WO2017000544A1 - 曲面显示装置、制作曲面显示装置的方法及其电子设备 - Google Patents

曲面显示装置、制作曲面显示装置的方法及其电子设备 Download PDF

Info

Publication number
WO2017000544A1
WO2017000544A1 PCT/CN2016/071046 CN2016071046W WO2017000544A1 WO 2017000544 A1 WO2017000544 A1 WO 2017000544A1 CN 2016071046 W CN2016071046 W CN 2016071046W WO 2017000544 A1 WO2017000544 A1 WO 2017000544A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved
transparent substrate
sealant
display device
edge
Prior art date
Application number
PCT/CN2016/071046
Other languages
English (en)
French (fr)
Inventor
王新星
赵伟利
柳在健
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP16747857.7A priority Critical patent/EP3318923A4/en
Priority to US15/119,355 priority patent/US10534226B2/en
Publication of WO2017000544A1 publication Critical patent/WO2017000544A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/56Substrates having a particular shape, e.g. non-rectangular

Definitions

  • the present invention relates to the field of curved display, and in particular to a curved display device, a method of manufacturing a curved display device, and an electronic device thereof.
  • the upper glass substrate and the lower glass substrate are bonded together by means of a sealant.
  • the upper glass substrate 12 in the case of a curved display device, the upper glass substrate 12 is closest to the viewer
  • the lower glass substrate 16 in In the case where the curved display device is used, the lower glass substrate 16 is generally far away from the viewer. It is generally subjected to tensile stress, as shown in FIG. 2, because the lower glass substrate 16 surrounds the outer side of the upper glass substrate 12.
  • the central region 13 the upper left corner region 14a, and the upper right corner region 14b shown in FIG.
  • the stress in the central region 13 of the upper glass substrate 12 is substantially horizontal, and the compressive stress can be considered to be at A level close to 0° or close to 180°, or a level in the central region 13 of the upper glass substrate 12 is close to 0° or close to 180°.
  • the stress therein is substantially inclined, and the closer to the corner, the larger the inclination, the pressure can be considered to be withstand.
  • the stress is at a level close to 30° or close to -30°, even closer to the corner region of the upper glass substrate 12, that is, the four corner regions, and the compressive stress distribution is close to 45° or close to -45°. .
  • the optical axis in the upper left corner region 14a and the upper right corner region 14b of the upper glass substrate 12 is close to 30° or close to -30°, even closer to the corner region of the upper glass substrate 12, the optical axis.
  • the closer to 45° or close to -45°. 45° or -45° is generally considered to be the maximum light leakage angle in the art.
  • the stress in the central region 17 of the lower glass substrate 16 is substantially horizontal.
  • the tensile stress or the optical axis of the central portion 17 is at a level close to 0° or close to 180°, in a region close to the corner, for example, the position of the upper left corner region 18a and the upper right corner region 18b, wherein
  • the tensile stress is basically inclined, and it can be considered that the tensile stress is close to 30°.
  • the tensile stress distribution is close to 45° or close to -45°, or upper left
  • the optical axes of the corner region 18a and the upper right corner region 18b are at a level close to 30° or close to -30°, even at a level close to 45° or close to -45°.
  • polarizing plates whose polarization directions are orthogonal to each other are disposed on the other side of the upper glass substrate 12 and the lower glass substrate 16, respectively, so as to block the transmission of light in a dark state.
  • the curved display device of the prior art at the four corners of each of the upper glass substrate 12 and the lower glass substrate 16, there is a lot of light leakage at this time, and the light blocking in the dark state is not well achieved. The effect is that there is a considerable amount of light leakage.
  • the present invention provides a curved display device, a method of fabricating a curved display device, and an electronic device thereof that are capable of solving or at least alleviating at least some of the deficiencies existing in the prior art.
  • a curved display device which may include: an upper curved transparent substrate; a lower curved transparent substrate disposed opposite the upper curved transparent substrate; and a curved substrate and a lower curved surface a sealant disposed between the light-transmitting substrates and along an edge of the upper curved transparent substrate and the lower curved transparent substrate, the sealant comprising a non-bending edge of the upper curved transparent substrate and a non-curved of the lower curved transparent substrate a first encapsulant at the edge and a second encapsulant located at a curved edge of the upper curved substrate and a curved edge of the lower curved substrate, the first encapsulant and the second encapsulant making the upper surface
  • the transparent substrate and the lower curved transparent substrate are adhered together, and the stress of the upper curved transparent substrate and the lower curved transparent substrate is reduced, and the stress distribution of the upper curved transparent substrate and the lower curved transparent substrate is changed.
  • the sealant of the present invention By means of the sealant of the present invention, the stress of the upper curved transparent substrate and the lower curved transparent substrate is reduced, and the stress distribution state of the upper curved transparent substrate and the lower curved transparent substrate is changed. In such a case, it is helpful to reduce the amount of light leakage in the dark state in the finally formed curved display device.
  • the materials of the first sealant and the second sealant are the same.
  • the amount of light transmitted through the upper curved transparent substrate and the lower curved transparent substrate is the first dense The sealant and the second sealant increase in width.
  • the width W2 of the second sealant when the width W2 of the second sealant is constant, the amount of light transmitted through the upper curved transparent substrate and the lower curved transparent substrate decreases as the width W1 of the first sealant increases. small.
  • the width W1 of the first sealant when the width W1 of the first sealant is constant, the amount of light transmitted through the upper curved transparent substrate and the lower curved transparent substrate increases as the width W2 of the second sealant increases. Big.
  • the width W1 of the first sealant is greater than the width W2 of the second sealant.
  • the ratio of the width W1 of the first sealant to the width W2 of the second sealant is 1 ⁇ W1/W2 ⁇ 6.
  • a liquid crystal layer is included in a space surrounded by the upper curved transparent substrate, the lower curved transparent substrate, and the sealant.
  • the upper curved transparent substrate is a color filter transparent substrate or a transparent conductive film transparent substrate
  • the lower curved transparent substrate is a thin film transistor transparent substrate.
  • the curved display device may further include: a first polarizing plate on the other side of the upper curved transparent substrate opposite to the lower curved transparent substrate, and a lower curved transparent substrate opposite to the upper curved transparent substrate a second polarizing plate on one side, wherein the polarization directions of the first polarizing plate and the second polarizing plate are orthogonal.
  • a method of fabricating a curved display device may include the steps of: between an upper curved transparent substrate and a lower curved transparent substrate disposed opposite the upper curved transparent substrate, along The edge of the upper curved transparent substrate and the lower curved transparent substrate is coated with a sealant, and the sealant comprises a first sealant on a non-curved edge of the upper curved substrate and a non-curved edge of the lower curved transparent substrate, and a second sealant located at a curved edge of the upper curved substrate and a curved edge of the lower curved transparent substrate, the first sealant and the second sealant adhere the upper curved transparent substrate and the lower curved transparent substrate Together, the stress of the upper curved transparent substrate and the lower curved transparent substrate is reduced, and the stress distribution of the upper curved transparent substrate and the lower curved transparent substrate is changed.
  • the sealant of the present invention By means of the sealant of the present invention, the stress of the upper curved transparent substrate and the lower curved transparent substrate is reduced, and the stress distribution state of the upper curved transparent substrate and the lower curved transparent substrate is changed. In such a case, it helps to reduce the thickness in the final curved display device. The amount of light leakage in the dark state.
  • the sealant applied therein comprises the width W1 of the first sealant being greater than the width W2 of the second sealant.
  • the sealant coated includes: the sealant applicator nozzles are sprayed more than parallel to the non-curved edge edges of the upper curved transparent substrate and the lower curved transparent substrate The number of ejections of the sealant applicator nozzle at the curved edge of the curved transparent substrate and the lower curved transparent substrate.
  • the ratio of the width W1 of the first sealant to the width W2 of the second sealant is 1 ⁇ W1/W2 ⁇ 6.
  • the method before applying the sealant along the edges of the upper curved transparent substrate and the lower curved transparent substrate, the method includes the steps of: arranging a liquid crystal layer between the upper curved transparent substrate and the lower curved transparent substrate.
  • the upper curved transparent substrate is a color filter transparent substrate or a transparent conductive film transparent substrate
  • the lower curved transparent substrate is a thin film transistor transparent substrate.
  • an electronic device comprising the above-described curved display device or a curved display device produced by the method for producing a curved display device described above.
  • Fig. 1 is a view schematically showing a distribution of compressive stress existing in an upper glass substrate in a curved display device of the prior art.
  • Fig. 2 is a view schematically showing the tensile stress distribution existing in the lower glass substrate in the curved display device of the prior art.
  • Fig. 3 schematically shows a curved display device in accordance with one embodiment of the present invention.
  • Fig. 4 is a view schematically showing a light leakage tendency diagram when the widths of the first sealant and the second sealant are the same and are simultaneously changed in one embodiment of the present invention.
  • FIG. 5A schematically shows the light of the upper curved transparent substrate and the lower curved transparent substrate in the case where the sealant is not applied at the edge of the curved edge, and only the non-curved edge is coated with the sealant. Axis distribution.
  • Fig. 5B schematically shows the optical axis distribution of the upper curved transparent substrate and the lower curved transparent substrate in the case where the non-curved edge is not coated with the sealant, and only the curved edge is coated with the sealant.
  • Fig. 5C schematically shows a simulated view of the light leakage of the curved display device in the case where the sealant is not applied at the edge of the curved edge, and only the non-curved edge is coated with the sealant.
  • Fig. 5D schematically shows a simulated view of the light leakage of the curved display device in the case where the non-curved edge is not coated with the sealant, and only the edge of the curved edge is coated with the sealant.
  • Fig. 6A is a view schematically showing a tendency of light leakage of the curved display device as a function of the width of the first sealant in the case where the width of the second sealant is fixed.
  • Fig. 6B is a view schematically showing a tendency of light leakage of the curved display device as a function of the width of the second sealant in the case where the width of the first sealant is fixed.
  • Fig. 7 is a view schematically showing a trend of light leakage of the curved display device as a function of the ratio of the width W1 of the first sealant to the width W2 of the second sealant.
  • Fig. 8A is a schematic view showing a light leakage of the curved display device in the case where the width ratio W1/W2 of the width W1 of the first sealant and the width W2 of the second sealant is 2.
  • FIG. 8B is a schematic view showing a light leakage of the curved display device in the case where the width ratio W1/W2 of the first sealant and the width W1/W2 of the width W2 of the second sealant are 3.
  • Fig. 8C is a schematic view showing a light leakage of the curved display device in the case where the width ratio W1/W2 of the width W1 of the first sealant and the width W2 of the second sealant is 4.
  • 8D is a schematic view showing a light leakage of the curved display device in the case where the width ratio W1/W2 of the width W1 of the first sealant and the width W2 of the second sealant is 5.
  • Fig. 8E is a schematic view showing a light leakage of the curved display device in the case where the width ratio W1/W2 of the width W1 of the first sealant and the width W2 of the second sealant is 6.
  • Figure 9A schematically shows a partial flow chart of a method of making a curved display device.
  • Figure 9B schematically shows a partial flow chart of another method of making a curved display device.
  • FIG. 3 is a schematic diagram showing a curved display device 10 according to an embodiment of the present invention, which may include: an upper curved transparent substrate 2; a lower curved transparent substrate 4 disposed opposite the upper curved transparent substrate 2; A sealant is applied between the curved transparent substrate 2 and the lower curved transparent substrate 4 and along the edges of the upper curved transparent substrate 2 and the lower curved transparent substrate 4.
  • the non-curved side 6 of the sealant and the curved side 8 of the sealant are shown in FIG.
  • the curved display device it is generally considered that the short side of the curved display device is a non-curved side, and the long side of the curved display device is a curved side.
  • the short side of the upper curved transparent substrate 2, the lower curved transparent substrate 4, and the sealant is a non-curved side
  • the upper curved transparent substrate 2, the lower curved transparent substrate 4, and the long side of the sealant are curved edges.
  • the reason for this distinction is that in the process of fabricating the curved display device and in the final curved display device, it is basically considered that the short side is non-bending and the long side has a certain curvature.
  • the sealing agent adheres the upper curved transparent substrate and the lower curved transparent substrate together, and reduces stress of the upper curved transparent substrate and the lower curved transparent substrate, and simultaneously changes the upper curved transparent substrate and the lower curved surface.
  • the stress distribution of the light substrate and the improvement of light leakage in the dark state As for how to reduce the stress of the upper curved substrate 2 and the lower curved substrate 4, the stress distribution of the upper curved substrate 2 and the lower curved substrate 4 will be described in detail below.
  • a sealant disposed along the non-curved side edges of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 is generally referred to as a first sealant, and will be referred to as a first sealant.
  • the sealant disposed along the curved edge edges of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 is referred to as a second sealant.
  • the width of the sealant disposed along the non-curved edge of the upper curved substrate 2 and the lower curved substrate 4 is referred to as the width of the first sealant, and the substrate 2 and the lower substrate will be along the upper curved surface.
  • the width of the second sealant disposed at the curved edge of the curved substrate 4 is referred to as the width of the second sealant.
  • first sealant and the “second sealant” referred to herein are the same kind of sealant, and only different names are used according to different positions, and does not mean “first”.
  • “Sealant” and “second sealant” are two different types or types of sealants.
  • the materials of the first sealant and the second sealant are the same.
  • the ratio L/L of the light leakage amount shown on the ordinate is gradually increased.
  • the ratio L/L of the amount of light leakage appearing in each of the drawings of the present invention is a concept of a ratio and does not have any unit.
  • the ratio L/L of the light leakage amount shown on the ordinate is gradually decreasing.
  • the seal between the upper curved substrate 2 and the lower curved substrate 4 and along the edges of the upper curved substrate 2 and the lower curved substrate 4 can be applied.
  • the width of the agent is minimized, that is, the width of the first sealant and the width of the second sealant are minimized.
  • the stress distribution in the upper curved substrate 2 and the lower curved substrate 4 will be improved, thereby reducing the amount of light leakage in the dark state.
  • Fig. 5A schematically shows the optical axis distribution of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 in the case where the sealant is not applied at the edge of the curved edge, and only the non-curved edge is coated with the sealant. It can be basically seen that the optical axes of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 are substantially vertical, thus avoiding light leakage in a dark state.
  • Fig. 5A schematically shows the optical axis distribution of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 in the case where the sealant is not applied at the edge of the curved edge, and only the non-curved edge is coated with the sealant. It can be basically seen that the optical axes of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 are substantially vertical, thus avoiding light leakage in a dark state.
  • Fig. 5A schematically shows the optical axis distribution of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 in the case where the sealant is
  • FIG. 5C schematically shows a simulated view of the light leakage of the curved display device in the case where the sealant is not applied at the edge of the curved edge, and only the non-curved edge is coated with the sealant.
  • the simulation results of Fig. 5C it can be further shown that no sealant is applied to the edge of the curved edge, and only a small amount of light leakage exists in the case where the sealant is applied to the non-bent edge.
  • There are fewer white areas in Figure 5C these white areas indicate The light leakage area in the dark state, and the black area indicates the area where the light is blocked in the dark state. In the art, it is generally considered that the smaller the white area or the more the black area, the less the amount of light leakage in the dark state, and the better the effect of blocking light transmission.
  • Fig. 5B schematically shows the optical axis distribution of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 in the case where the non-curved edge is not coated with the sealant, and only the curved edge is coated with the sealant.
  • the optical axes of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 are slightly close to vertical, so that there is a certain degree of light leakage in the dark state.
  • Fig. 5D it can be further shown that no sealant is applied to the edges of the non-curved edges, and in the case where the sealant is applied to the edges of the curved edges, there is a large amount of light leakage.
  • Figure 5C there are more white areas and fewer black areas in Figure 5D. This means that the amount of light leakage in the case of Fig. 5C is small, and the amount of light leakage in the case of Fig. 5D is large.
  • Figures 5A, 5C and 5B, 5D above show that in both extreme cases, ie no sealant is applied at the edge of the curved edge, only the sealant is applied at the edge of the non-bent edge ( Figures 5A, 5C). Shown, and without the application of a sealant at the edges of the non-curved edges, only in the case where the edge of the curved edge is coated with a sealant (shown in Figures 5B, 5D), there is a description of the light leakage.
  • FIG. 6A and 6B depict, in general, the effect of the non-curved edge-coated sealant (first sealant) and the curved edge-coated sealant (second sealant) on the amount of light leakage. Big.
  • FIG. 6A schematically shows a trend diagram in which the light leakage of the curved display device changes with the first sealant width W1 in the case where the second sealant width W2 is fixed, that is, W2 is equal to the fixed value.
  • Fig. 6B schematically shows a tendency graph in which the light leakage of the curved display device varies with the width W2 of the second sealant in the case where the width of the first sealant is fixed, that is, W1 is equal to the fixed value. According to the simulation result shown in FIG.
  • the width W1 of the first sealant is greater than the second seal
  • the width of the agent is W2.
  • Fig. 7 is a view schematically showing a trend of light leakage of the curved display device 10 as a function of the width W1 of the first sealant and the width W2 of the second sealant. According to the simulation results shown in FIG. 7, it can be known that as the ratio of the width W1 of the first sealant and the width W2 of the second sealant gradually increases, the amount of light leakage of the curved display device 10 in the dark state gradually decreases. For example, FIG.
  • the abscissa W1/W2 is less than 1, it can be considered that the amount of light leakage of the ordinate L/L is still about 1.
  • the amount of light leakage at this time is already close to the corresponding limit value when W1/W2 is 6, that is, when the abscissa W1/W2 is greater than 6
  • the amount of light leakage on the ordinate L/L is still about 0.62.
  • 8A-8E further schematically show a simulated view of light leakage of the curved display device in the case where the ratio of the width W1/the width W2 of the first sealant to the width W2 of the second sealant is 2, 3, 4, 5, 6, respectively.
  • the ratio of the width W1/the width W2 of the first sealant to the width W2 of the second sealant is 2, 3, 4, 5, 6, respectively.
  • the ratio of the width W1 of the first sealant to the width W2 of the second sealant is changed from 2 to 3, as shown in FIGS. 8A, 8B; from 3 to 4, as shown in FIG. 8C; 5, as shown in FIG. 8D; from 5 to 6, as shown in FIG. 8D, it can be known that the white areas in FIGS. 8A-8E are less and less, that is, the light leakage area in the dark state is more and more Less, there are more and more black areas, that is, more and more areas blocking light transmission in the dark state.
  • the ratio of the width W1 of the first sealant to the width W2 of the second sealant is changed from 2 to 3; from 3 to 4; from 4 to 5; from 5
  • the ratio of the width W1 of the first sealant to the width W2 of the second sealant is 6, the amount of light leakage in the dark state is the smallest. Therefore, it is preferable that the ratio of the width W1 of the first sealant to the width W2 of the second sealant is 1 ⁇ W1/W2 ⁇ 6.
  • the sealant distribution contains at least two meanings in the present invention.
  • the first meaning is that the width W1 of the first sealant and the width W2 of the second sealant are minimized while maintaining the width W1 of the first sealant equal to the width W2 of the second sealant.
  • the sealant can effectively reduce the stress of the upper curved transparent substrate 2 and the lower curved transparent substrate 4, and at the same time change the stress distribution state of the upper curved transparent substrate 2 and the lower curved transparent substrate 4. In such a case, the amount of light leakage in the dark state can be effectively reduced.
  • the second meaning is that, in the case where the width W1 of the first sealant is larger than the width W2 of the second sealant, the ratio of the width W1 of the appropriate first sealant to the width W2 of the second sealant is selected.
  • the width distribution of the sealant can also effectively reduce the stress of the upper curved substrate 2 and the lower curved substrate 4, and at the same time change the stress distribution state of the upper curved substrate 2 and the lower curved substrate 4. In such a case, the amount of light leakage in the dark state can also be effectively reduced.
  • the sealant can be reduced for the upper curved transparent substrate 2 and the lower curved transparent substrate 4
  • the traction force that is, the traction force at the edge of the non-curved edge and the edge of the curved edge are simultaneously reduced, so that the upper curved transparent substrate 2 and the lower curved transparent substrate 4 tend to return to the state before the bending, so that the upper curved transparent substrate 2
  • the optical axis of the corner region of the lower curved substrate 4 is more likely to be 0 or 180.
  • the internal stress of the upper curved substrate 2 and the lower curved substrate 4 can be effectively reduced, and the stress distribution state of the upper curved substrate 2 and the lower curved substrate 4 is changed, and the stress distribution is reduced.
  • the amount of light leakage in the dark state is reduced.
  • the width W1 of the first sealant is larger than the width W2 of the second sealant
  • the width W1 of the appropriate first sealant and the width of the second sealant are selected.
  • the ratio of W2 is increased by the width W1 of the first sealant and the width W2 of the second sealant is compared with the prior art, so that the upper curved transparent substrate 2 and the lower curved transparent substrate 4 are horizontally It is considered to have a large traction force perpendicular to the non-curved edge edge, and has a vertical direction (generally considered perpendicular to the curved edge)
  • the smaller traction force because the traction force in the horizontal direction is greater than the traction force in the vertical direction, so that the stress distribution in the upper curved surface transparent substrate 2 and the lower curved surface transparent substrate 4 is particularly the upper curved surface transparent substrate 2 and the lower curved surface transparent substrate.
  • the angle of the stress distribution of the corner regions of 4 tends to be inclined in the horizontal direction, that is, toward 0 or 180.
  • the optical axis of the upper left corner region and the upper right corner region in the prior art mentioned in the background art is at a level close to 30° or close to -30°, even at a level close to 45° or close to -45°.
  • the angle of the stress distribution in the corner region of the present invention is slightly oriented such that the optical axis of the corner region is less than 30° or less than -30°, that is, the angle of the stress distribution or the optical axis tends to approach 0. ° or 180°.
  • the stress of the upper curved substrate 2 and the lower curved substrate 4 can be effectively reduced, and the stress distribution state of the upper curved substrate 2 and the lower curved substrate 4 is changed, effectively Reduce the amount of light leakage in the dark state.
  • the upper curved transparent substrate 2, the lower curved transparent substrate 4, and the sealant for example, the non-curved edge 6 of the sealant and the seal may be used
  • the space surrounded by the curved side 8) of the agent contains a liquid crystal layer (not shown in the drawing).
  • the liquid crystal layer is not specifically shown in the drawings of the present invention, it is not difficult to achieve the arrangement of the liquid crystal layer in the liquid crystal type curved display device of the prior art according to the introduction of the present invention by those skilled in the art.
  • the upper curved transparent substrate 2 is a color filter transparent substrate or a transparent conductive film transparent substrate
  • the lower curved transparent substrate 4 is a thin film transistor transparent substrate.
  • the curved display device 10 may further include: a first polarizing plate on the other side of the upper curved transparent substrate 2 opposite to the lower curved transparent substrate 4, located on a lower curved surface opposite to the upper curved transparent substrate 2 a second polarizing plate on the other side of the transparent substrate 4, wherein the polarization directions of the first polarizing plate and the second polarizing plate are orthogonal.
  • first polarizing plate and the second polarizing plate are not specifically shown in the drawings of the present invention, those skilled in the art, in accordance with the introduction of the present invention, incorporate the first polarizing plate and the second in the curved display device of the prior art. The arrangement of the polarizing plates is not difficult to achieve.
  • the polarization directions of the first polarizing plate and the second polarizing plate are orthogonal, it is ensured that the first polarizing plate, the upper curved transparent substrate 2, or the liquid crystal is passed through in the dark state.
  • the light of the layer, when passing through the upper curved substrate 2 to the second polarizer, is not blocked by the second polarizer, which helps to achieve less light leakage in the dark state.
  • FIG. 9A is a schematic view showing a method step of fabricating a curved display device, which may include: step S32, between the upper curved transparent substrate 2 and the lower curved transparent substrate 4 disposed opposite to the upper curved transparent substrate 2 The edge of the upper curved substrate 2 and the lower curved transparent substrate 4 is coated with a sealant comprising a first sealant on the non-curved edge of the upper curved transparent substrate 2 and the lower curved transparent substrate 4.
  • the first sealant and the second sealant are the upper curved transparent substrate 2 and the lower curved transparent substrate 4
  • the adhesion is made together, and the stress of the upper curved substrate 2 and the lower curved substrate 4 is reduced, and the stress distribution of the upper curved substrate 2 and the lower curved substrate 4 is changed.
  • the step of applying the sealant may include the first sealant width W1 being greater than the second sealant width W2.
  • the first sealant width W1 is greater than the second sealant width W2 may include: step S34, increasing the sealant when applying the non-curved edge edges of the curved transparent substrate 2 and the lower curved transparent substrate 4
  • the pressure of the applicator nozzle reduces the pressure of the sealant applicator nozzle when the curved edge of the curved transparent substrate 2 and the lower curved transparent substrate 4 is applied.
  • Increasing the pressure of the sealant applicator nozzle allows the sealant nozzle to eject more sealant per unit time. Reducing the pressure of the sealant applicator nozzle may cause the sealant nozzle to inject less sealant per unit of time.
  • the sealant is provided with more sealant on the curved side of the curved transparent substrate 2 and the lower curved transparent substrate 4, and the coated surface is coated.
  • the light-transmitting substrate 2 and the curved bottom edge of the lower curved transparent substrate 4 have less sealant.
  • more sealant means the upper curved substrate 2 and the lower surface.
  • the non-curved edge of the curved transparent substrate 4 has a wider sealant, and less sealant means that the sealant at the curved edge of the upper curved transparent substrate 2 and the lower curved transparent substrate 4 is narrower.
  • applying the sealant may further include: step S36, the number of times the sealant applicator nozzles are sprayed at a non-bending edge parallel to the upper curved substrate 2 and the lower curved transparent substrate 4 is greater than The number of sealant applicator nozzle ejections parallel to the curved edge edges of the upper curved transparent substrate 2 and the lower curved transparent substrate 4.
  • the sealant applicator nozzle pressure is uniform, the sealant applicator nozzle may spray more sealant at a non-bending edge parallel to the upper curved transparent substrate 2 and the lower curved transparent substrate 4, This causes the non-curved edge of the upper curved transparent substrate 2 and the lower curved transparent substrate 4
  • the sealant is wide in width.
  • the sealant applicator nozzle can spray less sealant, so that the upper curved surface transparent substrate 2 and the lower curved surface
  • the width of the sealant at the non-curved edge of the light-transmitting substrate 4 is narrow.
  • the ratio of the width W1 of the first sealant to the width W2 of the second sealant is 1 ⁇ W1/W2 ⁇ 6.
  • the method includes: transmitting the upper curved substrate 2 and the lower curved surface A liquid crystal layer is disposed between the substrates 4.
  • the upper curved transparent substrate 2 is a color filter transparent substrate or a transparent conductive film transparent substrate
  • the lower curved transparent substrate 4 is a thin film transistor transparent substrate.
  • an electronic device which may include the above-described curved display device or a curved display device produced by the above method of fabricating a curved display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种曲面显示装置、制作曲面显示装置的方法及其电子设备,其中曲面显示装置(10)可以包括:上曲面透光基板(2);与上曲面透光基板(2)相对布置的下曲面透光基板(4);位于上曲面透光基板(2)和下曲面透光基板(4)之间并且沿着上曲面透光基板(2)和下曲面透光基板(4)的边缘涂覆的具有特定宽度分布的密封剂,特定宽度分布的密封剂使得上曲面透光基板(2)和下曲面透光基板(4)粘附在一起,并且使得上曲面透光基板(2)和下曲面透光基板(4)的应力减小,同时改变了上曲面透光基板(2)和下曲面透光基板(4)的应力分布。

Description

曲面显示装置、制作曲面显示装置的方法及其电子设备 技术领域
本发明涉及曲面显示领域,具体涉及曲面显示装置、制作曲面显示装置的方法及其电子设备。
背景技术
在现有的曲面显示装置领域,借助于密封胶将上玻璃基板和下玻璃基板结合在一起。在弯曲的时候,上玻璃基板12(在曲面显示装置使用的情况下,上玻璃基板12最靠近观察者)通常承受的是压应力,如在图1中示出的,下玻璃基板16(在曲面显示装置使用的情况下,下玻璃基板16通常离观察者较远)通常承受是的拉应力,如在图2中示出的,这是因为下玻璃基板16包围了上玻璃基板12的外侧,对于上玻璃基板12弹性恢复到原状进行了限制。根据图1中示出的中部区域13、左上边角区域14a、右上边角区域14b可以知晓,靠近上玻璃基板12中部区域13中的应力基本上呈现水平的状态,可以认为承受的压应力处于接近0°或者接近180°的水平,或者说上玻璃基板12中部区域13中的光轴接近0°或者接近180°的水平。在靠近边缘例如边角的区域,例如左上边角区域14a、右上边角区域14b的位置,其中的应力基本上呈现倾斜的状态,并且越是靠近边角,倾角越大,可以认为承受的压应力处于接近30°或者接近-30°的水平,甚至于越是靠近上玻璃基板12的边角区域,即四个边角区域,承受的压应力分布处于接近45°或者接近-45°的水平。或者说上玻璃基板12的左上边角区域14a、右上边角区域14b位置中的光轴接近30°或者接近-30°的水平,甚至于越是靠近上玻璃基板12的边角区域,光轴越是接近45°或者接近-45°的水平。45°或者-45°通常在本领域被认为是最大漏光角。
同样的,根据图2中示出的下玻璃基板16的中部区域17、左上边角区域18a、右上边角区域18b可以知晓,靠近下玻璃基板16中部区域17中的应力基本上呈现于水平的状态,可以认为承受的拉应力或者说中部区域17的光轴处于接近0°或者接近180°的水平,在靠近边角的区域,例如左上边角区域18a、右上边角区域18b的位置,其中的拉应力基本上呈现倾斜的状态,可以认为承受的拉应力处于接近30° 或者接近-30°的水平,甚至于越是靠近下玻璃基板16的边角区域,即四个边角区域,承受的拉应力分布处于接近45°或者接近-45°的水平,或者说左上边角区域18a、右上边角区域18b的光轴处于接近30°或者接近-30°的水平,甚至于接近45°或者接近-45°的水平。
另外,在现有技术的曲面显示装置中,通常在上玻璃基板12和下玻璃基板16的另一侧还分别布置有偏振方向相互正交的偏振片,以便在暗态下阻挡光线的透过。在现有技术的曲面显示装置中,在每个上玻璃基板12和下玻璃基板16的四个边角处,此时的漏光会很多,并不能很好地实现在暗态下阻挡光线透过的作用,即存在相当程度的漏光。
因此,在现有技术中,存在亟待改进现有技术问题的迫切需要。
发明内容
有鉴于此,本发明提供一种曲面显示装置、制作曲面显示装置的方法及其电子设备,其能够解决或者至少缓解现有技术中存在的至少一部分缺陷。
根据本发明的第一个方面,提供一种曲面显示装置,其可以包括:上曲面透光基板;与上曲面透光基板相对布置的下曲面透光基板;位于上曲面透光基板和下曲面透光基板之间并且沿着上曲面透光基板和下曲面透光基板的边缘设置的密封剂,该密封剂包括位于上曲面透光基板的非弯曲边边缘和下曲面透光基板的非弯曲边边缘的第一密封剂和位于上曲面透光基板的弯曲边边缘和所述下曲面透光基板的弯曲边边缘的第二密封剂,所述第一密封剂和第二密封剂使得上曲面透光基板和下曲面透光基板粘附在一起,并且使得上曲面透光基板和下曲面透光基板的应力减小,同时改变了上曲面透光基板和下曲面透光基板的应力分布。
借助于本发明的密封剂,减小了上曲面透光基板和下曲面透光基板的应力,并且改变了上曲面透光基板和下曲面透光基板的应力分布状态。在这样的情况下,有助于在最终制成的曲面显示装置中降低在暗态时的漏光量。
在本发明的一个实施例中,第一密封剂和第二密封剂的材料是相同的。在本发明的一个实施例中,第一密封剂和第二密封剂具有相同的宽度时,透过上曲面透光基板和下曲面透光基板的光量随着第一密 封剂和第二密封剂宽度的增大而增大。
在本发明的一个实施例中,在第二密封剂的宽度W2为定值时,透过上曲面透光基板和下曲面透光基板的光量随着第一密封剂的宽度W1增大而减小。
在本发明的一个实施例中,在第一密封剂的宽度W1为定值时,透过上曲面透光基板和下曲面透光基板的光量随着第二密封剂的宽度W2增大而增大。
在本发明的一个实施例中,第一密封剂的宽度W1大于第二密封剂的宽度W2。
在本发明的另一个实施例中,第一密封剂的宽度W1与第二密封剂的宽度W2的比值1<W1/W2≤6。
在本发明的再一个实施例中,在上曲面透光基板、下曲面透光基板和密封剂包围的空间中包含液晶层。
在本发明的又一个实施例中,上曲面透光基板是彩色滤光器透光基板或者透明导电薄膜透光基板,下曲面透光基板是薄膜晶体管透光基板。
备选的,曲面显示装置还可以包括:位于与下曲面透光基板相对的上曲面透光基板另一侧上的第一偏振片,位于与上曲面透光基板相对的下曲面透光基板另一侧上的第二偏振片,其中第一偏振片与第二偏振片的偏振方向正交。
根据本发明的第二个方面,提供一种制作曲面显示装置的方法,其可以包括步骤:在上曲面透光基板和与上曲面透光基板相对布置的下曲面透光基板之间,沿着上曲面透光基板和下曲面透光基板的边缘涂覆密封剂,该密封剂包括位于上曲面透光基板的非弯曲边边缘和下曲面透光基板的非弯曲边边缘的第一密封剂和位于上曲面透光基板的弯曲边边缘和下曲面透光基板的弯曲边边缘的第二密封剂,第一密封剂和第二密封剂将上曲面透光基板和下曲面透光基板粘附在一起,并且使得上曲面透光基板和下曲面透光基板的应力减小,同时改变上曲面透光基板和下曲面透光基板的应力分布。
借助于本发明的密封剂,减小了上曲面透光基板和下曲面透光基板的应力,并且改变了上曲面透光基板和下曲面透光基板的应力分布状态。在这样的情况下,有助于在最终制成的曲面显示装置中降低在 暗态时的漏光量。
在本发明的一个实施例中,其中涂覆的密封剂包括:第一密封剂的宽度W1大于第二密封剂的宽度W2。
在本发明的另一个实施例中,其中第一密封剂的宽度W1大于第二密封剂的宽度W2包括:在涂覆上曲面透光基板和下曲面透光基板的非弯曲边边缘时增大密封剂施加器喷嘴的压力,在涂覆上曲面透光基板和下曲面透光基板的弯曲边边缘时减小密封剂施加器喷嘴的压力。
在本发明的再一个实施例中,其中涂覆的密封剂包括:在平行于上曲面透光基板和下曲面透光基板的非弯曲边边缘处密封剂施加器喷嘴喷射次数大于在平行于上曲面透光基板和下曲面透光基板的弯曲边边缘处密封剂施加器喷嘴的喷射次数。
在本发明的又一个实施例中,其中第一密封剂的宽度W1与第二密封剂的宽度W2的比值1<W1/W2≤6。
可选的,在沿着上曲面透光基板和下曲面透光基板的边缘涂覆密封剂之前,包括下面的步骤:在上曲面透光基板和下曲面透光基板之间布置液晶层。
可选的,其中上曲面透光基板是彩色滤光器透光基板或者透明导电薄膜透光基板,下曲面透光基板是薄膜晶体管透光基板。
根据本发明的第三个方面,提供一种电子设备,包括上述的曲面显示装置或使用上述的制作曲面显示装置的方法制作的曲面显示装置。
附图说明
图1示意性示出了现有技术的曲面显示装置中,上玻璃基板中存在的压应力分布。
图2示意性示出了现有技术的曲面显示装置中,下玻璃基板中存在的拉应力分布。
图3示意性示出了根据本发明一个实施例的曲面显示装置。
图4示意性示出了在本发明的一个实施例中,第一密封剂和第二密封剂的宽度相同且同时变化时的漏光趋势图。
图5A示意性示出了在弯曲边边缘没有涂覆密封剂,仅仅在非弯曲边边缘涂覆密封剂的情况下,上曲面透光基板和下曲面透光基板的光 轴分布。
图5B示意性示出了在非弯曲边边缘没有涂覆密封剂,仅仅在弯曲边边缘涂覆密封剂的情况下,上曲面透光基板和下曲面透光基板的光轴分布。
图5C示意性示出了在弯曲边边缘没有涂覆密封剂,仅仅在非弯曲边边缘涂覆密封剂的情况下,曲面显示装置的漏光的模拟视图。
图5D示意性示出了在非弯曲边边缘没有涂覆密封剂,仅仅在弯曲边边缘涂覆密封剂的情况下,曲面显示装置的漏光的模拟视图。
图6A示意性示出了在固定第二密封剂宽度情况下,曲面显示装置的漏光随着第一密封剂宽度变化的趋势图。
图6B示意性示出了在固定第一密封剂宽度情况下,曲面显示装置的漏光随着第二密封剂宽度变化的趋势图。
图7示意性示出了曲面显示装置的漏光随着第一密封剂的宽度W1/第二密封剂的宽度W2的比例变化的趋势图。
图8A示意性示出了第一密封剂的宽度W1与第二密封剂的宽度W2的宽度比例W1/W2为2的情况下,曲面显示装置漏光的模拟视图。
图8B示意性示出了第一密封剂的宽度W1/与第二密封剂的宽度W2的宽度比例W1/W2为3的情况下,曲面显示装置漏光的模拟视图。
图8C示意性示出了第一密封剂的宽度W1与第二密封剂的宽度W2的宽度比例W1/W2为4的情况下,曲面显示装置漏光的模拟视图。
图8D示意性示出了第一密封剂的宽度W1与第二密封剂的宽度W2的宽度比例W1/W2为5的情况下,曲面显示装置漏光的模拟视图。
图8E示意性示出了第一密封剂的宽度W1与第二密封剂的宽度W2的宽度比例W1/W2为6的情况下,曲面显示装置漏光的模拟视图。
图9A示意性示出了制作曲面显示装置的方法的部分流程图。
图9B示意性示出了制作曲面显示装置的另一方法的部分流程图。
附图标记
2-上曲面透光基板;4-下曲面透光基板;6-密封剂的非弯曲边;8-密封剂的弯曲边;10-曲面显示装置;12-上玻璃基板;13-上玻璃基板的中部区域;14a-上玻璃基板的左上边角区域;14b-上玻璃基板的右上边角区域;16-下玻璃基板;17-下玻璃基板的中部区域;18a-下玻璃基板的左上边角区域;18b-下玻璃基板的右上边角区域。
具体实施方式
下面将结合全部附图详细地描述本发明的各个实施例。
正如在背景技术部分已经提到的,图1所示的现有技术的曲面显示装置中,上玻璃基板12中存在压应力分布,图2所示的现有技术的曲面显示装置中,下玻璃基板16中存在拉应力分布。为了克服现有技术的曲面显示装置中由于应力分布导致在边角区域存在严重的漏光问题,例如在上玻璃基板12的左上边角区域14a、右上边角区域14b以及下玻璃基板16的左上边角区域18a、右上边角区域18b存在严重的漏光问题,特提出本发明的构思。
图3中示意性示出了根据本发明一个实施例的曲面显示装置10,其可以包括:上曲面透光基板2;与上曲面透光基板2相对布置的下曲面透光基板4;位于上曲面透光基板2和下曲面透光基板4之间并且沿着上曲面透光基板2和下曲面透光基板4的边缘涂覆密封剂。在图3中示出了密封剂的非弯曲边6和密封剂的弯曲边8。在曲面显示装置中,通常可以认为曲面显示装置的短边为非弯曲边,曲面显示装置的长边为弯曲边。同样的,相应上曲面透光基板2、下曲面透光基板4、密封剂的短边为非弯曲边,上曲面透光基板2、下曲面透光基板4、密封剂的长边为弯曲边。之所以进行这样的区分,是因为在制作曲面显示装置的过程中以及最终制作完成的曲面显示装置中,基本上可以认为短边是非弯曲的,而长边具有一定的弯曲弧度。上述密封剂使得上曲面透光基板和下曲面透光基板粘附在一起,并且使得上曲面透光基板和下曲面透光基板的应力减小,同时改变了上曲面透光基板和下曲面透光基板的应力分布,并且改善了在暗态情况下的漏光。至于如何使得上曲面透光基板2和下曲面透光基板4的应力减小,同时改变上曲面透光基板2和下曲面透光基板4的应力分布还将在下面详细描述。
在本发明的说明书和权利要求书中,为了描述的方便,通常将沿着上曲面透光基板2和下曲面透光基板4的非弯曲边边缘布置的密封剂称为第一密封剂,将沿着上曲面透光基板2和下曲面透光基板4的弯曲边边缘布置的密封剂称为第二密封剂。相应的,将沿着上曲面透光基板2和下曲面透光基板4的非弯曲边边缘布置的密封剂的宽度称为第一密封剂的宽度,将沿着上曲面透光基板2和下曲面透光基板4的弯曲边边缘布置的第二密封剂的宽度称为第二密封剂的宽度。
还需要指出的是,此处所指的“第一密封剂”和“第二密封剂”是相同种类的密封剂,仅仅是根据位置上的不同进行不同的称谓,并不意味着“第一密封剂”和“第二密封剂”是两种不同类型或者种类的密封剂。优选的,所述第一密封剂和所述第二密封剂的材料是相同的。
图4示意性示出了在本发明的一个实施例中,第二密封剂宽度W2和第一密封剂宽度W1相同,即W1=W2,且同时变化时的漏光趋势图。根据图4所示的模拟趋势图可以知晓,随着第二密封剂宽度W2和第一密封剂宽度W1逐渐变宽,纵坐标所示的漏光量的比例L/L反而在逐渐增大。在本发明的各个附图中出现的漏光量的比例L/L是个比值的概念,不具有任何单位。随着第二密封剂宽度W2和第一密封剂宽度W1逐渐变窄,纵坐标所示的漏光量的比例L/L在逐渐减小。根据图4所示的漏光趋势图,可以知晓,在横坐标W1=W2=6时,纵坐标所示的漏光量的比例L/L约为0.99,甚至于接近于1,在横坐标W1=W2=4时,纵坐标所示的漏光量的比例L/L约为0.93,在横坐标W1=W2=1时,纵坐标所示的漏光量的比例L/L约为0.80。在图4的模拟结果的启示下,可以将位于上曲面透光基板2和下曲面透光基板4之间并且沿着上曲面透光基板2和下曲面透光基板4的边缘涂覆的密封剂宽度尽量减小,即第一密封剂的宽度和第二密封剂的宽度尽量减小。在较小的密封剂宽度的情况下,将会改善上曲面透光基板2和下曲面透光基板4中的应力分布,从而减小在暗态下的漏光量。
为了研究沿着非弯曲边6布置的密封剂和沿着弯曲边8布置的密封剂到底哪一个因素对于减小应力、改善应力分布、以及改善暗态下的漏光量影响更大,发明人进行了如下的模拟实验。图5A示意性示出了在弯曲边边缘没有涂覆密封剂,仅仅在非弯曲边边缘涂覆密封剂的情况下,上曲面透光基板2和下曲面透光基板4的光轴分布。基本上可以看出上曲面透光基板2和下曲面透光基板4的光轴是基本垂直的,这样就避免了在暗态下的漏光。图5C示意性示出了在弯曲边边缘没有涂覆密封剂,仅仅在非弯曲边边缘涂覆密封剂的情况下,曲面显示装置的漏光的模拟视图。根据图5C的模拟结果可以进一步表明,在弯曲边边缘没有涂覆密封剂,仅仅在非弯曲边边缘涂覆密封剂的情况下,存在较少的漏光量。图5C中存在较少的白色区域,这些白色区域表示 暗态下的漏光区域,黑色区域表示暗态下被阻挡光线的区域。在本领域中,通常认为白色区域越少或者说黑色区域越多,则意味着暗态下的漏光量越少,阻挡光线透过的效果越好。
图5B示意性示出了在非弯曲边边缘没有涂覆密封剂,仅仅在弯曲边边缘涂覆密封剂的情况下,上曲面透光基板2和下曲面透光基板4的光轴分布。可以看到上曲面透光基板2和下曲面透光基板4的光轴稍微接近于垂直,这样在暗态下会存在一定程度的漏光。根据图5D的模拟结果可以进一步表明,在非弯曲边边缘没有涂覆密封剂,仅仅在弯曲边边缘涂覆密封剂的情况下,存在较多的漏光量。与图5C相比,图5D中存在较多的白色区域,较少的黑色区域。这就意味着,图5C情况下的漏光量较少,图5D情况下的漏光量较多。
上面的图5A、5C和图5B、5D给出了在两种极端情况下,即在弯曲边边缘没有涂覆密封剂,仅仅在非弯曲边边缘涂覆密封剂的情况下(图5A、5C所示的),和在非弯曲边边缘没有涂覆密封剂,仅仅在弯曲边边缘涂覆密封剂的情况下(图5B、5D所示的),存在的漏光情况的描述。
图6A和6B描述在一般情况下,非弯曲边边缘涂覆的密封剂(第一密封剂)和弯曲边边缘涂覆的密封剂(第二密封剂)到底哪一个因素对于漏光量的影响更大。例如图6A示意性示出了在固定第二密封剂宽度W2情况下,即W2等于定值,曲面显示装置的漏光随着第一密封剂宽度W1变化的趋势图。图6B示意性示出了在固定第一密封剂宽度情况下,即W1等于定值,曲面显示装置的漏光随着第二密封剂宽度W2变化的趋势图。根据图6A所示的模拟结果,可以知晓在固定第二密封剂宽度W2情况下,随着第一密封剂宽度W1逐渐增大,暗态下的漏光量,即透过上曲面透光基板2和下曲面透光基板4的光量逐渐减小。这就意味在,在固定第二密封剂宽度W2情况下,增大第一密封剂宽度W1对于减小漏光量是有帮助的。根据图6B所示的模拟结果,可以知晓在固定第一密封剂宽度W1情况下,随着第二密封剂宽度W2逐渐增大,暗态下的漏光量逐渐增大。这就意味在,在固定第一密封剂宽度W1情况下,减小第二密封剂宽度W2对于减小漏光量是有帮助的。
根据上面的模拟分析结果,第一密封剂的宽度W1大于第二密封 剂的宽度W2。在这样的情况下,可以减小上曲面透光基板2和下曲面透光基板4中的应力,改善上曲面透光基板2和下曲面透光基板4中的应力分布,从而减小在暗态时的漏光量。
为了进一步研究第一密封剂的宽度W1与第二密封剂的宽度W2的比值W1/W2在什么范围内可以得到较好的效果,本发明的发明人做了进一步的模拟实验。图7示意性示出了曲面显示装置10的漏光随着第一密封剂的宽度W1/第二密封剂的宽度W2的比例变化的趋势图。根据图7所示的模拟结果可以知晓,随着第一密封剂的宽度W1/第二密封剂的宽度W2的比例逐渐增大,曲面显示装置10在暗态下的漏光量逐渐减小。例如,图7示出了在横坐标W1/W2为1时,纵坐标L/L的漏光量约为1;在横坐标W1/W2为1.5时,纵坐标L/L的漏光量约为0.92;在横坐标W1/W2为2时,纵坐标L/L的漏光量约为0.84;在横坐标W1/W2为3时,纵坐标L/L的漏光量约为0.80;在横坐标W1/W2为4时,纵坐标L/L的漏光量约为0.69;在横坐标W1/W2为6时,纵坐标L/L的漏光量为0.62。这就意味着,第一密封剂的宽度W1/第二密封剂的宽度W2的比值越大,暗态下的漏光量越小。在横坐标W1/W2小于1时,可以认为纵坐标L/L的漏光量仍然约为1。对于横坐标W1/W2大于6的情形,根据图7的模拟结果可知,此时的漏光量已经接近于W1/W2为6时对应的极限值,即可以认为在横坐标W1/W2大于6时,纵坐标L/L的漏光量仍然约为0.62。
图8A-图8E进一步示意性示出了第一密封剂的宽度W1/第二密封剂的宽度W2的比例分别为2,3,4,5,6情况下,曲面显示装置漏光的模拟视图。根据图8A-图8E所示的模拟结果,可以知晓在第一密封剂的宽度W1/第二密封剂的宽度W2的比例为2时,暗态下的漏光量最大,图8A中存在较多的白色区域,即较多的暗态下的漏光区域,较少的黑色区域,即较少的暗态下阻挡光线透过的区域。随着第一密封剂的宽度W1/第二密封剂的宽度W2的比例从2变为3,如图8A,8B所示的;从3变为4,如图8C所示的;从4变为5,如图8D所示的;从5变为6,如图8D所示的,可以知晓,图8A-图8E中的白色区域越来越少,即暗态下的漏光区域越来越少,黑色区域越来越多,即暗态下阻挡光线透过的区域越来越多。这就表明,随着第一密封剂的宽度W1/第二密封剂的宽度W2的比例从2变为3;从3变为4;从4变为5;从5 变为6,暗态下的漏光量逐渐减小,在第一密封剂的宽度W1/第二密封剂的宽度W2的比例为6时,暗态下的漏光量最小。因此,优选的,第一密封剂的宽度W1与第二密封剂的宽度W2的比值1<W1/W2≤6。
鉴于上面的描述可以知晓,在本发明中密封剂分布包含了至少两个含义。第一个含义是,在保持第一密封剂的宽度W1等于第二密封剂的宽度W2的情况下,尽量减小第一密封剂的宽度W1和第二密封剂的宽度W2,这种宽度分布的密封剂可以有效地减小上曲面透光基板2和下曲面透光基板4的应力,同时改变了上曲面透光基板2和下曲面透光基板4的应力分布状态。在这样的情况下,可以有效地减少在暗态下的漏光量。第二个含义是,在第一密封剂的宽度W1大于第二密封剂的宽度W2的情况下,选择合适的第一密封剂的宽度W1与第二密封剂的宽度W2的比值。这种宽度分布的密封剂同样可以有效地减小上曲面透光基板2和下曲面透光基板4的应力,同时改变了上曲面透光基板2和下曲面透光基板4的应力分布状态。在这样的情况下,也可以有效地减少在暗态下的漏光量。
在上面提到的第一个含义中,即在保持第一密封剂的宽度W1等于第二密封剂的宽度W2的情况下,尽量减小第一密封剂的宽度W1和第二密封剂的宽度W2,与现有技术中存在的第一密封剂的宽度和第二密封剂的宽度都较宽的情况相比,可以减小密封剂对于上曲面透光基板2和下曲面透光基板4的牵引力,即,同时减小在非弯曲边边缘和弯曲边边缘的牵引力,使得上曲面透光基板2和下曲面透光基板4更趋向于恢复到弯曲之前的状态,这样上曲面透光基板2和下曲面透光基板4的边角区域的光轴更加趋向于0°或者180°。在这样的情况下,可以有效地减小上曲面透光基板2和下曲面透光基板4的内部应力,同时改变上曲面透光基板2和下曲面透光基板4的应力分布状态,减少在暗态下的漏光量。
在上面提到的第二个含义中,即,在第一密封剂的宽度W1大于第二密封剂的宽度W2的情况下,选择合适的第一密封剂的宽度W1与第二密封剂的宽度W2的比值,与现有技术相比,增大第一密封剂的宽度W1,减小第二密封剂的宽度W2可以使得上曲面透光基板2和下曲面透光基板4在水平方面(一般认为垂直于非弯曲边边缘)上具有较大的牵引力,在垂直方向(一般认为垂直于弯曲边边缘)上具有 较小的牵引力,由于在水平方向的牵引力大于在垂直方向的牵引力,使得上曲面透光基板2和下曲面透光基板4中的应力分布特别是上曲面透光基板2和下曲面透光基板4的边角区域的应力分布的角度倾向于向水平方向倾斜,即趋向于0°或者180°。相对于背景技术中提到的现有技术中左上边角区域、右上边角区域的光轴处于接近30°或者接近-30°的水平,甚至于接近45°或者接近-45°的水平的情况来讲,本发明中边角区域的应力分布的角度稍微取向水平会使得边角区域的光轴小于30°或者小于-30°的水平,即,应力分布的角度或者光轴更加趋向于接近0°或者180°。在这样的情况下,可以有效地减小上曲面透光基板2和下曲面透光基板4的应力,同时改变了上曲面透光基板2和下曲面透光基板4的应力分布状态,有效地减少在暗态下的漏光量。
在本发明的一个实施例中,在制作液晶型的曲面显示装置的情况下,可以在上曲面透光基板2、下曲面透光基板4和密封剂(例如密封剂的非弯曲边6和密封剂的弯曲边8)包围的空间中包含液晶层(附图中未示出)。虽然,在本发明的附图中没有具体示出液晶层,但是本领域技术人员根据本发明的介绍,结合现有技术的液晶型曲面显示装置中液晶层的布置,是不难实现的。
备选的,上曲面透光基板2是彩色滤光器透光基板或者透明导电薄膜透光基板,下曲面透光基板4是薄膜晶体管透光基板。
备选的,曲面显示装置10还可以包括:位于与下曲面透光基板4相对的上曲面透光基板2另一侧上的第一偏振片,位于与上曲面透光基板2相对的下曲面透光基板4另一侧上的第二偏振片,其中第一偏振片与第二偏振片的偏振方向正交。虽然,在本发明的附图中没有具体示出第一偏振片与第二偏振片,但是本领域技术人员根据本发明的介绍,结合现有技术的曲面显示装置中第一偏振片与第二偏振片的布置,是不难实现的。在曲面显示装置10使用的过程中,由于第一偏振片与第二偏振片的偏振方向正交,这样确保了在暗态下经过第一偏振片、上曲面透光基板2、或者还经过液晶层的光线,在穿过上曲面透光基板2到达第二偏振片时,光线并不能穿过第二偏振片而被阻挡,这样有助于在暗态下实现较少的漏光量。
根据本发明的第二个方面,提供一种制作曲面显示装置的方法, 图9A示意性示出了制作曲面显示装置的方法步骤,其可以包括:步骤S32,在上曲面透光基板2和与上曲面透光基板2相对布置的下曲面透光基板4之间,沿着上曲面透光基板2和下曲面透光基板4的边缘涂覆具有密封剂,该密封剂包括位于上曲面透光基板2和下曲面透光基板4的非弯曲边边缘的第一密封剂和位于上曲面透光基板2和下曲面透光基板4的弯曲边边缘的第二密封剂,所述第一密封剂和第二密封剂将上曲面透光基板2和下曲面透光基板4粘附在一起,并且使得上曲面透光基板2和下曲面透光基板4的应力减小,同时改变上曲面透光基板2和下曲面透光基板4的应力分布。
备选的,涂覆密封剂的步骤可以包括:第一密封剂宽度W1大于第二密封剂宽度W2。
备选的,第一密封剂宽度W1大于沿第二密封剂宽度W2可以包括:步骤S34,在涂覆上曲面透光基板2和下曲面透光基板4的非弯曲边边缘时增大密封剂施加器喷嘴的压力,在涂覆上曲面透光基板2和下曲面透光基板4的弯曲边边缘时减小密封剂施加器喷嘴的压力。增大密封剂施加器喷嘴的压力可以使得密封剂喷嘴在单位时间内喷射更多的密封剂。减小密封剂施加器喷嘴的压力可以使得密封剂喷嘴在单位时间内喷射较少的密封剂。由于在单位施加内密封剂喷嘴喷射密封剂的数量不同,使得在涂覆上曲面透光基板2和下曲面透光基板4的非弯曲边边缘时具有较多的密封剂,在涂覆上曲面透光基板2和下曲面透光基板4的弯曲边边缘时具有较少的密封剂。在上曲面透光基板2和下曲面透光基板4的非弯曲边边缘和弯曲边边缘在压合的时候承受相同压力的情况下,较多的密封剂意味着上曲面透光基板2和下曲面透光基板4的非弯曲边边缘处密封剂较宽,较少的密封剂意味着上曲面透光基板2和下曲面透光基板4的弯曲边边缘处密封剂较窄。
可选的,其中步骤S32,涂覆密封剂还可以包括:步骤S36,在平行于上曲面透光基板2和下曲面透光基板4的非弯曲边边缘处密封剂施加器喷嘴喷射次数大于在平行于上曲面透光基板2和下曲面透光基板4的弯曲边边缘处密封剂施加器喷嘴喷射次数。在密封剂施加器喷嘴压力一致的情况下,在平行于上曲面透光基板2和下曲面透光基板4的非弯曲边边缘处密封剂施加器喷嘴多次喷射可以喷射较多的密封剂,这样使得上曲面透光基板2和下曲面透光基板4的非弯曲边边缘 处密封剂宽度较宽。在平行于上曲面透光基板2和下曲面透光基板4的弯曲边边缘处密封剂施加器喷嘴进行较少次数喷射可以喷射较少的密封剂,这样使得上曲面透光基板2和下曲面透光基板4的非弯曲边边缘处密封剂宽度较窄。
优选的,其中第一密封剂的宽度W1与第二密封剂的宽度W2的比值1<W1/W2≤6。
在制作液晶型的曲面显示装置的情况下,在沿着上曲面透光基板2和下曲面透光基板4的边缘涂覆密封剂之前,包括:在上曲面透光基板2和下曲面透光基板4之间布置液晶层。
备选的,其中上曲面透光基板2是彩色滤光器透光基板或者透明导电薄膜透光基板,下曲面透光基板4是薄膜晶体管透光基板。
根据本发明的第三个方面,提供一种电子设备,其可以包括上述的曲面显示装置或使用上述的制作曲面显示装置的方法制作的曲面显示装置。
虽然已经参考目前考虑到的实施例描述了本发明,但是应该理解本发明不限于所公开的实施例。相反,本发明旨在涵盖所附权利要求的精神和范围之内所包括的各种修改和等同布置。以下权利要求的范围符合最广泛解释,以便包含每个这样的修改及等同结构和功能。

Claims (15)

  1. 一种曲面显示装置,包括:
    上曲面透光基板;
    与所述上曲面透光基板相对布置的下曲面透光基板;
    位于所述上曲面透光基板和下曲面透光基板之间并且沿着所述上曲面透光基板和所述下曲面透光基板的边缘设置的密封剂,所述密封剂包括位于所述上曲面透光基板的非弯曲边边缘和所述下曲面透光基板的非弯曲边边缘的第一密封剂和位于所述上曲面透光基板的弯曲边边缘和所述下曲面透光基板的弯曲边边缘的第二密封剂,所述第一密封剂和所述第二密封剂使得所述上曲面透光基板和下曲面透光基板粘附在一起,并且使得所述上曲面透光基板和下曲面透光基板的应力减小,同时改变了所述上曲面透光基板和下曲面透光基板的应力分布。
  2. 根据权利要求1所述的曲面显示装置,其特征在于,所述第一密封剂和所述第二密封剂的材料是相同的。
  3. 根据权利要求1所述的曲面显示装置,其特征在于,所述第一密封剂的宽度W1大于所述第二密封剂的宽度W2。
  4. 根据权利要求3所述的曲面显示装置,其特征在于,所述第一密封剂的宽度W1与所述第二密封剂的宽度W2的比值1<W1/W2≤6。
  5. 根据权利要求1-4中任一项所述的曲面显示装置,其特征在于,在所述上曲面透光基板、下曲面透光基板和密封剂包围的空间中包含液晶层。
  6. 根据权利要求1-4中任一项所述的曲面显示装置,其特征在于,所述上曲面透光基板是彩色滤光器透光基板或者透明导电薄膜透光基板,所述下曲面透光基板是薄膜晶体管透光基板。
  7. 根据权利要求1-4中任一项所述的曲面显示装置,其特征在于,所述曲面显示装置还包括:
    位于与所述下曲面透光基板相对的所述上曲面透光基板另一侧上的第一偏振片,位于与所述上曲面透光基板相对的所述下曲面透光基板另一侧上的第二偏振片,其中所述第一偏振片与第二偏振片的偏振方向正交。
  8. 一种制作曲面显示装置的方法,包括步骤:
    在上曲面透光基板和与所述上曲面透光基板相对布置的下曲面透光基板之间,沿着所述上曲面透光基板和所述下曲面透光基板的边缘涂覆密封剂,所述密封剂包括位于所述上曲面透光基板的非弯曲边边缘和所述下曲面透光基板的非弯曲边边缘的第一密封剂和位于所述上曲面透光基板的弯曲边边缘和所述下曲面透光基板的弯曲边边缘的第二密封剂,所述密封剂将所述上曲面透光基板和下曲面透光基板粘附在一起,并且使得所述上曲面透光基板和下曲面透光基板的应力减小,同时改变所述上曲面透光基板和下曲面透光基板的应力分布。
  9. 根据权利要求8所述的制作曲面显示装置的方法,其中所述沿着所述上曲面透光基板和所述下曲面透光基板的边缘涂覆密封剂还包括:
    所述第一密封剂宽度W1大于所述第二密封剂宽度W2。
  10. 根据权利要求9所述的制作曲面显示装置的方法,其中所述第一密封剂宽度W1大于所述第二密封剂宽度W2包括:
    在涂覆所述上曲面透光基板和下曲面透光基板的非弯曲边边缘时增大密封剂施加器喷嘴的压力,在涂覆所述上曲面透光基板和下曲面透光基板的弯曲边边缘时减小密封剂施加器喷嘴的压力。
  11. 根据权利要求9所述的制作曲面显示装置的方法,其中所述涂覆密封剂包括:
    在平行于所述上曲面透光基板和下曲面透光基板的非弯曲边边缘处密封剂施加器喷嘴的喷射次数大于在平行于所述上曲面透光基板和下曲面透光基板的弯曲边边缘处密封剂施加器喷嘴的喷射次数。
  12. 根据权利要求8-11中任一项所述的制作曲面显示装置的方法,其中所述第一密封剂的宽度W1与所述第二密封剂的宽度W2的比值1<W1/W2≤6。
  13. 根据权利要求8-11中任一项所述的制作曲面显示装置的方法,在所述沿着上曲面透光基板和下曲面透光基板的边缘涂覆密封剂之前,包括:
    在所述上曲面透光基板和下曲面透光基板之间布置液晶层。
  14. 根据权利要求8-11中任一项所述的制作曲面显示装置的方法,其中所述上曲面透光基板是彩色滤光器透光基板或者透明导电薄膜透光基板,所述下曲面透光基板是薄膜晶体管透光基板。
  15. 一种电子设备,包括权利要求1-4中任一项所述的曲面显示装置或使用权利要求8-14中任一项所述的制作曲面显示装置的方法制作的曲面显示装置。
PCT/CN2016/071046 2015-07-02 2016-01-15 曲面显示装置、制作曲面显示装置的方法及其电子设备 WO2017000544A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16747857.7A EP3318923A4 (en) 2015-07-02 2016-01-15 Curved surface display device, method for manufacturing curved surface display device and electronic device thereof
US15/119,355 US10534226B2 (en) 2015-07-02 2016-01-15 Curved display device, method for manufacturing curved display device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510380524.2 2015-07-02
CN201510380524.2A CN104914612B (zh) 2015-07-02 2015-07-02 曲面显示装置、制作曲面显示装置的方法及其电子设备

Publications (1)

Publication Number Publication Date
WO2017000544A1 true WO2017000544A1 (zh) 2017-01-05

Family

ID=54083814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071046 WO2017000544A1 (zh) 2015-07-02 2016-01-15 曲面显示装置、制作曲面显示装置的方法及其电子设备

Country Status (4)

Country Link
US (1) US10534226B2 (zh)
EP (1) EP3318923A4 (zh)
CN (1) CN104914612B (zh)
WO (1) WO2017000544A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777678A (zh) * 2015-04-20 2015-07-15 京东方科技集团股份有限公司 一种曲面显示面板、显示装置
CN104914612B (zh) 2015-07-02 2017-12-08 京东方科技集团股份有限公司 曲面显示装置、制作曲面显示装置的方法及其电子设备
US20170299906A1 (en) * 2015-11-19 2017-10-19 Boe Technology Group Co., Ltd Curved display panel and fabrication method thereof, and related display apparatus
CN106125359B (zh) * 2016-06-29 2019-04-02 京东方科技集团股份有限公司 一种曲面显示面板的制作方法、曲面显示面板及显示装置
KR102481172B1 (ko) * 2017-12-07 2022-12-23 엘지디스플레이 주식회사 곡면형 액정표시장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178706A (ja) * 2005-12-28 2007-07-12 Seiko Epson Corp 電気光学装置及び電子機器
US20100231841A1 (en) * 2009-03-13 2010-09-16 Hitachi Displays, Ltd. Liquid crystal display device
JP2012185457A (ja) * 2011-03-08 2012-09-27 Technology Research Association For Advanced Display Materials 光学素子
CN104730773A (zh) * 2013-12-18 2015-06-24 三星显示有限公司 弯曲显示装置及其制造方法
CN104749824A (zh) * 2015-04-08 2015-07-01 京东方科技集团股份有限公司 一种曲面显示面板和曲面显示装置
CN104777678A (zh) * 2015-04-20 2015-07-15 京东方科技集团股份有限公司 一种曲面显示面板、显示装置
CN104914612A (zh) * 2015-07-02 2015-09-16 京东方科技集团股份有限公司 曲面显示装置、制作曲面显示装置的方法及其电子设备
CN105185239A (zh) * 2015-08-27 2015-12-23 京东方科技集团股份有限公司 可弯曲显示面板及其制作方法、可弯曲显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784001B2 (ja) * 2001-05-18 2011-09-28 コニカミノルタホールディングス株式会社 表示パネル及び該パネルを備えた曲面型表示装置
KR20070047569A (ko) 2005-11-02 2007-05-07 삼성전자주식회사 실란트 디스펜싱 장치와 이를 이용하여 제작된 액정 표시패널 및 제조 방법
JP2008076928A (ja) * 2006-09-25 2008-04-03 Citizen Holdings Co Ltd 液晶光学素子および光ピックアップ装置
JP4321612B2 (ja) * 2007-03-19 2009-08-26 ソニー株式会社 光学シート組合せ体、面発光装置および液晶表示装置
JP5179113B2 (ja) * 2007-08-09 2013-04-10 株式会社ジャパンディスプレイイースト 液晶表示装置
JP2010060585A (ja) * 2008-09-01 2010-03-18 Hitachi Displays Ltd 液晶表示装置
CN102707474B (zh) 2012-05-11 2013-07-24 京东方科技集团股份有限公司 一种弯曲液晶显示屏及其制造方法和设备
KR20140043968A (ko) * 2012-10-02 2014-04-14 삼성디스플레이 주식회사 곡면형 표시 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178706A (ja) * 2005-12-28 2007-07-12 Seiko Epson Corp 電気光学装置及び電子機器
US20100231841A1 (en) * 2009-03-13 2010-09-16 Hitachi Displays, Ltd. Liquid crystal display device
JP2012185457A (ja) * 2011-03-08 2012-09-27 Technology Research Association For Advanced Display Materials 光学素子
CN104730773A (zh) * 2013-12-18 2015-06-24 三星显示有限公司 弯曲显示装置及其制造方法
CN104749824A (zh) * 2015-04-08 2015-07-01 京东方科技集团股份有限公司 一种曲面显示面板和曲面显示装置
CN104777678A (zh) * 2015-04-20 2015-07-15 京东方科技集团股份有限公司 一种曲面显示面板、显示装置
CN104914612A (zh) * 2015-07-02 2015-09-16 京东方科技集团股份有限公司 曲面显示装置、制作曲面显示装置的方法及其电子设备
CN105185239A (zh) * 2015-08-27 2015-12-23 京东方科技集团股份有限公司 可弯曲显示面板及其制作方法、可弯曲显示装置

Also Published As

Publication number Publication date
CN104914612A (zh) 2015-09-16
EP3318923A4 (en) 2018-12-26
US20170192267A1 (en) 2017-07-06
US10534226B2 (en) 2020-01-14
EP3318923A1 (en) 2018-05-09
CN104914612B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
WO2017000544A1 (zh) 曲面显示装置、制作曲面显示装置的方法及其电子设备
US9188813B2 (en) Liquid crystal display panel and manufacturing method thereof
US7362404B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device for preventing defects in liquid crystal
US6657695B1 (en) Liquid crystal display wherein pixel electrode having openings and protrusions in the same substrate
US9523888B2 (en) Liquid crystal display substrate, liquid crystal display panel and liquid crystal display device
US9720150B2 (en) Color-film substrates and liquid crystal devices
US20090231524A1 (en) Display device, display device manufacturing method, substrate, and color filter substrate
WO2020062372A1 (zh) 一种显示面板的制作方法和显示面板
US20150146130A1 (en) Liquid Crystal Display Panel and Manufacturing Method for the Same
JP2001330837A (ja) 気密構造体とその製造方法およびそれを用いた液晶表示装置とその製造方法
WO2006013933A1 (ja) カラーフィルタ基板およびそれを備える液晶表示パネル
JP2000047189A (ja) 液晶表示素子
KR20120014507A (ko) 액정 표시 장치
JP3803510B2 (ja) 液晶表示パネル
WO2019047461A1 (zh) 液晶面板及其制作方法
US11156880B2 (en) Display panel and display device
WO2018148991A1 (zh) 液晶显示面板
JP2008158344A (ja) 液晶表示パネルの製造方法
KR20130025222A (ko) 액정표시장치
US10564344B2 (en) Display panel and method of manufacturing the same
CN110658654B (zh) 连成液晶面板以及液晶面板的制造方法
WO2020258595A1 (zh) 一种显示面板
JP4648169B2 (ja) 液晶表示装置
KR100744390B1 (ko) 액정표시장치
US12025885B2 (en) Display panel and manufacturing method thereof, and display device

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2016747857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119355

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16747857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016747857

Country of ref document: EP