WO2017006816A1 - 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法 - Google Patents

陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法 Download PDF

Info

Publication number
WO2017006816A1
WO2017006816A1 PCT/JP2016/069211 JP2016069211W WO2017006816A1 WO 2017006816 A1 WO2017006816 A1 WO 2017006816A1 JP 2016069211 W JP2016069211 W JP 2016069211W WO 2017006816 A1 WO2017006816 A1 WO 2017006816A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
aluminum alloy
extruded material
extrusion
Prior art date
Application number
PCT/JP2016/069211
Other languages
English (en)
French (fr)
Inventor
政仁 谷津倉
完聡 宮浦
藤井 高志
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/072920 external-priority patent/WO2017006490A1/ja
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to KR1020187003476A priority Critical patent/KR20180025955A/ko
Priority to JP2016567441A priority patent/JP6119937B1/ja
Priority to CN201680040087.2A priority patent/CN107735503A/zh
Publication of WO2017006816A1 publication Critical patent/WO2017006816A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to an aluminum alloy extruded material having an anodized film and excellent in appearance quality, and a method for producing the same, and more particularly, to an aluminum alloy extruded material for an electronic device casing excellent in anodized film property and a method for producing the same. .
  • the metal structure is a recrystallized structure
  • the streak pattern is reduced, but sufficient aesthetics cannot be obtained.
  • the inventor of the present application has conducted extensive research on the cause of streak patterns.
  • concentration segregation of elements other than aluminum in the crystal and at the grain boundaries, the crystallization state of the compound, and the recrystallization It was found that the difference in grain size between crystal structures greatly affected.
  • the portion where elements other than aluminum are segregated and the portion where there is a crystallized product tend to form an anodic oxide film less easily than other portions. This is considered to be due to the difference in electrical properties due to the effect of concentration segregation. That is, the peritectic elements are concentrated in the crystal grains, the eutectic elements are swept out to the crystal grain boundaries, and concentration segregation occurs between the crystal grains and the crystal grain boundaries.
  • the concentration segregation part When extruded, the concentration segregation part is stretched in the extrusion direction as well as the crystal grains of the cast structure, and a thin layer of Zn, Mg main element concentration segregation is formed in a streak shape, and the thickness of the anodized film Is considered to be a cause of visible streaks on the surface of the anodized film.
  • crystallized substances are present, but as crystal grains are stretched by extrusion, such crystallized substances are scattered in the extrusion direction, which causes streaks.
  • the cast structure is stretched to become a fiber-like structure.
  • the concentration segregation part and the crystallized material are also stretched. Even if recrystallization is performed and the crystal structure changes from a fiber-like structure to a recrystallized structure that is equiaxed, the concentration segregation part and the crystallized phase remain and are stretched, so the anodized film It is thought that streaks are visible when processing is performed. Further, it was found that the recrystallized structure also has a streaky portion where crystals with a large difference in crystal grain size are mixed.
  • the inventor of the present application has a high strength of 380 MPa or more, but the concentration segregation, excessive crystallization of the compound, and the crystal grain size of the recrystallized structure.
  • the range of the optimal alloy composition that suppresses the difference was found.
  • An object of the present invention is to provide a 7000 series aluminum alloy extruded material that has a desired strength and is less likely to cause a streak pattern on the surface of an anodized film.
  • an aluminum alloy extruded material Zn: 4.0 mass% or more and 7.5 mass% or less, Mg: 1.0 mass% or more and 2.2 mass% or less, Fe: 0.05 mass% or more and 0.20 mass% or less, Cu: 0.30 mass% or less, Ti: 0.005 mass% or more and 0.04 mass% or less, B: 0.001% by mass or more and 0.02% by mass or less, Si: 0.15 mass% or less, Zr: 0.05% by mass or less, Mn: 0.05% by mass or less, Cr: 0.05% by mass or less, V: 0.05 mass% or less, Containing [Zr + Mn + Cr + V + Ti], which is the total content of Zr, Mn, Cr, V and Ti, [Zr + Mn + Cr + V + Ti] ⁇ 0.10 mass% Satisfy the relationship Except for the range where the Zn content is 6.0% by mass or less and the Mg content is 1.2% by mass or less, The balance consists of aluminum and
  • a Zn high-concentration phase and a Zn low-concentration phase are present in layers in the anodized surface in parallel to the extrusion direction, and are orthogonal to the extrusion direction.
  • the Zn concentration difference is 1% or less in a range of width 0.1 mm or more and 3 mm or less.
  • the crystal grain size of the recrystallized structure on the treated surface of the anodized film is an average value of 200 ⁇ m or less, and the maximum crystal grain size is 1 mm or less.
  • the aluminum alloy extruded material is characterized in that the area ratio of the intermetallic compound (crystallized product) in the anodized surface is less than 2%.
  • the cast material is processed for 1 to 24 hours at a holding condition of the homogenization treatment of 400 to 560 ° C., and the extrusion ratio exceeds 20 in the extrusion process.
  • a method for producing an extruded aluminum alloy characterized in that extrusion is performed so that the temperature of the material is 420 ° C. or higher, and the aging treatment is performed at 100 to 180 ° C. for 1 to 30 hours.
  • a 7000 series aluminum alloy extruded material having a desired strength and excellent in appearance quality in which a streak pattern is difficult to appear on the surface of an anodized film, and a manufacturing method thereof.
  • FIG. 4 is a photograph of the crystal structure of Experimental Example L taken with a polarizing microscope. 4 is a photograph of the crystal structure of Experimental Example H taken with a polarizing microscope. 6 is a photograph of the microstructure of Experimental Example K taken.
  • A A graph showing a concentration analysis of Experimental Example B and (b) a mapping diagram. 10 is a graph showing a concentration analysis of Experimental Example G.
  • A A graph showing concentration analysis of Experimental Example H and (b) a mapping diagram.
  • the aluminum alloy extruded material having an anodized film according to this embodiment is an aluminum alloy extruded material, Zn: 4.0 mass% or more and 7.5 mass% or less, Mg: 1.0 mass% or more and 2.2 mass% or less, Fe: 0.05 mass% or more and 0.20 mass% or less, Cu: 0.30 mass% or less, Ti: 0.005 mass% or more and 0.04 mass% or less, B: 0.001% by mass or more and 0.02% by mass or less, Si: 0.15 mass% or less, Zr: 0.05% by mass or less, Mn: 0.05% by mass or less, Cr: 0.05% by mass or less, V: 0.05 mass% or less, Containing [Zr + Mn + Cr + V + Ti], which is the total content of Zr, Mn, Cr, V and Ti, [Zr + Mn + Cr + V + Ti] ⁇ 0.10 mass% Satisfy the relationship Except for the range where the Zn content is
  • the aluminum alloy extruded material having the above-described configuration has a desired strength and an effect that a streak pattern is difficult to appear on the surface of the anodized film. Below, each element which concerns on the aluminum alloy extrusion material of this embodiment is demonstrated.
  • the aluminum alloy extruded material according to the present embodiment has a Zn content of 4.0% by mass to 7.5% by mass, more preferably 4.0% by mass to 7.0% by mass, More preferably, it is 4.0 mass% or more and 6.0 mass% or less, More preferably, it is 4.0 mass% or more and less than 5.5 mass%, Most preferably, it is 4.0 mass% or more and 5.0 mass%. % Or less.
  • the Mg content is 1.0% by mass or more and 2.2% by mass or less, more preferably 1.2% by mass or more and 2.2% by mass or less. More preferably, it is 1.3 mass% or more and 2.2 mass% or less, More preferably, it is 1.4 mass% or more and 2.2 mass% or less, Most preferably, it is 1.5 mass% or more and 2.2 mass% or less. % Or less.
  • the Zn content is 6.0% by mass or less
  • the Mg content is 1.2% by mass or more, and when the Zn content is less than 5.5% by mass, the Mg content is 1.6% by mass. The above is preferable.
  • the Fe content is 0.05% by mass or more and 0.20% by mass or less.
  • the Fe content is 0.05% by mass or more, coarse recrystallization of the cast structure can be suppressed during the homogenization treatment. If there is a coarse crystal structure in the ingot, non-uniform deformation is likely to occur during the extrusion process, and it becomes difficult to keep the dimensions of the extruded material within a predetermined size (accuracy, twist and bend). Furthermore, if there is a coarse crystal structure in the billet, recrystallized grain structures having different sizes are likely to be mixed even in an equiaxed recrystallized structure during recrystallization after extrusion. Such a structure is arranged in layers, which causes a difference in color tone in a stripe shape.
  • the content of Fe is 0.20% by mass or less, it can be suppressed that Fe forms a compound with other elements to form an excessive crystallized product and a streak pattern is generated.
  • the Fe content is more preferably 0.15% by mass or less, and the above effect is further enhanced within this range.
  • the Cu content is 0.30 mass% or less. If the Cu content exceeds 0.30% by mass, the anodized film tends to be yellowish and the corrosion resistance tends to deteriorate.
  • the Cu content is more than 0.15% by mass, mechanical strength and stress corrosion cracking resistance (SCC) are improved.
  • the Ti content is 0.005 mass% or more and 0.04 mass% or less. Further, in the aluminum alloy extruded material according to this embodiment, the content of B is 0.001% by mass or more and 0.02% by mass or less.
  • the crystal of the cast structure in the alloy is coarse, non-uniform deformation is likely to occur during extrusion, and concentration segregation and non-uniform grain size of the recrystallized structure are likely to occur. At this time, it is added as a grain refiner. When only Ti is added, it dissolves in the matrix phase and the effect as a finer becomes small. Further, since concentration segregation inside the crystal tends to occur, it is preferable to add as a TiB 2 compound using a rod hardener as a refining agent. On the other hand, excessive addition of Ti or B causes excessive crystallization as a compound and causes streak patterns, so the upper limit of the addition amount is required.
  • the Si content is 0.15% by mass or less. Since Si forms a Mg and Mg—Si-based compound and contributes to the streak pattern, it is preferably regulated to 0.15% or less. Moreover, it is more preferable that content of Si is 0.1 mass% or less. If content of Si is this range, said effect will increase more.
  • Zr zirconium, Mn: manganese, Cr: chromium, V: vanadium
  • Mn, Cr, and V have an action of suppressing recrystallization during extrusion, their content is preferably 0.05% by mass or less, more preferably 0.02% by mass or less. It is.
  • These elements also have the effect of suppressing the diffusion of Zn.
  • [Zr + Mn + Cr + V + Ti] which is the total content of Zr, Mn, Cr, V and Ti, preferably satisfies the relationship [Zr + Mn + Cr + V + Ti] ⁇ 0.10 mass%. If the amount added exceeds the specified range, recrystallization will be suppressed and a non-recrystallized structure may be formed, and grain growth may occur. Therefore, even if all are added, the content is preferably 0.10% by mass or less, more preferably 0.09% by mass or less, and still more preferably 0.08% by mass or less. More preferably, it is 0.07 mass% or less, Most preferably, it is 0.05 mass% or less.
  • the crystal structure is preferably a recrystallized structure having a uniform crystal grain size.
  • the alloy components, casting HO conditions, and extrusion conditions are controlled.
  • the form of the crystal structure can be confirmed by a method of coating with a borohydrofluoric acid aqueous solution and observing with a polarizing microscope.
  • the aluminum alloy extruded material according to this embodiment is excellent in anodized film property and is preferably used as a housing material for electronic equipment.
  • the method for producing an aluminum alloy extruded material according to another embodiment of the present invention is an aluminum alloy extruded material, which is Zn: 4.0% by mass to 7.5% by mass, Mg: 1.0% by mass to 2%. 0.2 mass% or less, Fe: 0.05 mass% or more and 0.20 mass% or less, Cu: 0.30 mass% or less, Ti: 0.005 mass% or more and 0.04 mass% or less, B: 0.001 % By mass or more and 0.02% by mass or less, Si: 0.15% by mass or less, Zr: 0.05% by mass or less, Mn: 0.05% by mass or less, Cr: 0.05% by mass or less, V: 0.00%.
  • [Zr + Mn + Cr + V + Ti] which is a total of the contents of Zr, Mn, Cr, V and Ti, [Zr + Mn + Cr + V + Ti] ⁇ 0.10 mass% Except for the range where the Zn content is 6.0 mass% or less and the Mg content is 1.2 mass% or less, the balance is made of aluminum and inevitable impurities, and the metal structure is a recrystallized structure.
  • a method for producing an aluminum alloy extruded material having an anodized film The casting material is processed at a holding condition of homogenization treatment at 400 to 560 ° C.
  • the aging treatment step is characterized by treating at 100 to 180 ° C. for 1 to 30 hours.
  • a molten aluminum alloy having the above alloy composition is prepared, and a known molten metal treatment such as degassing treatment, degassing treatment, and filtering is performed. Then, a cylindrical ingot (billet) is obtained by a DC casting method or the like.
  • a micronizing agent made of an Al-Ti-B alloy into the molten metal.
  • the finer added to the molten metal is preferably such that Ti and B do not exceed the above ranges in the alloy composition.
  • the molten metal is preferably poured into the mold uniformly so that the casting temperature is uniform in the mold.
  • HOT TOP (hot top) casting or the like is preferably used.
  • the billet diameter is small, preferably 14 inches or less.
  • the diameter of the billet is large, cooling of the billet center portion is slowed, and the structure of the billet center portion tends to be coarse. If the cast structure is coarse, it is difficult not only to eliminate concentration segregation during the homogenization process, but also to make the crystal structure finer in the extrusion process.
  • the billet obtained in the casting process is subjected to a homogenization process (HO process).
  • HO process homogenization process
  • the homogenization temperature is preferably 400 to 560 ° C. for 1 hour to 24 hours. If the condition of the homogenization treatment is within this range, the homogenization is sufficiently performed.
  • the homogenization temperature for 24 hours exceeds 560 ° C., the ingot crystal grows, the extrudability is lowered, the crystal grains of the extruded material are coarsened, and the recrystallized structure is locally coarsened, The difference in the grain size of the recrystallized structure becomes large, and a pattern is generated during the anodic oxide coating.
  • the homogenization temperature is more preferably 540 ° C. or lower. Even if the homogenization treatment is performed for more than 24 hours, no further effect can be expected and only the production cost is required.
  • homogenization is preferably performed at 470 ° C. or higher, and more preferably at 500 ° C.
  • the cooling rate after the homogenization treatment is low, the solid solution element is likely to be precipitated. Therefore, it is preferable to cool at an average cooling rate from the HO temperature to 150 ° C. at 100 ° C./h or more.
  • the billet that has been subjected to the homogenization treatment is extruded to obtain a predetermined processed material.
  • the extrusion ratio in the extrusion process is preferably 20 or more.
  • the extrusion ratio in the extrusion process is more preferably 40 or more. This is because the extension of the crystal causes a gradual change in concentration (concentration segregation is likely to be improved if the interval between high-concentration parts or low-concentration parts is close), and the appearance after the anodized film is a streak pattern. It is because it becomes difficult to generate
  • the formation of streaks due to the difference in crystal structure can be suppressed by setting the average grain size to 200 ⁇ m or less and the maximum crystal grain size to 1 mm or less. Since the crystal size of the extruded material becomes finer as the billet temperature is extruded at a lower temperature, the billet temperature is desirably set in consideration of the extrusion pressure and the shape material temperature, and is preferably 480 ° C. or less.
  • the extrusion conditions (billet temperature, die temperature, container temperature, extrusion pressure, extrusion speed, etc.) such that the temperature at the die outlet is 400 ° C. or higher. If the temperature of the extruded material at the die outlet is low, high strength may not be obtained.
  • the extruded material after coming out of the die is cooled so that the cooling rate in the temperature range of up to 200 ° C. after the extrusion is 0.3 to 20 ° C./s. If the cooling rate satisfies this condition, high strength can be obtained and good stress corrosion cracking resistance can be obtained.
  • Aging treatment is performed on the extruded material.
  • the holding temperature in the aging treatment step is 1 to 30 hours under the condition of 100 to 180 ° C.
  • the aging treatment may be performed in two stages in order to obtain higher strength and stress corrosion cracking resistance.
  • An extruded material obtained by sequentially passing through a casting process, a homogenization process, an extrusion process, and an aging process is cut into a predetermined shape and then anodized.
  • the anodized film treatment is performed under known conditions.
  • the homogenization treatment step is performed at a holding temperature of 400 ° C. to 560 ° C.
  • the extrusion step is performed at an extrusion ratio of 20 or more. It is characterized in that the outlet temperature is 420 ° C. or higher, the cooling rate between after extrusion and 200 ° C. is 0.3 to 20 ° C./s, and the aging treatment step is performed under the condition of holding temperature 100 ° C. to 180 ° C.
  • a method for producing an aluminum alloy extruded material having an anodic oxide coating is provided.
  • Billets having the components of Experimental Examples A to N shown in [Table 1] below were obtained.
  • the diameter of the billet was 325 mm.
  • These billets were subjected to HO treatment under the conditions of [Table 2] and then extruded under the conditions of [Table 2].
  • Extrusion was performed under the condition of a billet temperature of 400 ° C., (a) was a flat bar with a width of 100 mm and a thickness of 10 mm, and (b) was performed with two extruded shapes, a flat bar with a width of 120 mm and a thickness of 25 mm.
  • heat treatment was performed under the conditions described in Table 2. After the heat treatment, tempering was performed under the conditions of A to J and L to N for T5 (after extrusion, artificial aging) and K for T6 (after solution treatment, artificial aging).
  • the crystal grain size after casting and after HO was measured by the cross line method, and those having crystal grains with a size exceeding 1 mm were marked as x.
  • the intersecting line method means that a straight line is drawn in an arbitrary direction from an image taken with an optical microscope, and the number of crystal grain boundaries intersecting with the straight line is n, and the length of the straight line is divided by (n-1). Thus, the average crystal grain size is calculated.
  • the surface of the aluminum alloy test material was chamfered (buffed) in an amount corresponding to 20% of the wall thickness, and the anodized film treatment was performed on the chamfered surface.
  • the treatment conditions for the anodized film treatment were 1.5 A / dm 2 in a 15% sulfuric acid aqueous solution at 20 ° C., and the film thickness was about 5 ⁇ m.
  • the color tone was judged based on the fact that the gloss retention before and after the treatment was 40% or more, and the L value was 78 or more and the b value was 1 or less. Those satisfying the above values were marked with ⁇ , and those not satisfying were marked with x. In addition, the presence or absence of streak patterns was evaluated. In “ ⁇ ”, a streak pattern hardly occurred, and in “ ⁇ ”, a thin streak pattern was observed in a limited part. In “X”, a dark streak pattern was generated. The color tone is based on the value of JIS Z8730.
  • the surface of the aluminum alloy test material was chamfered in an amount corresponding to 20% of the wall thickness, and the mirror surface was polished and coated with a borohydrofluoric acid aqueous solution.
  • the structure was observed with a polarizing microscope to determine the structure.
  • the observation surface is an L-LT surface (a wide surface among the surfaces parallel to the extrusion direction).
  • a to G and L to N were equiaxed crystals in which recrystallized structures were observed, and the aspect ratio (average crystal diameter in the extrusion length direction / average crystal diameter in the direction perpendicular to the extrusion) was 2 or less.
  • the aspect ratio average crystal diameter in the extrusion length direction / average crystal diameter in the direction perpendicular to the extrusion
  • HK it was a fiber-like crystal structure.
  • a to E and G, M, and N in which recrystallized structures were observed had uniform fine crystals with an average grain size of 200 ⁇ m or less measured by the intersection method. Coarse crystal grains exceeding 1 mm were present. Crystal growth is confirmed in the ingot structure after F and L HO, and this is the effect.
  • the surface of the aluminum alloy test material was chamfered in an amount corresponding to 20% of the wall thickness, and after polishing to a mirror surface, the area occupied by the crystallized material was measured with an image analyzer and an optical microscope.
  • the observation surface is an L-LT surface (a wide surface among the surfaces parallel to the extrusion direction).
  • Stress corrosion cracking test Only A to E, M, and N were subjected to stress corrosion cracking tests in accordance with JIS H8711.
  • a stress corresponding to 50% of 0.2% proof stress was applied in the direction perpendicular to the extrusion direction.
  • the corrosive solution was immersed in 3.5% NaCl at 25 ° C. for 10 minutes and then dried for 50 minutes for one cycle.
  • the test was conducted for 30 days, and the material without cracks was set as a pass “ ⁇ ”. A, M, and N are inferior in the results of the SCC test, which is thought to be due to the low Cu content.
  • FIG. 2 shows the microstructure of Experimental Example B (Inventive Example). It can be seen that the crystallized substance is diffused and no extreme continuity of the compound is observed.
  • 3 (a) and 3 (b) are obtained by observing the crystal structure of the sample cross section of Experimental Example L (Comparative Example) with a polarizing microscope. It can be seen that the size of the crystal grains varies depending on the observation location, and partially coarse crystal grains are formed. This is because the recrystallized structure is locally coarsened depending on the temperature condition of the HO treatment.
  • FIG. 4 is an observation of the crystal structure of Experimental Example H (Comparative Example). It can be seen that the crystal structure is a fiber structure.
  • FIG. 5 is an observation of the microstructure of Experimental Example K (Comparative Example). The content of Fe, Cu, Mg and Cr is large, and the portion where the crystallized material segregates is stretched by extrusion processing, and the continuity of the compound can be seen in a streak shape.
  • FIG. 6 is a graph showing a Zn concentration analysis and mapping diagram of Experimental Example B (Inventive Example). Zn concentration segregation in a width of 3 mm is 1.0% by mass or less.
  • FIG. 7 is a graph showing the Zn concentration distribution of Experimental Example G (Comparative Example), and FIG. 8 is a graph showing the Zn concentration distribution and mapping diagram of Experimental Example H (Comparative Example).
  • Experimental Examples G and H which are comparative examples, have locations where concentration segregation in which the Zn concentration exceeds 1.0 mass% occurs within a width of 3 mm. Further, it can be seen from the mapping diagram that the concentration segregation is layered.
  • an aluminum alloy extruded material that satisfies these conditions can be preferably used for a housing of an electronic device such as a portable personal computer, a mobile phone, and a smartphone.
  • the extrusion ratio of A to D, M, and N is larger than that of E, that is, the degree of processing is high, so that the surface uniformity is higher.
  • G has a lack of Ti and B which are crystal refining agents during casting, and the ingot structure after casting becomes coarse.
  • concentration segregation of Zn is not sufficiently eliminated, and concentration segregation occurs in which the Zn concentration difference exceeds 1% in the range of more than 0.1 mm and 3 mm or less. Streaks occurred after the oxide film treatment.
  • the Zr addition amount exceeds the upper limit, and the diffusion of Zn is inhibited by Zr because the crystal structure of the extruded material is maintained in the fiber structure due to the pinning effect, and even when homogenization is performed. Zn concentration segregation was not sufficiently eliminated, and streaks were generated after the anodic oxide film treatment of the extruded material. Furthermore, although I has a high Zn content, the mechanical strength is low even in a fiber structure because the Mg content is low.
  • J also has a Zr addition amount, a Cr addition amount, and a Mn addition amount exceeding the upper limit values, and the diffusion of Zn is inhibited by the fact that the crystal structure of the extruded material is maintained in the fiber structure due to the pinning effect, and Zr is homogeneous. Zn concentration segregation is not sufficiently eliminated even when the oxidization treatment is performed, and concentration segregation in which the Zn concentration difference exceeds 1% occurs in the range of more than 0.1 mm and 3 mm or less. There has occurred.
  • J has a high Mg content
  • the mechanical strength is low even in a fiber structure because the Zn content is low.
  • the Mn content is large, the crystal structure of the extruded material is maintained in the fiber structure due to the pinning effect, and the diffusion of Zn is inhibited by Mn. Even if homogenization is performed, the Zn concentration is sufficiently segregated. However, concentration segregation in which the Zn concentration difference exceeded 1% occurred in a range exceeding 0.1 mm and 3 mm or less, and streaks were generated after the anodic oxide film treatment of the extruded material.
  • the HO temperature exceeded the upper limit temperature, and the crystal structure of the ingot grew.
  • some crystal grains exceeding 1 mm were generated, and the crystal grain size of the extruded material was uneven.
  • streaks were generated after the anodized film treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

本発明は、所望の強度を有するとともに、陽極酸化皮膜の表面にスジ模様が出にくい7000系アルミニウム合金押出材を提供することを目的とする。本発明によれば、アルミニウム合金押出材であって、Zn:4.0質量%以上7.5質量%以下、Mg:1.0質量%以上2.2質量%以下、Fe:0.05質量%以上0.20質量%以下、Cu:0.30質量%以下、Ti:0.005質量%以上0.04質量%以下、B:0.001質量%以上0.02質量%以下、Si:0.15質量%以下、Zr:0.05質量%以下、Mn:0.05質量%以下、Cr:0.05質量%以下、V:0.05質量%以下、を含有し、Zr、Mn、Cr、V及びTiの含有量の合計である[Zr+Mn+Cr+V+Ti]が、[Zr+Mn+Cr+V+Ti]≦0.10質量%の関係を満たし、Znの含有量が6.0質量%以下かつMgの含有量が1.2質量%以下の範囲を除き、残部がアルミニウムと不可避不純物からなり、金属組織が再結晶組織である陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法が提供される。

Description

陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
 本発明は、陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法に関し、特に、陽極酸化皮膜性に優れた電子機器筐体用アルミニウム合金押出材及びその製造方法に関するものである。
 携帯用パソコン等は、年々小型化、薄肉化及び軽量化が進んでいる。それに伴い、筐体材料の薄肉化が要求されている。薄肉化に耐えるため、筐体材料は、アルミニウム合金の中で最も強度の高い7000系アルミニウム合金を陽極酸化皮膜処理した押出材が用いられるようになってきている。
 しかしながら、7000系アルミニウム合金押出材に陽極酸化皮膜処理を行うと、押出方向と平行なスジ模様があらわれ、美観に問題があった。このスジ模様は、押出加工の際に押出方向に引き伸ばされた鋳造組織が繊維状(ファイバー)組織になったものが、陽極酸化皮膜処理によって強調されると考えらえていた。例えば、特許文献1では、押出材の金属組織を再結晶組織にしている。
特開2012-246555号公報
 しかしながら、金属組織を再結晶組織としても、スジ模様は軽減されるものの、十分な美観を得られなかった。本願の発明者が、スジ模様の原因に関して鋭意調査を進めたところ、金属組織の結晶の形状の他に、結晶内部と結晶粒界におけるアルミニウム以外の元素の濃度偏析、化合物の晶出状態及び再結晶組織同士の粒径の差が大きく影響することがわかった。
 アルミニウム以外の元素が偏析した部分や晶出物のある箇所は、その他の部分と比較して、陽極酸化皮膜が形成され難い傾向がある。これは、濃度偏析の影響で電気的な性質が異なることに起因すると考えられる。すなわち、包晶系元素が結晶粒内に濃化し、共晶系元素が結晶粒界に掃き出されて、結晶粒内と結晶粒界とで、濃度偏析が生じる。押出加工された際に、鋳造組織の結晶粒と同様に濃度偏析部も押出方向に引き伸ばされ、Zn、Mgの主元素の濃度偏析が薄い層がスジ状に形成され、陽極酸化皮膜の厚さが色の濃淡となり、陽極酸化皮膜の表面にスジが見える原因になると考えられる。
 また、その他にも晶出物が存在するが、押出加工によって結晶粒が引き伸ばされることに伴い、そのような晶出物が押出方向に点在することもスジが見える原因になる。
 押出加工により、鋳造組織が引き伸ばされ、ファイバー状の組織になるが、その際に濃度偏析部や晶出物も引き伸ばされる。再結晶化が行われ、結晶組織がファイバー状の組織から等軸晶である再結晶組織となっても、濃度偏析部や晶出物相は取り残され、引き伸ばされたままであるため、陽極酸化皮膜処理を行った際にスジが見えると考えられる。
 また、再結晶組織においても、結晶粒径の差が大きい結晶が混在している箇所も筋状に見えることがわかった。
 上記のような事情に鑑み鋭意検討した結果、本願の発明者は、耐力380MPa以上の高強度を有しながらも、濃度偏析や化合物の過剰な晶出、並びに再結晶組織の結晶の粒径の差を抑制する最適な合金組成の範囲を見出した。
 本発明では、所望の強度を有するとともに、陽極酸化皮膜の表面にスジ模様が出にくい7000系アルミニウム合金押出材を提供することを目的とする。
 本発明によれば、アルミニウム合金押出材であって、
 Zn:4.0質量%以上7.5質量%以下、
 Mg:1.0質量%以上2.2質量%以下、
 Fe:0.05質量%以上0.20質量%以下、
 Cu:0.30質量%以下、
 Ti:0.005質量%以上0.04質量%以下、
 B:0.001質量%以上0.02質量%以下、
 Si:0.15質量%以下、
 Zr:0.05質量%以下、
 Mn:0.05質量%以下、
 Cr:0.05質量%以下、
 V:0.05質量%以下、
を含有し、
Zr、Mn、Cr、V及びTiの含有量の合計である[Zr+Mn+Cr+V+Ti]が、
 [Zr+Mn+Cr+V+Ti]≦0.10質量%
の関係を満たし、
Znの含有量が6.0質量%以下かつMgの含有量が1.2質量%以下の範囲を除き、
残部がアルミニウムと不可避不純物からなり、
金属組織が再結晶組織である陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材が提供される。
 本発明の一態様によれば、上記のアルミニウム合金押出材において、陽極酸化処理面において、押出方向に平行してZn高濃度相とZn低濃度相が層状に存在し、押出方向に直交する方向において、幅0.1mm以上3mm以下の範囲においてZn濃度差が1%以下であることを特徴とする。
 本発明の一態様によれば、上記のアルミニウム合金押出材において、陽極酸化皮膜処理面の再結晶組織の結晶粒サイズが平均値で200μm以下であり、最大結晶粒サイズが1mm以下あることを特徴とする。
 本発明の一態様によれば、上記のアルミニウム合金押出材において、陽極酸化処理面に占める金属間化合物(晶出物)の面積率が2%未満であることを特徴とする。
 本発明によれば、鋳造材を、均質化処理の保持条件が400~560℃で、1~24時間で処理し、押出工程で押出比が20を超えて押出加工し、押出加工中の形材の温度が420℃以上になるように押出し、時効処理工程が100~180℃で1~30時間で処理することを特徴とするアルミニウム合金押出材の製造方法が提供される。
 本発明によれば、所望の強度を有するとともに、陽極酸化皮膜の表面にスジ模様が出にくい外観品質に優れた7000系アルミニウム合金押出材、並びにその製造方法が提供される。
実験例Bの結晶組織を偏光顕微鏡で撮影した写真である。 実験例Bのミクロ組織を撮影した写真である。 実験例Lの結晶組織を偏光顕微鏡で撮影した写真である。 実験例Hの結晶組織を偏光顕微鏡で撮影した写真である。 実験例Kのミクロ組織を撮影した写真である。 (a)実験例Bの濃度分析を示すグラフ及び(b)マッピング図である。 実験例Gの濃度分析を示すグラフである。 (a)実験例Hの濃度分析を示すグラフ及び(b)マッピング図である。
 以下に、本発明の実施形態を説明する。
[アルミニウム合金押出材]
 本実施形態に係る陽極酸化皮膜を有するアルミニウム合金押出材は、アルミニウム合金押出材であって、
 Zn:4.0質量%以上7.5質量%以下、
 Mg:1.0質量%以上2.2質量%以下、
 Fe:0.05質量%以上0.20質量%以下、
 Cu:0.30質量%以下、
 Ti:0.005質量%以上0.04質量%以下、
 B:0.001質量%以上0.02質量%以下、
 Si:0.15質量%以下、
 Zr:0.05質量%以下、
 Mn:0.05質量%以下、
 Cr:0.05質量%以下、
 V:0.05質量%以下、
を含有し、
Zr、Mn、Cr、V及びTiの含有量の合計である[Zr+Mn+Cr+V+Ti]が、
 [Zr+Mn+Cr+V+Ti]≦0.10質量%
の関係を満たし、
Znの含有量が6.0質量%以下かつMgの含有量が1.2質量%以下の範囲を除き、
残部がアルミニウムと不可避不純物からなり、
金属組織が再結晶組織であることを特徴とする。
 上記の構成からなるアルミニウム合金押出材は、所望の強度を有するとともに、陽極酸化皮膜の表面にスジ模様が出にくいという効果を有する。
 以下に、本実施形態のアルミニウム合金押出材に係る各元素について説明する。
(Zn:亜鉛)
 Zn及びMgは、Zn‐Mg相として析出し、合金の高強度化に寄与する。Znの含有量が4.0質量%以上の場合、十分な強度を得ることができ、Znの含有量が7.5質量%以下であれば、良好な耐食性が得られる。
 本実施形態に係るアルミニウム合金押出材は、Znの含有量が、4.0質量%以上7.5質量%以下であり、より好ましくは4.0質量%以上7.0質量%以下であり、さらに好ましくは4.0質量%以上6.0質量%以下であり、よりさらに好ましくは4.0質量%以上5.5質量%未満であり、最も好ましくは4.0質量%以上5.0質量%以下である。
(Mg:マグネシウム)
 Mgの含有量が1.0質量%以上であれば、十分な強度を得ることができ、Mgの含有量が2.2質量%以下であれば、良好な押出加工性が得られる。
 本実施形態に係るアルミニウム合金押出材は、Mgの含有量が、1.0質量%以上2.2質量%以下であり、より好ましくは1.2質量%以上2.2質量%以下であり、さらに好ましくは1.3質量%以上2.2質量%以下であり、よりさらに好ましくは1.4質量%以上2.2質量%以下であり、最も好ましくは1.5質量%以上2.2質量%以下である。
 但し、Zn含有量が6.0%質量以下の場合、Mgの含有量を1.2質量%以上、Zn含有量が5.5質量%未満の場合、Mgの含有量を1.6質量%以上とすることが好ましい。
(Fe:鉄)
 本実施形態に係るアルミニウム合金押出材は、Feの含有量が、0.05質量%以上0.20質量%以下である。
 Feの含有量が0.05質量%以上であれば、均質化処理の際に、鋳造組織の粗大再結晶化を抑制できる。鋳塊中に粗大な結晶組織があると、押出加工の際に不均一な変形が生じやすく、押出材の寸法を所定のサイズ(精度、ネジレや曲り)に収めることが困難になる。さらにビレット中の粗大な結晶組織があると押出後の再結晶化の際に、等軸の再結晶組織であっても、大きさの異なる再結晶粒組織が混在しやすい。このような組織が層状に並ぶことでスジ状に色調差を生じる原因となる。Feの含有量が0.20質量%以下であれば、Feが他の元素と化合物を形成して過剰な晶出物が形成され、スジ模様が生じることを抑制できる。Feの含有量は、0.15質量%以下であることがより好ましく、この範囲であれば上記の効果がより高まる。
(Cu:銅)
 本実施形態に係るアルミニウム合金押出材は、Cuの含有量が、0.30質量%以下である。Cuの含有量が、0.30質量%を超えると、陽極酸化皮膜に黄色味を帯びやすく、また耐食性も悪化しやすい。
 また、Cuの含有量が0.15質量%より多いと、機械的強度及び耐応力腐食割れ性(SCC)が向上する。
(Ti:チタン、B:ボロン)
 本実施形態に係るアルミニウム合金押出材は、Tiの含有量が、0.005質量%以上0.04質量%以下である。また、本実施形態に係るアルミニウム合金押出材は、Bの含有量が、0.001質量%以上0.02質量%以下である。
 合金中の鋳造組織の結晶が粗大であると押出成形の際に不均一な変形が起こりやすいとともに、濃度偏析及び再結晶組織の粒径の不均一化が起こりやすいので、Ti、Bは、鋳造の際に結晶粒の微細化剤として添加される。
 Tiのみを添加した場合、母相中に固溶してしまい、微細化剤としての作用が小さくなる。また結晶内部への濃度偏析が起こりやすくなるので、ロッドハードナーを微細化剤として用いてTiB化合物として添加することが好ましい。一方、TiやBを過剰に添加すると化合物として過剰に晶出し、スジ模様の原因となるので添加量の上限規制が必要となる。
(Si:シリコン)
 本実施形態に係るアルミニウム合金押出材は、Siの含有量が、0.15質量%以下である。Siは、MgとMg‐Si系化合物を形成してスジ模様の一因となるため、0.15%以下に規制することが好ましい。
 また、Siの含有量が、0.1質量%以下であることが、より好ましい。Siの含有量がこの範囲であれば、上記の効果がより高まる。
(Zr:ジルコニウム、Mn:マンガン、Cr:クロム、V:バナジウム)
 Zr、Mn、Cr、Vは、押出加工時の再結晶化を抑制する作用があるので、それぞれの含有量が0.05質量%以下であることが好ましく、より好ましくは0.02質量%以下である。またこれらの元素は、Znの拡散を抑制する作用もある。
 また、上記元素は熱処理(HOや押出時の鋳塊加熱、押出加工発熱)で拡散し難いので、濃度偏析を生じ易く、規制範囲を超えると、陽極酸化皮膜処理時にスジ模様を形成する原因となる。
 また、Zr、Mn、Cr、V及びTiの含有量の合計である[Zr+Mn+Cr+V+Ti]が、[Zr+Mn+Cr+V+Ti]≦0.10質量%の関係を満たすことが好ましい。
 これらの添加量が規定範囲を超えて添加した場合には、再結晶化を抑制し非再結晶組織を形成したり、結晶粒成長を起こす原因となり、更には粗大な過剰な晶出物の原因となるので、全てを合計しても含有量が0.10質量%以下であることが好ましく、より好ましくは0.09質量%以下であり、さらに好ましくは0.08質量%以下であり、よりさらに好ましくは0.07質量%以下であり、最も好ましくは0.05質量%以下である。
(再結晶組織)
 ファイバー状の組織は、陽極酸化皮膜処理を行った場合、陽極酸化皮膜の表面にスジ模様が生じる原因となる。そのため、結晶組織は、結晶粒径が揃った、再結晶組織であることが好ましい。このような微細な再結晶組織が形成させるために、合金成分、鋳造HO条件、押出条件を制御する。結晶組織の形態は、ホウフッ化水素酸水溶液で皮膜処理し、偏光顕微鏡で観察といった方法で確認することができる。
 なお、筋状模様が問題となるのは陽極酸化皮膜面であるので、その面のみが、再結晶であればよい。
(Znの高濃度部と低濃度部の濃度差)
 陽極酸化処理面において、押出方向に平行して層状に存在するZn高濃度層とZn低濃度層の幅が0.1mmを超え、3mm以下の範囲においてZn濃度差が1%超える場合に、陽極酸化皮膜処理を行った際に、高濃度部と低濃度部の皮膜形態に差が生じ、その差が筋状模様に見えやすくなる。0.1mm幅の範囲での濃度偏析では、幅が狭すぎて、スジと認識され難い。また、3mmを超える緩やかな濃度偏析もスジとして認識されにくい。
(平均再結晶組織サイズ200μm以下、最大結晶粒サイズ1mm以下)
 陽極酸化皮膜処理面の再結晶組織の結晶粒サイズが不均一であると、そこで濃度偏析が生じ、筋模様状に見える。
(晶出物の面積率2%未満)
 陽極酸化処理面に占める金属間化合物(晶出物)の面積率が2%以上であると、押出加工時に結晶粒が引き伸ばされた際に、押出方向に平行に点在するように移動させられた金属間化合物(晶出物)が筋模様状に見える。
 本実施形態に係るアルミニウム合金押出材は、陽極酸化皮膜性に優れ、電子機器の筐体用材料として好ましく用いられる。
[アルミニウム合金押出材の製造方法]
 また、本発明によれば、アルミニウム合金押出材の製造方法が提供される。下記の実施形態は、上記実施形態と基本的な構成は同様である。
 本発明の他の実施形態に係るアルミニウム合金押出材の製造方法は、アルミニウム合金押出材であって、Zn:4.0質量%以上7.5質量%以下、Mg:1.0質量%以上2.2質量%以下、Fe:0.05質量%以上0.20質量%以下、Cu:0.30質量%以下、Ti:0.005質量%以上0.04質量%以下、B:0.001質量%以上0.02質量%以下、Si:0.15質量%以下、Zr:0.05質量%以下、Mn:0.05質量%以下、Cr:0.05質量%以下、V:0.05質量%以下、を含有し、Zr、Mn、Cr、V及びTiの含有量の合計である[Zr+Mn+Cr+V+Ti]が、
 [Zr+Mn+Cr+V+Ti]≦0.10質量%
の関係を満たし、Znの含有量が6.0質量%以下かつMgの含有量が1.2質量%以下の範囲を除き、残部がアルミニウムと不可避不純物からなり、金属組織が再結晶組織であり、陽極酸化皮膜を有するアルミニウム合金押出材の製造方法であって、
鋳造材を均質化処理の保持条件が400~560℃で、1~24時間で処理し、
押出工程で押出比が20を超えて押出加工し、押出加工中の形材の温度が420℃以上になるように押出し、
時効処理工程が100~180℃で1~30時間で処理することを特徴とする。
(鋳造)
 鋳造工程では、上記の合金組成を有するアルミニウム合金溶湯を準備し、脱滓処理や脱ガス処理、フィルタリング等の公知の溶湯処理を行う。そして、DC鋳造法等で、円柱状の鋳塊(ビレット)を得る。
 鋳造中、溶湯が鋳型に入る前に、Al‐Ti‐B合金からなる微細化剤(ロッドハードナー)を溶湯中に添加することが好ましい。溶湯に添加される微細化剤は、合金組成においてTi、Bが上記の範囲を超えないことが好ましい。鋳造組織ができるだけ均質になるように、溶湯が鋳型内に均質に注湯し、鋳造温度が鋳型内で均一になるようにすることが好ましい。例えば、HOT TOP(ホットトップ)鋳造等が好ましく用いられる。
 ビレット径は小さく、好ましくは直径が14インチ以下であることが好ましい。ビレットの径が大きいとビレット中心部の冷却が遅くなり、ビレット中心部の組織が、粗大化しやすい。鋳造組織が粗大であると均質化処理時の濃度偏析解消が難しくなるだけでなく、押出加工における結晶組織の微細化も不十分になりやすい。
(均質化処理)
 上記の鋳造工程で得られたビレットに均質化処理(HO処理)を施す。均質化処理によって、元素の濃度偏析が解消され、晶出物が減少する。
 均質化処理温度は、400~560℃で、1時間以上24時間以内で行うことが好ましい。均質化処理の条件がこの範囲であれば、均質化が十分に行われる。24時間均質化処理温度が560℃を超えると鋳塊の結晶が成長し、押出加工性を低下させたり、押出材の結晶粒を粗大化させたりすると同時に局部的に再結晶組織が粗大化し、再結晶組織の粒径差が大きくなり、陽極酸化皮膜時に模様を発生させる。
 均質化処理温度は540℃以下がより好ましい。均質化処理を、24時間を超えて行っても、それ以上の効果は望めなく、製造コストが掛かるのみである。
 濃度偏析の解消及び晶出物の固溶を促すためには、470℃以上で均質化処理を行うことが好ましく、500℃で均質化処理を行うことがより好ましい。均質化処理後の冷却速度が遅いと固溶した元素が析出しやすいので、HO温度~150℃までの平均冷却速度は100℃/h以上で冷却することが好ましい。
(押出加工)
 押出工程では、均質化処理を行ったビレットに押出加工を施して、所定の加工材とする。
 押出加工の押出比は20以上であることが好ましい。押出加工の押出比はより好ましくは40以上である。これは、結晶が延ばされることで、濃度変化が緩やか(高濃度部間あるいは低濃度部間の間隔が密であると濃度偏析が改善されやすい)になり、陽極酸化皮膜後の外観でスジ模様が発生し難くなるためである。
 また、押出加工条件により変化する再結晶組織では、平均粒径を200μm以下にし、最大結晶粒サイズを1mm以下にすることで、結晶組織差によるスジ模様の形成を抑制できる。ビレット温度をより低温で押出すほど押出材の結晶サイズは微細になるので、ビレット温度は押出圧力および形材温度も考慮して設定することが望ましく、好ましくは480℃以下である。
 ダイス出口の温度が400℃以上となるように、押出し条件(ビレット温度、ダイス温度、コンテナ温度、押出圧力、押出速度等)を定めることが好ましい。ダイス出口での押出材の温度が低いと、高い強度が得られない虞がある。
 ダイスから出た後の押出材は、押出後~200℃の温度範囲の冷却速度が、0.3~20℃/sとなるように冷却する。冷却速度が、この条件を満たせば、高い強度が得られ、かつ良好な耐応力腐食割れ性を得ることができる。
(時効処理)
 押出加工を行った加工材を時効処理する。時効処理工程における保持温度は100~180℃の条件で、1~30時間で処理する。また時効処理は、より高強度、耐応力腐食割れ性を得るためには、2段階の時効処理を行っても良い。
(陽極酸化皮膜処理)
 鋳造工程、均質化処理工程、押出工程、時効処理工程を順次経ることで得られた押出材は、所定の形状に切削加工された後、陽極酸化皮膜処理が施される。陽極酸化皮膜処理は、公知の条件で行われる。
 本発明の他の実施形態では、上記のアルミニウム合金押出材の製造方法において、均質化処理工程が保持温度400℃~560℃の条件で行われ、押出工程が押出比20以上、押出材のダイス出口温度420℃以上、押出後~200℃間の冷却速度が0.3~20℃/sの条件で行われ、時効処理工程が保持温度100℃~180℃の条件で行われることを特徴とする陽極酸化皮膜を有するアルミニウム合金押出材の製造方法が提供される。
 以下に、本発明について実施例を用いて説明するが、本発明はこれらの実施例に限定されるものではない。
(アルミニウム合金試験材の作製)
 下記[表1]の実験例A~Nの成分のビレットを得た。ビレットの直径は325mmであった。これらのビレットを[表2]の条件でHO処理をした後、[表2]の条件で押出加工を行った。押出加工は、ビレット温度400℃の条件で行い、(a)は幅100mm、厚さ10mmフラットバー、(b)は幅120mm、厚さ25mmフラットバーと、2つの押出し形状で行った。
 次いで、表2に記載の条件で熱処理を行った。熱処理後は、A~J及びL~NがT5(押出加工後、人工時効)、KがT6(溶体化処理後、人工時効)の条件で調質を行った。
Figure JPOXMLDOC01-appb-T000001
 [表1]では、鋳造後とHO後の結晶粒サイズを交線法で測定し、1mmを超えるサイズの結晶粒を有するものを×とした。なお、交線法とは、光学顕微鏡により撮影された画像に対し任意の方向に直線を引き、その直線と交わる結晶粒界数をnとすると、(n-1)で直線の長さを割って、平均結晶粒径を算出する方法である。
 [表2]及び[表3]に、実験例A~Nの各種測定結果、並びに観察結果を記載する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(引張試験)
 押出材をJIS 14B号試験片に加工し、引張試験を実施した。引張試験では、0.2%耐力≧380MPaであるものを合格とした。
(色調とスジ模様の観察)
 アルミニウム合金試験材の表面を肉厚の20%にあたる量を面削(バフ研磨)し、面削面に陽極酸化皮膜処理を実施した。陽極酸化皮膜処理の処理条件は、20℃、15%硫酸水溶液中で1.5A/dmで、皮膜厚さ約5μmとした。
 色調は、処理前後の光沢度の保持率が40%以上であり、L値78以上、b値1以下が得られることを基準として判断した。上記の値を満足したものを○、満足しないものを×とした。また、スジ模様発生の有無を評価した。「○」では、スジ模様がほとんど生じることがなく、「△」では、薄いスジ模様が限られた部位で観察された。「×」では、濃いスジ模様が生じた。色調は、JIS Z8730の値を基準としている。
(押出材の組織の観察)
 アルミニウム合金試験材の表面を肉厚の20%にあたる量を面削し、鏡面に研磨後にホウフッ化水素酸水溶液中で皮膜処理し、偏光顕微鏡で組織を観察し組織を判定した。観察面はL-LT面(押出方向に平行である面の中で、広幅な面)である。
 A~G、L~Nは、再結晶組織が観察され、アスペクト比(押出長さ方向平均結晶径/押出直角方向平均結晶径)は2以下の等軸晶であった。H~Kでは、ファイバー状の結晶組織であった。ただし、再結晶組織が観察されたA~E及びG、M、Nは、交線法で測定した結晶の平均粒径200μm以下の均一微細な結晶を有していたが、F、Lには1mmを超える粗大な結晶粒が存在した。F、LのHO後の鋳塊組織で結晶成長が確認されており、この影響である。
(晶出物占有面積率)
 アルミニウム合金試験材の表面を肉厚の20%にあたる量を面削し、鏡面に研磨後に画像解析装置と光学顕微鏡により、晶出物の占有面積を測定した。観察面はL-LT面(押出方向に平行である面の中で、広幅な面)である。
(応力腐食割れ試験)
 A~E、M、Nについてのみ、JIS H8711に準拠し、応力腐食割れ試験を実施した。応力腐食割れ試験では、押出方向と直角方向に0.2%耐力の50%にあたる応力を負荷した。腐食液は3.5%NaCl、25℃、10分間浸漬後、50分間乾燥で1サイクルとした。30日間試験を行い、割れの無い材料を合格「○」とした。A、M、Nは、SCC試験の結果が劣るが、これはCu含有量が少ないためであると考えられる。
(元素濃度の分析)
 アルミニウム合金試験材の表面を3mm面削し、研磨後に島津製作所製EPMA-1610を用いて、下記の条件で元素分析を行った。Znの濃度を計測するために、その測定においてはZn含有量の異なる標準試料を使用して、あらかじめZnの検量線を作成して、検量線法にて定量化を行った。ライン上に測定した元素濃度値の最高値と最低値の差を濃度偏析値とした。
(測定条件)
 加速電圧   :15kV
 照射電流   :200nA
 ビーム径   :1μm(最小)
  sweep condition:LINE x3000
(電子線走査条件:進行方向に対して垂直に3000倍(100μm程度)の範囲で線状に電子線を走査しながら測定)
 データ数   :300points
 ステップサイズ    :10μm
 長さ     :3000μm(3mm)
 測定時間   :2秒/point
 図1の(a)及び(b)は、実験例B(発明例)の結晶組織を偏光顕微鏡で観察したものである。均質な再結晶組織が観察されている。
 図2は実験例B(発明例)のミクロ組織を観察したものである。晶出物が拡散され、極端な化合物の連続性等が見られないことがわかる。
 図3の(a)及び(b)は、実験例L(比較例)の試料断面の結晶組織を偏光顕微鏡で観察したものである。観察箇所によって結晶粒の大きさが異なり、部分的に粗大な結晶粒が形成されていることがわかる。これは、HO処理の温度条件に依存して、局部的に再結晶組織が粗大化したためである。
 図4は、実験例H(比較例)の結晶組織を観察したものである。結晶組織がファイバー組織化されていることがわかる。
 図5は、実験例K(比較例)のミクロ組織を観察したものである。Fe、Cu、Mg、Crの含有量が多く、晶出物が偏析した箇所が、押出加工によって引き伸ばされ、スジ状に化合物の連続性が見える。
 図6から図8では、(a)陽極酸化皮膜処理面の、押出加工の押出し方向に直交する方向の長さ3mm当たりにおける濃度分析を行っている。(b)は、同じ個所のZn元素のマッピング図である。
 図6は、実験例B(発明例)のZn濃度分析およびマッピング図を示すグラフである。3mm幅におけるZn濃度偏析は1.0質量%以下である。また図7は、実験例G(比較例)のZn濃度分布、図8は、実験例H(比較例)のZn濃度分布およびマッピング図を示すグラフである。比較例である実験例G、Hは、3mm幅の間にZnの濃度が、1.0質量%を超える濃度偏析が生じている箇所があることがわかる。また、マッピング図より濃度偏析が層状になっていることがわかる。
 上記の実験結果からすると、A~E、M、Nは所望の強度を有するとともに、陽極酸化皮膜の表面にスジ模様が出にくいことが理解される。よって、これらの条件を満たすアルミニウム合金押出材は、携帯用パソコンや携帯電話及びスマホ等の電子機器の筐体に好ましく用いることができる。
 なお、A~D、M、Nの押出比はEと比較して大きい、すなわち加工度が高いため、表面の均一性はより高い結果となった。
 Fは、Feが少ないため、HOで鋳塊の一部で結晶が粗大化し、押出材においても、一部で1mmを超える結晶粒が存在し、不均一な結晶組織を形成したことで、押出材の陽極酸化皮膜処理後にスジが発生した。
 Gは、鋳造中の結晶微細化剤であるTi及びBが不足しており、鋳造後の鋳塊組織が粗大化した。その影響により、均質化処理を行ってもZnの濃度偏析が、十分に解消されず、0.1mmを超え、3mm以下の範囲においてZn濃度差が1%超える濃度偏析が生じ、押出材の陽極酸化皮膜処理後にスジが発生した。
 H、IはZr添加量が上限値を超えており、ピン止め効果により押出材の結晶組織がファイバー組織に維持されたこととZrにより、Znの拡散も阻害され、均質化処理を行ってもZnの濃度偏析が、十分に解消されず、押出材の陽極酸化皮膜処理後にスジが発生した。更にIは、Znの含有量は多いが、Mgの含有量が低いため、ファイバー組織であっても機械的強度が低くなっている。
 JもZr添加量とCr添加量およびMn添加量が上限値を超えており、ピン止め効果により押出材の結晶組織がファイバー組織に維持されたこととZrにより、Znの拡散も阻害され、均質化処理を行ってもZnの濃度偏析が、十分に解消されず、0.1mmを超え、3mm以下の範囲においてZn濃度差が1%超える濃度偏析が生じ、押出材の陽極酸化皮膜処理後にスジが発生した。
 また、Jは、Mg含有量は多いが、Zn含有量が低いため、ファイバー組織であっても機械的強度が低くなっている。またMnの含有量が多く、ピン止め効果により押出材の結晶組織がファイバー組織に維持されたこととMnにより、Znの拡散も阻害され、均質化処理を行ってもZnの濃度偏析が、十分に解消されず、0.1mmを超え、3mm以下の範囲においてZn濃度差が1%超える濃度偏析が生じ、押出材の陽極酸化皮膜処理後にスジが発生した。
 Kは、Fe,Cu,Mg,Crが本発明で規定する範囲を超えており、晶出物が多く発生し、押出材の陽極酸化皮膜処理後にスジが発生した。更にCrのピン止め効果により、押出材の結晶組織をファイバー組織に維持されたこととCrにより、Znの拡散も阻害され、均質化処理を行ってもZnの濃度偏析が、十分に解消されず、0.1mmを超え、3mm以下の範囲においてZn濃度差が1%超える濃度偏析が生じたことで、押出材の陽極酸化皮膜処理後にスジが発生した。また、Cuが本発明で規定する範囲を超えており、L、b値が規格値外となった。
 LはHO温度が上限温度を超えたため鋳塊の結晶組織が成長し、その影響で押出材の結晶組織においても一部で1mmを超える結晶粒が生成し、押出材の結晶粒サイズが不均一となったことから、陽極酸化皮膜処理後にスジが発生した。

Claims (7)

  1. アルミニウム合金押出材であって、
     Zn:4.0質量%以上7.5質量%以下、
     Mg:1.0質量%以上2.2質量%以下、
     Fe:0.05質量%以上0.20質量%以下、
     Cu:0.30質量%以下、
     Ti:0.005質量%以上0.04質量%以下、
     B:0.001質量%以上0.02質量%以下、
     Si:0.15質量%以下、
     Zr:0.05質量%以下、
     Mn:0.05質量%以下、
     Cr:0.05質量%以下、
     V:0.05質量%以下、
    を含有し、
    Zr、Mn、Cr、V及びTiの含有量の合計である[Zr+Mn+Cr+V+Ti]が、
     [Zr+Mn+Cr+V+Ti]≦0.10質量%
    の関係を満たし、
    Znの含有量が6.0質量%以下かつMgの含有量が1.2質量%以下の範囲を除き、
    残部がアルミニウムと不可避不純物からなり、
    金属組織が再結晶組織である陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材。
  2. Znの含有量が4.0質量%以上5.5質量%未満である、請求項1に記載の陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材。
  3. Mgの含有量が1.0質量%以上1.6質量%以下である、請求項1又は2に記載の陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材。
  4.  陽極酸化処理面において、押出方向に平行してZn高濃度相とZn低濃度相が層状に存在し、押出方向に直交する方向において、幅0.1mm以上3mm以下の範囲においてZn濃度差が1%以下であることを特徴とする請求項1から3の何れか一項に記載の陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材。
  5.  陽極酸化皮膜処理面の再結晶組織の結晶粒サイズが平均値で200μm以下であり、最大結晶粒サイズが1mm以下あることを特徴とする請求項1から4の何れか一項に記載の陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材。
  6.  陽極酸化処理面に占める晶出物の面積率が2%未満であることを特徴とする請求項1から5の何れか一項に記載の陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材。
  7. 鋳造材を、均質化処理の保持条件が400~560℃で、1~24時間で処理し、
    押出工程で押出比が20を超えて押出加工し、押出加工中の形材の温度が420℃以上になるように押出し、
    時効処理工程が100~180℃で1~30時間で処理することを特徴とする請求項1から6の何れか一項に記載の陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材の製造方法。
PCT/JP2016/069211 2015-07-08 2016-06-29 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法 WO2017006816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187003476A KR20180025955A (ko) 2015-07-08 2016-06-29 양극 산화피막을 갖는 외관 품질이 우수한 알루미늄 합금 압출재 및 그 제조 방법
JP2016567441A JP6119937B1 (ja) 2015-07-08 2016-06-29 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
CN201680040087.2A CN107735503A (zh) 2015-07-08 2016-06-29 具有阳极氧化皮膜的外观品质优良的铝合金挤出材料及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015137040 2015-07-08
JP2015-137040 2015-07-08
PCT/JP2015/072920 WO2017006490A1 (ja) 2015-07-08 2015-08-13 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JPPCT/JP2015/072920 2015-08-13

Publications (1)

Publication Number Publication Date
WO2017006816A1 true WO2017006816A1 (ja) 2017-01-12

Family

ID=57685258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069211 WO2017006816A1 (ja) 2015-07-08 2016-06-29 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法

Country Status (1)

Country Link
WO (1) WO2017006816A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090839A (ja) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 押出材用アルミニウム合金及びそれを用いた押出材並びに押出材の製造方法
EP3594369A4 (en) * 2017-03-07 2020-12-16 LG Electronics Inc. -1- ALUMINUM ALLOY
CN113403507A (zh) * 2021-06-21 2021-09-17 合肥标兵新材料科技有限公司 电子产品用高强高阳极氧化效果的6系铝合金制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125214A (en) * 1977-04-08 1978-11-01 Sumitomo Aluminium Smelting Co Strong aluminum alloy
JPH09310141A (ja) * 1996-05-16 1997-12-02 Nippon Light Metal Co Ltd 押出し性に優れた構造材料用高強度Al−Zn−Mg系合金押出し形材及びその製造方法
JP2006316295A (ja) * 2005-05-10 2006-11-24 Furukawa Sky Kk 高温成形用アルミニウム合金押出材およびその高温成形品
JP2012246555A (ja) * 2011-05-30 2012-12-13 Kobe Steel Ltd 筐体用7000系アルミニウム合金押出材
JP2013122083A (ja) * 2011-11-07 2013-06-20 Sumitomo Light Metal Ind Ltd 高強度アルミニウム合金材及びその製造方法
JP2015040320A (ja) * 2013-08-21 2015-03-02 株式会社Uacj 高強度アルミニウム合金及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125214A (en) * 1977-04-08 1978-11-01 Sumitomo Aluminium Smelting Co Strong aluminum alloy
JPH09310141A (ja) * 1996-05-16 1997-12-02 Nippon Light Metal Co Ltd 押出し性に優れた構造材料用高強度Al−Zn−Mg系合金押出し形材及びその製造方法
JP2006316295A (ja) * 2005-05-10 2006-11-24 Furukawa Sky Kk 高温成形用アルミニウム合金押出材およびその高温成形品
JP2012246555A (ja) * 2011-05-30 2012-12-13 Kobe Steel Ltd 筐体用7000系アルミニウム合金押出材
JP2013122083A (ja) * 2011-11-07 2013-06-20 Sumitomo Light Metal Ind Ltd 高強度アルミニウム合金材及びその製造方法
JP2015040320A (ja) * 2013-08-21 2015-03-02 株式会社Uacj 高強度アルミニウム合金及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090839A (ja) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 押出材用アルミニウム合金及びそれを用いた押出材並びに押出材の製造方法
JP7093611B2 (ja) 2016-11-30 2022-06-30 アイシン軽金属株式会社 押出材用アルミニウム合金及びそれを用いた押出材並びに押出材の製造方法
EP3594369A4 (en) * 2017-03-07 2020-12-16 LG Electronics Inc. -1- ALUMINUM ALLOY
CN113403507A (zh) * 2021-06-21 2021-09-17 合肥标兵新材料科技有限公司 电子产品用高强高阳极氧化效果的6系铝合金制备方法

Similar Documents

Publication Publication Date Title
JP6119937B1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP6022882B2 (ja) 高強度アルミニウム合金押出材及びその製造方法
WO2015025706A1 (ja) 高強度アルミニウム合金及びその製造方法
WO2013069603A1 (ja) 高強度アルミニウム合金材及びその製造方法
WO2012176345A1 (ja) 高強度アルミニウム合金材およびその製造方法
JP6344923B2 (ja) 高強度アルミニウム合金及びその製造方法
US11015235B2 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
JP6433380B2 (ja) アルミニウム合金圧延材
JP6010454B2 (ja) アルミニウム合金線
WO2017006816A1 (ja) 陽極酸化皮膜を有する外観品質に優れたアルミニウム合金押出材及びその製造方法
JP2004084058A (ja) 輸送機構造材用アルミニウム合金鍛造材の製造方法およびアルミニウム合金鍛造材
JP7172833B2 (ja) アルミニウム合金材及びその製造方法
CN108588602B (zh) 一种降低黑线比例的7075铝合金扁排制造方法及7075铝合金扁排与应用
WO2017086470A1 (ja) アルミニウム合金材及びその製造方法
EP3486340B1 (en) Aluminum alloy plastic working material and production method therefor
Kwak et al. The properties of 7xxx series alloys formed by alloying additions
JPH10306336A (ja) 陽極酸化処理後の表面光沢性に優れたアルミニウム合金押出材およびその製造方法
JP6501109B2 (ja) アルミニウム合金及び材料、並びに押出材の製造方法
JPH06116667A (ja) 遠赤外線放射体
JP2011042857A (ja) 疲労強度,靭性及び光輝性に優れたアルミニウム合金及びその製造方法
JP4942524B2 (ja) 曲げ加工性及び陽極酸化処理後の光輝性に優れたアルミニウム合金ならびにその押出形材
JP2006265723A (ja) ブロー成形用熱処理型アルミニウム合金板及びその製造方法
RU2579861C1 (ru) Способ получения деформированных полуфабрикатов из сплава на основе алюминия
JP3355058B2 (ja) 照明反射板用アルミニウム合金板及びその製造方法
JP2013007114A (ja) 陽極酸化処理用高強度アルミニウム合金材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567441

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187003476

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16821285

Country of ref document: EP

Kind code of ref document: A1