1が配設されていない。すなわち、本実施形態に係る指標変化付与手段で付与された特有の変化は、その大きさ(Sa)が既知(予め設定された値)とされており、算出手段12は、血液ポンプ3が逆回転駆動したときの流量(Qb)と、既知である特有の変化の大きさ(Sa)と第2検出手段E2で検出された特有の変化の大きさ(Sv)との比に基づいてアクセス血管の流量(Qa)を算出することができるのである。 Here, in this embodiment, although the second detection means E2 provided in the venous blood circuit 1b is provided, the first detection means E1 is arranged in the arterial blood circuit 1a as in the previous embodiment. Not set up. That is, the characteristic change given by the index change giving means according to the present embodiment has a known magnitude (Sa) (preset value), and the calculation means 12 is the reverse of the blood pump 3. Access blood vessel based on the ratio of the flow rate (Qb) when it is rotationally driven and the known specific change magnitude (Sa) and the specific change magnitude (Sv) detected by the second detection means E2. It is possible to calculate the flow rate (Qa).
 さらに、本実施形態に係る動脈側エアトラップチャンバ4’及び静脈側エアトラップチャンバ5’は、血液回路1を流れる血液をエアトラップチャンバの下部から導入しつつ下部から導出するよう構成されている。これにより、血液ポンプ3が逆回転駆動した際、動脈側エアトラップチャンバ4’又は静脈側エアトラップチャンバ5’の内部の気泡が血液回路1に流動してしまうのを防止することができ、先の実施形態における液面調整手段10等によるエアトラップチャンバ内の液面の上昇を不要とすることができる。 Furthermore, the artery side air trap chamber 4 ′ and the vein side air trap chamber 5 ′ according to the present embodiment are configured to introduce blood from the lower part of the air trap chamber while introducing blood flowing through the blood circuit 1 from the lower part. As a result, when the blood pump 3 is driven in reverse rotation, bubbles inside the artery side air trap chamber 4 ′ or the vein side air trap chamber 5 ′ can be prevented from flowing into the blood circuit 1. It is possible to eliminate the rise in the liquid level in the air trap chamber by the liquid level adjusting means 10 in the embodiment.
 次に、本発明に係る更に他の実施形態について説明する。
 本実施形態に係る血液浄化装置は、先の実施形態と同様、透析治療を行うための透析装置から成り、図12に示すように、血液回路1と、ダイアライザ2(血液浄化手段)と、血液ポンプ3と、動脈側エアトラップチャンバ4’及び静脈側エアトラップチャンバ5’と、血液の指標に特有の変化を付与する指標変化付与手段と、第1検出手段E1及び第2検出手段E2と、ダイアライザ2に透析液を導入する透析液導入ラインL1と、ダイアライザ2から排液を排出する透析液排出ラインL2と、制御手段11と、算出手段12とを有して構成されている。なお、先の実施形態と同様の構成要素には、同一の符号を付し、それらの詳細な説明を省略する。
Next, still another embodiment according to the present invention will be described.
As in the previous embodiment, the blood purification apparatus according to this embodiment comprises a dialysis apparatus for performing dialysis treatment. As shown in FIG. 12, blood circuit 1, dialyzer 2 (blood purification means), blood A pump 3, an arterial air trap chamber 4 ′ and a venous air trap chamber 5 ′, index change applying means for applying a characteristic change to the blood index, first detection means E1 and second detection means E2, A dialysate introduction line L1 for introducing dialysate into the dialyzer 2, a dialysate discharge line L2 for discharging drainage from the dialyzer 2, a control means 11, and a calculation means 12 are provided. In addition, the same code | symbol is attached | subjected to the component similar to previous embodiment, and those detailed description is abbreviate | omitted.
 ここで、本実施形態においては、血液ポンプ3の逆回転駆動による流量を計測可能な流量計Rを具備し、当該流量計Rで計測された流量を血液ポンプ3が逆回転駆動したときの流量としてアクセス血管の流量を算出し得るよう構成されている。すなわち、血液ポンプ3の回転数や駆動時間等によって把握される流量と実際の流量との間に誤差が生じる場合であっても、流量計Rによって血液ポンプ3が逆回転駆動したときの流量を精度よく検出することができるのである。このように、流量計Rで計測された流量を血液ポンプ3が逆回転駆動したときの流量としてアクセス血管の流量を算出し得るので、より精度よくアクセス血管の流量を算出することができる。 Here, in the present embodiment, a flow meter R that can measure the flow rate of the blood pump 3 driven by the reverse rotation is provided, and the flow rate when the blood pump 3 is reversely driven by the flow rate measured by the flow meter R. As described above, the flow rate of the access blood vessel can be calculated. That is, even when an error occurs between the actual flow rate and the flow rate determined by the rotation speed or driving time of the blood pump 3, the flow rate when the blood pump 3 is reversely driven by the flow meter R It can be detected with high accuracy. Thus, since the flow rate of the access blood vessel can be calculated as the flow rate when the blood pump 3 is driven in reverse rotation, the flow rate of the access blood vessel can be calculated with higher accuracy.
 以上、本実施形態について説明したが、本発明はこれに限定されず、指標変化付与手段として、例えば透析液導入ラインL1に接続された図示しない透析液注入ポンプの動作速度を短時間だけ変更してダイアライザ2を流れる透析液の組成を瞬間的に変更することにより特有の変化を付与するもの、透析液導入ラインL1に接続されたヒータHによる加温温度を短時間だけ上昇又は低下してダイアライザ2を流れる透析液の温度を瞬間的に上昇又は低下することにより特有の変化を付与するもの、血液回路1の所定部位(動脈側血液回路1aにおける第1検出手段E1よりダイアライザ2側)に手動にて生理食塩液等の希釈液を注入することにより瞬間的に特有の変化を付与するもの等としてもよい。 Although the present embodiment has been described above, the present invention is not limited to this, and as an index change providing unit, for example, the operating speed of a dialysate infusion pump (not shown) connected to the dialysate introduction line L1 is changed only for a short time. The dialyzer 2 is given a specific change by instantaneously changing the composition of the dialysate flowing through the dialyzer 2, and the heating temperature by the heater H connected to the dialysate introduction line L1 is increased or decreased for a short time. 2 that gives a specific change by instantaneously raising or lowering the temperature of the dialysate flowing through 2, manually applied to a predetermined part of the blood circuit 1 (on the dialyzer 2 side from the first detection means E1 in the arterial blood circuit 1a). It is good also as what gives a peculiar change instantaneously by inject | pouring dilution liquids, such as physiological saline.
 しかるに、ダイアライザ2を流れる透析液の組成を瞬間的に変更することにより特有の変化を付与するものの場合、検出手段は、透析液から血液に拡散された組成を検出し得るものとされるとともに、透析液の温度を瞬間的に上昇又は低下することにより特有の変化を付与するものの場合、検出手段は、血液の温度を検出し得るものとされる。なお、透析液の温度を瞬間的に上昇又は低下することにより特有の変化を付与するものの場合、温度変化を時間で積分すれば、血液に付与された熱量の大きさが分かるので、指標変化付与手段で付与された特有の変化として、この熱量の大きさ及び静脈側血液回路1b側で検出される熱量の大きさと、血液ポンプ3の逆回転駆動時の流量とでアクセス血管の流量を算出することができる。 However, in the case of giving a specific change by instantaneously changing the composition of the dialysate flowing through the dialyzer 2, the detection means is capable of detecting the composition diffused from the dialysate into the blood, In the case of applying a specific change by instantaneously increasing or decreasing the temperature of the dialysate, the detection means can detect the temperature of the blood. In addition, in the case of giving a specific change by instantaneously raising or lowering the temperature of the dialysate, if the temperature change is integrated over time, the amount of heat given to the blood can be understood, so an index change is given. As a characteristic change given by the means, the flow rate of the access blood vessel is calculated from the magnitude of the heat amount, the magnitude of the heat amount detected on the venous blood circuit 1b side, and the flow rate at the time of reverse rotation driving of the blood pump 3. be able to.
 さらに、算出手段12は、血液ポンプ3が逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化の大きさと検出手段で検出された特有の変化の大きさとの比に基づいてアクセス血管の流量を算出するものに限定されず、血液ポンプ3が逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化と、アクセス血管を流れた後に検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得るものであれば足りる。なお、本実施形態においては、透析治療時に用いられる透析装置に適用しているが、患者の血液を体外循環させつつ浄化し得る他の血液浄化装置(例えば血液濾過透析法、血液濾過法、AFBFで使用される血液浄化装置、血漿吸着装置など)に適用してもよい。 Further, the calculation means 12 is based on the ratio between the flow rate when the blood pump 3 is driven in reverse rotation and the specific change magnitude given by the index change giving means and the specific change magnitude detected by the detection means. The flow rate when the blood pump 3 is driven in reverse rotation, the specific change given by the index change giving means, and the detection means after flowing through the access blood vessel are not limited to those for calculating the access blood vessel flow rate. It suffices if the flow rate of the access blood vessel can be calculated based on the changed characteristic. In this embodiment, the present invention is applied to a dialysis apparatus used at the time of dialysis treatment, but other blood purification apparatuses (for example, blood filtration dialysis method, blood filtration method, AFBF, which can purify the patient's blood while circulating it extracorporeally). And may be applied to blood purification devices, plasma adsorption devices, etc.
 アクセス血管の上流側に動脈側穿刺針が穿刺されつつ当該アクセス血管の下流側に静脈側穿刺針が穿刺された状態で血液ポンプを血液浄化治療時とは逆回転駆動させることにより、指標変化付与手段で特有の変化が付与された血液をアクセス血管にて流し得るとともに、血液ポンプが逆回転駆動したときの流量と、指標変化付与手段で付与された特有の変化と、アクセス血管を流れた後に検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得る血液浄化装置及びその血液浄化装置によるアクセス血管の流量算出方法であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。 The index change is applied by driving the blood pump in the reverse direction of the blood purification treatment while the artery side puncture needle is punctured upstream of the access blood vessel and the vein side puncture needle is punctured downstream of the access blood vessel. Blood that has been given a specific change by the means can flow in the access blood vessel, the flow rate when the blood pump is driven in reverse rotation, the specific change given by the index change giving means, and after flowing through the access blood vessel If the blood purification device capable of calculating the flow rate of the access blood vessel based on the specific change detected by the detection means and the access blood vessel flow rate calculation method by the blood purification device, the appearance shape is different or other The present invention can also be applied to those with functions added.
1  血液回路
2  ダイアライザ(血液浄化手段)
3  血液ポンプ
4  動脈側エアトラップチャンバ
5  静脈側エアトラップチャンバ
6  複式ポンプ
7  除水ポンプ
8  加圧ポンプ
9  脱ガスチャンバ
10 液面調整手段
11 制御手段
12 算出手段
E1 第1検出手段
E2 第2検出手段
1 Blood circuit 2 Dialyzer (blood purification means)
3 Blood pump 4 Arterial side air trap chamber 5 Vein side air trap chamber 6 Duplex pump 7 Dewatering pump 8 Pressurizing pump 9 Degassing chamber 10 Liquid level adjusting means 11 Control means 12 Calculation means E1 First detection means E2 Second detection means

Claims (10)

  1.  先端に動脈側穿刺針が取り付けられた動脈側血液回路、及び先端に静脈側穿刺針が取り付けられた静脈側血液回路を有し、患者の血液を体外循環させ得る血液回路と、
     前記動脈側血液回路と静脈側血液回路との間に接続され、当該血液回路を流れる血液を浄化する血液浄化手段と、
     前記動脈側血液回路に配設された血液ポンプと、
     前記血液回路を体外循環する血液の指標に特有の変化を付与する指標変化付与手段と、
     該指標変化付与手段で付与された特有の変化を検出し得る検出手段と、
    を具備し、患者のアクセス血管に前記動脈側穿刺針及び静脈側穿刺針をそれぞれ穿刺して前記血液ポンプを正回転駆動させることによって前記血液回路にて患者の血液を体外循環させつつ前記血液浄化手段にて血液浄化治療が可能とされた血液浄化装置において、
     前記アクセス血管の上流側に前記動脈側穿刺針が穿刺されつつ当該アクセス血管の下流側に前記静脈側穿刺針が穿刺された状態で前記血液ポンプを血液浄化治療時とは逆回転駆動させることにより、前記指標変化付与手段で特有の変化が付与された血液を前記アクセス血管にて流し得る制御手段と、
     前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化と、前記アクセス血管を流れた後に前記検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得る算出手段と、
    を備えたことを特徴とする血液浄化装置。
    An arterial blood circuit with an arterial puncture needle attached to the tip, and a venous blood circuit with a venous puncture needle attached to the tip, and a blood circuit that can circulate the patient's blood extracorporeally;
    Blood purification means connected between the arterial blood circuit and the venous blood circuit and purifying blood flowing through the blood circuit;
    A blood pump disposed in the arterial blood circuit;
    Index change imparting means for imparting a characteristic change to an index of blood circulating extracorporeally in the blood circuit;
    Detecting means capable of detecting the specific change given by the index change giving means;
    The blood purification circuit while circulating the patient's blood extracorporeally in the blood circuit by puncturing the access blood vessel of the patient with the arterial puncture needle and the venous puncture needle, respectively, and driving the blood pump to rotate forward In a blood purification apparatus capable of blood purification treatment by means,
    By driving the blood pump in the reverse direction of the blood purification treatment while the artery side puncture needle is punctured upstream of the access blood vessel and the vein side puncture needle is punctured downstream of the access blood vessel. A control means capable of flowing the blood to which the characteristic change is given by the index change giving means in the access blood vessel;
    Based on the flow rate when the blood pump is driven in reverse rotation, the specific change applied by the index change applying unit, and the specific change detected by the detection unit after flowing through the access blood vessel, A calculation means capable of calculating a flow rate of the access blood vessel;
    A blood purification apparatus comprising:
  2.  前記算出手段は、前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化の大きさと前記検出手段で検出された特有の変化の大きさとの比に基づいて前記アクセス血管の流量を算出し得ることを特徴とする請求項1記載の血液浄化装置。 The calculation means is based on a ratio between the flow rate when the blood pump is driven in reverse rotation, the magnitude of the specific change given by the index change giving means, and the magnitude of the specific change detected by the detection means. The blood purification apparatus according to claim 1, wherein the flow rate of the access blood vessel can be calculated.
  3.  前記動脈側血液回路又は静脈側血液回路に接続され、気泡を除去し得るエアトラップチャンバと、
     該エアトラップチャンバの液面を任意に上昇又は下降させて調整し得る液面調整手段と、
    を具備するとともに、前記制御手段は、前記血液ポンプを逆回転駆動させて前記アクセス血管の流量を算出する際、前記液面調整手段によって前記エアトラップチャンバの液面を上昇させることを特徴とする請求項1又は請求項2記載の血液浄化装置。
    An air trap chamber connected to the arterial blood circuit or the venous blood circuit and capable of removing air bubbles;
    A liquid level adjusting means capable of adjusting the liquid level of the air trap chamber by arbitrarily raising or lowering;
    And the control means raises the liquid level of the air trap chamber by the liquid level adjusting means when the flow rate of the access blood vessel is calculated by driving the blood pump to rotate backward. The blood purification apparatus according to claim 1 or 2.
  4.  前記血液ポンプの逆回転駆動による流量を計測可能な流量計を具備し、当該流量計で計測された流量を前記血液ポンプが逆回転駆動したときの流量として前記アクセス血管の流量を算出し得ることを特徴とする請求項1~3の何れか1つに記載の血液浄化装置。 A flow meter capable of measuring the flow rate of the blood pump driven in reverse rotation, and calculating the flow rate of the access blood vessel as the flow rate when the blood pump is driven in reverse rotation. The blood purification apparatus according to any one of claims 1 to 3, wherein:
  5.  前記検出手段は、前記動脈側血液回路に配設された第1検出手段、及び前記静脈側血液回路に配設された第2検出手段を有するとともに、当該第1検出手段及び第2検出手段で検出された特有の変化に基づいて前記算出手段によって前記アクセス血管の流量を算出し得ることを特徴とする請求項1~4の何れか1つに記載の血液浄化装置。 The detection means includes first detection means disposed in the arterial blood circuit and second detection means disposed in the venous blood circuit, and the first detection means and the second detection means The blood purification apparatus according to any one of claims 1 to 4, wherein the flow rate of the access blood vessel can be calculated by the calculating means based on the detected characteristic change.
  6.  先端に動脈側穿刺針が取り付けられた動脈側血液回路、及び先端に静脈側穿刺針が取り付けられた静脈側血液回路を有し、患者の血液を体外循環させ得る血液回路と、
     前記動脈側血液回路と静脈側血液回路との間に接続され、当該血液回路を流れる血液を浄化する血液浄化手段と、
     前記動脈側血液回路に配設された血液ポンプと、
     前記血液回路を体外循環する血液の指標に特有の変化を付与する指標変化付与手段と、
     該指標変化付与手段で付与された特有の変化を検出し得る検出手段と、
    を具備し、患者のアクセス血管に前記動脈側穿刺針及び静脈側穿刺針をそれぞれ穿刺して前記血液ポンプを正回転駆動させることによって前記血液回路にて患者の血液を体外循環させつつ前記血液浄化手段にて血液浄化治療が可能とされた血液浄化装置によるアクセス血管の流量算出方法において、
     前記アクセス血管の上流側に前記動脈側穿刺針が穿刺されつつ当該アクセス血管の下流側に前記静脈側穿刺針が穿刺された状態で前記血液ポンプを血液浄化治療時とは逆回転駆動させることにより、前記指標変化付与手段で特有の変化が付与された血液を前記アクセス血管にて流し得るとともに、前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化と、前記アクセス血管を流れた後に前記検出手段で検出された特有の変化とに基づいて、当該アクセス血管の流量を算出し得ることを特徴とする血液浄化装置によるアクセス血管の流量算出方法。
    An arterial blood circuit with an arterial puncture needle attached to the tip, and a venous blood circuit with a venous puncture needle attached to the tip, and a blood circuit that can circulate the patient's blood extracorporeally;
    Blood purification means connected between the arterial blood circuit and the venous blood circuit and purifying blood flowing through the blood circuit;
    A blood pump disposed in the arterial blood circuit;
    Index change imparting means for imparting a characteristic change to an index of blood circulating extracorporeally in the blood circuit;
    Detecting means capable of detecting the specific change given by the index change giving means;
    The blood purification circuit while circulating the patient's blood extracorporeally in the blood circuit by puncturing the access blood vessel of the patient with the arterial puncture needle and the venous puncture needle, respectively, and driving the blood pump to rotate forward In a method for calculating the flow rate of an access blood vessel by a blood purification apparatus that is capable of blood purification treatment by means,
    By driving the blood pump in the reverse direction of the blood purification treatment while the artery side puncture needle is punctured upstream of the access blood vessel and the vein side puncture needle is punctured downstream of the access blood vessel. The blood to which the characteristic change is imparted by the index change imparting means can flow through the access blood vessel, and the flow rate when the blood pump is driven in reverse rotation, and the characteristic change imparted by the index change imparting means And a flow rate of the access blood vessel by the blood purification apparatus, wherein the flow rate of the access blood vessel can be calculated based on the unique change detected by the detection means after flowing through the access blood vessel.
  7.  前記血液ポンプが逆回転駆動したときの流量と、前記指標変化付与手段で付与された特有の変化の大きさと前記検出手段で検出された特有の変化の大きさとの比に基づいて前記アクセス血管の流量を算出し得ることを特徴とする請求項6記載の血液浄化装置によるアクセス血管の流量算出方法。 Based on the flow rate when the blood pump is driven in reverse rotation, and the ratio of the specific change applied by the index change applying means and the specific change detected by the detecting means, The method for calculating a flow rate of an access blood vessel by the blood purification apparatus according to claim 6, wherein the flow rate can be calculated.
  8.  前記血液浄化装置は、
     前記動脈側血液回路又は静脈側血液回路に接続され、気泡を除去し得るエアトラップチャンバと、
     該エアトラップチャンバの液面を任意に上昇又は下降させて調整し得る液面調整手段と、
    を具備するとともに、前記血液ポンプを逆回転駆動させて前記アクセス血管の流量を算出する際、前記液面調整手段によって前記エアトラップチャンバの液面を上昇させることを特徴とする請求項6又は請求項7記載の血液浄化装置によるアクセス血管の流量算出方法。
    The blood purification device comprises:
    An air trap chamber connected to the arterial blood circuit or the venous blood circuit and capable of removing air bubbles;
    A liquid level adjusting means capable of adjusting the liquid level of the air trap chamber by arbitrarily raising or lowering;
    The liquid level of the air trap chamber is raised by the liquid level adjusting means when the flow rate of the access blood vessel is calculated by driving the blood pump to rotate in the reverse direction. Item 8. A blood vessel flow rate calculation method by the blood purification device according to Item 7.
  9.  前記血液浄化装置は、前記血液ポンプの逆回転駆動による流量を計測可能な流量計を具備し、当該流量計で計測された流量を前記血液ポンプが逆回転駆動したときの流量として前記アクセス血管の流量を算出し得ることを特徴とする請求項6~8の何れか1つに記載の血液浄化装置によるアクセス血管の流量算出方法。 The blood purification apparatus includes a flow meter capable of measuring a flow rate by reverse rotation driving of the blood pump, and the flow rate measured by the flow meter is used as a flow rate when the blood pump is driven reverse rotation. The method for calculating a flow rate of an access blood vessel by the blood purification apparatus according to any one of claims 6 to 8, wherein the flow rate can be calculated.
  10.  前記検出手段は、前記動脈側血液回路に配設された第1検出手段、及び前記静脈側血液回路に配設された第2検出手段を有するとともに、当該第1検出手段及び第2検出手段で検出された特有の変化に基づいて前記アクセス血管の流量を算出し得ることを特徴とする請求項6~9の何れか1つに記載の血液浄化装置によるアクセス血管の流量算出方法。 The detection means includes first detection means disposed in the arterial blood circuit and second detection means disposed in the venous blood circuit, and the first detection means and the second detection means 10. The access blood vessel flow rate calculation method by the blood purification apparatus according to claim 6, wherein the access blood vessel flow rate can be calculated based on the detected characteristic change.
PCT/JP2016/069950 2015-07-06 2016-07-05 Blood purifying device and method of calculating flow rate in access blood vessel using blood purifying device WO2017006947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015135092A JP6559484B2 (en) 2015-07-06 2015-07-06 Blood purification apparatus and access blood vessel flow rate calculation method using the blood purification apparatus
JP2015-135092 2015-07-06

Publications (1)

Publication Number Publication Date
WO2017006947A1 true WO2017006947A1 (en) 2017-01-12

Family

ID=57685683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069950 WO2017006947A1 (en) 2015-07-06 2016-07-05 Blood purifying device and method of calculating flow rate in access blood vessel using blood purifying device

Country Status (2)

Country Link
JP (1) JP6559484B2 (en)
WO (1) WO2017006947A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918681A (en) * 2018-03-26 2020-11-10 日机装株式会社 Blood purification device and bubble capturing method thereof
CN112004569A (en) * 2018-04-26 2020-11-27 日机装株式会社 Blood purification device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7038358B2 (en) 2017-09-14 2022-03-18 株式会社アルチザンラボ Blood purification device
JP7367425B2 (en) 2019-09-24 2023-10-24 株式会社ジェイ・エム・エス blood purification device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506873A (en) * 1996-10-23 2001-05-29 イン―ライン ダイアグノスティックス コーポレイション System and method for non-invasive measurement of hemodynamics in a hemodialysis shunt
JP2002528181A (en) * 1998-10-23 2002-09-03 ガンブロ アーベー Method and apparatus for measuring access flow
JP4379359B2 (en) * 2005-03-18 2009-12-09 株式会社ジェイ・エム・エス Blood purification equipment
JP2015058290A (en) * 2013-09-20 2015-03-30 テルモ株式会社 Blood circulation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024972A1 (en) * 2012-08-09 2014-02-13 日機装株式会社 Blood purification device and priming method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506873A (en) * 1996-10-23 2001-05-29 イン―ライン ダイアグノスティックス コーポレイション System and method for non-invasive measurement of hemodynamics in a hemodialysis shunt
JP2002528181A (en) * 1998-10-23 2002-09-03 ガンブロ アーベー Method and apparatus for measuring access flow
JP4379359B2 (en) * 2005-03-18 2009-12-09 株式会社ジェイ・エム・エス Blood purification equipment
JP2015058290A (en) * 2013-09-20 2015-03-30 テルモ株式会社 Blood circulation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918681A (en) * 2018-03-26 2020-11-10 日机装株式会社 Blood purification device and bubble capturing method thereof
CN112004569A (en) * 2018-04-26 2020-11-27 日机装株式会社 Blood purification device
CN112004569B (en) * 2018-04-26 2023-08-18 日机装株式会社 Blood purifying device

Also Published As

Publication number Publication date
JP2017012648A (en) 2017-01-19
JP6559484B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
US10751459B2 (en) Blood purification apparatus
WO2012017959A1 (en) Blood purifying device, and method for inspecting for liquid leakage therein
JP6516559B2 (en) Blood purification device
JP2007135885A (en) Blood purifying device, and connection state-judging method for its puncture needle
WO2017006947A1 (en) Blood purifying device and method of calculating flow rate in access blood vessel using blood purifying device
CN107405440B (en) Blood purification device
WO2018047969A1 (en) Blood purification device
WO2016143840A1 (en) Blood purification device
JP5243097B2 (en) Blood purification apparatus and blood purification means discrimination method
WO2017131040A1 (en) Blood purification device
JP6053107B2 (en) Blood purification apparatus and priming method thereof
JP2017006538A (en) Blood purification device
JP6424041B2 (en) Blood purification equipment
JP5222706B2 (en) Blood purification apparatus and blood flow calculation method thereof
JP2016036535A (en) Blood purifier
JP6671159B2 (en) Blood purification device
US20210052799A1 (en) Blood Purification Apparatus
JP6501340B2 (en) Blood purification device
JP6762772B2 (en) Blood purification device and its connection confirmation method
JP6543305B2 (en) Blood purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821416

Country of ref document: EP

Kind code of ref document: A1