WO2017003223A1 - 영상 획득 장치 및 방법 - Google Patents

영상 획득 장치 및 방법 Download PDF

Info

Publication number
WO2017003223A1
WO2017003223A1 PCT/KR2016/007051 KR2016007051W WO2017003223A1 WO 2017003223 A1 WO2017003223 A1 WO 2017003223A1 KR 2016007051 W KR2016007051 W KR 2016007051W WO 2017003223 A1 WO2017003223 A1 WO 2017003223A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing
subject
rays
dimensional image
image
Prior art date
Application number
PCT/KR2016/007051
Other languages
English (en)
French (fr)
Inventor
김태우
백인재
Original Assignee
주식회사 레이언스
(주)바텍이우홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레이언스, (주)바텍이우홀딩스 filed Critical 주식회사 레이언스
Priority to US15/741,234 priority Critical patent/US20180192966A1/en
Publication of WO2017003223A1 publication Critical patent/WO2017003223A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast

Definitions

  • the present invention relates to an image acquisition device and method capable of simultaneously acquiring a two-dimensional image and a three-dimensional image in a single photographing process.
  • a mammography apparatus is an X-ray imaging apparatus used for early diagnosis of breast cancer, and a two-dimensional X-ray image (hereinafter, referred to as a two-dimensional image) by irradiating a certain amount of X-rays to a breast of a subject and receiving the sensor by the sensor.
  • a three-dimensional X-ray image (hereinafter referred to as a three-dimensional image).
  • the breast imaging method for the early diagnosis of breast cancer includes full-field digital mammography (FFDM) mode, digital breast tomosynthesis (DBT) mode, and breast computed tomography (BCT) mode.
  • the FFDM mode is a mode for early diagnosis of breast cancer by acquiring two-dimensional images
  • the DBT mode is a mode in which the X-ray light source is moved at an angle to increase the detection rate of mass that is difficult to identify in the FFDM mode
  • the BCT mode is an X-ray light source.
  • the sensor and the sensor are rotated by a certain angle to obtain a three-dimensional image so that the position information of the lesion can be known in detail.
  • both two-dimensional and three-dimensional images are required for early diagnosis of breast cancer according to the individual situation of the subject. Since the conventional mammography apparatuses can obtain only one image of the two-dimensional image or the three-dimensional image by one imaging process. In the case where both two-dimensional and three-dimensional images are required, there is a problem that the subject has to go through two or more imaging processes.
  • the present invention obtains two-dimensional and three-dimensional image data by receiving X-rays irradiated at each photographing position according to the order of photographing for acquiring a two-dimensional image and photographing for acquiring a three-dimensional image, and obtaining the two-dimensional and three-dimensional image data.
  • An object of the present invention is to provide an image acquisition apparatus and method capable of simultaneously acquiring a two-dimensional image and a three-dimensional image by converting the image into a single image.
  • control module for controlling the first imaging for obtaining the two-dimensional image and the second imaging for acquiring the three-dimensional image, at least one first position and the first according to the first imaging 2 an X-ray generator for irradiating X-rays to a subject at first and second doses, respectively, at a plurality of second positions according to imaging, and receiving X-rays irradiated to the subject to receive data corresponding to the first and second imaging.
  • An X-ray detector to be acquired and an image converting unit converting the data of the first photographing into a two-dimensional image and converting the data of the second photographing into a three-dimensional image, wherein the first dose is greater than the second dose, the first position and the first The two positions are in a preset trajectory.
  • the method of the present invention for achieving the above object, (a) at least one of the first position according to the first imaging and the plurality of second position according to the second imaging in the first and second doses respectively Irradiating X-rays to the specimen, (b) receiving X-rays irradiated onto the subject to obtain data corresponding to the first and second imaging, and (c) converting the data of the first imaging to a two-dimensional image; And converting the data of the second photographing into a three-dimensional image, wherein the first dose is greater than the second dose, and the first position and the second positions are within a predetermined trajectory.
  • the present invention obtains two-dimensional and three-dimensional image data by receiving X-rays irradiated at each photographing position in order of photographing for obtaining a two-dimensional image and photographing for obtaining a three-dimensional image, and obtaining the two-dimensional image data.
  • the present invention obtains two-dimensional and three-dimensional image data by receiving X-rays irradiated at each photographing position in order of photographing for obtaining a two-dimensional image and photographing for obtaining a three-dimensional image, and obtaining the two-dimensional image data.
  • the present invention by reducing the two-dimensional image and the three-dimensional image at the same time in a single imaging process, it is possible to reduce the inconvenience of the subject due to the two imaging.
  • FIG. 1 schematically shows an image acquisition device according to the present invention
  • FIG. 2 is a block diagram of an image capturing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing the imaging of X-ray irradiation at the position where the imaging position is 0 degrees;
  • FIG. 4 is a diagram illustrating photographing in which X-rays are sequentially irradiated at each photographing position
  • FIG. 5 is a diagram illustrating photographing sequentially radiating X-rays at some photographing positions
  • FIG. 6 is a diagram illustrating photographing sequentially radiating X-rays at some photographing positions
  • FIG. 7 is a flowchart illustrating an image acquisition method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart showing the details of the step S510 shown in FIG. 7; FIG. And
  • FIG. 9 is a flowchart illustrating the operation S510 shown in FIG. 7 in detail.
  • FIG. 1 is a view schematically showing an image acquisition device according to the present invention.
  • the image capturing apparatus 100 includes a main body 110, a gantry 120, an X-ray generator 130, a pressing panel 140a, a support panel 140b, and an X-ray detector 150. ).
  • the main body 110 may include an input device for manipulating the image capturing apparatus 100, a display device for checking a captured image, a control module for driving the gantry 120 and controlling the X-ray detector 150, and An image converter converts the obtained data into a two-dimensional image and a three-dimensional image.
  • Gantry 120 is fixed to one side of the body (110).
  • the X-ray generating unit 130 is provided with an X-ray light source to irradiate X-rays to a subject, and is provided on an upper surface of the gantry 120.
  • the pressing panel 140a is positioned between the X-ray generating unit 130 and the X-ray detector 150 and presses the breast (subject) of the patient to be in close contact with the upper surface of the support panel 140b.
  • the support panel 140b is positioned between the pressure panel 140a and the X-ray detector 150 and supports the breast of the patient to be raised.
  • the X-ray detector 150 detects X-rays irradiated from the X-ray generator 130 and transmitted through the object to obtain data.
  • the X-ray detector 150 is mounted on an upper portion of the cradle which is integrally connected to the gantry 120, and when the gantry 120 rotates, the X-ray detector 150 rotates together at a position corresponding to the X-ray generator 130 or the X-ray detector 150.
  • the upper portion of the gantry 120 may rotate only so that the X-ray generator 130 rotates in a fixed state.
  • the X-ray detector 150 may include an X-ray sensor.
  • the X-ray sensor is a surface sensor, in which a unit pixel sensor is two-dimensionally arranged, that is, a unit pixel sensor forms a matrix in a plurality of rows and a plurality of columns.
  • the X-ray detector 150 is irradiated from the X-ray light source of the X-ray generator 130 to receive X-rays passing through the breast of the patient to obtain X-ray data about the ROI in the subject.
  • FIG. 2 is a block diagram of an image capturing apparatus according to an exemplary embodiment.
  • the image capturing apparatus 200 may include a control module 310, an image converter 320, an X-ray generator 230, and an X-ray detector 240. It is provided.
  • the X-ray generator 230 includes an X-ray light source to irradiate X-rays to a subject
  • the X-ray detector 240 includes an X-ray sensor to acquire data by receiving X-rays irradiated by the X-ray generator 230. do.
  • the X-ray generating unit 230 irradiates X-rays at each photographing position while rotating around the subject about the subject, and each photographing position is -45 degrees to +45 degrees with respect to the subject, preferably- It is within the range of 30 degrees to +30 degrees and the distance from the adjacent photographing position may be 1 degree to 5 degrees, preferably 2 degrees.
  • control module 310 controls the driving of the X-ray generator 230 and the X-ray detector 240, and controls the order of photographing for obtaining the 2D image and photographing for obtaining the 3D image.
  • the order of the photographing proceeding under the control of the control module 310 is that the photographing is performed to acquire the two-dimensional image, and then the photographing is performed to obtain the three-dimensional image (first order) or the part of the three-dimensional image is acquired. After the shooting is performed, a part of the three-dimensional image is acquired, the X-ray generator 230 transitions to the two-dimensional image acquisition position, and the shooting is performed to acquire the two-dimensional image.
  • the order in which photographing is performed to acquire the remaining images of the 3D image (second order), and the order in which photographing is performed to acquire the 2D image (third order) after the photographing is performed to acquire the 3D image. have.
  • the imaging for acquiring the two-dimensional image is, for example, a photographing position where the X-ray generator 230 is located at 0 degrees, that is, vertically upward with respect to the subject (hereinafter, referred to as a "center imaging position").
  • the X-ray generation unit 230 proceeds by irradiating X-rays, and the imaging for acquiring a 3D image is performed by the X-ray generator 230 sequentially irradiating X-rays at other imaging positions.
  • the central photographing position may be a cranial-caudal photographing position.
  • the first order is a sequence in which photographing for acquiring a three-dimensional image is performed after photographing for acquiring a two-dimensional image is performed.
  • the X-ray generation unit 230 performs imaging to acquire a two-dimensional image by radiating X-rays at a central photographing position.
  • the X-ray generation unit 230 sequentially photographs X-rays at each of the photographing positions 1 to 9 to acquire a 3D image.
  • the photographing positions illustrated in FIG. 4 are illustrated as nine, this is for illustrative purposes only, and the photographing positions are not limited to nine.
  • the X-ray generator 230 sequentially irradiates X-rays at each of the photographing positions 1 to 9, thereby photographing for acquiring a three-dimensional image.
  • the X-ray generator 230 radiates X-rays at the central photographing position to acquire a 2D image.
  • the X-ray generator 230 sequentially acquires a portion of the 3D image by radiating X-rays sequentially at each of the photographing positions from the photographing position 1 located at one end to the central photographing position 5. Shooting to proceed. Next, the X-ray generation unit 230 radiates X-rays at the central photographing position 5 to perform imaging for acquiring a two-dimensional image (see FIG. 3).
  • the X-ray generation unit 230 sequentially performs the imaging operations at each photographing position from the photographing position 6 positioned after the center photographing position 5 to the photographing position 9 positioned at the other end thereof.
  • the imaging is performed to acquire the remaining image of the 3D image by irradiating X-rays.
  • photographing necessary for acquiring three-dimensional images at all photographing positions is performed. You can see that it has progressed. 5 and 6 have been illustrated as nine shooting positions, this is for illustrative purposes only, and the shooting positions are not limited to nine.
  • control module 310 is a continuous-shoot method for photographing a subject when the X-ray generator 230 rotates about the subject and reaches each photographing position, or each photographing position to be photographed.
  • the X-ray generator 230 may control the X-ray to be irradiated in a stop-and-shot manner in which the images are completely stopped and photographed after each stop.
  • the X-ray generator 230 may include a plurality of X-ray light sources provided for each photographing position.
  • the control module 310 does not rotate the X-ray generator 230 around the subject,
  • the X-ray light sources at the respective photographing positions are controlled to emit X-rays in the first or second order.
  • the control module 310 may include a subject.
  • the same result can be obtained by controlling the X-ray light sources at the respective photographing positions to irradiate the X-rays according to the first or second order without rotating the X-ray generator 230 around the.
  • at least one of the X-ray light source may be a field emission method using a nano-structure material field emission emitter.
  • the image converter 320 converts the data acquired under the control of the control module 310 into a two-dimensional image and a three-dimensional image.
  • the X-ray sensor of the X-ray detector 240 since the X-ray sensor of the X-ray detector 240 has a unit pixel in a matrix formed in a plurality of rows and a plurality of columns, each data obtained by the X-ray detector 240 receives X-rays is arranged in two dimensions. have. Therefore, for example, data obtained by radiating X-rays at a central photographing position may be reconstructed into a two-dimensional image by reconstructing them to correspond to each row and column.
  • the 3D image may be obtained by reconstructing data obtained by radiating X-rays at each photographing position, and the 3D image may be a tomography image or a 3D rendering image of volume data.
  • the two-dimensional image and the three-dimensional image acquisition mammography apparatus as described above may further include a calculation unit 330 for calculating the X-ray amount required to obtain the two-dimensional image and the three-dimensional image (Fig. 2).
  • the calculation unit 330 analyzes the data obtained by receiving the X-ray irradiated with a low dose or a normal dose to the subject, or the subject, such as the size and age of the subject Based on the relevant information, the exposure voltage (kVp), the current (mAs), and the exposure time of the X-rays are calculated (that is, the amount of X-rays required to acquire the two-dimensional and three-dimensional images) is calculated. For example, when calculating an appropriate exposure voltage, current, and exposure time, the calculation unit 330 calculates the density of the photographing object from the acquired data, and calculates the preset exposure voltage, current, and exposure time according to the calculated density. It can be calculated in a deterministic way.
  • control module 310 controls the X-ray amount irradiated at each photographing position to correspond to the X-ray amount calculated by the calculator 330.
  • the control module 310 may allow the dose for the two-dimensional image to be larger than the dose for the three-dimensional image. If the X-ray amount required to obtain the two-dimensional image is about 8-12 mAs, for example, about 10 mAs, the X-ray generator If the 230 controls the X-rays of the corresponding mAs at the central photographing position, and the amount of X-rays required to acquire the 3D image is 1 to 3 mAs at each photographing position, for example, 2 mAs, the X-ray generating unit 230 is at each photographing position. Each time, the X-rays of the corresponding mAs are controlled.
  • the above range is an arbitrary value, and the actual shooting conditions can be variously adjusted according to the shooting purpose, the thickness of the subject, the shooting position, the number of shots, and the like. It can be adjusted to be relatively larger than the dose for the image.
  • FIG. 7 to 9 are flowcharts illustrating an image acquisition method according to an embodiment of the present invention.
  • X-rays are irradiated at each photographing position in the order of the photographing for obtaining the two-dimensional image and the photographing for obtaining the three-dimensional image (S510).
  • step S510 for example, imaging is performed to obtain a two-dimensional image by radiating X-rays at a central photographing position (S511) and three-dimensional images by sequentially radiating X-rays at each photographing position. It may be provided with a step (S513) for taking a picture to obtain.
  • imaging is performed to acquire a part of the 3D image by sequentially irradiating X-rays from each photographing position from the photographing position located at one end to the central photographing position (S521).
  • imaging is performed to obtain a two-dimensional image by irradiating X-rays from the central photographing position, and X-rays are sequentially irradiated from each photographing position from the photographing position located after the center photographing position to the photographing position located at the other end. Therefore, the method may include the step S525 of taking a picture for acquiring the remaining image of the 3D image.
  • the 2D image and the 3D image data are acquired by receiving the X-rays irradiated at each photographing position (S530).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

본 발명은 한 번의 촬영 과정으로 이차원 영상 및 삼차원 영상을 동시에 획득할 수 있는 영상 획득 장치 및 방법을 제공하고자 한다. 이를 위하여, 본 발명은 이차원 영상을 획득하기 위한 제1 촬영과 삼차원 영상을 획득하기 위한 제2 촬영을 제어하는 제어 모듈, 제1 촬영에 따른 적어도 하나의 제1 위치 및 제2 촬영에 따른 복수의 제2 위치들에서 각각 제1 및 제2 선량으로 피검체에 엑스선을 조사하는 엑스선 발생부, 피검체에 조사된 엑스선을 수광하여 제1 및 제2 촬영에 대응하는 데이터들을 획득하는 엑스선 디텍터, 및 제1 촬영의 데이터를 이차원 영상으로 변환하고, 제2 촬영의 데이터를 삼차원 영상으로 변환하는 영상 변환부를 구비하되, 제1 선량은 제2 선량보다 크고, 제1 위치 및 제2 위치들은 사전 설정된 궤적 내에 존재한다.

Description

영상 획득 장치 및 방법
본 발명은 한 번의 촬영 과정으로 이차원 영상 및 삼차원 영상을 동시에 획득할 수 있는 영상 획득 장치 및 방법에 관한 것이다.
일반적으로 맘모그래피 장치는 유방암을 조기에 진단하기 위해 사용되는 엑스선 촬영 장치로서, 일정량의 엑스선을 피검체의 유방에 조사하고 이를 센서가 수광함으로써, 이차원 엑스선 영상(이하, 이차원 영상이라 한다.) 또는 삼차원 엑스선 영상(이하, 삼차원 영상이라 한다.)을 획득한다.
유방암 조기 진단을 위하여 유방을 촬영하는 방식으로는 크게 FFDM(full-field digital mammography) 모드, DBT(digital breast tomosynthesis) 모드, BCT(breast computed tomography) 모드가 있다. FFDM 모드는 이차원 영상을 획득하여 유방암을 조기 진단하기 위한 모드이고, DBT 모드는 FFDM 모드에서 식별이 어려운 매스(mass)의 검출률을 높이기 위해 엑스선 광원이 일정 각도 이동되는 모드이며, BCT 모드는 엑스선 광원과 센서를 일정 각도 이상 회전시켜 삼차원 영상을 획득하여 병변의 위치 정보를 자세히 알 수 있도록 하는 모드이다.
한편, 피검자의 개별적인 상황에 따라 유방암 조기 진단을 위해 이차원 영상 및 삼차원 영상이 모두 필요한 경우가 존재하는데, 종래의 맘모그래피 장치들은 한 번의 촬영 과정으로 이차원 영상 또는 삼차원 영상 중 하나의 영상만을 얻을 수 있으므로, 이차원 영상 및 삼차원 영상이 모두 필요한 경우에 피검자가 두 번 이상의 촬영 과정을 거쳐야 하는 문제점이 있었다.
따라서 상기와 같은 종래 기술은 한 번의 촬영 과정으로 이차원 영상 또는 삼차원 영상 중 하나의 영상만을 얻으므로 이차원 영상 및 삼차원 영상이 모두 필요한 경우에 피검자가 두 번 이상의 촬영과정을 거쳐야 하는 문제점이 있으며, 이러한 문제점을 해결하고자 하는 것이 본 발명의 과제이다.
따라서 본 발명은 이차원 영상을 획득하기 위한 촬영과 삼차원 영상을 획득하기 위한 촬영의 순서에 따라 각 촬영 위치에서 조사된 엑스선을 수광함으로써 이차원 및 삼차원 영상 데이터들을 획득하고, 획득된 데이터들을 이차원 영상 및 삼차원 영상으로 변환함으로써 한 번의 촬영 과정으로 이차원 영상 및 삼차원 영상을 동시에 획득할 수 있는 영상 획득 장치 및 방법을 제공하는 데 그 목적이 있다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시 예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 장치는, 이차원 영상을 획득하기 위한 제1 촬영과 삼차원 영상을 획득하기 위한 제2 촬영을 제어하는 제어 모듈, 제1 촬영에 따른 적어도 하나의 제1 위치 및 제2 촬영에 따른 복수의 제2 위치들에서 각각 제1 및 제2 선량으로 피검체에 엑스선을 조사하는 엑스선 발생부, 피검체에 조사된 엑스선을 수광하여 제1 및 제2 촬영에 대응하는 데이터들을 획득하는 엑스선 디텍터, 및 제1 촬영의 데이터를 이차원 영상으로 변환하고, 제2 촬영의 데이터를 삼차원 영상으로 변환하는 영상 변환부를 구비하되, 제1 선량은 제2 선량보다 크고, 제1 위치 및 제2 위치들은 사전 설정된 궤적 내에 존재한다.
한편, 상기 목적을 달성하기 위한 본 발명의 방법은, (a) 제1 촬영에 따른 적어도 하나의 제1 위치 및 제2 촬영에 따른 복수의 제2 위치들에서 각각 제1 및 제2 선량으로 피검체에 엑스선을 조사하는 단계, (b) 피검체에 조사된 엑스선을 수광하여 제1 및 제2 촬영에 대응하는 데이터들을 획득하는 단계, 및 (c) 제1 촬영의 데이터를 이차원 영상으로 변환하고, 제2 촬영의 데이터를 삼차원 영상으로 변환하는 단계를 구비하되, 제1 선량은 제2 선량보다 크고, 제1 위치 및 제2 위치들은 사전 설정된 궤적 내에 존재한다.
상기와 같은 본 발명은, 이차원 영상을 획득하기 위한 촬영과 삼차원 영상을 획득하기 위한 촬영의 순서에 따라 각 촬영 위치에서 조사된 엑스선을 수광함으로써 이차원 및 삼차원 영상 데이터들을 획득하고, 획득된 데이터들을 이차원 영상 및 삼차원 영상으로 변환함으로써 한 번의 촬영 과정으로 이차원 영상 및 삼차원 영상을 동시에 획득할 수 있다.
또한, 본 발명은 한 번의 촬영 과정으로 이차원 영상 및 삼차원 영상을 동시에 획득함으로써, 두 번의 영상 촬영에 따른 피검자의 불편을 줄일 수 있다.
도 1은 본 발명에 따른 영상 획득 장치를 개략적으로 도시한 도면;
도 2는 본 발명의 일 실시 예에 따른 영상 획득 장치의 블록도;
도 3은 촬영 위치가 0도인 위치에서 엑스선을 조사하는 촬영을 도시한 도면;
도 4는 각 촬영 위치에서 순차적으로 엑스선을 조사하는 촬영을 도시한 도면;
도 5는 일부 촬영 위치들에서 순차적으로 엑스선을 조사하는 촬영을 도시한 도면;
도 6은 일부 촬영 위치들에서 순차적으로 엑스선을 조사하는 촬영을 도시한 도면;
도 7은 본 발명의 일 실시 예에 따른 영상 획득 방법에 대한 흐름도;
도 8은 도 7에 도시된 S510 단계를 상세하게 도시한 흐름도; 및
도 9는 도 7에 도시된 S510 단계를 상세하게 도시한 흐름도이다.
상술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되어 있는 상세한 설명을 통하여 보다 명확해 질 것이며, 그에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.
그리고 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함" 또는 "구비"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함하거나 구비할 수 있는 것을 의미한다. 또한, 명세서 전체의 기재에 있어서 일부 구성요소들을 단수형으로 기재하였다고 해서, 본 발명이 그에 국한되는 것은 아니며, 해당 구성요소가 복수 개로 이루어질 수 있음을 알 것이다.
도 1은 본 발명에 따른 영상 획득 장치를 개략적으로 도시한 도면이다.
도 1에 도시된 바와 같이, 영상 획득 장치(100)는 본체(110), 겐트리(120), 엑스선 발생부(130), 가압 패널(140a), 지지패널(140b), 및 엑스선 디텍터(150)를 구비한다.
본체(110)는 일정 부분에 영상 획득 장치(100)를 조작하기 위한 입력 장치, 촬영 영상을 확인할 수 있는 디스플레이 장치, 겐트리(120)의 구동과 엑스선 디텍터(150)를 제어하는 제어 모듈, 및 획득된 데이터들을 이차원 영상 및 삼차원 영상으로 변환하는 영상 변환부를 구비한다. 겐트리(120)는 본체(110)의 일 측면에 고정된다.
엑스선 발생부(130)는 엑스선 광원을 구비하여 피검체에 엑스선을 조사하며, 겐트리(120) 전면 상단에 구비된다.
가압 패널(140a)은 엑스선 발생부(130)와 엑스선 디텍터(150) 사이에 위치하며, 지지패널(140b)의 상면에 환자의 유방(피검체)이 밀착되도록 가압한다.
지지 패널(140b)은 가압 패널(140a)과 엑스선 디텍터(150) 사이에 위치하며, 환자의 유방이 올려질 수 있도록 지지한다.
엑스선 디텍터(150)는 엑스선 발생부(130)에서 조사되어 피검체를 투과한 엑스선을 검출하여 데이터를 획득한다. 엑스선 디텍터(150)는 겐트리(120)에 일체로 연결된 거치대 상부에 안착되며, 겐트리(120)가 회전할 때 엑스선 발생부(130)와 대응되는 위치에서 함께 회전하거나 또는 엑스선 디텍터(150)는 고정된 상태로 엑스선 발생부(130)만 회전하도록 겐트리(120)의 상단 일부만 회전할 수 있다.
엑스선 디텍터(150)는 엑스선 센서를 포함할 수 있다. 엑스선 센서는 면형 센서로, 단위 픽셀 센서가 이차원적으로 배열된 형태 즉, 단위 픽셀 센서가 복수 행과 복수 열로 매트릭스(matrix)를 이루고 있는 형태이다. 엑스선 디텍터(150)는 엑스선 발생부(130)의 엑스선 광원으로부터 조사되고, 환자의 유방을 통과한 엑스선을 수광하여 피검체 중의 관심영역에 관한 엑스선 데이터를 획득한다.
도 2는 본 발명의 일 실시 예에 따른 영상 획득 장치의 블록도이다.
도 2에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 영상 획득 장치(200)는, 제어 모듈(310), 영상 변환부(320), 엑스선 발생부(230), 및 엑스선 디텍터(240)를 구비한다.
먼저, 엑스선 발생부(230)는 엑스선 광원을 구비하여, 피검체에 엑스선을 조사하며, 엑스선 디텍터(240)는 엑스선 센서를 구비하여, 엑스선 발생부(230)가 조사한 엑스선을 수광함으로써 데이터들을 획득한다. 이때, 엑스선 발생부(230)는 피검체를 중심으로 피검체 주위를 회전하면서 각 촬영 위치에서 엑스선을 조사하는데, 각 촬영 위치는 피검체를 중심으로 -45도 내지 +45도, 바람직하게는 -30도 내지 +30도 범위 내에 존재하며 인접하는 촬영 위치와의 간격은 1도 내지 5도, 바람직하게는 2도 간격일 수 있다.
다음으로, 제어 모듈(310)은 엑스선 발생부(230) 및 엑스선 디텍터(240)의 구동을 제어하며, 이차원 영상을 획득하기 위한 촬영과 삼차원 영상을 획득하기 위한 촬영의 순서를 제어한다.
제어 모듈(310)의 제어하에 진행되는 촬영의 순서는, 이차원 영상을 획득하기 위한 촬영이 진행된 다음에, 삼차원 영상을 획득하기 위한 촬영이 진행되는 순서(제1 순서) 또는 삼차원 영상의 일부를 획득하기 위한 촬영이 진행되고, 삼차원 영상의 일부를 획득한 후, 엑스선 발생부(230)가 이차원 영상 획득 위치로 천이하여, 이차원 영상을 획득하기 위한 촬영이 진행되고, 이차원 영상의 모두를 획득 완료 후, 삼차원 영상의 나머지 영상을 획득하기 위한 촬영이 진행되는 순서(제2 순서), 삼차원 영상을 획득하기 위한 촬영이 진행된 다음에 이차원 영상을 획득하기 위한 촬영이 진행되는 순서(제3 순서)일 수 있다. 제1 순서 내지 제3 순서에 있어서, 이차원 영상을 획득하기 위한 촬영은 일례로 엑스선 발생부(230)가 0도 즉, 피검체에 대해 수직 상방에 위치한 촬영 위치(이하에서는 "중앙 촬영 위치"라고 함)에서 엑스선을 조사함으로써 진행되고, 삼차원 영상을 획득하기 위한 촬영은 엑스선 발생부(230)가 그 외의 촬영 위치에서 순차적으로 엑스선을 조사함으로써 진행된다. 일례로 중앙 촬영 위치는 CC(cranial-caudal) 촬영 위치일 수 있다.
도 3 내지 도 4를 참고하여 제1 순서를 설명하면 다음과 같다.
제1 순서는 이차원 영상을 획득하기 위한 촬영이 진행된 다음에, 삼차원 영상을 획득하기 위한 촬영이 진행되는 순서이다. 먼저, 도 3에 도시된 바와 같이, 중앙 촬영 위치에서 엑스선 발생부(230)가 엑스선을 조사함으로써 이차원 영상을 획득하기 위한 촬영이 진행된다. 다음으로, 도 4에 도시된 바와 같이, 각 촬영 위치(1 내지 9)에서 엑스선 발생부(230)가 순차적으로 엑스선을 조사함으로써 삼차원 영상을 획득하기 위한 촬영이 진행된다. 도 4에 도시된 촬영 위치는 9개인 것으로 예시되었으나, 이는 예시를 위한 것일 뿐, 촬영 위치는 9개에 국한되지 않는다.
또한 제 3순서의 경우에는 도 4에 도시된 바와 같이, 먼저 각 촬영 위치(1 내지 9)에서 엑스선 발생부(230)가 순차적으로 엑스선을 조사함으로써 삼차원 영상을 획득하기 위한 촬영이 진행된다. 다음으로 도 3에 도시된 바와 같이, 중앙 촬영 위치에서 엑스선 발생부(230)가 엑스선을 조사함으로써 이차원 영상을 획득하기 위한 촬영이 진행된다.
도 5 내지 6을 참고하여 제2 순서를 설명하면 다음과 같다.
제2 순서는, 삼차원 영상의 일부를 획득하기 위한 촬영이 진행되고, 삼차원 영상의 일부를 획득한 후, 이차원 영상 획득 위치로 천이하여, 이차원 영상을 획득하기 위한 촬영이 진행되고, 이차원 영상의 획득 완료 후, 삼차원 영상의 나머지 영상을 획득하기 위한 촬영이 진행되는 순서이다. 먼저, 도 5에 도시된 바와 같이, 한쪽 끝에 위치한 촬영 위치(1)부터 중앙 촬영 위치(5)까지의 각 촬영 위치에서 엑스선 발생부(230)가 순차적으로 엑스선을 조사함으로써 삼차원 영상의 일부를 획득하기 위한 촬영이 진행된다. 다음으로, 중앙 촬영 위치(5)에서 엑스선 발생부(230)가 엑스선을 조사함으로써 이차원 영상을 획득하기 위한 촬영이 진행된다(도 3 참조). 다음으로, 도 6에 도시된 바와 같이, 중앙 촬영 위치(5) 다음에 위치한 촬영 위치(6)부터 다른 한쪽 끝에 위치한 촬영 위치(9)까지의 각 촬영 위치에서 엑스선 발생부(230)가 순차적으로 엑스선을 조사함으로써 삼차원 영상의 나머지 영상을 획득하기 위한 촬영이 진행된다. 도 5에 도시된 각 촬영 위치(1 내지 5)와 도 6에 도시된 각 촬영 위치(6 내지 9)를 참조하면, 도 4에 도시된 바와 같이, 모든 촬영 위치에서 삼차원 영상 획득에 필요한 촬영이 진행되었음을 알 수 있다. 도 5 및 6에 도시된 촬영 위치는 9개인 것으로 예시되었으나, 이는 예시를 위한 것일 뿐, 촬영 위치는 9개에 국한되지 않는다.
한편, 제어 모듈(310)은 엑스선 발생부(230)가 피검체를 중심으로 회전하면서 각 촬영 위치에 도달하면 피검체를 촬영하는 컨티뉴어스-샷(continuous-shoot) 방식 또는 촬영하고자 하는 각 촬영 위치마다 완전히 정지한 후 촬영하는 스톱-앤드-샷(stop-and-shot) 방식으로 엑스선 발생부(230)가 엑스선을 조사하도록 제어할 수 있다.
다른 한편, 엑스선 발생부(230)는 각 촬영 위치마다 마련된 복수의 엑스선 광원을 구비할 수 있는데, 이때, 제어 모듈(310)은, 피검체를 중심으로 엑스선 발생부(230)를 회전시키지 않고, 각 촬영 위치에 있는 엑스선 광원들을 제1 또는 제2 순서에 따라 엑스선을 조사하도록 제어한다.
즉, 본 출원인에 의한 국제출원번호 PCT/KR2014/010618에 기재된 엑스선 영상 촬영장치와 같이, 피검체에 대해 상기 촬영 위리를 따라 다수의 엑스선 광원들을 배치한 경우, 제어 모듈(310)은, 피검체를 중심으로 엑스선 발생부(230)를 회전시키지 않고, 각 촬영 위치에 있는 엑스선 광원들을 제1 또는 제2 순서에 따라 엑스선을 조사하도록 제어함으로써 같은 결과를 얻을 수 있다. 이때, 엑스선 광원 중 적어도 하나는 나노구조물질 전계방출형 에미터를 이용한 전계방출방식일 수 있다.
다음으로, 영상 변환부(320)는 제어 모듈(310)의 제어하에 획득된 데이터들을 이차원 영상 및 삼차원 영상으로 변환한다. 이때, 상술한 바와 같이 엑스선 디텍터(240)의 엑스선 센서는 단위 픽셀이 복수 행과 복수 열로 매트릭스를 이루고 있는 형태이므로, 엑스선 디텍터(240)가 엑스선을 수광함으로써 획득된 각각의 데이터는 이차원으로 배열되어 있다. 따라서, 일례로 중앙 촬영 위치에서 엑스선이 조사되어 획득된 데이터는 각 행과 열에 대응하도록 재구성함으로써 이차원 영상으로 재구성될 수 있다. 또한, 삼차원 영상은, 각 촬영 위치에서 엑스선이 조사되어 획득된 데이터들을 재구성하여 얻어질 수 있고, 이러한 삼차원 영상은 단층 합성 영상 또는 볼륨 데이터(volume data)의 3차원 렌더링 영상일 수 있다.
본 발명의 다른 실시 예로서, 상기와 같은 이차원 영상 및 삼차원 영상 획득 맘모그래피 장치는 이차원 영상 및 삼차원 영상을 획득하는데 필요한 엑스선량을 계산을 계산하는 계산부(330)를 더 구비할 수도 있다(도 2 참조).
보다 구체적으로, 제1 및 제2 순서에 따른 촬영 전, 계산부(330)는 피검체에 저선량 또는 정상 선량으로 조사된 엑스선을 수광함으로써 획득된 데이터를 분석하거나 피검체의 크기, 나이 등 피검체 관련 정보를 기초로 엑스선의 노출 전압(kVp), 전류(mAs), 및 노출시간을 계산(즉, 이차원 영상 및 삼차원 영상을 획득하는데 필요한 엑스선량을 계산)한다. 예를 들어, 적절한 노출 전압, 전류, 및 노출시간을 계산할 때, 계산부(330)는 획득된 데이터로부터 촬영 대상의 밀도를 계산하고 계산된 밀도에 따른 미리 설정된 노출 전압, 전류, 및 노출시간을 결정하는 방식으로 계산할 수 있다.
이때, 제어 모듈(310)은 각 촬영 위치에서 조사되는 엑스선량이 계산부(330)가 계산한 엑스선량에 대응하도록 제어한다.
예를 들어, 제어 모듈(310)은, 이차원 영상을 위한 선량이 삼차원 영상을 위한 선량보다 크도록 할 수 있는데, 이차원 영상을 획득하는데 필요한 엑스선량이 8~12mAs, 일례로 10mAs 내외라면 엑스선 발생부(230)가 중앙 촬영 위치에서 해당 mAs의 엑스선을 조사하도록 제어하며, 삼차원 영상을 획득하는데 필요한 엑스선량이 각 촬영위치마다 1~3mAs, 일례로 2mAs이라면, 엑스선 발생부(230)가 각 촬영 위치마다 해당 mAs의 엑스선을 조사하도록 제어한다. 다만, 위 범위는 임의의 값으로서 실제 촬영조건은 촬영 목적, 피검체의 두께, 촬영 위치, 촬영 회수 등에 따라 다양하게 조절 가능한바, 1회 촬영 시 허용된 선량 내에서 이차원 영상을 위한 선량이 삼차원 영상을 위한 선량 보다 상대적으로 크도록 조절될 수 있다.
도 7 내지 9는 본 발명의 일 실시 예에 따른 영상 획득 방법에 대한 흐름도이다.
도 7에 도시된 바와 같이, 이차원 영상 및 삼차원 영상 획득 방법은 먼저, 이차원 영상을 획득하기 위한 촬영과 삼차원 영상을 획득하기 위한 촬영의 순서에 따라 각 촬영 위치에서 엑스선을 조사한다(S510).
이때, S510 단계는, 도 8에 도시된 바와 같이, 일례로 중앙 촬영 위치에서 엑스선을 조사함으로써 이차원 영상을 획득하기 위한 촬영을 하는 단계(S511)와 각 촬영 위치에서 순차적으로 엑스선을 조사함으로써 삼차원 영상을 획득하기 위한 촬영을 하는 단계(S513)를 구비할 수 있다.
또는, S510 단계는, 도 9에 도시된 바와 같이, 한쪽 끝에 위치한 촬영 위치부터 중앙 촬영 위치까지의 각 촬영 위치에서 순차적으로 엑스선을 조사함으로써 삼차원 영상의 일부를 획득하기 위한 촬영을 하는 단계(S521), 중앙 촬영 위치에서 엑스선을 조사함으로써 이차원 영상을 획득하기 위한 촬영을 하는 단계(S523), 및 중앙 촬영 위치 다음에 위치한 촬영 위치부터 다른 한쪽 끝에 위치한 촬영 위치까지의 각 촬영 위치에서 순차적으로 엑스선을 조사함으로써 삼차원 영상의 나머지 영상을 획득하기 위한 촬영을 하는 단계(S525)를 구비할 수도 있다.
다음으로, 각 촬영 위치에서 조사된 엑스선을 수광함으로써 이차원 영상 및 삼차원 영상 데이터들을 획득한다(S530).
다음으로, 촬영 순서에 따라 획득한 데이터들을 이차원 영상 및 삼차원 영상으로 변환한다(S550).
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 치환, 변형 및 변경이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (10)

  1. 이차원 영상을 획득하기 위한 제1 촬영과 삼차원 영상을 획득하기 위한 제2 촬영을 제어하는 제어 모듈;
    상기 제1 촬영에 따른 적어도 하나의 제1 위치 및 상기 제2 촬영에 따른 복수의 제2 위치들에서 각각 정해진 제1 및 제2 선량으로 피검체에 엑스선을 조사하는 엑스선 발생부;
    상기 피검체에 조사된 엑스선을 수광하여 상기 제1 및 제2 촬영에 대응하는 데이터들을 획득하는 엑스선 디텍터; 및
    상기 제1 촬영의 데이터를 이차원 영상으로 변환하고, 상기 제2 촬영의 데이터를 삼차원 영상으로 변환하는 영상 변환부;를 구비하되,
    상기 제1 선량은 상기 제2 선량보다 크고, 상기 제1 위치 및 제2 위치들은 사전 설정된 궤적 내에 존재하는
    영상 획득 장치.
  2. 제 1항에 있어서,
    상기 제1 위치는 피검체의 중앙 촬영 위치에 배치되고, 상기 제2 위치들은 상기 제1 위치를 중심으로 사전 설정된 간격마다 이격되어 배치되는
    영상 획득 장치.
  3. 제 2항에 있어서,
    상기 피검체에 따른 상기 제1 및 제2 선량을 계산하는 계산부를 더 구비하는
    영상 획득 장치.
  4. 제 1항에 있어서,
    상기 엑스선 발생부는 적어도 하나의 엑스선 광원을 구비하고,
    상기 엑스선 광원은 상기 제1 및 제2 위치에서 스톱-앤드-샷 또는 컨티뉴어스-샷 방식으로 상기 피검체에 엑스선을 조사하는
    영상 획득 장치.
  5. 제 1항에 있어서,
    상기 엑스선 발생부는 상기 제1 및 제2 위치마다 엑스선 광원을 구비하고, 상기 엑스선 광원들은 상기 피검체에 엑스선을 조사하는
    영상 획득 장치.
  6. (a) 제1 촬영에 따른 적어도 하나의 제1 위치 및 제2 촬영에 따른 복수의 제2 위치들에서 각각 제1 및 제2 선량으로 피검체에 엑스선을 조사하는 단계;
    (b) 상기 피검체에 조사된 엑스선을 수광하여 상기 제1 및 제2 촬영에 대응하는 데이터들을 획득하는 단계; 및
    (c) 상기 제1 촬영의 데이터를 이차원 영상으로 변환하고, 상기 제2 촬영의 데이터를 삼차원 영상으로 변환하는 단계;를 구비하되,
    상기 제1 선량은 상기 제2 선량보다 크고, 상기 제1 위치 및 제2 위치들은 사전 설정된 궤적 내에 존재하는
    영상 획득 방법.
  7. 제 6항에 있어서
    상기 제1 위치는 피검체의 중앙 촬영 위치에 배치되고, 상기 제2 위치들은 상기 제1 위치를 중심으로 사전 설정된 간격마다 이격되어 배치되는
    영상 획득 방법.
  8. 제 6항에 있어서
    상기 (b) 단계는
    상기 제1 위치에서 상기 피검체에 엑스선을 조사한 후,
    상기 제2 위치에서 상기 피검체에 엑스선을 조사하는
    영상 획득 방법.
  9. 제 6항에 있어서
    상기 (b) 단계는
    상기 제2 위치의 일부에서 상기 피검체에 엑스선을 조사한 후,
    상기 제1 위치에서 상기 피검체에 엑스선을 조사하고,
    상기 제2 위치의 나머지에서 상기 피검체에 엑스선을 조사하는
    영상 획득 방법.
  10. 제 6항에 있어서,
    상기 (a) 단계 전
    상기 피검체에 따른 상기 제1 및 제2 선량을 계산하는 단계를 더 구비하는
    영상 획득 방법.
PCT/KR2016/007051 2015-06-30 2016-06-30 영상 획득 장치 및 방법 WO2017003223A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/741,234 US20180192966A1 (en) 2015-06-30 2016-06-30 Image acquisition device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0093294 2015-06-30
KR1020150093294A KR101748348B1 (ko) 2015-06-30 2015-06-30 영상 획득 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2017003223A1 true WO2017003223A1 (ko) 2017-01-05

Family

ID=57609340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007051 WO2017003223A1 (ko) 2015-06-30 2016-06-30 영상 획득 장치 및 방법

Country Status (3)

Country Link
US (1) US20180192966A1 (ko)
KR (1) KR101748348B1 (ko)
WO (1) WO2017003223A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082033A (ko) 2017-01-09 2018-07-18 삼성전자주식회사 음성을 인식하는 전자 장치
CN115903064A (zh) * 2022-11-03 2023-04-04 上海涛影医疗科技有限公司 一种平板探测器及其同步探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020191736A1 (en) * 2001-06-01 2002-12-19 Shimadzu Corporation Computer tomography apparatus and method
US20070140419A1 (en) * 2005-09-13 2007-06-21 Henri Souchay Method and apparatus for combining images
JP2007229254A (ja) * 2006-03-01 2007-09-13 Toshiba Corp X線撮像装置及びその方法
US20130129038A1 (en) * 2011-11-08 2013-05-23 Gamc Biotech Development Co.,Ltd. X-ray phase-shift contrast imaging method and system thereof
KR20140087213A (ko) * 2012-12-28 2014-07-09 삼성전자주식회사 엑스선 촬영 장치 및 입체 영상 생성 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008001902T5 (de) * 2007-07-19 2010-10-14 North Carolina State University Stationäre digitale Röntgen-Brust-Tomosynthese-Systeme und entsprechende Verfahren
CA2829349C (en) * 2011-03-08 2021-02-09 Hologic, Inc. System and method for dual energy and/or contrast enhanced breast imaging for screening, diagnosis and biopsy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020191736A1 (en) * 2001-06-01 2002-12-19 Shimadzu Corporation Computer tomography apparatus and method
US20070140419A1 (en) * 2005-09-13 2007-06-21 Henri Souchay Method and apparatus for combining images
JP2007229254A (ja) * 2006-03-01 2007-09-13 Toshiba Corp X線撮像装置及びその方法
US20130129038A1 (en) * 2011-11-08 2013-05-23 Gamc Biotech Development Co.,Ltd. X-ray phase-shift contrast imaging method and system thereof
KR20140087213A (ko) * 2012-12-28 2014-07-09 삼성전자주식회사 엑스선 촬영 장치 및 입체 영상 생성 방법

Also Published As

Publication number Publication date
KR20170003085A (ko) 2017-01-09
US20180192966A1 (en) 2018-07-12
KR101748348B1 (ko) 2017-06-19

Similar Documents

Publication Publication Date Title
EP3106093B1 (en) Patient positioning and imaging system
JP4851296B2 (ja) 放射線断層画像取得装置および放射線断層画像取得方法
KR101812658B1 (ko) 방사선 디텍터, 그에 따른 단층 촬영 장치, 및 엑스선 촬영 장치
WO2015069039A1 (ko) 다수의 엑스선원들을 구비하는 엑스선 영상 촬영 장치
US20100290707A1 (en) Image acquisition method, device and radiography system
WO2019103354A1 (ko) 치과용 콘-빔 씨티의 산란선 보정방법 및 보정장치
TW200514999A (en) Medical imaging diagnostic equipment
US9579071B2 (en) X-ray imaging apparatus and control method thereof
WO2016032256A1 (ko) 맘모그래피 시스템 및 맘모그래피 촬영 방법
WO2017082449A1 (ko) 다중 에너지 엑스선 촬영 및 광학 영상을 이용한 입체 영상 생성 방법 및 시스템
KR102368907B1 (ko) 구강 내 x선 촬영용 x선 발생장치 및 이를 포함하는 구강 내 x선 촬영 시스템
KR101215917B1 (ko) X선 피폭을 감소시킨 복합디지털x선 촬영장치
WO2018105963A1 (ko) 방사선 촬영 장치 및 이를 이용한 방사선 촬영 방법
WO2016064257A1 (ko) 구강 내 엑스선 촬영용 엑스선 발생장치, 가이드홀더 및 이를 포함하는 구강 내 엑스선 촬영 시스템
KR20140050479A (ko) 엑스선 발생 모듈, 엑스선 촬영 장치 및 엑스선 촬영 방법
WO2016129820A1 (en) Computed tomography system having cooling system
WO2016137157A1 (ko) 의료 영상 장치 및 의료 영상 처리 방법
KR20160139294A (ko) 의료 영상 장치 및 의료 영상 장치를 위한 방법
WO2018174389A1 (ko) 방사선 촬영 장치 및 이를 이용한 방사선 촬영 방법
WO2017003223A1 (ko) 영상 획득 장치 및 방법
KR101337489B1 (ko) 다기능 맘모그래피 장치
WO2017073996A1 (ko) 엑스선 ct 촬영장치 및 그 촬영방법
KR102120867B1 (ko) 엑스선 영상 장치 및 그에 따른 엑스선 영상 장치 제어방법
WO2016003013A1 (ko) 유방암 조기 진단 장치 및 방법
WO2014193110A1 (ko) 하전입자의 방사선량 측정 장치 및 영상장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818256

Country of ref document: EP

Kind code of ref document: A1