WO2017002451A1 - 位相差顕微鏡および撮像方法 - Google Patents

位相差顕微鏡および撮像方法 Download PDF

Info

Publication number
WO2017002451A1
WO2017002451A1 PCT/JP2016/063804 JP2016063804W WO2017002451A1 WO 2017002451 A1 WO2017002451 A1 WO 2017002451A1 JP 2016063804 W JP2016063804 W JP 2016063804W WO 2017002451 A1 WO2017002451 A1 WO 2017002451A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
adjustment
optical system
imaging
container
Prior art date
Application number
PCT/JP2016/063804
Other languages
English (en)
French (fr)
Inventor
兼太 松原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16817560.2A priority Critical patent/EP3318913B1/en
Publication of WO2017002451A1 publication Critical patent/WO2017002451A1/ja
Priority to US15/850,969 priority patent/US10649192B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors

Definitions

  • the present invention relates to a phase contrast microscope and an imaging method for measuring a phase difference of an observation target in a liquid.
  • phase difference measurement has been widely used as a method for observing cultured cultured cells such as stem cells without staining.
  • a phase contrast microscope is used to perform such phase difference measurement.
  • ring-shaped illumination light is irradiated onto an observation target, and direct light and diffracted light that have passed through the observation target are incident on a phase plate.
  • the direct light is attenuated by the ring part of the phase plate, and the diffracted light passes through the transparent part of the phase plate, and the direct light and the diffracted light are imaged to form an image with a contrast of light and dark. An image can be taken.
  • a meniscus is formed on the liquid surface of the culture solution due to the influence of the surface tension of the culture solution.
  • the meniscus lens action shifts the optical axis of the ring-shaped illumination light, affecting the direct light and the diffracted light incident on the phase plate, resulting in a problem that a clear phase difference image cannot be obtained.
  • FIG. 10 shows an example of an image obtained by imaging cells in the culture solution using a conventional phase contrast microscope.
  • FIG. 10I is an overall image
  • FIG. 10II is an enlarged image of a part of the overall image shown in FIG. 10I.
  • FIG. 10 it can be seen that an artifact is generated at the center of the image due to the influence of the meniscus, and the contrast of the cell image is low.
  • Patent Document 1 the shape of the ring-shaped phase film at the pupil position of the objective lens and the shape of the ring-shaped illumination light formed by the optical element are detected by the pupil image detector and detected. It has been proposed to control the shape of the ring-shaped opening of the optical element based on the coordinate data.
  • Patent Document 2 although not influenced by the meniscus, the optical axis shift of the illumination light is detected in consideration of the optical axis shift of the illumination light due to the curvature of the bottom surface of the culture vessel or the inclination of the culture vessel. It has been proposed to move the phase plate according to the optical axis deviation.
  • Patent Document 3 it is proposed that the user moves the slit plate or the phase plate and records the position in order to suppress the influence of the meniscus.
  • Patent Document 2 adjusts the optical axis shift of illumination light due to the curvature of the bottom surface of the culture vessel or the inclination of the culture vessel, and suppresses the influence of the meniscus of the culture solution. No specific method has been proposed.
  • Patent Document 3 discloses that the user moves the slit plate or the phase plate in order to suppress the influence of the meniscus. However, the influence of the refraction of the illumination light caused by the meniscus is automatically and rapidly removed. No suggestions have been made regarding methods.
  • an object of the present invention is to provide a phase-contrast microscope and an imaging method capable of automatically and rapidly adjusting the influence of refraction of illumination light caused by meniscus.
  • the phase contrast microscope of the present invention images a phase difference measurement illumination light irradiating unit that irradiates a container containing a liquid and an observation target with illumination light for phase difference measurement, and an observation target irradiated with the illumination light.
  • An image pickup unit an optical characteristic that can be adjusted, an adjustment optical system that adjusts the refraction of illumination light caused by the liquid surface shape of the liquid in the container according to the optical characteristic, and a preset for the container
  • a pattern light irradiating unit that irradiates the liquid surface of the liquid in the container with a pattern light having a pattern; a transmitted light detecting unit that detects transmitted light that has passed through the liquid surface of the liquid in the container by irradiation of the pattern light;
  • an adjustment optical system control unit that adjusts optical characteristics of the adjustment optical system based on a detection signal based on the transmitted light detected by the transmitted light detection unit.
  • an image of an observation target by illumination light irradiation is formed on the imaging unit, and an imaging optical system that is controlled by autofocus and the bottom surface of the container is reflected by pattern light irradiation.
  • a reflected light detection unit that detects reflected light of the pattern light
  • an imaging optical system control unit that performs autofocus control of the imaging optical system based on a detection signal based on the reflected light detected by the reflected light detection unit Can be provided.
  • the adjustment optical system control unit can adjust the optical characteristics of the adjustment optical system based on at least one evaluation result of uniformity and contrast of a detection signal based on transmitted light. it can.
  • the phase contrast microscope of the present invention may further include a filter unit that suppresses the incident light reflected from the liquid surface in the container by irradiation of illumination light from entering the transmitted light detection unit. .
  • the filter section can change the spectral characteristics according to the wavelength of the illumination light.
  • the pattern light has a striped pattern.
  • the adjustment optical system control unit can adjust the optical characteristics of the adjustment optical system after autofocus control by the imaging optical system control unit.
  • the adjustment optical system can have an optical element capable of adjusting the refractive power.
  • the optical element has a curvature on at least one of the incident surface and the exit surface of the illumination light.
  • the optical element can adjust the curvature.
  • the adjustment optical system control unit can acquire the adjustment conditions of the adjustment optical system and adjust the optical characteristics of the adjustment optical system based on the adjustment conditions.
  • the adjustment conditions are: optical magnification of an imaging optical system that forms an image to be observed, type of container, type of observation target, number of observation targets, type of liquid, liquid , The environmental temperature, the environmental humidity, the imaging position in the container, and the size of the imaging region in the container.
  • the illumination light irradiation unit for phase difference measurement has a light source and a slit plate provided with a slit through which light emitted from the light source passes, and the slit plate It is possible to irradiate the observation target with the passed light as illumination light.
  • the imaging method of the present invention irradiates the liquid surface of the liquid in the container with pattern light having a preset pattern with respect to the container in which the liquid and the observation object are stored, and the pattern light is irradiated in the container.
  • Adjustment optics that detects transmitted light that has passed through the liquid surface of the liquid, and adjusts the refraction of light caused by the liquid surface shape of the liquid in the container according to the optical characteristics based on the detection signal based on the detected transmitted light This optical characteristic of the system is adjusted, and after the adjustment, illumination light for phase difference measurement is irradiated on the container, and an observation object irradiated with the illumination light is imaged.
  • pattern light having a preset pattern is applied to a container in which a liquid and an observation object are stored, and the liquid level of the liquid in the container is irradiated by the pattern light irradiation.
  • the transmitted light that has passed through is detected.
  • the optical characteristic of the adjustment optical system that adjusts the refraction of light caused by the liquid surface shape of the liquid in the container is adjusted. It is possible to automatically adjust the influence of refraction of illumination light for phase difference measurement.
  • the calculation processing based on the detection signal of the pattern light can reduce the calculation load. Can be adjusted at high speed.
  • illumination light for phase difference measurement is applied to the container, and the observation object irradiated with the illumination light is imaged. It is possible to capture a high-contrast phase difference image in which the suppression is suppressed.
  • the figure which shows an example of a structure of a slit board The figure which shows typically the position of the optical element for adjustment, rotation of an optical axis, and adjustment of refractive power Diagram showing an example of the configuration of a phase plate
  • the figure which shows the detection signal of the transmitted light of pattern light typically The flowchart for demonstrating the effect
  • FIG. 1 is a diagram showing a schematic configuration of the microscope system of the present embodiment.
  • the microscope system of the present embodiment includes a phase difference measurement illumination light irradiation unit 10, an adjustment optical system 20, an imaging optical system 30, an imaging unit 40, and a pattern light irradiation unit 70. , A reflected light detection unit 75, a transmitted light detection unit 80, a microscope control device 50, a display device 90, and an input device 95.
  • a stage 61 is provided between the adjustment optical system 20 and the imaging optical system 30, and the culture medium C and the observation target S that are liquids are accommodated on the stage 61.
  • the cultured container 60 is installed.
  • the microscope system according to this embodiment includes a stage driving unit 62 that moves the stage 61 in the X direction, the Y direction, and the Z direction.
  • the X direction and the Y direction are directions orthogonal to each other on a plane parallel to the observation target installation surface P, and the Z direction is a direction orthogonal to the X direction and the Y direction.
  • the above-described phase difference measurement illumination light irradiation unit 10 the adjustment optical system 20, the imaging optical system 30, the imaging unit 40, the pattern light irradiation unit 70, the reflected light detection unit 75, and the transmitted light.
  • the detection unit 80, the stage 61, and the stage drive unit 62 constitute a phase contrast microscope main body, and the microscope control device 50 controls the phase contrast microscope main body.
  • the microscope control device 50 controls the phase contrast microscope main body.
  • the illumination light irradiating unit 10 for phase difference measurement irradiates the observation target S accommodated in the culture vessel 60 with illumination light for so-called phase difference measurement.
  • a ring-shaped illumination light is irradiated as the measurement illumination light.
  • the illumination light irradiation unit 10 for phase difference measurement according to the present embodiment includes a phase difference measurement white light source 11 that emits white light for phase difference measurement, and a ring-shaped slit for phase difference measurement.
  • the slit plate 12 that emits the ring-shaped illumination light when the white light for phase difference measurement emitted from the white light source 11 is incident, and the ring-shaped illumination light that is emitted from the slit plate 12 are incident, and the incident ring shape And a condenser lens 13 that irradiates the observation target S with illumination light.
  • FIG. 2 is a diagram showing a specific configuration of the slit plate 12.
  • the slit plate 12 has a ring shape that transmits the white light for phase difference measurement to the light shielding plate 12b that blocks the white light for phase difference measurement emitted from the white light source 11 for phase difference measurement.
  • the slit 12a is provided, and the ring-shaped illumination light is formed when the white light for phase difference measurement passes through the slit 12a.
  • the ring-shaped illumination light is formed using the slit plate 12 as described above.
  • the method for forming the ring-shaped illumination light is not limited to this, for example, spatial light modulation.
  • Ring-shaped illumination light may be formed using an element or the like.
  • the ring-shaped illumination light is used as the phase difference measurement illumination light.
  • illumination light having a structure other than the ring shape may be used, and it may have a shape conjugate with a phase plate described later.
  • other shapes such as a triangular shape and a rectangular shape may be used.
  • the bottom surface of the culture vessel 60 installed on the stage 61 is the observation target installation surface P, and a cell group or the like is arranged as the observation target S on the observation target installation surface P.
  • the culture vessel 60 is filled with the culture solution C, and a concave meniscus is formed on the surface of the culture solution C.
  • Examples of the culture container 60 include a petri dish and a well plate in which a plurality of wells are arranged. In the case of a well plate, the observation object S and the culture medium C are accommodated in each well, and a meniscus is formed for each well.
  • the cell group cultured in the culture medium is the observation target S.
  • the observation target S is not limited to such a culture target, but water, formalin, ethanol, methanol, and the like.
  • the cells fixed in the liquid may be the observation object S. Again, a meniscus is formed on the liquid level of these liquids in the container.
  • the adjusting optical system 20 is capable of adjusting the optical characteristics, and adjusts the refraction of the illumination light for phase difference measurement caused by the liquid surface shape of the meniscus described above.
  • the adjustment optical system 20 of the present embodiment includes an adjustment optical element 21 and an adjustment optical system driving unit 22.
  • the adjustment optical element 21 has a refractive power, and specifically, a liquid crystal lens whose refractive power changes by voltage application, a liquid lens that can change the curvature radius of the lens, and a space that can change the focal length.
  • An optical modulator or the like can be used.
  • a lens is used as the adjustment optical element 21, a plano-convex lens having a curvature on the incident surface or the exit surface may be used, or a biconvex lens having a curvature on both the entrance surface and the exit surface may be used. It may be.
  • the adjusting optical system driving unit 22 adjusts the focal length by changing the refractive power of the adjusting optical element 21 based on a control signal output from the adjusting optical system control unit 51 described later. Specifically, when a liquid crystal lens or a spatial light modulator is used as the adjustment optical element 21, a voltage corresponding to a desired focal length is applied to the liquid crystal lens or the spatial light modulator. When a liquid lens is used as the adjustment optical element 21, the amount of liquid in the liquid lens is adjusted according to a desired focal length, thereby adjusting the radius of curvature of the liquid lens.
  • the adjustment optical system driving unit 22 includes a mechanism for changing the position of the adjustment optical element 21 and the optical axis direction of the adjustment optical element 21 based on the control signal output from the adjustment optical system control unit 51. Is. Specifically, the adjustment optical system drive unit 22 includes a mechanism that can change the position of the adjustment optical element 21 in the X direction, the Y direction, and the Z direction. The adjustment optical system driving unit 22 includes a mechanism for rotating the optical axis of the adjustment optical element 21.
  • FIG. 3I is a diagram schematically illustrating a change in the position of the adjustment optical element 21 in the X direction, the Y direction, and the Z direction.
  • FIG. 3II schematically shows rotation adjustment around the X axis ( ⁇ ), rotation around the Y axis ( ⁇ ), and rotation adjustment around the Z axis ( ⁇ ) of the optical axis of the adjustment optical element 21.
  • FIG. 3III schematically shows the adjustment of the refractive power of the adjustment optical element 21. Note that FIG. 3III shows an example in which the refractive power is adjusted by adjusting the radius of curvature of the adjustment optical element 21, but the method for adjusting the refractive power is not limited to this. When a liquid crystal lens or a spatial light modulator is used as the element 21, the refractive power may be adjusted by adjusting the applied voltage.
  • the adjustment optical element 21 is moved in the X direction, the Y direction, and the Z direction.
  • an action equivalent to the optical action by the movement of the adjustment optical element 21 can be obtained.
  • the adjustment optical element 21 is not necessarily moved.
  • the adjustment optical element 21 when a liquid crystal lens or a spatial light modulator is used as the adjustment optical element 21, the same effect as the shift of the optical axis due to the movement of the adjustment optical element 21 is obtained by adjusting the applied voltage. May be.
  • the optical axis direction of the adjustment optical element 21 it is not always necessary to rotate the adjustment optical element 21 itself. By adjusting the applied voltage, the optical axis of the adjustment optical element 21 itself is rotated. You may make it acquire the effect similar to rotation.
  • the adjustment optical element 21 is moved in the X direction, Y direction, and Z direction.
  • the present invention is not limited to this, and the stage 61 is moved in the X direction, Y direction, and Z direction. Accordingly, the relative positional relationship between the adjustment optical element 21 and the meniscus formed in the culture vessel 60 in the X, Y, and Z directions may be changed.
  • one adjustment optical element 21 is used.
  • the refractive power may be adjusted by automatically switching a plurality of adjustment optical elements 21 having different focal lengths. .
  • the imaging optical system 30 includes an objective lens 31, a phase plate 32, an imaging lens 33, and an imaging optical system drive unit 34.
  • FIG. 4 is a plan view showing a specific configuration of the phase plate 32. As shown in FIG. 4, the phase plate 32 is obtained by forming a phase ring 32a with respect to a transparent plate 32b transparent to the wavelength of the ring-shaped illumination light. Note that the size of the slit 12a described above is in a conjugate relationship with the phase ring 32a.
  • the phase ring 32a is a ring in which a phase film that shifts the phase of incident light by a quarter wavelength and a neutral density filter that attenuates incident light are formed.
  • the phase ring 32a When the direct light incident on the phase plate 32 passes through the phase ring 32a, the phase is shifted by 1 ⁇ 4 wavelength, and the brightness is weakened.
  • most of the diffracted light diffracted by the observation object S passes through the transparent plate 32b of the phase plate 32, and its phase and brightness do not change.
  • the objective lens 31 is moved in the Z direction by the imaging optical system driving unit 34.
  • autofocus control is performed by moving the objective lens 31 in the Z direction by the imaging optical system driving unit 34, and the contrast of the image captured by the imaging unit 40. Is adjusted.
  • the pattern light irradiation unit 70 irradiates the culture container 60 with pattern light, and the reflected light reflected from the bottom surface of the culture container 60 is detected by the reflected light detection unit 75, and based on the detection signal.
  • Auto focus control is performed. The autofocus control based on the detection signal of the reflected pattern light will be described in detail later.
  • the imaging lens 33 receives direct light and diffracted light that have passed through the phase plate 32 and forms an image of these lights on the imaging unit 40.
  • the imaging optical system drive unit 34 includes a mechanism for moving the objective lens 31 in the Z direction as described above.
  • the imaging optical system 30 may be configured to change its optical magnification.
  • a method of changing the optical magnification for example, a plurality of objective lenses 31 having different magnifications may be provided in the imaging optical system 30, and the plurality of objective lenses 31 may be automatically switched.
  • the phase plate 32 is also changed according to the change of the objective lens 31. Further, the user may change the objective lens 31 manually.
  • the imaging unit 40 includes an imaging element that captures a phase difference image of the observation target S imaged by the imaging lens 33.
  • an imaging element that captures a phase difference image of the observation target S imaged by the imaging lens 33.
  • the image sensor a charge-coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor, or the like can be used.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • the pattern light irradiation unit 70 irradiates the culture vessel 60 with pattern light having a preset pattern, which is used for autofocus control and adjustment of the optical characteristics of the adjustment optical system 20.
  • the pattern light irradiation unit 70 of the present embodiment emits pattern light having a striped pattern, and a pattern light near-infrared light source 71 that emits near-infrared light, and pattern light.
  • a grid 72 composed of a linear portion that transmits near-infrared light emitted from the near-infrared light source 71 and a linear portion that shields the near-infrared light, an irradiation lens 73, and emitted from the grid 72.
  • a first dichroic mirror 74 that reflects the patterned light having a bright and dark pattern toward the culture vessel 60 and transmits the illumination light for phase difference measurement.
  • pattern light having a striped bright and dark pattern is formed by using the grid 72.
  • the method of forming the pattern light is not limited to this, for example, spatial light modulation.
  • a striped bright and dark pattern may be formed using an element or the like.
  • the light and dark pattern included in the pattern light is not limited to the stripe shape, and a lattice pattern in which light and dark patterns are two-dimensionally arranged periodically may be used.
  • light in which bright and dark patterns are arranged concentrically or light in which dot patterns are arranged two-dimensionally may be used as pattern light.
  • the pattern included in the pattern light may not be a black and white pattern, but may be a color pattern composed of different colors.
  • the reflected light detection unit 75 detects the reflected light of the pattern light reflected from the bottom surface of the culture vessel 60 by the irradiation of the pattern light.
  • the reflected light detection unit 75 of this embodiment includes a half mirror 76, an optical path difference prism 77, and a first line sensor 78.
  • the half mirror 76 transmits the pattern light emitted from the grid 72 and reflects the reflected light reflected from the bottom surface of the culture vessel 60 by irradiation of the pattern light to the culture vessel 60 in the direction of the optical path difference prism 77. It is.
  • the optical path difference prism 77 divides the reflected light of the incident pattern light into two optical paths and forms images at two different locations of the first line sensor 78.
  • the first line sensor 78 outputs the first detection signal and the second detection signal imaged at two locations to the imaging optical system control unit 52 of the microscope control device 50.
  • the imaging optical system control unit 52 performs autofocus control by moving the objective lens 31 in the Z direction based on the input first detection signal and second detection signal. Specifically, the imaging optical system control unit 52 of the present embodiment sets the objective lens 31 at a position where the contrast (waveform pattern) of the first detection signal and the contrast (waveform pattern) of the second detection signal are closest. Move.
  • the first and second detection signals are detected using the first line sensor 78.
  • the present invention is not limited to this, and a CMOS image sensor or a CCD image sensor may be used.
  • the transmitted light detection unit 80 detects transmitted light transmitted through the culture medium C in the culture vessel 60 by irradiation with pattern light.
  • the transmitted light detection unit 80 of this embodiment includes a second dichroic mirror 81, a condenser lens 82, a filter unit 83, and a second line sensor 84.
  • the second dichroic mirror 81 reflects the transmitted light transmitted through the culture medium C in the culture vessel 60 by irradiation of the pattern light toward the second line sensor 84 and transmits the illumination light for phase difference measurement. It is.
  • the condensing lens 82 condenses the transmitted light reflected by the second dichroic mirror 81.
  • the filter unit 83 causes the reflected light of the phase difference measurement illumination light reflected on the liquid surface of the culture solution C to enter the second line sensor 84 by irradiating the culture solution C with the phase difference measurement illumination light. It is to suppress. Further, the filter unit 83 suppresses the incident of the miscellaneous fluorescence generated by the irradiation of the culture solution C with the pattern light, which is near infrared light, to the second line sensor 84. Specifically, the filter unit 83 of the present embodiment has an optical characteristic in which the transmittance for the wavelength of near-infrared light is higher than the transmittance for the wavelength of phase difference measurement illumination light and the wavelength of miscellaneous fluorescence. A filter is provided.
  • the filter unit 83 suppresses the reflected light and the miscellaneous fluorescence incident on the second line sensor 84 from the phase difference measurement illumination, so that the second line sensor 84 outputs a detection signal only for the component of the pattern light. It can be detected with high S / N.
  • the phase difference measurement illumination light irradiation unit 10 can switch the wavelength of the phase difference measurement illumination light
  • the intensity of the switched phase difference measurement illumination light is appropriately set.
  • the spectral characteristics of the filter unit 83 may be changed so as to be suppressed.
  • a plurality of optical filters may be switched.
  • the optical filter may be switched when the user inputs an optical filter switching instruction using the input device 95, or may be switched according to the input of the wavelength switching instruction of the phase difference measurement illumination light. Also good.
  • the second line sensor 84 detects transmitted light that has passed through the culture medium C in the culture vessel 60 by irradiation with pattern light.
  • the pattern light passes through the culture solution C, it passes through the meniscus formed on the liquid surface of the culture solution C. Therefore, the intensity distribution of the transmitted light changes depending on the meniscus state.
  • the influence of refraction of the illumination light for phase difference measurement caused by the meniscus is removed by adjusting the optical characteristics of the adjustment optical system 20 based on the intensity distribution of the transmitted light.
  • the detection signal of the transmitted light detected by the second line sensor 84 is output to the adjustment optical system control unit 51 of the microscope control device 50.
  • the adjustment optical system control unit 51 drives and controls the adjustment optical system drive unit 22 based on the input transmitted light detection signal, thereby the position of the adjustment optical element 21 in the X direction, the Y direction, and the Z direction, The optical characteristics are adjusted by controlling the optical axis direction and refractive power.
  • FIG. 5 schematically shows a detection signal D of transmitted light.
  • the adjustment optical system control unit 51 evaluates the uniformity and contrast of the detection signal D of the transmitted light, and adjusts the optical characteristics of the adjustment optical system 20 based on the evaluation result.
  • the adjustment optical system control unit 51 determines that the amplitude A of the detection signal D of the transmitted light is maximized and the center level B of the amplitude of the detection signal D is the position in the length direction of the second line sensor 84.
  • the optical characteristics of the adjustment optical system 20 are adjusted so as to be constant regardless of the above.
  • the center level B of the amplitude of the detection signal D is constant regardless of the position of the second line sensor 84 in the length direction. In short, each stripe of the stripe pattern detected by the second line sensor 84. This means that the variation in the density is minimal.
  • the second line sensor 84 is used to detect the transmitted light detection signal.
  • the present invention is not limited to this, and a CMOS image sensor or a CCD image sensor may be used.
  • the control of the adjustment optical system 20 by the adjustment optical system control unit 51 will be described in detail later.
  • the microscope control device 50 is composed of a computer equipped with a CPU (Central Processing Unit) and a storage device.
  • a CPU Central Processing Unit
  • the microscope control device 50 includes an adjustment optical system control unit 51 that controls the adjustment optical system drive unit 22 and an imaging optical system control that controls the imaging optical system drive unit 34. And a stage control unit 53 that controls the stage drive unit 62.
  • the adjustment optical system control unit 51 adjusts the optical characteristics of the adjustment optical system 20 based on the detection signal of the transmitted light of the pattern light as described above.
  • the imaging optical system control unit 52 performs autofocus control based on the detection signal of the reflected light of the pattern light.
  • the stage control unit 53 drives and controls the stage driving unit 62, thereby moving the stage 61 in the X direction, the Y direction, and the Z direction.
  • moving the stage 61 in the X direction and the Y direction for example, one cell is scanned with phase difference measurement illumination light, and phase difference images for a plurality of imaging regions divided in one cell are captured. Is done. Further, the adjustment of the optical characteristics of the adjustment optical system 20 described above is also performed for each divided imaging region.
  • the input device 95 includes an input device such as a keyboard and a mouse, and accepts a setting input by a user.
  • the input device 95 in the present embodiment receives a setting input for conditions for determining an adjustment condition used when adjusting the optical characteristics of the adjustment optical system 20.
  • the optical magnification of the imaging optical system 30 the type of the culture vessel 60, the type of the observation target S, the number of the observation target S, the type of the culture solution C, the amount of the culture solution C, and the imaging in the culture vessel 60
  • a setting input such as the position and the size of the imaging region is received. The adjustment conditions will be described later in detail.
  • the display device 90 includes a display device such as a liquid crystal display, and displays a phase difference image captured by the imaging unit 40.
  • the display device 90 may be configured by a touch panel that enables setting input by pressing the screen, and the display device 90 may also serve as the input device.
  • the culture vessel 60 containing the observation object S and the culture medium C is placed on the stage 61. Then, a condition for determining the adjustment condition of the adjustment optical system 20 is acquired by the adjustment optical system control unit 51 (S10).
  • the adjustment conditions are conditions used when adjusting the optical characteristics of the adjustment optical system 20, which will be described later. Specifically, the initial setting value, the change adjustment amount, the upper limit number of changes, and the like of the adjustment optical system 20 It is.
  • the conditions for determining this adjustment condition include the optical magnification of the imaging optical system 30, the type of the culture vessel 60, the type of the observation target S, the number of the observation targets S, the type of the culture medium C, and the culture medium C. , The environmental temperature, the environmental humidity, the imaging position in the culture vessel 60, the size of the imaging area, etc., and at least one of these conditions is acquired by the adjustment optical system control unit 51.
  • the conditions described above are conditions that affect the shape of the meniscus formed on the liquid surface of the culture medium C and the focal length of light refracted due to the meniscus.
  • the meniscus shape differs depending on the size and depth of the culture vessel 60, and the meniscus shape also differs depending on the viscosity of the culture solution C depending on the type.
  • the meniscus shape also varies depending on the amount of the culture medium C. Further, the viscosity of the culture medium C changes depending on the environmental temperature and environmental humidity, and the meniscus shape is different. Further, the state of the liquid surface of the culture medium C changes depending on the type (size) and number of cells to be observed S, and the meniscus shape is different.
  • the shape of the meniscus at the imaging position differs depending on whether the imaging position in the culture container 60 is the center position of the culture container 60 as shown in FIG. 1 or a position shifted from the center position. Further, the focal length of the light refracted due to the meniscus differs depending on the optical magnification of the imaging optical system 30 and the size of the imaging region.
  • the adjustment optical system control unit 51 adjusts the adjustment condition (initial setting value, change adjustment amount) of the adjustment optical system 20 based on the acquired condition. And the upper limit number of changes) are acquired (S12).
  • the adjustment optical system control unit 51 adjusts the initial setting values for adjusting the positions of the adjustment optical element 21 in the X direction, the Y direction, and the Z direction as the initial setting values of the adjustment optical system 20, and the adjustment.
  • An initial setting value for adjusting the rotation angle ( ⁇ , ⁇ , ⁇ ) of the optical axis of the optical element for adjustment 21 and an initial setting value for adjusting the refractive power of the adjustment optical element 21 are acquired.
  • an initial setting value when adjusting the refractive power of the adjusting optical element 21 an initial setting value of a voltage applied to the liquid crystal lens or the spatial light modulator, or an initial setting value of the amount of liquid injected into the liquid lens is used. and so on.
  • the adjustment optical system control unit 51 adjusts the amount of change adjustment and the upper limit number of changes per time when adjusting the position of the adjustment optical element 21 in the X direction, Y direction, and Z direction, and the adjustment optical element 21. Change adjustment amount and change upper limit number per time when adjusting the rotation angle ( ⁇ , ⁇ , ⁇ ) of the optical axis, and change adjustment amount per time when adjusting the refractive power of the adjustment optical element 21 And the maximum number of changes.
  • a table in which the conditions for determining the adjustment conditions and the adjustment conditions are associated with each other is stored in advance in the adjustment optical system control unit 51, and this table is referred to. It can be obtained by.
  • the adjustment conditions according to each condition are acquired, and the adjustment operation range when adjusting the optical characteristics of the adjustment optical system 20 is limited, thereby reducing the adjustment time of the optical characteristics of the adjustment optical system 20 to be described later.
  • the adjustment operation range can be narrowed, the size can be reduced.
  • the stage 61 is moved in the X direction and the Y direction by the stage driving unit 62, and the first imaging region among the plurality of imaging regions in the culture vessel 60 is irradiated with the phase difference measurement illumination light and the pattern light.
  • the phase difference measurement illumination light and the pattern light are irradiated to the culture vessel 60 (S14).
  • the imaging optical system control unit 52 performs autofocus control by moving the objective lens 31 in the Z direction based on the input first detection signal and second detection signal (S16).
  • the transmitted light that has passed through the culture solution C in the culture vessel 60 is detected by the second line sensor 84 of the transmitted light detection unit 80 (S18). Then, a detection signal based on the transmitted light detected by the second line sensor 84 is output to the adjustment optical system control unit 51.
  • the adjustment optical system control unit 51 adjusts the optical characteristics of the adjustment optical system 20 based on the detection signal based on the transmitted light of the pattern light after the above-described autofocus control based on the detection signal of the reflected light of the pattern light.
  • the adjustment optical system control unit 51 evaluates the uniformity of the density of the detection signal of the transmitted light as described above, and outputs a control signal to the adjustment optical system drive unit 22 based on the evaluation result. (S20). For example, when the variation in the density of each stripe pattern detected by the second line sensor 84 is greater than or equal to a preset threshold value, the adjustment optical system control unit 51 reduces the variation. A control signal is output to the adjustment optical system driving unit 22 so as to be.
  • the adjustment optical system driving unit 22 Based on the input control signal, the adjustment optical system driving unit 22 changes the position of the adjustment optical element 21 in the X direction and the Y direction and the rotation of the optical axis of the adjustment optical element 21 by the change adjustment amount described above. Adjust (S22).
  • the detection signal of the transmitted light of the pattern light is input to the adjustment optical system control unit 51.
  • the adjustment optical system control unit 51 evaluates the uniformity of the detection signal of the input transmitted light again. If the variation in density is equal to or greater than a preset threshold value, the control signal is again sent to the adjustment optical system drive unit 22. Is output. Based on the input control signal, the adjustment optical system drive unit 22 again changes the position of the adjustment optical element 21 in the X direction and the Y direction and the rotation of the optical axis of the adjustment optical element 21 as described above. Just adjust.
  • the evaluation of the uniformity of the density of the detection signal of the transmitted light and the adjustment of the position of the adjustment optical element 21 in the XY direction and the rotation of the optical axis based on the evaluation result set the upper limit number of changes described above.
  • the process is repeated as the upper limit, and the position of the adjustment optical element 21 in the XY direction and the rotation of the optical axis are adjusted so that the variation in the density of the detection signal of the transmitted light is reduced.
  • the adjustment optical system control unit 51 After the adjustment of the position of the adjustment optical element 21 in the XY direction and the rotation of the optical axis is completed as described above, the adjustment optical system control unit 51 next sets the contrast of the detection signal of the transmitted light. Obtain (S24). Then, the adjustment optical system control unit 51 outputs a control signal to the adjustment optical system drive unit 22 when the contrast of the detection signal of the transmitted light is equal to or less than a predetermined threshold value. The adjustment optical system driving unit 22 adjusts the position of the adjustment optical element 21 in the Z direction and the refractive power of the adjustment optical element 21 by the change adjustment amount described above based on the input control signal.
  • the detection signal of the transmitted light of the pattern light is input to the adjustment optical system control unit 51.
  • the adjustment optical system control unit 51 acquires again the contrast of the input transmitted light detection signal, and outputs the control signal to the adjustment optical system drive unit 22 again when the contrast is equal to or less than a predetermined threshold. Based on the input control signal, the adjustment optical system drive unit 22 again adjusts the position of the adjustment optical element 21 in the Z direction and the refractive power of the adjustment optical element 21 by the change adjustment amount described above.
  • the evaluation of the contrast of the detection signal of the transmitted light and the adjustment of the position and refractive power in the Z direction of the adjustment optical element 21 based on the evaluation result are repeatedly performed with the upper limit number of changes described above as the upper limit,
  • the position and refractive power of the adjustment optical element 21 in the Z direction are adjusted so that the contrast of the detection signal of the transmitted light is maximized (S26).
  • the imaging unit 40 captures a phase difference image by irradiation of phase difference measurement illumination light (S28).
  • the stage 61 is moved in the X direction and the Y direction by the stage driving unit 62, the adjustment of the optical characteristics of the adjusting optical system 20 and the imaging of the phase difference image are performed for each imaging region.
  • the storage unit of the microscope control device 50 are sequentially stored in the storage unit of the microscope control device 50.
  • phase difference image of each imaging region is synthesized in the microscope control device 50, and the synthesized phase difference image is displayed on the display device 90 (S30).
  • pattern light having a preset pattern is irradiated to the culture vessel 60, and transmitted light transmitted through the culture medium C in the culture vessel 60 is detected by the pattern light irradiation. Since the optical characteristic of the adjustment optical system 20 is adjusted based on the detection signal based on the detected transmitted light, the influence of refraction of the illumination light for phase difference measurement can be automatically adjusted. Furthermore, the calculation load based on the detection signal of the pattern light can reduce the calculation load as compared with the case where the calculation processing of the coordinate data of the ring-shaped image described above is performed. The effect of refraction can be adjusted at high speed.
  • the culture container 60 is irradiated with the phase difference measurement illumination light to image the observation target S, so that artifacts due to the meniscus are suppressed.
  • a contrast phase difference image can be captured.
  • the adjustment of the optical characteristics of the adjustment optical system 20 and the autofocus control of the imaging optical system 30 are performed using one pattern light. These processes can be performed at a higher speed as compared with the case where the adjustment of the optical characteristics of the optical system 20 is performed in a system completely different from the autofocus control.
  • the refractive power of the adjustment optical element 21 is adjusted by adjusting the voltage applied to the adjustment optical element 21 and the amount of liquid to be injected.
  • a plurality of lenses having different curvature radii as shown in FIGS. 7I to III may be provided as the adjustment optical system 20, and the refractive power may be adjusted by automatically switching these lenses.
  • a method of rotating the optical axis of the adjusting optical element 21 for example, as shown in FIGS. 7IV to 7V, a plurality of lenses having different light emission angles are provided, and these lenses are automatically switched.
  • the optical axis direction of the adjustment optical element 21 may be adjusted.
  • the refractive power and the rotation of the optical axis may be adjusted by using a combination of a plurality of types of lenses as shown in FIGS.
  • the refractive power of the adjustment optical system 20 is adjusted.
  • the refractive power is not adjusted, and the adjustment optical element 21 in the X direction, Y direction, and Z direction is adjusted. Only the position adjustment and the rotation adjustment of the optical axis of the adjustment optical element 21 may be performed.
  • the adjustment optical element 21 is provided in order to remove the influence of refraction of the illumination light for phase difference measurement caused by the meniscus formed on the liquid surface.
  • Such an adjustment optical element 21 may not be provided.
  • the slit plate 12 may be moved in the X direction and the Y direction, or the phase plate 32 may be moved in the X direction and the Y direction.
  • the influence of refraction of the illumination light for phase difference measurement may be removed. That is, the slit plate 12 and the phase plate 32 may be used as the adjustment optical system in the present invention.
  • the adjustment optical system 20 is adjusted by evaluating both the uniformity and contrast of the detection signal of the transmitted light of the pattern light. Of the uniformity and contrast, Only one of them may be evaluated and the adjustment optical system 20 may be adjusted.
  • the imaging unit 40 does not adjust the optical characteristics of the adjustment optical system 20 by irradiating the phase difference measurement illumination light.
  • a microscope system according to another embodiment that adjusts the optical characteristics of the adjustment optical system 20 based on the captured phase difference image will be described.
  • the phase microscope main body in the microscope system irradiates the illumination light irradiation unit for phase difference measurement that irradiates illumination light for phase difference measurement to the container containing the liquid and the observation target, and the illumination light.
  • An imaging unit that images the observation target, an imaging optical system that forms an image of the observation target by illumination light irradiation on the imaging unit, and an adjustment that adjusts the refraction of the illumination light due to the liquid surface shape of the liquid in the container
  • An optical system, an adjustment optical system control unit that adjusts optical characteristics of the adjustment optical system based on the phase difference image captured by the imaging unit, and an imaging optical system based on the phase difference image captured by the imaging unit
  • An imaging optical system control unit that performs autofocus control, and the imaging unit acquires a low-resolution phase difference image having a relatively low resolution as a phase difference image used when adjusting the optical characteristics of the adjustment optical system.
  • the phase difference image to be used when performing over autofocus control is characterized in that relatively resolution is to obtain the high resolution is
  • FIG. 8 is a diagram showing a schematic configuration of the microscope system of the present embodiment.
  • the microscope system of the present embodiment includes a phase difference measurement illumination light irradiation unit 10, an adjustment optical system 20, an imaging optical system 30, an imaging unit 40, a stage 61, and a stage drive.
  • a unit 62, a microscope control device 50, a display device 90, and an input device 95 are provided.
  • the configuration other than the imaging unit 40 is the same as in the above embodiment.
  • the imaging unit 40 of the microscope system acquires a low-resolution phase difference image having a relatively low resolution as a phase difference image used when adjusting the optical characteristics of the adjustment optical system 20, A high-resolution phase difference image having a relatively high resolution is acquired as a phase difference image used when autofocus control of the imaging optical system 30 is performed.
  • the imaging unit 40 of the present embodiment includes two imaging elements 41 and 42 having different resolutions. Then, when imaging the phase difference image used when adjusting the optical characteristics of the adjustment optical system 20, the imaging unit 40 acquires the low resolution phase difference image using the imaging element 42 having a relatively low resolution. When a phase difference image used for performing autofocus control of the imaging optical system 30 is picked up, a high resolution phase difference image is acquired using the image pickup element 41 having a relatively high resolution.
  • CMOS image sensor As the imaging elements 41 and 42, a CCD image sensor, a CMOS image sensor, or the like can be used as in the above embodiment.
  • the culture vessel 60 containing the observation object S and the culture medium C is placed on the stage 61. Then, a condition for determining the adjustment condition of the adjustment optical system 20 is acquired by the adjustment optical system control unit 51 (S40).
  • the conditions for determining the adjustment conditions are the same as in the above embodiment.
  • the adjustment optical system control unit 51 acquires the adjustment conditions (initial setting value, change adjustment amount, and change upper limit number) of the adjustment optical system 20 based on the acquired conditions (S42).
  • the stage 61 is moved in the X direction and the Y direction by the stage drive unit 62, and the first imaging area among the plurality of imaging areas in the culture vessel 60 is irradiated with the phase difference measurement illumination light.
  • the phase difference measurement illumination light is set and irradiated to the culture vessel 60 (S44).
  • a control signal is output from the imaging optical system control unit 52 to the imaging optical system driving unit 34, and the imaging optical system driving unit 34 determines the objective lens of the imaging optical system 30 based on the input control signal.
  • 31 is moved in the Z direction.
  • an image signal representing a phase difference image sequentially captured by the imaging unit 40 as the objective lens 31 moves in the Z direction is input to the imaging optical system control unit 52, and the imaging optical system control unit 52 Based on the input image signal, autofocus control is performed (S46).
  • the imaging optical system control unit 52 specifies the position of the objective lens 31 where the contrast of the input image signal is maximized, and sets the position of the objective lens 31 to the specified position.
  • the imaging unit 40 captures a high-resolution phase difference image using the imaging element 41 having a relatively high resolution as described above.
  • the imaging unit 40 switches from the high-resolution imaging device 41 to the low-resolution imaging device 42 (S48). Then, a low-resolution phase difference image for adjusting the optical characteristics of the adjustment optical system 20 is picked up as an adjustment image by the low-resolution imaging device 42 (S50). The adjustment image captured by the low-resolution image sensor 42 of the imaging unit 40 is input to the adjustment optical system control unit 51.
  • the adjustment optical system control unit 51 acquires a feature amount indicating the uniformity of the density of the input adjustment image (S52). Then, the adjustment optical system control unit 51 outputs a control signal to the adjustment optical system driving unit 22 when the uniformity of the density of the adjustment image is not appropriate.
  • the state in which the density uniformity of the adjustment image is appropriate is a state in which, for example, a ring-shaped image appearing in the adjustment image has a substantially rotationally symmetric shape.
  • the ring-shaped image does not necessarily have a rotationally symmetric shape, and may be adjusted so as to be closest to the rotationally symmetric shape.
  • the feature amount of the adjustment image acquired at this time includes, for example, background information of the adjustment image.
  • the low-frequency component image is obtained by performing low-pass filter processing on the adjustment image. Is acquired. Then, a ring-shaped image is extracted from this low-frequency component image, and the amount of deviation from rotational symmetry is calculated by performing, for example, pattern matching. If the amount of deviation is greater than a predetermined threshold, adjustment optics A control signal is output to the system drive unit 22.
  • the adjustment optical system driving unit 22 changes the position of the adjustment optical element 21 in the X direction and the Y direction and the rotation of the optical axis of the adjustment optical element 21 based on the input control signal. Only the amount is adjusted (S54).
  • an adjustment image is acquired by the imaging element 42 of the imaging unit 40 and input to the adjustment optical system control unit 51.
  • the adjustment optical system control unit 51 acquires again the feature amount representing the uniformity of the density of the input adjustment image. If the density uniformity of the adjustment image is not in an appropriate state, the adjustment optical system drive unit The control signal is output to 22 again. Based on the input control signal, the adjustment optical system drive unit 22 again changes the position of the adjustment optical element 21 in the X direction and the Y direction and the rotation of the optical axis of the adjustment optical element 21 as described above. Just adjust.
  • the adjustment image is captured and the adjustment of the position of the adjustment optical element 21 in the XY direction and the rotation of the optical axis based on the feature amount representing the uniformity of the density of the adjustment image is performed as described above.
  • the process is repeated with the upper limit number as the upper limit, and the position of the adjustment optical element 21 in the XY direction and the rotation of the optical axis are adjusted so that the density uniformity of the adjustment image is in an appropriate state.
  • the adjustment optical system control unit 51 next represents the feature representing the contrast of the adjustment image.
  • the amount is acquired (S56).
  • the adjustment optical system control unit 51 outputs a control signal to the adjustment optical system drive unit 22, and the adjustment optical system drive unit 22 receives the input control signal. Based on the above, the position of the adjustment optical element 21 in the Z direction and the refractive power of the adjustment optical element 21 are adjusted by the change adjustment amount described above.
  • the feature amount representing the contrast of the adjustment image for example, a high-frequency component image is obtained by performing high-pass filter processing on the adjustment image. Then, the contrast is calculated from the image of the high frequency component, and when the contrast is equal to or less than a predetermined threshold, a control signal is output to the adjustment optical system driving unit 22.
  • an adjustment image is acquired by the imaging element 42 of the imaging unit 40 and input to the adjustment optical system control unit 51.
  • the adjustment optical system control unit 51 obtains the feature amount representing the contrast of the input adjustment image again. If the contrast of the adjustment image is not in an appropriate state, the adjustment optical system control unit 51 sends a control signal to the adjustment optical system drive unit 22 again. Output. Based on the input control signal, the adjustment optical system drive unit 22 again adjusts the position of the adjustment optical element 21 in the Z direction and the refractive power of the adjustment optical element 21 by the change adjustment amount described above.
  • the imaging of the adjustment image and the adjustment of the position and refractive power in the Z direction of the adjustment optical element 21 based on the feature amount representing the contrast of the adjustment image are repeated up to the upper limit number of changes described above. Then, the position and refractive power of the adjustment optical element 21 in the Z direction are adjusted so that the contrast of the adjustment image is maximized (S58).
  • the imaging unit 40 switches again from the low resolution imaging element 42 to the high resolution imaging element 41 (S60). Then, a high-resolution phase difference image is captured as an observation image by the high-resolution image sensor 41 (S62).
  • the stage 61 is moved in the X direction and the Y direction by the stage driving unit 62, the adjustment of the optical characteristics of the adjustment optical system 20 and the imaging of the observation image are performed for each imaging region.
  • the storage unit of the microscope control device 50 are sequentially stored in the storage unit of the microscope control device 50.
  • the observation image of each imaging region is synthesized in the microscope control device 50, and the synthesized observation image is displayed on the display device 90 (S64).
  • the transmitted light detection unit 80 for detecting the transmitted light of the pattern light does not need to be provided as in the previous embodiment, the phase contrast microscope main body can be downsized. And cost reduction can be achieved.
  • the low-resolution phase difference image and the high-resolution phase difference image are picked up by switching between two image pickup devices having different resolutions.
  • a low-resolution phase difference image may be acquired by performing so-called binning readout using two high-resolution image sensors.
  • normal reading may be performed without performing binning reading.
  • binning readout is a readout method in which charge signals of a plurality of adjacent photoelectric conversion elements in an image sensor are collectively read and acquired as one pixel signal.
  • the imaging unit 40 reads out a high-resolution phase difference image from one high-resolution image sensor, and then adds a plurality of adjacent pixel signals in the high-resolution phase difference image.
  • a low-resolution phase difference image may be acquired.
  • Phase difference measurement illumination light irradiation part 11 Phase difference measurement white light source 12 Slit plate 12a Slit 12b Light-shielding plate 13 Condenser lens 20 Adjustment optical system 21 Adjustment optical element 22 Adjustment optical system drive part 30 Imaging optical system 31 Objective lens 32 phase plate 32a phase ring 32b transparent plate 33 imaging lens 34 imaging optical system drive unit 40 imaging units 41 and 42 imaging device 50 microscope control device 51 adjustment optical system control unit 52 imaging optical system control unit 53 stage control unit 60 Culture vessel 61 Stage 62 Stage drive unit 70 Pattern light irradiation unit 71 Pattern light near infrared light source 72 Grid 73 Irradiation lens 74 First dichroic mirror 75 Reflected light detection unit 76 Half mirror 77 Optical path difference prism 78 First line sensor 80 Transmitted light detector 81 Second dichroic Kumira 82 condenser lens 83 filter unit 84 the second line sensor 90 display device 95 input device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

メニスカスに起因する照明光の屈折の影響を自動的かつ高速に調整することができる位相差顕微鏡および撮像方法を提供する。培養液および観察対象が収容された培養容器に対して予め設定されたパターンを有するパターン光を照射する。パターン光の照射によって培養容器内の培養液を透過した透過光を検出する。その検出した透過光に基づく検出信号に基づいて、培養容器内の培養液の液面形状に起因する光の屈折を調整する調整光学系の光学特性を調整する。その調整の後、培養容器に対して位相差計測のための照明光を照射し、照明光を照射した観察対象を撮像する。

Description

位相差顕微鏡および撮像方法
 本発明は、液体中の観察対象を位相差計測する位相差顕微鏡および撮像方法に関するものである。
 近年、幹細胞などの培養された透明な細胞を非染色に観察する方法として位相差計測が広く使われ始めている。そして、このような位相差計測を行うものとして位相差顕微鏡が使用されている。
 一般的な位相差顕微鏡においては、リング状の照明光が観察対象に照射され、観察対象を通過した直接光と回折光が位相板に入射される。そして、直接光は位相板のリング部分によって減光され、回折光は位相板の透明な部分を通過し、この直接光と回折光とが結像されることによって明暗のコントラストのついた像を撮像することができる。
 ここで、たとえば位相差顕微鏡によって培養液中の細胞などを観察する場合、培養液の表面張力の影響によって培養液の液面にメニスカスが形成される。そして、このメニスカスのレンズ作用によってリング状の照明光の光軸がシフトし、位相板に入射される直接光と回折光とに影響を及ぼして明瞭な位相差像が得られない問題がある。
 図10は、従来の位相差顕微鏡を用いて培養液中の細胞を撮像した画像の一例を示すものである。図10Iは全体像であり、図10IIは、図10Iに示す全体像の一部を拡大した像である。図10に示すように、メニスカスの影響によって画像の中央にアーチファクトを生じ、細胞像のコントラストも低いことが分かる。
 一方、図11は、従来の位相差顕微鏡を用いて培養液がない状態で細胞を撮像した画像の一例を示すものである。図11Iは全体像であり、図11IIは、図11Iに示す全体像の一部を拡大した像である。図11に示すように、培養液が存在しない場合、高コントラストな細胞像を得ることができるが、培養液がない状態では細胞の培養を継続することができない。
 上述したような培養液のメニスカスの影響を抑制するため、種々の方法が提案されている。たとえば、特許文献1においては、対物レンズの瞳位置のリング状の位相膜の形状と、光学素子によって形成されるリング状の照明光の形状とを瞳像検出器によって検出し、その検出された座標データに基づいて、光学素子のリング状開口の形状を制御することが提案されている。
 また、特許文献2においては、メニスカスの影響ではないが、培養容器の底面の湾曲や培養容器の傾斜によって照明光の光軸がずれることを考慮し、照明光の光軸ずれを検出し、その光軸ずれに応じて位相板を移動させることが提案されている。
 また、特許文献3においては、メニスカスの影響を抑制するため、ユーザがスリット板または位相板を移動させ、その位置を記録しておくことが提案されている。
特開2010-271537号公報 特開2007-293267号公報 特開2009-122356号公報
 しかしながら、特許文献1に記載の方法では、位相膜の形状とリング状の照明光の形状とを画像として検出し、これらの座標データに基づいて光学素子を制御しており、リング状の画像の変形は単純ではないため、光学素子の制御信号を演算するために時間を要する。
 また、特許文献2に記載の方法は、上述したように、培養容器の底面の湾曲や培養容器の傾斜による照明光の光軸ずれを調整するものであり、培養液のメニスカスの影響を抑制する具体的な方法は提案されていない。
 また、特許文献3では、メニスカスの影響を抑制するため、ユーザがスリット板または位相板を移動させることが開示されているが、自動的かつ高速にメニスカスに起因する照明光の屈折の影響を取り除く方法については、何も提案されていない。
 本発明は、上記の問題に鑑み、メニスカスに起因する照明光の屈折の影響を自動的かつ高速に調整することができる位相差顕微鏡および撮像方法を提供することを目的とする。
 本発明の位相差顕微鏡は、液体および観察対象が収容された容器に対して位相差計測のための照明光を照射する位相差計測用照明光照射部と、照明光を照射した観察対象を撮像する撮像部と、光学特性が調整可能であり、容器内の液体の液面形状に起因する照明光の屈折をこの光学特性に応じて調整する調整光学系と、容器に対して予め設定されたパターンを有するパターン光を容器内の液体の液面に対して照射するパターン光照射部と、パターン光の照射によって容器内の液体の液面を透過した透過光を検出する透過光検出部と、透過光検出部によって検出された透過光に基づく検出信号に基づいて、調整光学系の光学特性を調整する調整光学系制御部とを備えたことを特徴とする。
 また、上記本発明の位相差顕微鏡において、照明光の照射による観察対象の像を撮像部に結像し、オートフォーカス制御される結像光学系と、パターン光の照射によって容器の底面を反射したパターン光の反射光を検出する反射光検出部と、反射光検出部によって検出された反射光に基づく検出信号に基づいて、結像光学系をオートフォーカス制御する結像光学系制御部とをさらに備えることができる。
 また、上記本発明の位相差顕微鏡において、調整光学系制御部は、透過光に基づく検出信号の均一性およびコントラストの少なくとも1つの評価結果に基づいて、調整光学系の光学特性を調整することができる。
 また、上記本発明の位相差顕微鏡において、照明光の照射によって容器内の液体の液面を反射した照明光の反射光の透過光検出部への入射を抑制するフィルタ部をさらに備えることができる。
 また、上記本発明の位相差顕微鏡において、フィルタ部は、照明光の波長に応じて分光特性を変更可能とできる。
 また、上記本発明の位相差顕微鏡において、パターン光は、縞状のパターンを有することが望ましい。
 また、上記本発明の位相差顕微鏡において、調整光学系制御部は、結像光学系制御部によるオートフォーカス制御の後に、調整光学系の光学特性を調整することができる。
 また、上記本発明の位相差顕微鏡において、調整光学系は、屈折力を調整可能な光学素子を有することができる。
 また、上記本発明の位相差顕微鏡において、光学素子は、照明光の入射面および出射面のうちの少なくとも一方に曲率を有することが好ましい。
 また、上記本発明の位相差顕微鏡において、光学素子は、上記曲率を調整可能であることが好ましい。
 また、上記本発明の位相差顕微鏡において、調整光学系制御部は、調整光学系の調整条件を取得し、その調整条件に基づいて調整光学系の光学特性の調整を行うことができる。
 また、上記本発明の位相差顕微鏡において、調整条件は、観察対象の画像を結像する結像光学系の光学倍率、容器の種類、観察対象の種類、観察対象の数、液体の種類、液体の量、環境温度、環境湿度、容器内の撮像位置および容器内の撮像領域の大きさの少なくとも1つに基づいて決定することができる。
 また、上記本発明の位相差顕微鏡において、位相差計測用照明光照射部は、光源と、その光源から出射された光を通過させるスリットが設けられたスリット板とを有し、そのスリット板を通過した光を照明光として観察対象に照射することができる。
 本発明の撮像方法は、液体および観察対象が収容された容器に対して予め設定されたパターンを有するパターン光を容器内の液体の液面に対して照射し、パターン光の照射によって容器内の液体の液面を透過した透過光を検出し、その検出した透過光に基づく検出信号に基づいて、容器内の液体の液面形状に起因する光の屈折を光学特性に応じて調整する調整光学系のこの光学特性を調整し、その調整の後、容器に対して位相差計測のための照明光を照射し、照明光を照射した観察対象を撮像することを特徴とする。
 本発明の位相差顕微鏡および撮像方法によれば、液体および観察対象が収容された容器に対して予め設定されたパターンを有するパターン光を照射し、パターン光の照射によって容器内の液体の液面を透過した透過光を検出する。そして、その検出した透過光に基づく検出信号に基づいて、容器内の液体の液面形状に起因する光の屈折を調整する調整光学系の光学特性を調整するようにしたので、容器に照射される位相差計測のための照明光の屈折の影響を自動的に調整することができる。さらに、上述したリング状の画像の座標データの演算処理を行う場合と比較すると、パターン光の検出信号に基づく演算処理の方が演算負荷を軽くすることができるので、上記照明光の屈折の影響を高速に調整することができる。
 そして、調整光学系の光学特性が調整された後、容器に対して位相差計測のための照明光を照射し、照明光を照射した観察対象を撮像するようにしたので、メニスカスに起因するアーチファクトが抑制された高コントラストな位相差画像を撮像することができる。
本発明の位相差顕微鏡の一実施形態を用いた顕微鏡システムの概略構成を示す図 スリット板の構成の一例を示す図 調整用光学素子の位置、光軸の回転および屈折力の調整を模式的に示す図 位相板の構成の一例を示す図 パターン光の透過光の検出信号を模式的に示す図 本発明の位相差顕微鏡の一実施形態を用いた顕微鏡システムの作用を説明するためのフローチャート 調整光学系を複数のレンズから構成する場合の各レンズの模式図 別の実施形態を用いた顕微鏡システムの概略構成を示す図 別の実施形態を用いた顕微鏡システムの作用を説明するためのフローチャート 培養液中の細胞を従来の位相差顕微鏡で撮像した画像の一例を示す図 培養液がない状態で細胞を従来の位相差顕微鏡で撮像した画像の一例を示す図
 以下、本発明の位相差顕微鏡および撮像方法の一実施形態を用いた顕微鏡システムについて、図面を参照しながら詳細に説明する。図1は、本実施形態の顕微鏡システムの概略構成を示す図である。
 本実施形態の顕微鏡システムは、図1に示すように、位相差計測用照明光照射部10と、調整光学系20と、結像光学系30と、撮像部40と、パターン光照射部70と、反射光検出部75と、透過光検出部80と、顕微鏡制御装置50と、表示装置90と、入力装置95とを備えている。
 本実施形態の顕微鏡システムにおいては、調整光学系20と結像光学系30との間に、ステージ61が設けられており、このステージ61上に、液体である培養液Cおよび観察対象Sが収容された培養容器60が設置される。そして、本実施形態の顕微鏡システムは、X方向、Y方向およびZ方向にステージ61を移動させるステージ駆動部62を備えている。X方向およびY方向は、観察対象設置面Pに平行な面上において互いに直交する方向であり、Z方向は、X方向およびY方向に直交する方向である。
 本実施形態の顕微鏡システムにおいては、上述した位相差計測用照明光照射部10、調整光学系20、結像光学系30、撮像部40、パターン光照射部70、反射光検出部75、透過光検出部80、ステージ61およびステージ駆動部62から位相差顕微鏡本体が構成され、顕微鏡制御装置50は、この位相差顕微鏡本体を制御するものである。以下、位相差顕微鏡本体の具体的な構成を説明する。
 位相差計測用照明光照射部10は、培養容器60内に収容された観察対象Sに対して、いわゆる位相差計測のための照明光を照射するものであり、本実施形態では、その位相差計測用照明光としてリング状照明光を照射する。具体的には、本実施形態の位相差計測用照明光照射部10は、位相差計測用の白色光を出射する位相差計測用白色光源11と、リング形状のスリットを有し位相差計測用白色光源11から出射された位相差計測用白色光が入射されてリング状照明光を出射するスリット板12と、スリット板12から射出されたリング状照明光が入射され、その入射されたリング状照明光を観察対象Sに対して照射するコンデンサレンズ13とを備えている。
 図2は、スリット板12の具体的な構成を示す図である。図2に示すように、スリット板12は、位相差計測用白色光源11から出射された位相差計測用白色光を遮光する遮光板12bに対して位相差計測用白色光を透過するリング形状のスリット12aが設けられたものであり、位相差計測用白色光がスリット12aを通過することによってリング状照明光が形成される。
 なお、本実施形態においては、上述したようにスリット板12を用いてリング状照明光を形成するようにしたが、リング状照明光を形成する方法としては、これに限らず、たとえば空間光変調素子などを用いてリング状照明光を形成するようにしてもよい。
 また、本実施形態においては、位相差計測用照明光としてリング状照明光を用いるようにしたが、リング状以外の構造を有する照明光でもよく、後述する位相板と共役な形状となっていれば三角形状や四角形状などその他の形状でもよい。
 ステージ61上に設置された培養容器60は、その底面が観察対象設置面Pであり、観察対象設置面Pには観察対象Sとして細胞群などが配置される。そして、培養容器60内には培養液Cが満たされており、この培養液Cの液面には、凹形状のメニスカスが形成される。培養容器60としては、シャーレおよび複数のウェルが配列されたウェルプレートなどがある。ウェルプレートの場合、各ウェルに観察対象Sおよび培養液Cが収容され、ウェル毎にメニスカスが形成される。
 また、本実施形態においては、培養液中で培養される細胞群を観察対象Sとしたが、観察対象Sとしてはこのような培養中のものに限らず、水、ホルマリン、エタノール、およびメタノールなどの液体中において固定された細胞を観察対象Sとしてもよい。この場合も、容器内のこれらの液体の液面にメニスカスが形成される。
 調整光学系20は、光学特性が調整可能であり、上述したメニスカスの液面形状に起因する位相差計測用照明光の屈折を調整するものである。本実施形態の調整光学系20は、調整用光学素子21と、調整光学系駆動部22とを備えている。
 調整用光学素子21は、屈折力を有するものであり、具体的には、電圧印加によって屈折力が変化する液晶レンズ、レンズの曲率半径を変更可能な液体レンズ、および焦点距離を変更可能な空間光変調器などを用いることができる。調整用光学素子21として、レンズを用いる場合には、入射面または出射面に曲率を有する平凸面レンズを用いてもよいし、入射面および出射面の両方に曲率を有する両凸面レンズを用いるようにしてもよい。
 調整光学系駆動部22は、後述する調整光学系制御部51から出力された制御信号に基づいて、調整用光学素子21の屈折力を変更して焦点距離を調整するものである。具体的には、調整用光学素子21として液晶レンズまたは空間光変調器を用いる場合には、液晶レンズまたは空間光変調器に対して所望の焦点距離に応じた電圧を印加するものである。また、調整用光学素子21として液体レンズを用いる場合には、所望の焦点距離に応じて液体レンズ内の液体の量を調整し、これにより液体レンズの曲率半径を調整するものである。
 また、調整光学系駆動部22は、調整光学系制御部51から出力された制御信号に基づいて、調整用光学素子21の位置および調整用光学素子21の光軸方向を変更する機構を備えたものである。具体的には、調整光学系駆動部22は、X方向、Y方向およびZ方向に調整用光学素子21の位置を変更可能な機構を備えている。また、調整光学系駆動部22は、調整用光学素子21の光軸を回転させる機構を備えたものである。図3Iは、X方向、Y方向およびZ方向への調整用光学素子21の位置の変更を模式的に示す図である。また、図3IIは、調整用光学素子21の光軸のX軸回り(θ)の回転調整、Y軸回り(φ)の回転調整およびZ軸回り(ρ)の回転調整を模式的に示す図である。また、図3IIIは、調整用光学素子21の屈折力の調整を模式的に示すものである。なお、図3IIIでは、調整用光学素子21の曲率半径を調整することによって屈折力を調整する例を示しているが、屈折力を調整する方法としては、これに限らず、たとえば、調整用光学素子21として液晶レンズや空間光変調器を用いる場合には、印加電圧を調整することによって、屈折力を調整するようにすればよい。
 また、本実施形態においては、調整用光学素子21をX方向、Y方向およびZ方向に移動させるようにしたが、この調整用光学素子21の移動による光学的な作用と同等の作用を得られるのであれば、必ずしも調整用光学素子21を移動させなくてもよい。たとえば、調整用光学素子21として液晶レンズや空間光変調器を用いる場合には、印加電圧を調整することによって、調整用光学素子21の移動による光軸のシフトと同様の作用効果を得るようにしてもよい。また、調整用光学素子21の光軸方向についても同様に、必ずしも調整用光学素子21自体を回転させる必要はなく、印加電圧を調整することによって、調整用光学素子21自体の回転による光軸の回転と同様の作用効果を得るようにしてもよい。
 また、本実施形態においては、調整用光学素子21をX方向、Y方向およびZ方向に移動するようにしたが、これに限らず、ステージ61をX方向、Y方向およびZ方向に移動させることによって、調整用光学素子21と培養容器60内に形成されたメニスカスとのX方向、Y方向およびZ方向についての相対的な位置関係を変更するようにしてもよい。
 また、本実施形態においては、1つの調整用光学素子21を用いるようにしたが、焦点距離の異なる複数の調整用光学素子21を自動的に切り換えることによって屈折力を調整するようにしてもよい。
 結像光学系30は、対物レンズ31と、位相板32と、結像レンズ33と、結像光学系駆動部34とを備えたものである。図4は、位相板32の具体的な構成を示す平面図である。図4に示すように、位相板32は、リング状照明光の波長に対して透明な透明板32bに対して位相リング32aを形成したものである。なお、上述したスリット12aの大きさは、この位相リング32aと共役な関係にある。
 位相リング32aは、入射された光の位相を1/4波長ずらす位相膜と、入射された光を減光する減光フィルタとがリング状に形成されたものである。位相板32に入射された直接光は位相リング32aを通過することによって位相が1/4波長ずれるとともに、その明るさが弱められる。一方、観察対象Sによって回折された回折光は大部分が位相板32の透明板32bを通過し、その位相および明るさは変化しない。
 対物レンズ31は、結像光学系駆動部34によってZ方向に移動するものである。観察対象Sの位相差画像を撮像する場合には、結像光学系駆動部34によって対物レンズ31をZ方向へ移動させることによってオートフォーカス制御が行われ、撮像部40によって撮像される画像のコントラストが調整される。本実施形態においては、パターン光照射部70によって培養容器60に対してパターン光が照射され、培養容器60の底面を反射した反射光が反射光検出部75によって検出され、その検出信号に基づいてオートフォーカス制御が行われる。このパターン光の反射光の検出信号に基づくオートフォーカス制御については、後で詳述する。
 結像レンズ33は、位相板32を通過した直接光および回折光が入射され、これらの光を撮像部40に結像するものである。
 結像光学系駆動部34は、上述したように対物レンズ31をZ方向に移動させる機構を備えたものである。
 結像光学系30は、その光学倍率を変更可能に構成するようにしてもよい。光学倍率を変更する方法としては、たとえば互いに異なる倍率を有する複数の対物レンズ31を結像光学系30に設け、この複数の対物レンズ31を自動的に切り換えるようにすればよい。この際、位相板32も対物レンズ31の変更に応じて変更される。また、ユーザが対物レンズ31を手動で交換することによって変更するようにしてもよい。
 撮像部40は、結像レンズ33によって結像された観察対象Sの位相差画像を撮像する撮像素子を備えたものである。撮像素子としては、CCD(charge-coupled device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどを用いることができる。
 パターン光照射部70は、オートフォーカス制御および調整光学系20の光学特性の調整に用いられる、予め設定されたパターンを有するパターン光を培養容器60に対して照射するものである。具体的には、本実施形態のパターン光照射部70は、縞状のパターンを有するパターン光を照射するものであり、近赤外光を出射するパターン光用近赤外光源71と、パターン光用近赤外光源71から出射された近赤外光を透過する線状部分とこの近赤外光を遮光する線状部分とから構成されるグリッド72と、照射レンズ73と、グリッド72から出射された縞状の明暗のパターンを有するパターン光を培養容器60に向けて反射し、かつ位相差計測用照明光を透過する第1のダイクロイックミラー74とを備えている。
 なお、本実施形態においては、グリッド72を用いることによって縞状の明暗のパターンを有するパターン光を形成するようにしたが、パターン光を形成する方法としては、これに限らず、たとえば空間光変調素子などを用いて縞状の明暗のパターンを形成するようにしてもよい。また、パターン光が有する明暗のパターンとしては、縞状に限らず、2次元状に明暗のパターンが周期的に配列された格子パターンを用いるようにしてもよい。また、同心円状に明暗のパターンが配列された光または2次元状にドットパターンが配列された光をパターン光として用いるようにしてもよい。また、パターン光が有するパターンは、白黒のパターンでなくてもよく、互いに異なる色からなるカラーのパターンでもよい。
 反射光検出部75は、上述したように、パターン光の照射によって培養容器60の底面を反射したパターン光の反射光を検出するものである。具体的には、本実施形態の反射光検出部75は、ハーフミラー76と、光路差プリズム77と、第1のラインセンサ78とを備えている。
 ハーフミラー76は、グリッド72から出射されたパターン光を透過し、かつパターン光の培養容器60への照射によって培養容器60の底面から反射された反射光を光路差プリズム77の方向に反射するものである。
 光路差プリズム77は、入射されたパターン光の反射光を2つの光路に分け、第1のラインセンサ78の異なる2箇所に結像するものである。第1のラインセンサ78は、2箇所で撮像された第1の検出信号と第2の検出信号とを顕微鏡制御装置50の結像光学系制御部52に出力するものである。
 結像光学系制御部52は、入力された第1の検出信号と第2の検出信号とに基づいて、対物レンズ31をZ方向に移動させてオートフォーカス制御を行うものである。具体的には、本実施形態の結像光学系制御部52は、第1の検出信号のコントラスト(波形パターン)と第2の検出信号のコントラスト(波形パターン)が最も近似する位置に対物レンズ31を移動させる。なお、本実施形態では、第1のラインセンサ78を用いて第1および第2の検出信号を検出するようにしたが、これに限らず、CMOSイメージセンサまたはCCDイメージセンサを用いてもよい。
 透過光検出部80は、パターン光の照射によって培養容器60内の培養液Cを透過した透過光を検出するものである。具体的には、本実施形態の透過光検出部80は、第2のダイクロイックミラー81と、集光レンズ82と、フィルタ部83と、第2のラインセンサ84とを備えている。
 第2のダイクロイックミラー81は、パターン光の照射によって培養容器60内の培養液Cを透過した透過光を第2のラインセンサ84に向けて反射し、かつ位相差計測用照明光を透過するものである。集光レンズ82は、第2のダイクロイックミラー81によって反射された透過光を集光するものである。
 フィルタ部83は、位相差計測用照明光の培養液Cへの照射によって、培養液Cの液面において反射された位相差計測用照明光の反射光の第2のラインセンサ84への入射を抑制するものである。また、フィルタ部83は、近赤外光であるパターン光の培養液Cの照射によって発生した雑蛍光の第2のラインセンサ84への入射を抑制するものである。具体的には、本実施形態のフィルタ部83は、位相差計測用照明光の波長および雑蛍光の波長に対する透過率よりも近赤外光の波長に対する透過率の方が高い光学特性を有する光学フィルタを備えたものである。すなわち、フィルタ部83により位相差計測用照明の反射光および雑蛍光の第2のラインセンサ84への入射を抑制することによって、第2のラインセンサ84は、パターン光の成分のみの検出信号を高いS/Nで検出することができる。
 また、たとえば、上述した位相差計測用照明光照射部10が、位相差計測用照明光の波長を切り換え可能なものである場合には、その切り換えられた位相差計測用照明光の強度を適切に抑制できるように、フィルタ部83の分光特性を変更するようにしてもよい。フィルタ部83の分光特性を変更する方法としては、たとえば複数の光学フィルタを切り換えるようにすればよい。光学フィルタは、ユーザが入力装置95を用いて光学フィルタの切り換え指示を入力した際に切り換えるようにしてもよいし、位相差計測用照明光の波長の切り換え指示の入力に応じて切り換えるようにしてもよい。
 第2のラインセンサ84は、パターン光の照射によって培養容器60内の培養液Cを透過した透過光を検出するものである。パターン光は、培養液Cを透過する際、培養液Cの液面に形成されたメニスカスを透過する。したがって、その透過光の強度分布は、メニスカスの状態によって変化することになる。本実施形態は、この透過光の強度分布に基づいて、調整光学系20の光学特性を調整することによって、メニスカスに起因する位相差計測用照明光の屈折の影響を取り除くものである。
 第2のラインセンサ84によって検出された透過光の検出信号は、顕微鏡制御装置50の調整光学系制御部51に出力される。調整光学系制御部51は、入力された透過光の検出信号に基づいて、調整光学系駆動部22を駆動制御し、これにより調整用光学素子21のX方向、Y方向およびZ方向の位置、光軸方向並びに屈折力を制御して光学特性を調整するものである。図5は、透過光の検出信号Dを模式的に示すものである。調整光学系制御部51は、透過光の検出信号Dの均一性およびコントラストを評価し、その評価結果に基づいて、調整光学系20の光学特性を調整するものである。
 具体的には、調整光学系制御部51は、透過光の検出信号Dの振幅Aが最大となり、かつ検出信号Dの振幅の中心レベルBが、第2のラインセンサ84の長さ方向の位置によらず一定となるように調整光学系20の光学特性を調整するものである。検出信号Dの振幅の中心レベルBが、第2のラインセンサ84の長さ方向の位置によらず一定とは、要するに第2のラインセンサ84によって検出される縞模様の一本一本の縞の濃度のばらつきが最小であることを意味する。
 なお、本実施形態では、第2のラインセンサ84を用いて透過光の検出信号を検出するようにしたが、これに限らず、CMOSイメージセンサまたはCCDイメージセンサを用いてもよい。また、調整光学系制御部51による調整光学系20の制御については、後で詳述する。
 顕微鏡制御装置50は、CPU(Central Processing Unit)やストレージデバイスを備えたコンピュータから構成されるものである。
 顕微鏡制御装置50は、具体的には、図1に示すように、調整光学系駆動部22を制御する調整光学系制御部51と、結像光学系駆動部34を制御する結像光学系制御部52と、ステージ駆動部62を制御するステージ制御部53とを備えている。
 調整光学系制御部51は、上述したようにパターン光の透過光の検出信号に基づいて、調整光学系20の光学特性を調整するものである。
 結像光学系制御部52は、上述したようにパターン光の反射光の検出信号に基づいて、オートフォーカス制御を行うものである。
 ステージ制御部53は、ステージ駆動部62を駆動制御し、これによりステージ61をX方向、Y方向およびZ方向に移動させるものである。ステージ61が、X方向およびY方向に移動することによって、たとえば1つのセル内が位相差計測用照明光で走査され、1つのセル内で分割された複数の撮像領域毎の位相差画像が撮像される。また、上述した調整光学系20の光学特性の調整についても、分割された撮像領域毎に行われる。
 顕微鏡制御装置50には、入力装置95と表示装置90とが接続されている。入力装置95は、キーボードやマウスなどの入力デバイスを備えたものであり、ユーザによる設定入力を受け付けるものである。特に、本実施形態における入力装置95は、調整光学系20の光学特性を調整する際に用いられる調整条件を決定するための条件の設定入力を受け付けるものである。具体的には、結像光学系30の光学倍率、培養容器60の種類、観察対象Sの種類、観察対象Sの数、培養液Cの種類、培養液Cの量、培養容器60内の撮像位置および撮像領域の大きさなどの設定入力を受け付けるものである。なお、調整条件については、後で詳述する。
 表示装置90は、液晶ディスプレイなどの表示デバイスから構成されるものであり、撮像部40において撮像された位相差画像などを表示するものである。なお、画面を押圧することにより設定入力可能とするタッチパネルで表示装置90を構成し、表示装置90が入力装置を兼ねてもよい。
 次に、本実施形態の顕微鏡システムの作用について、図6に示すフローチャートを参照しながら説明する。
 まず、観察対象Sおよび培養液Cが収容された培養容器60がステージ61上に設置される。そして、調整光学系20の調整条件を決定するための条件が、調整光学系制御部51によって取得される(S10)。
 ここで、調整条件とは、後述する調整光学系20の光学特性の調整の際に用いられる条件であり、具体的には、調整光学系20の初期設定値、変更調整量および変更上限回数などである。
 そして、この調整条件を決定するための条件としては、結像光学系30の光学倍率、培養容器60の種類、観察対象Sの種類、観察対象Sの数、培養液Cの種類、培養液Cの量、環境温度、環境湿度、培養容器60内の撮像位置および撮像領域の大きさなどがあり、これらの少なくとも1つの条件が調整光学系制御部51によって取得される。
 上述した条件は、培養液Cの液面に形成されるメニスカスの形状やそのメニスカスに起因して屈折した光の焦点距離に影響を及ぼす条件である。たとえば、培養容器60の種類については、培養容器60の径の大きさや深さなどによってメニスカスの形状が異なり、また、培養液Cの種類によってもその粘度などによってメニスカスの形状が異なる。また、培養液Cの量によってもメニスカスの形状が異なる。また、環境温度や環境湿度によっても培養液Cの粘度などが変化し、メニスカスの形状が異なる。また、観察対象Sである細胞の種類(大きさ)や数によっても培養液Cの液面の状態が変化し、メニスカスの形状が異なる。
 また、培養容器60内の撮像位置が、図1に示すように培養容器60の中央位置の場合と、中央位置からずれた位置である場合とでは、その撮像位置におけるメニスカスの形状が異なる。また、結像光学系30の光学倍率や撮像領域の大きさによって、メニスカスに起因して屈折した光の焦点距離が異なる。
 したがって、まず、調整光学系制御部51によって上述したような条件が取得され、調整光学系制御部51は、取得した条件に基づいて、調整光学系20の調整条件(初期設定値、変更調整量および変更上限回数)を取得する(S12)。
 具体的には、調整光学系制御部51は、調整光学系20の初期設定値として、調整用光学素子21のX方向、Y方向およびZ方向の位置を調整する際の初期設定値と、調整用光学素子21の光軸の回転角度(θ,φ,ρ)を調整する際の初期設定値と、調整用光学素子21の屈折力を調整する際の初期設定値とを取得する。調整用光学素子21の屈折力を調整する際の初期設定値としては、液晶レンズや空間光変調器に印加する電圧の初期設定値や、液体レンズ内に注入される液体の量の初期設定値などがある。
 また、調整光学系制御部51は、調整用光学素子21のX方向、Y方向およびZ方向の位置を調整する際における1回当たりの変更調整量および変更上限回数と、調整用光学素子21の光軸の回転角度(θ,φ,ρ)を調整する際における1回当たりの変更調整量および変更上限回数と、調整用光学素子21の屈折力を調整する際における1回当たりの変更調整量および変更上限回数とを取得する。
 上述したような調整光学系20の調整条件は、調整条件を決定するための条件と調整条件とを対応づけたテーブルを調整光学系制御部51に予め記憶しておき、このテーブルを参照することによって取得するようにすればよい。
 このように各条件に応じた調整条件を取得し、調整光学系20の光学特性を調整する際の調整稼働範囲を限定することによって、後述する調整光学系20の光学特性の調整時間を短縮することができ、また調整稼働範囲を狭くすることができるので、小型化を図ることができる。
 次に、ステージ61が、ステージ駆動部62によってX方向およびY方向に移動し、培養容器60内の複数の撮像領域のうちの最初の撮像領域に位相差計測用照明光およびパターン光が照射される位置に設定され、位相差計測用照明光およびパターン光が培養容器60に対して照射される(S14)。
 そして、パターン光の照射によって培養容器60の底面を反射した反射光が反射光検出部75の第1のラインセンサ78によって検出され、その検出された反射光に基づく第1および第2の検出信号が、結像光学系制御部52に出力される。結像光学系制御部52は、入力された第1の検出信号と第2の検出信号とに基づいて、対物レンズ31をZ方向に移動させてオートフォーカス制御を行う(S16)。
 一方、培養容器60内の培養液Cを透過した透過光が、透過光検出部80の第2のラインセンサ84によって検出される(S18)。そして、第2のラインセンサ84によって検出された透過光に基づく検出信号は、調整光学系制御部51に出力される。調整光学系制御部51は、上述したパターン光の反射光の検出信号に基づくオートフォーカス制御の後に、パターン光の透過光に基づく検出信号に基づいて、調整光学系20の光学特性を調整する。
 具体的には、調整光学系制御部51は、上述したように透過光の検出信号の濃度の均一性を評価し、その評価結果に基づいて、調整光学系駆動部22に制御信号を出力する(S20)。たとえば、調整光学系制御部51は、第2のラインセンサ84によって検出される縞模様の一本一本の縞の濃度のばらつきが予め設定された閾値以上である場合には、そのばらつきが小さくなるように調整光学系駆動部22に対して制御信号を出力する。
 調整光学系駆動部22は、入力された制御信号に基づいて、調整用光学素子21のX方向およびY方向の位置と、調整用光学素子21の光軸の回転を、上述した変更調整量だけ調整する(S22)。
 そして、再び、パターン光の透過光の検出信号が調整光学系制御部51に入力される。調整光学系制御部51は、入力された透過光の検出信号の均一性を再び評価し、濃度のばらつきが予め設定された閾値以上である場合には、調整光学系駆動部22に再び制御信号を出力する。調整光学系駆動部22は、入力された制御信号に基づいて、再び調整用光学素子21のX方向およびY方向の位置と、調整用光学素子21の光軸の回転を、上述した変更調整量だけ調整する。
 このように透過光の検出信号の濃度の均一性の評価と、その評価結果に基づく調整用光学素子21のX-Y方向の位置および光軸の回転の調整とが、上述した変更上限回数を上限として繰り返して行われ、透過光の検出信号の濃度のばらつきが小さくなるように調整用光学素子21のX-Y方向の位置および光軸の回転が調整される。
 そして、上記のようにして調整用光学素子21のX-Y方向の位置および光軸の回転の調整が終了した後、次に、調整光学系制御部51は、透過光の検出信号のコントラストを取得する(S24)。そして、調整光学系制御部51は、透過光の検出信号のコントラストが所定の閾値以下である場合には、調整光学系駆動部22に制御信号を出力する。調整光学系駆動部22は、入力された制御信号に基づいて、調整用光学素子21のZ方向の位置および調整用光学素子21の屈折力を、上述した変更調整量だけ調整する。
 そして、再び、パターン光の透過光の検出信号が調整光学系制御部51に入力される。調整光学系制御部51は、入力された透過光の検出信号のコントラストを再び取得し、そのコントラストが所定の閾値以下である場合には、調整光学系駆動部22に再び制御信号を出力する。調整光学系駆動部22は、入力された制御信号に基づいて、再び調整用光学素子21のZ方向の位置および調整用光学素子21の屈折力を、上述した変更調整量だけ調整する。
 このように透過光の検出信号のコントラストの評価と、その評価結果に基づく調整用光学素子21のZ方向の位置および屈折力の調整とが、上述した変更上限回数を上限として繰り返して行われ、透過光の検出信号のコントラストが最大となるように調整用光学素子21のZ方向の位置および屈折力が調整される(S26)。
 そして、調整用光学素子21のZ方向の位置および屈折力の調整が行われた後、撮像部40によって位相差計測用照明光の照射による位相差画像が撮像される(S28)。
 次いで、ステージ駆動部62によりステージ61がX方向およびY方向に移動することによって、各撮像領域について、上述した調整光学系20の光学特性の調整および位相差画像の撮像が行われ、各撮像領域の位相差画像が、顕微鏡制御装置50における記憶部に順次記憶される。
 そして、顕微鏡制御装置50において各撮像領域の位相差画像が合成され、その合成された位相差画像が表示装置90に表示される(S30)。
 上記実施形態の顕微鏡システムによれば、培養容器60に対して予め設定されたパターンを有するパターン光を照射し、パターン光の照射によって培養容器60内の培養液Cを透過した透過光を検出し、その検出した透過光に基づく検出信号に基づいて、調整光学系20の光学特性を調整するようしたので、位相差計測用照明光の屈折の影響を自動的に調整することができる。さらに、上述したリング状の画像の座標データの演算処理を行う場合と比較すると、パターン光の検出信号に基づく演算処理の方が演算負荷を軽くすることができるので、上記位相差計測用照明光の屈折の影響を高速に調整することができる。
 そして、調整光学系20の光学特性が調整された後、位相差計測用照明光を培養容器60に照射して観察対象Sを撮像するようにしたので、メニスカスに起因するアーチファクトが抑制された高コントラストな位相差画像を撮像することができる。
 また、上記実施形態の顕微鏡システムにおいては、1つのパターン光を用いて、調整光学系20の光学特性の調整と結像光学系30のオートフォーカス制御との両方を行うようにしたので、たとえば調整光学系20の光学特性の調整を、オートフォーカス制御とは全く別の系で行う場合と比較すると、これらの処理を高速に行うことができる。
 また、上記実施形態の顕微鏡システムにおいては、パターン光の検出信号に基づくオートフォーカス制御の後に、調整光学系20の光学特性の調整を行うようにしたので、これらの処理を高精度に行うことができる。
 なお、上記実施形態の顕微鏡システムにおいては、調整用光学素子21への印加電圧や注入する液量を調整することによって調整用光学素子21の屈折力を調整するようにしたが、これに限らず、たとえば調整光学系20として、図7I~IIIに示すような互いに曲率半径の異なる複数のレンズを設け、これらのレンズを自動的に切り換えることによって屈折力を調整するようにしてもよい。また、調整用光学素子21の光軸を回転させる方法としては、たとえば図7IV~図7Vに示すような、光の出射角度が互いに異なる複数のレンズを設け、これらのレンズを自動的に切り換えることによって調整用光学素子21の光軸方向を調整するようにしてもよい。また、図7I~Vに示すような複数種類のレンズを組み合わせて使用することによって、屈折力および光軸の回転を調整するようにしてもよい。
 また、上記実施形態の顕微鏡システムにおいては、調整光学系20の屈折力を調整するようにしたが、屈折力の調整は行わずに、調整用光学素子21のX方向、Y方向およびZ方向の位置調整および調整用光学素子21の光軸の回転調整だけを行うようにしてもよい。
 また、上記実施形態の顕微鏡システムにおいては、液面上に形成されたメニスカスに起因する位相差計測用照明光の屈折の影響を取り除くために調整用光学素子21を設けるようにしたが、必ずしもこのような調整用光学素子21を設けなくてもよく、たとえばスリット板12をX方向およびY方向に移動させたり、位相板32をX方向およびY方向に移動させたりして、メニスカスに起因する位相差計測用照明光の屈折の影響を取り除くようにしてもよい。すなわち、本発明における調整光学系として、スリット板12や位相板32を用いるようにしてもよい。
 また、上記実施形態の顕微鏡システムにおいては、パターン光の透過光の検出信号の均一性とコントラストの両方を評価して調整光学系20の調整を行うようにしたが、均一性およびコントラストのうちのいずれか一方のみを評価して調整光学系20の調整を行うようにしてもよい。
 次に、上記実施形態の顕微鏡システムのようにパターン光の透過光の検出信号に基づいて調整光学系20の光学特性を調整するのではなく、位相差計測用照明光の照射によって撮像部40において撮像された位相差画像に基づいて、調整光学系20の光学特性を調整する別の実施形態の顕微鏡システムについて説明する。
 本実施形態の顕微鏡システムにおける位相顕微鏡本体は、液体および観察対象が収容された容器に対して位相差計測のための照明光を照射する位相差計測用照明光照射部と、照明光を照射した観察対象を撮像する撮像部と、照明光の照射による観察対象の像を撮像部に結像する結像光学系と、容器内の液体の液面形状に起因する照明光の屈折を調整する調整光学系と、撮像部によって撮像された位相差画像に基づいて、調整光学系の光学特性を調整する調整光学系制御部と、撮像部によって撮像された位相差画像に基づいて、結像光学系をオートフォーカス制御する結像光学系制御部とを備え、撮像部が、調整光学系の光学特性を調整する場合に用いる位相差画像として、相対的に解像度が低い低解像度位相差画像を取得し、結像光学系のオートフォーカス制御を行う場合に用いる位相差画像として、相対的に解像度が高い高解像度位相差画像を取得するものであることを特徴とするものである。
 図8は、本実施形態の顕微鏡システムの概略構成を示す図である。本実施形態の顕微鏡システムは、図8に示すように、位相差計測用照明光照射部10と、調整光学系20と、結像光学系30と、撮像部40と、ステージ61と、ステージ駆動部62と、顕微鏡制御装置50と、表示装置90と、入力装置95とを備えている。なお、撮像部40以外の構成については、上記実施形態と同様である。
 本実施形態の顕微鏡システムの撮像部40は、上述したように、調整光学系20の光学特性を調整する場合に用いる位相差画像として、相対的に解像度が低い低解像度位相差画像を取得し、結像光学系30のオートフォーカス制御を行う場合に用いる位相差画像として、相対的に解像度が高い高解像度位相差画像を取得するものである。具体的には、本実施形態の撮像部40は、解像度が異なる2つの撮像素子41と撮像素子42とを備えたものである。そして、撮像部40は、調整光学系20の光学特性を調整する場合に用いる位相差画像を撮像する場合には、相対的に解像度の低い撮像素子42を用いて低解像度位相差画像を取得し、結像光学系30のオートフォーカス制御を行う場合に用いる位相差画像を撮像する場合には、相対的に解像度が高い撮像素子41を用いて高解像度位相差画像を取得するものである。
 なお、撮像素子41,42としては、上記実施形態と同様に、CCDイメージセンサやCMOSイメージセンサなどを用いることができる。
 次に、本実施形態の顕微鏡システムの作用について、図9に示すフローチャートを参照しながら説明する。
 まず、観察対象Sおよび培養液Cが収容された培養容器60がステージ61上に設置される。そして、調整光学系20の調整条件を決定するための条件が、調整光学系制御部51によって取得される(S40)。なお、調整条件を決定するための条件については、上記実施形態と同様である。
 そして、調整光学系制御部51は、取得した条件に基づいて、調整光学系20の調整条件(初期設定値、変更調整量および変更上限回数)を取得する(S42)。
 次に、ステージ61が、ステージ駆動部62によってX方向およびY方向に移動し、培養容器60内の複数の撮像領域のうちの最初の撮像領域に位相差計測用照明光が照射される位置に設定され、位相差計測用照明光が培養容器60に対して照射される(S44)。
 次いで、結像光学系制御部52から結像光学系駆動部34に制御信号が出力され、結像光学系駆動部34は、入力された制御信号に基づいて、結像光学系30の対物レンズ31をZ方向に移動させる。そして、その対物レンズ31のZ方向の移動に伴って撮像部40によって順次撮像された位相差画像を表す画像信号が結像光学系制御部52に入力され、結像光学系制御部52は、その入力された画像信号に基づいてオートフォーカス制御を行う(S46)。具体的には、結像光学系制御部52は、入力された画像信号のコントラストが最大となる対物レンズ31の位置を特定し、対物レンズ31の位置をその特定した位置に設定する。なお、この際、撮像部40は、上述したように相対的に解像度が高い撮像素子41を用いて高解像度位相差画像を撮像する。
 そして、結像光学系制御部52によってオートフォーカス制御が行われた後、撮像部40は、高解像度の撮像素子41から低解像度の撮像素子42に切り換える(S48)。そして、低解像度の撮像素子42によって、調整光学系20の光学特性を調整するための低解像度位相差画像が調整用画像として撮像される(S50)。撮像部40の低解像度の撮像素子42によって撮像された調整用画像は、調整光学系制御部51に入力される。
 調整光学系制御部51は、入力された調整用画像の濃度の均一性を表す特徴量を取得する(S52)。そして、調整光学系制御部51は、調整用画像の濃度の均一性が適切な状態でない場合には、調整光学系駆動部22に制御信号を出力する。
 ここで、調整用画像の濃度の均一性が適切な状態とは、たとえば調整用画像内に現れるリング状の像がほぼ回転対称な形状となった状態である。なお、この際、必ずしもリング状の像が回転対称な形状にならなくてもよく、回転対称な形状に最も近づけるように調整するようにすればよい。
 また、この際に取得される調整用画像の特徴量としては、たとえば調整用画像の背景情報があり、具体的には、調整用画像に対してローパスフィルタ処理を施すことによって低周波成分の画像が取得される。そして、この低周波成分の画像からリング状の画像を抽出し、たとえばパターンマッチングなどを行うことによって回転対称からのずれ量を算出し、そのずれ量が所定の閾値よりも大きい場合に、調整光学系駆動部22に制御信号が出力される。
 そして、調整光学系駆動部22は、入力された制御信号に基づいて、調整用光学素子21のX方向およびY方向の位置と、調整用光学素子21の光軸の回転を、上述した変更調整量だけ調整する(S54)。
 そして、再び、撮像部40の撮像素子42によって調整用画像が取得され、調整光学系制御部51に入力される。調整光学系制御部51は、入力された調整用画像の濃度の均一性を表す特徴量を再び取得し、調整用画像の濃度の均一性が適切な状態でない場合には、調整光学系駆動部22に再び制御信号を出力する。調整光学系駆動部22は、入力された制御信号に基づいて、再び調整用光学素子21のX方向およびY方向の位置と、調整用光学素子21の光軸の回転を、上述した変更調整量だけ調整する。
 このように調整用画像の撮像と、その調整用画像の濃度の均一性を表す特徴量に基づく調整用光学素子21のX-Y方向の位置および光軸の回転の調整とが、上述した変更上限回数を上限として繰り返して行われ、調整用画像の濃度の均一性が適切な状態となるように調整用光学素子21のX-Y方向の位置および光軸の回転が調整される。
 そして、上記のようにして調整用光学素子21のX-Y方向の位置および光軸の回転の調整が終了した後、次に、調整光学系制御部51は、調整用画像のコントラストを表す特徴量を取得する(S56)。そして、調整光学系制御部51は、調整用画像のコントラストが適切な状態でない場合には、調整光学系駆動部22に制御信号を出力し、調整光学系駆動部22は、入力された制御信号に基づいて、調整用光学素子21のZ方向の位置および調整用光学素子21の屈折力を、上述した変更調整量だけ調整する。
 調整用画像のコントラストを表す特徴量としては、たとえば調整用画像に対してハイパスフィルタ処理を施すことによって高周波成分の画像が取得される。そして、この高周波成分の画像からコントラストを算出し、そのコントラストが所定の閾値以下である場合に、調整光学系駆動部22に制御信号が出力される。
 そして、再び、撮像部40の撮像素子42によって調整用画像が取得され、調整光学系制御部51に入力される。調整光学系制御部51は、入力された調整用画像のコントラストを表す特徴量を再び取得し、調整用画像のコントラストが適切な状態でない場合には、調整光学系駆動部22に再び制御信号を出力する。調整光学系駆動部22は、入力された制御信号に基づいて、再び調整用光学素子21のZ方向の位置および調整用光学素子21の屈折力を、上述した変更調整量だけ調整する。
 このように調整用画像の撮像と、その調整用画像のコントラストを表す特徴量に基づく調整用光学素子21のZ方向の位置および屈折力の調整とが、上述した変更上限回数を上限として繰り返して行われ、調整用画像のコントラストが最大となるように調整用光学素子21のZ方向の位置および屈折力が調整される(S58)。
 そして、調整用光学素子21のZ方向の位置および屈折力の調整が行われた後、撮像部40は、再び、低解像度の撮像素子42から高解像度の撮像素子41に切り換える(S60)。そして、高解像度の撮像素子41によって高解像度位相差画像が観察用画像として撮像される(S62)。
 次いで、ステージ駆動部62によりステージ61がX方向およびY方向に移動することによって、各撮像領域について、上述した調整光学系20の光学特性の調整および観察用画像の撮像が行われ、各撮像領域の観察用画像が、顕微鏡制御装置50における記憶部に順次記憶される。
 そして、顕微鏡制御装置50において各撮像領域の観察用画像が合成され、その合成された観察用画像が表示装置90に表示される(S64)。
 上記別の実施形態の顕微鏡システムによれば、先の実施形態のようにパターン光の透過光を検出する透過光検出部80を設けなくてもよいので、位相差顕微鏡本体を小型化することができ、コストの削減を図ることができる。
 また、オートフォーカス制御の際には、高解像度位相差画像を用いるようにしたので、高精度なオートフォーカス制御を行うことができる。一方、調整光学系20の光学特性を調整する場合には、上述したように画像の均一性を主に評価するので、オートフォーカス制御の場合ほど高解像度の位相差画像を用いる必要がない。調整光学系20の光学特性を調整する場合には低解像度位相差画像を用いることによって、均一性を表す特徴量やコントラストを表す特徴量の演算負荷を下げることができ、調整光学系20の光学特性の調整を高速化することができる。
 また、上記別の実施形態の顕微鏡システムにおいては、解像度の異なる2つの撮像素子を切り替えることによって低解像度位相差画像と高解像度位相差画像を撮像するようにしたが、これに限らず、たとえば1つの高解像度な撮像素子を用いて、いわゆるビニング読み出しを行うことによって低解像度位相差画像を取得するようにしてもよい。高解像度位相差画像については、ビニング読み出しを行うことなく、通常の読み出しを行うようにすればよい。なお、ビニング読み出しとは、撮像素子における隣接する複数の光電変換素子の電荷信号をまとめて読み出して1つの画素信号として取得する読み出し方法である。
 また、ビニング読み出しを行うのではなく、撮像部40が、1つの高解像度な撮像素子から高解像度位相差画像を読み出した後に、その高解像度位相差画像における隣接する複数の画素信号を加算することによって低解像度位相差画像を取得するようにしてもよい。
10  位相差計測用照明光照射部
11  位相差計測用白色光源
12  スリット板
12a スリット
12b 遮光板
13  コンデンサレンズ
20  調整光学系
21  調整用光学素子
22  調整光学系駆動部
30  結像光学系
31  対物レンズ
32  位相板
32a 位相リング
32b 透明板
33  結像レンズ
34  結像光学系駆動部
40  撮像部
41,42   撮像素子
50  顕微鏡制御装置
51  調整光学系制御部
52  結像光学系制御部
53  ステージ制御部
60  培養容器
61  ステージ
62  ステージ駆動部
70  パターン光照射部
71  パターン光用近赤外光源
72  グリッド
73  照射レンズ
74  第1のダイクロイックミラー
75  反射光検出部
76  ハーフミラー
77  光路差プリズム
78  第1のラインセンサ
80  透過光検出部
81  第2のダイクロイックミラー
82  集光レンズ
83  フィルタ部
84  第2のラインセンサ
90  表示装置
95  入力装置
 

Claims (14)

  1.  液体および観察対象が収容された容器に対して位相差計測のための照明光を照射する位相差計測用照明光照射部と、
     前記照明光を照射した前記観察対象を撮像する撮像部と、
     光学特性が調整可能であり、前記容器内の液体の液面形状に起因する前記照明光の屈折を前記光学特性に応じて調整する調整光学系と、
     前記容器に対して予め設定されたパターンを有するパターン光を前記容器内の液体の液面に対して照射するパターン光照射部と、
     前記パターン光の照射によって前記容器内の液体の液面を透過した透過光を検出する透過光検出部と、
     該透過光検出部によって検出された前記透過光に基づく検出信号に基づいて、前記調整光学系の光学特性を調整する調整光学系制御部と、
    を備えたことを特徴とする位相差顕微鏡。
  2.  前記照明光の照射による前記観察対象の像を前記撮像部に結像し、かつ、オートフォーカス制御される結像光学系と、
     前記パターン光の照射によって前記容器の底面を反射した前記パターン光の反射光を検出する反射光検出部と、
     前記反射光検出部によって検出された前記反射光に基づく検出信号に基づいて、前記結像光学系をオートフォーカス制御する結像光学系制御部と、
    をさらに備えた請求項1記載の位相差顕微鏡。
  3.  前記調整光学系制御部が、前記透過光に基づく検出信号の均一性およびコントラストの少なくとも1つの評価結果に基づいて、前記調整光学系の光学特性を調整する請求項1または2記載の位相差顕微鏡。
  4.  前記照明光の照射によって前記容器内の液体の液面を反射した前記照明光の反射光の前記透過光検出部への入射を抑制するフィルタ部、
    をさらに備えた請求項1から3いずれか1項記載の位相差顕微鏡。
  5.  前記フィルタ部が、前記照明光の波長に応じて分光特性を変更可能である請求項4記載の位相差顕微鏡。
  6.  前記パターン光が、縞状のパターンを有する請求項1から5いずれか1項記載の位相差顕微鏡。
  7.  前記調整光学系制御部が、前記結像光学系制御部によるオートフォーカス制御の後に、前記調整光学系の光学特性を調整する請求項2記載の位相差顕微鏡。
  8.  前記調整光学系が、屈折力を調整可能な光学素子を有する請求項1から7いずれか1項記載の位相差顕微鏡。
  9.  前記光学素子が、前記照明光の入射面および出射面のうちの少なくとも一方に曲率を有する請求項8記載の位相差顕微鏡。
  10.  前記光学素子が、前記曲率を調整可能である請求項9記載の位相差顕微鏡。
  11.  前記調整光学系制御部が、前記調整光学系の調整条件を取得し、該調整条件に基づいて前記調整光学系の光学特性の調整を行う請求項1から10いずれか1項記載の位相差顕微鏡。
  12.  前記調整条件が、前記観察対象の画像を結像する結像光学系の光学倍率、前記容器の種類、前記観察対象の種類、前記観察対象の数、前記液体の種類、前記液体の量、環境温度、環境湿度、前記容器内の撮像位置、および前記容器内の撮像領域の大きさ、の少なくとも1つに基づいて決定される請求項11記載の位相差顕微鏡。
  13.  前記位相差計測用照明光照射部が、光源と、該光源から出射された光を通過させるスリットが設けられたスリット板とを有し、
    該スリット板を通過した光を前記照明光として前記観察対象に照射する請求項1から12いずれか1項記載の位相差顕微鏡。
  14.  液体および観察対象が収容された容器に対して予め設定されたパターンを有するパターン光を前記容器内の液体の液面に対して照射し、
     前記パターン光の照射によって前記容器内の液体の液面を透過した透過光を検出し、
     該検出した透過光に基づく検出信号に基づいて、前記容器内の液体の液面形状に起因する光の屈折を光学特性に応じて調整する調整光学系の前記光学特性を調整し、
     該調整の後、前記容器に対して位相差計測のための照明光を照射し、
     前記照明光を照射した前記観察対象を撮像することを特徴とする撮像方法。
     
PCT/JP2016/063804 2015-06-30 2016-05-10 位相差顕微鏡および撮像方法 WO2017002451A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16817560.2A EP3318913B1 (en) 2015-06-30 2016-05-10 Phase difference microscope and imaging method
US15/850,969 US10649192B2 (en) 2015-06-30 2017-12-21 Phase-contrast microscope and imaging method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130873A JP6513507B2 (ja) 2015-06-30 2015-06-30 位相差顕微鏡および撮像方法
JP2015-130873 2015-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/850,969 Continuation US10649192B2 (en) 2015-06-30 2017-12-21 Phase-contrast microscope and imaging method

Publications (1)

Publication Number Publication Date
WO2017002451A1 true WO2017002451A1 (ja) 2017-01-05

Family

ID=57608348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063804 WO2017002451A1 (ja) 2015-06-30 2016-05-10 位相差顕微鏡および撮像方法

Country Status (4)

Country Link
US (1) US10649192B2 (ja)
EP (1) EP3318913B1 (ja)
JP (1) JP6513507B2 (ja)
WO (1) WO2017002451A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039035A1 (ja) * 2017-08-25 2019-02-28 富士フイルム株式会社 判別器の学習装置、方法およびプログラム、並びに判別器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594223B2 (ja) 2016-02-22 2019-10-23 富士フイルム株式会社 位相差顕微鏡および撮像方法
JP6522533B2 (ja) * 2016-02-26 2019-05-29 富士フイルム株式会社 顕微鏡および観察方法
WO2018143057A1 (ja) 2017-01-31 2018-08-09 三井化学株式会社 ジフルオロリン酸リチウムの製造方法
WO2018154924A1 (ja) 2017-02-27 2018-08-30 富士フイルム株式会社 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
JP6867916B2 (ja) * 2017-09-05 2021-05-12 オリンパス株式会社 観察装置
US11422349B2 (en) * 2017-11-28 2022-08-23 Leica Biosystems Imaging, Inc. Dual processor image processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316133A (ja) * 2006-05-23 2007-12-06 Nikon Corp 観察装置
JP2010271537A (ja) * 2009-05-21 2010-12-02 Olympus Corp 位相差顕微鏡
US20120257040A1 (en) * 2011-04-08 2012-10-11 Kairos Instruments, Llc Adaptive phase contrast microscope
WO2014091661A1 (ja) * 2012-12-14 2014-06-19 ソニー株式会社 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232384A (ja) * 1992-02-18 1993-09-10 Olympus Optical Co Ltd 干渉顕微鏡
US6924893B2 (en) * 2002-05-13 2005-08-02 Marine Biological Laboratory Enhancing polarized light microscopy
JP4909732B2 (ja) 2006-03-28 2012-04-04 三洋電機株式会社 位相差顕微観察装置
JP2009122356A (ja) 2007-11-14 2009-06-04 Nikon Corp 位相差顕微鏡
US20140193892A1 (en) * 2012-07-25 2014-07-10 Theranos, Inc. Image analysis and measurement of biological samples
CA2893590C (en) * 2012-12-14 2023-10-10 The J. David Gladstone Institutes Automated robotic microscopy systems
US9830501B2 (en) * 2013-07-23 2017-11-28 Northwestern University High throughput partial wave spectroscopic microscopy and associated systems and methods
JP6411294B2 (ja) * 2015-06-30 2018-10-24 富士フイルム株式会社 位相差顕微鏡および撮像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316133A (ja) * 2006-05-23 2007-12-06 Nikon Corp 観察装置
JP2010271537A (ja) * 2009-05-21 2010-12-02 Olympus Corp 位相差顕微鏡
US20120257040A1 (en) * 2011-04-08 2012-10-11 Kairos Instruments, Llc Adaptive phase contrast microscope
WO2014091661A1 (ja) * 2012-12-14 2014-06-19 ソニー株式会社 位相差顕微鏡、位相差顕微鏡の制御装置及び位相差顕微鏡の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3318913A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039035A1 (ja) * 2017-08-25 2019-02-28 富士フイルム株式会社 判別器の学習装置、方法およびプログラム、並びに判別器
JPWO2019039035A1 (ja) * 2017-08-25 2020-02-27 富士フイルム株式会社 判別器の学習装置、方法およびプログラム、並びに判別器
US11328522B2 (en) 2017-08-25 2022-05-10 Fujifilm Corporation Learning device, method, and program for discriminator, and discriminator

Also Published As

Publication number Publication date
US20180113295A1 (en) 2018-04-26
US10649192B2 (en) 2020-05-12
EP3318913B1 (en) 2019-11-06
JP2017015856A (ja) 2017-01-19
EP3318913A4 (en) 2018-06-27
JP6513507B2 (ja) 2019-05-15
EP3318913A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
WO2017002451A1 (ja) 位相差顕微鏡および撮像方法
JP6380983B2 (ja) 位相差顕微鏡
JP6411294B2 (ja) 位相差顕微鏡および撮像方法
US8675062B2 (en) Shape measuring device, observation device, and image processing method
KR102054095B1 (ko) 위상차 현미경 및 촬상 방법
US11029486B2 (en) Microscope and observation method
JP6815477B2 (ja) 顕微鏡装置および観察方法並びに顕微鏡装置制御プログラム
JP6619315B2 (ja) 観察装置および方法並びに観察装置制御プログラム
US11971530B2 (en) Observation apparatus, method of operating observation apparatus, and observation control program
JP6131204B2 (ja) 観察装置
JP6993423B2 (ja) 撮影制御装置、撮影制御装置の作動方法、及び撮影制御プログラム
JP6522535B2 (ja) 細胞観察装置および方法
JP2016161610A (ja) 撮像装置および方法
WO2019069823A1 (ja) 撮像装置、撮像装置の作動方法及び撮像制御プログラム
JP2019204026A (ja) 顕微鏡システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016817560

Country of ref document: EP