WO2017001714A1 - Connection for pipes with different coefficients of thermal expansion - Google Patents

Connection for pipes with different coefficients of thermal expansion Download PDF

Info

Publication number
WO2017001714A1
WO2017001714A1 PCT/ES2016/070479 ES2016070479W WO2017001714A1 WO 2017001714 A1 WO2017001714 A1 WO 2017001714A1 ES 2016070479 W ES2016070479 W ES 2016070479W WO 2017001714 A1 WO2017001714 A1 WO 2017001714A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
thermal expansion
tubes
union
longitudinal zone
Prior art date
Application number
PCT/ES2016/070479
Other languages
Spanish (es)
French (fr)
Inventor
Manuel QUERO
José Antonio BRIOSO
Azucena DEL RÍO
César DÍAZ ALLER
Roman KORZYNIETZ
Juan Sebastián VALVERDE GARCÍA
Daniel GARCÍA VALLEJO
Luis Allan PÉREZ MAQUEDA
José Manuel CRIADO LUQUE
Original Assignee
Abengoa Solar New Technologies, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies, S.A. filed Critical Abengoa Solar New Technologies, S.A.
Publication of WO2017001714A1 publication Critical patent/WO2017001714A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • F16L23/24Flanged joints characterised by the sealing means specially adapted for unequal expansion of the parts of the joint
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L49/00Connecting arrangements, e.g. joints, specially adapted for pipes of brittle material, e.g. glass, earthenware
    • F16L49/04Flanged joints

Definitions

  • the invention relates to a joint for tubes that have different coefficient of thermal expansion and are adapted for the transport of pressurized fluids exposed to high temperature, around 1000 ° C. More specifically the invention relates to a non-metal-metal joint.
  • thermodynamic cycles in the solar thermal concentration plants, it is convenient to raise the temperature of the fluid, estimating a temperature around 1000 ° C with the optimum temperature of the fluid outlet.
  • volumetric receivers have been designed that exchange heat with the fluid in porous structures of ceramic material.
  • Pressurized and high temperature fluid is adapted to flow from, for example, the ceramic tube that is heated to transfer this heat to the fluid, to the metal tube through the joint object of the invention .
  • this invention relates to a joint between tubes of materials with different coefficients of thermal expansion, preferably ceramic and metal. This difference can be up to an order of magnitude since if for a steel the coefficient is approximately 1, 2x10-5 e C-1, in ceramics this value is around 2.8 x 10-6 e C -one .
  • the joint for tubes with different coefficient of thermal expansion comprises: - a first tube portion comprising at one of its ends a flank termination, and
  • the invention is characterized by:
  • the first and second tube portions comprise a first longitudinal zone and a second longitudinal zone, located one after the other and the first longitudinal zone being attached to the adjacent ends of both tube portions where the internal diameter of the first zone longitudinal is greater than the internal diameter of the second longitudinal zone, according to the above, each tube portion has a widening at its end, so that, for example, the ceramic tube would have at its end attached to the joint, with a longitudinal zone of tube of internal diameter greater than the diameter of the ceramic tube that feeds the joint.
  • the tube section of greater internal diameter is called the first longitudinal zone of the tube, the second longitudinal zone being the one corresponding to the tube section of smaller diameter that corresponds to the diameter of the tube that feeds the joint.
  • the joint comprises an insulation that is intended to be coaxially located in the first longitudinal zone of both tube portions, that is, in that area where the diameter of the two portions of the tubes is larger.
  • the function of the insulation is to decrease the temperature that the tubes support just at the junction of both since their coefficients of thermal expansion and their mechanical properties are very different, as well as to avoid the filtration of pressurized fluid and at high temperature through the joint.
  • the insulation may in turn comprise an internal diameter that coincides with the internal diameter of the second longitudinal zone of both tube portions.
  • the widening of the tube portions would allow the isolation, concentric to both portions of tubes in that part where the widening is located, that is, in the first longitudinal zones of both tube portions and, according to the above, with a inner diameter equal to the inner diameter of the portions of tubes before widening, that is, of the second longitudinal zones. This avoids losses of charges and vortices in the fluid, since the fluid can move without damaging any of the tubes by not generating vortices that can create drastic changes in pressure and mechanical fatigue phenomena.
  • a clamping and compression element comprising a first component and a second component each destined to be supported on one of the flanks of the tube portions and intended to be connected to each other and to the flanks by means of through bolts.
  • a clamping and compression element is placed, for example a metal flange.
  • the clamping and compression element is supported on the flanks of the tube portions and allows the necessary force to be distributed equally by means of bolt tightening.
  • the combined application of both principles by which the temperatures in the area of the junction are reduced and the necessary clamping and compression force is provided, is what, despite working with pressurized fluids and very high temperature, integrity of the union and the components that form it are not affected and it is possible to work in a permissible temperature range for each of the materials. In this way, a tight seal is achieved at a high temperature that prevents a pressure drop and the exposure of the metal to the high working temperatures.
  • the invention presented here makes the use of heat exchangers based on ceramic tubes a reality, since the problem that limited it is solved: joining the ceramic tube that is heated to increase the temperature of the fluid, to a metallic one that conducts said fluid already warm to the desired area where it will be treated.
  • Figure 1 shows a longitudinal section in perspective of an embodiment of the tubes of the two materials with different coefficients of thermal expansion, corresponding to the region where the union between them occurs.
  • Figure 2 shows a schematic perspective view of the insulation.
  • Figure 3 shows a schematic perspective view of a flat secondary joint.
  • Figure 4 shows a schematic perspective view of a cylindrical secondary joint.
  • Figure 5 shows a perspective view of an exemplary embodiment of a clamping and compression element.
  • the union of the invention allows the transport of fluids at pressures up to 20 bar and at temperatures around 1000 ° C or even higher.
  • the fluid of the embodiment shown in the figures flows from the ceramic tube (1) which is heated to transfer this heat to the fluid towards the metal tube (2) through the joint object of the invention.
  • the fluid circulates through the first portion of ceramic tube (1), specifically through the second longitudinal zone (9) thereof (1), then crosses the first longitudinal zone (8) in which said tube widens ceramic and housing part of the insulation (6).
  • the fluid crosses the first longitudinal zone (8) of the second portion of the metal tube (2) (widening zone of the metal tube) where the rest of the insulation (6) is located and finally the fluid reaches the so-called second longitudinal zone ( 9) of the tube portion (2) of the metal tube.
  • the widening of the internal diameter of the ceramic tube, second longitudinal zone (9), allows to introduce the thermal insulation (6) in the form of a shell which, forming inside a channel with the same diameter as the internal diameter of the second longitudinal zone ( 9) of the ceramic tube (1), prevents the filtration of the fluid through the joint and with it the arrival of such high temperature at said joint.
  • both the first portion of the ceramic tube (1) and the metal tube (2) comprise in the first longitudinal zone (8) an external diameter greater than the external diameter in the second longitudinal zone (9) of the first and second tube portions (1, 2) so that in both zones the thickness of the tube portions (1, 2) is maintained.
  • the fluid passage area in the cross-section of both tube portions (1, 2) is increased, but by keeping the thickness of the ceramic tube (1) constant, this increase in the fluid passage area causes The heat flow causes a lower temperature field in the area closest to the junction that ensures lower stresses in the junction zone.
  • the preferred insulating material is a flexible microporous with very low conductivity, although any that can withstand thermal and mechanical stresses due to the passage of fluid under pressure can be used.
  • the insulation (6) allows to withstand high temperatures and also, as an optional feature, its surface can have crevices or undulations that are responsible for absorbing the deformations due to the expansion caused by the high temperature of the fluid as seen in Figure 2, avoiding so that these dilations become tensions applied on the rest of the components of the union and facilitating its forming on the rest of the components.
  • the insulation (6) is designed to absorb thermal expansion caused by contact with the fluid at temperatures around 1000 ° C and, which is equally important, prepared to withstand sudden variations in pressure that occur with any setting in progress and any stop, without changing its configuration or structure.
  • the insulation (6) protects the ceramic tube (1) from its widening, the joint and the corresponding part of the metal tube (2) in the area of higher temperature of the fluid.
  • the ceramic tube (1) and the metal tube (2) do not come into contact directly. Both end in the form of a flank (10, 1 1) and that is where they are in a main joint (4) that reduces the thermal transfer between the ceramic hot tube (1) in contact with the high temperature fluid and the metal tube (2), while contributing to the tightness of the system.
  • the main joint (4) is the one between the ceramic flank (10) and the metal flank (1 1), and is responsible for contributing to the tightness as well as making a thermal bridge between the two materials with different coefficient of Thermal expansion.
  • the joint (4) works at a high temperature but always below 500 ° C if the temperature of the fluid is considered 1000 ° C, due to the configuration given to the system and the internal insulation (6).
  • the clamping and compression element (3) corresponds to a wall flange comprising semi-rigid paths (3 ', 3 ") as the first component (3') and a second component (3").
  • Each of the components (3 ', 3 ") comprises two complementary elements (13) comprising a projection (14) and a recess (15), the recess (15) of each complementary element (13) being designed to house the projection (14) of the other complementary element (13)
  • the projection (14) and the recess (15) align both complementary elements (13) making it the closest thing to a solid flange in terms of the flatness of the faces. Drills of both complementary elements (13) coincide.
  • Both the ceramic tube (1) and the metal (2) end at the end with a flank (10, 1 1) that allows the closure with the wall flange (3) formed by the two half-shells (3 ', 3 ") , which achieves the desired closing pressure by means of a uniform clamping and compression on the flanks (10, 1 1) achieved thanks to the bolts (12) that pass through both half-shells (3 ', 3 ") through holes in them (3 ', 3 ") and the flanks (10, 1 1).
  • the bolts (12) are arranged circularly around the pipe for joining the two half-shells (3', 3").
  • the screws, nuts and washers with which pressure is exerted are recommended to be metal suitable for high temperature such as AISI 800H, or Inconel 601 or higher. It is required that the clamping and compression element (3) uniformly press both sides (10, 1 1) of the tubes (1, 2) for two reasons, the first is to avoid pressure losses, the second prevents uneven increase of temperature modify the relative positioning of the flanks (10, 1 1), facilitating a possible breakage of the ceramic tube (1) at some point, especially of the catch.
  • Each component (3 ', 3 ") of the clamping and compression element (3) of the exemplary embodiment should be pressed to allow the necessary regularity in the clamping and compression.
  • the ceramic tube (1) is attached to a metallic one (2) which is recommended to be of a refractory steel type AISI 31 OS, although other materials such as AISI 800H or Inconel 601 or higher can be used. The reason for choosing this type of materials is that it supports high temperatures although not compromised for the material.
  • the ceramic tube (2) is designed so that at its end closest to the metal tube the diameter is increased with an angle between 0 e and 90 e , preferably 90 e .
  • the transition between the second longitudinal zone (8) and the first longitudinal zone (9) of the tube portions (1, 2) may vary from 90 e to 0 e giving rise to a conical shape for angles less than 90 e .
  • This widening must be combined with a chamfered finish in the circumferential edges in order to avoid stress concentrators in the material. The existence of this widening angle allows a space to house the insulator (6) to be generated.
  • the fastening between them is purely mechanical.
  • the thickness of the insulation (6) and the widening angle of each tube (1, 2) at the ends of the joint are determined by the temperature conditions that are desired to have at the ends of the tubes to avoid damage to them .
  • the invention proposes between the components (3 'and 3 ") of the clamping and compression element (3) and the flank (10, 1 1) of the termination of the ceramic and metal tubes (1, 2) two secondary joints (5 ) flat that serve as thermal bridge and mechanical seat, as well as protection of the materials by contact.
  • These secondary joints (5) will be of materials with a strong base of mica that provides the necessary mechanical resistance combined with low coefficient of thermal conduction.
  • a cylindrical secondary joint (7) of another insulating material is placed. It also serves as a thermal bridge and, again, it is recommended to have a mica base.
  • the joint must be exposed to ventilation, not necessarily forced, to allow the evacuation of heat and avoid overheating in the area.
  • the key is to lower the temperature internally at the junction, and not allow high temperatures to be reached outside the junction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a connection for pipes (1, 2) with different coefficients of thermal expansion, which are designed to transport pressurised fluids that are exposed to high temperatures. The connection comprises a first pipe portion (1), one end of which terminates in a flank (10), and a second pipe portion (2) having a greater coefficient of thermal expansion than the first pipe portion (1) and terminating at one end in a flank (11). The adjacent ends of the two pipe portions (1, 2) comprise a first longitudinal zone (8) having a larger internal diameter than that of a second longitudinal zone (9) of the pipe portion (1, 2). In addition, the connection comprises insulation (6) located in the first longitudinal zone (8) of the two pipe portions (1, 2) and a securing and compression element (3).

Description

Unión para tubos con distinto coeficiente de expansión térmica. Campo de la invención  Union for tubes with different coefficient of thermal expansion. Field of the Invention
La invención se refiere una unión para tubos que poseen distinto coeficiente de expansión térmica y que están adaptados para el transporte de fluidos presurizados expuestos a alta temperatura, alrededor de 1000 °C. Más específicamente la invención se refiere a una unión no metal-metal. The invention relates to a joint for tubes that have different coefficient of thermal expansion and are adapted for the transport of pressurized fluids exposed to high temperature, around 1000 ° C. More specifically the invention relates to a non-metal-metal joint.
Antecedentes de la invención Background of the invention
Para obtener un mayor rendimiento de los ciclos termodinámicos en las plantas termosolares de concentración, es conveniente elevar la temperatura del fluido, estimándose una temperatura alrededor de 1000 °C cono la temperatura óptima de salida del fluido. To obtain a better performance of the thermodynamic cycles in the solar thermal concentration plants, it is convenient to raise the temperature of the fluid, estimating a temperature around 1000 ° C with the optimum temperature of the fluid outlet.
Lo habitual es utilizar metales en los tubos que transportan el fluido, sin embargo, los metales no soportan este rango de temperaturas de trabajo. It is usual to use metals in the tubes that carry the fluid, however, the metals do not support this range of working temperatures.
Actualmente, para alcanzar temperaturas de 1000 °C, se han diseñado receptores volumétricos que intercambian el calor con el fluido en estructuras porosas de material cerámico. Currently, to reach temperatures of 1000 ° C, volumetric receivers have been designed that exchange heat with the fluid in porous structures of ceramic material.
Lo óptimo sería, por lo tanto, utilizar intercambiadores de calor de tubos cerámicos para aumentar la temperatura del fluido y posteriormente unirlos a tubos metálicos para realizar la conducción del fluido ya caliente hacia la zona donde será tratado. Sin embargo, esto genera diversos problemas en la unión entre los tubos cerámicos y metálicos, que poseen diferente coeficiente de expansión térmica y que no resuelve ninguno de los dispositivo conocidos en el estado de la técnica. Asimismo las propiedades mecánicas de ambos materiales son también muy distintas. Son conocidas en el estado de la técnica uniones de dos tubos de materiales con diferente coeficiente de expansión térmica que se disponen coaxialmente. La patente de número US20120280495A1 divulga uno de estos dispositivos. Sin embargo, la unión divulgada, además de ser una unión compleja, ya que involucra un elevado número de piezas, no es apta para alta temperatura y presión del entorno de aplicación objeto de la invención. The optimum would therefore be to use heat exchangers of ceramic tubes to increase the temperature of the fluid and then attach them to metal tubes to conduct the conduction of the hot fluid to the area where it will be treated. However, this generates several problems in the union between the ceramic and metal tubes, which have different coefficient of thermal expansion and which does not solve any of the devices known in the state of the art. Likewise, the mechanical properties of both materials are also very different. Joints of two tubes of materials with different coefficient of thermal expansion that are coaxially arranged are known in the state of the art. Patent number US20120280495A1 discloses one of these devices. However, the disclosed joint, in addition to being a complex joint, since it involves a large number of parts, is not suitable for high temperature and pressure of the application environment object of the invention.
Otros antecedentes en cuanto al entorno de aplicación objeto de la invención se encuentran en el proyecto conocidos como Gas Cooled Solar Tower (GAST), aunque tampoco resuelven satisfactoriamente la unión debido al alto nivel de fugas del fluido que se encontraron. La estanquidad de la unión es una característica importante de la misma ya que permite un correcto rendimiento en el proceso de generación eléctrica, al requerirse una alta temperatura y presión para obtener el máximo rendimiento del ciclo termodinámico. Por tal motivo se hace necesaria una unión que tenga, como requisito fundamental, evitar pérdidas tanto térmicas como de presión. Descripción de la invención Other antecedents regarding the application environment object of the invention are in the project known as Gas Cooled Solar Tower (GAST), although they do not satisfactorily resolve the union due to the high level of fluid leaks that were found. The tightness of the joint is an important characteristic of the same as it allows a correct performance in the electricity generation process, as a high temperature and pressure are required to obtain the maximum performance of the thermodynamic cycle. For this reason it is necessary a union that has, as a fundamental requirement, to avoid both thermal and pressure losses. Description of the invention
El fluido presurizado y a alta temperatura, alrededor de 1000 °C o incluso superior, está adaptado para fluir desde, por ejemplo, el tubo cerámico que es calentado para trasferir este calor al fluido, hacia el tubo metálico pasando por la unión objeto de la invención. Pressurized and high temperature fluid, around 1000 ° C or even higher, is adapted to flow from, for example, the ceramic tube that is heated to transfer this heat to the fluid, to the metal tube through the joint object of the invention .
Por lo tanto, esta invención se refiere a una unión entre tubos de materiales con diferentes coeficientes de expansión térmica, preferentemente cerámica y metal. Esta diferencia puede llegar a ser de hasta un orden de magnitud ya que si para un acero el coeficiente es aproximadamente 1 ,2x10-5 eC-1 , en las cerámicas este valor se sitúa alrededor de 2,8 x 10- 6 eC-1 . Therefore, this invention relates to a joint between tubes of materials with different coefficients of thermal expansion, preferably ceramic and metal. This difference can be up to an order of magnitude since if for a steel the coefficient is approximately 1, 2x10-5 e C-1, in ceramics this value is around 2.8 x 10-6 e C -one .
Según lo anterior, la unión para tubos con distinto coeficiente de expansión térmica comprende: - una primera porción de tubo que comprende en uno de sus extremos una terminación en flanco, y According to the above, the joint for tubes with different coefficient of thermal expansion comprises: - a first tube portion comprising at one of its ends a flank termination, and
- una segunda porción de tubo con un coeficiente de expansión térmica mayor que la primera porción de tubo y que comprende también en un extremo una terminación en flanco adaptado para estar situado de forma adyacente al flanco de la primera porción de tubo de forma que ambas primera y segunda porción de tubo son coaxiales. nvención se caracteriza por que: - a second tube portion with a coefficient of thermal expansion greater than the first tube portion and also comprising at one end a flank termination adapted to be located adjacent to the flank of the first tube portion so that both first and second tube portion are coaxial. The invention is characterized by:
- la primera y segunda porciones de tubo comprenden una primera zona longitudinal y una segunda zona longitudinal, situadas una a continuación de la otra y estando la primera zona longitudinal anexa a los extremos adyacentes de ambas porciones de tubo donde el diámetro interno de la primera zona longitudinal es mayor que el diámetro interno de la segunda zona longitudinal, según lo anterior, cada porción de tubo cuenta con un ensanchamiento en su extremo, de modo que, por ejemplo, el tubo cerámico contaría en su extremo anexo a la unión, con una zona longitudinal de tubo de diámetro interno mayor que el diámetro del tubo cerámico que alimenta la unión. Al tramo de tubo de mayor diámetro interno se le denomina primera zona longitudinal del tubo, siendo la segunda zona longitudinal la correspondiente al tramo de tubo de diámetro menor que se correponde con el diámetro del tubo que alimenta a la unión. - the first and second tube portions comprise a first longitudinal zone and a second longitudinal zone, located one after the other and the first longitudinal zone being attached to the adjacent ends of both tube portions where the internal diameter of the first zone longitudinal is greater than the internal diameter of the second longitudinal zone, according to the above, each tube portion has a widening at its end, so that, for example, the ceramic tube would have at its end attached to the joint, with a longitudinal zone of tube of internal diameter greater than the diameter of the ceramic tube that feeds the joint. The tube section of greater internal diameter is called the first longitudinal zone of the tube, the second longitudinal zone being the one corresponding to the tube section of smaller diameter that corresponds to the diameter of the tube that feeds the joint.
La unión comprende un aislamiento que está destinado a situarse coaxialmente en la primera zona longitudinal de ambas porciones de tubo, es decir, en aquella zona donde el diámetro de las dos porciones de los tubos es mayor. La función del aislamiento es disminuir la temperatura que soportan los tubos justo en la unión de ambos ya que sus coeficientes de expansión térmica y sus propiedades mecánicas son muy diferentes, así como evitar la filtración de fluido presurizado y a alta temperatura a través de la unión. Opcionalmente el aislamiento puede comprender a su vez un diámetro interno que coincide con el diámetro interno de la segunda zona longitudinal de ambas porciones de tubo. El ensanchamiento de las porciones de tubo permitiría albergar el aislamiento, concéntrico a ambas porciones de tubos en aquella parte en la que se encuentra el ensanchamiento, es decir, en las primeras zonas longitudinales de ambas porciones de tubos y, según lo anterior, con un diámetro interior igual al diámetro interior de las porciones de tubos antes del ensanchamiento, es decir, de las segundas zonas longitudinales. De este modo se evitan pérdidas de cargas y vórtices en el fluido, ya que el fluido puede desplazarse sin que se dañe ninguno de los tubos al no generarse vórtices que pueden crear cambios drásticos de presión y fenómenos de fatiga mecánica. The joint comprises an insulation that is intended to be coaxially located in the first longitudinal zone of both tube portions, that is, in that area where the diameter of the two portions of the tubes is larger. The function of the insulation is to decrease the temperature that the tubes support just at the junction of both since their coefficients of thermal expansion and their mechanical properties are very different, as well as to avoid the filtration of pressurized fluid and at high temperature through the joint. Optionally, the insulation may in turn comprise an internal diameter that coincides with the internal diameter of the second longitudinal zone of both tube portions. The widening of the tube portions would allow the isolation, concentric to both portions of tubes in that part where the widening is located, that is, in the first longitudinal zones of both tube portions and, according to the above, with a inner diameter equal to the inner diameter of the portions of tubes before widening, that is, of the second longitudinal zones. This avoids losses of charges and vortices in the fluid, since the fluid can move without damaging any of the tubes by not generating vortices that can create drastic changes in pressure and mechanical fatigue phenomena.
La sujeción entre el aislamiento y los tubos es meramente mecánica, favorecida por la presión del fluido que mantiene unidos a ambos elementos, ya que el fluido fluye a alta temperatura y presión facilitando la adhesión entre ambos materiales de manera que el aislamiento impide el paso del fluido a la zona de unión entre los tubos. - Un elemento de sujeción y compresión que comprende un primer componente y un segundo componente cada uno destinado a estar apoyado en uno de los flancos de las porciones de tubo y destinados a estar unidos entre sí y a los flancos mediante pernos pasantes. The fastening between the insulation and the tubes is merely mechanical, favored by the pressure of the fluid that holds both elements together, since the fluid flows at high temperature and pressure facilitating the adhesion between both materials so that the insulation prevents the passage of the fluid to the junction zone between the tubes. - A clamping and compression element comprising a first component and a second component each destined to be supported on one of the flanks of the tube portions and intended to be connected to each other and to the flanks by means of through bolts.
Debido a la diferencia de coeficiente de expansión térmica entre los materiales de los tubos, no es posible realizar la presión necesaria para alcanzar el cierre completamente estanco. Por tanto se sitúa un elemento de sujeción y compresión, por ejemplo una brida metálica. Due to the difference in coefficient of thermal expansion between the tube materials, it is not possible to perform the pressure necessary to reach the completely tight seal. Therefore a clamping and compression element is placed, for example a metal flange.
El elemento de sujeción y compresión está apoyado en los flancos de las porciones de los tubos y permite realizar la fuerza necesaria igualmente distribuida mediante el apriete de pernos. La aplicación combinada de ambos principios por los cuales se reducen las temperaturas en la zona de la unión y se proporciona la fuerza de sujeción y compresión necesaria, es lo que hace que, pese a trabajar con fluidos a presión y muy alta temperatura, la integridad de la unión y los componentes que la forman no se vean afectados y sea posible trabajar en un rango de temperaturas admisible para cada uno de los materiales. De esta forma se consigue un cierre estanco y a alta temperatura que impide una caída de presión y la exposición del metal a las elevadas temperaturas de trabajo. The clamping and compression element is supported on the flanks of the tube portions and allows the necessary force to be distributed equally by means of bolt tightening. The combined application of both principles by which the temperatures in the area of the junction are reduced and the necessary clamping and compression force is provided, is what, despite working with pressurized fluids and very high temperature, integrity of the union and the components that form it are not affected and it is possible to work in a permissible temperature range for each of the materials. In this way, a tight seal is achieved at a high temperature that prevents a pressure drop and the exposure of the metal to the high working temperatures.
La invención que aquí se presenta hace realidad el utilizar intercambiadores de calor a base de tubos cerámicos, ya que el problema que lo limitaba se resuelve: unir el tubo cerámico que es calentado para aumentar la temperatura del fluido, a uno metálico que conduzca dicho fluido ya caliente hacia la zona deseada donde será tratado. The invention presented here makes the use of heat exchangers based on ceramic tubes a reality, since the problem that limited it is solved: joining the ceramic tube that is heated to increase the temperature of the fluid, to a metallic one that conducts said fluid already warm to the desired area where it will be treated.
Descripción de las figuras Description of the figures
Para completar la descripción y con el fin de proporcionar una mejor comprensión de la invención, se proporcionan unas figuras. Dichas figuras forman una parte integral de la descripción e ilustran un ejemplo de realización de la invención. To complete the description and in order to provide a better understanding of the invention, figures are provided. Said figures form an integral part of the description and illustrate an embodiment of the invention.
La figura 1 muestra una sección longitudinal en perspectiva de un ejemplo de realización de los tubos de los dos materiales con distintos coeficientes de expansión térmica, correspondiente a la región donde se produce la unión entre ambos. Figure 1 shows a longitudinal section in perspective of an embodiment of the tubes of the two materials with different coefficients of thermal expansion, corresponding to the region where the union between them occurs.
La figura 2 muestra una vista esquemática en perspectiva del aislamiento. La figura 3 muestra una vista esquemática en perspectiva de una junta secundaria plana. Figure 2 shows a schematic perspective view of the insulation. Figure 3 shows a schematic perspective view of a flat secondary joint.
La figura 4 muestra una vista esquemática en perspectiva de una junta secundaria cilindrica. Figure 4 shows a schematic perspective view of a cylindrical secondary joint.
La figura 5 muestra una vista en perspectiva de un ejemplo de realización de un elemento de sujeción y compresión. Figure 5 shows a perspective view of an exemplary embodiment of a clamping and compression element.
Descripción detallada de la invención La unión de la invención permite el transporte de fluidos a presiones de hasta 20 bar y a temperaturas del entorno de 1000 °C o incluso superior. El fluido del ejemplo de realización mostrado en las figuras fluye desde el tubo cerámico (1 ) que es calentado para transferir este calor al fluido hacia el tubo metálico (2) pasando por la unión objeto de la invención. En el ejemplo de realización el fluido circula por la primera porción de tubo (1 ) cerámico, concretamente por la segunda zona longitudinal (9) del mismo (1 ), posteriormente atraviesa la primera zona longitudinal (8) en la que se ensancha dicho tubo cerámico y que alberga parte del aislamiento (6). Posteriormente el fluido atraviesa la primera zona longitudinal (8) de la segunda porción de tubo (2) metálico (zona de ensanchamiento del tubo metálico) donde se sitúa el resto del aislamiento (6) y finalmente el fluido alcanza la denominada segunda zona longitudinal (9) de la porción de tubo (2) del tubo metálico. DETAILED DESCRIPTION OF THE INVENTION The union of the invention allows the transport of fluids at pressures up to 20 bar and at temperatures around 1000 ° C or even higher. The fluid of the embodiment shown in the figures flows from the ceramic tube (1) which is heated to transfer this heat to the fluid towards the metal tube (2) through the joint object of the invention. In the exemplary embodiment, the fluid circulates through the first portion of ceramic tube (1), specifically through the second longitudinal zone (9) thereof (1), then crosses the first longitudinal zone (8) in which said tube widens ceramic and housing part of the insulation (6). Subsequently, the fluid crosses the first longitudinal zone (8) of the second portion of the metal tube (2) (widening zone of the metal tube) where the rest of the insulation (6) is located and finally the fluid reaches the so-called second longitudinal zone ( 9) of the tube portion (2) of the metal tube.
El ensanchamiento del diámetro interno del tubo cerámico, segunda zona longitudinal (9), permite introducir el aislamiento térmico (6) en forma de coquilla que, formando en su interior un canal con el mismo diámetro que el diámetro interno de la segunda zona longitudinal (9) del tubo cerámico (1 ), impide la filtración del fluido a través de la unión y con ello la llegada de la temperatura tan elevada a dicha unión. The widening of the internal diameter of the ceramic tube, second longitudinal zone (9), allows to introduce the thermal insulation (6) in the form of a shell which, forming inside a channel with the same diameter as the internal diameter of the second longitudinal zone ( 9) of the ceramic tube (1), prevents the filtration of the fluid through the joint and with it the arrival of such high temperature at said joint.
Adicionalmente, en el ejemplo de realización mostrado en la figura 1 , tanto la primera porción del tubo (1 ) cerámico como del tubo (2) metálico comprende en la primera zona longitudinal (8) un diámetro externo mayor que el diámetro externo en la segunda zona longitudinal (9) de la primera y la segunda porción de tubo (1 , 2) de modo que en ambas zonas se mantiene el espesor de las porciones de tubo (1 , 2). Additionally, in the exemplary embodiment shown in Figure 1, both the first portion of the ceramic tube (1) and the metal tube (2) comprise in the first longitudinal zone (8) an external diameter greater than the external diameter in the second longitudinal zone (9) of the first and second tube portions (1, 2) so that in both zones the thickness of the tube portions (1, 2) is maintained.
En definitiva, por un lado al aumentar el diámetro interno de las porciones (1 , 2) de tubo (ya que al aumentar el diámetro externo sin modificar el espesor de los tubos (1 , 2) hace que también se aumente el diámetro interno de los mismos) se aumenta el área de paso del fluido en la sección transversal de ambas porciones (1 , 2) de tubo, pero al mantenerse el espesor del tubo cerámico (1 ) constante, este aumento en el área de paso del fluido hace que el flujo de calor provoque un campo de temperaturas menores en la zona más próxima a la unión que asegura menores tensiones en la zona de unión. El material aislante que se prefiere es un microporoso flexible con muy baja conductividad, aunque se puede emplear cualquiera que soporte las tensiones térmicas y mecánicas debido al paso del fluido a presión. El aislamiento (6) permite soportar temperaturas elevadas y además, como característica opcional, su superficie puede presentar hendiduras u ondulaciones que se encarguen de absorber las deformaciones debidas a la dilatación provocada por la alta temperatura del fluido como se ve en la figura 2, evitando así que estas dilataciones se conviertan en tensiones aplicadas sobre el resto de componentes de la unión y facilitando su conformado sobre el resto de los componentes. Asimismo el aislamiento (6) está diseñado para absorber las dilataciones térmicas que se produzcan al contacto con el fluido a temperaturas del orden de los 1000 °C y, lo que es igualmente importante, preparado para soportar variaciones bruscas de presión que ocurren con cualquier puesta en marcha y cualquier parada, sin modificar su configuración ni estructura. El aislamiento (6) protege el tubo cerámico (1 ) desde su ensanche, la unión y la parte correspondiente del tubo metálico (2) en la zona de mayor temperatura del fluido. Además es capaz de soportar variaciones bruscas de presión debido a las hendiduras u ondulaciones de las paredes del aislamiento (6), ya que, al menos una vez al día, habrá un arranque y una parada, pasando el sistema de 1 a 20 bar, o viceversa, rápidamente. El tubo cerámico (1 ) y el tubo metálico (2) no entran en contacto directamente. Ambos terminan en forma de flanco (10, 1 1 ) y es ahí donde se encuentran en una junta principal (4) que reduce la transferencia térmica entre el tubo caliente cerámico (1 ) en contacto con el fluido a alta temperatura y el tubo metálico (2), a la vez que contribuye a la estanquidad del sistema. La junta principal (4) es la que se encuentra entre el flanco cerámico (10) y el flanco metálico (1 1 ), y está encargada de contribuir a la estanquidad así como de hacer de puente térmico entre los dos materiales con diferente coeficiente de expansión térmica. La junta (4) trabaja a una temperatura alta pero siempre inferior a 500 °C si la temperatura del fluido se considera 1000 °C, debido a la configuración que se le da al sistema y al aislamiento (6) interno. In short, on the one hand, by increasing the internal diameter of the tube portions (1, 2) (since increasing the external diameter without modifying the thickness of the tubes (1, 2) causes the internal diameter of the same) the fluid passage area in the cross-section of both tube portions (1, 2) is increased, but by keeping the thickness of the ceramic tube (1) constant, this increase in the fluid passage area causes The heat flow causes a lower temperature field in the area closest to the junction that ensures lower stresses in the junction zone. The preferred insulating material is a flexible microporous with very low conductivity, although any that can withstand thermal and mechanical stresses due to the passage of fluid under pressure can be used. The insulation (6) allows to withstand high temperatures and also, as an optional feature, its surface can have crevices or undulations that are responsible for absorbing the deformations due to the expansion caused by the high temperature of the fluid as seen in Figure 2, avoiding so that these dilations become tensions applied on the rest of the components of the union and facilitating its forming on the rest of the components. Likewise, the insulation (6) is designed to absorb thermal expansion caused by contact with the fluid at temperatures around 1000 ° C and, which is equally important, prepared to withstand sudden variations in pressure that occur with any setting in progress and any stop, without changing its configuration or structure. The insulation (6) protects the ceramic tube (1) from its widening, the joint and the corresponding part of the metal tube (2) in the area of higher temperature of the fluid. It is also able to withstand sudden variations in pressure due to the crevices or undulations of the insulation walls (6), since, at least once a day, there will be a start and a stop, passing the system from 1 to 20 bar, or vice versa, quickly. The ceramic tube (1) and the metal tube (2) do not come into contact directly. Both end in the form of a flank (10, 1 1) and that is where they are in a main joint (4) that reduces the thermal transfer between the ceramic hot tube (1) in contact with the high temperature fluid and the metal tube (2), while contributing to the tightness of the system. The main joint (4) is the one between the ceramic flank (10) and the metal flank (1 1), and is responsible for contributing to the tightness as well as making a thermal bridge between the two materials with different coefficient of Thermal expansion. The joint (4) works at a high temperature but always below 500 ° C if the temperature of the fluid is considered 1000 ° C, due to the configuration given to the system and the internal insulation (6).
En el ejemplo de realización mostrado, el elemento de sujeción y compresión (3) se corresponde con una brida de valona que comprende sendas semibridas (3', 3") como primer componente (3') y un segundo componente (3"). Cada uno de los componentes (3', 3") comprende sendos elementos complementarios (13) que comprenden un resalte (14) y un hueco (15), estando el hueco (15) de cada elemento complementario (13) destinado a albergar el resalte (14) del otro elemento complementario (13). El resalte (14) y el hueco (15) alinean ambos elementos complementarios (13) haciendo que sea lo más parecido a una brida maciza en cuanto a la planitud de las caras. Los taladros de ambos elementos complementarios (13) coinciden. Tanto el tubo cerámico (1 ) como el metálico (2) terminan en el extremo con un flanco (10, 1 1 ) que permite el cierre con la brida de valona (3) formada por las dos semibridas (3', 3"), que logra la presión de cierre deseada mediante una sujeción y compresión uniforme en los flancos (10, 1 1 ) conseguida gracias a los pernos (12) que atraviesan ambas semibridas (3', 3") a través de unos orificios en las mismas (3', 3") y los flancos (10, 1 1 ). Los pernos (12) se disponen de manera circular alrededor de la tubería para la unión de las dos semibridas (3', 3"). In the exemplary embodiment shown, the clamping and compression element (3) corresponds to a wall flange comprising semi-rigid paths (3 ', 3 ") as the first component (3') and a second component (3"). Each of the components (3 ', 3 ") comprises two complementary elements (13) comprising a projection (14) and a recess (15), the recess (15) of each complementary element (13) being designed to house the projection (14) of the other complementary element (13) The projection (14) and the recess (15) align both complementary elements (13) making it the closest thing to a solid flange in terms of the flatness of the faces. Drills of both complementary elements (13) coincide. Both the ceramic tube (1) and the metal (2) end at the end with a flank (10, 1 1) that allows the closure with the wall flange (3) formed by the two half-shells (3 ', 3 ") , which achieves the desired closing pressure by means of a uniform clamping and compression on the flanks (10, 1 1) achieved thanks to the bolts (12) that pass through both half-shells (3 ', 3 ") through holes in them (3 ', 3 ") and the flanks (10, 1 1). The bolts (12) are arranged circularly around the pipe for joining the two half-shells (3', 3").
Los tornillos, tuercas y arandelas con los que se ejerce presión se recomiendan que sean de metal apto para alta temperatura como AISI 800H, o Inconel 601 o superior. Es requerido que el elemento de sujeción y compresión (3) presione uniformemente ambos flancos (10, 1 1 ) de los tubos (1 , 2) por dos motivos, el primero es evitar pérdidas de presión, el segundo evitar que el aumento desigual de temperatura modifique el posicionamiento relativo de los flancos (10, 1 1 ), facilitando una posible rotura del tubo cerámico (1 ) en algún punto, especialmente de la cogida. Cada componente (3', 3") del elemento de sujeción y compresión (3) del ejemplo de realización deberá ser presionado para permitir la regularidad necesaria en la sujeción y compresión. Para esto además de conseguir una distribución regular de la temperatura alrededor de ella, requiere que se facilite la absorción de las posibles dilataciones por expansión térmica. Para ello se colocarán en los extremos del tornillo unas arandelas de presión que sean capaces de amortiguar esa dilatación, evitando las posibles pérdidas de carga que pudiese aparecer. The screws, nuts and washers with which pressure is exerted are recommended to be metal suitable for high temperature such as AISI 800H, or Inconel 601 or higher. It is required that the clamping and compression element (3) uniformly press both sides (10, 1 1) of the tubes (1, 2) for two reasons, the first is to avoid pressure losses, the second prevents uneven increase of temperature modify the relative positioning of the flanks (10, 1 1), facilitating a possible breakage of the ceramic tube (1) at some point, especially of the catch. Each component (3 ', 3 ") of the clamping and compression element (3) of the exemplary embodiment should be pressed to allow the necessary regularity in the clamping and compression. For this in addition to achieving a regular distribution of the temperature around it , it requires that the absorption of possible expansion by thermal expansion be facilitated.To do this, pressure washers that are capable of cushioning that expansion will be placed at the ends of the screw, avoiding possible head losses that may appear.
El tubo cerámico (1 ) es unido a uno metálico (2) que se recomienda sea de un acero refractario tipo AISI 31 OS, aunque pueden utilizarse otros materiales como AISI 800H o Inconel 601 o superior. El motivo de elegir este tipo de materiales es que soporte temperaturas elevadas aunque no comprometidas para el material. El tubo cerámico (2) está diseñado para que en su extremo más cercano al tubo metálico se aumente el diámetro con un ángulo entre 0e y 90e, preferentemente 90e. The ceramic tube (1) is attached to a metallic one (2) which is recommended to be of a refractory steel type AISI 31 OS, although other materials such as AISI 800H or Inconel 601 or higher can be used. The reason for choosing this type of materials is that it supports high temperatures although not compromised for the material. The ceramic tube (2) is designed so that at its end closest to the metal tube the diameter is increased with an angle between 0 e and 90 e , preferably 90 e .
La transición entre la segunda zona longitudinal (8) y la primera zona longitudinal (9) de las porciones de tubo (1 , 2) , es decir, de la sección de menor diámetro interno a la de mayor diámetro interno o ensanchamiento, puede variar desde los 90e hasta los 0e dando lugar a una forma troncocónica para ángulos inferiores a 90e. Este ensanchamiento, ha de combinarse con un acabado achaflanado en las aristas circunferenciales con el fin de evitar concentradores de tensiones en el material. La existencia de este ángulo de ensanchamiento, permite que se genere un espacio para albergar el aislante (6). Además, al tratarse el aislante y las porciones de tubo (1 ,2) de piezas concéntricas con baja tolerancia dimensional y carentes de holguras espaciales, la sujeción entre ellas es puramente mecánica. The transition between the second longitudinal zone (8) and the first longitudinal zone (9) of the tube portions (1, 2), that is, from the section of smaller internal diameter to that of greater internal diameter or widening, may vary from 90 e to 0 e giving rise to a conical shape for angles less than 90 e . This widening, must be combined with a chamfered finish in the circumferential edges in order to avoid stress concentrators in the material. The existence of this widening angle allows a space to house the insulator (6) to be generated. In addition, when treating the insulator and the tube portions (1, 2) of concentric pieces with low dimensional tolerance and lacking spatial clearances, the fastening between them is purely mechanical.
El espesor del aislamiento (6) y el ángulo de ensanchamiento de cada tubo (1 , 2) en los extremos de la unión vienen determinados por las condiciones de temperatura que se desean tener en los extremos de los tubos para evitar el daños a los mismos. The thickness of the insulation (6) and the widening angle of each tube (1, 2) at the ends of the joint are determined by the temperature conditions that are desired to have at the ends of the tubes to avoid damage to them .
La invención propone entre los componentes (3' y 3") del elemento de sujeción y compresión (3) y el flanco (10, 1 1 ) de la terminación de los tubos (1 , 2) cerámico y metálico dos juntas secundarias (5) planas que sirvan de puente térmico y asiento mecánico, así como de protección de los materiales por contacto. Esas juntas secundarias (5) serán de materiales con una fuerte base de mica que aporte la resistencia mecánica necesaria combinada con bajo coeficiente de conducción térmico. Asimismo, para proteger la sección horizontal de los tubos (1 , 2) del roce de los componentes (3' y 3") del elemento de sujeción y compresión (3) se coloca una junta secundaría cilindrica (7) de otro material aislante que también sirva de puente térmico y que, de nuevo, se recomienda posea una base de mica. The invention proposes between the components (3 'and 3 ") of the clamping and compression element (3) and the flank (10, 1 1) of the termination of the ceramic and metal tubes (1, 2) two secondary joints (5 ) flat that serve as thermal bridge and mechanical seat, as well as protection of the materials by contact.These secondary joints (5) will be of materials with a strong base of mica that provides the necessary mechanical resistance combined with low coefficient of thermal conduction. Likewise, to protect the horizontal section of the tubes (1, 2) from the friction of the components (3 'and 3 ") of the clamping and compression element (3), a cylindrical secondary joint (7) of another insulating material is placed. It also serves as a thermal bridge and, again, it is recommended to have a mica base.
La unión debe estar expuesta a ventilación, no necesariamente forzada, para permitir la evacuación de calor y evitar el sobrecalentamiento en la zona. La clave es disminuir la temperatura internamente en la unión, y no permitir que se alcancen temperaturas elevadas en zona externa de la unión. The joint must be exposed to ventilation, not necessarily forced, to allow the evacuation of heat and avoid overheating in the area. The key is to lower the temperature internally at the junction, and not allow high temperatures to be reached outside the junction.

Claims

REIVINDICACIONES
1 . - Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica que comprende: one . - Union for tubes (1, 2) with different coefficient of thermal expansion comprising:
- una primera porción de tubo (1 ) que comprende en uno de sus extremos una terminación en flanco (10), y - una segunda porción de tubo (2) con un coeficiente de expansión térmica mayor que la primera (1 ) porción de tubo y que comprende en un extremo una terminación en flanco (1 1 ) adaptado para estar situado de forma adyacente al flanco (10) de la primera (1 ) porción de tubo de forma que ambas primera (1 ) y segunda (2) porción de tubo son coaxiales, caracterizado po r q u e : - a first tube portion (1) comprising at one of its ends a flank termination (10), and - a second tube portion (2) with a coefficient of thermal expansion greater than the first (1) tube portion and comprising at one end a flank termination (1 1) adapted to be located adjacent to the flank (10) of the first (1) tube portion so that both first (1) and second (2) portion of tube are coaxial, characterized by:
- la primera y segunda porciones de tubo (1 , 2) comprenden una primera zona longitudinal (8) y una segunda zona longitudinal (9), situadas una a continuación de la otra y estando la primera zona longitudinal (8) anexa a los extremos adyacentes de ambas porciones de tubo (1 , 2) donde el diámetro interno de la primera zona longitudinal (8) es mayor que el diámetro interno de la segunda zona longitudinal (9), - the first and second tube portions (1, 2) comprise a first longitudinal zone (8) and a second longitudinal zone (9), located one after the other and the first longitudinal zone (8) being attached to the ends adjacent to both tube portions (1, 2) where the internal diameter of the first longitudinal zone (8) is greater than the internal diameter of the second longitudinal zone (9),
- la unión comprende un aislamiento (6) que está destinado a estar situado coaxialmente a ambas porciones de tubo (1 , 2) y en la primera zona longitudinal (8), un elemento de sujeción y compresión (3) que comprende un primer componente (3') y un segundo componente (3") cada uno destinado a estar apoyado en uno de los flancos (10, 1 1 ) de las porciones de tubo (1 , 2) y destinados a estar unidos entre sí (3', 3") y a los flancos (10, 1 1 ) mediante pernos (12) pasantes. - the joint comprises an insulation (6) that is intended to be coaxially located to both tube portions (1, 2) and in the first longitudinal zone (8), a clamping and compression element (3) comprising a first component (3 ') and a second component (3 ") each intended to be supported on one of the flanks (10, 1 1) of the tube portions (1, 2) and intended to be joined together (3', 3 ") and to the flanks (10, 1 1) by bolts (12) through.
2. - Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según la reivindicación 1 , caracterizada por que el aislamiento (6) comprende un diámetro interno que coincide con el diámetro interno de la segunda zona longitudinal (9) de ambas porciones (1 , 2) de tubo. 2. - Union for tubes (1, 2) with different coefficient of thermal expansion, according to claim 1, characterized in that the insulation (6) comprises an internal diameter that coincides with the internal diameter of the second longitudinal zone (9) of both portions (1, 2) of tube.
3. - Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizado por que la primera y la segunda porción de tubo (1 ) comprenden en la primera zona longitudinal (8) un diámetro externo mayor que el diámetro externo de la segunda zona longitudinal (9) de la porción de tubo (1 , 2) de modo que en ambas zonas (8, 9) se mantiene el espesor de ambas porciones de tubo (1 , 2). 3. - Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that the first and second tube portions (1) comprise in the first longitudinal zone (8) a external diameter greater than the external diameter of the second longitudinal zone (9) of the tube portion (1, 2) so that in both zones (8, 9) the thickness of both tube portions (1, 2) is maintained .
4. - Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que cada uno de los componentes (3', 3") comprende sendos elementos complementarios (13) destinados a rodear las porciones de tubo (1 , 2) que están destinados a estar acoplados entre sí (13). 4. - Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that each of the components (3 ', 3 ") comprises two complementary elements (13) intended for surround the tube portions (1, 2) that are intended to be coupled to each other (13).
5. - Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según la reivindicación 4, caracterizada por que los elementos complementarios (13) del primer y segundo componente (3', 3") del elemento de sujeción y compresión (3) comprenden un resalte (14) y un hueco (15), estando el hueco (15) de cada elemento complementario (13) destinado a albergar el resalte (14) del otro elemento complementario (13). 5. - Union for tubes (1, 2) with different coefficient of thermal expansion, according to claim 4, characterized in that the complementary elements (13) of the first and second component (3 ', 3 ") of the clamping and compression element (3) comprise a projection (14) and a recess (15), the recess (15) of each complementary element (13) being designed to house the projection (14) of the other complementary element (13).
6. - Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que comprende una junta principal (4) destinada a estar situada entre las terminacionesen flanco (10, 1 1 ) de cada una de las porciones de tubo (1 , 2). 6. - Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that it comprises a main joint (4) intended to be located between the flange terminations (10, 1 1) of each of the tube portions (1, 2).
7.- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que comprende unas juntas secundarias (5) destinadas a estar situadas entre el flanco (10, 1 1 ) de cada una de las porciones de tubo (1 , 2) y el elemento de sujeción y compresión (3) para absorber las desviaciones geométricas de los elementos de la unión. 7. Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that it comprises secondary joints (5) intended to be located between the flank (10, 1 1) of each of the tube portions (1, 2) and the clamping and compression element (3) to absorb the geometric deviations of the joint elements.
8.- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que comprende unas juntas secundarias cilindricas (7) destinadas a estar situadas entre el elemento de sujeción y compresión (3) y las porciones de tubo (1 , 2). 8.- Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that it comprises cylindrical secondary joints (7) intended to be located between the clamping and compression element (3 ) and the tube portions (1, 2).
9.- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que el aislamiento (6) comprende unas ondulaciones o hendiduras en su superficie para absorber deformaciones debidas a la dilatación. 9.- Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that the insulation (6) comprises undulations or grooves in its surface to absorb deformations due to expansion.
10.- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que la primera porción de tubo (1 ) es no-metálica y la segunda porción de tubo (2) es metálica. 10.- Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that the first tube portion (1) is non-metallic and the second tube portion (2) It is metallic.
1 1 .- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según la reivindicación 10, caracterizada por que la primera porción de tubo (1 ) es cerámica. 1 .- Union for tubes (1, 2) with different coefficient of thermal expansion, according to claim 10, characterized in that the first portion of tube (1) is ceramic.
12.- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que el elemento de sujeción y compresión (3) es metálico. 12.- Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that the clamping and compression element (3) is metallic.
13.- Unión para tubos (1 , 2) con distinto coeficiente de expansión térmica, según una cualquiera de las reivindicaciones anteriores, caracterizada por que la transición entre la primera zona longitudinal (8) y la segunda zona longitudinal (9) de las porciones de tubo (1 , 2) está comprendida entre los 90e y los 0e. 13.- Union for tubes (1, 2) with different coefficient of thermal expansion, according to any one of the preceding claims, characterized in that the transition between the first longitudinal zone (8) and the second longitudinal zone (9) of the portions tube (1, 2) is between 90 e and 0 e .
PCT/ES2016/070479 2015-06-30 2016-06-24 Connection for pipes with different coefficients of thermal expansion WO2017001714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201530943 2015-06-30
ES201530943A ES2599059B1 (en) 2015-06-30 2015-06-30 Union for tubes with different coefficient of thermal expansion

Publications (1)

Publication Number Publication Date
WO2017001714A1 true WO2017001714A1 (en) 2017-01-05

Family

ID=57607890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070479 WO2017001714A1 (en) 2015-06-30 2016-06-24 Connection for pipes with different coefficients of thermal expansion

Country Status (2)

Country Link
ES (1) ES2599059B1 (en)
WO (1) WO2017001714A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088758A (en) * 1958-02-12 1963-05-07 Atomic Energy Authority Uk Thermocompensating joint
US3632143A (en) * 1969-06-19 1972-01-04 Westinghouse Electric Corp Bimetallic coupling joint for tubes of dissimilar materials
US4349203A (en) * 1980-09-10 1982-09-14 Heraeus Quarzschmelze Gmbh Flange connection to connect a metallic and a glass or ceramic structural element
US4552386A (en) * 1983-08-22 1985-11-12 United Technologies Corporation Joints between cylinders of different materials
US20120280495A1 (en) * 2011-05-06 2012-11-08 Primus Green Energy Inc. Ceramic-to-metal flange connection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088758A (en) * 1958-02-12 1963-05-07 Atomic Energy Authority Uk Thermocompensating joint
US3632143A (en) * 1969-06-19 1972-01-04 Westinghouse Electric Corp Bimetallic coupling joint for tubes of dissimilar materials
US4349203A (en) * 1980-09-10 1982-09-14 Heraeus Quarzschmelze Gmbh Flange connection to connect a metallic and a glass or ceramic structural element
US4552386A (en) * 1983-08-22 1985-11-12 United Technologies Corporation Joints between cylinders of different materials
US20120280495A1 (en) * 2011-05-06 2012-11-08 Primus Green Energy Inc. Ceramic-to-metal flange connection

Also Published As

Publication number Publication date
ES2599059A1 (en) 2017-01-31
ES2599059B1 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
ES2533911T3 (en) Solar absorber module and solar absorber element
ES2359568T3 (en) FLUID COLLECTOR.
ES2672699T3 (en) Refrigeration air cooler for gas turbines, gas turbines or gas and steam turbines, as well as a procedure for cooling cooling air
ES2649472T3 (en) Method and device to protect heat exchanger tubes
JP2009518591A (en) Plug-in fittings for cryogenic piping
ES2945908T3 (en) Thermally decoupled tube holder with high mechanical load capacity
CN201138148Y (en) Flexible hot pipe
JP2010091220A (en) Refractory wall device and heat exchanger
JP2009121758A (en) Heat exchanger and cryogenic system
ES2599059B1 (en) Union for tubes with different coefficient of thermal expansion
JP4939980B2 (en) EGR cooler
US20170115065A1 (en) Heat exchangers
BRPI1002138A2 (en) heat exchanger for reaction gas cooling including a tubular connection between a refrigerated pipe and an uncooled pipe
CA2603454A1 (en) Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers
BR102015000401A2 (en) heat exchange assembly and heat exchange apparatus
CN109340468A (en) A kind of heat-resisting high efficient heat exchanging seamless steel pipe
ES2960568T3 (en) A coaxial heat transfer tube suitable for a fluidized bed boiler and a process for manufacturing the same
JP5547465B2 (en) Vacuum insulation piping
JPH0319476B2 (en)
CN212338549U (en) Internal and external pressure balance type corrugated compensator
JPH0319475B2 (en)
JP3180132U (en) Vacuum insulated water pipe
KR100962279B1 (en) Thermal expansion free ceramic connectors
CN208138689U (en) A kind of heat exchangers for district heating and its effective plug that exchanges heat
KR20170052874A (en) Apparatus for freezing pipe rapidly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817299

Country of ref document: EP

Kind code of ref document: A1