WO2016209049A1 - 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정 - Google Patents

이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정 Download PDF

Info

Publication number
WO2016209049A1
WO2016209049A1 PCT/KR2016/006808 KR2016006808W WO2016209049A1 WO 2016209049 A1 WO2016209049 A1 WO 2016209049A1 KR 2016006808 W KR2016006808 W KR 2016006808W WO 2016209049 A1 WO2016209049 A1 WO 2016209049A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
reactor
conversion
carbonic anhydrase
exhaust gas
Prior art date
Application number
PCT/KR2016/006808
Other languages
English (en)
French (fr)
Inventor
김중배
김한솔
홍성길
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US15/738,620 priority Critical patent/US10981111B2/en
Priority claimed from KR1020160079587A external-priority patent/KR101871948B1/ko
Publication of WO2016209049A1 publication Critical patent/WO2016209049A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01001Carbonate dehydratase (4.2.1.1), i.e. carbonic anhydrase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/804Enzymatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the present invention relates to a carbon dioxide conversion reactor, and more specifically, back pressure due to the flue gas supplied by converting the carbon dioxide contained in the flue gas into a bicarbonate solution that can be used for useful applications and at the same time enables a quick conversion process.
  • the present invention relates to a carbon dioxide conversion reactor capable of preventing an increase and significantly reducing carbon dioxide in exhaust gas at high efficiency and conversion speed, a carbon dioxide conversion and collection series reactor including the same, and a carbon dioxide conversion process using the same.
  • Carbon dioxide capture and storage technology refers to a technology that collects carbon dioxide from a source such as a power plant before it goes to the atmosphere, and then transports and stores it in a stable form.
  • the carbon dioxide capture step consists of adsorption and desorption processes.
  • the adsorption process captures carbon dioxide from flue gas using an absorbent capable of strong physical or chemical bonds with carbon dioxide.
  • external energy is added to the absorbent bound to carbon dioxide to regenerate the absorbent and extract only pure carbon dioxide.
  • the present invention has been made to solve the above-described problems, the first problem to be solved by the present invention, by converting the carbon dioxide contained in the exhaust gas to a bicarbonate solution that can be utilized in useful applications, while enabling a fast conversion process
  • Another object of the present invention is to provide a carbon dioxide conversion reactor and a carbon dioxide conversion process using the same, which prevents an increase in back pressure due to the supplied flue gas and significantly reduces carbon dioxide in the flue gas at high efficiency and conversion speed.
  • the present invention provides a series reactor for carbon dioxide capture and conversion that can achieve the conversion and reduction of carbon dioxide through the carbon dioxide conversion reactor according to the present invention and at the same time prevent the occurrence of back pressure to stably capture and reduce carbon dioxide.
  • a series reactor for carbon dioxide capture and conversion that can achieve the conversion and reduction of carbon dioxide through the carbon dioxide conversion reactor according to the present invention and at the same time prevent the occurrence of back pressure to stably capture and reduce carbon dioxide.
  • the present invention has been made to solve the above-mentioned problems, the second problem to be solved by the present invention, while significantly reducing the concentration of carbon dioxide contained in the exhaust gas discharged to the atmosphere at the same time industrial useful by-products generated in the reduction process
  • the purpose of the present invention is to separately collect and utilize, and to reduce the load of the carbon dioxide conversion and collection process, and to provide a carbon dioxide conversion and collection series reactor and a carbon dioxide conversion and collection process using the same.
  • the gas supply unit is supplied with exhaust gas containing carbon dioxide;
  • An enzyme reaction part including a liquid filled in a portion of a conversion reactor and a structure including a carbonic anhydrase for a reaction for converting the supplied carbon dioxide into bicarbonate ions; It provides a carbon dioxide conversion reactor comprising a; and a gas discharge unit for discharging the exhaust gas containing the unreacted carbon dioxide in the enzyme reaction unit to the outside.
  • it may further comprise a bicarbonate aqueous solution for discharging the bicarbonate aqueous solution converted and dissolved in the enzyme reaction unit.
  • the carbonic anhydrase may include any one or more of wild type carbonic anhydrase and carbonic anhydrase variants.
  • the wild type carbonic anhydrase may include any one or more selected from the group consisting of ⁇ type, ⁇ type, ⁇ type, ⁇ type and recombinant carbonic anhydrase.
  • the gas supply unit and the gas outlet is disposed on the interface between the liquid and the gas inside the conversion reactor.
  • the structure may be located at the interface to promote the conversion of carbon dioxide.
  • the body portion including the carbonic anhydrase and may further include at least one floating body coupled to the body portion so that the body portion is located at the interface.
  • the carbonic anhydrase may be bound or accommodated on the body portion.
  • the body portion may include a flow path for allowing the liquid and carbon dioxide to contact the carbonic anhydrase.
  • the carbonic anhydrase may be provided in the form of any one or more of a plurality of non-bonded and aggregated enzyme aggregate and a plurality of cross-linked enzyme cross-linked complex.
  • the structure further comprises a body portion
  • the carbonic anhydrase further comprises a support is bonded on the support or supported in the support, the support is the body portion It can be combined or housed in a phase.
  • the support may include any one or more selected from the group consisting of polymer fibers, electrically conductive polymers, porous particles, spherical particles, nanoparticles, beads, carbon nanotubes, wires, pillars, graphene, fullerenes, and polydopamine. have.
  • the enzyme cross-linking complex further comprises a first support including a first functional group on the surface, the first carbonic anhydrase and directly binds to the first functional group and the And a second carbonic anhydrase crosslinked complex that binds to the first carbonic anhydrase and crosslinks adjacent carbonic anhydrases.
  • the enzyme cross-linking complex includes a second functional group on the surface, and the second binding to any one or more enzymes of the first carbonic anhydrase and the second carbonic anhydrase cross-linking complex and the second functional group It may further include a support.
  • it may further include any one or more of the bicarbonate solution reservoir and the bicarbonate solution utilization station so as to communicate with the bicarbonate solution discharge unit.
  • the gas supply unit is supplied with exhaust gas containing carbon dioxide;
  • a carbon dioxide conversion unit including a liquid filled in a portion of a conversion reactor to dissolve and convert the supplied carbon dioxide; It provides a carbon dioxide conversion reactor comprising a; and a gas discharge unit for discharging the exhaust gas containing the unreacted carbon dioxide in the carbon dioxide conversion unit to the outside.
  • the present invention is a gas supply unit is supplied with exhaust gas containing carbon dioxide;
  • a carbon dioxide conversion unit including a liquid and a carbonic anhydrase filled in a portion of a conversion reactor to dissolve and convert the supplied carbon dioxide; It provides a carbon dioxide conversion reactor comprising a; and a gas discharge unit for discharging the exhaust gas containing the unreacted carbon dioxide in the carbon dioxide conversion unit to the outside.
  • the present invention to solve the above-described first problem, (1) supplying the exhaust gas to the gas supply unit of the carbon dioxide conversion reactor according to the present invention; And (2) some of the carbon dioxide contained in the supplied flue gas is converted into bicarbonate ions, and the flue gas containing the remaining unreacted carbon dioxide provides a carbon dioxide conversion process discharged through the gas outlet.
  • the step (1) is a flue gas is supplied from the liquid top of the conversion reactor, the carbon dioxide in the supplied flue gas is converted in order to prevent the reactor back pressure increase due to the flue gas supplied to the conversion reactor
  • the conversion reaction to bicarbonate ions may be promoted through the carbonic anhydrase provided in the structure located at the interface between the liquid and the gas inside the reactor.
  • the present invention the conversion reactor according to the present invention; And a collection reactor connected to the conversion reactor and collecting the introduced carbon dioxide, wherein the exhaust gas containing carbon dioxide is supplied to the conversion reactor or the collection reactor, and after the carbon dioxide is converted or collected, the unreacted carbon dioxide is included. Flue gas is introduced into the collection reactor or the conversion reactor to provide a series reactor for carbon dioxide conversion and capture to capture or convert the unreacted carbon dioxide.
  • the collection reactor may include a carbon dioxide absorbent or a carbon dioxide separator.
  • the capture reactor is a carbon dioxide capture outlet for discharging a collection including any one or more of the combination and reaction bond between the carbon dioxide absorbent and carbon dioxide, and the carbon dioxide capture outlet It may further include a carbon dioxide desorber for separating and collecting carbon dioxide from the discharged discharge in communication with.
  • the present invention provides a conversion reactor including an enzymatic reaction unit including a liquid filled in a part of a conversion reactor and a carbonic anhydrase for a reaction for converting supplied carbon dioxide into bicarbonate ions; And a collection reactor in communication with the conversion reactor and collecting the supplied carbon dioxide.
  • the exhaust gas containing carbon dioxide is supplied to the conversion reactor or the collection reactor and the exhaust gas containing unreacted carbon dioxide is supplied to the collection reactor or conversion reactor after the carbon dioxide is converted or collected Unreacted carbon dioxide may be captured or converted.
  • the conversion reactor may further include a gas supply unit for supplying the exhaust gas and a gas discharge unit for discharging the exhaust gas containing the unreacted carbon dioxide from the enzyme reaction unit.
  • the carbonic anhydrase may include any one or more of wild type carbonic anhydrase and carbonic anhydrase variants.
  • the wild type carbonic anhydrase may include any one or more selected from the group consisting of ⁇ type, ⁇ type, ⁇ type, ⁇ type and recombinant carbonic anhydrase.
  • the carbonic anhydrase is any one or more of a free enzyme dispersed in a liquid phase, a plurality of non-aggregated enzyme aggregate and a plurality of cross-linked enzyme cross-linked complex It may be included in the form.
  • the carbonic anhydrase may be further provided with a support and then bound on the support or supported in the support.
  • the enzyme cross-linking complex further comprises a first support including a first functional group on the surface, the first carbonic anhydrase and directly binds to the first functional group and the And a second carbonic anhydrase crosslinked complex that binds to the first carbonic anhydrase and crosslinks adjacent carbonic anhydrases.
  • the enzyme cross-linking complex includes a second functional group on the surface, and the second binding to any one or more enzymes of the first carbonic anhydrase and the second carbonic anhydrase cross-linking complex and the second functional group It may further include a support.
  • the conversion reactor may further include a bicarbonate aqueous solution discharging unit for discharging the bicarbonate aqueous solution converted and dissolved in the enzyme reaction unit.
  • the capture reactor may comprise any one or more of a carbon dioxide absorbent and a carbon dioxide separator.
  • it may further include any one or more of the bicarbonate solution reservoir and the bicarbonate solution utilization station so as to communicate with the bicarbonate solution discharge unit.
  • the capture reactor may further include a carbon dioxide capture outlet for discharging a collection including any one or more of a combination and a reaction bond between the carbon dioxide absorbent and carbon dioxide.
  • it may further include a carbon dioxide desorber for separating and collecting carbon dioxide from the discharged collection in communication with the carbon dioxide capture outlet.
  • the conversion reactor comprising a liquid filled in a portion of the conversion reactor for the reaction for converting the supplied carbon dioxide into bicarbonate ion; And a collection reactor in communication with the conversion reactor and collecting the supplied carbon dioxide.
  • the present invention to solve the above-mentioned second problem, (A) supplying a flue gas containing carbon dioxide to the conversion reactor of the series reactor according to the present invention to convert the carbon dioxide into bicarbonate ions; And (B) supplying an exhaust gas containing unreacted carbon dioxide in the carbon dioxide supplied to a capture reactor to capture carbon dioxide.
  • the present invention comprises the steps of (a) supplying the exhaust gas containing carbon dioxide to the capture reactor of the series reactor according to any one of claims 1 to 12 to collect the carbon dioxide; And (b) supplying an exhaust gas containing uncollected carbon dioxide from the supplied carbon dioxide to a conversion reactor to convert carbon dioxide to bicarbonate ions, and converting and collecting carbon dioxide through a series reactor.
  • the step of collecting the converted bicarbonate ion in a conversion reactor And desorbing the collected carbon dioxide to collect carbon dioxide.
  • the process of separating the collected carbon dioxide may be carried out at a temperature of 70 ⁇ 130 °C.
  • the carbon dioxide conversion reactor converts the carbon dioxide contained in the exhaust gas into a useful by-product and at the same time enables a fast conversion process to prevent an increase in back pressure due to the supplied exhaust gas, and at a high efficiency and conversion speed. Carbon dioxide in the flue gas can be significantly reduced.
  • the carbon dioxide conversion reactor achieves the conversion and reduction of carbon dioxide and at the same time prevent the occurrence of back pressure can be applied as a series reactor that can stably capture and reduce carbon dioxide, carbon dioxide reduction process through the conversion and capture of carbon dioxide It is suitable to maximize the synergistic effect.
  • the serial reactor primarily converts high concentrations of carbon dioxide generated from the source very quickly, and thus, thermodynamic limitations in the conversion process as the collection process is performed on carbon dioxide that has not been converted while preventing back pressure increase. Due to this, unreacted carbon dioxide can be reduced through a carbon dioxide capture process, and since only the unreacted carbon dioxide is supplied to the capture process in the conversion process, it is remarkably effective in lowering the load of the capture process.
  • a high level of carbon dioxide reduction efficiency can be maintained even when using a relatively weak absorbent in the subsequent capture process, thereby regenerating the absorbent after capture and extracting carbon dioxide. The energy consumption required can be reduced.
  • by-products generated during carbon dioxide reduction can be utilized in various fields, thereby preventing environmental pollution through carbon dioxide reduction and at the same time gaining economic benefits of value added.
  • FIG. 1 is a schematic diagram of a carbon dioxide conversion reactor according to a preferred embodiment of the present invention.
  • FIGS. 2 and 3 are cross-sectional schematic diagrams of the carbonic anhydride enzyme assembly included in a preferred embodiment of the present invention.
  • FIG. 4 is a schematic plan view of a structure having a carbonic anhydrase complex included in a preferred embodiment of the present invention.
  • FIG. 5 is an exploded perspective view of a structure included in a preferred embodiment of the present invention.
  • 6 and 7 are schematic diagrams of a series reactor showing a conversion and collection process of carbon dioxide when the supply direction of the flue gas containing carbon dioxide is changed with respect to the series reactor according to the preferred embodiment of the present invention.
  • FIG. 7 and 8 are schematic diagrams of the series reactor showing the conversion and capture process of the carbon dioxide when the supply direction of the flue gas containing carbon dioxide is different for the series reactor according to a preferred embodiment of the present invention.
  • the carbon dioxide supplied as shown in FIG. 1 remains, and the reaction chamber 151 is empty so that the enzyme reaction unit 121 may be provided therein.
  • a gas supply unit 111 disposed at one side of the reaction chamber 151 to supply exhaust gas containing carbon dioxide to the inside, converting carbon dioxide from the supplied exhaust gas into bicarbonate ions, and promoting an enzyme reaction unit 121 to promote the same;
  • a bicarbonate aqueous solution discharging unit 131 including a gas discharge unit 141 for discharging the exhaust gas containing unreacted carbon dioxide to the outside in the enzyme reaction unit 121 and discharging the converted bicarbonate ion to the outside;
  • the bicarbonate solution reservoir 301 may be further connected to the bicarbonate solution discharge part 131.
  • the conversion reactor 101 serves to convert a high concentration of carbon dioxide contained in the flue gas into bicarbonate ions, such a carbon dioxide conversion process is more environmentally friendly than other methods of carbon dioxide reduction and / or conversion process, and industrial carbon dioxide It is very advantageous in economics and productivity because it can be added value by converting into bicarbonate ions available.
  • carbonic anhydrase can theoretically convert one million carbon dioxide molecules per second into bicarbonate ions, which is very suitable for the rapid conversion of carbon dioxide, which further prevents the increase in back pressure in the reactor. It is advantageous in that it does not require additional processes such as desorption of carbon dioxide separated and collected in exhaust gas.
  • the exhaust gas emitted from the carbon dioxide generating source such as a thermal power plant is supplied to the gas supply unit 111 of the conversion reactor 101.
  • the gas supply unit 111 may be disposed above the interface between the liquid 121b and the gas inside the conversion reactor 101. Exhaust gas containing carbon dioxide supplied through this is supplied from the upper portion of the liquid 121b without passing through the liquid 121b of the enzyme reaction unit 121 to be described later and discharged to the gas discharge port 141. It may have a fluid flow to be discharged back to the gas discharge port 141 located in the upper passage of the liquid 121b and the liquid upper portion.
  • the gas supply part 111 and the gas discharge part 141 are disposed in consideration of the height of the liquid 121b in the reaction chamber 151 to have such a fluid flow, the supplied exhaust gas can more easily stay and pass through the inside of the reactor. Therefore, there is an advantage that can significantly reduce the increase in back pressure generated by the resistance of the exhaust gas flow generated while passing through the liquid.
  • the carbon dioxide contained in the exhaust gas supplied to the gas supply unit 111 is converted into bicarbonate ions through the structure 121a and the liquid 121b including the carbonic anhydride aggregate included in the enzyme reaction unit 121. It may be, through this can have a carbon dioxide reduction effect.
  • the liquid 121b functions as a medium and / or a reactant for converting carbon dioxide into bicarbonate ions, and may be used without limitation in the case of a solvent (or solution) having no problem in dissolving the converted bicarbonate ions.
  • the solvent (or solution) may be water and / or conventional buffer, and as a non-limiting example of the buffer, 2-amino-2-hydroxymethyl-l, 3- Propanediol can be used.
  • the structure 121a includes a carbonic anhydrase that promotes conversion of carbon dioxide to bicarbonate.
  • the structure 121a may be disposed in a portion of the inside of the liquid 121b including the carbonic anhydrase or uniformly dispersed therein.
  • the structure 121a is a liquid to increase the carbon dioxide conversion rate through the carbonic anhydrase when the gas supply unit is disposed above the liquid 121b and the exhaust gas is supplied above the liquid to reduce the back pressure. It is good to be located at the interface of the gas.
  • the carbonic anhydrase can be used without limitation if it is a known enzyme having a function of promoting a reaction for converting carbon dioxide to bicarbonate ions, for example, among wild type carbonic anhydrase and carbonic anhydrase variants. It may include any one or more.
  • the wild-type carbonic anhydrase is usually at least one selected from the group consisting of ⁇ , ⁇ , ⁇ , ⁇ and ⁇ according to the enzyme, which can be present naturally in vivo, such as animals, plants or And / or mimics the enzymes present in vivo or artificially recombines the enzymes, or a combination of these and carbonic anhydrases present in vivo.
  • the artificially recombined carbonic anhydrase may be a known one, and the present invention does not specifically limit the amino acid sequence thereof.
  • the carbonic anhydrase variant is a modification of a part or all of the amino acid sequence of the naturally occurring carbonic anhydrase, which has the basic functions of carbonic anhydrase and is also equipped with a naturally occurring carbonic anhydrase.
  • the physical properties such as heat resistance that can not be improved and improved advantageously, the present invention does not specifically limit the amino acid sequence for this.
  • the carbonic anhydrase may be included in any one or more forms of free enzymes dispersed on a structure, a plurality of non-bonded and aggregated enzyme aggregates, and a plurality of enzyme cross-linked complexes.
  • carbonic anhydrase may be included in the structure with a support, or may be included in the structure without a support.
  • the support is responsible for binding or supporting the carbonic anhydrase, and serves as a foundation for accumulating the carbonic anhydrase, and may be responsible for protecting the carbonic anhydrase from external force.
  • the carbonic anhydrase may be responsible for the function of being dispersed and distributed throughout the structure while maintaining the form stably.
  • the material of the support is not particularly limited as long as it supports a normal supporting function and does not inhibit or inhibit enzyme activity.
  • the shape of the support is not particularly limited, such as bead, fiber, and plate.
  • the support may be any one or more selected from the group consisting of polymer fibers, electrically conductive polymers, porous particles, spherical particles, nanoparticles, beads, carbon nanotubes, wires, pillars, graphene, fullerenes, and polydopamine. have.
  • the size may be designed differently according to the specific structure and shape of the conversion reactor, so that the present invention is not particularly limited thereto.
  • the bond is a physical bond (ex. Adsorption) of the carbonic anhydrases and / or a chemical bond of the carbonic anhydrase through a specific functional group provided on the support (ex. Ionic bonds, covalent bonds, etc.).
  • a specific functional group provided on the support (ex. Ionic bonds, covalent bonds, etc.).
  • it may be attached on the support by an adhesive substance based on a catechol group such as polydopamine, polynorepinephrine.
  • the carbonic anhydrase may be provided in pores or cavities included therein, and preferably, may be provided by forming an aggregate or a crosslinked complex.
  • the supported carbonic anhydrase is bound to the inner surface of the support of the pores or cavities or can be accommodated in an unbound state, but the present invention is not limited thereto.
  • the optimum conditions for the reaction of converting carbon dioxide to bicarbonate ions and the optimum conditions for maintaining the enzyme activity of the carbonic anhydrase may be different.
  • the environment in the conversion reactor may be different from that of the carbonic anhydrase. Enzyme activity can be difficult to maintain.
  • the carbonic anhydrase provided in the enzyme reaction unit may be in the form of an enzyme crosslinked complex, and specifically, as illustrated in FIG. 2, the enzyme crosslinked complex 1000 may include a first support including a first functional group 1001 on the surface thereof.
  • first carbonated anhydrase 1100 and the first carbonated anhydrase 1100 fixed to the first functional group 1001, and crosslinked adjacent carbonic anhydrases. It may be implemented including two second carbonic anhydrase cross-linked complex (1210, 1211, 1212, 1213).
  • the functional group 1001 provided on the surface of the support 1010 may be used without limitation in the case of a functional group capable of fixing the first carbonic anhydrase 1100.
  • a carboxyl group, an amine group, an imine group, an epoxy group, or a hydride may be used. It may be any one or more selected from the group consisting of a hydroxy group, an aldehyde group, a carbonyl group, an ester group, a methoxy group, an ethoxy group, a peroxy group, an ether group, an acetal group, a sulfide group, a phosphate group and an iodine group, preferably a carboxyl group and It may be any one or more of amine groups.
  • the enzyme activity is excellent for a long time even at temperature and pH conditions that may be unsuitable for maintaining / expressing the carbonic anhydrase activity. There is an advantage that can be expressed stably during the period.
  • the carbonic anhydrase crosslinked complex 1000 as shown in FIG. 2 may be prepared by the same method as in Example 1 to be described later.
  • the carbonic anhydride as shown in FIG. Enzyme crosslinking complexes can be prepared, but when a precipitation agent is added, carbonic anhydrase crosslinked complexes of carbonic anhydrase can be prepared more densely.
  • the manufacturing method of the carbonic anhydrase crosslinked complex as shown in FIG. 2 is not limited to Example 1, and Korean Patent Publication No. 10-2011-0128182, 10-2011-0128134 by the inventor of the present invention.
  • the production method disclosed in US Pat. No. 10-2013-0127916 or the like may be incorporated by reference.
  • the amount of enzyme bound to the complex is required at the same time the excellent binding force that the enzyme may not fall from the complex due to external force or the like.
  • the carbonic anhydrase crosslinked complex 2000 has a second functional group 2301 on the surface in addition to the first support 2010 having the first functional group 2001 on the surface. And a second support 2300 having 2302,
  • the first carbonic anhydrase 2100 and the second carbonic anhydrase crosslinked complexes 2211, 2212, and 2213 may bind to the second support 2300 through the second functional group.
  • the second carbonic anhydrase cross-linked complex may be bound between the enzymes with a stronger binding force, and each of the second supports 2300 included in plurality As these enzymes can be clustered to become covalently bound points, a greater amount of enzymes can be clustered to be included in the complex, which may be more advantageous for expressing markedly enhanced enzymatic activity and stable long-term enzymatic activity.
  • the second support 2300 is the same as the description of the above-described support (first support), the first support may be the same or different materials, the shape, size may be the same or different, etc.
  • the second functional group may also be the same as the functional group described in the above description, and the first functional group may be the same as or different from the second functional group.
  • the second support 2300 of FIG. 3 may be a magnetic support and in this case, the bicarbonate ion dissolved liquid 120b converted in the conversion reactor 100 may be discharged through the bicarbonate outlet 130.
  • the carbonic anhydrase crosslinked complex 2000 according to FIG. 3 may be prepared by the manufacturing method according to Example 2, which will be described later. However, like the carbonic anhydride complex according to FIG. It is also possible to implement a complex such as 3, however, by the addition of a precipitation agent it is possible to implement a complex with a higher density of enzymes, through which there is an advantage that can express more improved physical properties.
  • the method of manufacturing the carbonic anhydrase crosslinked complex as shown in FIG. 3 is not limited to Example 2, and Korean Patent Publication Nos. 10-2011-0128182, 10-2011-0128134, The manufacturing method disclosed in 10-2013-0127916 et al. May be incorporated by reference.
  • Carbonic anhydrase supported on the support or on the support may be provided in the enzyme reaction unit through the support is bound or accommodated on the structure.
  • the bond may be a bond through a physical and / or chemical bond or an adhesive material, and the present invention is not particularly limited thereto.
  • the carbonic anhydrase may be provided in the structure without a support, which may be included through the coupling or received on the body portion when the structure to be described later includes a body portion.
  • the bond may be immobilized through physical bonding (ex. Adsorption) of the carbonic anhydrases and / or chemical bonding of the carbonic anhydrase (eg, ionic bonds, covalent bonds, etc.) through specific functional groups provided in the body portion. have.
  • it may be attached on the body by an adhesive material based on a catechol group (catechol), such as polydopamine, polynorepinephrine (polynorepinephrine).
  • the carbonic anhydrase may be provided in pores or cavities included therein, and preferably, may be provided by forming an aggregate or a crosslinked complex.
  • the supported carbonic anhydrase is bound to the inner surface of the body portion of the pores or cavities or can be accommodated in an unbound state, but the present invention is not limited thereto.
  • the fluid flow supplied and passed through the upper portion of the liquid 121b interface in the reaction chamber 151 further shortens the exhaust gas residence time in the reaction chamber 151.
  • the structure 121a having a carbonic anhydrase may be disposed on the liquid-gas interface as shown in FIG. 1, and thereby more actively converting at the interface where the carbon dioxide conversion reaction occurs.
  • the reaction can be promoted, and eventually an increase in carbon dioxide conversion rate, an increase in carbon dioxide reduction efficiency, and a back pressure generation or increase can be minimized or prevented.
  • the structure 121a may be fixed to the reaction chamber 151 side of the interface height.
  • the reaction chamber 151 of the liquid 121b may be fixed.
  • the structure 121a may be designed to be suspended in the liquid phase as there is a difficulty of keeping the height constant at all times.
  • the structure 1 is coupled to the body portion 10 and the body portion 10 including the carbonic anhydrase cross-linked complex 1000, so that the body portion 10 is connected to the body portion 10. It may be implemented to include at least one floating portion (31, 35) to float on the liquid (121b).
  • the first body 11 and the second body 21 may be arranged side by side in the vertical direction and each may be a lattice-shaped planar structure.
  • the second body 21 may be disposed adjacent to the surface of the liquid. In one example, the second body 21 may be in contact with the liquid and submerged in liquid or floating on the surface of the liquid.
  • first body 11 and the second body 21 are separated into a single structure and arranged side by side.
  • first body 11 and the second body 21 are not limited thereto, and the first body and the second body may be integrally formed.
  • protrusions 15 and 25 may be formed at both ends of the body portion 10 to be coupled to the floating portions 31 and 35.
  • the protrusions 15 and 25 of the body portion 10 are inserted into the coupling grooves 33a and 37b of the floating portions 31 and 35, but are not limited thereto.
  • the body portion 10, that is, the first body 11 and the second body 21 is acrylonitrile-butadiene-styrene, polythiophene, polylactic acid, polyvinyl alcohol, polycaprolactam, poly Caprolactone, polylactic-co-glycolic acid, polyacrylonitrile, polyester, polyethylene, polyethyleneimine, polypropylene oxide, polyurethane, polyglycolic acid, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polydimethylsiloxane , Polystyrene-co-maleic anhydride, Teflon, collagen, nylon, cellulose, chitosan, glass, gold, silver, aluminum, iron, copper and silicon formed of at least one carbonic anhydrase crosslinked complex (1000) It can be coupled directly to the first body and the second body.
  • first sub-fluid 31 of the floating portion (31, 35) can be coupled to one end of the body portion 10, for example, the left end with reference to Figure 5, the second floating body 35 The other end of the body portion, for example referring to Figure 5 may be coupled to the right end.
  • the first floating body 31 and the second floating body 35 may be formed in a rectangular parallelepiped shape to fill air therein. This allows the structure 1 according to an embodiment of the present invention can be suspended in the liquid phase.
  • the first float 31 and the second float 35 may be formed in any form as long as the material is positioned on the liquid.
  • protrusions 33 and 37 may be formed in a rectangular parallelepiped shape in each of the first floating body 31 and the second floating body 35.
  • the protrusions 33 and 37 are formed on one surface of the first floating body 31 coupled to the body portion 10, for example, the right side or the left surface of the second floating body 35 coupled to the body portion 10. Can be.
  • the protrusions 33 and 37 may include coupling grooves 33a and 37b to which the protrusions 15 and 25 of the body 10 are inserted and fitted.
  • the coupling grooves 33a and 37b may be formed to correspond to the protrusions to be fitted to the protrusions 15 and 25.
  • the first float 31 and the second float 35 are acrylonitrile-butadiene-styrene, polythiophene, polylactic acid, polyvinyl alcohol, polycaprolactam , Polycaprolactone, polylactic-co-glycolic acid, polyacrylonitrile, polyester, polyethylene, polyethyleneimine, polypropylene oxide, polyurethane, polyglycolic acid, polyethylene terephthalate, polymethyl methacrylate, polystyrene, poly It may be formed of at least one of dimethylsiloxane, polystyrene-co-maleic anhydride, Teflon, collagen, nylon, cellulose, chitosan, glass, gold, silver, aluminum, iron, copper and silicon.
  • the carbonic anhydrase crosslinked complex 1000 is accommodated between the first body 11 and the second body 21 constituting the body portion 10 as shown in FIGS. 4 and 5 or the body portion 10. Can be coupled to a phase.
  • the bonding may be performed by using an adhesive material on the body 10, physical bonding (ex. Adsorption), and / or chemical bonding (eg, ionic bonding, covalent bonding, etc.) through a functional group provided in the body 10. ) Can only be physically accommodated or unbound.
  • the portion bonded to the body portion 10 in the carbonic anhydrase crosslinked complex 1000 may be a carbonic anhydrase and / or a support further provided.
  • the body portion 10 may include a flow path to allow the carbon dioxide and the liquid to be in contact with the carbonic anhydrase complex 1000, for example, the body portion in the mesh shape as shown in Figs. Multiple flow paths in the grating may be formed.
  • the conversion reactor 101 may discharge the bicarbonate solution in which the converted bicarbonate ions are dissolved through the bicarbonate aqueous solution discharging unit 130, and the discharged bicarbonate ion is the bicarbonate aqueous solution discharging unit 131 of the conversion reactor.
  • the aqueous solution of bicarbonate solution may be converted and / or synthesized bicarbonate ions into carbonates, microorganism culture, metal cation removal, purification of radioactive material, etc., but is not limited thereto.
  • the conversion reactor according to another embodiment of the present invention is implemented by including a liquid filled in a portion of the conversion reactor for the reaction for converting the supplied carbon dioxide to bicarbonate ions different from the above-described FIG.
  • the conversion reactor includes a gas supply unit to which the exhaust gas containing carbon dioxide is supplied; A carbon dioxide conversion unit including a liquid filled in a portion of a conversion reactor to dissolve and convert the supplied carbon dioxide; And a gas discharge unit for discharging the exhaust gas containing the unreacted carbon dioxide from the carbon dioxide conversion unit to the outside.
  • the conversion reactor according to another embodiment of the present invention is implemented by further comprising a carbonic anhydrase, specifically, the conversion reactor is a gas supply unit supplied with exhaust gas containing carbon dioxide; An enzymatic reaction unit including a liquid filled in a portion of the conversion reactor and a carbonic anhydrase for a reaction for converting the supplied carbon dioxide into bicarbonate ions; And a gas discharge unit for discharging the exhaust gas containing the unreacted carbon dioxide from the enzyme reaction unit to the outside.
  • Step (2) in the conversion reactor may preferably be carried out at pH 7.5 ⁇ 8.5, temperature 25 ⁇ 45 °C more advantageous.
  • the exhaust gas in order to prevent the reactor back pressure increase due to the exhaust gas supplied to the conversion reactor, the exhaust gas is supplied from the liquid upper part of the conversion reactor, and the carbon dioxide in the supplied exhaust gas is an interface between the liquid and the gas inside the conversion reactor. Conversion reaction to bicarbonate ions can be promoted through the carbonic anhydrase provided in the structure located in the structure.
  • the present invention includes a series reactor for converting and collecting carbon dioxide, including the conversion reactor described above, and as the series reactor includes a collection reactor, it is possible to achieve a further increased carbon dioxide reduction efficiency and a back pressure increase suppression effect. have.
  • the carbon dioxide conversion and collection series reactor is a conversion reactor 101 and a collection reactor 201 communicated with each other so that carbon dioxide flows from one side to the other as shown in FIGS. 6 and 7.
  • a carbon dioxide desorber 401 for separating and collecting the carbon dioxide collected in the bicarbonate solution reservoir 301 and the collection reactor 201 for collecting the bicarbonate ions converted through the conversion reactor 201. can do.
  • a series reactor having a flow of flue gas supplied as shown in FIGS. 6 and 7 has a high flow rate of flue gas supplied thereto, and thus a back pressure applied to the reactor, and a carbon dioxide conversion / capture capacity of the reactor itself.
  • the back pressure on the reactor can be significantly reduced, and the carbon dioxide reduction and conversion efficiency are reduced. In this case, a more enhanced effect can be obtained.
  • a conventional carbon dioxide abatement apparatus reduces carbon dioxide by using an absorbent or a separator, and the absorbent or separator requires a certain time for collecting carbon dioxide in exhaust gas due to its own efficiency, and in addition, the separator uses current technology.
  • the separator uses current technology.
  • a satisfactory efficiency for separating gases such as carbon dioxide and other nitrogens from each other in development level is not expressed. Accordingly, in order to capture the entire amount of carbon dioxide contained in the exhaust gas, it is required not only to use an absorbent or a separation membrane having a high collection efficiency but also to retain the exhaust gas for a predetermined time or more in the reactor.
  • the conversion reactor 101 and the collection reactor 201 according to the present invention are connected in series, and the supplied exhaust gas is passed through the conversion reactor 101 or the collection reactor 201 to the collection reactor 201 or the conversion.
  • the carbon dioxide reduction efficiency can be greatly improved, and a reflective effect can be obtained to extend the residence time of the flue gas remaining in the series reactor, and the flue gas discharged through the reactor is produced in a large amount. Even if the supply is fast, it is possible to achieve the desired conversion / reduction efficiency and to prevent the increase of the back pressure of the reactor at the same time, it is possible to prevent the process load generated by having any one of these.
  • process load reduction can be free from the limitation that the carbon dioxide converting power of carbonic anhydrase and / or the carbon dioxide absorbent used in the carbon dioxide conversion and / or capture process must satisfy a certain level or more. It is very advantageous in terms of cost reduction.
  • the conversion process of carbon dioxide through the conversion reactor 101 can produce by-products that can be utilized for various distribution as well as reduction of carbon dioxide in the exhaust gas, thereby preventing environmental pollution and simultaneously obtaining economic benefits of value added.
  • the carbon dioxide in the exhaust gas is primarily reduced through the conversion reactor 101. 201) can maintain high levels of CO2 reduction efficiency because the exhaust gas discharged through the serial reactor contains only very low concentrations of carbon dioxide, even though it uses relatively weak absorbents. As less energy is required to produce carbon dioxide, there is less concern about generating energy to separate carbon dioxide and consequently the additional emission of carbon dioxide.
  • the series reactor as shown in FIG. 6 can achieve the desired level of carbon dioxide conversion and reduction, even though the collection efficiency in the collection reactor is relatively low, compared to the series reactor as shown in FIG. As energy can be consumed it can be advantageous both economically and environmentally.
  • the carbon dioxide in the flue gas is very high, so as the carbon dioxide capture process is very heavy, the amount of carbon dioxide emitted as the flue gas is increased and the amount of carbon dioxide emitted in the flue gas is increased to reduce the amount of carbon dioxide in the flue gas. It can be difficult.
  • Flue gas containing carbon dioxide may be first supplied to the conversion reactor 101 to convert carbon dioxide into bicarbonate ions and to reduce carbon dioxide at the same time as producing useful byproducts. Description of the conversion reactor 101 is the same as described above and will be omitted.
  • the exhaust gas containing the unreacted carbon dioxide in the liquid or enzyme reaction unit 121 of the conversion reactor 101 may be supplied to the collection reactor 201 through the gas discharge unit 141.
  • the collection reactor 201 serves to capture unreacted carbon dioxide in the conversion reactor 101.
  • the exhaust gas containing carbon dioxide is supplied into the reaction chamber 231 of the collection reactor 201 through the gas discharge unit 141 of the conversion reactor 101 described above, the supplied carbon dioxide is collected in the reactor and is not collected.
  • the exhaust gas containing carbon dioxide may then be discharged to the outside through the gas outlet 221 of the collection reactor 201.
  • the capture reactor 201 may separate and collect carbon dioxide through a carbon dioxide separator and / or carbon dioxide through an absorbent.
  • the carbon dioxide separator may be a conventional carbon dioxide separator, a carbon dioxide separator known in the art, such as a specific material and structure, may be used without limitation.
  • the material of the carbon dioxide separator may be 6FDA-based polyimide, Cardo-type polyimide, polysulfone, cellulose acetate, etc. having excellent separation properties of CO 2 / N 2 as organic polymer.
  • the specific structure may be a structure including a porous inorganic membrane coated on a porous steel or ceramic support or a polymer membrane structure having a permeation selectivity by a glassy polymer or a rubbery polymer, but is not limited thereto.
  • the separator when the separator is the porous inorganic membrane, it may be classified into Knudsen diffusion according to molecular weight, surface diffusion by surface attraction, capillary condensation, and molecular sieve mechanism according to molecular size, but is not limited thereto. Therefore, an appropriate separator can be selected and used.
  • the carbon dioxide absorbent may be a conventional carbon dioxide absorbent, and specifically, may include any one or more of a dry absorbent and a wet absorbent.
  • the dry absorbent may include, for example, a solid amine, an alkali metal salt, an alkaline earth metal salt, a zeolite, a metal organic structure, or the like.
  • the wet absorbent may be a conventional wet absorbent, preferably an amine-based aqueous solution, monoethanolamine, diethanolamine, dimethylethanolamine, diethylethanolamine, dimethylglycine, N-methyldiethanolamine , 2-amino-2methyl-1-propanol, 2-amino-2hydroxymethyl-1,3-propanediol, piperidine, piperazine, potassium carbonate, sodium carbonate, ammonia and ammonium carbonate It may include any one selected.
  • amine-based aqueous solution monoethanolamine, diethanolamine, dimethylethanolamine, diethylethanolamine, dimethylglycine, N-methyldiethanolamine , 2-amino-2methyl-1-propanol, 2-amino-2hydroxymethyl-1,3-propanediol, piperidine, piperazine, potassium carbonate, sodium carbonate, ammonia and ammonium carbonate It may include any one selected.
  • the capture reactor may further include a carbonic anhydrase crosslinked complex when it includes a carbon dioxide absorbent, preferably a wet absorbent.
  • a carbon dioxide absorbent preferably a wet absorbent.
  • the capture efficiency of carbon dioxide may be further improved, and the capture speed may be further increased.
  • the carbon dioxide capture environment of the capture reactor is an alkaline condition of pH 9 ⁇ 12, the temperature may be 40 ⁇ 60 °C, under such conditions may cause a degeneration of carbonic anhydrase can significantly lower the enzyme activity. .
  • the carbonic anhydrase may be different from the carbonic anhydrase included in the conversion reactor in order to stably express excellent enzymatic activity, and preferably, crosslinking between carbonic anhydrases as shown in FIGS. 3 and / or 4. Integrated carbonic anhydrase crosslinked complexes may be advantageous.
  • the collection including any one or more of the combined carbon dioxide absorbent and the carbon dioxide absorbed and reacted binder is discharged through the discharge outlet.
  • the carbon dioxide is supplied to the desorption unit 401 for separating and collecting carbon dioxide
  • the remaining amount of exhaust gas other than the collected carbon dioxide in the exhaust gas containing carbon dioxide supplied from the conversion reactor 101 is the final atmosphere through the exhaust gas discharge unit 221.
  • the carbon dioxide may be discharged to the gas supply unit 111 of the conversion reactor 101 or may be repeatedly performed.
  • the desorber 401 may include a chamber 421 for storing the supplied collection material and the separated carbon dioxide, and an energy supply unit 411 for generating energy, for example, heat, which is generated during the carbon dioxide separation process.
  • Energy supply unit 411 for generating energy, for example, heat, which is generated during the carbon dioxide separation process.
  • Carbon dioxide discharge unit 431 for discharging the carbon dioxide can be provided.
  • the applied heat may be 40 to 60 ° C., but is not limited thereto, and may be changed according to the type of absorbent of carbon dioxide used.
  • the series reactor according to the present invention described above is a gas supply unit 111 in the conversion reactor 101 as shown in Figure 6 in order to generate a flow of different exhaust gas as shown in Figures 6 and 7 through the same series reactor
  • the collection reactor 201 may also be implemented by employing known methods and configurations such that the gas discharge unit 221 in FIG. 6 functions as the gas supply unit 221 in FIG. 7. have.
  • both the conversion reactor and the collection reactor may each include a gas supply unit through which direct flue gas may be introduced, and each gas supply unit may be implemented as an open / close type, and when one side is opened, the other side In this closed manner the carbon dioxide conversion and capture process can be effected.
  • a reactor in which flue gas is first introduced may be selected in consideration of the amount of flue gas supplied, the concentration of carbon dioxide, and the degree of need for bicarbonate ion, and in this case, the flue gas is directly introduced into the selected reactor and the remaining reactors are not selected.
  • the gas supply unit may be closed to prevent direct inflow of the exhaust gas.
  • the opening or closing of the gas supply unit provided in each of these may be changed in consideration of the amount of exhaust gas remaining in the reactor even in the middle of the conversion and collection process occurs after the exhaust gas is supplied to the series reactor.
  • the series reactor according to another embodiment according to the present invention is a conversion reactor (100, 100 ') and a capture reactor (200, 200') connected to each other so that carbon dioxide can flow from one side to the other as shown in FIGS. And a carbon dioxide desorber (400,400 ') for separating and collecting the carbon dioxide collected in the bicarbonate storage (300,300') and the collection reactor (200,200 ') for collecting the bicarbonate ions converted through the conversion reactor (100,100'). ) May be further included.
  • the exhaust gas containing carbon dioxide in the series reactor as shown in FIG. 8 is supplied to the conversion reactor 100 through the gas supply unit 110 and then the enzyme reaction unit 120 After the carbon dioxide is converted, the exhaust gas containing the unreacted carbon dioxide is supplied to the collection reactor 200 through the gas outlet 140 of the conversion reactor 100 to collect the unreacted carbon dioxide and collect the uncollected carbon dioxide. Exhaust gas including the exhaust gas may be discharged through the gas outlet 220 of the collection reactor 200.
  • the exhaust gas including carbon dioxide is supplied through the gas supply unit 220 ′ of the collection reactor 200 ′ and carbon dioxide is collected, and the uncollected carbon dioxide forms the gas supply unit 110 ′.
  • the carbon dioxide is converted, and the exhaust gas containing unreacted carbon dioxide is discharged through the gas outlet 140 'of the conversion reactor 100'. Can be.
  • the series reactor as shown in FIG. 8 achieves a desired level of carbon dioxide conversion and reduction even though the collection efficiency in the capture reactor is relatively low compared to the series reactor as shown in FIG. Can be consumed and thus advantageous in economic and environmental aspects.
  • the series reactor according to another embodiment according to the present invention as shown in Figs. 8 and 9 is different from the series reactor and carbon dioxide conversion reactor as in Fig. 6 described above, the rest of the configuration is the same according to the series according to Figs. Description of the reactor will be described mainly on the difference from the series reactor according to FIG. 6, and will be described with reference to FIG.
  • the conversion reactor 100 serves to convert a high concentration of carbon dioxide contained in the flue gas into bicarbonate ions, the conversion of such carbon dioxide has a primary reduction effect of the supplied carbon dioxide.
  • Such a carbon dioxide conversion process is more environmentally friendly than other carbon dioxide reduction and / or conversion processes, and is very advantageous in economics and productivity because it can generate added value by converting carbon dioxide into industrially available bicarbonate ions.
  • carbonic anhydrase can theoretically convert one million carbon dioxide molecules per second into bicarbonate ions, which is very suitable for the rapid conversion of carbon dioxide, which further prevents the increase in back pressure in the reactor. And, there is an advantage that does not require additional processes such as desorption of carbon dioxide.
  • the enzyme reaction unit 120 For the reaction for converting the supplied carbon dioxide into bicarbonate ions provided with an enzymatic reaction unit 120 including a liquid filled in a portion of the conversion reactor and the carbonic anhydrase to promote the conversion reaction, the enzyme reaction unit 120 Among the carbon dioxide in the exhaust gas supplied into the conversion reactor 100 through the reaction chamber 150, the gas supply unit 110 is supplied with the exhaust gas containing carbon dioxide, the gas supply unit 110 so as to have a It may include a gas outlet 140 for discharging unreacted carbon dioxide and exhaust gas, and a bicarbonate aqueous solution outlet 130 for discharging an aqueous solution in which bicarbonate ions converted from the enzyme reaction unit 120 are dissolved.
  • the generated exhaust gas is supplied into the conversion reactor 100 through the gas supply unit 110, and the supplied exhaust gas passes through the enzyme reaction unit 120.
  • the enzyme reaction unit 120 converts the carbon dioxide contained in the flue gas into bicarbonate ions to perform a function of primarily reducing the carbon dioxide contained in the flue gas.
  • the enzyme reaction unit 120 is a catalyst capable of promoting a reaction for converting carbon dioxide into bicarbonate ions, and includes a carbonic anhydrase (120a) and a liquid 120b that mediates such a reaction and / or serves as a reactant. ).
  • the carbonic anhydrase 120a may be included in any one or more forms of free enzymes dispersed in a liquid phase, a plurality of non-bonded and aggregated enzyme aggregates, and a plurality of enzymatic cross-linked complexes.
  • the carbonic anhydrase 120a may further include a support, and may be provided in the enzyme reaction unit 120 in a state of being bound on the support or supported in the support. Meanwhile, detailed descriptions of the liquid 120b and the carbonic anhydrase 120a are the same as those described above, and will be omitted.
  • the carbonic anhydrase (120a) described above may facilitate the conversion of the carbon dioxide supplied to the enzyme reaction unit 120 into bicarbonate ions, and the converted bicarbonate ions are discharged through the bicarbonate aqueous solution discharging unit 130.
  • the discharged bicarbonate solution is collected in a separate bicarbonate solution reservoir 300 in communication with the bicarbonate solution outlet 130 of the conversion reactor and / or at the utilization of the bicarbonate ion in communication with the bicarbonate solution outlet 130 Can be used.
  • the bicarbonate ions may be converted and / or synthesized bicarbonate ions into carbonate, microorganism culture, metal cation removal, purification of radioactive material, etc., but is not limited thereto.
  • the present invention can be formed by the above-described conversion reactor comprises a liquid filled in a portion of the conversion reactor for the reaction for converting the carbon dioxide supplied to the bicarbonate ions differently from FIG.
  • the concentration of carbon dioxide that can be converted in the liquid filled in the portion of the conversion reactor 100 or the enzyme reaction unit 120 including the same can be limited, if the concentration of carbon dioxide contained in the exhaust gas supplied is high concentration enzyme reaction unit ( Unreacted carbon dioxide is present at 120, and the unreacted carbon dioxide may be supplied to the collection reactor 200 through the gas outlet 140 that may be provided in the conversion reactor 100.
  • Description of the collection reactor 200 is the same as the description of the collection reactor 201 in FIG. 6 described above will be omitted.
  • the tandem reactor according to another preferred embodiment according to the present invention is not the way in which the flue gas flows through the other one of the conversion reactor and the collection reactor, unlike in Figures 8 and 9, both the conversion reactor and the capture reactor
  • Each gas supply unit may include a gas supply unit through which the exhaust gas may be introduced, and each gas supply unit may be implemented to be open and close, and when one side is opened, the other side may be closed so that the carbon dioxide conversion and collection process is performed. have. That is, a reactor in which flue gas is first introduced may be selected in consideration of the amount of flue gas supplied, the concentration of carbon dioxide, and the degree of need for bicarbonate ion, and in this case, the flue gas is directly introduced into the selected reactor and the remaining reactors are not selected.
  • the gas supply unit may be closed to prevent direct inflow of the exhaust gas.
  • the opening or closing of the gas supply unit provided in each of these may be changed in consideration of the amount of exhaust gas remaining in the reactor even in the middle of the conversion and collection process occurs after the exhaust gas is supplied to the series reactor.
  • the carbon dioxide may be converted and collected.
  • step (A) is the same as that described in the above-described conversion reactor, and will be omitted.
  • the carbon dioxide conversion process in the conversion reactor may be more advantageously carried out at pH 7.5 ⁇ 8.5, temperature 25 ⁇ 45 °C.
  • step (A) in order to prevent the reactor back pressure increase due to the exhaust gas supplied to the conversion reactor, the exhaust gas is supplied from the liquid top of the conversion reactor, the carbon dioxide in the supplied exhaust gas is the interface between the liquid and the gas inside the conversion reactor. Conversion reaction to bicarbonate ions can be promoted through the carbonic anhydrase provided in the structure located in the structure.
  • the carbon dioxide capture process in the capture reactor may preferably be carried out at a pH of 9 to 12, a temperature of 40 to 60 °C more preferably 45 to 55 °C. If the temperature is less than 40 °C, the carbon dioxide cannot be reduced to the desired level. If it exceeds 60 °C, the solubility of carbon dioxide decreases and the amount of carbon dioxide emitted in the gaseous state is significantly increased. There may be a problem that the amount of carbon dioxide is significantly increased.
  • the carbon dioxide is collected and the carbon dioxide absorber and carbon dioxide by collecting the carbon dioxide; may further include;
  • the separation and collection process may be performed through the desorber 401 which may be further provided in the series reactor described above, but is not necessarily limited thereto.
  • the carbon dioxide desorber may be a carbon dioxide desorber applied to a conventional carbon dioxide abatement apparatus, and thus, the present invention is not particularly limited thereto, and an energy size such as heat input to separate carbon dioxide may be a specific kind of absorbent provided in the capture reactor.
  • the separation time may vary depending on the specific type of absorbent, and the present invention is not particularly limited thereto.
  • Polymer nanofibers were used as a support provided in the carbonic anhydrase crosslinked complex.
  • PSMA poly (styrene-co-maleic anhydride)
  • THF Tetrahydrofuran
  • acetone organic solvents to dissolve the polymer. These materials were purchased from Sigma-Aldrich (St. Louis, MO, USA).
  • Polymer nanofibers were prepared using an electrospinning method. The operating conditions of the voltage of electrospinning was 7 kV, and the flow rate was 0.1 ml / hr using a syringe pump.
  • the polymer nanofibers prepared above were mixed with a carbonic anhydrase solution (10 mg / ml, 50 mM sodium phosphate buffer, pH 7.6). After mixing the carbonic anhydrase solution and the container containing the nanofibers at 200 rpm for 30 minutes, at 2 ° C. to induce a covalent bond between the carbonic anhydrase and maleic anhydride, the first functional group in the polymer nanofibers. Stir for hours.
  • a body part and a floating part of the structure as shown in FIG. 5 were prepared.
  • the material of the body portion was used ABS (acrylonitrile-butadiene-styrene) polymer, the size is 63 mm x 21 mm x 1 mm, the grid utilized as a flow path was prepared in a square shape of 6 mm x 6 mm.
  • the first body and the second body of the same structure is laminated in two vertical bodies, it was prepared to accommodate the carbonic anhydrase cross-linked complex of Preparation Example 1 between the laminated structure.
  • the material of the floating part was used ABS (acrylonitrile-butadiene-styrene) polymer, the size was prepared in the shape of a rectangular parallelepiped of 21 mm x 10 mm x 3 mm. At this time, an empty space for entering air inside the floating portion was made, and the body portion was prepared to be located at the interface between the liquid and gas when combined with the body portion.
  • ABS acrylonitrile-butadiene-styrene
  • the carbonic anhydride cross-linking complex of Preparation Example 1 was accommodated in the form of a housing between the two stacked body parts, and the floating part was coupled to both ends of the body part to prepare a structure. Thereafter, a container having a gas supply part having a diameter of 9 cm and a height of 22 cm and a diameter of 0.3 cm positioned at a height of 10 cm, and a gas discharge part having the same diameter opposite to the gas supply part, respectively, had a height of 5 cm and a Tris-HCl ( pH 8.0) After the solution was added to place the structure at the interface of the solution to prepare a carbon dioxide conversion reactor.
  • a carbon dioxide conversion reactor was prepared in the same manner as in Example 1, except that the structure having no carbonic anhydrase crosslinked complex was placed at the interface between the solution and the gas.
  • the gaseous carbon dioxide was introduced through a gas supply unit of the carbon dioxide conversion reactor according to the embodiment at a rate of 200 mL / min for 20 minutes to induce a carbon dioxide conversion reaction. Thereafter, 20 mL of the reaction solution was extracted, and carbonate was precipitated by reacting with 10 mL of 670 mM calcium chloride solution. Centrifugation was performed at 15000 rpm for 15 minutes to separate the precipitated carbonate, and then the liquid phase was removed. The separated carbonate was dried in an oven at 90 ° C. for 24 hours, and weighed, and is shown in Table 1 below.
  • Example 1 Converted Calcium Carbonate Weight (mg) 214 114

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

본 발명은 이산화탄소 전환반응기에 관한 것으로, 보다 구체적으로는 배가스에 포함된 이산화탄소를 유용한 응용에 활용이 가능한 중탄산수용액으로 전환시키는 동시에 빠른 전환공정을 가능하게 함으로써 공급되는 배가스로 인한 배압(back pressure)이 증가하는 것을 방지하고, 높은 효율 및 전환속도로 배가스내 이산화탄소를 현저히 저감시킬 수 있는 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정에 관한 것이다.

Description

이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 전환공정
본 발명은 이산화탄소 전환반응기에 관한 것으로, 보다 구체적으로는 배가스에 포함된 이산화탄소를 유용한 응용에 활용이 가능한 중탄산수용액으로 전환시키는 동시에 빠른 전환공정을 가능하게 함으로써 공급되는 배가스로 인한 배압(back pressure)이 증가하는 것을 방지하고, 높은 효율 및 전환속도로 배가스 내 이산화탄소를 현저히 저감시킬 수 있는 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환공정에 관한 것이다.
전통적으로, 이산화탄소를 저감하기 위한 방법으로, 이산화탄소 포집 및 저장 기술이 제안되고 있다. 이산화탄소 포집 및 저장 기술은 발전소 등의 배출원에서 발생하는 이산화탄소가 대기로 나가기 전에 포집한 뒤, 수송을 하여 안정한 형태로 저장하는 기술을 의미한다. 이산화탄소 포집 단계는 흡착 및 탈착 과정으로 구성되는데, 첫 번째로 흡착 과정에서는 이산화탄소와 물리적 또는 화학적으로 강한 결합을 할 수 있는 흡수제를 이용하여 배가스로부터 이산화탄소를 포집하게 된다. 상기 탈착 과정에서는 이산화탄소와 결합하고 있는 흡수제에 외부적인 에너지를 가하여 흡수제를 재생하고 순수한 이산화탄소만을 추출하는 단계이다.
그러나 대량의 이산화탄소를 안정적으로 저감하고, 포집되지 않고 배출되는 이산화탄소의 양을 줄이기 위해서는 필연적으로 이산화탄소와의 결합력이 강한 흡수제를 사용할 수밖에 없는데 포집된 이산화탄소를 탈착하는 공정은 현저히 많은 양의 에너지 소모가 필요하며, 많은 양의 에너지를 생산하는 과정은 이산화탄소 발생을 수반할 수 있기 때문에 이산화탄소의 저감을 위해 이산화탄소를 또 다시 발생시키는 순환구조가 형성되어 지구 전체 대기중의 이산화탄소 저감효과를 고려할 때 이산화탄소와 결합력이 강한 흡수제를 사용하는 것은 매우 바람직하지 못한 문제점이 있다.
또한, 반대로 이산화탄소와의 결합력이 약한 흡수제를 사용하면 이산화탄소의 추출 및 흡수제의 재생에 소모되는 에너지가 줄어들어 유리하나, 빠른 유속으로 공급되는 배가스에서 이산화탄소를 목적하는 수준까지 빠른 속도로 포집하기 어려워짐에 따라서 이산화탄소가 제대로 포집되지 못하고 다시 방출되는 문제가 있다.
나아가, 이와 같은 문제점을 포집기내의 이산화탄소 체류시간을 증가를 통해 해결하고자 할 경우 포집기의 규모확장이 필요한데, 이 경우 설비증가에 따른 공간적, 비용적 문제가 발생하다. 또한, 더욱 커진 포집기내로 공급된 이산화탄소의 유동성을 증가시키기 위해서는 더 강한 압력으로 배가스를 포집기에 공급시켜야 하나, 이 때 포집기에 걸리는 배압이 증가함에 따라서 포집공정이 불안정해지고, 설비가 손상 및/또는 파괴될 수 있는 문제가 있다.
한편, 최근 대기중의 이산화탄소를 중탄산이온과 같은 유용한 부산물로 전환시켜 조류를 배양하는 등에 활용하는 기술들이 소개되고 있다. 그러나 대기중의 이산화탄소의 농도는 400ppm 정도로써, 대기중의 이산화탄소를 중탄산이온과 같은 유용한 부산물로 전환시켜 활용하기에는 이산화탄소의 양이 매우 적은 문제가 있다. 또한, 상술한 것과 같이 배가스를 통해 포집된 이산화탄소를 재생한 후 이를 전환시킬 경우 공급되는 이산화탄소의 양에 비해 전환효율이 상대적으로 낮기 때문에 공급된 상당수의 이산화탄소가 다시 대기중으로 방출되는 문제가 있다.
따라서, 빠른 속도로 배출되는 배가스에 포함된 이산화탄소가 높은 효율로 포집되며, 배압의 급격한 증가가 방지되어 안정적으로 이산화탄소를 포집할 수 있는 동시에 다양한 분야로 응용될 수 있는 유용한 부산물을 함께 수득할 수 있는 시스템에 대한 개발이 시급한 실정이다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명이 해결하고자 하는 첫 번째 과제는, 배가스에 포함된 이산화탄소를 유용한 응용에 활용이 가능한 중탄산수용액으로 전환시키는 동시에 빠른 전환공정을 가능하게 함으로써 공급되는 배가스로 인한 배압(back pressure)이 증가하는 것을 방지하고, 높은 효율 및 전환속도로 배가스내 이산화탄소를 현저히 저감시킬 수 있는 이산화탄소 전환반응기 및 이를 이용한 이산화탄소 전환공정을 제공하는데 다른 목적이 있다.
또한, 본 발명은 본 발명에 따른 이산화탄소 전환반응기를 통해 이산화탄소의 전환 및 저감을 달성하는 동시에 배압의 발생이 방지되어 안정적으로 이산화탄소를 포집 및 저감시킬 수 있는 이산화탄소 포집 및 전환용 직렬반응기를 제공하는 데 다른 목적이 있다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명이 해결하고자 하는 두 번째 과제는, 대기중으로 배출되는 배가스 내 포함된 이산화탄소의 농도를 현저히 저감시키는 동시에 저감과정에서 발생되는 산업상 유용한 부산물을 별도로 수집, 활용 가능하고, 이산화탄소 전환 및 포집공정의 부하를 현저히 감소시킬 수 있는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정을 제공하는데 목적이 있다.
상술한 첫 번째 과제를 해결하기 위해 본 발명은, 이산화탄소를 포함하는 배가스가 공급되는 가스공급부; 공급된 상기 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체, 및 탄산무수화효소를 구비한 구조체를 포함하는 효소반응부; 및 상기 효소반응부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하는 이산화탄소 전환반응기를 제공한다.
본 발명의 바람직한 일구현예에 따르면, 상기 효소반응부에서 전환 및 용해된 중탄산수용액을 배출시키기 위한 중탄산수용액 배출부를 더 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 탄산무수화효소는 야생형(wild type) 탄산무수화효소 및 탄산무수화효소 변이체 중 어느 하나 이상을 포함할 수 있다. 이때, 상기 야생형 탄산무수화효소는 α형, β형, γ형, δ형, ε형 및 재조합 탄산무수화효소로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 전환반응기에 공급되는 배가스로 인한 반응기 배압증가를 방지하기 위하여, 전환반응기 내부의 액체와 기체간 계면 상부에 가스공급부 및 가스배출구가 배치되며, 상기 구조체는 상기 계면에 위치하여 이산화탄소의 전환을 촉진할 수 있다. 이때, 상기 탄산무수화효소를 포함하는 몸체부 및 상기 몸체부에 결합되어 상기 몸체부가 계면에 위치하도록 하는 적어도 하나의 부유체를 더 포함할 수 있다. 또한, 상기 탄산무수화효소는 상기 몸체부 상에 결합되거나 수용될 수 있다. 또한, 상기 몸체부는 액체 및 이산화탄소가 탄산무수화효소와 접할 수 있도록 하는 유로를 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 탄산무수화효소는 다수개가 비결합되어 응집된 효소집합체 및 다수개가 상호 결합된 효소가교결합복합체 중 어느 하나 이상의 형태로 구비될 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 구조체는 몸체부를 더 포함하고, 상기 탄산무수화효소는 지지체를 더 구비하여 상기 지지체 상에 결합되거나 지지체 내부에 담지되며, 상기 지지체는 상기 몸체부 상에 결합되거나 수용될 수 있다. 이때 상기 지지체는 고분자 섬유, 전기전도성 고분자, 다공성 입자, 구형입자, 나노입자, 비드, 탄소나노튜브, 와이어, 필라, 그래핀, 퓰러렌 및 폴리도파민으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함될 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 효소가교결합복합체는 표면에 제1작용기를 포함하는 제1지지체를 더 구비하며, 상기 제1작용기에 직접 결합하는 제1탄산무수화효소 및 상기 제1탄산무수화효소와 결합하고, 인접한 탄산무수화효소끼리 가교결합된 제2 탄산무수화효소 가교결합복합체를 포함할 수 있다. 또한, 상기 효소가교결합복합체는 표면에 제2작용기를 포함하고, 상기 제1탄산무수화효소 및 제2 탄산무수화효소 가교결합복합체 중 어느 하나 이상의 효소와 상기 제2작용기를 통해 결합하는 제2지지체를 더 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 중탄산수용액 배출부와 연통되도록 중탄산수용액 저장소 및 중탄산수용액 활용소 중 어느 하나 이상을 더 포함할 수 있다.
또한, 상술한 첫 번째 과제를 해결하기 위해 본 발명은, 이산화탄소를 포함하는 배가스가 공급되는 가스공급부; 공급된 상기 이산화탄소를 용해 및 전환시키기 위하여 전환반응기의 일부분에 채워진 액체를 포함하는 이산화탄소전환부; 및 상기 이산화탄소전환부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하는 이산화탄소 전환반응기를 제공한다.
또한, 상술한 첫 번째 과제를 해결하기 위해 본 발명은, 본 발명은 이산화탄소를 포함하는 배가스가 공급되는 가스공급부; 공급된 상기 이산화탄소를 용해 및 전환시키기 위하여 전환반응기의 일부분에 채워진 액체 및 탄산무수화효소를 포함하는 이산화탄소전환부; 및 상기 이산화탄소전환부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하는 이산화탄소 전환반응기를 제공한다.
나아가 상술한 첫 번째 과제를 해결하기 위해 본 발명은, (1) 본 발명에 따른 이산화탄소 전환반응기의 가스공급부로 배가스를 공급하는 단계; 및 (2) 공급된 배가스에 포함된 이산화탄소 중 일부는 중탄산이온으로 전환되고, 미반응된 나머지 이산화탄소를 포함하는 배가스는 가스배출구를 통해 배출되는 이산화탄소 전환공정을 제공한다.
본 발명의 바람직한 일구현예에 따르면, 상기 (1) 단계는 전환반응기에 공급되는 배가스로 인한 반응기 배압증가를 방지하기 위하여, 배가스가 전환반응기의 액체 상부에서 공급되며, 공급된 배가스 내 이산화탄소는 전환반응기 내부의 액체와 기체간 계면에 위치하는 구조체에 구비된 탄산무수화효소를 통해 중탄산이온으로 전환반응이 촉진될 수 있다.
또한, 본 발명은, 본 발명에 따른 전환반응기; 및 상기 전환반응기에 연통되고, 유입된 이산화탄소를 포집하는 포집반응기;를 포함하며, 이산화탄소를 포함하는 배가스는 전환반응기 또는 포집반응기로 공급되어 이산화탄소가 전환 또는 포집된 후, 미반응된 이산화탄소를 포함하는 배가스가 포집반응기 또는 전환반응기로 유입되어 상기 미반응된 이산화탄소를 포집 또는 전환시키는 이산화탄소 전환 및 포집용 직렬반응기를 제공한다.
본 발명의 바람직한 일구현예에 따르면, 상기 포집반응기는 이산화탄소 흡수제 또는 이산화탄소 분리막을 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 포집반응기는 이산화탄소 흡수제와 이산화탄소 간 결합물 및 반응결합물 중 어느 하나 이상을 포함하는 포집물을 배출하는 이산화탄소 포집물 배출부, 및 상기 이산화탄소 포집물 배출구와 연통되어 배출된 포집물에서 이산화탄소를 분리 및 수집하는 이산화탄소 탈착기를 더 포함할 수 있다.
상술한 두 번째 과제를 해결하기 위해 본 발명은, 공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체, 및 탄산무수화효소를 구비한 효소반응부를 포함하는 전환반응기; 및 상기 전환반응기와 연통되고, 공급된 이산화탄소를 포집하는 포집반응기;를 포함하는 이산화탄소 전환 및 포집용 직렬반응기를 제공한다.
본 발명의 바람직한 일구현예에 따르면, 이산화탄소를 포함하는 배가스는 상기 전환반응기 또는 포집반응기로 공급되어 이산화탄소가 전환 또는 포집된 후 미반응된 이산화탄소를 포함하는 배가스가 포집반응기 또는 전환반응기로 공급되어 상기 미반응된 이산화탄소가 포집 또는 전환될 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 전환반응기는 배가스가 공급되는 가스 공급부 및 효소반응부에서 미반응된 이산화탄소가 포함된 배가스를 배출하는 가스 배출부를 더 포함할 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 탄산무수화효소는 야생형(wild type) 탄산무수화효소 및 탄산무수화효소 변이체 중 어느 하나 이상을 포함할 수 있다. 이때, 상기 야생형 탄산무수화효소는 α형, β형, γ형, δ형, ε형 및 재조합 탄산무수화효소로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 탄산무수화효소는 다수개가 액체 상에 분산된 유리효소, 다수개가 비결합되어 응집된 효소집합체 및 다수개가 상호 결합된 효소가교결합복합체 중 어느 하나 이상의 형태로 포함될 수 있다. 이때, 상기 탄산무수화효소는 지지체를 더 구비하여 상기 지지체 상에 결합되거나 지지체 내부에 담지될 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 효소가교결합복합체는 표면에 제1작용기를 포함하는 제1지지체를 더 구비하며, 상기 제1작용기에 직접 결합하는 제1탄산무수화효소 및 상기 제1탄산무수화효소와 결합하고, 인접한 탄산무수화효소끼리 가교결합된 제2 탄산무수화효소 가교결합복합체를 포함할 수 있다. 또한, 상기 효소가교결합복합체는 표면에 제2작용기를 포함하고, 상기 제1탄산무수화효소 및 제2 탄산무수화효소 가교결합복합체 중 어느 하나 이상의 효소와 상기 제2작용기를 통해 결합하는 제2지지체를 더 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 전환반응기는 효소반응부에서 전환 및 용해된 중탄산수용액을 배출시키기 위한 중탄산수용액 배출부를 더 포함할 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 포집반응기는 이산화탄소 흡수제 및 이산화탄소 분리막 중 어느 하나 이상을 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 중탄산수용액 배출부와 연통되도록 중탄산수용액 저장소 및 중탄산수용액 활용소 중 어느 하나 이상을 더 포함할 수 있다.
본 발명의 바람직한 또 다른 일구현예에 따르면, 상기 포집반응기는 이산화탄소 흡수제와 이산화탄소 간 결합물 및 반응결합물 중 어느 하나 이상을 포함하는 포집물을 배출하는 이산화탄소 포집물 배출부를 더 포함할 수 있다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 이산화탄소 포집물 배출부와 연통되어 배출된 포집물에서 이산화탄소를 분리 및 수집하는 이산화탄소 탈착기를 더 포함할 수 있다.
또한, 상술한 두 번째 과제를 해결하기 위해 본 발명은, 공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체를 포함하는 전환반응기; 및 상기 전환반응기와 연통되고, 공급된 이산화탄소를 포집하는 포집반응기;를 포함하는 이산화탄소 전환 및 포집용 직렬반응기를 제공한다.
또한, 상술한 두 번째 과제를 해결하기 위해 본 발명은, (A) 이산화탄소를 포함하는 배가스를 본 발명에 따른 직렬반응기의 전환반응기에 공급하여 상기 이산화탄소를 중탄산이온으로 전환시키는 단계; 및 (B) 공급된 상기 이산화탄소 중 미반응된 이산화탄소가 포함된 배가스를 포집반응기로 공급하여 이산화탄소를 포집하는 단계;를 포함하는 직렬반응기를 통한 이산화탄소 전환 및 포집공정을 제공한다.
또한, 본 발명은 (a) 이산화탄소를 포함하는 배가스를 제1항 내지 제12항 중 어느 한 항에 따른 직렬반응기의 포집반응기에 공급하여 상기 이산화탄소를 포집하는 단계; 및 (b) 공급된 이산화탄소 중 미포집된 이산화탄소가 포함된 배가스를 전환반응기로 공급하여 이산화탄소를 중탄산이온으로 전환시키는 단계;를 포함하는 직렬반응기를 통한 이산화탄소 전환 및 포집공정을 제공한다.
본 발명의 바람직한 일구현예에 따르면, 전환된 상기 중탄산이온을 전환반응기에서 배출시켜 수집하는 단계; 및 포집된 이산화탄소를 탈착시켜 이산화탄소를 수집하는 단계;를 더 포함할 수 있다.
이때, 포집된 이산화탄소를 분리시키는 공정은 70 ~ 130℃의 온도에서 수행될 수 있다.
이하, 본 발명에서 사용한 용어에 대해 설명한다.
본 발명에서 사용한 "A 상에"의 의미는 A의 표면에 직접 또는 B를 개재하여 간접적을 모두 포함하는 의미로 사용한다.
본 발명에 따른 이산화탄소 전환반응기는 배가스에 포함된 이산화탄소를 유용한 부산물로 전환시키는 동시에 빠른 전환공정을 가능하게 함으로써 공급되는 배가스로 인한 배압(back pressure)이 증가하는 것을 방지하고, 높은 효율 및 전환속도로 배가스내 이산화탄소를 현저히 저감시킬 수 있다. 또한, 이산화탄소 전환반응기를 통해 이산화탄소의 전환 및 저감을 달성하는 동시에 배압의 발생이 방지되어 안정적으로 이산화탄소를 포집 및 저감시킬 수 있는 직렬반응기로 응용될 수 있으며, 이산화탄소의 전환 및 포집을 통해 이산화탄소 저감공정의 상승 효과를 극대화하기에 적합하다. 본 발명의 일구현예에 따른 직렬반응기는 배출원에서 발생한 고농도의 이산화탄소를 일차적으로 매우 빠르게 전환하며, 이를 통해 배압증가가 방지된 채로 전환되지 않은 이산화탄소에 대해 포집공정을 수행함에 따라서 전환공정에서 열역학적 한계로 인해 미반응된 이산화탄소를 이산화탄소 포집공정을 통해 저감시킬 수 있고, 전환공정에서 1차로 저감되어 미반응된 이산화탄소만이 포집공정에 공급됨에 따라서 포집공정의 부하를 낮추는데 현저한 효과가 있다. 또한, 전환공정에서 1차로 이산화탄소가 저감됨에 따라서 이후의 포집공정에서 이산화탄소 결합력이 상대적으로 약한 흡수제를 사용하더라도 높은 수준의 이산화탄소 저감 효율을 유지할 수 있고, 이로 인하여 포집 후 흡수제의 재생 및 이산화탄소의 추출에 필요한 에너지 소모를 줄일 수 있다. 더불어 이산화탄소 저감 중에 발생한 부산물은 다양한 분야에 활용될 수 있어 이산화탄소의 저감을 통한 환경오염을 방지하는 동시에 부가가치 창출의 경제적 이익을 동시에 얻을 수 있다.
도 1은 본 발명의 바람직한 일구현예에 따른 이산화탄소 전환반응기의 모식도이다.
도 2 및 도 3은 본 발명의 바람직한 일구현예에 포함되는 탄산무수화효소집합체의 단면 모식도이다.
도 4는 본 발명의 바람직한 일구현예에 포함되는 탄산무수화효소복합체를 구비한 구조체의 평면모식도이다.
도 5는 본 발명의 바람직한 일구현예에 포함되는 구조체의 분해사시도이다.
도 6 및 도 7은 본 발명의 바람직한 일구현예에 따른 직렬반응기에 대해 이산화탄소를 포함하는 배가스의 공급방향을 달리했을 때 이산화탄소의 전환 및 포집공정을 나타낸 직렬반응기의 모식도이다.
도 7 및 도 8은 본 발명의 바람직한 일구현예에 따른 직렬반응기에 대해 이산화탄소를 포함하는 배가스의 공급방향을 달리했을 때 이산화탄소의 전환 및 포집공정을 나타낸 직렬반응기의 모식도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일구현예에 따른 이산화탄소 전환반응기(101)는 도 1에 도시된 것과 같이 공급된 이산화탄소가 체류하며, 효소반응부(121)를 내부에 구비할 수 있도록 내부가 빈 반응챔버(151), 상기 반응챔버(151)의 일측에 배치되어 이산화탄소를 포함하는 배가스를 내부로 공급하는 가스공급부(111), 공급된 배가스 중 이산화탄소를 중탄산이온으로 전환, 이를 촉진 시키는 효소반응부(121), 및 상기 효소반응부(121)에서 미반응된 이산산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부(141)를 포함하고, 전환된 중탄산이온을 외부로 방출시키는 중탄산수용액 배출부(131) 및 상기 중탄산수용액 배출부(131)에 직접 연결되는 중탄산수용액 저장소(301)를 더 포함할 수 있다. 상기 전환반응기(101)는 배 가스에 포함된 고농도의 이산화탄소를 중탄산이온으로 전환시키는 역할을 수행하며, 이와 같은 이산화탄소 전환공정은 다른 방식의 이산화탄소 저감 및/또는 전환공정에 비해서 친환경적이고, 이산화탄소를 산업상 이용가능한 중탄산이온으로 전환시켜 부가가치를 창출할 수 있어서 경제성 및 생산성에서 매우 유리하다. 또한, 탄산무수화효소는 이론상으로 1초당 백만개의 이산화탄소 분자를 중탄산이온으로 전환할 수 있음에 따라서 빠른 속도로 유입되는 이산화탄소의 전환에 매우 적합하고 이를 통해 반응기에 걸리는 배압의 상승을 더욱 방지할 수 있으며, 배 가스에서 분리되어 포집된 이산화탄소의 탈착과 같은 부가적 공정을 더 요구하지 않는 이점이 있다.
상기 전환반응기(101)의 각 구성을 배 가스가 최초 공급된 후 배출되기까지 순서에 따라 설명하면, 화력발전소와 같은 이산화탄소 발생원에서 방출된 배가스는 전환반응기(101)의 가스공급부(111)로 공급된다. 이때, 상기 가스공급부(111)는 상기 전환반응기(101) 내부의 액체(121b)와 기체간 계면 상부에 배치될 수 있다. 이를 통해 공급되는 이산화탄소를 포함하는 배가스는 후술하는 효소반응부(121)의 액체(121b)를 통과하여 가스배출구(141)로 배출되는 유체흐름을 가지지 않고, 상기 액체(121b)의 상부에서 공급되어 액체(121b)의 상부 통과 및 액체 상부의 위치하는 가스배출구(141)로 다시 배출되는 유체흐름을 가질 수 있다. 이와 같은 유체흐름을 갖도록 반응챔버(151)내 액체(121b)의 높이을 고려하여 가스공급부(111) 및 가스배출부(141)가 배치될 경우 공급되는 배가스가 보다 원활히 반응기 내부를 체류 및 통과할 수 있음에 따라서 액체를 통과하면서 발생하는 배가스 흐름의 저항 등으로 발생하는 배압의 증가를 현저히 감소시킬 수 있는 이점이 있다.
다음으로, 상기 가스공급부(111)로 공급된 배가스에 포함된 이산화탄소는 효소반응부(121)에 포함된 탄산무수화효소집합체를 포함하는 구조체(121a) 및 액체(121b)를 통해 중탄산이온으로 전환될 수 있고, 이를 통해 이산화탄소 저감효과를 가질 수 있다.
상기 액체(121b)는 이산화탄소를 중탄산이온으로 전환시키는 반응을 매개 및/또는 반응물질로 기능하며, 전환되는 중탄산이온의 용해에 문제가 없는 용매(또는 용액)인 경우 제한 없이 사용될 수 있으며, 이에 대한 비제한적인 예로써, 상기 용매(또는 용액)는 물 및/또는 통상의 완충용액일 수 있고, 상기 완충용액에 대한 비제한적인 예로써, 2-아미노-2-하이드록시메틸-l,3-프로파네디올을을 사용할 수 있다.
상기 구조체(121a)는 이산화탄소를 중탄산로 전환을 촉진시키는 탄산무수화효소를 포함한다. 상기 구조체(121a)는 탄산무수화효소를 포함하여 상기 액체(121b)의 내부의 일부 영역에 배치되거나 내부에 균일하게 분산되도록 배치될 수 있다. 다만, 바람직하게는 배압의 감소를 위해 가스공급부의 위치를 액체(121b) 상부에 배치하고 배가스를 액체 상방에서 공급시킬 경우 탄산무수화효소를 통한 이산화탄소 전환속도 증가를 위하여 상기 구조체(121a)는 액체와 기체의 계면에 위치하는 것이 좋다.
상기 탄산무수화효소는 이산화탄소를 중탄산이온으로 전환시키는 반응을 촉진시키는 기능을 갖는 공지된 효소일 경우 제한 없이 사용될 수 있으며, 일예로, 야생형(wild type) 탄산무수화효소 및 탄산무수화효소 변이체 중 어느 하나 이상을 포함할 수 있다. 이때, 상기 야생형 탄산무수화효소는 통상적으로 동물, 식물 등 자연적으로 생체내 존재하는 효소일 수 있음에 따라 α형, β형, γ형, δ형 및 ε형으로 이루어진 군에서 선택된 1종 이상이거나 및/또는 생체내 존재하는 효소를 모방하거나 상기 효소를 인공적으로 재조합한 것, 또는 이들과 생체내 존재하는 탄산무수화효소가 병용된 것일 수 있다. 상기 인공적으로 재조합된 탄산무수화효소는 공지된 것일 수 있어 본 발명에서는 이에 대한 아미노산 서열을 특별히 한정하지 않는다. 또한, 상기 탄산무수화효소 변이체는 자연적으로 존재하는 탄산무수화효소의 아미노산 서열의 일부 또는 전부가 변형된 것으로써, 탄산무수화효소의 기본적 기능을 가지는 동시에 자연적으로 존재하는 탄산무수화효소가 갖추지 못하는 내열성 등의 물성을 유리하게 개선, 개량한 것일 수 있으며, 본 발명에서는 이에 대한 아미노산 서열을 특별히 한정하지 않는다.
상기 탄산무수화효소는 다수개가 구조체 상에 분산된 유리효소, 다수개가 비결합되어 응집된 효소집합체 및 다수개가 상호 결합된 효소가교결합복합체 중 어느 하나 이상의 형태로 포함될 수 있다.
또한, 상기 탄산무수화효소는 지지체를 구비하여 구조체에 포함될 수 있고, 또는 지지체 없이 구조체에 포함될 수 있다.
먼저, 지지체를 구비하는 경우에 대해 설명하면, 상기 탄산무수화효소는 상기 지지체 상에 결합되거나 지지체 내부에 담지된 상태일 수 있다.
상기 지지체는 탄산무수화효소를 결합시키거나 담지시키는 기능을 담당하고, 탄산무수화 효소를 집적시킬 수 있는 토대가 되며, 외력으로부터 탄산무수화효소를 보호하는 기능을 담당할 수 있다. 또한, 탄산무수화효소가 집합체를 이루거나 가교복합체의 형태일 경우 해당 형태를 안정적으로 유지하면서 구조체에 전체적으로 분산되어 분포될 수 있도록 하는 기능을 담당할 수 있다. 상기 지지체의 재질은 통상의 지지기능을 하고 효소활성을 억제, 저해하지 않는 경우라면 제한이 없고, 그 형상에도 비드상, 섬유상, 판상 등 특별한 제한이 없다. 일예로써, 상기 지지체는 고분자 섬유, 전기전도성 고분자, 다공성 입자, 구형입자, 나노입자, 비드, 탄소나노튜브, 와이어, 필라, 그래핀, 퓰러렌 및 폴리도파민으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있다. 나아가, 그 크기에 있어서도 전환반응기의 구체적 구조, 형상에 따라 달리 설계될 수 있어 본 발명에서 이를 특별히 제한하지 않는다.
상기 탄산무수화효소가 지지체상에 결합될 때, 상기 결합은 탄산무수화 효소들의 물리적 결합(ex. 흡착) 및/또는 지지체상에 구비된 특정의 작용기를 통한 탄산무수화효소의 화학적 결합(ex. 이온결합, 공유결합 등)됨을 통해 고정될 수 있다. 또한, 폴리도파민(polydopamine), 폴리노레피네프린(polynorepinephrine)과 같이 카테콜(catechol)기를 기반으로 하는 접착성 물질접착성 물질에 의해 지지체상에 부착될 수도 있다. 상기 담지는 지지체가 다공성의 구조일 경우 내부에 포함된 기공이나 공동(cavity) 내부에 탄산무수화효소가 구비될 수 있고, 바람직하게는 집합체 또는 가교복합체를 형성하여 구비될 수 있다. 담지된 탄산무수화효소는 기공이나 공동의 지지체 내부 표면에 결합되거나 비결합 상태로 수용될 있으며, 본 발명에서는 이에 대한 제한하지 않는다.
한편, 이산화탄소를 중탄산이온으로 전환시키는 반응이 잘 일어나는 최적의 조건과, 탄산무수화효소의 효소활성이 유지되기 위한 최적 조건이 상이할 수 있고, 경우에 따라서 전환반응기 내의 환경이 탄산무수화효소의 효소활성이 유지되기 어려울 수 있다. 이에 효소반응부에 구비되는 탄산무수화효소는 효소가교결합복합체 형태일 수 있고, 구체적으로 도 2와 같이 효소가교결합복합체(1000)는 표면에 제1작용기(1001)를 포함하는 제1지지체(1010)를 더 구비하여 상기 제1작용기(1001)에 고정된 제1탄산무수화효소(1100) 및 상기 제1탄산무수화효소(1100)와 결합하고, 인접한 탄산무수화효소끼리 가교결합된 복수개의 제2탄산무수화효소 가교결합복합체(1210,1211,1212,1213)를 포함하여 구현된 것일 수 있다.
상기 지지체(1010) 표면에 구비된 작용기(1001)는 제1 탄산무수화 효소(1100)를 고정시킬 수 있는 작용기의 경우 제한 없이 사용될 수 있으며, 일예로, 카르복실기, 아민기, 이민기, 에폭시기, 하이드록시기, 알데히드기, 카르보닐기, 에스터기, 메톡시기, 에톡시기, 페록시기, 에테르기, 아세탈기, 설파이드기, 포스페이트기 및 아이오드기로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있고, 바람직하게는 카르복실기 및 아민기 중 어느 하나 이상일 수 있다.
탄산무수화효소가 도 2와 같은 구조의 탄산무수화효소 가교결합복합체(1000)를 형성할 경우 탄산무수화효소 활성의 유지/발현에 부적할 수 있는 온도, pH 조건에서도 우수하게 효소활성을 오랜기간 안정적으로 발현할 수 있는 이점이 있다.
상기 도 2와 같은 탄산무수화효소 가교결합복합체(1000)는 후술하는 실시예 1과 같은 방법에 의해 제조될 수 있고, 이때 석출화제를 투입하지 않고 가교결합제만을 투입하여 도 2와 같은 탄산무수화효소 가교결합복합체를 제조할 수 있으나, 석출화제를 투입할 경우 더욱 더 밀도 높게 탄산무수화효소가 집적된 탄산무수화효소 가교결합복합체를 제조할 수 있다. 다만, 상기 도2와 같은 탄산무수화효소 가교결합복합체의 제조방법이 실시예 1에 한정되는 것은 아니며, 본 발명의 발명자에 의한 대한민국 특허공개공보 제10-2011-0128182호, 10-2011-0128134호, 10-2013-0127916호 등에 개시된 제조방법이 참조로 삽입될 수 있다.
한편, 더욱 우수한 효소활성을 발현하는 동시에 장기간 안정적으로 활성을 발현하기 위해서는 복합체에 결합된 효소의 양이 많은 동시에 외력 등에 의해서 효소가 복합체에서 떨어지지 않을 수 있는 우수한 결합력이 요구된다.
이에 따라 더욱 바람직하게는 도3에 도시된 것과 같이 상기 탄산무수화효소 가교결합복합체(2000)는 표면에 제1 작용기(2001)를 구비한 제1 지지체(2010) 이외에 표면에 제2 작용기(2301,2302)를 구비한 제2 지지체(2300)를 더 포함하고,
제1탄산무수화효소(2100) 및 제2 탄산무수화효소 가교결합복합체(2211,2212,2213)가 상기 제2작용기를 통해 제2지지체(2300)에 결합할 수 있다.
제2 탄산무수화효소 가교복합체는 효소들끼리만 가교결합되는 것이 아니라 제2 지지체를 매개로 다시 공유결합됨에 따라 더욱 강한 결합력으로 효소간에 결착될 수 있고, 복수개로 포함되는 제2 지지체(2300) 각각이 효소가 군집을 이루어 공유결합될 수 있는 바인딩 포인트가 될 수 있음에 따라 더욱 많은 양의 효소가 군집을 이루어 복합체에 포함될 수 있어 현저히 향상된 효소활성 및 안정되게 오랜기간 효소활성을 발현시키는데 보다 유리할 수 있다. 상기 제2 지지체(2300)는 상술한 지지체(제1 지지체)에 대한 설명과 동일하고, 제1 지지체는 제2 지지체와 동일하거나 다른 재질일 수 있고, 형상, 크기도 동일 또는 상이할 수 있는 등 이에 대해서 본 발명에서 특별히 한정하지 않는다. 또한 상기 제2 작용기 역시 상술한 지지체에 대한 설명의 작용기와 동일하며, 제1 작용기는 제2 작용기와 동일하거나 상이할 수 있다. 한편, 도 3의 제2지지체(2300)는 자성을 띠는 지지체일 수 있으며 이 경우 전환반응기(100)에서 전환된 중탄산이온이 용해된 액체(120b)를 중탄산이온 배출구(130)를 통해 배출시킬 때 자성을 이용하여 탄산무수화효소복합체의 배출을 방지하거나 배출된 액체내 포함된 탄산무수화효소복합체의 분리 및 재활용을 가능하게 하는 이점이 있다.
상기 도 3에 따른 탄산무수화효소 가교결합복합체(2000)는 후술하는 실시예2에 따른 제조방법으로 제조될 수 있으나 도3에 따른 탄산무수화 효소복합체와 마찬가지로 석출화제 없이 가교결합제의 투입만으로 도 3과 같은 복합체의 구현도 가능하며, 다만, 석출화제의 투입으로 더욱 더 효소가 밀도 높게 집적된 복합체를 구현가능하고, 이를 통해 보다 향상된 물성을 발현할 수 있는 이점이 있다. 상기 도 3과 같은 탄산무수화효소 가교결합복합체의 제조방법은 실시예 2에 한정되는 것은 아니며, 본 발명의 발명자에 의한 대한민국 특허공개공보 제10-2011-0128182호, 10-2011-0128134호, 10-2013-0127916호 등에 개시된 제조방법이 참조로 삽입될 수 있다.
상술한 지지체상 또는 지지체에 담지되는 탄산무수화효소는 상기 지지체가 구조체 상에 결합되거나 수용됨을 통해 효소반응부에 구비될 수 있다. 이때, 상기 결합은 물리적 및/또는 화학적 결합이나 접착물질을 개재한 결합일 수 있으며 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 상기 탄산무수화효소는 지지체 없이 구조체에 구비될 수 있는데, 이는 후술하는 구조체가 몸체부를 포함하는 경우 상기 탄산무수화효소는 상기 몸체부 상에 결합되거나 수용됨을 통해 포함될 수 있다. 상기 결합은 탄산무수화 효소들의 물리적 결합(ex. 흡착) 및/또는 몸체부에 구비된 특정의 작용기를 통한 탄산무수화효소의 화학적 결합(ex. 이온결합, 공유결합 등)됨을 통해 고정될 수 있다. 또한, 폴리도파민(polydopamine), 폴리노레피네프린(polynorepinephrine)과 같이 카테콜(catechol)기를 기반으로 하는 접착성 물질접착성 물질에 의해 몸체부 상에 부착될 수도 있다. 상기 담지는 몸체부가 다공성의 구조일 경우 내부에 포함된 기공이나 공동(cavity) 내부에 탄산무수화효소가 구비될 수 있고, 바람직하게는 집합체 또는 가교복합체를 형성하여 구비될 수 있다. 담지된 탄산무수화효소는 기공이나 공동의 몸체부 내부 표면에 결합되거나 비결합 상태로 수용될 있으며, 본 발명에서는 이에 대한 제한하지 않는다.
한편, 공급되는 배가스의 양 및 빠른 공급속도를 고려했을 때, 반응챔버(151) 내의 액체(121b) 계면 상부에서 공급되어 통과 및 배출되는 유체흐름은 반응챔버(151)내 배가스 체류시간을 더욱 단축시킴에 따라서 배가스에 포함된 이산화탄소를 목적하는 수준으로 전환시키는데 소요되는 체류시간을 확보하지 못하게 하는 문제가 있을 수 있다. 즉, 배가스가 상기 액체(121b)를 통과하는 유체흐름이 전환반응기(101) 내부에 형성될 경우 액체 내부를 흐르는 유체저항으로 인해 배압이 발생 및 증가할 수 있기 때문에 상술한 것과 같이 가스공급부(111)를 상기 액체(121b)의 계면 상부에 배치시키는 것이 배압증가 방지측면에서 유리할 수 있으나, 이 경우 공급된 이산화탄소가 효소반응부와 접해서 전환반응이 일어나는 부분이 한정된 액체계면에 국한될 수밖에 없고, 반응기 내부에서의 체류시간도 매우 짧을 수밖에 없다. 이에 따라서 만일 이산화탄소의 전환을 촉진시키는 탄산무수화효소집합체가 액체의 계면에서 멀리 떨어져 반응챔버(151)의 하부에 위치하거나 액체 전체에 균일하게 분산된 경우 빠르게 통과하는 배가스내 이산화탄소를 목적하는 수준까지 전환시키기 어려울 수 있다. 또한, 이를 해결하고자 배가스의 체류시간을 증가시킬 경우 전환반응기에서의 배압이 증가하는 문제가 있을 수 있다.
이에 본 발명의 바람직한 일구현예에 따르면, 탄산무수화효소를 구비하는 구조체(121a)는 도 1과 같이 액체-기체 계면상에 배치될 수 있고, 이를 통해 이산화탄소 전환반응이 일어나는 계면에서 더욱 활발히 전환반응이 촉진될 수 있으며, 종국적으로 이산화탄소 전환율의 증가, 이산화탄소 저감효율의 증가 및 배압발생이나 증가가 최소화 또는 방지될 수 있다.
상기 구조체(121a)가 액체(121b)-기체 계면에 위치하기 위해서 구조체(121a)가 상기 계면 높이의 반응챔버(151) 측면에 고정될 수 있으나, 이 경우 상기 액체(121b)의 반응챔버(151) 높이를 항상 일정하게 유지시켜야 하는 어려움이 있음에 따라서 바람직하게는 상기 구조체(121a)는 액체 상에 부유하도록 설계될 수 있다.
일예로써, 도 4에 도시된 것과 같이 구조체(1)는 탄산무수화효소 가교결합복합체(1000)를 포함하는 몸체부(10) 및 상기 몸체부(10)에 결합되어 상기 몸체부(10)가 액체(121b)상에 부유하도록 하는 적어도 하나의 부유부(31,35)를 포함하도록 구현될 수 있다.
도 5를 참조하여 구체적으로 설명하면, 제1 몸체(11) 및 제2 몸체(21)는 상하방향으로 서로 나란하게 배열되며 각각은 격자 형태의 면상 구조체일 수 있다.
이때, 상기 제2 몸체(21)는 액체의 표면에 인접하게 배치될 수 있다. 일예로, 제2 몸체(21)는 액체와 접하여 액체에 잠겨 있거나 액체 표면에 떠 있을 수 있다.
도 5에서 제1 몸체(11) 및 제2 몸체(21)는 단일구조로 분리되어 서로 나란하게 배열되었지만 이에 한정되지 않고 제1 몸체 및 제2 몸체가 일체로 형성될 수 있다.
한편, 본 발명의 일 실시예에서 상기 몸체부(10)의 양 단부에는 돌기부(15, 25)가 형성되어 부유부(31,35)에 결합될 수 있다. 다만 본 발명의 일 실시예에서 몸체부(10)의 돌기부(15, 25)는 부유부(31,35)의 결합홈(33a, 37b)에 삽입되어 끼움 결합되지만 이에 한정되지는 않는다.
이때, 몸체부(10) 즉, 제1 몸체(11) 및 제2 몸체(21)는 아크릴로나이트릴-뷰타디엔-스티렌, 폴리티오펜, 폴리락틱산, 폴리비닐알콜, 폴리카프로락탐, 폴리카프로락톤, 폴리락틱-co-글리콜산, 폴리아크릴로니트릴, 폴리에스테르, 폴리에틸렌, 폴리에틸렌이민, 폴리프로필렌옥사이드, 폴리우레탄, 폴리글리콜산, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 폴리스티렌, 폴리디메틸실록산, 폴리스티렌-co-무수말레산, 테플론, 콜라겐, 나일론, 셀룰로우즈, 키토산, 유리, 금, 은, 알루미늄, 철, 구리 및 실리콘중 적어도 하나로 형성되어 탄산무수화효소 가교결합복합체(1000)가 직접 제1 몸체 및 제2 몸체에 결합될 수 있다.
또한, 상기 부유부(31,35) 중 제1부유체(31)는 몸체부(10)의 일 단부 예를 들어 도 5를 참고하면 좌측 단부에 결합될 수 있고, 제2 부유체(35)는 몸체부의 타 단부 예를 들어 도 5를 참고하면 우측 단부에 결합될 수 있다.
한편, 도 5에 도시된 바와 같이 본 발명의 일 실시예에서 제1 부유체(31) 및 제2 부유체(35)는 직육면체 형태로서 내부에 공기가 채워질 수 있도록 형성될 수 있다. 이를 통해 본 발명의 일 실시예에 따른 구조체(1)가 액체 상에 부유 될 수 있다.
다만 본 발명의 일 실시예에서 제1 부유체(31) 및 제2 부유체(35)는 액체 상에 위치할 수 있는 재질로 이루어진다면 어떠한 형태로 이루어질 수 있다.
도 5를 참고하면, 본 발명의 일 실시예에서 제1 부유체(31) 및 제2 부유체(35) 각각에는 돌출부(33, 37)가 직육면체 형태로 형성될 수 있다.
이때 돌출부(33, 37)는 제1 부유체(31)가 몸체부(10)와 결합되는 일면 예를 들어 우측면 또는 제2 부유체(35)가 몸체부(10)와 결합되는 좌측면에 형성될 수 있다.
또한, 도 5를 참고하면, 돌출부(33, 37)에는 몸체부(10)의 돌기부(15, 25)가 삽입되어 끼움 결합되는 결합홈(33a, 37b)이 형성될 수 있다. 이때, 결합홈(33a, 37b)은 돌기부(15, 25)와 끼움 결합되도록 돌기부와 대응되게 형성될 수 있다.
한편, 본 발명의 일 실시예에서 제1 부유체(31) 및 제2 부유체(35)는 아크릴로나이트릴-뷰타디엔-스티렌, 폴리티오펜, 폴리락틱산, 폴리비닐알콜, 폴리카프로락탐, 폴리카프로락톤, 폴리락틱-co-글리콜산, 폴리아크릴로니트릴, 폴리에스테르, 폴리에틸렌, 폴리에틸렌이민, 폴리프로필렌옥사이드, 폴리우레탄, 폴리글리콜산, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 폴리스티렌, 폴리디메틸실록산, 폴리스티렌-co-무수말레산, 테플론, 콜라겐, 나일론, 셀룰로우즈, 키토산, 유리, 금, 은, 알루미늄, 철, 구리 및 실리콘 중 적어도 하나로 형성될 수 있다.
상기 탄산무수화효소 가교결합복합체(1000))는 도 4 및 도 5와 같이 몸체부(10)를 구성하는 제1몸체(11) 및 제2몸체(21) 사이에 수용되거나 몸체부(10) 상에 결합될 수 있다. 이때 결합은 몸체부(10)에 접착물질을 사용한 접착, 물리적 결합(ex. 흡착) 및/또는 몸체에 구비된 작용기를 통한 화학적 결합(ex. 이온결합, 공유결합 등)을 통해 몸체부(10)에 결합되거나 비결합 상태로 물리적 수용만 될 수 있다. 또한, 상기 탄산무수화효소 가교결합복합체(1000)에서 몸체부(10)에 결합되는 부분은 탄산무수화효소 및/또는 더 구비되는 지지체일 수 있다.
또한, 몸체부(10)는 이산화탄소 및 액체가 상기 탄산무수화효소복합체(1000)에 접할 수 있도록 유입되게 하는 유로를 포함할 수 있고, 일예로, 도 4 및 도 5와 같이 몸체부는 메쉬 형상으로 다수개의 격자 내 유로가 형성될 수 있다.
한편, 도 1과 같이 전환반응기(101)는 전환된 중탄산이온이 용해된 중탄산수용액을 중탄산수용액 배출부(130)를 통해 배출시킬 수 있으며, 배출된 중탄산이온은 전환반응기의 중탄산수용액 배출부(131)와 연통되는 별도의 중탄산수용액 저장소(301)에 수집되거나 및/또는 중탄산수용액 배출부(131)와 연통된 중탄산수용액 활용소에서 이용될 수 있다. 상기 중탄산수용액 활용소는 전환 및/또는 수집된 중탄산이온을 탄산염으로 합성, 이를 원료로 미생물 배양, 금속 양이온의 제거, 방사성 물질의 정화 등일 수 있으나 이에 한정되는 것은 아니다.
또한, 본 발명의 다른 구현예에 따른 전환반응기는 상술한 도 1과 다르게 공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체를 포함하여 구현된다. 구체적으로 전환반응기는 이산화탄소를 포함하는 배가스가 공급되는 가스공급부; 공급된 상기 이산화탄소를 용해 및 전환시키기 위하여 전환반응기의 일부분에 채워진 액체를 포함하는 이산화탄소전환부; 및 상기 이산화탄소전환부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하여 구현된다.
또한, 본 발명의 또 다른 구현예에 따른 전환반응기는 탄산무수화효소를 더 구비하여 구현되며, 구체적으로 전환반응기는 이산화탄소를 포함하는 배가스가 공급되는 가스공급부; 공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체, 및 탄산무수화효소를 구비한 효소반응부; 및 상기 효소반응부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하여 구현된다.
상술한 본 발명의 바람직한 일구현예에 의한 전환반응기를 통해 이산화탄소를 전환시키는 방법에 대해 설명하면, 이산화탄소 전환반응기(101)의 가스공급부(111)로 배가스를 공급하는 단계; 및 (2) 공급된 배가스에 포함된 이산화탄소 중 일부는 전환반응기 일부에 채워진 액체 또는 효소반응기(121)를 통해 중탄산이온으로 전환시키고, 미반응된 나머지 이산화탄소를 포함하는 배가스는 가스배출부(141)를 통해 배출될 수 있다.
상기 (1) 단계 및 (2) 단계의 구체적인 설명은 상술한 전환반응기에서의 설명과 동일하여 생략한다. 상기 전환반응기에서의 (2) 단계는 바람직하게는 pH 7.5 ~ 8.5, 온도 25 ~ 45℃에서 수행함이 보다 유리할 수 있다.
또한, 상기 (1) 단계는 전환반응기에 공급되는 배가스로 인한 반응기 배압증가를 방지하기 위하여, 배가스가 전환반응기의 액체 상부에서 공급되며, 공급된 배가스 내 이산화탄소는 전환반응기 내부의 액체와 기체간 계면에 위치하는 구조체에 구비된 탄산무수화효소를 통해 중탄산이온으로 전환반응이 촉진될 수 있다.
한편, 본 발명은 상술한 전환반응기를 포함하여 구현된 이산화탄소 전환 및 포집용 직렬반응기를 포함하며, 상기 직렬반응기가 포집반응기를 구비함에 따라서 더욱 상승된 이산화탄소 저감 효율 및 배압 증가 억제 효과를 달성할 수 있다.
본 발명의 일구현예에 따른 이산화탄소 전환 및 포집용 직렬반응기는 도 6 및 도 7에 도시된 것과 같이 이산화탄소가 어느 일방에서 타방으로 흐를 수 있도록 서로 연통된 전환반응기(101) 및 포집반응기(201)를 포함하고, 상기 전환반응기(201)를 통해 전환된 중탄산이온을 수집하는 중탄산수용액 저장소(301) 및 포집반응기(201)에서 포집된 이산화탄소를 분리, 수집하기 위한 이산화탄소 탈착기(401)를 더 포함할 수 있다.
상기 직렬반응기에서의 이산화탄소 흐름 및 이에 따른 반응을 살펴보면, 도 6과 같은 이산화탄소의 유체흐름을 갖는 직렬반응기는 이산화탄소를 포함하는 배 가스가 가스공급부(111)를 통해 전환반응기(101)로 공급된 후 액체 또는 효소반응부(121)를 거쳐 이산화탄소가 전환된 후, 미반응된 이산화탄소를 포함하는 배가스가 전환반응기(101)의 가스배출구(141)을 통해 포집반응기(201)로 공급되어 미반응된 이산화탄소가 포집되고, 포집과정에서 미포집된 이산화탄소를 포함하는 배가스는 포집반응기(201)의 가스배출구(221)를 통해 배출될 수 있다.
또한, 도 7과 같은 이산화탄소의 유체흐름을 갖는 직렬반응기는 이산화탄소를 포함하는 배 가스가 포집반응기(201)의 가스공급부(221)를 통해 공급된 후 이산화탄소가 포집되고, 미포집된 이산화탄소는 가스공급부(141)를 통해 전환반응기(101)로 공급된 후 효소반응부(121)를 거쳐 이산화탄소가 전환되고, 미반응된 이산화탄소를 포함하는 배가스는 전환반응기(101)의 가스배출구(111)을 통해 배출될 수 있다.
도 6 및 도 7과 같은 공급된 배가스의 흐름을 갖는 직렬반응기를 통상의 이산화탄소 저감장치 또는 전환장치와 대비하면 공급되는 배가스의 빠른 유속 및 이에 따라 반응기에 걸리는 배압, 반응기 자체의 이산화탄소 전환/포집 능력 및 전환/포집 능력을 고려하여 목적하는 수준의 이산화탄소 전환 및 포집을 위해 필요한 반응기에서의 배가스 체류시간을 모두 종합적으로 고려했을 때, 반응기에 걸리는 배압을 현저히 감소시킬 수 있고, 이산화탄소의 저감 및 전환효율에 있어서 더욱 상승된 효과를 얻을 수 있다.
구체적으로 통상의 이산화탄소 저감장치는 이산화탄소를 흡수제나 분리막을 사용하여 저감하게 되는데, 상기 흡수제나 분리막은 그 자체의 효율상 배가스내 이산화탄소를 포집 하는데 있어서 일정한 시간을 요구하며, 이에 더해 분리막은 현재의 기술개발 수준상 이산화탄소와 그 이외의 질소 등의 기체를 서로 분리하기에 만족스러운 효율이 발현되지 않는 문제점이 있다. 이에 따라서 배가스에 포함된 이산화탄소의 전량을 포집시키기 위해서는 높은 포집효율을 갖는 흡수제나 분리막을 사용하는 것뿐만 아니라 반응기 내부에서 배가스를 일정시간 이상 체류시키는 것이 요구된다. 그러나 화력발전소 등에서 배출되는 배가스의 양 및 빠른 유속을 고려했을 때, 한정된 부피 및 제한된 포집효율을 갖는 반응기로 유입된 배가스는 이산화탄소가 전량 포집되기 위해서 필요한 정도의 반응기내 체류시간을 확보하기 어렵고, 충분히 반응기내에서 체류되지 못하고 반응기를 거쳐 배출된 배가스에는 미포집된 이산화탄소가 다량 포함되어 있을 수 있어서 이산화탄소의 저감효율이 좋지 못할 수 있다.
이를 해결하고자 포집효율이 매우 높은 흡수제를 사용할 경우 포집된 이산화탄소의 분리공정에서 매우 큰 에너지가 소모되며, 이와 같은 에너지의 생산을 위해 이산화탄소가 오히려 발생/배출되는 문제가 있을 수 있다. 또한, 다른 방법으로 반응기내 이산화탄소의 체류시간을 충분히 확보시킬 경우 이산화탄소의 포집효율은 증가할 수 있으나, 매우 빠르게 배출되는 배가스의 양 및 유속을 고려했을 때 반응기에 걸리는 배압의 증가, 이로 인한 포집공정의 불안정화 및 반응기의 손상/파손을 초래할 수 있다.
이에 따라서 본 발명은 본 발명에 따른 전환반응기(101) 및 포집반응기(201)를 직렬로 연결시키고, 공급된 배가스를 전환반응기(101) 또는 포집반응기(201)를 거쳐 포집반응기(201) 또는 전환반응기(101)로 유입되게 함으로써 이산화탄소의 저감효율을 매우 향상시킬 수 있는 것은 물론, 직렬반응기 전체에서 체류되는 배가스의 체류시간을 연장시킬 수 있는 반사적 효과를 얻고, 이를 통해 배출되는 배가스가 많은 양으로 빠르게 공급되더라도 목적하는 전환/저감 효율 및 반응기의 배압 증가 방지를 동시에 달성할 수 있으며, 이들 중 어느 하나만을 구비함에 따라서 발생하는 공정부하를 방지할 수 있다.
나아가 공정부하 감소는 이산화탄소 전환 및/또는 포집 공정에서 사용되는 탄산무수화효소의 이산화탄소 전환력 및/또는 이산화탄소 흡수제의 포집력이 일정 정도 이상을 만족시켜야 한다는 제한에서 자유로울 수 있어서 반응기를 설치, 운영하는 비용절감 측면에서 매우 유리하다.
더불어 상기 전환반응기(101)를 통한 이산화탄소의 전환공정은 배가스 내 이산화탄소의 저감뿐만 아니라 다양한 분양에 활용될 수 있는 부산물을 생산할 수 있어서 환경오염을 방지 및 부가가치 창출의 경제적 이익을 동시에 얻을 수 있다.
또한, 도 6과 같이 전환반응기(101)를 통해 이산화탄소가 저감된 후 미반응된 이산화탄소에 대해 포집공정이 수행될 경우 배가스내 이산화탄소가 1차적으로 전환반응기(101)를 통해 저감됨에 따라서 포집반응기(201)는 이산화탄소와의 결합력이 비교적 약한 흡수제를 사용하더라도 직렬반응기를 통해 배출된 배가스에는 매우 낮은 농도의 이산화탄소만이 포함되어 높은 수준의 이산화탄소 저감 효율을 유지할 수 있고, 약한 흡수제에 결합된 이산화탄소를 분리시키는데 적은 에너지가 소요됨에 따라서 이산화탄소를 분리 위한 에너지 생성 및 이에 따른 이산화탄소의 추가배출 우려가 적다. 한편, 도 6과 같은 직렬반응기는 도 7과 같은 직렬반응기에 비해 포집반응기에서의 포집효율이 상대적으로 적게 구현되어도 목적하는 수준의 이산화탄소 전환 및 저감을 달성할 수 있는 동시에 포집된 이산화탄소의 분리에 적은 에너지가 소비될 수 있음에 따라서 경제적, 환경적 측면에서 유리할 수 있다.
한편, 이들 중 어느 하나만을 복수개로 구비해 직렬로 연결시킬 경우 먼저, 여러 개의 포집반응기를 직렬로 연결 시, 배압의 발생은 저지시킬 수 있으나 포집된 이산화탄소의 분리에 소요되는 에너지가 그 만큼 더 증가하게 되며, 증가된 에너지 생산으로 인해 이산화탄소 발생 및 배출은 더 늘어나게 되는 문제가 있다. 또한, 후술하는 것과 같이 이산화탄소의 포집을 통한 저감공정 중에 유용한 부산물을 동시에 생산해내지 못하여 부가가치 창출을 통한 경제적 이익에 불리한 문제가 있다. 또한, 만일 여러 개의 전환반응기를 직렬로 연결 시, 전환반응기를 통한 이산화탄소 저감효율을 고려했을 때 구비해야 되는 전환반응기의 개수가 현저히 증가할 수 있고, 설비증가로 인한 규모 및 설비제조비용 상승이 문제될 수 있다. 또한, 이산화탄소의 전환반응이 가역반응일 경우 이산화탄소 저감 효율에 있어서 한계가 명확하다.
다른 한편, 설비의 축소 및 전환/포집을 동시에 달성하기 위해 하나의 반응기에 이산화탄소 포집반응 및 전환반응을 일어나게 하는 것을 고려할 수 있고, 일례로, 하나의 반응기에 이산화탄소 흡수제 및 탄산무수화효소를 동시에 구비시킬 수 있으나 대부분의 흡수제 용액의 온도는 40 ~ 60℃이며, pH가 9 ~ 12 정도로 고온 및 강알칼리 환경으로써, 상기 탄산무수화효소가 장기간 활성을 유지하기에는 매우 가혹한 환경임에 따라서 효소활성이 빠르게 손실되어 오랜 기간 안정적으로 효소활성을 발현할 수 없고 잦은 효소의 교체가 요구되어 전환비용의 상승을 초래할 수 있다. 또한, 탄산무수화효소를 동시에 구비한다고 하더라도 배가스내 이산화탄소는 매우 고농도이어서 이산화탄소 포집공정이 매우 부하가 큼에 따라 포집되지 않고 배가스와 같이 배출되는 이산화탄소의 양이 증가하여 배가스내 이산화탄소의 양을 저감시키기 어려울 수 있다.
도 6과 같은 배가스의 흐름을 기준으로 직렬반응기의 각 구성에 대해 이하 설명한다.
이산화탄소를 포함하는 배가스는 먼저 전환반응기(101)로 공급되어 이산화탄소를 중탄산이온으로 전환함을 통해 유용한 부산물의 생산과 동시에 이산화탄소를 저감시킬 수 있다. 상기 전환반응기(101)에 대한 설명은 상술한 것과 동일하여 생략한다. 상기 전환반응기(101)의 액체 또는 효소반응부(121)에서 미반응된 이산화탄소를 포함하는 배가스는 가스 배출부(141)를 통해 포집반응기(201)로 공급될 수 있다.
다음으로 상술한 전환반응기(101)와 직렬로 연결되는 포집반응기(201)에 대해 설명한다.
상기 포집반응기(201)는 전환반응기(101)에서 미반응된 이산화탄소를 포집하는 역할을 담당한다. 상술한 전환반응기(101)의 가스배출부(141)를 통해 이산화탄소를 포함하는 배 가스가 포집반응기(201)의 반응챔버(231) 내부로 공급되면 공급된 이산화탄소가 반응기에서 포집되며, 미포집된 이산화탄소를 포함하는 배가스는 이후 포집반응기(201)의 가스배출구(221)를 통해 외부로 배출될 수 있다. 상기 포집반응기(201)는 이산화탄소 분리막 및/또는 이산화탄소를 흡수제를 통해 이산화탄소를 분리 포집할 수 있다.
상기 이산화탄소 분리막은 통상의 이산화탄소 분리막일 수 있음에 따라 구체적인 재질, 구조 등에 당업계에 공지된 이산화탄소 분리막의 경우 제한 없이 사용될 수 있다. 이에 대한 비제한적인 예로써, 상기 이산화탄소 분리막의 소재는 유기고분자로서 CO2/N2의 분리특성이 탁월한 6FDA계 폴리이미드, Cardo-type의 폴리이미드, 폴리술폰, 셀룰로오스 아세테이트 등일 수 있다. 또한, 구체적인 구조는 다공성의 스틸이나 세라믹지지체 상에 코팅되는 다공성 무기막을 포함하는 구조이거나 유리상의 고분자 또는 고무상의 고분자에 의한 투과선택성을 가지는 고분자막 구조일 수 있으나 이에 한정되는 것은 아니다. 또한, 그 메커니즘에 있어서, 분리막이 상기 다공성 무기막일 경우 분자량에 따른 Knudsen 확산, 표면 인력에 의한 표면확산, 모세관 응축, 분자의 크기에 따른 분자체 메커니즘으로 구분될 수 있으나 이에 제한되는 것은 아니며 목적에 따라 적절한 분리막을 선택하여 사용할 수 있다.
상기 이산화탄소 흡수제는 통상의 이산화탄소 흡수제일 수 있고, 구체적으로 건식흡수제 및 습식흡수제 중 어느 하나 이상을 포함할 수 있다. 상기 건식흡수제는 일예로써, 고체아민, 알칼리금속염, 알칼리토금속염, 제올라이트, 금속유기구조체 등을 포함할 수 있다. 또한, 상기 습식흡수제는 통상의 습식흡수제일 수 있고, 바람직하게는 아민계 수용액일 수 있으며, 모노에탄올아민, 디에탄올아민, 디메틸에탄올아민, 디에틸에탄올아민, 디메틸글리신, N-메틸디에탄올아민, 2-아미노-2메틸-1-프로판올, 2-아미노-2하이드록시메틸-1,3-프로파네디올, 파이페리딘, 파이페라진, 탄산칼륨, 탄산나트륨, 암모니아 및 탄산암모늄으로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.
본 발명의 바람직한 일구현예에 따르면, 상기 포집반응기는 이산화탄소 흡수제, 바람직하게는 습식흡수제를 포함할 경우 탄산무수화효소 가교결합복합체를 더 포함할 수 있다. 상기 포집반응기에 탄산무수화효소 가교결합복합체가 더 구비되는 경우 이산화탄소의 포집효율을 더욱 향상시킬 수 있고, 포집속도를 더욱 빠르게 할 수 있는 이점이 있다. 다만, 상기 포집반응기의 이산화탄소 포집 환경은 pH가 9 ~ 12의 알칼리 조건이며, 온도가 40 ~ 60℃일 수 있는데, 이와 같은 조건에서는 탄산무수화효소의 변성을 야기하여 효소활성이 현저히 저하될 수 있다. 따라서 안정적으로 장기간 우수한 효소활성 발현을 위하여 상기 탄산무수화효소는 전환반응기에 포함되는 탄산무수화효소와 상이할 수 있고, 바람직하게는 도 3 및/또는 도 4와 같이 탄산무수화효소간 가교결합 되어 집적된 탄산무수화효소 가교결합복합체가 유리할 수 있다.
상술한 전환반응기(101)에서 공급된 이산화탄소가 포집반응기(201)를 거치면서 포집된 이산화탄소 흡수제와 이산화탄소간 결합물 및 반응결합물 중 어느 하나 이상을 포함하는 포집물은 포집물 배출부를 통해 배출된 후에 이산화탄소를 분리 및 수집하는 이산화탄소 탈착기(401)로 공급되며, 전환반응기(101)에서 공급된 이산화탄소를 포함하는 배가스 중 포집된 이산화탄소를 제외한 잔량의 배가스는 배가스 배출부(221)를 통해 최종 대기중으로 배출되거나 전환반응기(101)의 가스 공급부(111)로 재공급되어 이산화탄소 저감 공정을 반복 수행할 수도 있다.
상기 탈착기(401)는 공급된 포집물 및 분리된 이산화탄소를 저장하는 챔버(421), 이산화탄소 분리과정에서 소요되는 에너지, 예를 들어 열을 발생시키는 에너지 공급부(411)를 포함할 수 있고, 분리된 이산화탄소를 배출시키는 이산화탄소 배출부(431)를 구비할 수 있다. 이때 가해지는 열은 40 ~ 60℃일 수 있으나 이에 제한되는 것은 아니며, 사용되는 이산화탄소의 흡수제 종류에 따라 변경될 수 있다.
한편, 상술한 본 발명에 따른 직렬반응기는 동일한 직렬반응기를 통해 도 6 및 도 7과 같이 상이한 배가스의 흐름을 생성하기 위하여 도 6과 같이 전환반응기(101)에서의 가스공급부(111)가 도 7에서는 가스배출부(111)로 기능하고, 포집반응기(201) 역시 도 6에서의 가스배출부(221)가 도 7에서는 가스공급부(221)로 기능하도록 공지된 방법 및 구성들을 채용하여 구현될 수 있다. 또는 도 6 및 도 7과 다르게 전환반응기 및 포집반응기 모두 직접 배가스가 유입될 수 있는 가스공급부를 각각 포함할 수 있으며, 각각의 가스공급부는 개폐식으로 구현될 수 있고, 어느 일방이 개방된 경우 다른 일방이 폐쇄되는 방식으로 이산화탄소 전환 및 포집공정이 이루어지게 할 수 있다. 즉, 공급되는 배가스의 양, 이산화탄소의 농도, 중탄산이온의 필요정도를 고려해서 배가스가 먼저 유입되는 반응기가 선택될 수 있으며, 이때 선택된 반응기로 배가스가 직접 유입되고, 나머지 선택되지 못한 반응기에 구비되는 가스공급부는 배가스의 직접유입을 막도록 닫혀진 상태일 수 있다. 또한, 이와 같은 각각에 구비된 가스공급부의 개방 또는 폐쇄는 배가스가 직렬반응기로 공급된 후 전환 및 포집공정이 일어나는 공정 중간에도 반응기 내부에 체류중인 배가스의 양을 고려하여 바뀔 수도 있다.
한편, 본 발명에 따른 다른 구현예에 의한 직렬반응기는 도 8 및 도 9에 도시된 것과 같이 이산화탄소가 어느 일방에서 타방으로 흐를 수 있도록 서로 연통된 전환반응기(100,100') 및 포집반응기(200,200')를 포함하고, 상기 전환반응기(100,100')를 통해 전환된 중탄산이온을 수집하는 중탄산이온 저장소(300,300') 및 포집반응기(200,200')에서 포집된 이산화탄소를 분리, 수집하기 위한 이산화탄소 탈착기(400,400')를 더 포함할 수 있다.
상기 직렬반응기에서의 이산화탄소 흐름 및 이에 따른 반응을 살펴보면, 도 8과 같은 직렬반응기에서 이산화탄소를 포함하는 배가스는 가스공급부(110)를 통해 전환반응기(100)로 공급된 후 효소반응부(120)를 거쳐 이산화탄소가 전환된 후 미반응된 이산화탄소를 포함하는 배가스가 전환반응기(100)의 가스배출구(140)을 통해 포집반응기(200)로 공급되어 상기 미반응된 이산화탄소가 포집되고, 미포집된 이산화탄소를 포함하는 배가스는 포집반응기(200)의 가스배출구(220)를 통해 배출될 수 있다.
또한, 도 9와 같은 직렬반응기에서 이산화탄소를 포함하는 배가스는 포집반응기(200')의 가스공급부(220')를 통해 공급된 후 이산화탄소가 포집되고, 미포집된 이산화탄소는 가스공급부(110')를 통해 전환반응기(100')로 공급된 후 효소반응부(120')를 거쳐 이산화탄소가 전환되고, 미반응된 이산화탄소를 포함하는 배가스는 전환반응기(100')의 가스배출구(140')을 통해 배출될 수 있다.
상기 도 8과 같은 직렬반응기는 도 9와 같은 직렬반응기에 비해 포집반응기에서의 포집효율이 상대적으로 적게 구현되어도 목적하는 수준의 이산화탄소 전환 및 저감을 달성할 수 있는 동시에 포집된 이산화탄소의 분리에 적은 에너지가 소비될 수 있음에 따라서 경제적, 환경적 측면에서 유리할 수 있다.
도 8 및 도 9와 같은 본 발명에 따른 다른 구현예에 의한 직렬반응기는 상술한 도 6과 같은 직렬반응기와 이산화탄소 전환반응기가 상이하고, 나머지 구성은 동일함에 따라서 이하 도 8 및 도 9에 따른 직렬반응기의 설명은 도 6에 따른 직렬반응기와의 차이점 위주로 설명하고, 도 8을 기준으로 설명한다.
먼저, 이산화탄소를 포함하는 배가스가 최초 공급되는 전환반응기(100)에 대해 설명한다. 상기 전환반응기(100)는 배가스에 포함된 고농도의 이산화탄소를 중탄산이온으로 전환시키는 역할을 수행하며, 이와 같은 이산화탄소의 전환은 공급된 이산화탄소의 1차 저감 효과를 갖는다. 이와 같은 이산화탄소 전환공정은 다른 방식의 이산화탄소 저감 및/또는 전환공정에 비해서 친환경적이고, 이산화탄소를 산업상 이용가능한 중탄산이온으로 전환시켜 부가가치를 창출할 수 있어서 경제성 및 생산성에서 매우 유리하다. 또한, 탄산무수화효소는 이론상으로 1초당 백만개의 이산화탄소 분자를 중탄산이온으로 전환할 수 있음에 따라서 빠른 속도로 유입되는 이산화탄소의 전환에 매우 적합하고 이를 통해 반응기에 걸리는 배압의 상승을 더욱 방지할 수 있으며, 이산화탄소의 탈착과 같은 부가적 공정을 더 요구하지 않는 이점이 있다.
공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체 및 상기 전환반응을 촉진시키는 탄산무수화효소를 포함하는 효소반응부(120)를 구비하며, 상기 효소반응부(120)를 구비할 수 있도록 내부가 비어 있는 반응챔버(150), 이산화탄소를 포함하는 배가스가 공급되는 가스공급부(110), 상기 가스공급부(110)를 통해 전환반응기(100) 내부로 공급된 배가스 내 이산화탄소 중 미반응된 이산화탄소 및 배가스가 배출되는 가스배출구(140), 및 효소반응부(120)에서 전환된 중탄산이온이 용해된 수용액이 배출되는 중탄산수용액 배출부(130)를 포함할 수 있다.
발생된 배가스는 가스공급부(110)를 통해 전환반응기(100) 내부로 공급되며, 공급된 배가스는 효소반응부(120)를 통과하게 된다.
상기 효소반응부(120)는 배가스에 포함된 이산화탄소를 중탄산이온으로 전환시켜 배가스에 포함된 이산화탄소를 1차로 저감시키는 기능을 수행한다. 상기 효소반응부(120)는 이산화탄소를 중탄산이온으로 전환시키는 반응을 촉진시킬 수 있는 촉매로써, 탄산무수화효소(120a)를 포함하고, 이와 같은 반응을 매개 및/또는 반응물로 역할하는 액체(120b)를 포함한다. 상기 탄산무수화효소(120a)는 다수개가 액체 상에 분산된 유리효소, 다수개가 비결합되어 응집된 효소집합체 및 다수개가 상호 결합된 효소가교결합복합체 중 어느 하나 이상의 형태로 포함될 수 있다. 또한, 상기 탄산무수화효소(120a)는 지지체를 더 구비하여 상기 지지체 상에 결합되거나 지지체 내부에 담지된 상태로 효소반응부(120)에 구비될 수 있다. 한편, 상기 액체(120b) 및 탄산무수화효소(120a)에 대한 구체적 설명은 상술한 것과 동일하여 생략한다.
상술한 탄산무수화효소(120a)는 효소반응부(120)에 구비되어 공급되는 이산화탄소를 중탄산이온으로 전환시키는 것을 촉진시킬 수 있고, 전환된 중탄산이온은 중탄산수용액 배출부(130)를 통해 배출되며, 배출된 중탄산이온수용액은 전환반응기의 중탄산수용액 배출부(130)와 연통되는 별도의 중탄산수용액 저장소(300)에 수집되거나 및/또는 중탄산수용액 배출부(130)와 연통된 중탄산이온의 활용소에서 이용될 수 있다. 상기 중탄산이온의 활용소는 전환 및/또는 수집된 중탄산이온을 탄산염으로 합성, 이를 원료로 미생물 배양, 금속 양이온의 제거, 방사성 물질의 정화 등일 수 있으나 이에 한정되는 것은 아니다.
또한, 본 발명은 상술한 전환반응기가 도 1과 다르게 공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체를 포함하여 형성될 수 있다.
한편, 전환반응기(100)의 일부분에 채워진 액체 또는 이를 포함하는 효소반응부(120)에서 전환 가능한 이산화탄소 농도는 제한적일 수 있음에 따라 공급되는 배가스에 포함된 이산화탄소의 농도가 고농도일 경우 효소반응부(120)에서 미반응된 이산화탄소가 존재하며, 상기 미반응된 이산화탄소는 전환반응기(100)에 구비될 수 있는 가스 배출부(140)를 통해 포집반응기(200)로 공급될 수 있다.
상기 포집반응기(200)에 대한 설명은 상술한 도 6에서의 포집반응기(201)에 대한 설명과 동일하여 생략한다.
한편, 본 발명에 따른 바람직한 다른 구현예에 의한 직렬반응기는 도 8 및 도 9와 다르게 전환반응기 및 포집반응기 중 어느 하나가 다른 일방을 거쳐 배가스가 유입되는 방식이 아니라, 전환반응기 및 포집반응기 모두 직접 배가스가 유입될 수 있는 가스공급부를 각각 포함할 수 있으며, 각각의 가스공급부는 개폐식으로 구현될 수 있고, 어느 일방이 개방된 경우 다른 일방이 폐쇄되는 방식으로 이산화탄소 전환 및 포집공정이 이루어지게 할 수 있다. 즉, 공급되는 배가스의 양, 이산화탄소의 농도, 중탄산이온의 필요정도를 고려해서 배가스가 먼저 유입되는 반응기가 선택될 수 있으며, 이때 선택된 반응기로 배가스가 직접 유입되고, 나머지 선택되지 못한 반응기에 구비되는 가스공급부는 배가스의 직접유입을 막도록 닫혀진 상태일 수 있다. 또한, 이와 같은 각각에 구비된 가스공급부의 개방 또는 폐쇄는 배가스가 직렬반응기로 공급된 후 전환 및 포집공정이 일어나는 공정 중간에도 반응기 내부에 체류중인 배가스의 양을 고려하여 바뀔 수도 있다.
이상으로 설명한 본 발명에 따른 직렬반응기를 통해 배가스에 포함된 이산화탄소는 도 6 및 도 8과 같이 전환반응기로 배가스가 직접 공급될 경우, (A) 이산화탄소를 포함하는 배 가스를 상술한 본 발명의 일구현예에 따른 직렬반응기의 전환반응기에 공급하여 상기 이산화탄소를 중탄산이온으로 전환시키는 단계; 및 (B) 공급된 상기 이산화탄소 중 미반응된 이산화탄소가 포함된 배 가스를 포집반응기로 공급하여 이산화탄소를 포집하는 단계;를 포함하여 이산화탄소가 전환 및 포집될 수 있다.
또한, 도 7 및 도 9와 같이 포집반응기로 배가스가 직접 공급될 경우, (a) 이산화탄소를 포함하는 배 가스를 본 발명의 일구현예에 따른 직렬반응기의 포집반응기에 공급하여 상기 이산화탄소를 포집하는 단계; 및 (b) 공급된 이산화탄소 중 미포집된 이산화탄소가 포함된 배 가스를 전환반응기로 공급하여 이산화탄소를 중탄산이온으로 전환시키는 단계;를 포함하여 이산화탄소가 전환 및 포집될 수 있다.
이산화탄소의 전환 및 포집방법을 도 6과 같은 직렬반응기를 중심으로 설명하면, 상기 (A) 단계의 구체적인 설명은 상술한 전환반응기에서의 설명과 동일하여 생략한다. 전환반응기에서의 이산화탄소 전환 공정은 바람직하게는 pH 7.5 ~ 8.5, 온도 25 ~ 45℃에서 수행함이 보다 유리할 수 있다.
또한, 상기 (A) 단계는 전환반응기에 공급되는 배가스로 인한 반응기 배압증가를 방지하기 위하여, 배가스가 전환반응기의 액체 상부에서 공급되며, 공급된 배가스 내 이산화탄소는 전환반응기 내부의 액체와 기체간 계면에 위치하는 구조체에 구비된 탄산무수화효소를 통해 중탄산이온으로 전환반응이 촉진될 수 있다.
또한, 상기 (B) 단계의 구체적인 설명은 상술한 포집반응기에서의 설명과 동일하여 생략한다. 포집반응기에서의 이산화탄소 포집 공정은 바람직하게는 pH 9 ~ 12, 온도 40 ~ 60℃ 보다 바람직하게는 45 ~ 55℃의 온도로 수행될 수 있다. 만일 40℃미만의 온도로 수행될 경우 목적하는 수준으로 이산화탄소를 저감시킬 수 없고, 60℃를 초과할 경우 이산화탄소의 용해도가 낮아져 기체상태로 배출되는 이산화탄소의 양이 현저히 늘어남에 따라 포집반응기에서 미반응되는 이산화탄소의 양이 현저히 늘어나는 문제점이 있을 수 있다.
본 발명의 바람직한 일구현예에 따르면, 상기 포집반응기에서 이산화탄소 흡수제로 이산화탄소를 포집시킨 후, 포집된 이산화탄소를 배출 및 이산화탄소 흡수제와 이산화탄소를 분리시켜 이산화탄소를 수집하는 단계;를 더 포함할 수 있고, 이산화탄소 분리, 수집 공정은 상술한 직렬반응기에 더 구비될 수 있는 탈착기(401)를 통해 수행될 수 있으나, 반드시 이에 제한되는 것은 아니다. 상기 이산화탄소 탈착기는 통상의 이산화탄소 저감 장치에 응용되는 이산화탄소 탈착기일 수 있음에 따라 본 발명에서는 이를 특별히 한정하지 않으며, 이산화탄소를 분리시키기 위해 투입되는 열 등의 에너지 크기는 포집반응기에 구비되는 흡수제의 구체적 종류에 따라 상이하며, 흡수제 구체적 종류에 따라 분리시간도 상이할 수 있어 본 발명에서는 이에 대해 특별히 한정하지 않는다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<준비예 1> - 탄산탈수효소 가교결합복합체 1의 제조
탄산무수화효소 가교결합복합체에 구비되는 지지체로서 고분자 나노섬유를 사용하였다. 고분자 나노섬유를 만들기 위한 고분자로 폴리스티렌(polystyrene, PS, MW = 950,400)과 폴리(스티렌-co-무수말레산)(poly(styrene-co-maleic anhydride), PSMA, MW = 224,000)을 사용하였고, 고분자를 녹이기 위한 유기용매는 테트라하이드로퓨란(Tetrahydrofuran, THF)과 아세톤(acetone)을 사용하였다. 이들 재료는 Sigma-Aldrich(St. Louis, MO, USA)에서 구입하였다. 고분자 나노섬유는 전기방사 방법을 이용하여 제조하였다. 전기방사의 전압 운용 조건은 7 kV이며, 시린지 펌프(syringe pump)를 이용해 유속은 0.1 ml/hr로 진행하였다.
탄산무수화효소 가교결합복합체 제조를 위해 상기에서 제조한 고분자 나노섬유를 탄산무수화효소 용액(10 mg/ml, 50 mM 인산나트륨 버퍼(sodium phosphate buffer, pH 7.6))과 혼합하였다. 탄산무수화효소 용액과 나노섬유가 들어있는 용기를 30분간 200 rpm으로 혼합한 후, 탄산무수화효소와 고분자 나노섬유에 있는 제1 작용기인 무수말레인산과의 공유결합을 유도하기 위해 4 ℃에서 2시간 동안 교반하였다.
다음으로, 탄산무수화효소 가교결합복합체 형성을 위해 가교결합제로서 0.5%v/v의 글루타르알데하이드를 첨가하였으며, 석출화제로서 용액 속에 암모늄설페이트용액 농도가 45%w/v가 되도록 한 뒤, 가교결합복합체 형성이 용이하기 위해 4℃의 냉장고에서 14시간동안 반응시켰다. 그 뒤 탄산무수화효소 가교결합복합체를 포함하는 용액을 100mM Tris buffer pH 7.6를 이용해 30분 동안 200 rpm에서 교반시켜준 후 다시 100 mM PB를 이용하여 씻어주었다. 모든 처리가 끝난 효소고정화 물질들은 4 ℃에서 보관하여 도 3과 같은 탄산무수화효소 가교결합복합체를 제조하였다.
<실시예1>
준비예1에서 준비된 탄산무수화효소 가교결합복합체를 구비하는 구조체의 제조를 위하여 도 5와 같은 구조의 몸체부 및 부유부를 준비하였다. 구체적으로, 상기 몸체부의 재질은 ABS(acrylonitrile-butadiene-styrene) 폴리머를 사용하였고, 크기는 63 mm x 21 mm x 1 mm, 유로로 활용되는 격자는 6 mm x 6 mm 의 정사각형 모양으로 제조하였다. 이 때, 상기 몸체부는 동일한 구조의 제1몸체 및 제2몸체 2개가 수직 방향으로 적층되어, 적층 구조 사이에 준비예 1의 탄산무수화효소 가교결합복합체를 수용될 수 있도록 준비했다. 또한, 상기 부유부의 재질은 ABS(acrylonitrile-butadiene-styrene) 폴리머를 사용하였고, 크기는 21 mm x 10 mm x 3 mm의 직육면체 모양으로 제조하였다. 이 때, 부유부의 내부에 공기가 들어갈 수 있는 빈 공간을 만들어, 상기 몸체부와 결합 시 상기 몸체부가 상기 액체와 기체간 계면에 위치할 수 있도록 준비하였다
상기 적층된 2개의 몸체부 사이에 준비예1의 탄산무수화효소 가교결합 복합체를 하우징 형태로 수용시켜 고정하고 몸체부 양 단에 부유부를 결합하여 구조체를 제조하였다. 이후 직경, 높이가 각각 9 cm, 22 cm 이고, 높이 10 cm에 위치하는 직경 0.3 cm인 가스공급부 및 상기 가스공급부에 대향하는 동일 직경의 가스배출부를 구비시킨 용기에 높이 5 cm 로 Tris-HCl (pH 8.0) 용액을 투입한 후 상기 용액의 계면에 상기 구조체를 위치시켜 이산화탄소 전환반응기를 제조하였다.
<실시예 2>
실시예 1과 동일하게 실시하여 제조하되, 탄산무수화효소 가교결합복합체를 구비시키지 않은 구조체를 용액과 기체의 계면에 위치시켜 이산화탄소 전환반응기를 제조하였다.
<실험예>
실시예에 따른 이산화탄소 전환반응기의 가스공급부를 통해 기체상태의 이산화탄소를 200 mL/min 속도 20분간 투입하여 이산화탄소 전환반응을 유도했다. 이후 반응용액 20 mL를 추출한 뒤, 670 mM 염화칼슘 용액 10 mL와 반응시켜 탄산염을 침전시켰고, 침전된 탄산염의 분리를 위해 15000 rpm에서 15분동안 원심분리를 진행한 뒤, 액상부를 제거하였다. 분리된 탄산염을 90℃ 오븐에서 24시간 동안 건조시킨 뒤, 무게를 측정하여 하기 표 1에 나타내었다.
실시예1 실시예2
전환된 탄산칼슘 무게(㎎) 214 114
상기 표 1을 통해 확인할 수 있듯이, 탄산무수화효소 가교결합복합체 구비한 전환반응기가 탄산무수화효소 가교결합복합체를 구비하지 않는 실시예2보다 1.9배 큰 이산화탄소전환효율을 가진다는 것을 확인할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (25)

  1. 이산화탄소를 포함하는 배가스가 공급되는 가스공급부;
    공급된 상기 이산화탄소를 중탄산이온으로 전환시키는 반응을 위하여 전환반응기의 일부분에 채워진 액체, 및 탄산무수화효소를 구비한 구조체를 포함하는 효소반응부; 및
    상기 효소반응부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하는 이산화탄소 전환반응기.
  2. 제1항에 있어서,
    상기 효소반응부에서 전환 및 용해된 중탄산수용액을 배출시키기 위한 중탄산수용액 배출부를 더 포함하는 이산화탄소 전환반응기.
  3. 제1항에 있어서,
    상기 탄산무수화효소는 야생형(wild type) 탄산무수화효소 및 탄산무수화효소 변이체 중 어느 하나 이상을 포함하는 이산화탄소 전환 및 포집용 직렬반응기.
  4. 제1항에 있어서,
    상기 전환반응기에 공급되는 배가스로 인한 반응기 배압증가를 방지하기 위하여, 전환반응기 내부의 액체와 기체간 계면 상부에 가스공급부 및 가스배출구가 배치되며, 상기 구조체는 상기 계면에 위치하여 이산화탄소의 전환을 촉진하는 이산화탄소 전환반응기.
  5. 제4항에 있어서,
    상기 구조체는 탄산무수화효소를 포함하는 몸체부 및 상기 몸체부에 결합되어 상기 몸체부가 계면에 위치하도록 하는 적어도 하나의 부유체를 더 포함하는 이산화탄소 전환반응기.
  6. 제5항에 있어서,
    상기 몸체부는 액체 및 이산화탄소가 탄산무수화효소와 접할 수 있도록 하는 유로를 포함하는 이산화탄소 전환반응기.
  7. 제5항에 있어서,
    상기 탄산무수화효소는 상기 몸체부 상에 결합되거나 수용되는 이산화탄소 전환반응기.
  8. 제1항에 있어서,
    상기 탄산무수화효소는 다수개가 비결합되어 응집된 효소집합체 및 다수개가 상호 결합된 효소가교결합복합체 중 어느 하나 이상의 형태로 구비되는 이산화탄소 전환반응기.
  9. 제1항에 있어서,
    상기 구조체는 몸체부를 더 포함하고,
    상기 탄산무수화효소는 지지체를 더 구비하여 상기 지지체 상에 결합되거나 지지체 내부에 담지되며,
    상기 지지체는 상기 몸체부 상에 결합되거나 수용되는 이산화탄소 전환반응기.
  10. 제9항에 있어서,
    상기 지지체는 고분자 섬유, 전기전도성 고분자, 다공성 입자, 구형입자, 나노입자, 비드, 탄소나노튜브, 와이어, 필라, 그래핀, 퓰러렌 및 폴리도파민으로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 이산화탄소 전환반응기.
  11. 제8항에 있어서,
    상기 효소가교결합복합체는 표면에 제1작용기를 포함하는 제1지지체를 더 구비하며,
    상기 제1작용기에 직접 결합하는 제1탄산무수화효소 및 상기 제1탄산무수화효소와 결합하고, 인접한 탄산무수화효소끼리 가교결합된 제2 탄산무수화효소 가교결합복합체를 포함하는 이산화탄소 전환반응기.
  12. 제11항에 있어서, 상기 효소가교결합복합체는
    표면에 제2작용기를 포함하고, 상기 제1탄산무수화효소 및 제2 탄산무수화효소 가교결합복합체 중 어느 하나 이상의 효소와 상기 제2작용기를 통해 결합하는 제2지지체를 더 포함하는 이산화탄소 전환반응기.
  13. 제2항에 있어서,
    상기 중탄산수용액 배출부와 연통되도록 중탄산수용액 저장소 및 중탄산수용액 활용소 중 어느 하나 이상을 더 포함하는 이산화탄소 전환반응기.
  14. 이산화탄소를 포함하는 배가스가 공급되는 가스공급부;
    공급된 상기 이산화탄소를 용해 및 전환시키기 위하여 전환반응기의 일부분에 채워진 액체를 포함하는 이산화탄소전환부; 및
    상기 이산화탄소전환부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하는 이산화탄소 전환반응기.
  15. 이산화탄소를 포함하는 배가스가 공급되는 가스공급부;
    공급된 상기 이산화탄소를 전환시키기 위하여 전환반응기의 일부분에 채워진 액체 및 탄산무수화효소를 포함하는 효소반응부; 및
    상기 효소반응부에서 미반응된 이산화탄소를 포함하는 배가스를 외부로 방출시키는 가스배출부;를 포함하는 이산화탄소 전환반응기.
  16. (1) 제1항 내지 제15항 중 어느 한 항에 따른 이산화탄소 전환반응기의 가스공급부로 배가스를 공급하는 단계; 및
    (2) 공급된 배가스에 포함된 이산화탄소 중 일부는 중탄산이온으로 전환되고, 미반응된 나머지 이산화탄소를 포함하는 배가스는 가스배출구를 통해 배출되는 이산화탄소 전환공정.
  17. 제16항에 있어서,
    상기 (1) 단계는 전환반응기에 공급되는 배가스로 인한 반응기 배압증가를 방지하기 위하여, 배가스가 전환반응기의 액체 상부에서 공급되며, 공급된 배가스 내 이산화탄소는 전환반응기 내부의 액체와 기체간 계면에 위치하는 구조체에 구비된 탄산무수화효소를 통해 중탄산이온으로 전환반응이 촉진되는 이산화탄소 전환공정.
  18. 공급된 이산화탄소를 중탄산이온으로 전환시키는 반응을 위한 제1항, 제14항 및 제15항 중 어느 한 항에 따른 전환반응기; 및
    상기 전환반응기에 연통되고, 유입된 이산화탄소를 포집하는 포집반응기;를 포함하는 이산화탄소 전환 및 포집용 직렬반응기.
  19. 제18항에 있어서,
    상기 포집반응기는 이산화탄소 흡수제 및 이산화탄소 분리막 중 어느 하나 이상을 포함하는 이산화탄소 전환 및 포집용 직렬반응기.
  20. 제18항에 있어서,
    상기 포집반응기는 이산화탄소 흡수제와 이산화탄소 간 결합물 및 반응결합물 중 어느 하나 이상을 포함하는 포집물을 배출하는 이산화탄소 포집물 배출부, 및 상기 이산화탄소 포집무 배출구와 연통되어 배출된 포집물에서 이산화탄소를 분리 및 수집하는 이산화탄소 탈착기를 더 포함하는 이산화탄소 전환 및 포집용 직렬반응기.
  21. 제18항에 있어서,
    이산화탄소를 포함하는 배가스는 상기 전환반응기 또는 포집반응기로 공급되어 이산화탄소가 전환 또는 포집된 후, 미반응된 이산화탄소를 포함하는 배가스가 포집반응기 또는 전환반응기로 공급되어 상기 미반응된 이산화탄소가 포집 또는 전환되는 이산화탄소 전환 및 포집용 직렬반응기.
  22. (A) 이산화탄소를 포함하는 배가스를 제1항, 제14항 및 제15항 중 어느 한 항에 따른 직렬반응기의 전환반응기에 공급하여 상기 이산화탄소를 중탄산이온으로 전환시키는 단계; 및
    (B) 공급된 상기 이산화탄소 중 미반응된 이산화탄소가 포함된 배가스를 포집반응기로 공급하여 이산화탄소를 포집하는 단계;를 포함하는 직렬반응기를 통한 이산화탄소 전환 및 포집공정.
  23. (a) 이산화탄소를 포함하는 배가스를 제1항, 제14항 및 제15항 중 어느 한 항에 따른 직렬반응기의 포집반응기에 공급하여 상기 이산화탄소를 포집하는 단계; 및
    (b) 공급된 이산화탄소 중 미포집된 이산화탄소가 포함된 배가스를 전환반응기로 공급하여 이산화탄소를 중탄산이온으로 전환시키는 단계;를 포함하는 직렬반응기를 통한 이산화탄소 전환 및 포집공정.
  24. 제22항에 있어서,
    전환된 상기 중탄산이온을 전환반응기에서 배출시켜 수집하는 단계; 및
    포집된 이산화탄소를 탈착시켜 이산화탄소를 수집하는 단계;를 더 포함하는 직렬반응기를 통한 이산화탄소 전환 및 포집공정.
  25. 제23항에 있어서,
    전환된 상기 중탄산이온을 전환반응기에서 배출시켜 수집하는 단계; 및
    포집된 이산화탄소를 탈착시켜 이산화탄소를 수집하는 단계;를 더 포함하는 직렬반응기를 통한 이산화탄소 전환 및 포집공정.
PCT/KR2016/006808 2015-06-24 2016-06-24 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정 WO2016209049A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/738,620 US10981111B2 (en) 2015-06-24 2016-06-24 Carbon dioxide conversion reactor, series reactor for converting and capturing carbon dioxide including the same, and process of converting and capturing carbon dioxide using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0089971 2015-06-24
KR20150089971 2015-06-24
KR1020160079587A KR101871948B1 (ko) 2016-06-24 2016-06-24 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환공정
KR10-2016-0079587 2016-06-24

Publications (1)

Publication Number Publication Date
WO2016209049A1 true WO2016209049A1 (ko) 2016-12-29

Family

ID=57585776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006808 WO2016209049A1 (ko) 2015-06-24 2016-06-24 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정

Country Status (2)

Country Link
US (1) US10981111B2 (ko)
WO (1) WO2016209049A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407667B1 (en) * 2021-06-06 2022-08-09 Christopher R. Moylan Systems and methods for removal of carbon dioxide from seawater
US11685673B2 (en) 2021-06-06 2023-06-27 Christopher R. Moylan Systems and methods for removal of carbon dioxide from seawater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508702A (ja) * 1997-06-04 2002-03-19 システーム・アンビロビオ・インコーポレイテッド 炭酸脱水酵素による二酸化炭素の管理
KR20110087273A (ko) * 2008-09-29 2011-08-02 아커민 인코퍼레이티드 이산화탄소의 가속화 포집 방법
KR20110117350A (ko) * 2010-04-21 2011-10-27 한국에너지기술연구원 이산화탄소 저감기능 및 가습기능을 겸비한 실내 공기정화 장치
US20130171720A1 (en) * 2010-06-23 2013-07-04 Robert McKenna Modified Carbonic Anhydrase Enzymes and Their Use in Carbon Dioxide Sequestration and Elimination
JP2014213275A (ja) * 2013-04-26 2014-11-17 株式会社Ihi 二酸化炭素の回収方法及び回収装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0830196A4 (en) * 1995-06-07 1999-03-24 Michael C Trachtenberg ENZYME TREATMENT SYSTEMS
US7132090B2 (en) * 2003-05-02 2006-11-07 General Motors Corporation Sequestration of carbon dioxide
HUE050812T2 (hu) 2010-10-29 2021-01-28 Saipem Spa Enzim által fokozott CO2-deszorpciós eljárások
US20130045514A1 (en) * 2011-08-17 2013-02-21 Roberto Barbero Biologically Catalyzed Mineralization of Carbon Dioxide
US20150024453A1 (en) 2012-01-17 2015-01-22 Co2 Solutions Inc. Integrated process for dual biocatalytic conversion of co2 gas into bio-products by enzyme enhanced hydration and biological culture
CN104812466B (zh) * 2012-09-04 2018-10-30 蓝色星球有限公司 碳隔离方法和***以及由此产生的组合物
KR101521864B1 (ko) 2013-07-08 2015-05-20 포항공과대학교 산학협력단 이산화탄소 포집 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508702A (ja) * 1997-06-04 2002-03-19 システーム・アンビロビオ・インコーポレイテッド 炭酸脱水酵素による二酸化炭素の管理
KR20110087273A (ko) * 2008-09-29 2011-08-02 아커민 인코퍼레이티드 이산화탄소의 가속화 포집 방법
KR20110117350A (ko) * 2010-04-21 2011-10-27 한국에너지기술연구원 이산화탄소 저감기능 및 가습기능을 겸비한 실내 공기정화 장치
US20130171720A1 (en) * 2010-06-23 2013-07-04 Robert McKenna Modified Carbonic Anhydrase Enzymes and Their Use in Carbon Dioxide Sequestration and Elimination
JP2014213275A (ja) * 2013-04-26 2014-11-17 株式会社Ihi 二酸化炭素の回収方法及び回収装置

Also Published As

Publication number Publication date
US10981111B2 (en) 2021-04-20
US20180185786A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
KR101871948B1 (ko) 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환공정
US9776131B2 (en) System and method for carbon dioxide capture and sequestration
CN1232334C (zh) 低温催化过程用的空气过滤装置
KR101833233B1 (ko) 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정
WO2016209049A1 (ko) 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환 및 포집공정
JP2012504047A (ja) 二酸化炭素の捕捉を加速するためのプロセス
WO2018030702A1 (ko) 유동층 매체의 유속 저감을 위한 분산판이 구비된 이중 바이오매스 가스화 반응기 및 이를 포함하는 가스화 장치
WO2020262779A1 (ko) 청정연료 생산을 위한 바이오가스 정제 시스템 및 방법
JPH09276648A (ja) 炭酸ガスのリサイクル方法
KR101974309B1 (ko) 이산화탄소 전환반응기, 이를 포함하는 이산화탄소 전환 및 포집용 직렬반응기 및 이를 이용한 이산화탄소 전환공정
WO2023105507A1 (ko) 이산화탄소 포집장치 및 포집공정
WO2013183840A1 (en) Apparatus for deodorization and sterilization and method for preparing catalyst used therein
WO2020218653A1 (ko) 연소배가스를 이용한 질소농축공기의 제조방법
DE60224830D1 (de) Behandlung- und filtrationssystem von abgasen aus schmelzcarbonatbrennstoffzellen
CN114950388A (zh) 一种使用聚合物/二氧化硅负载的胺中空纤维吸附剂制备方法
CN109281063B (zh) 一种含仲氨基团的有机硅纤维膜的制备方法与应用
CN207970698U (zh) 一种uv光解废气净化设备
KR102578044B1 (ko) 제철 부생가스로부터 이산화탄소, 수소 및 일산화탄소를 분리하는 방법
JP2000313892A (ja) 熱分解ガス化システム
CN112705162A (zh) 一种利用废弃物制备的脱汞用生物焦吸附剂及其制备方法
Eisenberger et al. System and method for carbon dioxide capture and sequestration from relatively high concentration CO 2 mixtures
CN117772135A (zh) 一种用于二氧化碳捕集的捕集剂及其制备方法和应用
CN117000037A (zh) 一种硫磺回收装置二氧化硫全时段达标排放***和方法
CN113336350A (zh) 取消絮凝药剂消耗的煤制氢灰渣脱水方法及装置
Simsek-Ege et al. A BIOMIMETIC ROUTE TO ENVIRONMENTALLY FRIENDLY CO₂ SEQUESTRATION: CATALYST IMMOBILIZATION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814762

Country of ref document: EP

Kind code of ref document: A1