WO2017002899A1 - Spark plug - Google Patents

Spark plug Download PDF

Info

Publication number
WO2017002899A1
WO2017002899A1 PCT/JP2016/069394 JP2016069394W WO2017002899A1 WO 2017002899 A1 WO2017002899 A1 WO 2017002899A1 JP 2016069394 W JP2016069394 W JP 2016069394W WO 2017002899 A1 WO2017002899 A1 WO 2017002899A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
spark plug
metal shell
discharge electrode
discharge
Prior art date
Application number
PCT/JP2016/069394
Other languages
French (fr)
Japanese (ja)
Inventor
池田 裕二
淳 西山
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2017526423A priority Critical patent/JPWO2017002899A1/en
Publication of WO2017002899A1 publication Critical patent/WO2017002899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the present invention relates to a spark plug in which a pulse voltage for spark discharge and an electromagnetic wave supplied as energy to the spark discharge are fed to a center electrode.
  • an ignition plug has been developed in which local plasma is generated by using discharge of an ignition plug and this plasma is expanded by electromagnetic waves such as microwaves (for example, Patent Document 1 by the present applicant).
  • the spark plug of Patent Document 1 is provided with a mixing circuit that mixes a high voltage pulse for spark discharge and microwave energy from a microwave oscillator, and this mixing circuit is connected to the input terminal of the spark plug. Is done. Then, a high voltage pulse for spark discharge is guided to the discharge electrode of the spark plug through the inside of the center electrode, thereby generating a spark discharge with the ground electrode.
  • the microwave is guided to the tip of the spark plug through the outer surface of the center electrode, and the microwave is radiated from this tip. According to this spark plug, ignition is performed using both spark discharge and microwave, so that ignition (ignition) stronger than before can be performed, and combustion efficiency can be improved.
  • Non-Patent Document 1 racing plugs developed for automobiles suitable for racing and circuit driving have been put into practical use.
  • lacing plugs there is a slant type (diagonal) type in which the discharge electrode is retracted inside the metal shell to increase the heat value and the cooling capacity to improve the durability.
  • JP 2009-036198 A “Racing Plugs
  • Patent Document 1 The applicant has conducted various studies for improving the ignition performance of a microwave-based spark plug represented by Patent Document 1.
  • the present invention has been made in view of the above points.
  • a spark plug of the present invention includes a terminal portion that receives a pulse voltage generated by an ignition coil and an electromagnetic wave generated by an electromagnetic wave oscillator, a center electrode that transmits the pulse voltage and the electromagnetic wave input from the terminal portion, and a center electrode A discharge electrode attached to the tip of the metal plate, an insulator formed with a shaft hole into which the center electrode is fitted, a cylindrical metal shell surrounding the insulator, and one end at the tip of the metal shell A ground electrode that is joined and has the other end facing the discharge electrode is provided, and the discharge electrode is located in a cylinder of the metal shell.
  • the ignition performance of a microwave-based spark plug can be further improved.
  • the front view of the partially cutaway cross section of the spark plug according to the present embodiment The front view of the notch cross section of the spark plug which concerns on a comparative example.
  • emitted from the ignition plug which concerns on this embodiment is shown, (a) shows the horizontal cross section between discharge gaps, (b) shows a longitudinal cross section.
  • emitted from the ignition plug which concerns on a comparative example is shown, (a) shows the horizontal cross section between discharge gaps, (b) shows a longitudinal cross section.
  • the spark plug 1 of the present embodiment includes a center electrode 2, an insulator 3, a metal shell 4, a ground electrode 5, and a discharge electrode 6.
  • the center electrode 2 is a cylindrical conductor and transmits a pulse voltage inside thereof, while transmitting a microwave on its outer surface.
  • the pulse voltage is generated by an ignition coil (not shown), and this is input to the center electrode 2 from a terminal portion (not shown) of the ignition plug 1.
  • the microwave is generated by a microwave oscillator (not shown) and is similarly input to the center electrode 2 from the terminal portion.
  • the insulator 3 is a cylindrical insulator (for example, formed of ceramic), and a shaft hole into which the center electrode 2 is fitted is formed.
  • the metal shell 4 is formed of a cylindrical metal conductor formed so as to surround the insulator 3.
  • the discharge electrode 6 is joined to the tip of the center electrode 2.
  • One end of the ground electrode 5 is joined to the tip of the metal shell 4, while the other end faces the discharge electrode 6.
  • the spark plug 1 has a configuration in which the discharge electrode 6 is further retracted to the back side of the metal shell 4. That is, the discharge electrode 6 is located in the cylinder of the metal shell 4 as shown in FIG. This is different from the conventional microwave-based spark plug 100 as shown in FIG. 2 (the spark plug 100 has a configuration in which the tip of the center electrode 102 protrudes from the metal shell 104). Due to the difference in configuration, the spark plug 1 has excellent advantages as will be described later.
  • the surface of the ground electrode 5 that faces the discharge electrode 6 is inclined with respect to the front end surface of the discharge electrode 6 (hence, called a slant (diagonal) plug).
  • the microwave transmitted through the outer surface of the center electrode 2 is radiated (radiated) from the tip of the discharge electrode 6 (not shown in the figure) as shown in FIG.
  • This microwave is radiated to the tip side, the base side, or the metal shell 4 side of the ground electrode 5 (in the figure, the microwave radiated to the tip side of the ground electrode 5 is radiated to the root side M1.
  • M2 and M3 emitted to the inner surface of the metal shell 4.
  • the electric field generated near the tip side of the ground electrode 5 is shown.
  • the microwave is radiated not only to the tip end side of the ground electrode 5 but also to the metal shell 4 side, and is radiated in a wide range.
  • the microwave is radiated exclusively to the tip end side of the ground electrode 5, and the microwave radiated to the metal shell 4 side is small. 4 and 5 show the results of confirming this by electric field calculation. As shown in FIG.
  • a conventional spark plug 100 that is, a spark plug having a shape in which the center electrode 102 protrudes
  • most of the microwaves are radiated into the cylinder as a near electromagnetic field and become a loss.
  • the plug shape has a closed-end coaxial structure, which is suitable for radiating microwaves over a wide range.
  • the surface of the ground electrode 5 that faces the discharge electrode 6 is inclined with respect to the tip surface of the discharge electrode 6.
  • the electric field calculation result of FIG. 4 is not a technical effect due to the fact that the surface of the ground electrode 5 that faces the discharge electrode 6 is inclined with respect to the tip surface of the discharge electrode 6, but the discharge electrode 6 is the main component.
  • retracted with respect to the metal fitting 4 is shown.
  • an effect equivalent to or greater than that of an ignition plug having a configuration in which the surface of the ground electrode 5 facing the discharge electrode 6 is inclined with respect to the tip surface of the discharge electrode 6 as in the case of the spark plug 1 can be obtained. It is thought that
  • the slant type spark plug 1 is originally manufactured for the purpose of increasing the heat value and the cooling capacity to improve the durability as described above.
  • the spark plug 1 as a microwave-based spark plug, the applicant improves the electric field distribution due to the microwave radiated from the microwave-utilized spark plug, resulting in a combustion improvement effect. I found that it can be improved. That is, the present inventors have found a peculiar effect that is completely different from the technical effect assumed conventionally by superimposing microwaves on a slant-type spark plug. In this respect, the present invention has great significance.
  • the tip end face of the discharge electrode 6 is located upstream of the end face of the metal shell 4, so that the inner peripheral surface of the metal shell 4, the center electrode 2, and the discharge electrode An annular space is formed as a cavity between the outer peripheral surface of 6.
  • the inner peripheral surface of the metal shell 4 acts as a receiving antenna, the electric fields E2 and E3 are effectively formed by the electromagnetic waves irradiated from the tip of the discharge electrode 6, and the annular space as the cavity becomes the electric field generation space. In this electric field generation space, the plasma discharge generated by the pulse voltage is maintained and expanded, and the combustion efficiency is improved.
  • the conventional slant-type spark plug is a plug originally put into practical use for a rotary engine.
  • the fuel used by the internal combustion engine (engine) is not limited to gasoline, but may be other types of fuel such as light oil and natural gas.

Landscapes

  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

[Problem] To further improve the ignition performance of a microwave-use-type spark plug. [Solution] A spark plug includes: a center electrode for transmitting a pulse voltage and electromagnetic waves; a discharge electrode mounted to the tip end of the center electrode; an insulator having formed therein a shaft hole into which the center electrode is fitted; a cylindrical metal shell for surrounding the periphery of the insulator; and a ground electrode having one end section joined to the tip end of the metal shell and the other end section facing the discharge electrode. The discharge electrode is positioned inside the cylinder of the metal shell.

Description

点火プラグSpark plug
 本発明は、火花放電のためのパルス電圧及び火花放電にエネルギとして供給される電磁波が中心電極に給電される点火プラグに関する。 The present invention relates to a spark plug in which a pulse voltage for spark discharge and an electromagnetic wave supplied as energy to the spark discharge are fed to a center electrode.
 従来から、点火プラグの放電を用いて局所的なプラズマを作り、このプラズマをマイクロ波等の電磁波により拡大させる点火プラグが開発されている(例えば、本願出願人による特許文献1)。特許文献1の点火プラグにおいては、火花放電のための高電圧パルスとマイクロ波発振器からのマイクロ波のエネルギとを混合する混合回路が設けられており、この混合回路が点火プラグの入力端子に接続される。そして、火花放電のための高電圧パルスが中心電極の内部を通って点火プラグの放電電極に導かれ、接地電極との間でスパーク放電を生じさせる。一方、マイクロ波は中心電極の外表面を通って点火プラグの先端部に導かれることにより、この先端部からマイクロ波が放射される。この点火プラグによれば、スパーク放電とマイクロ波の両方を用いて点火を行うので、従来よりも強力な点火(着火)が可能となり、燃焼効率を高めることができる。 2. Description of the Related Art Conventionally, an ignition plug has been developed in which local plasma is generated by using discharge of an ignition plug and this plasma is expanded by electromagnetic waves such as microwaves (for example, Patent Document 1 by the present applicant). The spark plug of Patent Document 1 is provided with a mixing circuit that mixes a high voltage pulse for spark discharge and microwave energy from a microwave oscillator, and this mixing circuit is connected to the input terminal of the spark plug. Is done. Then, a high voltage pulse for spark discharge is guided to the discharge electrode of the spark plug through the inside of the center electrode, thereby generating a spark discharge with the ground electrode. On the other hand, the microwave is guided to the tip of the spark plug through the outer surface of the center electrode, and the microwave is radiated from this tip. According to this spark plug, ignition is performed using both spark discharge and microwave, so that ignition (ignition) stronger than before can be performed, and combustion efficiency can be improved.
 一方、レースやサーキット走行に適した自動車用に開発されたレーシングプラグが実用化されている(非特許文献1)。このレーシングプラグの中には、放電電極を主体金具の内側に引っ込めることにより、熱価を高めて冷却能力を高めて耐久性を向上させたスラント(斜方)タイプがある。 On the other hand, racing plugs developed for automobiles suitable for racing and circuit driving have been put into practical use (Non-Patent Document 1). Among these lacing plugs, there is a slant type (diagonal) type in which the discharge electrode is retracted inside the metal shell to increase the heat value and the cooling capacity to improve the durability.
特開2009-036198号公報JP 2009-036198 A
 出願人は、特許文献1に代表されるマイクロ波利用型の点火プラグの点火性能向上のため、様々な検討を行ってきた。本発明は、以上の点に鑑みてなされたものである。 The applicant has conducted various studies for improving the ignition performance of a microwave-based spark plug represented by Patent Document 1. The present invention has been made in view of the above points.
 本発明の点火プラグは、点火コイルで生成されたパルス電圧と電磁波発振器で生成された電磁波を受ける端子部と、該端子部から入力されたパルス電圧と電磁波とを伝送する中心電極と、中心電極の先端部に装着される放電電極と、該中心電極が嵌め込まれる軸孔が形成された絶縁碍子と、該絶縁碍子の周囲を囲む筒状の主体金具と、一端部が該主体金具の先端に接合され他端部が放電電極に対向する接地電極を備え、前記放電電極が主体金具の筒内に位置することを特徴とする。 A spark plug of the present invention includes a terminal portion that receives a pulse voltage generated by an ignition coil and an electromagnetic wave generated by an electromagnetic wave oscillator, a center electrode that transmits the pulse voltage and the electromagnetic wave input from the terminal portion, and a center electrode A discharge electrode attached to the tip of the metal plate, an insulator formed with a shaft hole into which the center electrode is fitted, a cylindrical metal shell surrounding the insulator, and one end at the tip of the metal shell A ground electrode that is joined and has the other end facing the discharge electrode is provided, and the discharge electrode is located in a cylinder of the metal shell.
 本発明によれば、マイクロ波利用型の点火プラグの点火性能を更に向上させることができる。 According to the present invention, the ignition performance of a microwave-based spark plug can be further improved.
本実施形態に係る点火プラグの一部切り欠き断面の正面図。The front view of the partially cutaway cross section of the spark plug according to the present embodiment. 比較例に係る点火プラグの一部切り欠き断面の正面図。The front view of the notch cross section of the spark plug which concerns on a comparative example. 上記点火プラグから輻射されるマイクロ波による電界分布の模式図。The schematic diagram of the electric field distribution by the microwave radiated | emitted from the said ignition plug. 本実施形態に係る点火プラグから輻射されるマイクロ波による電界強度分布の計算例を示し、(a)は、放電ギャップ間の水平断面を、(b)は縦断面を示す。The calculation example of the electric field strength distribution by the microwave radiated | emitted from the ignition plug which concerns on this embodiment is shown, (a) shows the horizontal cross section between discharge gaps, (b) shows a longitudinal cross section. 比較例に係る点火プラグから輻射されるマイクロ波による電界強度分布の計算例を示し、(a)は、放電ギャップ間の水平断面を、(b)は縦断面を示す。The calculation example of the electric field strength distribution by the microwave radiated | emitted from the ignition plug which concerns on a comparative example is shown, (a) shows the horizontal cross section between discharge gaps, (b) shows a longitudinal cross section.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the following embodiment is a preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.
 図1を参照して、本実施形態の点火プラグ1は、中心電極2、絶縁碍子3、主体金具4、接地電極5、放電電極6を備える。中心電極2は円柱状の導体であって、その内部でパルス電圧を伝送する一方、その外表面でマイクロ波を伝送する。パルス電圧は図示しない点火コイルで生成され、これが点火プラグ1の図示しない端子部から中心電極2に入力される。一方、マイクロ波は、図示しないマイクロ波発振器で生成され、同じく上記端子部から中心電極2に入力される。 Referring to FIG. 1, the spark plug 1 of the present embodiment includes a center electrode 2, an insulator 3, a metal shell 4, a ground electrode 5, and a discharge electrode 6. The center electrode 2 is a cylindrical conductor and transmits a pulse voltage inside thereof, while transmitting a microwave on its outer surface. The pulse voltage is generated by an ignition coil (not shown), and this is input to the center electrode 2 from a terminal portion (not shown) of the ignition plug 1. On the other hand, the microwave is generated by a microwave oscillator (not shown) and is similarly input to the center electrode 2 from the terminal portion.
 絶縁碍子3は、筒状の絶縁体(例えばセラミックで形成される)であり、中心電極2が嵌め込まれる軸孔が形成されている。主体金具4は、この絶縁碍子3を囲むように形成された筒状の金属導体で形成される。主体金具4の外周部には、内燃機関のシリンダヘッドの点火プラグ取付孔に螺合する図示しない雌ネジ部が設けられている。放電電極6は、中心電極2の先端に接合される。接地電極5は、その一端が主体金具4の先端に接合される一方、他端は放電電極6に対向する。 The insulator 3 is a cylindrical insulator (for example, formed of ceramic), and a shaft hole into which the center electrode 2 is fitted is formed. The metal shell 4 is formed of a cylindrical metal conductor formed so as to surround the insulator 3. On the outer peripheral portion of the metal shell 4, a female screw portion (not shown) that is screwed into a spark plug mounting hole of a cylinder head of the internal combustion engine is provided. The discharge electrode 6 is joined to the tip of the center electrode 2. One end of the ground electrode 5 is joined to the tip of the metal shell 4, while the other end faces the discharge electrode 6.
 更に、点火プラグ1は、更に放電電極6が主体金具4の奥側に引っ込んだ構成となっている。つまり、図1に示すように放電電極6が主体金具4の筒内に位置している。この点、図2に示すような従来のマイクロ波利用型点火プラグ100とは異なる(この点火プラグ100では、中心電極102の先端部が主体金具104に対して突き出した構成となっている)。そしてこの構成の相違により、後述するように点火プラグ1は、優れた利点を有する。 Furthermore, the spark plug 1 has a configuration in which the discharge electrode 6 is further retracted to the back side of the metal shell 4. That is, the discharge electrode 6 is located in the cylinder of the metal shell 4 as shown in FIG. This is different from the conventional microwave-based spark plug 100 as shown in FIG. 2 (the spark plug 100 has a configuration in which the tip of the center electrode 102 protrudes from the metal shell 104). Due to the difference in configuration, the spark plug 1 has excellent advantages as will be described later.
 更に、点火プラグ1では、接地電極5のうち放電電極6と対向する面が、放電電極6の先端面に対して傾斜している(それゆえ、スラント(斜め)型プラグと呼ばれている)。 Further, in the spark plug 1, the surface of the ground electrode 5 that faces the discharge electrode 6 is inclined with respect to the front end surface of the discharge electrode 6 (hence, called a slant (diagonal) plug). .
 上記のパルス電圧が中心電極2から放電電極6に伝送されると、放電電極6と接地電極5との間に生じる電位差によりスパーク放電が生じる。また、中心電極2の外表面を伝送したマイクロ波は、図3に示すように、放電電極6の先端部(同図では図示省略している)から放射(輻射)される。このマイクロ波は、接地電極5の先端側、根元側、或いは主体金具4の側に放射される(同図では、接地電極5の先端側に放射されるマイクロ波をM1、根元側に放射されるマイクロ波をM2、主体金具4の内面に放射されるマイクロ波をM3と表示している。また、マイクロ波により生成される電界のうち、接地電極5の先端側近傍に生成される電界をE1、接地電極5の根元側近傍に生成される電界をE2、主体金具4側に生成される電界をE3と表示している)。つまり、マイクロ波が接地電極5の先端側のみではなく、主体金具4の側にも放射され、広範囲に放射される。一方、従来の点火プラグ100では、マイクロ波は専ら接地電極5の先端側に輻射され、主体金具4側に放射されるマイクロ波は少ない。図4、5は、このことを電界計算により確認した結果を示している。図5に示すように従来の点火プラグ100、つまり中心電極102が突出した形状の点火プラグでは、マイクロ波の多くは筒内に近接電磁場として輻射され損失となる。一方、図4に示すようにスラント型のプラグである点火プラグ1では、プラグ形状が閉端同軸構造となっているおり、マイクロ波を広範囲に輻射させることについて好適な形状となっている。これにより、電界分布が改善でき、燃焼改善効果の向上、低電力化が可能となる。 When the above pulse voltage is transmitted from the center electrode 2 to the discharge electrode 6, a spark discharge is generated due to a potential difference generated between the discharge electrode 6 and the ground electrode 5. Further, the microwave transmitted through the outer surface of the center electrode 2 is radiated (radiated) from the tip of the discharge electrode 6 (not shown in the figure) as shown in FIG. This microwave is radiated to the tip side, the base side, or the metal shell 4 side of the ground electrode 5 (in the figure, the microwave radiated to the tip side of the ground electrode 5 is radiated to the root side M1. M2 and M3 emitted to the inner surface of the metal shell 4. Of the electric field generated by the microwave, the electric field generated near the tip side of the ground electrode 5 is shown. E1, the electric field generated near the base side of the ground electrode 5 is indicated as E2, and the electric field generated on the metal shell 4 side is indicated as E3). That is, the microwave is radiated not only to the tip end side of the ground electrode 5 but also to the metal shell 4 side, and is radiated in a wide range. On the other hand, in the conventional spark plug 100, the microwave is radiated exclusively to the tip end side of the ground electrode 5, and the microwave radiated to the metal shell 4 side is small. 4 and 5 show the results of confirming this by electric field calculation. As shown in FIG. 5, in a conventional spark plug 100, that is, a spark plug having a shape in which the center electrode 102 protrudes, most of the microwaves are radiated into the cylinder as a near electromagnetic field and become a loss. On the other hand, as shown in FIG. 4, in the spark plug 1 which is a slant plug, the plug shape has a closed-end coaxial structure, which is suitable for radiating microwaves over a wide range. As a result, the electric field distribution can be improved, the combustion improvement effect can be improved, and the power can be reduced.
 なお、点火プラグ1は、接地電極5のうち放電電極6と対向する面が、放電電極6の先端面に対して傾斜しているが、図4の電界計算では、計算モデルの単純化の為、接地電極5のうち放電電極6と対向する面は放電電極6の先端面に対して傾斜しておらず、平行になっている。つまり、図4の電界計算結果は、接地電極5のうち放電電極6と対向する面が、放電電極6の先端面に対して傾斜していることによる技術的効果ではなく、放電電極6が主体金具4に対して奥に引っ込んだ構成としたことによる効果を示したものである。しかしながら、点火プラグ1のように、接地電極5のうち放電電極6と対向する面が、放電電極6の先端面に対して傾斜した構成の点火プラグによってもこれと同等又はそれ以上の効果が得られるものと考えられる。 In the spark plug 1, the surface of the ground electrode 5 that faces the discharge electrode 6 is inclined with respect to the tip surface of the discharge electrode 6. However, in the electric field calculation of FIG. 4, the calculation model is simplified. The surface of the ground electrode 5 that faces the discharge electrode 6 is not inclined with respect to the distal end surface of the discharge electrode 6 but is parallel to it. That is, the electric field calculation result of FIG. 4 is not a technical effect due to the fact that the surface of the ground electrode 5 that faces the discharge electrode 6 is inclined with respect to the tip surface of the discharge electrode 6, but the discharge electrode 6 is the main component. The effect by having set it as the structure retracted | retracted with respect to the metal fitting 4 is shown. However, an effect equivalent to or greater than that of an ignition plug having a configuration in which the surface of the ground electrode 5 facing the discharge electrode 6 is inclined with respect to the tip surface of the discharge electrode 6 as in the case of the spark plug 1 can be obtained. It is thought that
 なお、本来、スラント型の点火プラグ1は、上述のように熱価を高めて冷却能力を高めて耐久性を向上させることを目的に製造されたものである。これに対し、出願人は、この点火プラグ1をマイクロ波利用型の点火プラグとして活用することにより、マイクロ波利用型の点火プラグから放射されるマイクロ波による電界分布が改善し、燃焼改善効果が向上できることを見出した。つまり、スラント型の点火プラグにマイクロ波を重畳させることによって従来想定されていた技術的効果とは全く異なる特異な効果を見出した。この点において本発明は大きな意義を有する。 In addition, the slant type spark plug 1 is originally manufactured for the purpose of increasing the heat value and the cooling capacity to improve the durability as described above. On the other hand, by using the spark plug 1 as a microwave-based spark plug, the applicant improves the electric field distribution due to the microwave radiated from the microwave-utilized spark plug, resulting in a combustion improvement effect. I found that it can be improved. That is, the present inventors have found a peculiar effect that is completely different from the technical effect assumed conventionally by superimposing microwaves on a slant-type spark plug. In this respect, the present invention has great significance.
 スラントプラグを用いることで生じる特異な効果をまとめると、放電電極6の先端端面が主体金具4の端面よりも上流側に位置することで、主体金具4の内周面と中心電極2及び放電電極6の外周面との間にキャビティとして環状空間が形成される。そして、主体金具4の内周面が受信アンテナとして作用し、放電電極6の先端から照射される電磁波によって電界E2、E3が効果的に形成され、キャビティとしての環状空間が電界生成空間となる。この電界生成空間において、パルス電圧によって生じるプラズマ放電が維持拡大され、燃焼効率が向上する。 To summarize the peculiar effects produced by using the slant plug, the tip end face of the discharge electrode 6 is located upstream of the end face of the metal shell 4, so that the inner peripheral surface of the metal shell 4, the center electrode 2, and the discharge electrode An annular space is formed as a cavity between the outer peripheral surface of 6. The inner peripheral surface of the metal shell 4 acts as a receiving antenna, the electric fields E2 and E3 are effectively formed by the electromagnetic waves irradiated from the tip of the discharge electrode 6, and the annular space as the cavity becomes the electric field generation space. In this electric field generation space, the plasma discharge generated by the pulse voltage is maintained and expanded, and the combustion efficiency is improved.
 以上、本発明の実施形態について説明した。本発明の範囲はあくまでも特許請求の範囲に記載された発明に基づいて定められるものであり、上記実施形態に限定されるべきものではない。 The embodiment of the present invention has been described above. The scope of the present invention is determined based on the invention described in the claims, and should not be limited to the above embodiment.
 例えば電磁波の一例としてマイクロ波を例に説明したが、他の波長域の電磁波であってもよい。また、従来のスラント型の点火プラグは、元々ロータリーエンジン用に実用化されたプラグであるが、マイクロ波等の電磁波利用型プラグとして使用する限りにおいては、レシプロエンジンにおいて使用しても優れた作用効果を奏する。また、内燃機関(エンジン)が使用する燃料としては、ガソリンに限らず、軽油、天然ガス等、他の種類の燃料でもよい。 For example, although microwaves have been described as an example of electromagnetic waves, electromagnetic waves in other wavelength ranges may be used. In addition, the conventional slant-type spark plug is a plug originally put into practical use for a rotary engine. However, as long as it is used as an electromagnetic wave type plug such as a microwave, it has an excellent effect even when used in a reciprocating engine. There is an effect. Further, the fuel used by the internal combustion engine (engine) is not limited to gasoline, but may be other types of fuel such as light oil and natural gas.
1  点火プラグ
2  中心電極
3  絶縁碍子
4  主体金具
5  接地電極
6  放電電極
1 Spark plug 2 Center electrode 3 Insulator 4 Metal shell 5 Ground electrode 6 Discharge electrode

Claims (3)

  1.  点火コイルで生成されたパルス電圧と電磁波発振器で生成された電磁波とを伝送する中心電極と、
     中心電極の先端部に装着される放電電極と、
     該中心電極が嵌め込まれる軸孔が形成された絶縁碍子と、
     該絶縁碍子の周囲を囲む筒状の主体金具と、
     一端部が該主体金具の先端に接合され、他端部が放電電極に対向する接地電極とを備えた点火プラグであって、
     前記放電電極が主体金具の筒内に位置することを特徴とする点火プラグ。
    A central electrode for transmitting the pulse voltage generated by the ignition coil and the electromagnetic wave generated by the electromagnetic wave oscillator;
    A discharge electrode attached to the tip of the center electrode;
    An insulator having a shaft hole into which the center electrode is fitted;
    A cylindrical metal shell surrounding the periphery of the insulator;
    One end is joined to the tip of the metal shell, the other end is a spark plug provided with a ground electrode facing the discharge electrode,
    The spark plug is characterized in that the discharge electrode is located in a cylinder of the metal shell.
  2.  接地電極の他端部の放電電極との対向面が、放電電極の先端面に対して傾斜していることを特徴とする、請求項1に記載の点火プラグ。 The spark plug according to claim 1, wherein a surface of the other end of the ground electrode facing the discharge electrode is inclined with respect to the tip surface of the discharge electrode.
  3.  前記主体金具の内周面と中心電極及び放電電極の外周面との間で形成する環状空間を電界生成空間としたことを特徴とする点火プラグ。 An ignition plug characterized in that an annular space formed between the inner peripheral surface of the metal shell and the outer peripheral surfaces of the center electrode and the discharge electrode is used as an electric field generating space.
PCT/JP2016/069394 2015-07-02 2016-06-30 Spark plug WO2017002899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526423A JPWO2017002899A1 (en) 2015-07-02 2016-06-30 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-133845 2015-07-02
JP2015133845 2015-07-02

Publications (1)

Publication Number Publication Date
WO2017002899A1 true WO2017002899A1 (en) 2017-01-05

Family

ID=57608250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069394 WO2017002899A1 (en) 2015-07-02 2016-06-30 Spark plug

Country Status (2)

Country Link
JP (1) JPWO2017002899A1 (en)
WO (1) WO2017002899A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289321A (en) * 2001-01-18 2002-10-04 Denso Corp Spark plug
JP2007113570A (en) * 2005-09-20 2007-05-10 Imagineering Kk Ignition device, internal combustion engine, ignition plug, plasma device, exhaust gas decomposition device, ozone generation/sterilization/infection device, and deodorizing device
JP2009036198A (en) * 2007-07-12 2009-02-19 Imagineering Kk Ignition or plasma generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289321A (en) * 2001-01-18 2002-10-04 Denso Corp Spark plug
JP2007113570A (en) * 2005-09-20 2007-05-10 Imagineering Kk Ignition device, internal combustion engine, ignition plug, plasma device, exhaust gas decomposition device, ozone generation/sterilization/infection device, and deodorizing device
JP2009036198A (en) * 2007-07-12 2009-02-19 Imagineering Kk Ignition or plasma generation device

Also Published As

Publication number Publication date
JPWO2017002899A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP5632993B2 (en) Mixer, matcher, ignition unit, and plasma generator
RU2352041C1 (en) Ignition plug with radio frequency plasma
JP2011150830A (en) High frequency plasma ignition device
WO2015163366A1 (en) Spark plug and socket
JP6191030B2 (en) Plasma generator and internal combustion engine
WO2017002899A1 (en) Spark plug
WO2013077382A1 (en) Spark plug and internal combustion engine
US20170152830A1 (en) Ignition unit and system
WO2017073760A1 (en) Ignition plug and ignition device
WO2017065310A1 (en) Ignition device
WO2016108283A1 (en) Ignition system, and internal combustion engine
JP5294960B2 (en) Spark ignition internal combustion engine
WO2016129504A1 (en) Spark plug for internal combustion engine
JP6044383B2 (en) Spark plug
JP6715600B2 (en) Spark plug for internal combustion engine
WO2016125857A1 (en) Spark plug
JP2010102864A (en) Spark plug of spark ignition type internal combustion engine
JP2010096144A (en) Spark-ignition internal combustion engine
JP2010249029A (en) Spark ignition type internal combustion engine
JP2010096127A (en) Ignition plug arrangement for spark ignition internal combustion engine
JP5916055B2 (en) Ignition device for spark ignition internal combustion engine
JP2014154218A (en) Ignition device
JP5225185B2 (en) Spark ignition internal combustion engine
JP2022511889A (en) Ignition system and prime mover products
JP5289156B2 (en) Spark plug for spark ignition internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526423

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16818007

Country of ref document: EP

Kind code of ref document: A1