WO2017005698A1 - Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen - Google Patents

Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen Download PDF

Info

Publication number
WO2017005698A1
WO2017005698A1 PCT/EP2016/065723 EP2016065723W WO2017005698A1 WO 2017005698 A1 WO2017005698 A1 WO 2017005698A1 EP 2016065723 W EP2016065723 W EP 2016065723W WO 2017005698 A1 WO2017005698 A1 WO 2017005698A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
organic
group
atoms
formula
Prior art date
Application number
PCT/EP2016/065723
Other languages
English (en)
French (fr)
Inventor
Michael Danz
Daniel Zink
Original Assignee
Cynora Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP15200813.2A external-priority patent/EP3113239A1/de
Application filed by Cynora Gmbh filed Critical Cynora Gmbh
Priority to CN201680039549.9A priority Critical patent/CN107925004B/zh
Priority to EP16747735.5A priority patent/EP3317904B1/de
Priority to KR1020187002739A priority patent/KR102541444B1/ko
Priority to JP2017568275A priority patent/JP6738838B2/ja
Priority to US15/740,044 priority patent/US20180198075A1/en
Publication of WO2017005698A1 publication Critical patent/WO2017005698A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/08Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/14Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/46Phenazines
    • C07D241/48Phenazines with hydrocarbon radicals, substituted by nitrogen atoms, directly attached to the ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/021,2-Thiazines; Hydrogenated 1,2-thiazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/26[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom without other substituents attached to the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/34[b, e]-condensed with two six-membered rings with hetero atoms directly attached to the ring sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B15/00Acridine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B19/00Oxazine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to purely organic molecules and their use in organic light emitting diodes (OLEDs) and in other organic optoelectronic devices.
  • Organic optoelectronic devices are characterized in that either electrical energy is converted into photons (organic light-emitting diodes, OLED or light-emitting electrochemical cells, LEEC) or the reverse process takes place (organic photovoltaics, OPV). It is important that these processes run as efficiently as possible. For the range of OLEDs, therefore, ideally materials with the highest possible photoluminescent quantum yield must be used.
  • Limited efficiencies of OLED materials can be improved by using efficient materials that exhibit thermally activated delayed fluorescence (TADF), as up to 100% of the excitons can be used instead of 25% of the excitons formed in an OLED, in contrast to purely fluorescent materials ,
  • TADF thermally activated delayed fluorescence
  • the resulting triplet excitons can be converted into singlet excitons, from which state photons can then be emitted.
  • the prerequisite for such a thermal reoccupation is a small energetic distance between the lowest excited singlet (Si) and triplet level (Ti). This can be achieved, for example, by using copper (I) complexes (see, for example, H. Yersin, U. Monkowius, T. Fischer, T.
  • the invention provides a new class of molecules having a structure of formula I or having a structure of formula I:
  • X an electron-withdrawing unit, in particular CN or CF3;
  • a and B independently selected from the group consisting of CRR 1 , CR, NR, N, wherein between A and B is a single or double bond and between B and Z is a single or double bond;
  • R 3 for each occurrence is identical or different H, deuterium, F, CF3 or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 carbon atoms, in which one or more H atoms are replaced by F or CF3 can; can do it two or more substituents R 3 also together form a mono- or polycyclic aliphatic ring system;
  • R ' selected from the group consisting of H, N (R 4 ) 2, OR 4 , a linear alkyl or alkoxy group having 1 to 40 carbon atoms or a branched or cyclic alkyl or alkoxy group having 3 to 40 carbon atoms each of which may be substituted with one or more R 4 radicals and an aromatic or heteroaromatic ring system of 5 to 60 aromatic ring atoms, each of which may be substituted by one or more R 4 radicals;
  • R “ selected from the group consisting of N (R 4 ) 2, OR 4 , a linear alkyl or alkoxy group having 1 to 40 C atoms or a branched or cyclic alkyl or alkoxy group having 3 to 40 C atoms, the each may be substituted with one or more radicals R 4 , and an aromatic or heteroaromatic ring system having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 4 ;
  • R 4 is identical or different at each instance and is H, deuterium, N (R 5 ) 2, Si (R 5 ) 3, a linear alkyl, alkoxy or thioalkoxy group having 1 to 40 C atoms or a branched or cyclic alkyl group.
  • R 5 is identical or different at each instance and is H, deuterium, or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 C atoms; here may also form a mono- or polycyclic, aliphatic ring system with two or more substituents R. 5
  • R ' is selected from the group consisting of H, N (R 4 ) 2, OR 4 , thiophene, a linear alkyl or alkoxy group having 1 to 40 carbon atoms, or one branched or cyclic alkyl or alkoxy group having 3 to 40 carbon atoms, each of which may be substituted by one or more R 4 , and an aromatic ring system having 5 to 60 aromatic ring atoms, which may be substituted by one or more R 4 radicals and R "is selected from the group consisting of N (R 4 ) 2, OR 4 , thiophene, a linear alkyl or alkoxy group having 1 to 40 carbon atoms or a branched or cyclic alkyl or alkoxy group having 3 to 40 ° C -Atomen, which may be substituted in each case with one or more radicals R 4 , and an aromatic ring system having 5 to 60 aromatic ring atoms, which may be substituted by one or more radicals R 4 .
  • An aryl group in the sense of this invention contains 6 to 60 aromatic ring atoms;
  • a heteroaryl group contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom.
  • the heteroatoms are in particular N, O, and / or S. This is the basic definition. If other preferences are given in the description of the present invention, for example with regard to the number of aromatic ring atoms or the heteroatoms contained, these apply.
  • an aryl group or heteroaryl group is understood as meaning a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine or thiophene, or a heteroaromatic polycycle, for example phenanthrene, quinoline or carbazole.
  • a condensed (fused) aromatic or heteroaromatic polycycle consists in the context of the present application of two or more fused simple aromatic or heteroaromatic cycles.
  • An aryl or heteroaryl group which may be substituted in each case by the abovementioned radicals and which may be linked via any position on the aromatic or heteroaromatic compounds is understood in particular to mean groups which are derived from benzene, naphthalene, anthracene, phenanthrene, pyrene, Dihydropyrenes, chrysene, perylene, fluoranthene, benzanthracene, benzphenanthrene, tetracene, pentacene, benzpyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene; Pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, isoquinoline
  • a cyclic alkyl, alkoxy or thioalkoxy group is understood as meaning a monocyclic, a bicyclic or a polycyclic group.
  • a C 1 - to C 4 -alkyl group in which also individual H atoms or CH groups can be substituted by the abovementioned groups for example the radicals methyl, ethyl, n-propyl, i-propyl, Cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t -hexyl, 2-hexyl, 3-hexyl, neo -hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-heptyl, 2-heptyl,
  • alkenyl group is understood as meaning, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl.
  • alkynyl group is meant, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
  • a C 1 to C 4 o-alkoxy group is meant for example methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy or 2-methylbutoxy.
  • the chemical entity D of the molecules according to the invention has donor properties. What is understood by donor or acceptor properties is known in principle to a person skilled in the art.
  • the chemical entity D is electron-donating in one embodiment. It has a + M effect (positive mesomeric effect).
  • suitable donor substituents include an atom having a lone pair of electrons, such as an N, O, or S atom.
  • 5-membered heteroaryl groups having exactly one hetero ring atom are preferred. At this additional aryl groups can be fused.
  • carbazole groups or carbazole derivatives are preferred.
  • Further suitable donor substituents are phenoxazine groups or phenoxazine derivatives.
  • the electron withdrawing moiety X exerts an M effect (negative mesomeric effect) or an I effect (negative inductive effect).
  • the radical X is correspondingly an acceptor substituent. Suitable acceptor substituents are especially cyano groups or CF3.
  • the molecules according to the invention have a substituent in the ortho position to the donor on the aromatic. This allows for effective separation of HOMO and LUMO of the organic molecule.
  • the molecules according to the invention exhibit thermally activated delayed fluorescence and emit in particular in the deep blue region of the visible spectrum.
  • OLED organic light-emitting diode
  • an optoelectronic device for example an OLED
  • OLEDs can be realized in the deep blue color spectrum.
  • Corresponding OLEDs have a higher stability than OLEDs with known emitter materials and comparable color.
  • the crosslinkable units QE in one embodiment are a compound selected from the group consisting of oxetanes, alkynes and azides, in particular for a click reaction, and the following alkene derivatives:
  • D is independently a donor group with electron donating properties selected from the group consisting of substituted and unsubstituted carbazole, substituted and unsubstituted indole, substituted and unsubstituted indoline, substituted and unsubstituted dihydroacridine, substituted and unsubstituted benzimidazole, substituted and unsubstituted 2,3,4,9-tetrahydrocarbazole, substituted and unsubstituted 1,2,3,4-tetrahydroquinoline , substituted and unsubstituted phenothiazine, substituted and unsubstituted phenoxazine, substituted and unsubstituted dihydrophenazine, substituted and unsubstituted spiro compounds.
  • the donor group electron-donating properties of the formula 1-1 has a structure of the formula II:
  • the donor group with electron-donating properties of the formula 1-1 can be any organic compound with electron-donating properties of the formula 1-1.
  • the accepting unit X of formula I in one embodiment is CN, in another embodiment CF3.
  • the radical R 'of the formula I is a hydrogen atom, ie H.
  • the invention relates to a process for the preparation of an organic molecule according to the invention of the type described here (with a possible subsequent reaction).
  • a nitrogen heterocycle is reacted in the sense of a nucleophilic aromatic substitution with an aryl halide, in particular an aryl fluoride.
  • Typical conditions include the use of a base such as tribasic potassium phosphate or sodium hydride in an aprotic polar solvent such as dimetylsulfoxide (DMSO) or ⁇ , ⁇ -dimethylformamide (DMF).
  • An alternative synthetic route involves the introduction of a nitrogen heterocycle via a copper- or palladium-catalyzed coupling with an aryl halide or aryl pseudohalide, in particular an aryl bromide, an aryl iodide, aryl triflate or an aryl tosylate.
  • the described methods of preparation can represent both the last synthetic reaction and provide a precursor molecule, which can be implemented by subsequent reactions, for example by changing the radicals R, R 'or R "to the molecule of the invention.
  • a further aspect of the invention relates to the use of an organic molecule of the type described here as a luminescent emitter or as an absorber, and / or as a host material and / or as an electron transport material, and / or as a hole injection material, and / or as a hole blocking material in an organic optoelectronic device.
  • the organic optoelectronic device is in particular selected from the group consisting of:
  • OLEDs Organic light-emitting diodes
  • OLED sensors especially in non-hermetically shielded gas and vapor sensors
  • the proportion of the organic molecule on the emission layer in an organic optoelectronic device in particular in OLEDs, is 1% to 99%, in particular 5% to 80% (% by weight). In an alternative embodiment, the proportion of the organic molecule at the emission layer is 100%.
  • the light-emitting layer has a host material whose triplet (T1) and singlet (S1) energy levels are higher in energy than the triplet (T1) and singlet (S1) energy levels of the organic molecule.
  • the invention relates to an organic optoelectronic device comprising an organic molecule of the type described here, in particular formed as a device selected from the group consisting of organic light emitting diode (OLED), light emitting electrochemical cell, OLED sensor, in particular non-hermetic externally shielded gas and vapor sensors, organic diode, organic solar cell, organic transistor, organic field effect transistor, organic laser and down-conversion element.
  • OLED organic light emitting diode
  • OLED sensor in particular non-hermetic externally shielded gas and vapor sensors
  • organic diode organic solar cell
  • organic transistor organic field effect transistor
  • organic laser and down-conversion element organic laser and down-conversion element
  • Such an organic optoelectronic device has, in one embodiment:
  • a cathode wherein in particular the anode or the cathode are applied directly to the substrate, and
  • At least one light-emitting layer which is arranged between the anode and cathode and having the organic molecule according to the invention.
  • the optoelectronic device is an OLED.
  • a typical OLED has, for example, the following layer structure:
  • HIL hole injection layer
  • HTL hole transport layer
  • Electron blocking layer (EBL)
  • EML emitter layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • EIL Electron Injection Layer
  • individual layers are only available in an optional manner. Furthermore, several of these layers can coincide. And there may be multiple layers in the component multiple times.
  • At least one electrode of the organic component is made translucent.
  • translucent refers to a layer that is transparent to visible light.
  • the translucent layer can be clear translucent, that is transparent, or at least partially light-absorbing and / or partially light-scattering, so that the translucent layer can also be translucent, for example, diffuse or milky.
  • a layer designated here as translucent is formed as transparent as possible, so that in particular the absorption of light is as low as possible.
  • the organic component in particular an OLED, has an inverted structure.
  • the inverted structure is characterized in that the cathode is located on the substrate and the other layers are applied correspondingly inverted:
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • Emission layer or emitter layer Emission layer or emitter layer (EML)
  • Electron blocking layer (EBL)
  • HTL hole transport layer
  • HIL Hole injection layer
  • the anode layer of the typical structure e.g. an ITO layer (indium tin oxide), connected as a cathode.
  • the organic component in particular an OLED, has a stacked construction.
  • the individual OLEDs are arranged one above the other and not next to each other as usual.
  • the generation of mixed light can be made possible.
  • this design can be used in the generation of white light, the entire visible spectrum of which is typically imaged by the combination of the emitted light from blue, green and red emitters.
  • significantly longer lifetimes compared to conventional OLEDs can be achieved with virtually the same efficiency and identical luminance.
  • a so-called charge generation layer (CGL) is optionally inserted between two OLEDs. This consists of an n-doped and a p-doped layer, wherein the n-doped layer is typically applied closer to the anode.
  • a so-called tandem OLED - occur two or more emission layers between the anode and cathode.
  • three emission layers are arranged one above the other, wherein an emission layer emits red light, an emission layer emits green light, and an emission layer emits blue light, and optionally further charge generation, blocking or transport layers are applied between the individual emission layers.
  • the respective emission layers are applied directly adjacent.
  • a charge generation layer is in each case located between the emission layers.
  • emission layers directly adjacent and separated by charge generation layers can be combined in an OLED.
  • An encapsulation arrangement can furthermore be arranged above the electrodes and the organic layers.
  • the encapsulation arrangement can be embodied, for example, in the form of a glass cover or in the form of a thin-layer encapsulation.
  • carrier material of the optoelectronic device for example, glass, quartz, plastic, metal, silicon wafers or any other suitable solid or flexible, optional serve transparent material.
  • the carrier material may comprise, for example, one or more materials in the form of a layer, a film, a plate or a laminate.
  • Transparent conductive metal oxides such as, for example, ITO (indium-tin-oxide), zinc oxide, tin oxide, cadmium oxide, titanium oxide, indium oxide or aluminum zinc oxide (AZO), Zn 2 Sn 4 , CdSnC, ZnSnC, Mgln 2 ⁇ D 4 , GaNO 3, can be used as the anode of the optoelectronic device.
  • ITO indium-tin-oxide
  • ZO aluminum zinc oxide
  • Zn 2 Sn 4 CdSnC, ZnSnC, Mgln 2 ⁇ D 4 , GaNO 3
  • Zn2ln20s or ln 4 Sn30i2 or mixtures of different transparent conductive oxides.
  • PEDOT PSS (poly-3,4-ethylenedioxythiophene: polystyrene sulfonic acid), PEDOT (poly-3,4-ethylenedioxythiophene), m-MTDATA (4,4 ', 4 "-tris [phenyl (m) tolyl) amino] triphenylamine), spiro-TAD (2,2 ', 7,7'-tetrakis (N, N-diphenylamino) -9,9-spirobifluorene), DNTPD (4,4'-bis [N- [4 - ⁇ N, N-bis (3-methylphenyl) amino ⁇ phenyl] -N-phenylamino] biphenyl), NPNPB (N, N'-diphenyl-N, N'-di- [4- (N, N-) diphenyl-amino) phenyl] benzene), MeO-TPD (N,
  • tertiary amines As materials of an HTL, tertiary amines, carbazole derivatives, polystyrenesulfonic acid-doped polyethylenedioxythiophene, camphorsulfonic acid-doped polyaniline poly-TPD (poly (4-butylphenyl-diphenyl-amine)), [alpha] -NPD (poly (4-butylphenyl-diphenyl-amine) )), TAPC (4,4'-cyclohexylidene bis [/ V, / V-bis (4-methylphenyl) benzenamine]), TCTA (tris (4-carbazoyl-9-ylphenyl) amine), 2-TNATA (4 , 4 ', 4 "-tris [2-naphthyl (phenyl) amino] triphenylamine), spiro-TAD, DNTPD, NPNPB, MeO-TPD, HAT-CN or TrisPcz
  • the HTL may comprise a p-doped layer comprising an inorganic or organic dopant in an organic hole-conducting matrix.
  • inorganic dopant for example, transition metal oxides such as vanadium oxide, molybdenum oxide or tungsten oxide can be used.
  • organic dopants for example, tetrafluorotetracyanoquinodimethane (F4-TCNQ), copper pentafluorobenzoate (Cu (I) pFBz) or transition metal complexes can be used.
  • an electron-blocking layer As materials of an electron-blocking layer it is possible to use, for example, mCP (1,3-bis (carbazol-9-yl) benzene), TCTA, 2-TNATA, mCBP (3,3-di (9H-carbazol-9-yl) biphenyl), tris Pcz (9,9'-diphenyl-6- (9-phenyl-9H-carbazol-3-yl) -9H, 9'H-3,3'-bicarbazole), CzSi (9- (4-tert-butylphenyl) 3,6-bis (triphenylsilyl) -9H-carbazole) or DCB (N, N'-dicarbazolyl-1, 4-dimethylbenzene).
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • TCTA 2,3-di (9H-carbazol-9-yl) biphenyl
  • Pcz 9,9'-diphenyl
  • the emitter layer EML contains or consists of emitter material or a mixture comprising at least two emitter materials and optionally one or more host materials.
  • Suitable host materials include, for example, mCP, TCTA, 2-TNATA, mCBP, Sif87 (dibenzo [b, d] thiophen-2-yltriphenylsilane), Sif88 (dibenzo [b, d] thiophen-2-yl) diphenylsilane), CBP (4, 4'-bis (N-carbazolyl) biphenyl) or DPEPO (bis [2- ((oxo) diphenylphosphino) phenyl] ether).
  • the common matrix materials such as CBP are suitable.
  • UHG matrix materials ultra-high energy gap materials
  • CBP wide-gap Matrix materials
  • the electron transport layer ETL can be, for example, materials based on AlQ3, TSP01, BPyTP2 (2,7-di (2,2'-bipyridin-5-yl) triphenyl) or BTB (4,4'-bis- [2- (4, 6-diphenyl-1, 3,5-triazinyl)] - 1, 1-biphenyl).
  • EIL materials of a thin electron injection layer EIL, for example, CsF, LiF, 8-hydroxyquinolinolatolithium (Liq), L12O, BaF2, MgO or NaF can be used.
  • the materials of the cathode layer may be metals or alloys, for example Al, Al> AIF, Ag, Pt, Au, Mg, Ag: Mg.
  • Typical layer thicknesses are from 100 nm to 200 nm.
  • one or more metals are used which are stable in air and / or which are self-passivating, for example by forming a thin protective oxide layer.
  • alumina, vanadium oxide, zinc oxide, zirconium oxide, titanium oxide, hafnium oxide, lanthanum oxide, tantalum oxide are suitable.
  • the person skilled in the art is aware of which combinations of materials are to be used for an optoelectronic device comprising an organic molecule according to the invention.
  • the organic molecule according to the invention is used as the emission material in a light-emitting layer, wherein it is used either as a pure layer or in combination with a matrix material.
  • the proportion of the organic molecule according to the invention at the emission layer in a light-emitting layer in optical light-emitting devices, in particular in OLEDs is between 5% and 80%.
  • the light-emitting layer is applied to a substrate, wherein in particular an anode and a cathode are applied to the substrate and the light-emitting layer is applied between anode and cathode.
  • the light-emitting layer may comprise only an organic molecule according to the invention in 100% concentration, wherein the anode and the cathode are applied to the substrate, and the light-emitting layer between the anode and cathode is applied.
  • a hole and electron injecting layer between anode and cathode, and a hole and electron transporting layer between hole and electron injecting layer, and the light emitting layer between holes and electron transporting layer are applied.
  • the organic optoelectronic device comprises in a further embodiment of the invention: a substrate, an anode, a cathode and at least one hole- and electron-injecting layer, and at least one hole- and electron-transporting layer, and at least one light-emitting layer, the organic according to the invention Molecule and a host material whose triplet (T1) and singlet (S1) energy levels are higher in energy than the triplet (T1) and singlet (S1) energy levels of the organic molecule, with the anode and cathode applied to the substrate and the hole and electron injecting layer is deposited between the anode and the cathode, and the hole and electron transporting layer is sandwiched between the hole and electron injecting layers Electron-injecting layer is applied, and the light-emitting layer between holes and electron-transporting layer is applied.
  • the present invention also provides a light-emitting material comprising an organic molecule of the invention and a host material, wherein the triplet (T1) and singlet (S1) energy levels of the host material are higher than the triplet (T1) and singlet (S1) energy levels of the host material organic molecule, and wherein the light emitting material emits fluorescence or thermally activated delayed fluorescence, and a deltaE (S1 - T1) value between the lowest excited singlet (S1) and the underlying triplet (Tl) state of less than 3000 cm -1 .
  • the invention relates to a method for producing an optoelectronic component.
  • an organic molecule according to the invention is used.
  • the manufacturing method comprises processing the organic molecule of the invention by a vacuum evaporation method or from a solution.
  • the invention also provides a method for producing an optoelectronic device according to the invention, in which at least one layer of the optoelectronic device
  • OVPD Organic Vapor Phase Deposition
  • the optical glasses (cuvettes and substrates of quartz glass, diameter: 1 cm) were cleaned. Wash three times with dichloromethane, acetone, ethanol, demineralized water. Place in 5% Hellmanex solution for 24 h, rinse thoroughly with demineralised water, dry to rinse with nitrogen.
  • the sample concentration corresponded to 10 mg / ml, stated in toluene or chlorobenzene.
  • UV-VIS spectra were recorded on a Thermo Scientific Model Evolution 201 instrument. (See Sample Preparation: Solutions)
  • Steady-state emission spectroscopy was performed with a Horiba Scientific FluoroMax-4 fluorescence spectrometer equipped with a 150 W xenon-arc lamp, excitation and emission monochromators and a Hamamatsu R928 photomultiplier tube, and a TCSPC option. Emission and excitation spectra were corrected by standard correction curves.
  • the photoluminescence quantum yield was measured by means of an Absolute PL Quantum Yield Measurement C9920-03G system from Hamamatsu Photonics. It consists of a 150 W xenon gas discharge lamp, automatically adjustable Czerny-Turner monochromators (250-950 nm) and an Ulbricht sphere with highly reflective spectral coating (a Teflon derivative), which has a fiber optic cable with a PMA-12 multichannel detector BT (back thinned) CCD chip with 1024 x 122 pixels (size 24 x 24 ⁇ ) is connected.
  • the evaluation of the quantum efficiency and the CIE coordinates took place with the help of the software U6039-05 version 3.6.0.
  • the emission maximum is given in nm, the quantum yield ⁇ in% and the CIE color coordinates as x, y values.
  • PLQY was determined for polymer films, solutions and powder samples according to the following protocol:
  • the reference material is anthracenes in ethanol of known concentration. First, the absorbance maximum of the sample was determined and excited with it. Subsequently, degassed solutions and films under a nitrogen atmosphere were used to determine the absolute quantum yield.
  • BP86 functional (Becke, AD Phys Rev. A1988, 38, 3098-3100, Perdew, JP Phys Rev. B1986, 33, 8822-8827) was used, with the resolution-of-identity Approach (RI) (Sierka, M., Hogekamp, A., Ahlrichs, RJ Chem. Phys., 2003, 18, 9136-9148; Becke, AD, J. Chem. Phys., 98 (1993) 5648-5652; Lee, C; Yang, W; Parr, RG Phys. Rev. B 37 (1988) 785-789).
  • RI resolution-of-identity Approach
  • Excitation energies were determined in the BP86 optimized structure using the time-dependent DFT method (TD-DFT) using the B3LYP functional (Becke, AD, J. Chem. Phys. 98 (1993) 5648-5652, Lee, C; Yang, W; Parr, RG Phys Rev. B 37 (1988) 785-789; Vosko, SH; Wilk, L; Nusair, M. Can. J. Phys. 58 (1980) 1200-121 1; Stephens, PJ Devlin, FJ; Chabalowski, CF; Frisch, MJJ Phys. Chem 98 (1994) 1 1623-1 1627).
  • def2-SV (P) base sets Weigend, F., Ahlrichs, R. Phys. Chem. Chem. Phys., 2005, 7, 3297-3305, Rappoport, D .; Furche, FJ Chem. Phys. 2010, 133, 134105 / 1-134105 / 1
  • All DFT calculations were performed with the Turbomole program package (version 6.5) (TURBOMOLE V6.4 2012, a development of University of Düsseldorf and Anlagens scholar Düsseldorf GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http: // www. turbomole.com). example 1
  • the film emission of 1 (10% in PMMA) can be seen in FIG.
  • the emission maximum is 443 nm.
  • the photoluminescence quantum yield (PLQY) is 56%.
  • the density functional theory calculations show a singlet (S1) energy of 2.86 eV and a triplet (T1) energy of 2.59 eV.
  • the absorption spectrum of 2 as a solution in 2-methyltetrahydrofuran is shown in FIG.
  • the film emission of 2 (10% in PMMA) can be seen in FIG.
  • the emission maximum is 441 nm.
  • the photoluminescence quantum yield (PLQY) is 55%.
  • the film emission of 3 (10% in PMMA) is shown in FIG.
  • the emission maximum is 494 nm.
  • the photoluminescence quantum yield (PLQY) is 65%.
  • the film emission of 4 (10% in PMMA) can be seen in FIG.
  • the emission maximum is 466 nm.
  • the photoluminescence quantum yield (PLQY) is 31%.
  • the emission lifetime is 51 s.
  • the film emission of 5 (10% in PMMA) can be seen in FIG.
  • the emission maximum is 449 nm.
  • the photoluminescence quantum yield (PLQY) is 65%.
  • the film emission of 7 (10% in PMMA) is shown in FIG.
  • the emission maximum is 477 nm.
  • the photoluminescence quantum yield (PLQY) is 71%.
  • the film emission of 8 (10% in PMMA) is shown in FIG. 11.
  • the emission maximum is 462 nm.
  • the photoluminescence quantum yield (PLQY) is 40%.
  • the film emission of 9 (10% in PMMA) can be seen in FIG.
  • the emission maximum is 404 nm.
  • the photoluminescence quantum yield (PLQY) is 28%.
  • Example 10 OLED component A
  • Molecule 1 was tested in an OLED device having the following structure: ITO / m-MTDATA / HAT-CN / tris-Pcz / 1: DPEPO (20%) / TSPO1 / BPyTP2 / Liq / Al
  • Table 1 Component data for component A.
  • the current density and luminance over the voltage are shown in FIG.
  • the power efficiency and current efficiency versus voltage are shown in FIG.
  • the external quantum efficiency versus current density is shown in FIG.
  • the electroluminescence spectrum operated at 10 V, the OLED is shown in Figure 16.
  • Example 11 OLED component B
  • Molecule 1 was tested in an OLED device having the following structure: ITO / m-MTDATA / a-NPD / TCTA / CzSi / 1 (10%): DPEPO / DPEPO / TPBi / Liq / Al Table 2: Component data for component B.
  • the film emission of 19 (10% in PMMA) was measured.
  • the emission maximum is 407 nm.
  • the photoluminescence quantum yield (PLQY) is 30%.
  • the film emission of 20 (10% in PMMA) was measured.
  • the emission maximum is 440 nm.
  • the photoluminescence quantum yield (PLQY) is 50%.
  • the film emission of 20 (10% in PMMA) was measured.
  • the emission maximum is 442 nm.
  • the photoluminescence quantum yield (PLQY) is 52%.
  • the film emission of 22 (10% in PMMA) was measured.
  • the emission maximum is 408 nm.
  • the photoluminescence quantum yield (PLQY) is 41%.
  • the film emission of 23 (10% in PMMA) was measured.
  • the emission maximum is 399 nm.
  • the photoluminescence quantum yield (PLQY) is 31%.
  • the film emission of 24 (10% in PMMA) was measured.
  • the emission maximum is 441 nm.
  • the photoluminescence quantum yield (PLQY) is 32%.
  • the film emission of 25 (10% in PMMA) is shown in Figure F9.
  • the emission maximum is 474 nm.
  • the photoluminescence quantum yield (PLQY) is 52%.
  • the film emission of 26 (10% in PMMA) was measured.
  • the emission maximum is 448 nm.
  • the photoluminescence quantum yield (PLQY) is 53%.
  • the film emission of 27 (10% in PMMA) was measured.
  • the emission maximum is 392 nm.
  • the photoluminescence quantum yield (PLQY) is 30%.
  • the film emission of 29 (10% in PMMA) was measured.
  • the emission maximum is 416 nm.
  • the photoluminescence quantum yield (PLQY) is 13%.
  • the film emission of 30 (10% in PMMA) was measured.
  • the emission maximum is 433 nm.
  • the photoluminescence quantum yield (PLQY) is 34%.
  • the film emission of 31 (10% in P MM A) was measured.
  • the emission maximum is 397 nm.
  • the photoluminescence quantum yield (PLQY) is 33%.
  • the film emission of 32 (10% in PMMA) was measured.
  • the emission maximum is 405 nm.
  • the photoluminescence quantum yield (PLQY) is 37%.
  • the film emission of 33 (10% in PMMA) was measured.
  • the emission maximum is 394 nm.
  • the photoluminescence quantum yield (PLQY) is 37%.
  • the film emission of 34 (10% in PMMA) was measured.
  • the emission maximum is 477 nm.
  • the photoluminescence quantum yield (PLQY) is 33% and the half-width is 99 nm.
  • Molecule 5 was tested in an OLED component ("component X2) with the following structure (proportion of the molecule according to the invention at the emission layer is given in mass percent):
  • Figure 1 Absorption spectrum of 1 as a solution in 2-methyltetrahydrofuran.
  • Figure 4 Absorption spectrum of 2 as a solution in 2-methyltetrahydrofuran.
  • Figure 7 Film emission of 4 (10% in PMMA).
  • Figure 8 Film emission of 5 (10% in PMMA).
  • Figure 1 1 Film emission of 8 (10% in PMMA).
  • Figure 12 Film emission of 9 (10% in PMMA).
  • FIG. 13 Current density and luminance of the OLED component ITO / m-MTDATA / HATCN / tris-Pcz / 1: DPEPO (20%) / TSP01 / BPyTP2 / Liq / Al.
  • Figure 15 External quantum efficiency over the current density of the OLED device ITO / m- MTDATA / HAT-CN / tris-Pcz / 1: DPEPO (20%) / TSP01 / BPyTP2 / Liq / AI.
  • FIG. 16 Electroluminescence spectrum operated at 10 V of the OLED component ITO / m-MTDATA / HAT-CN / tris-Pcz / 1: DPEPO (20%) / TSP01 / BPyTP2 / Liq / Al.
  • FIG. 17 Current density and luminance of the OLED component X2.
  • FIG. 18 Power efficiency of the OLED component X2.
  • FIG. 19 Current efficiency of the OLED component X2.
  • FIG. 20 External quantum efficiency of the OLED component X2.
  • FIG. 21 Electroluminescence spectrum of the OLED component X2, operated at 14 V.
  • FIG. 21 Electroluminescence spectrum of the OLED component X2, operated at 14 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Die Erfindung betrifft ein organisches Molekül, aufweisend eine Struktur der Formel I mit X = CN oder CF3; D = chemische Einheit aufweisend eine Struktur der Formel 1-1 : wobei # = Anknüpfungspunkt der Einheit gemäß Formel 1-1 an den zentralen Phenylring in der Struktur gemäß Formel I; A und B = unabhängig voneinander ausgewählt aus der Gruppe bestehend aus CRR1, CR, NR, N, wobei zwischen A und B eine Einfach- oder Doppelbindung vorliegt und zwischen B und Z eine Einfach- oder Doppelbindung vorliegt; Z = eine direkte Bindung oder eine divalente organische Brücke, die eine substituierte oder unsubstituierte C1-C9-Alkylen-, C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe oder eine Kombination dieser, -CRR1, -C=CRR1, -C=NR, -NR-, -O-, -SiRR1-, -S-, -S(O)-, -S(O)2-, durch O unterbrochene substituierte oder unsubstituierte C1 -C9-Alkylen-, C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe, Phenyl- oder substituierte Phenyleinheiten ist.

Description

Organische Moleküle zur Verwendung in organischen optoelektronischen
Vorrichtungen
Die Erfindung betrifft rein organische Moleküle und deren Verwendung in organischen lichtemittierenden Dioden (OLEDs) und in anderen organischen optoelektronischen Vorrichtungen.
Hintergrund
Organische optoelektronische Vorrichtungen zeichnen sich dadurch aus, dass entweder elektrische Energie in Photonen umgewandelt werden (Organische Lichtemittierende Dioden, OLED oder Lichtemittierende Elektrochemische Zellen, LEEC) oder der umgekehrte Prozess abläuft (Organische Photovoltaik, OPV). Dabei ist es wichtig, dass diese Prozesse möglichst effizient ablaufen. Für den Bereich von OLEDs müssen daher idealerweise Materialien mit möglichst hoher photolumineszenter Quantenausbeute verwendet werden. Begrenzte Effizienzen von OLED-Materialien können durch Verwendung effizienter Materialien, die thermisch aktivierte verzögerte Fluoreszenz (TADF) zeigen, verbessert werden, da im Gegensatz zu rein fluoreszenten Materialien statt 25 % der in einer OLED gebildeten Exzitonen bis zu 100 % der Exzitonen genutzt werden können. Hierbei können auch die entstandenen Triplett-Excitonen in Singulett-Excitonen überführt werden, aus welchem Zustand dann Photonen emittiert werden können. Voraussetzung für eine solche thermische Rückbesetzung ist dabei ein geringer energetischer Abstand zwischen dem niedrigsten angeregten Singulett- (Si) und Triplett-Niveau (Ti). Dies kann beispielweise durch Verwendung von Kupfer-(l)-Komplexen (siehe hierzu z. B.: H. Yersin, U. Monkowius, T. Fischer, T. Hofbeck, WO 2010/149748 A1 ) aber auch durch rein organische Materialien (siehe hierzu z. B.: Q. Zhang et al., J. Am. C em. Soc. 2012, 134, 14706, WO 2013161437 A1 ) erreicht werden.
Es gibt weiterhin einen großen Bedarf an neuen Materialien gibt, zum Beispiel an tiefblauen TADF-OLEDs. Bestehende blaue TADF-Materialien zeigen oft hohe Exzitonenlebensdauern, welche schlecht für effiziente und langlebige OLEDs sind. Neben den erwähnten Eigenschaften der Materialien ist für eine Kommerzialisierung ebenso die Zugänglichkeit relevant. Dies schließt die Verfügbarkeit von Synthesebausteinen, als auch den Aufwand für die eigentliche Synthese des funktionellen Materials, insbesondere dessen Aufreinigung mit ein. Beschreibung
Die Erfindung stellt eine neue Klasse von Molekülen bereit, die eine Struktur der Formel I aufweisen oder eine Struktur der Formel I haben:
Figure imgf000004_0001
Formel I mit
X = eine elektronenziehende Einheit, insbesondere CN oder CF3;
D = chemische Einheit aufweisend eine Struktur der Formel 1-1 :
Figure imgf000004_0002
Formel 1-1
wobei
# = Anknüpfungspunkt der Einheit gemäß Formel 1-1 an den zentralen Phenylring in der Struktur gemäß Formel I;
A und B = unabhängig voneinander ausgewählt aus der Gruppe bestehend aus CRR1, CR, NR, N, wobei zwischen A und B eine Einfach- oder Doppelbindung vorliegt und zwischen B und Z eine Einfach- oder Doppelbindung vorliegt;
Z = eine direkte Bindung oder eine divalente organische Brücke, die eine substituierte oder unsubstituierte C1 -C9-Alkylen-, C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe oder eine Kombination dieser, -CRR1, -C=CRR1, -C=NR, -NR-, -O-, -SiRR1-, -S-, -S(O)-, -S(0)2-, durch O unterbrochene substituierte oder unsubstituierte C1 -C9-Alkylen-, C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe, Phenyl- oder substituierte Phenyleinheiten ist;
wobei jedes R und R1 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, Azid (N3" ), F, Cl, Br, I, N(R2)2, CN, CF3, N02, OH, COOH, COOR2, CO(NR2)2, Si(R2)3, B(OR2)2, C(=0)R2, P(=0)(R2)2, S(=0)R2, S(=0)2R2, OS02R2, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C=C, Si(R2)2, Ge(R2)2, Sn(R2)2, C=0, C=S, C=Se, C=NR2, P(=0)(R2), SO, S02, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme, oder eine quervernetzbare Einheit QE ist, die durch säurekatalytische, thermische oder UV-Quervernetzungsverfahren in Anwesenheit oder Abwesenheit eines Photoinitiators oder durch Mikrowellenstrahlung quervernetzt werden kann; dabei können zwei oder mehrere dieser Substituenten R und R1 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R2 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, F, Cl, Br, I, N(R3)2, CN, CF3, N02, OH, COOH, COOR3, CO(NR3)2, Si(R3)3, B(OR3)2, C(=0)R3, P(=0)(R3)2, S(=0)R3, S(=0)2R3, OS02R3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R3 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R3C=CR3, C C, Si(R3)2, Ge(R3)2, Sn(R3)2, C=0, C=S, C=Se, C=NR3, P(=0)(R3), SO, S02, NR3, O, S oder CONR3 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder N02 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R3 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, F, CF3 oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoff rest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F oder CF3 ersetzt sein können; dabei können zwei oder mehrere Substituenten R3 auch miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden;
R' = ausgewählt aus der Gruppe bestehend aus H, N(R4)2, OR4, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann;
R" = ausgewählt aus der Gruppe bestehend aus N(R4)2, OR4, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann;
R4 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, N(R5)2, Si(R5)3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere dieser Substituenten R5 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R5 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen; dabei können zwei oder mehrere Substituenten R5 auch miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden.
In einer Ausführungsform ist R' ausgewählt aus der Gruppe bestehend aus H, N(R4)2, OR4, Thiophen, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das durch einen oder mehrere Reste R4 substituiert sein kann, und R" ist ausgewählt aus der Gruppe bestehend aus N(R4)2, OR4, Thiophen, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das durch einen oder mehrere Reste R4 substituiert sein kann.
Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 60 aromatische Ringatome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind insbesondere N, O, und/oder S. Dies stellt die grundlegende Definition dar. Werden in der Beschreibung der vorliegenden Erfindung andere Bevorzugungen angegeben, beispielsweise bezüglich der Zahl der aromatischen Ringatome oder der enthaltenen Heteroatome, so gelten diese.
Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin oder Thiophen, oder ein heteroaromatischer Polycyclus, beispielsweise Phenanthren, Chinolin oder Carbazol verstanden. Ein kondensierter (annelierter) aromatischer bzw. heteroaromatischer Polycyclus besteht im Sinne der vorliegenden Anmeldung aus zwei oder mehr miteinander kondensierten einfachen aromatischen bzw. heteroaromatischen Cyclen.
Unter einer Aryl- oder Heteroarylgruppe, die jeweils mit den oben genannten Resten substituiert sein kann und die über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, welche abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Fluoranthen, Benzanthracen, Benzphenanthren, Tetracen, Pentacen, Benzpyren, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen; Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Isochinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Napthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, Benzothiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, Pyrazin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benztriazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,2,3,4-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Kombinationen dieser Gruppen.
Unter einer cyclischen Alkyl-, Alkoxy- oder Thioalkoxygruppe im Sinne dieser Erfindung wird eine monocyclische, eine bicyclische oder eine polycyclische Gruppe verstanden.
Im Rahmen der vorliegenden Erfindung werden unter einer d- bis C4o-Alkylgruppe, in der auch einzelne H-Atome oder Ch -Gruppen durch die oben genannten Gruppen substituiert sein können, beispielsweise die Reste Methyl, Ethyl, n-Propyl, i-Propyl, Cyclopropyl, n-Butyl, i- Butyl, s-Butyl, t-Butyl, Cyclobutyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t-Pentyl, 2-Pentyl, neo- Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3-Hexyl, neo-Hexyl, Cyclohexyl, 1 - Methylcyclopentyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1 - Methylcyclohexyl, n-Octyl, 2-Ethylhexyl, Cyclooctyl, 1 -Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]- octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Adamantyl, Trifluor-methyl, Pentafluorethyl, 2,2,2-Trifluorethyl, 1 , 1 -Dimethyl-n-hex-1 -yl-, 1 , 1 -Dimethyl-n-hept-1 -yl-, 1 , 1 -Dimethyl-n-oct-1 - yl-, 1 , 1 -Dimethyl-n-dec-1 -yl-, 1 , 1 -Dimethyl-n-dodec-1 -yl-, 1 , 1 -Dimethyl-n-tetradec-1 -yl-, 1 , 1 - Dimethyl-n-hexadec-1 -yl-, 1 ,1 -Dimethyl-n-octadec-1 -yl-, 1 , 1 -Diethyl-n-hex-1 -yl-, 1 ,1 -Diethyl-n- hept-1 -yl-, 1 , 1 -Diethyl-n-oct-1 -yl-, 1 , 1 -Diethyl-n-dec-1 -yl-, 1 , 1 -Diethyl-n-dodec-1 -yl-, 1 , 1 - Diethyl-n-tetradec-1 -yl-, 1 , 1 -Diethyln-n-hexadec-1 -yl-, 1 , 1 -Diethyl-n-octadec-1 -yl-, 1 -(n- Propyl)-cyclohex-1 -yl-, 1 -(n-Butyl)-cyclohex-1 -yl-, 1 -(n-Hexyl)-cyclohex-1 -yl-, 1 -(n-0ctyl)- cyclohex-1 -yl- und 1 -(n-Decyl)-cyclohex-1 -yl- verstanden. Unter einer Alkenylgruppe werden beispielsweise Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl oder Cyclooctadienyl verstanden. Unter einer Alkinylgruppe werden beispielsweise Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer Ci bis C4o-Alkoxygruppe werden beispielsweise Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2- Methylbutoxy verstanden.
Die chemische Einheit D der erfindungsgemäßen Moleküle weist Donoreigenschaften auf. Was unter Donor- bzw. Akzeptoreigenschaften verstanden wird, ist dem Fachmann prinzipiell bekannt. Die chemische Einheit D ist in einer Ausführungsform elektronenschiebend. Sie weist einen +M-Effekt (positiven mesomeren Effekt) auf. Insbesondere weisen geeignete Donorsubstituenten ein Atom mit einem freien Elektronenpaar auf, wie zum Beispiel ein N-, O- oder S-Atom. Hierbei sind 5-Ring-Heteroarylgruppen mit genau einem Heteroringatom bevorzugt. An diese können auch weitere Arylgruppen ankondensiert sein. Hierbei sind insbesondere Carbazolgruppen bzw. Carbazolderivate bevorzugt. Weitere geeignete Donorsubstituenten sind Phenoxazingruppen bzw. Phenoxazinderivate. Bei Letzteren kann der Sauerstoff des Phenoxazins beispielsweise durch -CRR1 , -C=CRR1 , -C=NR, -NR-, -SiRR1- , -S-, -S(O)-, -S(0)2-, durch O unterbrochene substituierte oder unsubstituierte C1 -C9-Alkylen- , C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe, Phenyl- oder substituierte Phenyleinheiten ersetzt sein.
In einer Ausführungsform übt der elektronenziehende Rest X einen -M-Effekt (negativen mesomeren Effekt) oder einen -I-Effekt (negativen induktiven Effekt) aus. Der Rest X ist entsprechend ein Akzeptorsubstiutent. Geeignete Akzeptorsubstituenten sind insbesondere Cyanogruppen oder CF3.
Die erfindungsgemäßen Moleküle weisen in ortho-Stellung zum Donor am Aromaten einen Substituenten auf. Dies ermöglicht eine effektive Trennung von HOMO und LUMO des organischen Moleküls.
Die erfindungsgemäßen Moleküle zeigen thermisch aktivierte verzögerte Fluoreszenz und emittieren insbesondere im tiefblauen Bereich des sichtbaren Spektrums.
Die Verwendung der erfindungsgemäßen Moleküle in einer optoelektronischen Vorrichtung, beispielsweise einer OLED, führt zu höheren Effizienzen der Vorrichtung. Weiterhin lassen sich OLEDs im tiefblauen Farbspektrum realisieren. Entsprechende OLEDs weisen eine höhere Stabilität als OLEDs mit bekannten Emittermaterialien und vergleichbarer Farbe.
Bei den quervernetzbaren Einheiten QE handelt es sich in einer Ausführungsform um eine Verbindung ausgewählt aus der Gruppe bestehend aus Oxetanen, Alkinen und Aziden, insbesondere für eine Clickreaktion, sowie folgenden Alkenderivaten:
Figure imgf000009_0001
In einer alternativen Ausführungsform handelt es sich bei Z um eine kovalente Einfachbindung oder eine divalente organische Brücke ausgewählt aus substituierten und unsubstituierten Alkylen- (auch verzweigt oder zyklisch), Alkenylen-, Alkinylen-, Arylen- und Heteroarylen- Gruppen, O, NR, C=CR2, C=NR, SiR2 S, S(O), S(0)2, BR, PR, P(0)R, wobei auch Kombinationen dieser Einheiten möglich sind (z.B. durch O unterbrochene Alkylen- (auch verzweigt oder zyklisch), Alkenylen-, Alkinylen-, Arylen- und Heteroarylen-Gruppen).
In einer Ausführungsform ist D unabhängig voneinander jeweils eine Donorgruppe mit elektronenschiebenden Eigenschaften, die ausgewählt aus der Gruppe bestehend aus substituierten und unsubstituierten Carbazol, substituierten und unsubstituierten Indol, substituierten und unsubstituierten Indolin, substituierten und unsubstituierten Dihydroacridin, substituierten und unsubstituierten Benzimidazol, substituierten und unsubstituierten 2,3,4,9- Tetrahydrocarbazol, substituierten und unsubstituierten 1 ,2,3,4-Tetrahydrochinolin, substituierten und unsubstituierten Phenothiazin, substituierten und unsubstituierten Phenoxazin, substituierten und unsubstituierten Dihydrophenazin, substituierten und unsubstituierten Spiroverbindungen.
In einer Ausführungsform des organischen Moleküls weist die Donorgruppe elektronenschiebenden Eigenschaften der Formel 1-1 eine Struktur der Formel II auf:
Figure imgf000010_0001
Formel II
wobei für #, Z und R die oben in Verbindung mit Formel I genannten Definitionen gelten.
Die Donorgruppe mit elektronenschiebenden Eigenschaften der Formel 1-1 kann
Ausführungsform eine Struktur der Formel III aufweisen:
Figure imgf000010_0002
Formel III wobei für # und R die oben in Verbindung mit Formel I genannten Definitionen gelten.
Beispiele für erfindungsgemäße Donoren:
Figure imgf000011_0001
Die akzeptierende Einheit X der Formel I ist in einer Ausführungsform gleich CN, in einer weiteren Ausführungsform gleich CF3. In einer weiteren Ausführungsform der Erfindung ist der Rest R' der Formel I ein Wasserstoffatom, also H.
In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines erfindungsgemäßen organischen Moleküls der hier beschriebenen Art (mit einer eventuellen Folgeumsetzung).
Figure imgf000012_0001
Hierbei wird ein Stickstoffheterozyklus im Sinne einer nukleophilen aromatischen Substitution mit einem Arylhalogenid, insbesondere einem Arylfluorid umgesetzt. Typische Bedingungen beinhalten die Verwendung einer Base wie beispielweise tribasisches Kaliumphosphat oder Natriumhydrid in einem aprotisch polarem Lösungsmittel wie beispielweise Dimetylsulfoxid (DMSO) oder Ν,Ν-Dimethylformamid (DMF).
Eine alternative Syntheseroute beinhaltet die Einführung eines Stickstoffheterozyklus über eine Kupfer- oder Palladiumkatalysierte Kupplung mit einem Arylhalogenid oder Arylpseudohalogenid, insbesondere ein Arylbromid, ein Aryliodid, Aryltriflat oder ein Aryltosylat.
Die beschriebenen Herstellungsweisen können dabei sowohl die letzte synthetische Umsetzung darstellen als auch ein Vorläufermolekül liefern, welches durch Folgeumsetzungen, beispielsweise durch Änderung der Reste R, R' bzw. R", zum erfindungsgemäßen Molekül umgesetzt werden kann.
Ein weiterer Aspekt der Erfindung betrifft die Verwendung eines organischen Moleküls der hier beschriebenen Art als lumineszierender Emitter oder als Absorber, und/oder als Hostmaterial und/oder als Elektronentransportmaterial, und/oder als Lochinjektionsmaterial, und/oder als Lochblockiermaterial in einer organischen optoelektronischen Vorrichtung.
Im Rahmen einer derartigen Verwendung ist die organische optoelektronische Vorrichtung insbesondere ausgewählt ist aus der Gruppe bestehend aus:
• organischen lichtemittierenden Dioden (OLEDs),
• lichtemittierenden elektrochemischen Zellen,
• OLED-Sensoren, insbesondere in nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren,
• organischen Dioden,
• organischen Solarzellen,
• organischen Transistoren,
• organischen Feldeffekttransistoren,
• organischen Lasern und • Down-Konversions-Elementen.
Bei der Verwendung beträgt der Anteil des organischen Moleküls an der Emissionsschicht in einer organischen optoelektronischen Vorrichtung, insbesondere in OLEDs, 1 % bis 99 %, insbesondere 5 % bis 80 % (Gew%). In einer alternativen Ausführungsform beträgt der Anteil des organischen Moleküls an der Emissionsschicht 100%.
In einer Ausführungsform weist die lichtemittierende Schicht neben dem erfindungsgemäßen organischen Molekül ein Hostmaterial auf, dessen Triplett (T1 )- und Singulett (S1 )- Energieniveaus energetisch höher liegen als die Triplett (T1 )- und Singulet (S1 )- Energieniveaus des organischen Moleküls.
In einem weiteren Aspekt betrifft die Erfindung eine organische optoelektronische Vorrichtung, aufweisend ein organisches Molekül der hier beschriebenen Art, insbesondere ausgeformt als eine Vorrichtung ausgewählt aus der Gruppe bestehend aus organischer lichtemittierender Diode (OLED), lichtemittierender elektrochemischer Zelle, OLED-Sensor, insbesondere nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren, organischer Diode, organischer Solarzelle, organischem Transistor, organischem Feldeffekttransistor, organischem Laser und Down-Konversion-Element.
Eine derartige organische optoelektronische Vorrichtung weist in einer Ausführungsform auf:
- ein Substrat,
- eine Anode und
- eine Kathode, wobei insbesondere die Anode oder die Kathode unmittelbar auf das Substrat aufgebracht sind, und
- mindestens eine lichtemittierende Schicht, die zwischen Anode und Kathode angeordnet ist und die das erfindungsgemäße organische Molekül aufweist.
In einer Ausführungsform handelt es sich bei der optoelektronischen Vorrichtung um eine OLED. Eine typische OLED weist beispielsweise folgenden Schichtaufbau auf:
1 . Substrat (Trägermaterial)
2. Anode
3. Lochinjektionsschicht (hole injection layer, HIL)
4. Lochtransportschicht (hole transport layer, HTL)
5. Elektronenblockierschicht (electron blocking layer, EBL)
6. Emitterschicht (emitting layer, EML)
7. Lochblockierschicht (hole blocking layer, HBL) 8. Elektronenleitschicht (electron transport layer, ETL)
9. Elektroneninjektionsschicht (electron injection layer, EIL)
10. Kathode.
Dabei sind einzelne Schichten lediglich in optionaler Weise vorhanden. Weiterhin können mehrere dieser Schichten zusammenfallen. Und es können einzelne Schichten mehrfach im Bauteil vorhanden sein.
Gemäß einer Ausführungsform ist mindestens eine Elektrode des organischen Bauelements transluzent ausgebildet. Hier und im Folgenden wird mit "transluzent" eine Schicht bezeichnet, die durchlässig für sichtbares Licht ist. Dabei kann die transluzente Schicht klar durchscheinend, also transparent, oder zumindest teilweise Licht absorbierend und/oder teilweise Licht streuend sein, so dass die transluzente Schicht beispielsweise auch diffus oder milchig durchscheinend sein kann. Insbesondere ist eine hier als transluzent bezeichnete Schicht möglichst transparent ausgebildet, so dass insbesondere die Absorption von Licht so gering wie möglich ist.
Gemäß einer weiteren Ausführungsform weist das organische Bauelement, insbesondere eine OLED, einen invertierten Aufbau auf. Der invertierte Aufbau zeichnet sich dadurch aus, dass sich die Kathode auf dem Substrat befindet und die anderen Schichten entsprechend invertiert aufgebracht werden:
1 . Substrat (Trägermaterial)
2. Kathode
3. Elektroneninjektionsschicht (electron injection layer, EIL)
4. Elektronenleitschicht (electron transport layer, ETL)
5. Lochblockierschicht (hole blocking layer, HBL)
6. Emissionsschicht bzw. Emitterschicht (emitting layer, EML)
7. Elektronenblockierschicht (electron blocking layer, EBL)
8. Lochtransportschicht (hole transport layer, HTL)
9. Lochinjektionsschicht (hole injection layer, HIL)
10. Anode Dabei sind einzelne Schichten lediglich in optionaler Weise vorhanden. Weiterhin können mehrere dieser Schichten zusammenfallen. Und es können einzelne Schichten mehrfach im Bauteil vorhanden sein.
In einer Ausführungsform wird bei der invertierten OLED die Anodenschicht des typischen Aufbaus, z.B. eine ITO-Schicht (Indium-Zinn-Oxid), als Kathode geschaltet.
Gemäß einer weiteren Ausführungsform weist das organische Bauelement, insbesondere eine OLED, einen gestapelten Aufbau auf. Hierbei werden die einzelnen OLEDs übereinander und nicht wie üblich nebeneinander angeordnet. Durch einen gestapelten Aufbau kann die Erzeugung von Mischlicht ermöglicht werden. Beispielsweise kann dieser Aufbau bei der Erzeugung von weißem Licht eingesetzt werden, für dessen Erzeugung das gesamte sichtbare Spektrum typischerweise durch die Kombination des emittierten Lichts von blauen, grünen und roten Emittern abgebildet wird. Weiterhin können bei praktisch gleicher Effizienz und identischer Leuchtdichte signifikant längere Lebensdauern im Vergleich zu üblichen OLEDs erzielt werden. Für den gestapelten Aufbau wird optional eine sogenannte Ladungserzeugungsschicht (charge generation layer, CGL) zwischen zwei OLEDs eingesetzt. Diese besteht aus einer n-dotierten und einem p-dotierten Schicht, wobei die n-dotierte Schicht typischerweise näher an der Anode aufgebracht wird.
In einer Ausführungsform - einer sogenannten Tandem-OLED - treten zwei oder mehr Emissionsschichten zwischen Anode und Kathode auf. In einer Ausführungsform sind drei Emissionsschichten übereinander angeordnet, wobei eine Emissionsschicht rotes Licht emittiert, eine Emissionsschicht grünes Licht emittiert und eine Emissionsschicht blaues Licht emittiert und optional weitere Ladungserzeugungs-, Blockier- oder Transportschichten zwischen den einzelnen Emissionsschichten aufgebracht sind. In einer weiteren Ausführungsform werden die jeweiligen Emissionsschichten direkt angrenzend aufgebracht. In einer weiteren Ausführungsform befindet sich jeweils eine Ladungserzeugungsschicht zwischen den Emissionsschichten. Weiterhin können in einer OLED direkt angrenzende und durch Ladungserzeugungsschichten getrennte Emissionsschichten kombiniert werden.
Über den Elektroden und den organischen Schichten kann weiterhin noch eine Verkapselungsanordnung angeordnet sein. Die Verkapselungsanordnung kann beispielsweise in Form eines Glasdeckels oder in Form einer Dünnschichtverkapselung ausgeführt sein.
Als Trägermaterial der optoelektronischen Vorrichtung kann beispielsweise Glas, Quarz, Kunststoff, Metall, Siliziumwafer oder jedes andere geeignete feste oder flexible, optional durchsichtige Material dienen. Das Trägermaterial kann beispielsweise ein oder mehrere Materialien in Form einer Schicht, einer Folie, einer Platte oder einem Laminat aufweisen.
Als Anode der optoelektronischen Vorrichtung können beispielsweise transparente leitende Metalloxide wie beispielsweise ITO (Indium-Zinn-Oxid), Zinkoxid, Zinnoxid, Cadmiumoxid, Titanoxid, Indiumoxid oder Aluminiumzinkoxid (AZO), Zn2Sn04, CdSnC , ZnSnC , Mgln2<D4, GalnOß, Zn2ln20s oder ln4Sn30i2 oder Mischungen unterschiedlicher transparenter leitender Oxide dienen.
Als Materialien einer HIL können beispielsweise PEDOT:PSS (Poly-3,4- ethylendioxythiophen:Polystyrolsulfonsäure), PEDOT (Poly-3,4-ethylendioxythiophen), m-MTDATA (4,4',4"-Tris[phenyl(m-tolyl)amino]triphenylamin), Spiro-TAD (2,2',7,7'- Tetrakis(N,N-diphenylamino)-9,9-spirobifluoren), DNTPD (4,4'-Bis[N-[4-{N,N-bis(3-methyl- phenyl)amino}phenyl]-N-phenylamino]biphenyl), NPNPB (N,N'-Diphenyl-N,N'-di-[4-(N,N- diphenyl-amino)phenyl]benzol), MeO-TPD (N,N,N',N'-Tetrakis(4-methoxyphenyl)benzol), HAT-CN (1 ,4,5,8,9,1 1 -Hexaazatriphenylen-hexacarbonitril) oder Spiro-NPD (N,N'-diphenyl- N,N'-Bis-(1 -naphthyl)-9,9'-spirobifluorene-2,7-diamin) dienen.
Als Materialien einer HTL können tertiäre Amine, Carbazolderivate, mit Polystyrolsulfonsäure dotiertes Polyethylendioxythiophen, mit Camphersulfonsäure dotiertes Polyanilin poly-TPD (Poly(4-butylphenyl-diphenyl-amin)), [alpha]-NPD (Poly(4-butylphenyl-diphenyl-amin)), TAPC (4,4'-Cyclohexyliden-bis[/V,/V-bis(4-methylphenyl)benzenamin]), TCTA (Tris(4-carbazoyl-9- ylphenyl)amin), 2-TNATA (4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamin), Spiro-TAD, DNTPD, NPNPB, MeO-TPD, HAT-CN oder TrisPcz (9,9'-Diphenyl-6-(9-phenyl-9H-carbazol-3- yl)-9H,9'H-3,3'-bicarbazol) dienen.
Die HTL kann eine p-dotierte Schicht aufweisen, die einen anorganischen oder organischen Dotierstoff in einer organischen löcherleitenden Matrix aufweist. Als anorganischer Dotierstoff können beispielsweise Übergangsmetalloxide wie etwa Vanadiumoxid, Molybdänoxid oder Wolframoxid genutzt werden. Als organische Dotierstoffe können beispielsweise Tetrafluorotetracyanoquinodimethan (F4-TCNQ), Kupfer-Pentafluorobenzoat (Cu(l)pFBz) oder Übergangsmetallkomplexe verwendet werden.
Als Materialien einer Elektronenblockierschicht können beispielsweise mCP (1 ,3-Bis(carbazol- 9-yl)benzol), TCTA, 2-TNATA, mCBP (3,3-Di(9H-carbazol-9-yl)biphenyl), tris-Pcz (9,9'- Diphenyl-6-(9-phenyl-9H-carbazol-3-yl)-9H,9'H-3,3'-bicarbazol), CzSi (9-(4-tert-Butylphenyl)- 3,6-bis(triphenylsilyl)-9H-carbazol) oder DCB (N,N'-Dicarbazolyl-1 ,4-dimethylbenzol) dienen. Die Emitter-Schicht EML enthält oder besteht aus Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien und optional aus einem oder mehreren Hostmaterialien. Geeignete Hostmaterialien sind beispielsweise mCP, TCTA, 2-TNATA, mCBP, Sif87 (Dibenzo[b,d]thiophen-2-yltriphenylsilan), Sif88 (Dibenzo[b,d]thiophen-2- yl)diphenylsilan), CBP (4,4'-Bis-(N-carbazolyl)-biphenyl) oder DPEPO (Bis[2- ((oxo)diphenylphosphino)phenyl]ether). Für im Grünen oder im Roten emittierendes Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien eignen sich die gängigen Matrixmaterialien wie CBP. Für im Blauen emittierendes Emittermaterial oder einer Mischung aufweisend mindestens zwei Emittermaterialien können UHG- Matrixmaterialien (Ultra-High energy Gap Materialien) (siehe z. B. M.E. Thompson et al., Chem. Mater. 2004, 16, 4743) oder andere sogenannten Wide-Gap-Matrixmaterialien eingesetzt werden.
Die Lochblockierschicht HBL kann beispielsweise BCP (2,9-Dimethyl-4,7-diphenyl-1 ,10- phenanthrolin = Bathocuproin), Bis-(2-methyl-8-hydroxychinolinato)-(4-phenylphenolato)- aluminium(lll) (BAIq), Nbphen (2,9-Bis(naphthalen-2-yl)-4,7-diphenyl-1 ,10-phenanthrolin), Alq3 (Aluminium-tris(8-hydroxychinolin)), TSP01 (Diphenyl-4-triphenylsilylphenyl- phosphinoxid) oder TCB/TCP (1 ,3,5-Tris(N-carbazolyl)benzol/ 1 ,3,5-tris(carbazol)-9-yl) benzol) aufweisen.
Die Elektronentransportschicht ETL kann beispielsweise Materialien auf Basis von AIQ3, TSP01 , BPyTP2 (2,7-Di(2,2'-bipyridin-5-yl)triphenyl) oder BTB (4,4'-Bis-[2-(4,6-diphenyl- 1 ,3,5-triazinyl)]-1 ,1 -biphenyl) aufweisen.
Als Materialien einer dünnen Elektroneninjektionsschicht EIL können beispielsweise CsF, LiF, 8-Hydroxyquinolinolatolithium (Liq), L12O, BaF2, MgO oder NaF verwendet werden.
Als Materialien der Kathodenschicht können Metalle oder Legierungen dienen, beispielsweise AI, AI > AIF, Ag, Pt, Au, Mg, Ag:Mg. Typische Schichtdicken betragen 100 nm bis200 nm. Insbesondere werden ein oder mehrere Metalle verwendet, die stabil an der Luft sind und/oder die selbstpassivierend, beispielsweise durch Ausbildung einer dünnen schützenden Oxidschicht, sind.
Als Materialien zu Verkapselung sind beispielsweise Aluminiumoxid, Vanadiumoxid, Zinkoxid, Zirkoniumoxid, Titanoxid, Hafniumoxid, Lanthanoxid, Tantaloxid geeignet. Dem Fachmann ist hierbei bekannt, welche Kombinationen der Materialien für eine optoelektronische Vorrichtung enthaltend ein erfindungsgemäßes organisches Molekül zu nutzen sind.
In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung ist das erfindungsgemäße organische Molekül als Emissionsmaterial in einer lichtemittierenden Schicht eingesetzt, wobei es entweder als Reinschicht oder in Kombination mit einem Matrixmaterial eingesetzt ist.
Der Anteil des erfindungsgemäßen organischen Moleküls an der Emissionsschicht beträgt in einer weiteren Ausführungsform in einer lichtemittierenden Schicht in optischen Licht emittierenden Vorrichtungen, insbesondere in OLEDs, zwischen 5 % und 80 %. In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung ist die lichtemittierende Schicht auf ein Substrat aufgebracht, wobei insbesondere eine Anode und eine Kathode auf das Substrat aufgebracht sind und die lichtemittierende Schicht zwischen Anode und Kathode aufgebracht ist.
Die lichtemittierende Schicht kann ausschließlich ein erfindungsgemäßes organisches Molekül in 100 % Konzentration aufweisen, wobei die Anode und die Kathode auf das Substrat aufgebracht sind, und die lichtemittierende Schicht zwischen Anode und Kathode aufgebracht ist.
In einer Ausführungsform der erfindungsgemäßen organischen optoelektronischen Vorrichtung sind eine löcher- und elektroneninjizierende Schicht zwischen Anode und Kathode, und eine löcher- und elektronentransportierende Schicht zwischen löcher- und elektroneninjizierende Schicht, und die lichtemittierende Schicht zwischen löcher- und elektronentransportierende Schicht aufgebracht.
Die organische optoelektronische Vorrichtung weist in einer weiteren Ausführungsform der Erfindung auf: ein Substrat, eine Anode, eine Kathode und mindestens je eine löcher- und elektroneninjizierende Schicht, und mindestens je eine löcher- und elektronentransportierende Schicht, und mindestens eine lichtemittierende Schicht, die erfindungsgemäßes organisches Molekül und ein Hostmaterial aufweist, dessen Triplett (T1 )- und Singulett (S1 )-Energieniveaus energetisch höher liegen als die Triplett (T1 )- und Singulett (Sl )-Energieniveaus des organischen Moleküls, wobei die Anode und die Kathode auf das Substrat aufgebracht ist, und die löcher- und elektroneninjizierende Schicht zwischen Anode und Kathode aufgebracht ist, und die löcher- und elektronentransportierende Schicht zwischen löcher- und elektroneninjizierende Schicht aufgebracht ist, und die lichtemittierende Schicht zwischen löcher- und elektronentransportierende Schicht aufgebracht ist.
Erfindungsgemäß ist auch ein lichtemittierendes Material, aufweisend ein erfindungsgemäßes organisches Molekül und ein Hostmaterial, wobei die Triplett (T1 )- und Singulett (S1 )- Energieniveaus des Hostmaterials energetisch höher liegen als die Triplett (T1 )- und Singulett (Sl )-Energieniveaus des organischen Moleküls, und wobei das lichtemittierende Material Fluoreszenz oder thermisch aktivierte verzögerte Fluoreszenz emittiert, und einen deltaE(S1 - T1 )-Wert zwischen dem untersten angeregten Singulett (S1 )- und dem darunter liegenden Triplett (Tl )-Zustand von kleiner als 3000 cm-1 aufweist.
In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines optoelektronischen Bauelements. Dabei wird ein erfindungsgemäßes organisches Molekül verwendet.
In einer Ausführungsform umfasst das Herstellungsverfahren die Verarbeitung des erfindungsgemäßen organischen Moleküls mittels eines Vakuumverdampfungsverfahrens oder aus einer Lösung.
Erfindungsgemäß ist auch ein Verfahren zur Herstellung einer erfindungsgemäßen optoelektronischen Vorrichtung, bei dem mindestens eine Schicht der optoelektronischen Vorrichtung
- mit einem Sublimationsverfahren beschichtet wird,
- mit einem OVPD (Organic Vapor Phase Deposition) Verfahren beschichtet wird,
- mit einer Trägergassublimation beschichtet wird, und/oder
- aus Lösung oder mit einem Druckverfahren hergestellt wird.
Beispiele
Allgemeine Arbeitsvorschriften: Photophysikalische Messungen
Vorbehandlung von optischen Gläsern
Nach jeder Benutzung wurden die optischen Gläser (Küvetten und Substrate aus Quarzglas, Durchmesser: 1 cm) gereinigt. Je dreimaliges Spülen mit Dichlormethan, Aceton, Ethanol, demineralisiertem Wasser. Einlegen in 5 % Hellmanex-Lösung für 24 h, gründliches Ausspülen mit demineralisiertem Wasser, zum Trocknen wurden die optischen Gläser mit Stickstoff abgeblasen.
Probenvorbereitung: Lösungen
1 -2 mg der Probe wurden in 100 ml des jeweiligen Lösemittels gelöst, Konzentration 10"5 mol/L. Die Küvette wurde luftdicht verschlossen und 10 min. entgast.
Probenvorbereitung, Film: Spin-Coating
Gerät: Spin150, SPS euro.
Die Probenkonzentration entsprach 10 mg/ml, angesetzt in Toluol oder Chlorbenzol.
Programm: 1 ) 3 s bei 400 U/min; 2) 20 s bei 1000 U/min bei 1000 Upm/s (Umdrehungen pro Minute/Sekunde). 3) 10 s bei 4000 U/min bei 1000 Upm/s. Die Filme wurden nach dem Beschichten für 1 min bei 70 °C an Luft auf einer Präzisionsheizplatte von LHG getrocknet. Absorptionsspektroskopie
Lösungen:
UV-VIS-Spektren wurden auf einem Gerät der Thermo Scientific, Modell Evolution 201 aufgenommen. (Siehe Probenvorbereitung: Lösungen)
Photolumineszenzspektroskopie und TCSPC
Steady-state Emissionsspektroskopie wurde mit einem Fluoreszenzspektrometer der Firma Horiba Scientific, Modell FluoroMax-4 durchgeführt, ausgestattet mit einer 150 W Xenon-Arc Lampe, Anregungs- und Emissionsmonochromatoren und einer Hamamatsu R928 Photomultiplier-Röhre, sowie einer TCSPC-Option. Emissions- und Anregungsspektren wurden korrigiert durch Standardkorrekturkurven.
Quanteneffizienzbestimmung
Die Messung der Photolumineszenzquantenausbeute erfolgte mittels eines Absolute PL Quantum Yield Measurement C9920-03G-Systems der Firma Hamamatsu Photonics. Dieses besteht aus einer 150 W Xenon-Gasentladungslampe, automatisch justierbaren Czerny- Turner Monochromatoren (250 - 950 nm) und einer Ulbricht-Kugel mit hochreflektierender Spektralon-Beschichtung (einem Teflon-Derivat), die über ein Glasfaserkabel mit einem PMA- 12 Vielkanaldetektor mit BT- (back thinned-) CCD-Chip mit 1024 x 122 Pixeln (Größe 24 x 24 μηη) verbunden ist. Die Auswertung der Quanteneffizienz und der CIE-Koordinaten erfolgte mit Hilfe der Software U6039-05 Version 3.6.0. Das Emissionsmaximum wird in nm, die Quantenausbeute Φ in % und die CIE- Farbkoordinaten als x,y-Werte angegeben.
PLQY wurde für Polymerfilme, Lösungen und Pulverproben nach folgendem Protokoll bestimmt:
Als Referenzmaterial dient Anthracene in Ethanol mit bekannter Konzentration. Es wurde zuerst das Absorbtionsmaximum der Probe bestimmt und mit diesem angeregt. Anschließend wurde von entgasten Lösungen und Filmen unter Stickstoff-Atmosphäre die absolute Quantenausbeute bestimmt.
Die Berechnung erfolgte systemintern nach folgender Gleichung: ηνηοίοη· emittiert J ' j^ [lnterrüttiert W - Intabsorbiert W]dÄ
nphoton, absorbiert ~ f ^ W (λ) _ /nt- =f W]dÄ mit der Photonenzahl nPh0ton und der Intensität Int.
Berechnungen nach der Dichtefuntionaltheorie
Für die Optimierung der Molekülstrukturen wurde das BP86-Funktional (Becke, A. D. Phys. Rev. A1988, 38, 3098-3100; Perdew, J. P. Phys. Rev. B1986, 33, 8822-8827) verwendet, wobei die resolution-of-identity-Näherung (Rl) (Sierka, M.; Hogekamp, A.; Ahlrichs, R. J. Chem. Phys. 2003, 1 18, 9136-9148; Becke, A.D. , J.Chem.Phys. 98 (1993) 5648-5652; Lee, C; Yang, W; Parr, R.G. Phys. Rev. B 37 (1988) 785-789) zum Einsatz kam. Anregungsenergien wurden bei der mit BP86 optimierten Struktur mit der Time-Dependent DFT-Methode (TD-DFT) unter Verwendung des B3LYP-Funktionals (Becke, A.D., J.Chem.Phys. 98 (1993) 5648-5652; Lee, C; Yang, W; Parr, R.G. Phys. Rev. B 37 (1988) 785- 789; Vosko, S. H.; Wilk, L; Nusair, M. Can. J. Phys. 58 (1980) 1200-121 1 ; Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F. ; Frisch, M. J. J.Phys.Chem. 98 (1994) 1 1623-1 1627) berechnet. In allen Rechnungen wurden def2-SV(P)-Basissätze (Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305; Rappoport, D.; Furche, F. J. Chem. Phys.2010, 133, 134105/1-134105/1 1 ) und ein m4 -Grid zur numerischen Integration verwendet. Alle DFT-Rechnungen wurden mit dem Turbomole-Programmpaket (Version 6.5) (TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www. turbomole.com) durchgeführt. Beispiel 1
Synthese (Stufe 1 ):
Figure imgf000022_0001
3-Brom-4-fluorbenzonitril (125 mmol), Phenylboronsäure (188 mmol), Palladiumacetat (2.5 mmol), 2-Dicyclohexylphosphino-2',6'-dimethoxy-1 ,1 'biphenyl (SPhos; 5 mmol) und tribasisches Kaliumphosphat (250 mmol) werden unter Stickstoff in 200 mL Toluol suspendiert. Nach Zugabe von 10 mL entgastem Wasser wird die Reaktionsmischung 20 min mit Stickstoff gespült. Nach Rühren für 18 h bei 1 10 °C und abkühlen auf Raumtemperatur wird die Reaktionslösung filtriert und der Feststoff mit Essigsaureethylester gewaschen. Das Filtrat wird über MgSC>4 getrocknet. Nach Entfernen des Lösungsmittels wird das Rohprodukt aus n-Hexan umkristallisiert. 3-Phenyl-4-fluorobenzonitril (15,9 g, 80,6 mmol, 64 %) wird als weißer Feststoff erhalten.
1H NMR (500 MHz, Chloroform-d) δ 7.77 (dd, J = 7.1 , 2.2 Hz, 1 H), 7.64 (ddd, J = 8.5, 4.5, 2.2 Hz, 1 H), 7.54 - 7.42 (m, 5H), 7.27 (dd, J = 9.9, 8.5 Hz, 1 H).
Stufe 2:
Figure imgf000022_0002
1
3-Phenyl-4-fluorobenzonitril (65,9 mmol), 3,6-Dimethoxycarbazol (65,9 mmol) und tribasisches Kaliumphosphat (132 mmol) werden unter Stickstoff in DMSO (120 mL) suspendiert und bei 1 10 °C gerührt (16 h). Anschließend wird die Reaktionsmischung in 700 mL Wasser gegeben und 1 h gerührt. Der Feststoff wird abfiltriert und mit Wasser (1 L) gewaschen. Anschließend wird der Feststoff im Vakuum bei 50 °C getrocknet. Das Rohprodukt wird durch Umkristallisation aus Toluol gereinigt. Das Produkt 1 (23,1 g, 57,1 mmol, 87 %) wird als weißer Feststoff erhalten. 1H NMR (500 MHz, Chloroform-d) δ 7.95 (d, J = 1 .9 Hz, 1 H), 7.80 (dd, J = 8.2, 2.0 Hz, 1 H),
7.64 (d, J = 8.1 Hz, 1 H), 7.45 (d, J = 2.4 Hz, 2H), 7.10 - 7.02 (m, 3H), 7.02 - 6.98 (m, 2H),
6.92 (dd, J = 8.9, 0.7 Hz, 2H), 6.89 (dd, J = 8.9, 2.3 Hz, 2H), 3.90 (s, 6H).
Das Absorptionsspektrum von 1 als Lösung in 2-Methyltetrahydrofuran ist in Figur 1 gezeigt.
Die Filmemission von 1 (10 % in PMMA) ist Figur 2 zu entnehmen. Das Emissionsmaximum liegt bei 443 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 56%.
Die Dichtefunktionaltheorie-Rechnungen ergeben eine Singulett(S1 )-Energie von 2,86 eV und eine Triplett(T1 )-Energie von 2,59 eV.
Die berechneten Grenzorbitale des Grundzustands von 1 sind in Figur 3 gezeigt.
Figure imgf000023_0001
2
9,10-Dihydro-9,9-dimethylacridin (10 mmol), 4-Brom-3-metyhlbenzonitril (15 mmol) und Palladiumacetat (0.5 mmol) werden unter Stickstoff in 50 mL Toluol suspendiert. Nachdem 30 min Stickstoff durch die Reaktionsmischung geleitet wurde werden Tri-ie/f.-butylphosphin (0.75 mmol) und Natrium-ie/f.-butylat (15 mmol) zugegeben und 2,5 h unter Rühren refluxiert. Nachdem im Anschluss 16 h bei RT gerührt wurde, werden 50 mL Wasser zugegeben und zweimal mit je 50 mL Essigsäureethylester extrahiert, Die vereinigten organischen Phasen werden mit gesättigter NaCI-Lösung gewaschen und über MgS04 getrocknet. Nach Entfernen des Lösungsmittels wird der Rückstand aus Ethanol umkristallisiert. Es werden 1 ,6 g (4,9 mmol, 49%) des Produktes 2 erhalten.
1H NMR (500 MHz, Chloroform-d) δ 7.81 (d, J = 1 .9 Hz, 1 H), 7.75 (dd, J = 8.1 , 1 .9 Hz, 1 H), 7.53 - 7.46 (m, 2H), 7.38 (d, J = 8.0 Hz, 1 H), 7.04 - 6.91 (m, 4H), 6.07 - 5.97 (m, 2H), 2.14 (s, 3H), 1 .74 (s, 3H), 1 .68 (s, 3H).
Das Absorptionsspektrum von 2 als Lösung in 2-Methyltetrahydrofuran ist in Figur 4 gezeigt. Die Filmemission von 2 (10 % in PMMA) ist Figur 5 zu entnehmen. Das Emissionsmaximum liegt bei 441 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 55%.
Figure imgf000024_0001
3
3-Phenyl-4-fluorobenzonitril (10 mmol), 2,3:5,6-Dibenzo-1 ,4-oxazin (10 mmol) und tribasisches Kaliumphosphat (20 mmol) werden unter Stickstoff in DMSO (20 mL) suspendiert und bei 125 °C gerührt (14 h). Anschließend wird die Reaktionsmischung in 400 mL ges. Natriumchlorid-Lösung gegeben und mit Dichlormethan (3 x 150 mL) extrahiert. Die vereinigten organischen Phasen werden mit ges. Natriumchlorid-Lösung gewaschen (2 x 150 mL), getrocknet über Magnesiumsulfat und das Lösemittel anschließend entfernt. Das Rohprodukt wurde schließlich durch Umkristallisation aus Toluol gereinigt. Das Produkt 3 wurde als gelber Feststoff erhalten.
1H NMR (500 MHz, Chloroform-d) δ 7.91 (d, J = 1 .9 Hz, 1 H), 7.85 (dd, J = 8.1 , 2.0 Hz, 1 H), 7.57 (d, J = 8.1 Hz, 1 H), 7.35-7.2.9 (m, 5H), 6.65 - 6.59 (m, 4H), 6.59-6.54 (m, 2H), 5.90 - 5.83 (m, 2H).
Die Filmemission von 3 (10 % in PMMA) ist Figur 6 zu entnehmen. Das Emissionsmaximum liegt bei 494 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 65%.
Figure imgf000024_0002
4
1H NMR (500 MHz, Chloroform-d) δ 7.88 (s, 1 H), 7.83 (d, J = 7.6 Hz, 1 H), 7.57 (d, J = 8.2 Hz, 1 H), 7.39 - 7.27 (m, 5H), 6.69 - 6.51 (m, 6H), 5.89 (d, J = 7.6 Hz, 2H).
Die Filmemission von 4 (10 % in PMMA) ist Figur 7 zu entnehmen. Das Emissionsmaximum liegt bei 466 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 31 %. Die Emissionslebensdauer beträgt 51 s. Beispiel 5
Figure imgf000025_0001
5
1H NMR (500 MHz, Chloroform-d) δ 7.87 (s, 2H), 7.30 (d, J = 2.4 Hz, 2H), 7.05 - 7.00 (m, 2H), 6.99 - 6.94 (m, 4H), 6.94 - 6.89 (m, 4H), 6.77 (dd, J = 8.8, 2.4 Hz, 2H), 6.72 (d, J = 8.8 Hz, 2H), 3.84 (s, 6H).
Die Filmemission von 5 (10 % in PMMA) ist Figur 8 zu entnehmen. Das Emissionsmaximum liegt bei 449 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 65 %.
Figure imgf000025_0002
6
1H NMR (500 MHz, Chloroform-d) δ = 7.93 (d, 1 H), 7.90 (dd, 1 H), 7.48 (d, 1 H), 7.38 (dd, 2H), 7.21 - 7.13 (m, 5H), 6.97 (dt, 2H), 6.91 (dt, 2H), 6.15 (dd, 2H), 1.80 (s, 3H), 1 .04 (s, 3H) ppm. Die Filmemission von 6 (10 % in PMMA) ist Figur 9 zu entnehmen. Das Emissionsmaximum liegt bei 456 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 60 %.
Figure imgf000026_0001
7
1H NMR (500 MHz, Chloroform-d) δ 7.77 (d, J = 1.8 Hz, 1H), 7.72 (dd, J = 8.0, 1.9 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 6.76 - 6.65 (m, 4H), 6.60 (td, J = 7.6, 1.7 Hz, 2H), 5.71 (dd, J = 7.9, 1.4 Hz, 2H), 2.29 (s, 3H).
Die Filmemission von 7 (10 % in PMMA) ist Figur 10 zu entnehmen. Das Emissionsmaximum liegt bei 477 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 71%.
Figure imgf000026_0002
8
1H NMR (500 MHz, Chloroform-d) δ = 7.98 (d, 1H), 7.89 (d, 1H), 7.85 (dd, 1H), 7.77 (d, 1H), 7.72 (d, 1H), 7.31 -7.27 (m, 1H), 7.23-7.16 (m, 5H), 7.14-7.11 (m, 1H), 7.08-7.01 (8H), 6.98 - 6.94 (m, 4H), 6.88 (d, 1H) ppm.
Die Filmemission von 8 (10 % in PMMA) ist Figur 11 zu entnehmen. Das Emissionsmaximum liegt bei 462 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 40%.
Figure imgf000027_0001
9
1H NMR (500 MHz, Chloroform-d) δ = 8.30 (d, 2H), 8.02 (d, 1 H), 7.87 (d, 1 H), 7.72 (d, 1 H), 7.68 (dd, 4H), 7.55 (dd, 2H), 7.47 (t, 4H), 7.35 (t, 2H), 7.1 1 - 7.04 (m, 7H) ppm.
Die Filmemission von 9 (10 % in PMMA) ist Figur 12 zu entnehmen. Das Emissionsmaximum liegt bei 404 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 28 %.
Beispiel 10 - OLED-Bauteil A
Molekül 1 wurde in einem OLED-Bauteil mit folgendem Aufbau getestet: ITO/m- MTDATA/HAT-CN/tris-Pcz/ 1 :DPEPO (20%)/TSPO1/BPyTP2/Liq/AI
Tabelle 1 : Bauteildaten für das Bauteil A.
Figure imgf000027_0002
Die Stromdichte und Leuchtdichte über der Spannung sind in Figur 13 dargestellt. Die Leistungseffizienz und Stromeffizienz über der Spannung sind in Figur 14 dargestellt. Die externe Quanteneffizienz über der Stromdichte ist in Figur 15 dargestellt. Das Elektrolumineszenzspektrum betrieben bei 10 V der OLED ist in Figur 16 dargestellt.
Beispiel 11 - OLED-Bauteil B
Molekül 1 wurde in einem OLED-Bauteil mit folgendem Aufbau getestet: ITO/m- MTDATA/a-NPD/TCTA/CzSi/1 (10%):DPEPO/DPEPO/TPBi/Liq/AI Tabelle 2: Bauteildaten für das Bauteil B.
Figure imgf000028_0003
Figure imgf000028_0001
19
Die Filmemission von 19 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 407 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 30 %.
Figure imgf000028_0002
20
Die Filmemission von 20 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 440 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 50 %. Beispiel 14
Figure imgf000029_0001
21
Die Filmemission von 20 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 442 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 52 %.
Beispiel 15
Figure imgf000029_0002
22
Die Filmemission von 22 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 408 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 41 %.
Beispiel 16
Figure imgf000029_0003
23 Die Filmemission von 23 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 399 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 31 %.
Beispiel 17
Figure imgf000030_0001
24
Die Filmemission von 24 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 441 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 32 %.
Figure imgf000030_0002
25
Die Filmemission von 25 (10 % in PMMA) ist Figur F9 zu entnehmen. Das Emissionsmaximum liegt bei 474 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 52 %.
Figure imgf000031_0001
26
Die Filmemission von 26 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 448 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 53 %.
Beispiel 20
Figure imgf000031_0002
27
Die Filmemission von 27 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 392 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 30 %.
Beispiel 21
Figure imgf000031_0003
28 Die Filmemission von 28 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 425 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 16 %.
Figure imgf000032_0001
29
Die Filmemission von 29 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 416 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 13 %.
Figure imgf000032_0002
30
Die Filmemission von 30 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 433 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 34 %.
Figure imgf000033_0001
31
Die Filmemission von 31 (10 % in P MM A) wurde gemessen. Das Emissionsmaximum liegt bei 397 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 33 %.
Figure imgf000033_0002
32
Die Filmemission von 32 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 405 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 37 %.
Figure imgf000034_0001
33
Die Filmemission von 33 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 394 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 37 %.
Figure imgf000034_0002
34
Die Filmemission von 34 (10 % in PMMA) wurde gemessen. Das Emissionsmaximum liegt bei 477 nm. Die Photolumineszenzquantenausbeute (PLQY) beträgt 33 % und die Halbwertsbreite beträgt 99 nm. Molekül 5 wurde in einem OLED-Bauteil („Bauteil X2) mit folgendem Aufbau getestet (Anteil des erfindungsgemäßen Moleküls an der Emissionsschicht ist in Massenprozent angegeben):
Figure imgf000035_0001
Leistungseffizienz: 12,9 Im/W
Stromeffizienz: 27,5 cd/A
CIE: ClEx: 0,165
ClEy: 0,169
at 14 V
Maximale externe
Quantenausbeute (EQE): 20,3%
We ani it einer Struktur gemäß
Figure imgf000036_0001
Figure imgf000036_0002
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000040_0002
Figure imgf000041_0001
Figuren
Figur 1 : Absorptionsspektrum von 1 als Lösung in 2-Methyltetrahydrofuran.
Figur 2: Filmemission von 1 (10 % in PMMA).
Figur 3 Berechnete Grenzorbitale des Grundzustands von 1.
Figur 4: Absorptionsspektrum von 2 als Lösung in 2-Methyltetrahydrofuran.
Figur 5: Filmemission von 2 (10 % in PMMA).
Figur 6: Filmemission von 3 (10 % in PMMA).
Figur 7: Filmemission von 4 (10 % in PMMA).
Figur 8: Filmemission von 5 (10 % in PMMA).
Figur 9: Filmemission von 6 (10 % in PMMA).
Figur 10: Filmemission von 7 (10 % in PMMA).
Figur 1 1 : Filmemission von 8 (10 % in PMMA).
Figur 12: Filmemission von 9 (10 % in PMMA).
Figur 13: Stromdichte und Leuchtdichte des OLED-Bauteils ITO/m-MTDATA/HAT- CN/tris-Pcz/ 1 :DPEPO (20 %)/TSP01/BPyTP2/Liq/AI.
Figur 14: Leistungseffizienz und Stromeffizienz über der Spannung des OLED-Bauteils
ITO/m-MTDATA/HAT-CN/tris-Pcz/ 1 :DPEPO (20 %)/TSP01/BPyTP2/Liq/AI.
Figur 15: Externe Quanteneffizienz über der Stromdichte des OLED-Bauteils ITO/m- MTDATA/HAT-CN/tris-Pcz/ 1 :DPEPO (20 %)/TSP01/BPyTP2/Liq/AI.
Figur 16: Elektrolumineszenzspektrum betrieben bei 10 V des OLED-Bauteils ITO/m- MTDATA/HAT-CN/tris-Pcz/ 1 :DPEPO (20 %)/TSP01/BPyTP2/Liq/AI.
Figur 17: Stromdichte und Leuchtdichte des OLED-Bauteils X2.
Figur 18: Leistungseffizienz des OLED-Bauteils X2.
Figur 19: Stromeffizienz des OLED-Bauteils X2.
Figur 20: Externe Quanteneffizienz des OLED-Bauteils X2.
Figur 21 : Elektrolumineszenzspektrum des OLED-Bauteils X2, betrieben bei 14 V.

Claims

Ansprüche
1 . Organisches Molekül, aufweisend eine Struktur der Formel I
Figure imgf000043_0001
Formel I
mit
X = CN oder CF3;
D = chemische Einheit aufweisend eine Struktur der Formel 1-1 :
Figure imgf000043_0002
Formel 1-1
wobei
# = Anknüpfungspunkt der Einheit gemäß Formel 1-1 an den zentralen Phenylring der Struktur gemäß Formel I;
A und B = unabhängig voneinander ausgewählt aus der Gruppe bestehend aus CRR1, CR, NR, N, wobei zwischen A und B eine Einfach- oder Doppelbindung vorliegt und zwischen B und Z eine Einfach- oder Doppelbindung vorliegt;
Z = eine direkte Bindung oder eine divalente organische Brücke, die eine substituierte oder unsubstituierte C1 -C9-Alkylen-, C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe oder eine Kombination dieser, -CRR1, -C=CRR1, -C=NR, -NR-, -O-, -SiRR1-, -S-, -S(O)-, -S(0)2-, durch O unterbrochene substituierte oder unsubstituierte C1 -C9-Alkylen-, C2-C8-Alkenylen-, C2-C8-Alkinylen- oder Arylen-Gruppe, Phenyl- oder substituierte Phenyleinheiten ist;
wobei jedes R und R1 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, Azid (N3" ), F, Cl, Br, I, N(R2)2, CN, CF3, N02, OH, COOH, COOR2, CO(NR2)2, Si(R2)3, B(OR2)2, C(=0)R2, P(=0)(R2)2, S(=0)R2, S(=0)2R2, OS02R2, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C=C, Si(R2)2, Ge(R2)2, Sn(R2)2, C=0, C=S, C=Se, C=NR2, P(=0)(R2), SO, S02, NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme, oder eine quervernetzbare Einheit QE ist, die durch säurekatalytische, thermische oder UV-Quervernetzungsverfahren in Anwesenheit oder Abwesenheit eines Photoinitiators oder durch Mikrowellenstrahlung quervernetzt werden kann; wobei optional zwei oder mehrere dieser Substituenten R und R1 miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R2 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, F, Cl, Br, I, N(R3)2, CN, CF3, N02, OH, COOH, COOR3, CO(NR3)2, Si(R3)3, B(OR3)2, C(=0)R3, P(=0)(R3)2, S(=0)R3, S(=0)2R3, OSO2R3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine lineare Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R3 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R3C=CR3, C C, Si(R3)2, Ge(R3)2, Sn(R3)2, C=0, C=S, C=Se, C=NR3, P(=0)(R3), SO, S02, NR3, O, S oder CONR3 ersetzt sein können und wobei ein oder mehrere H-Atome durch Deuterium, F, Cl, Br, I, CN, CF3 oder N02 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R3 substituiert sein kann, oder eine Kombination dieser Systeme; wobei optional zwei oder mehrere dieser Substituenten R2 miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden;
R3 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, F, CF3 oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoff rest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F oder CF3 ersetzt sein können; wobei optional zwei oder mehrere Substituenten R3 miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden; R' = ausgewählt aus der Gruppe bestehend aus H, N(R4)2, OR4, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann;
R" = ausgewählt aus der Gruppe bestehend aus N(R4)2, OR4, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann;
R4 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, N(R5)2, Si(R5)3, eine lineare Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R5 substituiert sein kann, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R5 substituiert sein kann, oder eine Kombination dieser Systeme; wobei optional zwei oder mehrere dieser Substituenten R5 auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden; R5 bei jedem Auftreten gleich oder verschieden ist H, Deuterium, oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen; wobei optional zwei oder mehrere Substituenten R5 auch miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden.
2. Organische Molekül nach Anspruch 1 , wobei
R' = ausgewählt aus der Gruppe bestehend aus H, N(R4)2, OR4, Thiophen, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen, einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, und einem aromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das durch einen oder mehrere Reste R4 substituiert sein kann;
R" = ausgewählt aus der Gruppe bestehend aus N(R4)2, OR4, Thiophen, einer linearen Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen oder einer verzweigten oder cyclischen Alkyl- oder Alkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, oder einem aromatischen Ringsystem mit 5 bis 60 aromatischen Ringatomen, das durch einen oder mehrere Reste R4 substituiert sein kann.
3. Organisches Molekül nach Anspruch 1 oder 2, wobei die Donorgruppe mit elektronenschiebenden Eigenschaften der Formel 1-1 eine Struktur der Formel II aufweist:
Figure imgf000046_0001
Formel II
wobei für #, Z und R die in Anspruch 1 genannten Definitionen gelten.
4. Organisches Molekül nach Anspruch 1 bis 3, wobei die Donorgruppe mit elektronenschiebenden Eigenschaften der Formel 1-1 eine Struktur der Formel III aufweist:
Figure imgf000046_0002
Formel III wobei für # und R die in Anspruch 1 genannten Definitionen gelten.
5. Organisches Molekül nach Anspruch 1 bis 4, wobei die akzeptierende Einheit X der Formel I gleich CN ist.
6. Organisches Molekül nach Anspruch 1 bis 4, wobei die akzeptierende Einheit X der Formel I gleich CF3 ist.
7- Organisches Molekül nach Anspruch 1 bis 5, wobei der Rest R' der Formel I ein Wasserstoffatom H ist.
8. Verfahren zur Herstellung eines Organischen Moleküls nach Anspruch 1 bis 7.
9. Verwendung eines organischen Moleküls nach Anspruch 1 bis 7 als lumineszierender Emitter oder als Absorber und/oder als Hostmaterial und/oder als Elektronentransportmatenal und/oder als Lochinjektionsmaterial und/oder als Lochblockiermaterial in einer organischen optoelektronischen Vorrichtung.
10. Verwendung nach Anspruch 9, wobei die organische optoelektronische Vorrichtung ausgewählt ist aus der Gruppe bestehend aus:
• organischen lichtemittierenden Dioden (OLEDs),
• lichtemittierenden elektrochemischen Zellen,
• OLED-Sensoren, insbesondere in nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren,
• organischen Dioden,
• organischen Solarzellen,
• organischen Transistoren,
• organischen Feldeffekttransistoren,
• organischen Lasern und
• Down-Konversions-Elementen.
1 1 . Verwendung nach Anspruch 9 oder 10, wobei der Anteil des organischen Moleküls an der Emissionsschicht in einer organischen optoelektronischen Vorrichtung, insbesondere in OLEDs, 1 % bis 99 %, insbesondere 5 % bis 80 % beträgt.
12. Organische optoelektronische Vorrichtung, aufweisend ein organisches Molekül nach Anspruch 1 bis 7, insbesondere ausgeformt als eine Vorrichtung ausgewählt aus der Gruppe bestehend ausorganischer lichtemittierender Diode (OLED), lichtemittierender elektrochemischer Zelle, OLED-Sensor, insbesondere nicht hermetisch nach außen abgeschirmten Gas- und Dampf-Sensoren, organischer Diode, organischer Solarzelle, organischem Transistor, organischem Feldeffekttransistor, organischem Laser und Down- Konversion-Element.
13. Organische optoelektronische Vorrichtung nach Anspruch 12, aufweisend
- ein Substrat,
- eine Anode und
- eine Kathode, wobei die Anode oder die Kathode auf das Substrat aufgebracht sind, und
- mindestens eine lichtemittierende Schicht, die zwischen Anode und Kathode angeordnet ist und die das organische Molekül nach Anspruch 1 bis 7 aufweist.
14. Verfahren zur Herstellung eines optoelektronischen Bauelements, wobei ein organisches Molekül nach Anspruch 1 bis 7 verwendet wird.
15. Verfahren nach Anspruch 14, umfassend die Verarbeitung des organischen Moleküls mittels eines Vakuumverdampfungsverfahrens oder aus einer Lösung.
PCT/EP2016/065723 2015-07-03 2016-07-04 Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen WO2017005698A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680039549.9A CN107925004B (zh) 2015-07-03 2016-07-04 用于有机光电器件的有机分子
EP16747735.5A EP3317904B1 (de) 2015-07-03 2016-07-04 Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
KR1020187002739A KR102541444B1 (ko) 2015-07-03 2016-07-04 유기 광전자 디바이스에 사용되는 유기 분자
JP2017568275A JP6738838B2 (ja) 2015-07-03 2016-07-04 有機光電子デバイスに使用するための有機分子
US15/740,044 US20180198075A1 (en) 2015-07-03 2016-07-04 Organic molecules for use in optoelectronic devices

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP15175358.9 2015-07-03
EP15175358 2015-07-03
EP15200813.2 2015-12-17
EP15200813.2A EP3113239A1 (de) 2015-07-03 2015-12-17 Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
EP16168821.3 2016-05-09
EP16168821 2016-05-09

Publications (1)

Publication Number Publication Date
WO2017005698A1 true WO2017005698A1 (de) 2017-01-12

Family

ID=56372889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/065723 WO2017005698A1 (de) 2015-07-03 2016-07-04 Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen

Country Status (1)

Country Link
WO (1) WO2017005698A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202840A1 (en) * 2017-05-04 2018-11-08 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
WO2019053049A1 (en) * 2017-09-18 2019-03-21 Cynora Gmbh ORGANIC MOLECULES, ESPECIALLY FOR USE IN OPTOELECTRONIC DEVICES
JP2020525438A (ja) * 2017-06-23 2020-08-27 株式会社Kyulux 有機発光ダイオードに用いられる組成物
US11424417B2 (en) 2018-11-16 2022-08-23 Samsung Display Co., Ltd. Organic electroluminescence device and compound for organic electroluminescence device
US11985893B2 (en) 2019-11-08 2024-05-14 Samsung Display Co., Ltd. Organic electroluminescence device and aromatic compound for organic electroluminescence device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149748A1 (de) 2009-06-24 2010-12-29 Hartmut Yersin Kupfer-komplexe für optoelektronische anwendungen
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
WO2014146750A1 (de) * 2013-03-22 2014-09-25 Merck Patent Gmbh Synthesebausteine für die herstellung von materialien für organische elektrolumineszenzvorrichtungen
WO2014146752A1 (de) * 2013-03-22 2014-09-25 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149748A1 (de) 2009-06-24 2010-12-29 Hartmut Yersin Kupfer-komplexe für optoelektronische anwendungen
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
WO2014146750A1 (de) * 2013-03-22 2014-09-25 Merck Patent Gmbh Synthesebausteine für die herstellung von materialien für organische elektrolumineszenzvorrichtungen
WO2014146752A1 (de) * 2013-03-22 2014-09-25 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
BECKE, A. D., PHYS. REV. A, vol. 38, 1988, pages 3098 - 3100
BECKE, A.D., J.CHEM.PHYS, vol. 98, 1993, pages 5648 - 5652
BECKE, A.D., J.CHEM.PHYS., vol. 98, 1993, pages 5648 - 5652
LEE, C; YANG, W; PARR, R.G., PHYS. REV. B, vol. 37, 1988, pages 785 - 789
M.E. THOMPSON ET AL., CHEM. MATER., vol. 16, 2004, pages 4743
PERDEW, J. P., PHYS. REV. B, vol. 33, 1986, pages 8822 - 8827
Q. ZHANG ET AL., J. AM. CHEM. SOC., vol. 134, 2012, pages 14706
RAPPOPORT, D.; FURCHE, F., J. CHEM. PHYS., vol. 133, 2010, pages 134105,1 - 134105,11
SHAOLONG GONG ET AL: "Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence", JOURNAL OF MATERIALS CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 22, no. 7, 1 January 2012 (2012-01-01), pages 2894 - 2899, XP002734092, ISSN: 0959-9428, [retrieved on 20111221], DOI: 10.1039/C1JM14903B *
SIERKA, M.; HOGEKAMP, A.; AHLRICHS, R. J., CHEM. PHYS., vol. 118, 2003, pages 9136 - 9148
STEPHENS, P. J.; DEVLIN, F. J.; CHABALOWSKI, C. F.; FRISCH, M. J., J.PHYS.CHEM, vol. 98, 1994, pages 11623 - 11627
VOSKO, S. H.; WILK, L.; NUSAIR, M., CAN. J. PHYS., vol. 58, 1980, pages 1200 - 1211
WEIGEND, F.; AHLRICHS, R., PHYS. CHEM. CHEM. PHYS., vol. 7, 2005, pages 3297 - 3305

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202840A1 (en) * 2017-05-04 2018-11-08 Cynora Gmbh Organic molecules, in particular for use in optoelectronic devices
CN109923191A (zh) * 2017-05-04 2019-06-21 西诺拉股份有限公司 特别用于光电器件的有机分子
US10981930B2 (en) 2017-05-04 2021-04-20 Cynora Gmbh Organic molecules for use in optoelectronic devices
JP2020525438A (ja) * 2017-06-23 2020-08-27 株式会社Kyulux 有機発光ダイオードに用いられる組成物
JP7226806B2 (ja) 2017-06-23 2023-02-21 株式会社Kyulux 有機発光ダイオードに用いられる組成物
US11638390B2 (en) 2017-06-23 2023-04-25 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2019053049A1 (en) * 2017-09-18 2019-03-21 Cynora Gmbh ORGANIC MOLECULES, ESPECIALLY FOR USE IN OPTOELECTRONIC DEVICES
US11424417B2 (en) 2018-11-16 2022-08-23 Samsung Display Co., Ltd. Organic electroluminescence device and compound for organic electroluminescence device
US11985893B2 (en) 2019-11-08 2024-05-14 Samsung Display Co., Ltd. Organic electroluminescence device and aromatic compound for organic electroluminescence device

Similar Documents

Publication Publication Date Title
EP3317904B1 (de) Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
EP3452471B1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
DE102016110004B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3113239A1 (de) Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
DE102016112377B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
WO2018041933A1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
DE102016108334B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016108332B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3478657B1 (de) Dicarbazolbiphenylderivate zur verwendung in optoelektronischen vorrichtungen
WO2017005698A1 (de) Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
EP3585777A1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
EP3478656B1 (de) Dicarbazolbiphenylderivate zur verwendung in optoelektronischen vorrichtungen
DE102017102662B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016112082B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016108335B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016108327B3 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102016115853B4 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
DE102017102363A1 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen
EP3494112B1 (de) Organische moleküle zur verwendung in organischen optoelektronischen vorrichtungen
EP3580300A2 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
WO2019002175A1 (de) Organische moleküle, insbesondere zur verwendung in optoelektronischen vorrichtungen
WO2018077492A1 (de) Organische moleküle, insbesondere zur verwendung in organischen optoelektronischen vorrichtungen
EP3494113B1 (de) Organische moleküle zur verwendung in optoelektronischen vorrichtungen
WO2019197407A1 (de) Pyridin-substituierte 2,2&#39;-di-9h-carbazol-9-yl-[1,1&#39;-biphenyl]-dicarbonitril-derivate und verwandte verbindungen zur verwendung in optoelektronischen vorrichtungen
DE102016115728A1 (de) Organische Moleküle, insbesondere zur Verwendung in organischen optoelektronischen Vorrichtungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16747735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002739

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016747735

Country of ref document: EP