WO2017006689A1 - Esd protection device - Google Patents

Esd protection device Download PDF

Info

Publication number
WO2017006689A1
WO2017006689A1 PCT/JP2016/066952 JP2016066952W WO2017006689A1 WO 2017006689 A1 WO2017006689 A1 WO 2017006689A1 JP 2016066952 W JP2016066952 W JP 2016066952W WO 2017006689 A1 WO2017006689 A1 WO 2017006689A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
esd protection
discharge electrode
electrode
protection device
Prior art date
Application number
PCT/JP2016/066952
Other languages
French (fr)
Japanese (ja)
Inventor
武 三木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2017006689A1 publication Critical patent/WO2017006689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed

Definitions

  • the present invention relates to an ESD protection device, and more particularly to an ESD protection device with high operability.
  • ESD Electro-Static Discharge
  • ESD protection device ESD protection component
  • the ESD protection device has a structure in which a pair of discharge electrodes are spaced apart from each other, and is used in an electronic device, for example, connected between a signal line and a ground (ground).
  • the ESD protection device has a high resistance in a normal use state, and a signal does not flow from the signal line to the ground through the ESD protection device.
  • a signal does not flow from the signal line to the ground through the ESD protection device.
  • discharge occurs between the discharge electrodes of the ESD protection device, and static electricity can be discharged from the signal line to the ground.
  • FIG. 5 shows an ESD protection device 500 disclosed in Patent Document 1.
  • the ESD protection apparatus 500 includes a multilayer substrate 104 on which insulating layers 101 to 103 are stacked, one discharge auxiliary electrode (mixing unit) 105, a first discharge electrode (in-plane connection conductor) 106, and a second discharge electrode. (In-plane connection conductor) 107.
  • the discharge auxiliary electrode 105 is disposed between the first discharge electrode 106 and the second discharge electrode 107.
  • the discharge auxiliary electrode 105 exhibits a high resistance in a normal use state, but when a voltage equal to or higher than a predetermined threshold is applied between the first discharge electrode 106 and the second discharge electrode 107, the first discharge electrode A discharge is induced between 106 and the second discharge electrode 107.
  • the ESD protection device As a characteristic of the ESD protection device, it is required to discharge reliably when a predetermined threshold voltage is exceeded without being discharged or short-circuited during normal use, that is, to have high operability.
  • the discharge auxiliary electrode or the like does not cause IR deterioration (insulation resistance deterioration due to heat) even after discharging and can continue to be used thereafter.
  • the ESD protection device 500 disclosed in Patent Document 1 has only one discharge auxiliary electrode 105, it should not be originally, but the discharge auxiliary electrode 105 is insufficiently filled with the discharge auxiliary material. When there is a defect such as the above, there is a possibility that the discharge will not occur even if the threshold voltage is exceeded.
  • the present invention has been made to solve the above-described conventional problems, and as its means, the ESD protection apparatus of the present invention is provided between a multilayer substrate in which a plurality of insulating layers are laminated and different layers of the multilayer substrate.
  • a plurality of discharge auxiliary electrodes are formed in the discharge electrode overlapping portion where the first discharge electrode and the second discharge electrode overlap.
  • the discharge electrode overlapping portion may be formed in a strip shape, and a plurality of discharge auxiliary electrodes may be arranged side by side in the longitudinal direction of the strip shape. In this case, even if one discharge auxiliary electrode does not discharge, the other discharge auxiliary electrodes discharge, so that the operability is improved.
  • the plurality of discharge auxiliary electrodes can be arranged in a straight line, for example. Or a some discharge auxiliary electrode can be arrange
  • a plurality of discharge auxiliary electrodes can be concentrically arranged in the discharge electrode overlapping portion. In this case, even if one discharge auxiliary electrode does not discharge, the other discharge auxiliary electrodes discharge, so that the operability is improved.
  • the plurality of discharge auxiliary electrodes can be arranged concentrically, for example.
  • the plurality of discharge auxiliary electrodes can be arranged concentrically, for example.
  • the ESD protection device of the present invention has improved operability because even if one discharge auxiliary electrode does not discharge, the other discharge auxiliary electrode discharges.
  • FIG. 1A and 1B are cross-sectional views showing an ESD protection apparatus 100 according to the first embodiment, respectively. However, FIG. 1B shows the XX portion of FIG.
  • FIG. 2 is a cross-sectional view showing an ESD protection apparatus 200 according to the second embodiment.
  • FIG. 3 is a cross-sectional view showing an ESD protection apparatus 300 according to the third embodiment.
  • FIG. 4 is a cross-sectional view showing an ESD protection apparatus 400 according to the fourth embodiment.
  • FIG. 5 is a cross-sectional view showing a conventional ESD protection device 500.
  • a drawn component or a ratio of dimensions between components may not match the ratio of those dimensions described in the specification.
  • the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIGS. 1A and 1B show an ESD protection apparatus 100 according to the first embodiment.
  • FIGS. 1A and 1B are both cross-sectional views of the ESD protection device 100, and
  • FIG. 1B shows an XX portion of FIG. 1A.
  • the ESD protection apparatus 100 includes a structure in which the first discharge electrode 1 and the second discharge electrode 2 are disposed between different layers of the multilayer substrate 3 and are opposed to each other. As shown in FIG. 1B, when the ESD protection device 100 is seen through in the stacking direction of the multilayer substrate 3, a region where the first discharge electrode 1 and the second discharge electrode 2 overlap is shown as a discharge electrode overlapping portion. 4 is defined. In the present embodiment, the discharge electrode overlapping portion 4 has a strip shape.
  • the first discharge electrode 1 and the second discharge electrode 2 are each formed of, for example, a metal whose main component is Cu.
  • the multilayer substrate 3 has a structure in which insulating layers 3a to 3g are laminated and integrated.
  • the insulating layers 3a to 3g are made of ceramic, for example.
  • the insulating layers 3a to 3g are composed of seven layers, but the number of layers is arbitrary and is not limited to seven layers.
  • an insulating layer 3a, an insulating layer 3b, and an insulating layer 3c are laminated in order from the bottom.
  • the second discharge electrode 2 is disposed between the insulating layer 3c and the insulating layer 3d.
  • Each discharge auxiliary electrode 5 is formed through the upper and lower main surfaces of the insulating layer 3d. As shown in FIG. 1B, the five discharge auxiliary electrodes 5 are arranged in a straight line in the longitudinal direction of the strip-shaped discharge electrode overlapping portion 4. Each discharge auxiliary electrode 5 has one surface connected to the first discharge electrode 1 and the other surface connected to the second discharge electrode 2.
  • the number of discharge auxiliary electrodes 5 is five, but the number of discharge auxiliary electrodes 5 is arbitrary as long as it is plural, and the number is 2 to 4 or less, or 6 or more. It may be a number.
  • the diameter of the auxiliary discharge electrode 5 is about 100 ⁇ m.
  • the discharge auxiliary electrode 5 has a structure in which a discharge auxiliary substance is filled in a through hole formed so as to penetrate between the upper and lower main surfaces of the insulating layer 3d.
  • the discharge auxiliary substance exhibits insulation during normal use, but when the voltage between the first discharge electrode 1 and the second discharge electrode 2 exceeds a predetermined threshold voltage, A discharge is generated between the second discharge electrode 2.
  • the discharge auxiliary substance includes, for example, at least one solid component selected from conductive particles, semiconductor particles, conductive particles coated with an inorganic material, insulating particles, and the like.
  • the conductive particles include Cu particles and Ag particles.
  • Semiconductor particles are particles, such as SiC and ZnO, for example.
  • the conductive particles coated with an inorganic material are, for example, Cu particles and Ag particles coated with Al 2 O 3 particles.
  • the insulating particles are particles such as insulating ceramics, for example.
  • the discharge auxiliary electrode 5 may be formed by dispersing a plurality of minute gaps.
  • the first discharge electrode 1 is disposed between the insulating layer 3d and the insulating layer 3e.
  • an insulating layer 3f and an insulating layer 3g are stacked on the insulating layer 3e.
  • External electrodes 6 and 7 are formed on both ends of the multilayer substrate 3.
  • the external electrode 6 is connected to the first discharge electrode 1, and the external electrode 7 is connected to the second discharge electrode 2.
  • the external electrodes 6 and 7 are made of, for example, a metal mainly composed of Cu or the like, and a plating layer such as Ni—Sn is formed on the surface.
  • the ESD protection apparatus 100 having the above structure includes five discharge auxiliary electrodes 5 between the first discharge electrode 1 and the second discharge electrode 2, and the first discharge electrode 1
  • the ESD protection apparatus 100 has high operability, and when the voltage between the first discharge electrode 1 and the second discharge electrode 2 exceeds a predetermined threshold voltage, the ESD protection device 100 and the second discharge electrode 1 Discharge occurs reliably between the discharge electrodes.
  • the ESD protection device 100 can be manufactured, for example, by the following method.
  • the ceramic material As the ceramic material, a material (BAS material) having a composition centered on Ba, Al, and Si was used. First, each material was prepared and mixed so as to have a predetermined composition, and calcined at 800 to 1000 ° C. Next, the obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder. Next, an organic solvent such as toluene and echinene was added to and mixed with the obtained ceramic powder. Furthermore, a binder and a plasticizer were added and mixed to obtain a ceramic slurry.
  • BAS material a material having a composition centered on Ba, Al, and Si was used.
  • each material was prepared and mixed so as to have a predetermined composition, and calcined at 800 to 1000 ° C. Next, the obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder. Next, an organic solvent such as toluene and echinen
  • the obtained ceramic slurry was molded by a doctor blade method to obtain ceramic green sheets having thicknesses of 10 ⁇ m and 50 ⁇ m.
  • the ceramic green sheet having a thickness of 10 ⁇ m is for forming the insulating layer 3d on which the discharge auxiliary electrode 5 is formed, and the ceramic green sheet having a thickness of 50 ⁇ m is provided with the other insulating layers 3a to 3c and 3e to 3g. It is for forming.
  • these ceramic green sheets are mother sheets for producing a large number of ESD protection devices 100 in a lump, and are divided into individual elements in a later process.
  • a core / shell powder having an average particle diameter of about 2 ⁇ m in which a core made of Cu powder is coated (coated) with Al 2 O 3 powder as a shell, and an average composition composed of Ba, Al, and Si.
  • a ceramic powder having a particle size of 6 ⁇ m was prepared in a ratio of 70% by volume: 30% by volume, a binder resin and a solvent were added, and the mixture was stirred and mixed with three rolls to obtain a mixed paste for a discharge auxiliary electrode.
  • the ratio of the core / shell powder and ceramic powder to the binder resin and solvent made of ethyl cellulose was 80% by volume: 20% by volume.
  • a core / shell powder in which a core made of Cu powder is coated with Al 2 O 3 powder as a shell and ceramic powder are mixed at a ratio of 70% by volume to 30% by volume. is doing.
  • the mixing ratio of the core / shell powder and the ceramic powder affects the discharge inducing property of the discharge auxiliary substance. That is, if the ratio of the core / shell powder is increased, the discharge inducing property is increased and the discharge is performed at a relatively low voltage. On the other hand, if the ratio of the core / shell powder is reduced, the discharge inducing property is lowered, and discharge is not performed unless the voltage is relatively high. Even when conductive powder or semiconductor powder is used instead of core / shell powder, increasing the ratio of conductive powder or semiconductor powder increases the discharge-inducing property and reduces the ratio of conductive powder or semiconductor powder. By doing so, the discharge induction is reduced.
  • a through hole having a diameter of 100 ⁇ m was formed on a ceramic green sheet having a thickness of 10 ⁇ m by, for example, machining or laser processing.
  • the number of through holes was five for each ESD protection device 100.
  • the thickness of the insulating layer 3d on which the discharge auxiliary electrode 5 is formed is set to be smaller than the other insulating layers 3a to 3c and 3e to 3g, and a ceramic green sheet having a thickness of 10 ⁇ m is used for the insulating layer 3d.
  • Ceramic green sheets for the insulating layers 3a to 3g were stacked in order and pressed to produce an unfired mother laminate.
  • the thickness of the ceramic green sheet for the insulating layer 3d is 10 ⁇ m
  • the thickness of the ceramic green sheets for the other insulating layers 3a to 3c and 3e to 3g is 50 ⁇ m, respectively.
  • the thickness was about 0.3 mm.
  • External electrodes 6 and 7 were formed on both ends of the multilayer substrate 3. Specifically, first, a conductive paste for external electrodes was applied to both ends of the multilayer substrate 3 and baked. Subsequently, a Ni—Sn plating layer was formed thereon by electrolytic plating.
  • a material (BAS material) having a composition centered on Ba, Al, and Si is used. Is optional and is not limited to the above.
  • a ceramic material an LTCC (Low Temperature Co-fired Ceramics) material obtained by adding glass or the like to Al 2 O 3 , cordierite, mullite, foresterite, CaZrO 3 , or Al 2 O 3 HTCC (High Temperature Co-fired Ceramics) materials such as cordierite, mullite, and forestlite, ferrite materials, dielectric materials, and resin materials may be used.
  • the metal that is the main component of the discharge electrode and the external electrode is not limited to Cu, Ag, Pd, Pt, Al, Ni, W, or a combination thereof may be used. However, a metal having a high thermal conductivity is preferable, and Cu and Ag are preferable from that viewpoint.
  • the discharge auxiliary substance is a combination of conductive particles coated with an inorganic material (core / shell powder in which a core made of Cu powder is coated with Al 2 O 3 powder as a shell) and insulating particles (ceramic powder).
  • core / shell powder in which a core made of Cu powder is coated with Al 2 O 3 powder as a shell
  • insulating particles ceramic powder
  • the discharge auxiliary material paste may contain beads disappearing at high temperatures such as acrylic resin beads in advance, and a plurality of minute voids may be dispersed and formed in the discharge auxiliary electrode 5.
  • Example 1 As a sample according to the example, 400 ESD protection devices 100 according to the first embodiment were prepared.
  • the ESD protection device in which the four discharge auxiliary electrodes 5 are removed from the ESD protection device 100 of the first embodiment and only one discharge auxiliary electrode 5 is formed in the central portion of the discharge electrode overlapping portion 4. 400 were prepared.
  • the structure of the other part of the ESD protection device of the comparative example was the same as that of the ESD protection device 100 according to the first embodiment.
  • the diameter of the auxiliary discharge electrode 5 is about 100 ⁇ m in both the example and the comparative example.
  • the operating rate was examined by changing the voltage of the applied ESD.
  • the ESD voltage applied was four types of 2.0 kV, 3.0 kV, 4.0 kV, and 5.0 kV, and the number of each sample was 100.
  • ESD was applied by contact discharge according to the IEC standard (IEC61000-4-2), and the operation rate at each voltage was examined.
  • Table 1 shows the operating rates of the examples and comparative examples.
  • X indicates that the operation rate is less than 10%
  • indicates that the operation rate is 10% or more and less than 60%
  • indicates that the operation rate is 60% or more and less than 80%.
  • the case of% or more is indicated by “ ⁇ ”.
  • the examples showed operability of 60% or more and less than 80% at 2.0 kV, and high operability of 80% or more at a voltage of 3.0 kV or more.
  • the comparative example showed low operability of 10% or more and less than 60% at 2.0 kV and 3.0 kV.
  • FIG. 2 shows an ESD protection apparatus 200 according to the second embodiment.
  • FIG. 2 is a cross-sectional view of the ESD protection device 200, and shows the insulating layer 3d portion as in FIG.
  • the five discharge auxiliary electrodes 5 are arranged in a straight line on the strip-shaped discharge electrode overlapping portion 4.
  • five discharge auxiliary electrodes 15 are arranged in a zigzag manner in the strip-shaped discharge electrode overlapping portion 4.
  • the configuration of the other parts of the ESD protection apparatus 200 is the same as that of the ESD protection apparatus 100 according to the first embodiment.
  • the ESD protection device 200 Since the ESD protection device 200 has a larger interval between the discharge auxiliary electrodes 15 than the ESD protection device 100, the process of forming a through hole for forming the discharge auxiliary electrode 15 in the ceramic green sheet is easy. The defective product rate is also low.
  • FIG. 3 shows an ESD protection apparatus 300 according to the third embodiment.
  • FIG. 3 is a cross-sectional view of the ESD protection apparatus 300, and shows the insulating layer 3d portion as in FIG.
  • each auxiliary discharge electrode 25 has a diameter of about 50 ⁇ m.
  • the configuration of the other parts of the ESD protection apparatus 300 is the same as that of the ESD protection apparatus 100 according to the first embodiment.
  • the ESD protection device 300 Since the ESD protection device 300 has a larger number of auxiliary discharge electrodes 25 than the ESD protection device 100, even if no discharge occurs in one discharge auxiliary electrode 25, the other discharge auxiliary electrodes 25. The discharge occurs more reliably.
  • FIG. 4 shows an ESD protection apparatus 400 according to the fourth embodiment.
  • FIG. 4 is a cross-sectional view of the ESD protection device 400, and shows the insulating layer 3d portion as in FIG.
  • the ESD protection apparatus 400 In the ESD protection apparatus 400, the ESD protection apparatus 400 according to the third embodiment shown in FIG. 3 is modified.
  • the ESD protection device 400 Since the ESD protection device 400 has a larger number of discharge auxiliary electrodes 35 than the ESD protection device 300, even if no discharge occurs in one discharge auxiliary electrode 35, the other discharge auxiliary electrodes 35 are provided. In this way, discharge is more reliably generated.
  • the multilayer substrate 3 (insulating layers 3a to 3g) is formed of ceramic, but the material of the multilayer substrate 3 is arbitrary. For example, it may be formed of a resin.
  • the multilayer substrate 3 is formed of seven insulating layers 3a to 3g, but the number of insulating layers is arbitrary. , It may be less than 7 layers or more than 7 layers.
  • the configuration of the discharge auxiliary substance is also arbitrary, and is not limited to the configuration contents applied in the ESD protection apparatuses 100 to 400 according to the first to fourth embodiments.

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

Provided is an ESD protection device having high operability. The present invention is provided with a multilayer substrate 3 in which a plurality of insulation layers 3a-3g are laminated, a first discharge electrode 1 and second discharge electrode 2 each disposed between different layers of the multilayer substrate 3, and auxiliary discharge electrodes 5 formed between the first discharge electrode 1 and the second discharge electrode 2, the interiors of which are filled with an auxiliary discharge substance. The present invention is configured such that when the multilayer substrate 3 is viewed from the lamination direction of the insulation layers 3a-3g, a plurality, for example, five, auxiliary discharge electrodes 5 are formed in a discharge electrode redundant section 4 in which the first discharge electrode 1 and the second discharge electrode 2 overlap.

Description

ESD保護装置ESD protection device
 本発明は、ESD保護装置に関し、さらに詳しくは、動作性が高いESD保護装置に関する。 The present invention relates to an ESD protection device, and more particularly to an ESD protection device with high operability.
 電子機器においては、ESD(Electro-Static Discharge;静電気放電)に対する対策が重要である。ESDとは、帯電した物体(人体など)が、他の物体(電子機器など)に接触した場合、あるいは極めて近くに接近した場合に、帯電した物体から他の物体に対して発生する、激しい放電現象である。電子機器に対してESDが発生すると、電子機器が損傷したり、電子機器が誤作動したりする場合があるため対策が必要になる。 Measures against ESD (Electro-Static Discharge) are important in electronic equipment. ESD is an intense discharge that occurs from a charged object to another object when the charged object (such as a human body) comes into contact with another object (such as an electronic device) or approaches very close to it. It is a phenomenon. When ESD occurs in an electronic device, the electronic device may be damaged or the electronic device may malfunction, so countermeasures are necessary.
 電子機器におけるESD対策として、ESD保護装置(ESD保護部品)の使用がある。ESD保護装置は、1対の放電電極を離間して対向させた構造からなり、電子機器において、たとえば、信号線路とグランド(接地)との間に接続して使用される。 There is the use of an ESD protection device (ESD protection component) as an ESD countermeasure in electronic equipment. The ESD protection device has a structure in which a pair of discharge electrodes are spaced apart from each other, and is used in an electronic device, for example, connected between a signal line and a ground (ground).
 ESD保護装置は、通常の使用状態では高い抵抗をもっており、信号が信号線路からESD保護装置を介してグランドに流れることはない。しかしながら、電子機器に対してESDが発生し、信号線路に過大な電圧が加わると、ESD保護装置の放電電極間で放電が発生し、静電気を信号線路からグランドに放出することができる。 The ESD protection device has a high resistance in a normal use state, and a signal does not flow from the signal line to the ground through the ESD protection device. However, when ESD occurs in an electronic device and an excessive voltage is applied to the signal line, discharge occurs between the discharge electrodes of the ESD protection device, and static electricity can be discharged from the signal line to the ground.
 このようなESD保護装置が、特許文献1(WO2011/096335A1公報)に開示されている。図5に、特許文献1に開示されたESD保護装置500を示す。ESD保護装置500は、絶縁層101~103が積層された多層基板104と、1個の放電補助電極(混合部)105と、第1放電電極(面内接続導体)106と、第2放電電極(面内接続導体)107とを備える。放電補助電極105は、第1放電電極106と第2放電電極107との間に配置されている。 Such an ESD protection device is disclosed in Patent Document 1 (WO2011 / 096335A1). FIG. 5 shows an ESD protection device 500 disclosed in Patent Document 1. The ESD protection apparatus 500 includes a multilayer substrate 104 on which insulating layers 101 to 103 are stacked, one discharge auxiliary electrode (mixing unit) 105, a first discharge electrode (in-plane connection conductor) 106, and a second discharge electrode. (In-plane connection conductor) 107. The discharge auxiliary electrode 105 is disposed between the first discharge electrode 106 and the second discharge electrode 107.
 放電補助電極105は、通常の使用状態では高い抵抗を示すが、第1放電電極106と第2放電電極107との間に予め定められた閾値以上の電圧が印加されると、第1放電電極106と第2放電電極107との間での放電を誘発する。 The discharge auxiliary electrode 105 exhibits a high resistance in a normal use state, but when a voltage equal to or higher than a predetermined threshold is applied between the first discharge electrode 106 and the second discharge electrode 107, the first discharge electrode A discharge is induced between 106 and the second discharge electrode 107.
WO2011/096335A1公報WO2011 / 096335A1 publication
 ESD保護装置の特性として、通常使用時に放電や短絡をせず、予め定められた閾値電圧を超えた場合に確実に放電すること、すなわち、動作性が高いことが求められる。 As a characteristic of the ESD protection device, it is required to discharge reliably when a predetermined threshold voltage is exceeded without being discharged or short-circuited during normal use, that is, to have high operability.
 また、ESD保護装置の特性として、放電しても、放電補助電極などがIR劣化(熱に伴う絶縁抵抗劣化)を起こさず、その後も使用を継続できることが求められる。 Also, as a characteristic of the ESD protection device, it is required that the discharge auxiliary electrode or the like does not cause IR deterioration (insulation resistance deterioration due to heat) even after discharging and can continue to be used thereafter.
 しかしながら、特許文献1に開示されたESD保護装置500は、放電補助電極105が1個しか形成されていないため、本来あってはならないことではあるが、放電補助電極105に放電補助物質の充填不足などの欠陥がある場合には、閾値電圧を超えても放電しない虞があった。 However, since the ESD protection device 500 disclosed in Patent Document 1 has only one discharge auxiliary electrode 105, it should not be originally, but the discharge auxiliary electrode 105 is insufficiently filled with the discharge auxiliary material. When there is a defect such as the above, there is a possibility that the discharge will not occur even if the threshold voltage is exceeded.
 本発明は、上述した従来の問題を解決するためになされたものであり、その手段として本発明のESD保護装置は、複数の絶縁層が積層された多層基板と、多層基板の異なる層間にそれぞれ配置された第1放電電極および第2放電電極と、第1放電電極と第2放電電極との間に形成され、内部に放電補助物質が充填された放電補助電極と、を備え、多層基板を絶縁層の積層方向に透視した場合に、第1放電電極と第2放電電極とが重なっている放電電極重複部に、複数の放電補助電極が形成されるようにした。 The present invention has been made to solve the above-described conventional problems, and as its means, the ESD protection apparatus of the present invention is provided between a multilayer substrate in which a plurality of insulating layers are laminated and different layers of the multilayer substrate. A first discharge electrode and a second discharge electrode, a discharge auxiliary electrode formed between the first discharge electrode and the second discharge electrode, and filled with a discharge auxiliary substance therein, When seen through in the stacking direction of the insulating layer, a plurality of discharge auxiliary electrodes are formed in the discharge electrode overlapping portion where the first discharge electrode and the second discharge electrode overlap.
 放電電極重複部を帯状にし、複数の放電補助電極が帯状の長手方向に並んで配置されたものとすることができる。この場合には、仮に1個の放電補助電極が放電しなくても、他の放電補助電極が放電するため、動作性が向上する。この場合において、複数の放電補助電極は、たとえば直線状に並んで配置することができる。あるいは、複数の放電補助電極は、たとえばジグザグに並んで配置することができる。 The discharge electrode overlapping portion may be formed in a strip shape, and a plurality of discharge auxiliary electrodes may be arranged side by side in the longitudinal direction of the strip shape. In this case, even if one discharge auxiliary electrode does not discharge, the other discharge auxiliary electrodes discharge, so that the operability is improved. In this case, the plurality of discharge auxiliary electrodes can be arranged in a straight line, for example. Or a some discharge auxiliary electrode can be arrange | positioned along with zigzag, for example.
 また、放電電極重複部において、複数の放電補助電極が同心状に配置されたものとすることができる。この場合には、仮に1個の放電補助電極が放電しなくても、他の放電補助電極が放電するため、動作性が向上する。この場合において、複数の放電補助電極は、たとえば同心円状に配置することができる。あるいは、複数の放電補助電極は、たとえば同心角状に配置することができる。 Further, a plurality of discharge auxiliary electrodes can be concentrically arranged in the discharge electrode overlapping portion. In this case, even if one discharge auxiliary electrode does not discharge, the other discharge auxiliary electrodes discharge, so that the operability is improved. In this case, the plurality of discharge auxiliary electrodes can be arranged concentrically, for example. Alternatively, the plurality of discharge auxiliary electrodes can be arranged concentrically, for example.
 本発明のESD保護装置は、仮に1個の放電補助電極が放電しなくても、他の放電補助電極が放電するため、動作性が向上している。 The ESD protection device of the present invention has improved operability because even if one discharge auxiliary electrode does not discharge, the other discharge auxiliary electrode discharges.
図1(A)および(B)は、それぞれ、第1実施形態にかかるESD保護装置100を示す断面図である。ただし、図1(B)は、図1(A)のX-X部分を示している。1A and 1B are cross-sectional views showing an ESD protection apparatus 100 according to the first embodiment, respectively. However, FIG. 1B shows the XX portion of FIG. 図2は、第2実施形態にかかるESD保護装置200を示す断面図である。FIG. 2 is a cross-sectional view showing an ESD protection apparatus 200 according to the second embodiment. 図3は、第3実施形態にかかるESD保護装置300を示す断面図である。FIG. 3 is a cross-sectional view showing an ESD protection apparatus 300 according to the third embodiment. 図4は、第4実施形態にかかるESD保護装置400を示す断面図である。FIG. 4 is a cross-sectional view showing an ESD protection apparatus 400 according to the fourth embodiment. 図5は、従来のESD保護装置500を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional ESD protection device 500.
 以下、図面とともに、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。    Each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. *
 たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。 For example, a drawn component or a ratio of dimensions between components may not match the ratio of those dimensions described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
 [第1実施形態]
 図1(A)、(B)に、第1実施形態にかかるESD保護装置100を示す。ただし、図1(A)、(B)は、いずれもESD保護装置100の断面図であり、図1(B)は図1(A)のX-X部分を示している。
[First Embodiment]
1A and 1B show an ESD protection apparatus 100 according to the first embodiment. However, FIGS. 1A and 1B are both cross-sectional views of the ESD protection device 100, and FIG. 1B shows an XX portion of FIG. 1A.
 ESD保護装置100は、第1放電電極1および第2放電電極2が、多層基板3の異なる層間にそれぞれ配置され、対向して配置された構造を備える。図1(B)に示すように、ESD保護装置100を多層基板3の積層方向に透視した場合に、第1放電電極1と第2放電電極2とが重なっている領域を、放電電極重複部4と定義する。本実施形態においては、放電電極重複部4は帯状をしている。 The ESD protection apparatus 100 includes a structure in which the first discharge electrode 1 and the second discharge electrode 2 are disposed between different layers of the multilayer substrate 3 and are opposed to each other. As shown in FIG. 1B, when the ESD protection device 100 is seen through in the stacking direction of the multilayer substrate 3, a region where the first discharge electrode 1 and the second discharge electrode 2 overlap is shown as a discharge electrode overlapping portion. 4 is defined. In the present embodiment, the discharge electrode overlapping portion 4 has a strip shape.
 第1放電電極1および第2放電電極2は、それぞれ、たとえば、Cuを主成分とする金属により形成されている。 The first discharge electrode 1 and the second discharge electrode 2 are each formed of, for example, a metal whose main component is Cu.
 多層基板3は、絶縁層3a~3gが積層一体化された構造からなる。絶縁層3a~3gは、たとえば、セラミックにより形成されている。本実施形態においては、絶縁層3a~3gは7層からなるが、層数は任意であり7層には限られない。 The multilayer substrate 3 has a structure in which insulating layers 3a to 3g are laminated and integrated. The insulating layers 3a to 3g are made of ceramic, for example. In the present embodiment, the insulating layers 3a to 3g are composed of seven layers, but the number of layers is arbitrary and is not limited to seven layers.
 多層基板3は、まず、下から順に、絶縁層3a、絶縁層3b、絶縁層3cが積層されている。 In the multilayer substrate 3, first, an insulating layer 3a, an insulating layer 3b, and an insulating layer 3c are laminated in order from the bottom.
 次に、絶縁層3cと絶縁層3dとの層間に、第2放電電極2が配置されている。 Next, the second discharge electrode 2 is disposed between the insulating layer 3c and the insulating layer 3d.
 絶縁層3dの上下主面間を貫通して、5個の放電補助電極5が形成されている。5個の放電補助電極5は、図1(B)に示すように、帯状の放電電極重複部4の長手方向に直線状に並んで配置されている。各放電補助電極5は、一方面が第1放電電極1に接続され、他方面が第2放電電極2に接続されている。本実施形態においては、放電補助電極5の個数を5個としたが、放電補助電極5の個数は複数であれば任意であり、2個以上から4個以下の個数、あるいは、6個以上の個数であっても良い。本実施形態においては、放電補助電極5の直径を約100μmにした。 Five discharge auxiliary electrodes 5 are formed through the upper and lower main surfaces of the insulating layer 3d. As shown in FIG. 1B, the five discharge auxiliary electrodes 5 are arranged in a straight line in the longitudinal direction of the strip-shaped discharge electrode overlapping portion 4. Each discharge auxiliary electrode 5 has one surface connected to the first discharge electrode 1 and the other surface connected to the second discharge electrode 2. In the present embodiment, the number of discharge auxiliary electrodes 5 is five, but the number of discharge auxiliary electrodes 5 is arbitrary as long as it is plural, and the number is 2 to 4 or less, or 6 or more. It may be a number. In the present embodiment, the diameter of the auxiliary discharge electrode 5 is about 100 μm.
 放電補助電極5は、絶縁層3dの上下主面間を貫通して形成された貫通穴に、放電補助物質が充填された構造からなる。放電補助物質は、通常使用時は絶縁性を示すが、第1放電電極1と第2放電電極2との間の電圧が予め定められた閾値電圧を超えた場合に、第1放電電極1と第2放電電極2との間に放電を発生させる。 The discharge auxiliary electrode 5 has a structure in which a discharge auxiliary substance is filled in a through hole formed so as to penetrate between the upper and lower main surfaces of the insulating layer 3d. The discharge auxiliary substance exhibits insulation during normal use, but when the voltage between the first discharge electrode 1 and the second discharge electrode 2 exceeds a predetermined threshold voltage, A discharge is generated between the second discharge electrode 2.
 放電補助物質は、たとえば、導電性粒子、半導体粒子、無機材料により被覆された導電性粒子、絶縁性粒子などから選ばれる少なくとも1個の固形成分を含んでいる。導電性粒子とは、たとえば、Cu粒子やAg粒子などである。半導体粒子とは、たとえば、SiC、ZnOなどの粒子である。無機材料により被覆された導電性粒子とは、たとえば、Al粒子が被覆(コート)されたCu粒子やAg粒子などである。絶縁性粒子とは、たとえば、絶縁性セラミックなどの粒子である。放電補助電極5には、複数の微小な空隙が分散して形成されていても良い。 The discharge auxiliary substance includes, for example, at least one solid component selected from conductive particles, semiconductor particles, conductive particles coated with an inorganic material, insulating particles, and the like. Examples of the conductive particles include Cu particles and Ag particles. Semiconductor particles are particles, such as SiC and ZnO, for example. The conductive particles coated with an inorganic material are, for example, Cu particles and Ag particles coated with Al 2 O 3 particles. The insulating particles are particles such as insulating ceramics, for example. The discharge auxiliary electrode 5 may be formed by dispersing a plurality of minute gaps.
 次に、絶縁層3dと絶縁層3eとの層間に、第1放電電極1が配置されている。 Next, the first discharge electrode 1 is disposed between the insulating layer 3d and the insulating layer 3e.
 さらに、絶縁層3eの上に、絶縁層3f、絶縁層3gが積層されている。 Furthermore, an insulating layer 3f and an insulating layer 3g are stacked on the insulating layer 3e.
 多層基板3の両端には、外部電極6、7が形成されている。外部電極6は第1放電電極1に接続され、外部電極7は第2放電電極2に接続されている。外部電極6、7は、たとえば、Cuなどを主成分とする金属により形成され、表面にNi-Snなどのめっき層が形成されている。 External electrodes 6 and 7 are formed on both ends of the multilayer substrate 3. The external electrode 6 is connected to the first discharge electrode 1, and the external electrode 7 is connected to the second discharge electrode 2. The external electrodes 6 and 7 are made of, for example, a metal mainly composed of Cu or the like, and a plating layer such as Ni—Sn is formed on the surface.
 以上のような構造からなるESD保護装置100は、上述したとおり、第1放電電極1と第2放電電極2との間に、5個の放電補助電極5が形成されており、第1放電電極1と第2放電電極2との間の電圧が予め定められた閾値電圧を超えた場合に、仮に1個の放電補助電極5が放電しなくても、他の放電補助電極5が放電する。したがって、ESD保護装置100は動作性が高く、第1放電電極1と第2放電電極2との間の電圧が予め定められた閾値電圧を超えた場合には、第1放電電極1と第2放電電極との間で確実に放電が発生する。 As described above, the ESD protection apparatus 100 having the above structure includes five discharge auxiliary electrodes 5 between the first discharge electrode 1 and the second discharge electrode 2, and the first discharge electrode 1 When the voltage between 1 and the second discharge electrode 2 exceeds a predetermined threshold voltage, another discharge auxiliary electrode 5 is discharged even if one discharge auxiliary electrode 5 is not discharged. Therefore, the ESD protection apparatus 100 has high operability, and when the voltage between the first discharge electrode 1 and the second discharge electrode 2 exceeds a predetermined threshold voltage, the ESD protection device 100 and the second discharge electrode 1 Discharge occurs reliably between the discharge electrodes.
 ESD保護装置100は、たとえば、次の方法で製造することができる。 The ESD protection device 100 can be manufactured, for example, by the following method.
 (1)セラミックグリーンシートの作製
 絶縁層3a~3gを形成するためのセラミックグリーンシートを作製した。
(1) Production of ceramic green sheet A ceramic green sheet for forming the insulating layers 3a to 3g was produced.
 セラミック材料には、Ba、Al、Siを中心とした組成からなる材料(BAS材)を用いた。まず、各素材を所定の組成になるよう調合、混合し、800~1000℃で仮焼した。次に、得られた仮焼粉末を、ジルコニアボールミルで12時間粉砕し、セラミック粉末を得た。次に、得られたセラミック粉末に、トルエン・エキネンなどの有機溶媒を加え混合した。さらにバインダー、可塑剤を加え混合してセラミックスラリーを得た。 As the ceramic material, a material (BAS material) having a composition centered on Ba, Al, and Si was used. First, each material was prepared and mixed so as to have a predetermined composition, and calcined at 800 to 1000 ° C. Next, the obtained calcined powder was pulverized with a zirconia ball mill for 12 hours to obtain a ceramic powder. Next, an organic solvent such as toluene and echinene was added to and mixed with the obtained ceramic powder. Furthermore, a binder and a plasticizer were added and mixed to obtain a ceramic slurry.
 次に、得られたセラミックスラリーを、ドクターブレード法により成形し、厚さ10μmと50μmのセラミックグリーンシートを得た。厚さ10μmのセラミックグリーンシートは、放電補助電極5が形成される絶縁層3dを形成するためのものであり、厚さ50μmのセラミックグリーンシートは、その他の絶縁層3a~3c、3e~3gを形成するためのものである。 Next, the obtained ceramic slurry was molded by a doctor blade method to obtain ceramic green sheets having thicknesses of 10 μm and 50 μm. The ceramic green sheet having a thickness of 10 μm is for forming the insulating layer 3d on which the discharge auxiliary electrode 5 is formed, and the ceramic green sheet having a thickness of 50 μm is provided with the other insulating layers 3a to 3c and 3e to 3g. It is for forming.
 なお、これらのセラミックグリーンシートは、多数個のESD保護装置100を一括して作製するためのマザーシートであり、後の工程で個々の素子に分割される。 Note that these ceramic green sheets are mother sheets for producing a large number of ESD protection devices 100 in a lump, and are divided into individual elements in a later process.
 (2)放電電極用導電性ペーストの作製
 第1放電電極1および第2放電電極2を形成するための導電性ペーストを作製した。
(2) Preparation of conductive paste for discharge electrode A conductive paste for forming the first discharge electrode 1 and the second discharge electrode 2 was prepared.
 具体的には、平均粒径1μmのCu粉末40重量%と、平均粒径3μmのCu粉末40重量%と、エチルセルロースをターピネオールに溶解して作製した有機ビヒクル20重量%とを調合し、三本ロールにより混合することにより、放電電極用導電性ペーストを作製した。 Specifically, 40% by weight of Cu powder having an average particle diameter of 1 μm, 40% by weight of Cu powder having an average particle diameter of 3 μm, and 20% by weight of an organic vehicle prepared by dissolving ethyl cellulose in terpineol were prepared. The conductive paste for discharge electrodes was produced by mixing with a roll.
 (3)放電補助物質の作製
 放電補助電極5を形成するための放電補助物質ペーストを作製した。
(3) Production of Discharge Auxiliary Material A discharge aid material paste for forming the discharge auxiliary electrode 5 was produced.
 具体的には、Cu粉末からなるコアにAl粉末がシェルとして被覆(コート)された平均粒径約2μmのコア/シェル粉と、Ba、Al、Siを中心とした組成からなる平均粒径6μmのセラミック粉とを、70体積%:30体積%の割合で調合し、バインダー樹脂と溶剤を添加し、三本ロールで撹拌、混合して、放電補助電極用の混合ペーストを得た。なお、コア/シェル粉およびセラミック粉と、エチルセルロースなどからなるバインダー樹脂および溶剤との割合は、80体積%:20体積%とした。 Specifically, a core / shell powder having an average particle diameter of about 2 μm, in which a core made of Cu powder is coated (coated) with Al 2 O 3 powder as a shell, and an average composition composed of Ba, Al, and Si. A ceramic powder having a particle size of 6 μm was prepared in a ratio of 70% by volume: 30% by volume, a binder resin and a solvent were added, and the mixture was stirred and mixed with three rolls to obtain a mixed paste for a discharge auxiliary electrode. . The ratio of the core / shell powder and ceramic powder to the binder resin and solvent made of ethyl cellulose was 80% by volume: 20% by volume.
 本実施形態においては、上述のように、Cu粉末からなるコアにAl粉末がシェルとして被覆されたコア/シェル粉と、セラミック粉とを、70体積%:30体積%の割合で調合している。このコア/シェル粉とセラミック粉との調合割合は、放電補助物質の放電誘発性に影響を与える。すなわち、コア/シェル粉の割合を大きくすれば、放電誘発性が高くなり、相対的に低い電圧で放電する。一方、コア/シェル粉の割合を小さくすれば、放電誘発性が低くなり、相対的に高い電圧でなければ放電しない。コア/シェル粉に代えて、導電性粉や半導体粉を使用した場合も、導電性粉や半導体粉の割合を大きくすることにより放電誘発性が高くなり、導電性粉や半導体粉の割合を小さくすることにより放電誘発性が低くなる。 In the present embodiment, as described above, a core / shell powder in which a core made of Cu powder is coated with Al 2 O 3 powder as a shell and ceramic powder are mixed at a ratio of 70% by volume to 30% by volume. is doing. The mixing ratio of the core / shell powder and the ceramic powder affects the discharge inducing property of the discharge auxiliary substance. That is, if the ratio of the core / shell powder is increased, the discharge inducing property is increased and the discharge is performed at a relatively low voltage. On the other hand, if the ratio of the core / shell powder is reduced, the discharge inducing property is lowered, and discharge is not performed unless the voltage is relatively high. Even when conductive powder or semiconductor powder is used instead of core / shell powder, increasing the ratio of conductive powder or semiconductor powder increases the discharge-inducing property and reduces the ratio of conductive powder or semiconductor powder. By doing so, the discharge induction is reduced.
 (4)外部電極用導電性ペーストの作製
 外部電極6、7を形成するための導電性ペーストを作製した。
(4) Preparation of conductive paste for external electrode A conductive paste for forming the external electrodes 6 and 7 was prepared.
 具体的には、平均粒径が約1μのCu粉末を80重量%と、転移点が620℃、軟化点が720℃で平均粒径が約1μのホウケイ酸アルカリ系ガラスフリットを5重量%と、エチルセルロースをターピネオールに溶解して作製した有機ビヒクルを15重量%とを調合し、三本ロールにより混合することにより、外部電極用導電性ペーストを作製した。 Specifically, 80% by weight of Cu powder having an average particle size of about 1 μm and 5% by weight of alkali borosilicate glass frit having a transition point of 620 ° C., a softening point of 720 ° C. and an average particle size of about 1 μm An organic vehicle prepared by dissolving ethyl cellulose in terpineol was mixed with 15% by weight, and mixed with three rolls to prepare a conductive paste for external electrodes.
 (5)貫通穴の形成および放電補助物質ペーストの充填
 絶縁層3dに放電補助電極5を形成するため、セラミックグリーンシートに加工を施した。
(5) Formation of through hole and filling of discharge auxiliary substance paste In order to form the discharge auxiliary electrode 5 in the insulating layer 3d, the ceramic green sheet was processed.
 具体的には、まず、厚さ10μmのセラミックグリーンシートに対し、たとえば機械加工やレーザー加工により、直径100μmの貫通穴を形成した。貫通穴の個数は、1個のESD保護装置100ごとに5個とした。 Specifically, first, a through hole having a diameter of 100 μm was formed on a ceramic green sheet having a thickness of 10 μm by, for example, machining or laser processing. The number of through holes was five for each ESD protection device 100.
 なお、放電補助電極5が形成された絶縁層3dの厚さが小さいほど、ESD保護装置は動作性が良くなり、低い電圧で放電する。そこで、本実施形態においては、絶縁層3dの厚さを、他の絶縁層3a~3c、3e~3gよりも小さいものとし、絶縁層3d用に厚さ10μmのセラミックグリーンシートを使用した。 Note that, as the thickness of the insulating layer 3d on which the discharge auxiliary electrode 5 is formed is smaller, the ESD protection device is more operative and discharges at a lower voltage. Therefore, in this embodiment, the thickness of the insulating layer 3d is set to be smaller than the other insulating layers 3a to 3c and 3e to 3g, and a ceramic green sheet having a thickness of 10 μm is used for the insulating layer 3d.
 次に、絶縁層3d用のセラミックグリーンシートに形成された貫通穴に、上述した放電補助物質ペーストを充填して乾燥させた。 Next, the above-mentioned discharge auxiliary substance paste was filled in the through hole formed in the ceramic green sheet for the insulating layer 3d and dried.
 (6)放電電極用導電性ペーストの印刷
 貫通穴に放電補助物質ペーストが充填された絶縁層3d用のグリーンシート上に、第1放電電極1を形成するために、上述した放電電極用導電性ペーストを所望の形状にスクリーン印刷した。同様に、絶縁層3c用のグリーンシート上に、第2放電電極2を形成するために、上述した放電電極用導電性ペーストを所望の形状にスクリーン印刷した。
(6) Printing of discharge electrode conductive paste In order to form the first discharge electrode 1 on the green sheet for the insulating layer 3d in which the through hole is filled with the discharge auxiliary substance paste, the above-described discharge electrode conductivity is provided. The paste was screen printed in the desired shape. Similarly, in order to form the second discharge electrode 2 on the green sheet for the insulating layer 3c, the above-described discharge electrode conductive paste was screen-printed in a desired shape.
 (7)セラミックグリーンシートの積層・圧着
 絶縁層3a~3g用のセラミックグリーンシートを順番に積層し、圧着し、未焼成のマザー積層体を作製した。上述したとおり、絶縁層3d用のセラミックグリーンシートの厚さが10μm、その他の絶縁層3a~3c、3e~3g用のセラミックグリーンシートの厚さがそれぞれ50μmであり、未焼成のマザー積層体の厚さは約0.3mmになった。
(7) Lamination and pressure bonding of ceramic green sheets Ceramic green sheets for the insulating layers 3a to 3g were stacked in order and pressed to produce an unfired mother laminate. As described above, the thickness of the ceramic green sheet for the insulating layer 3d is 10 μm, the thickness of the ceramic green sheets for the other insulating layers 3a to 3c and 3e to 3g is 50 μm, respectively. The thickness was about 0.3 mm.
 (8)個々の積層体へのカット
 未焼成のマザー積層体を、縦1.0mm、横0.5mmの個々の積層体にカットした。
(8) Cutting into individual laminates The unfired mother laminate was cut into individual laminates having a length of 1.0 mm and a width of 0.5 mm.
 (9)焼成
 未焼成の個々の積層体を、N雰囲気において、所定の焼成プロファイルで焼成し、個々の多層基板3を作製した。なお、焼成雰囲気は、大気雰囲気であっても良い。
(9) Firing The unfired individual laminates were fired in a N 2 atmosphere with a predetermined firing profile to produce individual multilayer substrates 3. Note that the firing atmosphere may be an air atmosphere.
 (10)外部電極の形成
多層基板3の両端に、外部電極6、7を形成した。具体的には、まず、多層基板3の両端に、外部電極用導電性ペーストを塗布し、焼付けた。続いて、その上に、電解めっきにより、Ni-Snめっき層を形成した。
(10) Formation of external electrodes External electrodes 6 and 7 were formed on both ends of the multilayer substrate 3. Specifically, first, a conductive paste for external electrodes was applied to both ends of the multilayer substrate 3 and baked. Subsequently, a Ni—Sn plating layer was formed thereon by electrolytic plating.
 以上により、第1実施形態にかかるESD保護装置100が完成した。 Thus, the ESD protection apparatus 100 according to the first embodiment is completed.
 なお、上記製造方法においては、多層基板3(絶縁層3a~3g)に用いるセラミック材料として、Ba、Al、Siを中心とした組成からなる材料(BAS材)を用いたが、セラミック材料の種類は任意であり、上記のものには限られない。たとえば、セラミック材料として、Al、コーディエライト、ムライト、フォレステライト、CaZrOなどにガラスなどを加えたLTCC(Low Temperature Co-fired Ceramics;低温焼結セラミック)材料や、Al、コーディエライト、ムライト、フォレストライトなどのHTCC(High Temperature Co-fired Ceramics;高温焼結セラミック)材料や、フェライト材料や、誘電体材料や、樹脂材料などを使用しても良い。 In the above manufacturing method, as the ceramic material used for the multilayer substrate 3 (insulating layers 3a to 3g), a material (BAS material) having a composition centered on Ba, Al, and Si is used. Is optional and is not limited to the above. For example, as a ceramic material, an LTCC (Low Temperature Co-fired Ceramics) material obtained by adding glass or the like to Al 2 O 3 , cordierite, mullite, foresterite, CaZrO 3 , or Al 2 O 3 HTCC (High Temperature Co-fired Ceramics) materials such as cordierite, mullite, and forestlite, ferrite materials, dielectric materials, and resin materials may be used.
 また、放電電極や外部電極の主成分となる金属も、Cuには限定されず、
Ag、Pd、Pt、Al、Ni、Wや、これらの組合せであっても良い。ただし、熱伝導率が高い金属が好ましく、その観点からは、Cu、Agが好ましい。
Also, the metal that is the main component of the discharge electrode and the external electrode is not limited to Cu,
Ag, Pd, Pt, Al, Ni, W, or a combination thereof may be used. However, a metal having a high thermal conductivity is preferable, and Cu and Ag are preferable from that viewpoint.
 また、放電補助物質は、無機材料により被覆された導電性粒子(Cu粉末からなるコアにAl粉末がシェルとして被覆されたコア/シェル粉)と絶縁性粒子(セラミック粉)の組合せには限られず、導電性粒子、半導体粒子、無機材料により被覆された導電性粒子、絶縁性粒子などの中から、任意に選んだ、1つ、または、複数の組合せにより構成することができる。また、放電補助物質ペーストに、予めアクリル樹脂ビーズなどの高温により消失するビーズを含有させておき、放電補助電極5に、複数の微小な空隙を分散して形成しても良い。 The discharge auxiliary substance is a combination of conductive particles coated with an inorganic material (core / shell powder in which a core made of Cu powder is coated with Al 2 O 3 powder as a shell) and insulating particles (ceramic powder). Is not limited, and can be composed of one or a plurality of combinations arbitrarily selected from conductive particles, semiconductor particles, conductive particles coated with an inorganic material, insulating particles, and the like. Further, the discharge auxiliary material paste may contain beads disappearing at high temperatures such as acrylic resin beads in advance, and a plurality of minute voids may be dispersed and formed in the discharge auxiliary electrode 5.
 本発明の有効性を確認するために、以下の実験をおこなった。 In order to confirm the effectiveness of the present invention, the following experiment was conducted.
 [実験例1]
 実施例にかかる試料として、第1実施形態のESD保護装置100を400個用意した。
[Experimental Example 1]
As a sample according to the example, 400 ESD protection devices 100 according to the first embodiment were prepared.
 比較例にかかる試料として、第1実施形態のESD保護装置100から、4つの放電補助電極5を取り除き、放電電極重複部4の中央部分に1個の放電補助電極5のみを形成したESD保護装置を400個用意した。比較例のESD保護装置の他の部分の構成は、第1実施形態にかかるESD保護装置100と同じにした。放電補助電極5の直径は、実施例も比較例も約100μmである。 As a sample according to the comparative example, the ESD protection device in which the four discharge auxiliary electrodes 5 are removed from the ESD protection device 100 of the first embodiment and only one discharge auxiliary electrode 5 is formed in the central portion of the discharge electrode overlapping portion 4. 400 were prepared. The structure of the other part of the ESD protection device of the comparative example was the same as that of the ESD protection device 100 according to the first embodiment. The diameter of the auxiliary discharge electrode 5 is about 100 μm in both the example and the comparative example.
 実験例1では、印加するESDの電圧を変化させて、動作率を調べた。印加するESDの電圧は、2.0kV、3.0kV、4.0kV、5.0kVの4種類とし、各試料の個数は100個とした。具体的には、IEC規格(IEC61000-4-2)に従い、接触放電によりESDを印加し、各電圧での動作率を調べた。 In Experimental Example 1, the operating rate was examined by changing the voltage of the applied ESD. The ESD voltage applied was four types of 2.0 kV, 3.0 kV, 4.0 kV, and 5.0 kV, and the number of each sample was 100. Specifically, ESD was applied by contact discharge according to the IEC standard (IEC61000-4-2), and the operation rate at each voltage was examined.
 実施例および比較例の動作率を表1に示す。なお、表1には、動作率が、10%未満の場合を「×」、10%以上、60%未満の場合を「△」、60%以上、80%未満の場合を「○」、80%以上の場合を「◎」で示した。 Table 1 shows the operating rates of the examples and comparative examples. In Table 1, “X” indicates that the operation rate is less than 10%, “Δ” indicates that the operation rate is 10% or more and less than 60%, and “◯” indicates that the operation rate is 60% or more and less than 80%. The case of% or more is indicated by “◎”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例は、2.0kVで60%以上、80%未満の動作性を示し、3.0kV以上の電圧になると80%以上の高い動作性を示した。これに対し、比較例では、2.0kVおよび3.0kVで、10%以上、60%未満の低い動作性を示した。 As can be seen from Table 1, the examples showed operability of 60% or more and less than 80% at 2.0 kV, and high operability of 80% or more at a voltage of 3.0 kV or more. On the other hand, the comparative example showed low operability of 10% or more and less than 60% at 2.0 kV and 3.0 kV.
 実施例のESD保護装置は、放電補助電極が5個形成されており、仮に1個の放電補助電極が放電しなくても、他の放電補助電極が放電したものと考えられる。 In the ESD protection apparatus of the example, five discharge auxiliary electrodes are formed, and even if one discharge auxiliary electrode does not discharge, it is considered that the other discharge auxiliary electrodes are discharged.
 以上より、本発明の有効性が確認できた。 From the above, the effectiveness of the present invention was confirmed.
 [第2実施形態]
 図2に、第2実施形態にかかるESD保護装置200を示す。ただし、図2は、ESD保護装置200の断面図であり、図1(B)と同様に、絶縁層3d部分を示している。
[Second Embodiment]
FIG. 2 shows an ESD protection apparatus 200 according to the second embodiment. However, FIG. 2 is a cross-sectional view of the ESD protection device 200, and shows the insulating layer 3d portion as in FIG.
 図1(A)、(B)に示した第1実施形態にかかるESD保護装置100では、帯状の放電電極重複部4に5個の放電補助電極5を直線状に並べて配置したが、ESD保護装置200では、帯状の放電電極重複部4に5個の放電補助電極15をジグザグ状に並べて配置した。ESD保護装置200の他の部分の構成は、第1実施形態にかかるESD保護装置100と同じにした。 In the ESD protection apparatus 100 according to the first embodiment shown in FIGS. 1 (A) and 1 (B), the five discharge auxiliary electrodes 5 are arranged in a straight line on the strip-shaped discharge electrode overlapping portion 4. In the apparatus 200, five discharge auxiliary electrodes 15 are arranged in a zigzag manner in the strip-shaped discharge electrode overlapping portion 4. The configuration of the other parts of the ESD protection apparatus 200 is the same as that of the ESD protection apparatus 100 according to the first embodiment.
 ESD保護装置200は、ESD保護装置100に比べて、放電補助電極15同士の間隔が大きくなっているため、セラミックグリーンシートに放電補助電極15を形成するための貫通穴を形成する工程が容易になっており、不良品率も低くなっている。 Since the ESD protection device 200 has a larger interval between the discharge auxiliary electrodes 15 than the ESD protection device 100, the process of forming a through hole for forming the discharge auxiliary electrode 15 in the ceramic green sheet is easy. The defective product rate is also low.
 [第3実施形態]
 図3に、第3実施形態にかかるESD保護装置300を示す。ただし、図3は、ESD保護装置300の断面図であり、図1(B)と同様に、絶縁層3d部分を示している。
[Third Embodiment]
FIG. 3 shows an ESD protection apparatus 300 according to the third embodiment. However, FIG. 3 is a cross-sectional view of the ESD protection apparatus 300, and shows the insulating layer 3d portion as in FIG.
 図1(A)、(B)に示した第1実施形態にかかるESD保護装置100では、帯状の放電電極重複部4に5個の放電補助電極5を直線状に並べて配置した。これに対して、ESD保護装置300では、ESD保護装置100よりも、第1放電電極11、第2放電電極12、放電電極重複部14の幅を大きくした。そして、放電電極重複部14に、17個の放電補助電極25を同心円状に配置した。なお、各放電補助電極25の直径は約50μmとした。ESD保護装置300の他の部分の構成は、第1実施形態にかかるESD保護装置100と同じにした。 In the ESD protection apparatus 100 according to the first embodiment shown in FIGS. 1 (A) and 1 (B), five discharge auxiliary electrodes 5 are arranged in a straight line on the strip-shaped discharge electrode overlapping portion 4. In contrast, in the ESD protection apparatus 300, the widths of the first discharge electrode 11, the second discharge electrode 12, and the discharge electrode overlapping portion 14 are made larger than those of the ESD protection apparatus 100. Then, 17 discharge auxiliary electrodes 25 were concentrically arranged in the discharge electrode overlapping portion 14. Each auxiliary discharge electrode 25 has a diameter of about 50 μm. The configuration of the other parts of the ESD protection apparatus 300 is the same as that of the ESD protection apparatus 100 according to the first embodiment.
 ESD保護装置300は、ESD保護装置100に比べて、放電補助電極25の個数が増やされているため、仮に1個の放電補助電極25で放電が発生しなくても、他の放電補助電極25でより確実に放電が発生する。 Since the ESD protection device 300 has a larger number of auxiliary discharge electrodes 25 than the ESD protection device 100, even if no discharge occurs in one discharge auxiliary electrode 25, the other discharge auxiliary electrodes 25. The discharge occurs more reliably.
 [第4実施形態]
 図4に、第4実施形態にかかるESD保護装置400を示す。ただし、図4は、ESD保護装置400の断面図であり、図1(B)と同様に、絶縁層3d部分を示している。
[Fourth Embodiment]
FIG. 4 shows an ESD protection apparatus 400 according to the fourth embodiment. However, FIG. 4 is a cross-sectional view of the ESD protection device 400, and shows the insulating layer 3d portion as in FIG.
 ESD保護装置400では、図3に示した第3実施形態にかかるESD保護装置400に変形を加えた。 In the ESD protection apparatus 400, the ESD protection apparatus 400 according to the third embodiment shown in FIG. 3 is modified.
 図3に示した第1実施形態にかかるESD保護装置300では、放電電極重複部14に、17個の放電補助電極15を同心円状に配置した。これに対し、ESD保護装置400では、放電電極重複部14に、25個の放電補助電極35を同心角状(同心四角状)に配置した。ESD保護装置400の他の部分の構成は、第3実施形態にかかるESD保護装置300と同じにした。 In the ESD protection apparatus 300 according to the first embodiment shown in FIG. 3, 17 discharge auxiliary electrodes 15 are concentrically arranged in the discharge electrode overlapping portion 14. On the other hand, in the ESD protection apparatus 400, 25 discharge auxiliary electrodes 35 are arranged concentrically (concentrically square) in the discharge electrode overlapping portion. The configuration of the other parts of the ESD protection apparatus 400 is the same as that of the ESD protection apparatus 300 according to the third embodiment.
 ESD保護装置400は、ESD保護装置300に比べて、放電補助電極35の個数が増やされているため、仮に1個の放電補助電極35で放電が発生しなくても、他の放電補助電極35でさらに確実に放電が発生する。 Since the ESD protection device 400 has a larger number of discharge auxiliary electrodes 35 than the ESD protection device 300, even if no discharge occurs in one discharge auxiliary electrode 35, the other discharge auxiliary electrodes 35 are provided. In this way, discharge is more reliably generated.
 以上、第1実施形態~第4実施形態にかかるESD保護装置100~400について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更を加えることができる。 The ESD protection devices 100 to 400 according to the first to fourth embodiments have been described above. However, the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
 たとえば、第1実施形態~第4実施形態にかかるESD保護装置100~400においては、多層基板3(絶縁層3a~3g)がセラミックにより形成されているが、多層基板3の材質は任意であり、たとえば樹脂により形成されていても良い。 For example, in the ESD protection devices 100 to 400 according to the first to fourth embodiments, the multilayer substrate 3 (insulating layers 3a to 3g) is formed of ceramic, but the material of the multilayer substrate 3 is arbitrary. For example, it may be formed of a resin.
 また、第1実施形態~第4実施形態にかかるESD保護装置100~400においては、多層基板3を7層の絶縁層3a~3gにより形成されているが、絶縁層の層数は任意であり、7層より少なくても良いし、7層より多くても良い。 In the ESD protection devices 100 to 400 according to the first to fourth embodiments, the multilayer substrate 3 is formed of seven insulating layers 3a to 3g, but the number of insulating layers is arbitrary. , It may be less than 7 layers or more than 7 layers.
 さらに、上述したとおり、放電補助物質の構成も任意であり、第1実施形態~第4実施形態にかかるESD保護装置100~400において適用した構成内容には限定されない。 Furthermore, as described above, the configuration of the discharge auxiliary substance is also arbitrary, and is not limited to the configuration contents applied in the ESD protection apparatuses 100 to 400 according to the first to fourth embodiments.
1、11・・・第1放電電極
2、12・・・第2放電電極
3・・・多層基板
3a~3g・・・絶縁層
4、14・・・放電電極重複部
5、15、25、35・・・放電補助電極
6、7・・・外部電極
100、200、300、400・・・ESD保護装置
DESCRIPTION OF SYMBOLS 1, 11 ... 1st discharge electrode 2, 12 ... 2nd discharge electrode 3 ... Multilayer board | substrates 3a-3g ... Insulating layer 4, 14 ... Discharge electrode overlap part 5, 15, 25, 35 ... discharge auxiliary electrode 6, 7 ... external electrode 100, 200, 300, 400 ... ESD protection device

Claims (7)

  1.  複数の絶縁層が積層された多層基板と、
     前記多層基板の異なる層間にそれぞれ配置された第1放電電極および第2放電電極と、
     前記第1放電電極と前記第2放電電極との間に形成され、内部に放電補助物質が充填された放電補助電極と、を備えたESD保護装置であって、
     前記多層基板を前記絶縁層の積層方向に透視した場合に、前記第1放電電極と前記第2放電電極とが重なっている放電電極重複部に、複数の前記放電補助電極が形成されているESD保護装置。
    A multilayer substrate in which a plurality of insulating layers are laminated;
    A first discharge electrode and a second discharge electrode respectively disposed between different layers of the multilayer substrate;
    An ESD protection device comprising: a discharge auxiliary electrode formed between the first discharge electrode and the second discharge electrode and filled with a discharge auxiliary substance;
    When the multilayer substrate is seen through in the stacking direction of the insulating layer, a plurality of the discharge auxiliary electrodes are formed in the discharge electrode overlapping portion where the first discharge electrode and the second discharge electrode overlap. Protective device.
  2.  前記放電電極重複部が帯状であり、複数の前記放電補助電極が前記帯状の長手方向に並んで配置されている、請求項1に記載されたESD保護装置。 2. The ESD protection device according to claim 1, wherein the discharge electrode overlapping portion has a strip shape, and a plurality of the discharge auxiliary electrodes are arranged in the longitudinal direction of the strip shape.
  3.  複数の前記放電補助電極が前記帯状の前記放電電極重複部の長手方向に、直線状に並んで配置されている、請求項2に記載されたESD保護装置。 3. The ESD protection apparatus according to claim 2, wherein a plurality of the discharge auxiliary electrodes are arranged in a straight line in a longitudinal direction of the discharge electrode overlapping portion in the strip shape.
  4.  複数の前記放電補助電極が前記帯状の前記放電電極重複部の長手方向に、ジグザグ状に並んで配置されている、請求項2に記載されたESD保護装置。 3. The ESD protection device according to claim 2, wherein a plurality of the discharge auxiliary electrodes are arranged in a zigzag manner in a longitudinal direction of the discharge electrode overlapping portion in the strip shape.
  5.  前記放電電極重複部において、複数の前記放電補助電極が同心状に配置されている、請求項1に記載されたESD保護装置。 The ESD protection device according to claim 1, wherein a plurality of the discharge auxiliary electrodes are arranged concentrically in the discharge electrode overlapping portion.
  6.  前記同心状が同心円状である、請求項5に記載されたESD保護装置。 The ESD protection device according to claim 5, wherein the concentric shape is a concentric shape.
  7.  前記同心状が同心角状である、請求項5に記載されたESD保護装置。 The ESD protection device according to claim 5, wherein the concentric shape is a concentric angular shape.
PCT/JP2016/066952 2015-07-08 2016-06-07 Esd protection device WO2017006689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137204 2015-07-08
JP2015-137204 2015-07-08

Publications (1)

Publication Number Publication Date
WO2017006689A1 true WO2017006689A1 (en) 2017-01-12

Family

ID=57685399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066952 WO2017006689A1 (en) 2015-07-08 2016-06-07 Esd protection device

Country Status (1)

Country Link
WO (1) WO2017006689A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090042A (en) * 2012-10-30 2014-05-15 Sumitomo Wiring Syst Ltd Anti-static structure of electronic control unit
WO2014203638A1 (en) * 2013-06-21 2014-12-24 株式会社村田製作所 Electrostatic discharge protection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090042A (en) * 2012-10-30 2014-05-15 Sumitomo Wiring Syst Ltd Anti-static structure of electronic control unit
WO2014203638A1 (en) * 2013-06-21 2014-12-24 株式会社村田製作所 Electrostatic discharge protection device

Similar Documents

Publication Publication Date Title
WO2011040435A1 (en) Esd protection device and manufacturing method thereof
US8711537B2 (en) ESD protection device and method for producing the same
WO2013054629A1 (en) Electrostatic surger suppressor
KR101706929B1 (en) Countermeasure element against static electricity
JP5649391B2 (en) ESD protection device
US10292250B2 (en) ESD protection device
JP6406450B2 (en) ESD protection device and method of manufacturing ESD protection device
WO2015190404A1 (en) Electrostatic discharge protection device and method for manufacturing same
WO2017006689A1 (en) Esd protection device
WO2015087394A1 (en) Esd protection device and method for producing same
JP2016042436A (en) Static electricity countermeasure element
JP6540269B2 (en) ESD protection device
JP5757372B2 (en) ESD protection device
JP5605413B2 (en) ESD protection device and manufacturing method thereof
US9036317B2 (en) Antistatic device
JP6365205B2 (en) Electrostatic countermeasure element
JP6428938B2 (en) ESD protection device
JP6048055B2 (en) ESD protection device and manufacturing method thereof
TWI506900B (en) Electrostatic discharge protection device
WO2013111711A1 (en) Static-electricity countermeasure element
JP5614563B2 (en) Manufacturing method of ESD protection device
JP5644829B2 (en) ESD protection device and manufacturing method thereof
JP2016058183A (en) Static electricity countermeasure element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP