WO2016208640A1 - 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置 - Google Patents

硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置 Download PDF

Info

Publication number
WO2016208640A1
WO2016208640A1 PCT/JP2016/068563 JP2016068563W WO2016208640A1 WO 2016208640 A1 WO2016208640 A1 WO 2016208640A1 JP 2016068563 W JP2016068563 W JP 2016068563W WO 2016208640 A1 WO2016208640 A1 WO 2016208640A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
curable silicone
viscosity
resin composition
group
Prior art date
Application number
PCT/JP2016/068563
Other languages
English (en)
French (fr)
Inventor
健児 山口
恭行 栗野
大塚 剛史
佐藤 洋一
原田 健司
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US15/739,748 priority Critical patent/US10269670B2/en
Priority to CN201680037088.1A priority patent/CN107709465B/zh
Priority to KR1020187001261A priority patent/KR20180020216A/ko
Priority to JP2017524952A priority patent/JPWO2016208640A1/ja
Publication of WO2016208640A1 publication Critical patent/WO2016208640A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2581/00Seals; Sealing equipment; Gaskets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts

Definitions

  • the present invention relates to a curable silicone resin composition, a silicone resin composite, an optical semiconductor light emitting device using the same as a sealing material, a lighting fixture including the optical semiconductor light emitting device, and a liquid crystal image device.
  • Silicone resins are excellent in properties such as transparency, heat resistance, and light resistance, and are excellent in hardness and rubber elasticity, and are therefore used for optical semiconductor encapsulants and optical waveguide materials.
  • silicone resin is excellent in durability, there are problems such as a large expansion coefficient, large gas permeability (low gas barrier property), and poor adhesion to a substrate. Therefore, metal oxide particles such as zirconium oxide, titanium oxide, and silicon oxide are dispersed and compounded in a silicone resin material to compensate for these drawbacks and improve functions (for example, see Patent Documents 1 to 5). .
  • the average primary particle diameter of the metal oxide particles is set to about 3 nm to 10 nm in order to maintain transparency.
  • it is required to disperse and compound more metal oxide particles, and as a result, the viscosity increases due to the interaction of particles having a large specific surface area, and in particular, the handling property decreases.
  • a method of reducing the viscosity of the composite composition of the metal oxide particles having a high viscosity and the silicone resin material it is conceivable to include a silicone resin material having a low viscosity (low molecular weight).
  • the low-viscosity silicone resin material is volatile, if the silicone resin material contains an organic solvent, it will be removed at the time of removal of the organic solvent, so the desired viscosity cannot be obtained. There was a problem that bubbles were generated by volatilization during the heat curing of the silicone resin.
  • the present invention has been made to solve the above-described problems. Specifically, when used in a sealing material for an optical semiconductor light-emitting device, the present invention has high transparency and mechanical characteristics. Curable silicone resin composition containing surface-modified metal oxide particles that exhibit excellent handling properties, such as mixing with other functional materials and injection into packages, and no volume reduction or bubble generation during the curing process It is an object of the present invention to provide an object, a silicone resin composite, an optical semiconductor light emitting device using the silicone resin composite as a sealing material, a lighting fixture including the optical semiconductor light emitting device, and a liquid crystal image device.
  • the present inventors have conducted surface modification in the curable silicone resin when dispersing metal oxide particles having an average primary particle diameter in a predetermined range in the silicone resin material.
  • the present inventors have found that the problem can be solved by blending metal oxide particles and a low-viscosity silicone compound having a reactive functional group, and have arrived at the present invention. That is, the present invention is as follows.
  • a lighting fixture comprising the optical semiconductor light emitting device according to [5].
  • a liquid crystal image device comprising the optical semiconductor light emitting device according to [5].
  • the present invention when used as a sealing material for an optical semiconductor light-emitting device, it exhibits high transparency and mechanical characteristics, and handling properties such as mixing with other functional materials and injection into a package.
  • Curable silicone resin composition and silicone resin composite containing surface-modified metal oxide particles that are superior in volume and have no volume reduction or bubble generation during the curing process, and use of the silicone resin composite as a sealing material An optical semiconductor light emitting device, a lighting fixture including the optical semiconductor light emitting device, and a liquid crystal image device can be provided.
  • the curable silicone resin composition of the present invention comprises a curable silicone resin-forming component having a viscosity of 0.02 Pa ⁇ s to 100 Pa ⁇ s as the component (A), and a surface modification having a reactive functional group as the component (B).
  • the “resin-forming component” is a component for forming a resin component in the resin composite described later, and usually includes a monomer, oligomer, or prepolymer of the resin component. It also includes a catalyst for polymerizing and curing monomers and oligomers.
  • the (A) curable silicone resin-forming component in the present invention is not particularly limited as long as it is a silicone resin material that is cured by heat, light, or the like, but mainly includes an organosiloxane, for example, a component having a dimethylsiloxane structure. It is preferable. Organosiloxane has a chemically stable structure.
  • the curable silicone resin-forming component may contain a structural part containing a phenyl group, for example, a part having a methylphenylsiloxane or diphenylsiloxane structure.
  • the curable silicone resin-forming component preferably has one or more groups selected from the group consisting of epoxy groups, carboxyl groups, polyether groups, and carbinol groups. These groups function to strengthen the bond between the curable silicone resin-forming component and the metal oxide particles, phosphor particles, substrate material, and the like.
  • the (A) curable silicone resin-forming component in the present invention those containing (a) an alkenyl group-containing organopolysiloxane, (b) an organohydrogenpolysiloxane and (c) a hydrosilylation catalyst are preferred.
  • the curable silicone resin-forming component contains these components, (a) an alkenyl group in the alkenyl group-containing organopolysiloxane, and (b) an Si—H group (hydrogen) in the organohydrogenpolysiloxane. Group) are bonded by an addition reaction (hydrosilylation reaction), whereby the curable silicone resin-forming components are polymerized and cured.
  • alkenyl groups and Si—H groups contained as reactive functional groups in the surface-modifying materials and silicone compounds having reactive functional groups in the surface-modified metal oxide particles are hardened by this addition reaction (hydrosilylation reaction).
  • a silicone resin composite in which the curable silicone resin forming component, the surface-modified metal oxide particles, and the silicone compound having a reactive functional group are integrated can be obtained.
  • the alkenyl group in the alkenyl group-containing organopolysiloxane preferably has 1 to 20 carbon atoms, and more preferably has 1 to 10 carbon atoms.
  • a vinyl group examples include a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a norbornenyl group, and a cyclohexenyl group.
  • a vinyl group is preferable from the viewpoint of reactivity to the hydrosilylation reaction.
  • alkenyl groups can be arbitrarily combined.
  • a vinyl group and a butenyl group may be arranged in one polysiloxane.
  • the position of the alkenyl group in the polysiloxane is not particularly limited and can be arranged at any position. Furthermore, from the viewpoint of polymerization reactivity, two or more alkenyl groups are arranged in one polysiloxane. It is preferable.
  • the organopolysiloxane include those having a main chain of a repeating unit of diorganosiloxane and a terminal having a triorganosiloxane structure, and may have a branched or cyclic structure.
  • the organo structure bonded to silicon in the terminal or repeating unit include a methyl group, an ethyl group, and a phenyl group. Specific examples include dimethylpolysiloxane having vinyl groups at both ends.
  • the (b) organohydrogenpolysiloxane is an organopolysiloxane containing one or more Si—H groups (hydrogen atoms directly bonded to silicon, hydrogen groups) in at least one of terminal and repeating structures. is there. From the viewpoint of polymerization reactivity, it is preferable that two or more Si—H groups are arranged in one polysiloxane.
  • the organopolysiloxane include those having a main chain of a repeating unit of diorganosiloxane and a terminal having a triorganosiloxane structure, and may have a branched or cyclic structure.
  • organo structure bonded to silicon in the terminal or repeating unit examples include a methyl group, an ethyl group, a phenyl, and an octyl group, and it can be said that one or more of these are substituted with a hydrogen group.
  • the blending ratio of the (a) alkenyl group-containing organopolysiloxane and (b) the organohydrogenpolysiloxane is basically (a) the total number of alkenyl groups contained in the alkenyl group-containing organopolysiloxane, and (b It is preferable that the total number of Si—H groups contained in the organohydrogenpolysiloxane be equal. More precisely, (a) the total number of alkenyl groups contained in the alkenyl group-containing organopolysiloxane, the surface-modified metal oxide particles, the surface-modifying material and the silicone compound having a reactive functional group, and (b) the organohydrogen.
  • the total number of Si—H groups contained in the polysiloxane, the surface modifying material in the surface modified metal oxide particles, and the silicone compound having a reactive functional group is equal. Accordingly, in consideration of the amount of alkenyl groups and Si—H groups contained in the surface-modifying material and the silicone compound having reactive functional groups in the surface-modified metal oxide particles, (a) an alkenyl group-containing organopolysiloxane and ( b) It is preferable to determine the compounding ratio of the organohydrogenpolysiloxane. However, since Si—H groups are easily oxidized, there are those that are oxidized at the actual blending time (polymerization reaction time) and do not act as reactive groups.
  • the total amount of Si—H groups is about 1.1 to 1.2 times the total amount of alkenyl groups (that is, the Si—H groups are excessive).
  • the (c) hydrosilylation catalyst is used to promote a hydrosilylation reaction between reactive functional groups existing in the four components of the component (a) and the component (b), and the surface modifying material and the silicone compound.
  • Known metals, metal compounds, metal complexes and the like which are added and have a catalytic activity for hydrosilylation reaction can be used.
  • platinum-based materials such as platinum, platinum black, and chloroplatinic acid such as H 2 PtCl 6 ⁇ pH 2 O, K 2 PtCl 6 , KHPtCl 6 ⁇ pH 2 O, K 2 PtCl 4 , K 2 PtCl 4 ⁇ pH 2 O, PtO 2 ⁇ pH 2 O, PtCl 4 ⁇ pH 2 O, PtCl 2 , H 2 PtCl 4 ⁇ pH 2 O (where p is a positive integer), etc.
  • a complex with a hydrocarbon, alcohol, or vinyl group-containing organopolysiloxane can be used. These catalysts may be used alone or in combination of two or more. A cocatalyst may be used in combination.
  • the amount of the hydrosilylation catalyst is preferably 0.1 ppm or more and 100 ppm or less with respect to the entire composition. Particularly, the hydrosilylation reaction proceeds smoothly and the silicone resin composite obtained by the reaction is used. In order to suppress coloring, 1 ppm or more and 50 ppm or less are more preferable. More preferably, it is 5 ppm or more and 20 ppm or less.
  • the viscosity of the (A) curable silicone resin forming component used in the present invention is 0.02 Pa ⁇ s to 100 Pa ⁇ s. If the viscosity is less than 0.02 Pa ⁇ s, the material to be combined with the curable silicone resin forming component, for example, the phosphor material for the optical semiconductor light emitting device, settles, and a homogeneous silicone resin composite is obtained. It becomes impossible. When the viscosity exceeds 100 Pa ⁇ s, the viscosity becomes too high, and even when the component (C) is blended, good handling properties cannot be obtained.
  • the viscosity of the viscosity forming component of the curable silicone resin is preferably 0.02 Pa ⁇ s to 50 Pa ⁇ s, and more preferably 0.03 Pa ⁇ s to 10 Pa ⁇ s.
  • the (B) surface-modified metal oxide particles in the present invention are obtained by surface-modifying metal oxide particles having a specific particle diameter with a surface-modifying material having a reactive functional group.
  • the type of metal oxide particles is not particularly limited, but for the purpose of improving or adjusting the optical properties, mechanical properties, thermal properties, etc. of the silicone resin composite described later, zinc oxide, zirconium oxide, titanium oxide, silicon dioxide
  • a suitable material is appropriately selected from (silica), aluminum oxide, cerium oxide, and the like.
  • the refractive index of the oxide particles is preferably 1.5 or more, more preferably 1.7 or more, and even more preferably 1.9 or more.
  • metal oxide particles titanium oxide and zirconium oxide (zirconia) are preferable, and zirconia is particularly preferable.
  • the average primary particle diameter of the metal oxide particles is 3 nm or more and 10 nm or less.
  • the average primary particle size is preferably 4 nm or more and 8 nm or less, and more preferably 4 nm or more and 6 nm or less.
  • the surface modifying material used for the surface modification of the metal oxide particles contains a reactive functional group.
  • the reactive functional group is not particularly limited as long as it reacts with the surface of the metal oxide particles and the functional group in the curable silicone resin-forming component, but the organohydrogen contained in the curable silicone resin-forming component.
  • An alkenyl group that undergoes an addition reaction by hydrosilylation with the Si—H group of the polysiloxane, or an Si—H group that undergoes an addition reaction by hydrosilylation with the alkenyl group of the alkenyl group-containing organopolysiloxane is preferred.
  • a transparent silicone resin composite can be obtained without aggregation of the metal oxide particles.
  • the mechanical properties of the silicone resin composite are improved by crosslinking the metal oxide particles and the silicone resin.
  • a surface-modifying material having another structure may be used in combination.
  • the surface modifying material examples include dimethyl silicone resin, phenyl group-containing silicone resin, alkoxy group-containing methyl phenyl silicone resin, and silane coupling agent. Among these, an alkoxy group-containing methylphenyl silicone resin is preferable.
  • the surface modifying material containing an alkenyl group is not particularly limited as long as it contains an alkenyl group in the structure, and examples thereof include materials having a structure represented by the following formulas (1) and (2).
  • n is an integer of 0 or more, and m is an integer of 1 to 3.
  • X is selected from a methoxy group, an ethoxy group, a hydroxyl group, a halogen atom, and a carboxy group, and m is 2 or more. In this case, all Xs may be the same or different.
  • n is an integer of 1 to 100
  • m is an integer of 1 to 3.
  • X is selected from a methoxy group, an ethoxy group, a hydroxyl group, a halogen atom, and a carboxy group, and m is 2 or more. In this case, all Xs may be the same or different.
  • the surface modifying material containing an alkenyl group examples include vinyltrimethoxysilane, vinyltriethoxysilane, and alkoxy-terminated vinyl-terminated dimethylsilicone.
  • Other modifying materials containing an alkenyl group include materials having a branched hydrocarbon chain of formula (1), materials having an alkenyl group on the branched hydrocarbon chain, methacryloxypropyltrimethoxysilane, and acryloxypropyl. Examples thereof include acrylic silane coupling agents such as trimethoxysilane and carbon-carbon unsaturated bond-containing fatty acids such as methacrylic acid.
  • vinyltrimethoxysilane alkoxy-terminated vinyl-terminated dimethylsilicone, a structure in which the hydrocarbon chain of formula (1) is branched, and alkenyl on the branched hydrocarbon chain.
  • Materials having a structure containing groups are preferred.
  • a surface modifying material containing a phenyl group in addition to an alkenyl group may be a surface modifying material containing a phenyl group in addition to an alkenyl group, and such a surface modifying material is not particularly limited as long as it contains both a phenyl group and an alkenyl group in the structure.
  • styryltrimethoxysilane, alkoxy piece terminal vinyl piece terminal phenyl silicone represented by formula (3), alkoxy piece terminal vinyl piece terminal methyl phenyl silicone, and the like can be mentioned. These are uniformly excellent in heat resistance.
  • a is an integer of 1 to 100
  • b is an integer of 0 to 100
  • c is an integer of 1 to 3.
  • At least one of A, B, C, and D is phenyl.
  • other groups are alkyl groups having 1 to 6 carbon atoms, and A, B, C, and D may all be phenyl groups
  • X is a methoxy group, an ethoxy group, a hydroxyl group, a halogen atom, and a carboxy group.
  • c is 2 or more, all Xs may be the same or different.
  • the surface modifying material having a Si—H group is not particularly limited as long as it contains a hydrogen atom (hydrogen group) directly bonded to silicon in the structure, but the following formulas (4) and (5) ) And the like.
  • y is an integer of 1 to 6, n and m are 1 or 2, and the total of n and m is 3 or less.
  • a is an integer of 1 to 100
  • b is an integer of 0 to 100.
  • A, B, C and D are a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a hydrogen group.
  • triethoxysilane dimethylethoxysilane, diethoxymethylsilane, dimethylchlorosilane, ethyldichlorosilane, phenyldichlorosilane, diphenylchlorosilane, phenylchlorosilane, and phenyldiethoxysilane.
  • triethoxysilane, dimethylethoxysilane, and diethoxymethylsilane are preferable from the viewpoint of excellent heat resistance.
  • ethyltriethoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, etc. can be used as the surface modifying material in the present invention.
  • alkoxy piece-terminated dimethyl silicone, alkoxy piece examples include terminal vinyl one-end dimethyl silicone, one-end epoxy silicone, alkylsilane compound, fatty acid compound, and the like.
  • Examples of the surface modification method for the metal oxide particles using the surface modification material include a wet method and a dry method.
  • the wet method metal oxide particles and surface modifying material are added to the solvent, and if necessary, a catalyst for hydrolyzing the surface modifying material is added.
  • a method of dispersing while surface-modifying is mentioned.
  • the dry method includes a method in which the metal oxide particles and the surface modification material are mixed with a kneader or the like to obtain the surface modification metal oxide particles.
  • the surface modification amount of the surface modification material with respect to the metal oxide particles is preferably 5% by mass or more and 40% by mass or less. If the surface modification amount is within this range, the dispersibility of the surface-modified metal oxide particle material in the curable silicone resin composition can be kept high, and as a result, the surface modification in the silicone resin composite described later. Since the dispersibility of the metal oxide particle material can be maintained high, it is possible to suppress a decrease in transparency and gas permeability.
  • the surface modification amount is more preferably 10% by mass or more and 30% by mass or less.
  • the content of the surface-modified metal oxide particles is preferably 10% by mass or more and 75% by mass or less based on the total amount of the curable silicone resin composition.
  • the content is less than 10% by mass, since the content of the surface-modified metal oxide particles is small, the viscosity of the curable silicone resin composition is not so high, and it is not necessary to add the component (C). Further, since the amount of the metal oxide particles is small, there is a possibility that the effect of adding the metal oxide particles is not sufficiently exhibited.
  • the content is larger than 75% by mass, it is difficult to make the viscosity of the curable silicone resin composition 100 Pa ⁇ s or less even when the component (C) is added.
  • the content of the surface-modified metal oxide particles is preferably 20% by mass to 75% by mass, and more preferably 40% by mass to 70% by mass.
  • the silicone compound having a reactive functional group (C) in the present invention (hereinafter sometimes referred to as “silicone compound”) has a viscosity lower than that of the component (A) and is 0.01 Pa ⁇ s or more and 1. 0 Pa ⁇ s or less.
  • silicone compound since the viscosity of the curable silicone resin composition in which the components (A) to (C) are mixed is set to 100 Pa ⁇ s or less, the viscosity is less than the viscosity of the component (A) and 0.01 Pa. ⁇ Set to s to 1.0 Pa ⁇ s.
  • the viscosity is less than the viscosity of the component (A), the viscosity cannot be lowered even if the component (C) is blended.
  • the viscosity is less than 0.01 Pa ⁇ s, since the degree of polymerization of the silicone compound is small, in the heat drying or reduced pressure drying treatment step of the organic solvent when the organic solvent is contained in the curable silicone resin composition The silicone compound is volatilized and removed together with the organic solvent from the composition, or volatilizes when heated to make the composition complex, and bubbles are generated in the silicone resin composite.
  • the curable silicone resin composition containing a considerable amount of fine metal oxide particles having an average primary particle diameter of 3 nm or more and 10 nm or less even when the component (C) is added.
  • the viscosity exceeds 100 Pa ⁇ s, resulting in poor handling.
  • the silicone compound preferably has a viscosity of 0.01 Pa ⁇ s to 0.8 Pa ⁇ s, and more preferably 0.01 Pa ⁇ s to 0.5 Pa ⁇ s.
  • the reactive functional group in the silicone compound is not particularly limited as long as it reacts with the functional group of the surface modification material on the surface of the metal oxide particles or the functional group in the curable silicone resin forming component. Similar to the reactive functional group, an Si—H group or an alkenyl group is preferable. That is, a reactive functional group is added to the Si-H group of the organohydrogenpolysiloxane contained in the curable silicone resin forming component by hydrosilylation, or the alkenyl group of the alkenyl group-containing organopolysiloxane and the hydrosilyl group.
  • the component (A) By adding Si—H groups that undergo an addition reaction by the conversion, not only has the viscosity-reducing action of the curable silicone resin composition, but when the composition is cured to form a composite, the component (A), ( Since it undergoes an addition reaction with the reactive functional group in the component B), it can be integrated as a composite, and it does not volatilize and generate bubbles during heating for composite formation.
  • one reactive functional group in one molecule of the silicone compound may be used, but from the viewpoint of increasing the number of cross-linking points described below, two or more reactions per molecule. It is preferable that a functional functional group is arranged.
  • the crosslinking point in the curable silicone resin composition is increased by the (C) silicone compound, aggregation of the metal oxide particles is further suppressed, and a more transparent silicone resin composite is obtained. Furthermore, since the cross-linking points between the metal oxide particles and the silicone resin are increased, the mechanical properties of the composite are further improved.
  • silicone compound having a reactive functional group in the present invention examples include hydrogen-terminated polydimethylsiloxane, methylhydrosiloxane-dimethylsiloxane copolymer, polyethylhydrosiloxane, polyphenyl- (dimethylhydrosiloxane) siloxane, methylhydrosiloxane-phenylmethylsiloxane.
  • Copolymer methylhydrosiloxane-octylmethylsiloxane copolymer, vinyl-terminated polydimethylsiloxane, vinyl-terminated diphenylsiloxane-dimethylsiloxane copolymer, vinyl-terminated polyphenylmethylsiloxane, vinylphenylmethyl-terminated vinylphenylsiloxane-phenylmethylsiloxane copolymer, vinyl-terminated trifluoro And propylmethylsiloxane-dimethylsiloxane copolymer.
  • the content of the silicone compound needs to be 0.1% by mass or more and 15% by mass or less based on the total amount of the curable silicone resin composition. If the content is less than 0.1% by mass, the viscosity of the curable silicone resin composition cannot be lowered sufficiently, and if the content is more than 15% by mass, the number of crosslinking points becomes too large. It becomes too hard and cracks occur due to mechanical and thermal shocks.
  • the content of the silicone compound is preferably 0.1 mass% or more and 14 mass% or less, more preferably 0.3 mass% or more and 12 mass% or less, and 0.5 mass% or more and 10 mass% or less. More preferably.
  • the curable silicone resin composition of the present invention contains the component (A), the component (B), the component (C), and the content of the silicone compound that is the component (C) is the composition. It is 0.1 mass% or more and 15 mass% or less on the basis of the total amount of objects. Furthermore, the content of the surface-modified metal oxide particles as the component (B) is preferably 10% by mass or more and 75% by mass or less based on the total amount of the curable silicone resin composition.
  • the viscosity is 1.0 Pa ⁇ s or more. It can be set to 100 Pa ⁇ s or less.
  • a curable silicone resin that is excellent in handling properties such as mixing with a phosphor and injecting into a package, and that does not reduce volume or generate bubbles during the curing process.
  • a composition can be obtained.
  • the viscosity of the curable silicone resin composition is preferably 2.0 Pa ⁇ s or more and 50 Pa ⁇ s or less, and more preferably 5.0 Pa ⁇ s or more and 30 Pa ⁇ s or less.
  • the silicone resin composite of the present invention can be obtained by polymerizing and curing the curable silicone resin composition of the present invention by an addition reaction or a condensation reaction.
  • the addition reaction is, for example, a reaction (hydrosilylation reaction) in which an alkenyl group and a Si—H group are bonded by a platinum group metal catalyst.
  • this addition reaction for example, an alkenyl group arranged on the polysiloxane and a Si—H group arranged on another polysiloxane are combined by the addition reaction and polymerized and cured.
  • the condensation reaction is, for example, a combination of a hydroxyl group or a hydrolyzable group and a hydrolyzable group by causing a reaction such as dehydration by a condensation catalyst containing an aminoxy group, an amino group, a ketoxime group or the like.
  • a condensation reaction for example, a hydroxyl group or hydrolyzable group arranged at the end of the polysiloxane and a hydrolyzable group bonded to a silicon atom in the silane compound are bonded by a condensation reaction such as dehydration and polymerized to be cured. To do.
  • an addition reaction or a condensation reaction can be selected.
  • the condensation reaction by-products such as water are generated, the influence of this by-product is considered and the removal of the by-product is necessary, and not only the silicone resin forming component but also the surface modification
  • a polymerization reaction including a metal oxide particle (surface modifying material) and a silicone compound having a reactive functional group it is preferable to select polymerization curing by addition reaction.
  • an alkenyl group arranged in the polysiloxane in the silicone resin-forming component (A) component, and the surface of the surface-modified metal oxide particles as the component (B) there exists an alkenyl group as a reactive functional group in the modifying material and a alkenyl group as a reactive functional group in the silicone compound having the reactive functional group as component (C).
  • Si—H group the Si—H group arranged in the polysiloxane in the silicone resin forming component (A) component, and the surface modification material of the surface modified metal oxide particles (B) component
  • Si—H groups as reactive functional groups in silicone compounds having Si—H groups as reactive functional groups and reactive functional groups as component (C). Therefore, in polymerization curing by addition reaction, not only bonds between polysiloxanes but also bonds between polysiloxanes and surface modification materials (surface modified metal oxide particles), bonds between polysiloxanes and silicone compounds, surface modification materials ( Bonding between the surface-modified metal oxide particles) and the silicone compound occurs, so that polymerization and curing can be performed.
  • the components (A), (B), and (C) are bonded to each other and polymerized and cured. It is possible to prevent phase separation between the product particles and the curable silicone resin forming component, and it is possible to prevent generation of bubbles due to volatilization of the silicone compound.
  • the crosslinking point of a metal oxide particle and a silicone resin increases because a silicone compound bridge
  • the aggregation of the metal oxide particles during the curing process is further suppressed, so that a more transparent silicone resin composite can be obtained.
  • the crosslinking points between the metal oxide particles and the silicone resin are increased, the metal oxide particles and the silicone resin are firmly integrated.
  • the resin composite has not only improved mechanical properties, but also suppresses the decrease in transmittance because the aggregation of metal oxide particles (decrease in particle dispersibility) is suppressed even under heat load. Is done.
  • the silicone resin composite includes metal oxide particles and the metal oxide particles and the silicone resin are firmly integrated, the gas barrier property can be improved.
  • the “resin composite” has a specific shape, but this “having a predetermined shape” means that the resin composite does not have irreversible deformability such as liquid or gel, It shows that a certain shape can be maintained according to the purpose and method of use. That is, in addition to a normal solid state that hardly deforms, it includes a rubber-like one having elastic deformability (shape restoring property), and does not indicate that the shape itself is a specific shape.
  • the shape of the silicone resin composite is not particularly limited, and the shape may be selected according to the application.
  • the silicone resin used in the present invention does not exhibit thermoplasticity or solvent solubility as shown by general resins after being cured by polymerization by addition reaction or condensation reaction.
  • the silicone resin composite is preferably molded when the curable silicone resin composition is cured to form a silicone resin composite, or the cured silicone resin composite is preferably processed by machining such as cutting. .
  • curing a curable silicone resin composition and making a silicone resin composite is demonstrated.
  • the curable silicone resin composition of the present invention is molded using a mold or a mold, or filled into a mold or a mold-shaped container, thereby forming a molded body that has been molded into a target shape. Or get a filling. At this point, the molded body and the filling are in a fluid state.
  • the curable silicone resin composition to be used adjusts the blending amount of the component (C), and further adjusts the blending amount of the component (B) as necessary, so that the viscosity is 1.0 Pa ⁇ . Since it is set as s or more and 100 Pa * s or less, it is excellent in handling property and can perform shaping
  • the viscosity of the curable silicone resin composition to be used is still high, the viscosity is lowered by adding an organic solvent or the like in advance and stirring and mixing, so that the viscosity is more suitable for molding and filling. May be.
  • the viscosity of the curable silicone resin composition to be used is low, a part of the curable silicone resin forming component, a part of the curable silicone resin forming component and the surface modifying material, or the curable silicone resin formation in advance.
  • the viscosity may be increased by polymerizing or crosslinking a part of the component and the silicone compound, and the viscosity may be adjusted to be more suitable for molding or filling.
  • the curable silicone resin composition contains an organic solvent, the viscosity can be increased by removing part or all of the organic solvent by volatilizing it.
  • the molded body or filling is left at room temperature (about 25 ° C.), heated to a predetermined temperature (room temperature to 150 ° C., preferably 80 ° C. to 150 ° C.), and left to stand for a predetermined time, or
  • a curable silicone resin-forming component in the curable silicone resin composition is obtained by irradiating an electron beam or a light beam having an arbitrary wavelength from the ultraviolet region to the infrared region (active energy ray) to the molded body or filler.
  • the curable silicone resin-forming component, the surface-modified metal oxide particle surface-modifying material, and the silicone compound react with each other and bind to each other.
  • the silicone resin composite does not necessarily have to be removed from the mold or container if there is no problem in use.
  • the device itself has a shape in which a container is formed.
  • the refractive index is preferably higher than 1.54, more preferably 1.56 or more, and 1.58. More preferably, it is more preferably 1.6 or more.
  • the transmittance at a wavelength of 400 to 800 nm when the optical path length is 1.0 mm is preferably 60% or more, and more preferably 70% or more. If the transmittance is within this range, for example, high transparency can be maintained even when the optical semiconductor element is directly coated, and a reduction in light transmission loss as a constituent member can be suppressed.
  • the refractive index and transmittance of the silicone resin composite can be adjusted by appropriately adjusting the type and particle diameter of the metal oxide particles, the composition of the matrix silicone resin, the amount of the metal oxide particles in the silicone resin composite, and the like. It can be a range.
  • high refractive index particles having a refractive index of 1.5 or more As the metal oxide particles, metal oxide particles containing one or more selected from the group of zirconium, titanium, tin, cerium, tantalum, niobium, and zinc can be selected.
  • the refractive index of resin itself can also be raised by introduce
  • the refractive index of the silicone resin composite is obtained by measuring a value of 594 nm at room temperature with a prism coupler using a composite (1 mm thickness) formed on an aluminum substrate. A method for measuring the transmittance will be described later.
  • the silicone resin composite of the present invention is not particularly limited.
  • the silicone resin composite can be suitably used as an optical component utilizing the excellent characteristics of the silicone resin composite.
  • an optical functional device provided with such an optical component an optical semiconductor light emitting device shown in the next section, various display devices (liquid crystal display, plasma display, etc.), various projector devices (OHP, liquid crystal projector, etc.), optical fiber communication devices ( Examples thereof include light guides such as optical waveguides, optical amplifiers, photographing apparatuses such as cameras and videos, and LED lighting apparatuses.
  • the semiconductor light emitting element is sealed with a sealing material, and the sealing material is made of the silicone resin composite of the present invention.
  • the silicone resin composite of the present invention prevents generation of bubbles at the time of curing, has high transparency, improves mechanical properties, suppresses a decrease in transmittance during heat load, and has a high gas barrier property. Further, by using high refractive material particles having a refractive index of 1.5 or more as metal oxide particles, the silicone resin composite can have a high refractive index. With these characteristics, it can be suitably used as a sealing material for an optical semiconductor light emitting device.
  • the thickness of the sealing layer which consists of this sealing material is 50 micrometers or more. If the thickness of the sealing layer is less than 50 ⁇ m, gas permeability may not be sufficiently low.
  • the thickness of the sealing layer is preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more.
  • the entire sealing layer of the optical semiconductor light emitting device may be the layer of the silicone resin composite of the present invention (first aspect), and a part of the sealing layer of the optical semiconductor light emitting device.
  • a layer of the silicone resin composite of the present invention and other sealing layers may be laminated (second embodiment).
  • the first aspect (light emitting device 10) according to the present invention is such that the light emitting element 14 is disposed in the concave portion 12 ⁇ / b> A of the reflecting cup 12 and the concave portion is embedded in contact with the light emitting element 14.
  • the 1st sealing layer 16 comprised with the sealing material which consists of this silicone resin composite_body
  • Examples of the light emitting element constituting the light emitting device include a light emitting diode (LED) and a semiconductor laser.
  • a red light emitting diode that emits red light (for example, light having a wavelength of 640 nm)
  • a green light emitting diode that emits green light (for example, light having a wavelength of 530 nm)
  • blue light for example, having a wavelength of 450 nm.
  • An example is a blue light emitting diode that emits light).
  • the light emitting diode may have a so-called face-up structure or a flip chip structure.
  • the light-emitting diode includes a substrate and a light-emitting layer formed on the substrate, and may have a structure in which light is emitted from the light-emitting layer to the outside, or light from the light-emitting layer passes through the substrate. It is good also as a structure radiate
  • the light emitting diode includes, for example, a first cladding layer made of a compound semiconductor layer having a first conductivity type (for example, n-type) formed on a substrate, and an active layer formed on the first cladding layer.
  • the first clad layer has a structure in which a second clad layer made of a compound semiconductor layer having a second conductivity type (for example, p-type) formed on the active layer is laminated, and is electrically connected to the first clad layer.
  • An electrode and a second electrode electrically connected to the second cladding layer are provided.
  • the layer constituting the light emitting diode may be made of a known compound semiconductor material depending on the emission wavelength.
  • the refractive index of the light emitting layer of the light emitting diode is, for example, about 3.5 for GaAs, about 3.2 for GaP, and about 2.5 for GaN, and the refractive index of a commonly used sapphire substrate is It is about 1.75, which is quite high in any case.
  • the refractive index of conventionally used sealing materials such as silicone resin and epoxy resin is about 1.4 to 1.5 at most, and between the light emitting layer and the sealing material or between the sapphire substrate and the sealing material. Because of the large refractive index difference between them, most of the light from the light-emitting layer is totally reflected at these interfaces and confined in the light-emitting layer or sapphire substrate, which can increase the light extraction efficiency. There wasn't.
  • the silicone resin composite of the present invention is used as a sealing material, and by using metal oxide particles having a high refractive index in the resin composite, refraction as the silicone resin composite is performed. The rate can be increased easily.
  • metal oxide particles metal oxide particles containing one or more selected from the group consisting of zirconium, titanium, tin, cerium, tantalum, niobium, and zinc are selected. Among these, titanium oxide and zirconium oxide (zirconia) are preferable, and zirconia is particularly preferable.
  • the refractive index of the sealing material is preferably higher than 1.54, more preferably 1.56 or more, further preferably 1.58 or more, and most preferably 1.6 or more.
  • the transmittance of a conventionally used sealing material such as a silicone resin or epoxy resin
  • the transmittance at a wavelength of 450 nm when the optical path length is 0.5 mm is preferably 40% or more. % Or more is more preferable, and 70% or more is further preferable.
  • the silicone resin composite of the present invention is used as a sealing material, and the resin composite has a transmittance at a wavelength of 400 to 800 nm when the optical path length is 1.0 mm due to its configuration. Therefore, the light extraction efficiency can be increased.
  • the second mode (light emitting device 20) is formed so that the first sealing layer 16 covers the surface of the light emitting element 14, and the second sealing layer 16 is formed outside the second sealing layer 16. Except that the sealing layer 18 is formed, it is the same as the first embodiment.
  • the second sealing layer 18 may be provided to supplement the characteristics that are insufficient with the first sealing layer 16, and reduce interface reflection on the surface (interface with the outside) of the first sealing layer 16. Thus, it may be provided to increase the light extraction efficiency.
  • the refractive index of the second sealing layer 18 is set to a value less than the refractive index of the first sealing layer 16 and more than 1 (the refractive index of the atmosphere). It is preferable.
  • the material of the second sealing layer 18 examples include various resins or resin composites such as methyl silicone, modified silicone, acrylic resin, epoxy resin, and polyimide resin.
  • the silicone resin composite of the present invention may be used.
  • the first curable silicone resin-forming component, the surface-modified metal oxide particles and the silicone compound components and blend ratios are adjusted.
  • the sealing layer 16 has different characteristics and refractive index.
  • the surface-modified metal oxide particles according to the present invention may be contained in the second sealing layer.
  • the optical semiconductor light emitting device of the present invention can also be an optical semiconductor light emitting device in which a light emitting element and a phosphor are combined.
  • the first sealing layer in contact with the optical semiconductor element is the above-described silicone resin composite of the present invention.
  • a phosphor such as a YAG phosphor or an RGB phosphor for ultraviolet light may be contained.
  • This phosphor has a curable silicone resin composition (a curable silicone resin forming component, surface-modified metal oxide particles, and a reactive functional group) for forming a silicone resin composite that is a sealing material of the present invention. And a silicone compound having at least a silicone compound).
  • the method may be a method of directly mixing phosphors when preparing a curable silicone resin composition, or an uncured curable silicone resin.
  • Examples thereof include a method of mixing the phosphor, a method of removing the organic solvent and the like after mixing the dispersion liquid in which the phosphor is dispersed in the organic solvent and the like into the curable silicone resin composition.
  • the first sealing layer in the second mode It is preferable to contain a phosphor.
  • the phosphor is preferably 5% by mass or more and 80% by mass or less, and more preferably 20% by mass or more and 70% by mass or less with respect to the mass of the first sealing layer.
  • the second sealing layer can also contain a phosphor.
  • a light scattering material can also be used in combination with the phosphor in order to efficiently irradiate the phosphor with the emitted light from the light emitting device.
  • the light scattering material it is preferable to use particles having a refractive index different from that of the matrix resin forming the sealing layer, that is, the silicone resin forming the silicone resin composite, and the particle size is caused by light scattering based on Mie scattering. 20 nm or more is preferable.
  • a white light emitting diode for example, a light emitting diode that emits white light by combining an ultraviolet or blue light emitting diode and phosphor particles
  • a white light emitting diode for example, a light emitting diode that emits white light by combining an ultraviolet or blue light emitting diode and phosphor particles
  • the reactive functional group is an alkenyl group and a Si—H group.
  • at least a part thereof may be an alkynyl group. That is, (A) at least a part of the alkenyl group of the alkenyl group-containing organopolysiloxane in the curable silicone resin-forming component may be an alkynyl group, and (B) the surface-modified metal oxide particles are subjected to metal oxidation.
  • At least a part of the alkenyl group as the reactive functional group contained in the surface modification material used for the surface modification of the product particle may be an alkynyl group, and (C) the reactive function in the silicone compound having the reactive functional group At least a part of the alkenyl group as the group may be an alkynyl group.
  • alkynyl groups examples include ethynyl group and propargyl group (propynyl group).
  • alkynyl groups and Si—H groups react at a ratio of 1: 1
  • alkynyl groups and Si—H groups react at a ratio of 1: 2
  • alkynyl groups are used instead of alkenyl groups. If necessary, the required amount of Si—H groups increases.
  • an alkynyl group when used in place of an alkenyl group, (a) an alkenyl group (including alkynyl group) -containing organopolysiloxane, a surface modifying material, and an alkenyl group and alkynyl contained in the silicone compound (B)
  • the total number of Si—H groups contained in the organohydrogenpolysiloxane, the surface modifying material, and the silicone compound is [(number of alkenyl groups) ⁇ 1 + (number of alkynyl groups)] ⁇ 2] or about 1.1 to 1.2 times the same.
  • the average primary particle diameter of the metal oxide particles was the Scherrer diameter obtained by calculation from the half width of the X-ray diffraction peak. This is because if the primary particle diameter is nanometer size, the possibility that one particle is composed of a plurality of crystallites is reduced, and the average primary particle diameter and the Scherrer diameter are substantially the same. It is.
  • Viscosity of curable silicone resin, silicone compound, curable silicone resin composition The viscosity of the curable silicone resin or the like was measured using a rheometer (Rheostress RS-6000, manufactured by HAAKE). The viscosity was measured at a temperature of 25 ° C. and a shear rate of 1.0 (1 / s).
  • the transmittance of the curable silicone resin composition was determined by integrating a curable silicone composition with a 0.5 mm thin-layer quartz cell as a sample and integrating it with a spectrophotometer (V-570, manufactured by JASCO Corporation). It measured using. Further, the transmittance of the silicone resin composite was measured by pouring the curable silicone composition onto a glass substrate provided with a bank so that the thickness after curing was 0.5 mm, and after treating at 150 ° C. for 6 hours, Measurement was performed using an integrating sphere with a meter (V-570, manufactured by JASCO Corporation). In addition, as for the transmittance
  • the hardness of the silicone resin composite was measured with a durometer (WR-104A and WR-105D, manufactured by Nishitokyo Seimitsu Co., Ltd.).
  • Example 1 (Preparation of zirconia particles) To a zirconium salt solution in which 2615 g of zirconium oxychloride octahydrate was dissolved in 40 L (liter) of pure water, dilute ammonia water in which 344 g of 28% ammonia water was dissolved in 20 L of pure water was added with stirring, and the zirconia precursor slurry was added. Prepared. Next, an aqueous sodium sulfate solution in which 300 g of sodium sulfate was dissolved in 5 L of pure water was added to this slurry with stirring. The amount of sodium sulfate added at this time was 30% by mass with respect to the zirconia-converted value of zirconium ions in the zirconium salt solution.
  • this mixture was dried at 130 ° C. for 24 hours in the air using a drier to obtain a solid.
  • the solid was pulverized in an automatic mortar and then baked at 520 ° C. for 1 hour in the air using an electric furnace.
  • the fired product is put into pure water, stirred to form a slurry, washed using a centrifuge, and after sufficiently removing the added sodium sulfate, dried in a dryer, Zirconia particles having an average primary particle size of 5.5 nm were obtained.
  • Example 2 (Preparation of zirconia particles)
  • zirconia particles having an average primary particle size of 7.8 nm were produced in the same manner except that firing in an electric furnace was performed at 550 ° C. in the air.
  • Surface modification to zirconia particles Preparation of surface-modified zirconia particles
  • 170 g of toluene and 6 g of a methoxy group-containing methylphenyl silicone resin manufactured by Shin-Etsu Chemical Co., Ltd., KR-9218
  • KR-9218 methoxy group-containing methylphenyl silicone resin
  • Example 3 to 6 Except for using the zirconia transparent dispersion in Example 1 and blending each of the compounds shown in Table 1 as the silicone compound as component (C) so as to have the content in the table, the same as in Example 1 Four types of curable silicone resin compositions were prepared.
  • the silicone compound used in each Example is as follows.
  • Example 3 Polymethylhydrosiloxane (manufactured by Gelest, HMS-993, viscosity: 0.05 Pa ⁇ s)
  • Example 4 Methylhydrosiloxane-dimethylsiloxane copolymer (Gelest, HMS-082, viscosity: 0.15 Pa ⁇ s)
  • Examples 5 and 6 methylhydrosiloxane-phenylmethylsiloxane copolymer (manufactured by Gelest, HPM-502, viscosity: 0.08 Pa ⁇ s)
  • silicone resin composites were produced in the same manner as in Example 1, and various evaluations were performed.
  • Example 7 Using the zirconia transparent dispersion in Example 1, component (A), phenyl silicone resin (OE-6636, manufactured by Toray Dow Corning Co., Ltd., A / B mixture ratio: 1/2, viscosity: 7.5 Pa ⁇ s) A curable silicone resin composition was prepared in the same manner as in Example 1 except that 9.4 g (A solution 3.13 g, B solution 6.27 g) was used. Using this curable silicone resin composition, a silicone resin composite was prepared in the same manner as in Example 1, and various evaluations were performed.
  • phenyl silicone resin OE-6636, manufactured by Toray Dow Corning Co., Ltd., A / B mixture ratio: 1/2, viscosity: 7.5 Pa ⁇ s
  • Example 8 Using the zirconia transparent dispersion in Example 1, component (A), phenyl silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., SCR-1016, A / B mixture ratio: 1/1, viscosity: 0.35 Pa ⁇ s) 9.6 g (A liquid 4.8 g, B liquid 4.8 g), (C) component polyphenyl-dimethylhydroxysiloxane (manufactured by Gelest, HDP-111, viscosity: 0.08 Pa ⁇ s) A curable silicone resin composition was prepared in the same manner as in Example 1 except that the amount used was 0.4 g. Using this curable silicone resin composition, a silicone resin composite was prepared in the same manner as in Example 1, and various evaluations were performed.
  • Example 9 (Preparation of silica particles) 80 g of methanol was mixed with 20 g of 24% aqueous ammonia, 0.8 g of 10N NaOH, and 4 g of polyoxyethylene alkyl ether (trade name: Emulgen 707, manufactured by Kao Corporation) as a surfactant. Thereto, 4 g of tetraethyl silicate diluted with methanol (trade name: ethyl silicate 28, manufactured by Colcoat Co.) was dropped. The mixture was stirred at 20 ° C. for 1 hour. After stirring, the sediment was taken out by decantation, redispersed in methanol, and the decantation operation was repeated. The obtained wet silica particles were dried under reduced pressure to dry methanol to obtain the produced silica particles. The average primary particle diameter of the obtained silica particles was 10 nm.
  • Example 2 Production of zirconia particles and surface-modified zirconia particles
  • the surface modification was performed in the same manner as in Example 1 except that 175 g of toluene and 5 g of the surface-modifying material were changed to 5 g of methyltrimethoxysilane (KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.). And a zirconia transparent dispersion was prepared.
  • KBM-13 methyltrimethoxysilane
  • phenyl silicone resin (A) component (OE-6630 manufactured by Toray Dow Corning Co., Ltd., A / B mixture ratio: 1/4, viscosity: 2.0 Pa ⁇ s) 9 .4 g (A liquid 1.9 g, B liquid 7.5 g) was added, and further, (C) component dimethylpolysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., KF-96-100 cs, viscosity: 0.08 Pa ⁇ s) 0 After adding 6 g and stirring, toluene was removed by drying under reduced pressure, and a curable silicone resin composition containing surface-modified zirconia particles, phenyl silicone resin, dimethylpolysiloxane, and a reaction catalyst (content of surface-modified zirconia particles: 50% by mass, viscosity: 10 Pa ⁇
  • phenyl silicone resin as component (A) (manufactured by Dow Corning Toray, OE-6630, A / B mixture ratio: 1/4, viscosity: 2.0 Pa ⁇ s) 7.0 g (Liquid A 1.4 g, Liquid B 5.6 g), and further (C) component polymethylhydrosiloxane (manufactured by Gelest, HMS-992, viscosity: 0.03 Pa ⁇ s).
  • Example 4 In the production of the zirconia particles of Example 1, zirconia particles having an average primary particle diameter of 15 nm were produced in the same manner as in Example 1 except that the firing in the electric furnace was changed from 520 ° C. to 600 ° C. in the atmosphere. A curable silicone resin composition and a silicone resin composite were prepared in the same manner as in Example 1 except that the zirconia particles were used, and various evaluations were performed.
  • Example 5 Except for using the zirconia transparent dispersion in Example 1 and blending each of the compounds shown in Table 1 as the silicone compound as component (C) so as to have the content in the table, the same as in Example 1 Four types of curable silicone resin compositions were prepared.
  • the silicone compound used by each comparative example is as follows.
  • Comparative Example 5 Polydimethylsiloxane (manufactured by Gelest, DMS-H11, viscosity: 0.008 Pa ⁇ s) Comparative Example 6: Polydimethylsiloxane (manufactured by Gelest, DMS-H25, viscosity: 0.3 Pa ⁇ s) Comparative Example 7: Polymethylhydrosiloxane (manufactured by Gelest, HMS-992, viscosity: 0.03 Pa ⁇ s) Comparative Example 8: Methylhydrosiloxane-dimethylsiloxane copolymer (Gelest, HMS-082, viscosity: 0.15 Pa ⁇ s) Using the above four kinds of curable silicone resin compositions, silicone resin composites were produced in the same manner as in Example 1, and various evaluations were performed.
  • Table 1 shows the composition of the curable silicone resin composition in each of the above Examples and Comparative Examples, and the evaluation results of the silicone resin composite.
  • the viscosities of the curable silicone resin compositions in Examples 1 to 9 were all 100 Pa ⁇ s or less, and there was no problem with handling properties such as injection into a package. Moreover, the transmittance
  • Comparative Examples 1, 3, 6, and 7 that do not contain the silicone compound as the component (C) or do not use the predetermined silicone compound, the handling property is high because the viscosity of the curable silicone resin composition is high.
  • Comparative Examples 2, 4, 5, and 8 such that the component (C) does not have a reactive functional group, or the viscosity is too low, the characteristics of the silicone resin composite are poor. All of them were unsuitable for use as a sealing material for an optical semiconductor light emitting device.
  • the present invention can be used not only as a sealing material for semiconductor light emitting devices (LEDs and the like) but also as materials and members in various other industrial fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

(A)粘度が0.02Pa・s以上100Pa・s以下である硬化性シリコーン樹脂形成成分、(B)反応性官能基を有する表面修飾材料によって表面修飾された平均一次粒子径が3nm以上10nm以下である表面修飾金属酸化物粒子、及び(C)粘度が(A)成分の粘度未満であり、かつ0.01Pa・s以上1.0Pa・s以下である反応性官能基を有するシリコーン化合物を組成物全量基準で0.1質量%以上15質量%以下含み、粘度が1.0Pa・s以上100Pa・s以下である硬化性シリコーン樹脂組成物を用いることにより、光半導体発光装置用の封止材等に用いられた場合に高い透明性及び機械的特性を発揮すると共に、他の機能材料との混合やパッケージへの注入などのハンドリング性に優れ、かつ硬化過程での体積減少や気泡の発生のない表面修飾金属酸化物粒子を含有する硬化性シリコーン樹脂組成物及びシリコーン樹脂複合体、並びに、該シリコーン樹脂複合体を封止材に用いた光半導体発光装置及び該光半導体発光装置を具備する照明器具及び液晶画像装置を提供する。

Description

硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
 本発明は、硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、これを封止材として用いた光半導体発光装置、該光半導体発光装置を具備する照明器具及び液晶画像装置に関する。
 シリコーン樹脂は、透明性、耐熱性、耐光性等の特性が優れ、また硬さやゴム弾性に優れるため、光半導体封止材や光導波路材料等に用いられる。一方、シリコーン樹脂は耐久性に優れるものの、膨張係数が大きい、ガス透過性が大きい(ガスバリア性が低い)、基材との密着性が悪いなどの問題がある。そこで、酸化ジルコニウム、酸化チタン、酸化ケイ素といった金属酸化物粒子をシリコーン樹脂材料に分散、複合化することでこれらの欠点を補うとともに機能の向上を図っている(例えば、特許文献1~5参照)。
特開2005-200657号公報 特開2009-24117号公報 特開2009-120437号公報 特開2011-26444号公報 特開2011-144272号公報
 しかし、例えば金属酸化物粒子をシリコーン樹脂材料に分散、複合化させる際、透明性を維持するためには金属酸化物粒子の平均一次粒子径を3nm以上10nm以下程度とするが、機能の向上を図るためにはより多くの金属酸化物粒子を分散、複合化することが求められ、その結果、比表面積の大きい粒子の相互作用により粘度が増大してしまい、特にハンドリング性が低下するという問題点があった。
 ここで、高粘度化した金属酸化物粒子とシリコーン樹脂材料との複合組成物を低粘度化する方法として、低粘度(低分子量)のシリコーン樹脂材料を含有させることが考えられる。しかしながら、低粘度のシリコーン樹脂材料は揮発しやすいため、シリコーン樹脂材料が有機溶剤を含有していた場合には有機溶剤の除去時に共に除去されてしまうことから、目的とする粘度が得られない、シリコーン樹脂の加熱硬化時に揮発して気泡が発生してしまう、という問題点があった。
 以上から本発明は、上記の課題を解決するためになされたものであって、具体的には、光半導体発光装置用の封止材等に用いられた場合に高い透明性及び機械的特性を発揮すると共に、他の機能材料との混合やパッケージへの注入などのハンドリング性に優れ、かつ硬化過程での体積減少や気泡の発生のない表面修飾金属酸化物粒子を含有する硬化性シリコーン樹脂組成物及びシリコーン樹脂複合体、並びに、該シリコーン樹脂複合体を封止材に用いた光半導体発光装置及び該光半導体発光装置を具備する照明器具及び液晶画像装置を提供することを目的とする。
 本発明者等は、上記課題を解決するために鋭意研究を行った結果、平均一次粒子径が所定の範囲の金属酸化物粒子をシリコーン樹脂材料に分散させるに際し、硬化性シリコーン樹脂中に表面修飾金属酸化物粒子を配合するとともに、反応性官能基を有する低粘度のシリコーン化合物を配合することにより、当該課題を解決できることを見出し、本発明に想到した。
 すなわち、本発明は下記の通りである。
[1] (A)粘度が0.02Pa・s以上100Pa・s以下である硬化性シリコーン樹脂形成成分、
 (B)反応性官能基を有する表面修飾材料によって表面修飾された平均一次粒子径が3nm以上10nm以下である表面修飾金属酸化物粒子、
 及び(C)粘度が(A)成分の粘度未満であり、かつ0.01Pa・s以上1.0Pa・s以下である反応性官能基を有するシリコーン化合物を組成物全量基準で0.1質量%以上15質量%以下含み、
 粘度が1.0Pa・s以上100Pa・s以下である硬化性シリコーン樹脂組成物。
[2] 前記表面修飾材料及び前記シリコーン化合物が、ともに、反応性官能基としてアルケニル基及びSi-H基から選択される1種以上を有する上記[1]に記載の硬化性シリコーン樹脂組成物。
[3] 前記硬化性シリコーン樹脂形成成分が、(a)アルケニル基含有オルガノポリシロキサン、(b)オルガノハイドロジェンポリシロキサン及び(c)ヒドロシリル化触媒を含む上記[1]または[2]に記載の硬化性シリコーン樹脂組成物。
[4] 上記[1]~[3]のいずれかに記載の硬化性シリコーン樹脂組成物を硬化させてなるシリコーン樹脂複合体。
[5] 半導体発光素子が封止材により封止されてなり、該封止材が[4]に記載のシリコーン樹脂複合体からなる光半導体発光装置。
[6] 上記[5]に記載の光半導体発光装置を備えてなる照明器具。
[7] 上記[5]に記載の光半導体発光装置を備えてなる液晶画像装置。
 本発明によれば、光半導体発光装置用の封止材等に用いられた場合に高い透明性及び機械的特性を発揮すると共に、他の機能材料との混合やパッケージへの注入などのハンドリング性に優れ、かつ硬化過程での体積減少や気泡の発生のない表面修飾金属酸化物粒子を含有する硬化性シリコーン樹脂組成物及びシリコーン樹脂複合体、並びに、該シリコーン樹脂複合体を封止材に用いた光半導体発光装置及び該光半導体発光装置を具備する照明器具及び液晶画像装置を提供することができる。
本発明の光半導体発光装置の一実施形態を模式的に示す断面図である。 本発明の光半導体発光装置の他の実施形態を模式的に示す断面図である。
 以下、本発明を詳細に説明する。
[1.硬化性シリコーン樹脂組成物]
 本発明の硬化性シリコーン樹脂組成物は、(A)成分として粘度が0.02Pa・s以上100Pa・s以下である硬化性シリコーン樹脂形成成分、(B)成分として反応性官能基を有する表面修飾材料によって表面修飾された平均一次粒子径が3nm以上10nm以下である表面修飾金属酸化物粒子、及び(C)成分として粘度が(A)成分の粘度未満であり、かつ0.01Pa・s以上1.0Pa・s以下である反応性官能基を有するシリコーン化合物を含む。
 なおここで「樹脂組成物」とは、流動性を有することで特定の形状を有さず、一度変形すると元の形状には戻らない不可逆的な変形性を有するものであって、後述の透明な樹脂複合体の原料となるものである。この樹脂組成物の状態としては、例えば、液状やチクソトロピー性を有するゲル状の状態にあるものを示すことができる。また、「樹脂形成成分」とは、後述の樹脂複合体における樹脂成分を形成するための成分であり、通常は樹脂成分のモノマー、オリゴマーやプレポリマーが含まれるが、それだけでなく、樹脂成分のモノマーやオリゴマーを重合硬化させるための触媒も含むものとする。
((A)硬化性シリコーン樹脂形成成分)
 本発明における(A)硬化性シリコーン樹脂形成成分は、熱や光等により硬化するシリコーン樹脂材料であれば特に限定されないが、主としてオルガノシロキサン、例えばジメチルシロキサンの構造を有する部分からなるもの、を含むこと好ましい。オルガノシロキサンは化学的に安定な構造である。また、前記硬化性シリコーン樹脂形成成分は、フェニル基を含有する構造部分、例えばメチルフェニルシロキサンやジフェニルシロキサンの構造を有する部分からなるもの、を含んでいてもよい。
 さらに、前記硬化性シリコーン樹脂形成成分は、エポキシ基、カルボキシル基、ポリエーテル基、及びカルビノール基からなる群から選択される1種以上の基を有することが好ましい。これらの基は、硬化性シリコーン樹脂形成成分と、金属酸化物粒子、蛍光体粒子、基板材料などとの結びつきを強化する働きをする。
 本発明における(A)硬化性シリコーン樹脂形成成分としては、(a)アルケニル基含有オルガノポリシロキサン、(b)オルガノハイドロジェンポリシロキサン及び(c)ヒドロシリル化触媒を含むものが好ましい。(A)硬化性シリコーン樹脂形成成分がこれらの成分を含むことにより、(a)アルケニル基含有オルガノポリシロキサン中のアルケニル基と、(b)オルガノハイドロジェンポリシロキサン中のSi-H基(ハイドロジェン基)とが付加反応(ヒドロシリル化反応)により結合することで、硬化性シリコーン樹脂形成成分同士が重合して硬化する。さらに、表面修飾金属酸化物粒子における表面修飾材料や反応性官能基を有するシリコーン化合物中に反応性官能基として含まれるアルケニル基やSi-H基が、この付加反応(ヒドロシリル化反応)により硬化性シリコーン樹脂形成成分と結合することで、硬化性シリコーン樹脂形成成分、表面修飾金属酸化物粒子及び反応性官能基を有するシリコーン化合物が一体化したシリコーン樹脂複合体を得ることができる。
 (a)アルケニル基含有オルガノポリシロキサンにおけるアルケニル基としては、炭素数が1~20のものが好ましく、1~10のものがより好ましい。具体的には、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノルボルネニル基、シクロヘキセニル基などが挙げられる。中でも、ヒドロシリル化反応に対する反応性の観点から、ビニル基が好ましい。そして、これらのアルケニル基は任意に組み合わせることができる。例えば、一つのポリシロキサン中にビニル基及びブテニル基を配したものでもよい。また、一つのポリシロキサン中にビニル基が配され、他のポリシロキサン中にブテニル基が配されたものを組み合わせて用いる等でもよい。
 なお、ポリシロキサン中のアルケニル基の位置には特段の限定は無く任意の位置に配することができ、さらに、重合反応性の点から、一つのポリシロキサン中にアルケニル基が2個以上配されていることが好ましい。
 また上記オルガノポリシロキサンとしては、例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合したオルガノ構造としてはメチル基、エチル基、フェニル基などが例示される。具体例としては、両末端にビニル基を有するジメチルポリシロキサンが挙げられる。
 前記(b)オルガノハイドロジェンポリシロキサンは、末端及び繰返し構造中の少なくともいずれかにおいて、1個以上のSi-H基(ケイ素に直接結合した水素原子、ハイドロジェン基)を含有するオルガノポリシロキサンである。重合反応性の点からは、一つのポリシロキサン中にSi-H基が2個以上配されていることが好ましい。オルガノポリシロキサンは、例えば主鎖がジオルガノシロキサンの繰返し単位であり、末端がトリオルガノシロキサン構造であるものが例示され、分岐や環状構造を有するものであってもよい。末端や繰返し単位中のケイ素に結合したオルガノ構造としてはメチル基、エチル基、フェニル、オクチル基などが例示され、これらの1個以上が水素基に置換されたものともいえる。
 前記(a)アルケニル基含有オルガノポリシロキサン及び(b)オルガノハイドロジェンポリシロキサンの配合比は、基本的には、(a)アルケニル基含有オルガノポリシロキサン中に含まれるアルケニル基の総数と、(b)オルガノハイドロジェンポリシロキサン中に含まれるSi-H基の総数とが等しくなるようにすることが好ましい。
 より正確には、(a)アルケニル基含有オルガノポリシロキサン、表面修飾金属酸化物粒子における表面修飾材料及び反応性官能基を有するシリコーン化合物中に含まれるアルケニル基の総数と、(b)オルガノハイドロジェンポリシロキサン、表面修飾金属酸化物粒子における表面修飾材料及び反応性官能基を有するシリコーン化合物中に含まれるSi-H基の総数とが等しくなるようにすることが好ましい。従って、表面修飾金属酸化物粒子における表面修飾材料及び反応性官能基を有するシリコーン化合物中に含まれるアルケニル基とSi-H基の量を考慮して、(a)アルケニル基含有オルガノポリシロキサン及び(b)オルガノハイドロジェンポリシロキサンの配合比を決めることが好ましい。
 ただし、Si-H基は酸化しやすいため、実際の配合時点(重合反応時点)で酸化していて反応基として作用しないものが存在する。また、反応により得られるシリコーン樹脂複合体中に過剰のアルケニル基が残存していると、熱負荷時に着色が発生するおそれがある。このため、Si-H基の総量をアルケニル基の総量の1.1~1.2倍程度(すなわちSi-H基が過剰な状態)とすることも好ましい。
 前記(c)ヒドロシリル化触媒は、前記(a)成分と前記(b)成分、さらには表面修飾材料及びシリコーン化合物の4成分に存在する反応性官能基相互間のヒドロシリル化反応を促進させるために添加され、ヒドロシリル化反応の触媒活性を有する公知の金属、金属化合物、金属錯体などを用いることができる。特に白金、白金化合物、それらの錯体を用いることが好ましい。具体的には、白金、白金黒、塩化白金酸などの白金系のもの、例えば、HPtCl・pHO、KPtCl、KHPtCl・pHO、KPtCl、KPtCl・pHO、PtO・pHO、PtCl・pHO、PtCl、HPtCl・pHO(ここでpは正の整数)等や、これらと、オレフィン等の炭化水素、アルコールまたはビニル基含有オルガノポリシロキサンとの錯体等を挙げることができる。
 これらの触媒は単独で使用してもよく、2種以上を併用してもよい。また、助触媒を併用してもよい。(c)ヒドロシリル化触媒の配合量は、組成物全体に対して0.1ppm以上100ppm以下とすることが好ましく、特にヒドロシリル化反応がスムーズに進行し、かつ、反応により得られるシリコーン樹脂複合体の着色を抑制するためには1ppm以上50ppm以下がより好ましい。さらに好ましくは5ppm以上20ppm以下である。
 本発明に用いられる(A)硬化性シリコーン樹脂形成成分の粘度は、0.02Pa・s以上100Pa・s以下である。粘度が0.02Pa・sに満たないと、硬化性シリコーン樹脂形成成分と複合化させる材料、例えば光半導体発光装置用の蛍光体材料等、が沈降してしまい、均質なシリコーン樹脂複合体が得られなくなる。粘度が100Pa・sを超えると粘度が高くなりすぎ、(C)成分を配合しても良好なハンドリング性が得られない。
 (A)硬化性シリコーン樹脂の粘度形成成分の粘度は、0.02Pa・s以上50Pa・s以下であることが好ましく、0.03Pa・s以上10Pa・s以下であることがより好ましい。
((B)表面修飾金属酸化物粒子)
 本発明における(B)表面修飾金属酸化物粒子は、特定粒子径の金属酸化物粒子に対し、反応性官能基を有する表面修飾材料によって表面修飾されてなる。
(金属酸化物粒子)
 金属酸化物粒子の種類は特に限定はないが、後述するシリコーン樹脂複合体の光学特性、機械的特性、熱的特性などを向上または調整する目的で、酸化亜鉛、酸化ジルコニウム、酸化チタン、二酸化ケイ素(シリカ)、酸化アルミニウム、酸化セリウム等から好適なものが適宜選択される。また、封止材等の屈折率を高めることにより、当該封止材を用いた光半導体発光装置からの光取出効率を向上させて高輝度化することや演色性を考慮する場合には、金属酸化物粒子の屈折率は1.5以上であることが好ましく、1.7以上であることがより好ましく、1.9以上であることがさらに好ましい。このような金属酸化物粒子としては、酸化チタンや酸化ジルコニウム(ジルコニア)が好ましく、特にジルコニアが好ましい。
 金属酸化物粒子の平均一次粒子径は3nm以上10nm以下である。平均一次粒子径が3nm未満だと結晶性が悪くなるのに加え、表面活性が強く、粒子間相互作用を生じて硬化性シリコーン樹脂組成物の粘度が高くなりすぎるために、(C)成分を配合しても粘度の低下が不十分となり良好なハンドリング性が得られない。一方、平均一次粒子径が10nmより大きくなると、金属酸化物と、表面修飾材料を含むシリコーン樹脂との屈折率差が大きいため散乱による透過率の低下が顕著となる。
 平均一次粒子径は、4nm以上8nm以下であることが好ましく、4nm以上6nm以下であることがより好ましい。
(表面修飾材料)
 金属酸化物粒子の表面修飾に用いられる表面修飾材料は、反応性官能基を含有している。該反応性官能基としては、金属酸化物粒子の表面や硬化性シリコーン樹脂形成成分中の官能基と反応するものであれば特に限定されないが、前記硬化性シリコーン樹脂形成成分に含まれるオルガノハイドロジェンポリシロキサンのSi-H基とヒドロシリル化によって付加反応するアルケニル基や、アルケニル基含有オルガノポリシロキサンのアルケニル基とヒドロシリル化により付加反応するSi-H基とすることが好ましい。このような反応性官能基であれば、金属酸化物粒子含有シリコーン樹脂組成物が硬化して複合体となる時に、表面修飾材料の有する反応性官能基と(A)成分、(C)成分の反応性官能基とが付加反応して金属酸化物粒子とシリコーン樹脂とが一体固定化するため、金属酸化物粒子が凝集することなく、透明なシリコーン樹脂複合体が得られる。また、金属酸化物粒子とシリコーン樹脂とが架橋することにより、該シリコーン樹脂複合体の機械的特性が向上する。
 また、シリコーン樹脂複合体や組成物中で表面修飾金属酸化物粒子材料を均一に分散安定化させる目的で、その他の構造を有する表面修飾材料を併用してもよい。
 なお、上記表面修飾材料として具体的には、例えば、ジメチルシリコーンレジン、フェニル基含有シリコーンレジン、アルコキシ基含有メチルフェニルシリコーンレジン、シランカップリング剤等を用いることができる。これらの中でも、アルコキシ基含有メチルフェニルシリコーンレジンが好ましい。
 アルケニル基を含有する表面修飾材料としては、構造中にアルケニル基を含有していれば特に限定はないが、以下の式(1)、(2)で示される構造の材料等が挙げられる。
Figure JPOXMLDOC01-appb-C000001

(式(1)中nは0以上の整数であり、mは1~3の整数である。Xはメトキシ基、エトキシ基、水酸基、ハロゲン原子、及びカルボキシ基から選択され、mが2以上の場合、全てのXが同一でもよく、又は異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002

(式(2)中nは1~100の整数であり、mは1~3の整数である。Xはメトキシ基、エトキシ基、水酸基、ハロゲン原子、及びカルボキシ基から選択され、mが2以上の場合、全てのXが同一でもよく、又は異なっていてもよい。)
 アルケニル基を含有する表面修飾材料として具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アルコキシ片末端ビニル片末端ジメチルシリコーンが挙げられる。その他にアルケニル基を含有する修飾材料としては式(1)の炭化水素鎖が分岐した構造や分岐した炭化水素鎖上にアルケニル基を含有した構造の材料、メタクリロキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン等のアクリル系シランカップリング剤やメタクリル酸など炭素-炭素不飽和結合含有脂肪酸等が挙げられる。
 これらの中で、耐熱性にも優れるという観点からは、ビニルトリメトキシシラン、アルコキシ片末端ビニル片末端ジメチルシリコーン、式(1)の炭化水素鎖が分岐した構造や分岐した炭化水素鎖上にアルケニル基を含有した構造の材料が好ましい。
 さらに、アルケニル基に加えてフェニル基を含有する表面修飾材料であってもよく、そのような表面修飾材料としては、構造中にフェニル基とアルケニル基との両方を含有していれば特に限定されないが、スチリルトリメトキシシランや式(3)で示されるアルコキシ片末端ビニル片末端フェニルシリコーン、アルコキシ片末端ビニル片末端メチルフェニルシリコーン等が挙げられる。これらは一様に、耐熱性の点でも優れている。
Figure JPOXMLDOC01-appb-C000003

(式(3)中、aは1~100の整数であり、bは0~100の整数であり、cは1~3の整数である。A、B、C、Dのうち少なくとも一つがフェニル基であり、その他は炭素数1~6のアルキル基である。A、B、C、D全てがフェニル基であってもよい。Xはメトキシ基、エトキシ基、水酸基、ハロゲン原子、及びカルボキシ基から選択され、cが2以上の場合、全てのXが同一でもよく、又は異なっていてもよい。)
 一方、Si-H基を有する表面修飾材料としては、構造中にケイ素と直接結合した水素原子(ハイドロジェン基)を含有していれば特に限定はないが、以下の式(4)、(5)で示される構造の材料等が挙げられる。
Figure JPOXMLDOC01-appb-C000004

(式(4)中、yは1から6の整数、n及びmは1または2であり、かつnとmの合計は3以下である。Xはメトキシ基、エトキシ基、水酸基、ハロゲン原子、及びカルボキシ基から選択され、4-n-mが2の場合(n=m=1の場合)、2個のXは同一でもよく、又は異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000005

(式(5)中、aは1~100の整数であり、bは0~100の整数である。A、B、C、Dはフェニル基、炭素数1~6のアルキル基またはハイドロジェン基から選択される1ないし2種以上であり、それぞれは同一であっても異なっていてもよい。また、Si・A・B・Oにより構成される部位と、Si・C・D・Oにより構成される部位の位置及び配列は任意であり、ランダムポリマー型である。Xはメトキシ基、エトキシ基、水酸基、ハロゲン原子、及びカルボキシ基から選択され、cが2以上の場合、全てのXが同一でもよく、又は異なっていてもよい。A、B、C、Dのうち少なくとも一つがハイドロジェン基の場合には、cは1~3の整数、dは0~2の整数、かつcとdとの合計は3以下であり、A、B、C、Dのいずれにもハイドロジェン基を含まない場合には、c及びdは1または2で、かつcとdとの合計は3以下である。)
 具体的には、トリエトキシシラン、ジメチルエトキシシラン、ジエトキシメチルシラン、ジメチルクロロシラン、エチルジクロロシラン、フェニルジクロロシラン、ジフェニルクロロシラン、フェニルクロロシラン、フェニルジエトキシシラン等が挙げられる。
 これらの中で、耐熱性にも優れるという観点からは、トリエトキシシラン、ジメチルエトキシシラン、ジエトキシメチルシランが好ましい。
 上記以外にも、本発明における表面修飾材料としては、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン等を用いることができる。
 さらに、後述するシリコーン樹脂組成物やシリコーン樹脂複合体中において、金属酸化物粒子を均一に分散安定化させる目的で併用されるその他の構造の表面修飾材料としては、アルコキシ片末端ジメチルシリコーン、アルコキシ片末端ビニル片末端ジメチルシリコーン、片末端エポキシシリコーン、アルキルシラン化合物、脂肪酸化合物等が挙げられる。
 表面修飾材料による金属酸化物粒子への表面修飾方法としては、湿式法や乾式法等が挙げられる。湿式法は溶媒に金属酸化物粒子と表面修飾材料、必要に応じて表面修飾材料を加水分解させるための触媒を投入し、加熱撹拌やビーズメディア等外部からエネルギーを加えて金属酸化物粒子に溶媒中で表面修飾させながら分散させる方法が挙げられる。また、乾式法は金属酸化物粒子と表面修飾材料を混練機等により混合しながら表面修飾金属酸化物粒子を得るといった方法が挙げられる。
 金属酸化物粒子に対する上記表面修飾材料の表面修飾量(表面修飾材料/金属酸化物粒子)は5質量%以上40質量%以下であることが好ましい。表面修飾量がこの範囲にあれば、硬化性シリコーン樹脂組成物中での表面修飾金属酸化物粒子材料の分散性を高く維持することができ、その結果後述するシリコーン樹脂複合体中での表面修飾金属酸化物粒子材料の分散性を高く維持することができることから、透明性の低下やガス透過性を抑えることができる。
 上記表面修飾量は、10質量%以上30質量%以下であることがより好ましい。
 なお本発明において、上記表面修飾金属酸化物粒子の含有量は、硬化性シリコーン樹脂組成物全量基準で10質量%以上75質量%以下であることが好ましい。含有量が10質量%未満では、表面修飾金属酸化物粒子の含有量が少ないことから、硬化性シリコーン樹脂組成物の粘度がさほど高くならず、(C)成分を配合する必要が生じなくなる。また金属酸化物粒子の量が少ないために、金属酸化物粒子を加える効果が十分に発揮されない可能性がある。一方含有量が75質量%より大きいと、(C)成分を配合しても硬化性シリコーン樹脂組成物の粘度を100Pa・s以下とすることが難しくなる。
 上記表面修飾金属酸化物粒子の含有量は20質量%以上75質量%以下とすることが好ましく、40質量%以上70質量%以下とすることがより好ましい。
((C)反応性官能基を有するシリコーン化合物)
 本発明における(C)反応性官能基を有するシリコーン化合物(以下、「シリコーン化合物」と称する場合がある)は、粘度が(A)成分の粘度未満であり、かつ0.01Pa・s以上1.0Pa・s以下である。
 上記シリコーン化合物においては、(A)~(C)成分を混合した硬化性シリコーン樹脂組成物の粘度を100Pa・s以下とするため、粘度を(A)成分の粘度未満であり、かつ0.01Pa・s以上1.0Pa・s以下とする。まず、粘度が(A)成分の粘度未満でないと、(C)成分を配合しても粘度を低下させることができない。ここで、粘度が0.01Pa・sに満たないと、シリコーン化合物の重合度が小さいため、硬化性シリコーン樹脂組成物に有機溶剤が含まれた場合の有機溶剤の加熱乾燥や減圧乾燥処理工程において、組成物から有機溶剤とともにシリコーン化合物が揮発除去されてしまったり、上記組成物を複合化させるために加熱した際に揮発し、シリコーン樹脂複合体中に気泡を発生させてしまう。また、粘度が1.0Pa・sより大きいと、(C)成分を配合しても平均一次粒子径が3nm以上10nm以下の微小の金属酸化物粒子を相当量含有した硬化性シリコーン樹脂組成物の粘度が100Pa・sを超えてしまい、ハンドリング性が悪くなる。
 上記シリコーン化合物の粘度は、粘度が0.01Pa・s以上0.8Pa・s以下であることが好ましく、0.01Pa・s以上0.5Pa・s以下であることがより好ましい。
 シリコーン化合物における反応性官能基としては、金属酸化物粒子表面の表面修飾材料の官能基や硬化性シリコーン樹脂形成成分中の官能基と反応するものであれば特に限定されないが、前記表面修飾材料における反応性官能基と同様に、Si-H基やアルケニル基であることが好ましい。
 すなわち、反応性官能基を、前記硬化性シリコーン樹脂形成成分に含まれるオルガノハイドロジェンポリシロキサンのSi-H基とヒドロシリル化によって付加反応するアルケニル基や、アルケニル基含有オルガノポリシロキサンのアルケニル基とヒドロシリル化により付加反応するSi-H基とすることで、硬化性シリコーン樹脂組成物の低粘度化作用があるだけでなく、当該組成物が硬化して複合体となる時に、(A)成分、(B)成分における反応性官能基と付加反応するため、複合体として一体化することができ、複合化のための加熱中に揮発して気泡を発生させることがない。なお、シリコーン化合物に不揮発性を付与するという点からはシリコーン化合物1分子中の反応性官能基は1個でもよいが、次に示す架橋点増加の点からは1分子中に2個以上の反応性官能基が配されていることが好ましい。また、この(C)シリコーン化合物により硬化性シリコーン樹脂組成物中の架橋点が増えることから、金属酸化物粒子の凝集がさらに抑制され、より透明なシリコーン樹脂複合体が得られる。さらに、金属酸化物粒子とシリコーン樹脂との架橋点が増していることから、当該複合体の機械的特性がより向上する。
 本発明における反応性官能基を有するシリコーン化合物としては、水素末端ポリジメチルシロキサン、メチルヒドロシロキサン-ジメチルシロキサンコポリマー、ポリエチルヒドロシロキサン、ポリフェニル-(ジメチルヒドロシロキサン)シロキサン、メチルヒドロシロキサン-フェニルメチルシロキサンコポリマー、メチルヒドロシロキサン-オクチルメチルシロキサンコポリマー、ビニル末端ポリジメチルシロキサン、ビニル末端ジフェニルシロキサン-ジメチルシロキサンコポリマー、ビニル末端ポリフェニルメチルシロキサン、ビニルフェニルメチル末端ビニルフェニルシロキサン-フェニルメチルシロキサンコポリマー、ビニル末端トリフルオロプロピルメチルシロキサン-ジメチルシロキサンコポリマー等が挙げられる。
 また本発明において、上記シリコーン化合物の含有量は、硬化性シリコーン樹脂組成物全量基準で0.1質量%以上15質量%以下とすることが必要である。含有量が0.1質量%未満では、硬化性シリコーン樹脂組成物の粘度を十分下げることができず、含有量が15質量%より大きいと、架橋点が多くなり過ぎるため、シリコーン樹脂複合体が硬くなり過ぎ、機械的、熱的衝撃によりクラックが発生する。
 上記シリコーン化合物の含有量は0.1質量%以上14質量%以下とすることが好ましく、0.3質量%以上12質量%以下とすることがより好ましく、0.5質量%以上10質量%以下とすることがさらに好ましい。
 以上説明したように、本発明の硬化性シリコーン樹脂組成物では(A)成分、(B)成分、(C)成分を含有してなり、かつ(C)成分であるシリコーン化合物の含有量は組成物全量基準で0.1質量%以上15質量%以下である。さらに、(B)成分である表面修飾金属酸化物粒子の含有量は硬化性シリコーン樹脂組成物全量基準で10質量%以上75質量%以下であることが好ましい。このように、本発明の硬化性シリコーン樹脂組成物では、(A)成分、(B)成分、(C)成分の特性と含有量とを調整することにより、その粘度を1.0Pa・s以上100Pa・s以下とすることができる。粘度を1.0Pa・s以上100Pa・s以下とすることによって、蛍光体との混合やパッケージへの注入などのハンドリング性に優れ、かつ硬化過程で体積減少や気泡の発生のない硬化性シリコーン樹脂組成物を得ることができる。
 上記硬化性シリコーン樹脂組成物の粘度は2.0Pa・s以上50Pa・s以下とすることが好ましく、5.0Pa・s以上30Pa・s以下とすることがより好ましい。
[2.シリコーン樹脂複合体]
 本発明のシリコーン樹脂複合体は、上記本発明の硬化性シリコーン樹脂組成物を付加反応や縮合反応等により重合硬化させることにより得られる。
 ここで付加反応とは、例えばアルケニル基とSi-H基とが白金族金属系触媒により結合する反応(ヒドロシリル化反応)である。この付加反応では、例えばポリシロキサンに配されたアルケニル基と、他のポリシロキサンに配されたSi-H基とが、付加反応で結合して重合し硬化する。
 また縮合反応とは、例えば水酸基又は加水分解性基と加水分解可能基とが、アミノキシ基、アミノ基、ケトオキシム基等を含有する縮合触媒により脱水等の反応を起こして結合するものである。この縮合反応では、例えばポリシロキサン末端に配された水酸基又は加水分解性基と、シラン化合物中のケイ素原子に結合した加水分解可能基とが、脱水等の縮合反応で結合して重合して硬化する。
 本発明の硬化性シリコーン樹脂組成物の重合硬化には、付加反応と縮合反応のいずれも選択できる。しかしながら、縮合反応の場合には水等の副生成物が発生し、この副生成物の影響が考えられることや副生成物の除去が必要となること、またシリコーン樹脂形成成分だけでなく表面修飾金属酸化物粒子(表面修飾材料)や反応性官能基を有するシリコーン化合物を含めた重合反応であることを考慮すると、付加反応による重合硬化を選択することが好ましい。
 本発明の硬化性シリコーン樹脂組成物では、アルケニル基として、(A)成分であるシリコーン樹脂形成成分中のポリシロキサンに配されたアルケニル基、(B)成分である表面修飾金属酸化物粒子の表面修飾材料中の反応性官能基としてのアルケニル基及び(C)成分である反応性官能基を有するシリコーン化合物中の反応性官能基としてのアルケニル基が存在する。また、Si-H基としても、(A)成分であるシリコーン樹脂形成成分中のポリシロキサンに配されたSi-H基、(B)成分である表面修飾金属酸化物粒子の表面修飾材料中の反応性官能基としてのSi-H基及び(C)成分である反応性官能基を有するシリコーン化合物中の反応性官能基としてのSi-H基が存在する。従って、付加反応による重合硬化においては、ポリシロキサン同士の結合だけでなく、ポリシロキサンと表面修飾材料(表面修飾金属酸化物粒子)との結合、ポリシロキサンとシリコーン化合物との結合、表面修飾材料(表面修飾金属酸化物粒子)とシリコーン化合物との結合等が生じて、重合硬化することができる。
 このように、本発明の硬化性シリコーン樹脂組成物では、(A)成分、(B)成分、(C)成分の各成分が相互に結合して重合硬化するので、硬化過程で表面修飾金属酸化物粒子と硬化性シリコーン樹脂形成成分とが相分離することが防止され、またシリコーン化合物の揮発による気泡の発生等を防ぐことができる。
 さらに、シリコーン化合物が、硬化性シリコーン樹脂形成成分と表面修飾金属酸化物粒子とを架橋結合することで、金属酸化物粒子とシリコーン樹脂との架橋点が増加する。この架橋点の増加により、硬化過程における金属酸化物粒子の凝集がより抑制されることから、より透明性の高いシリコーン樹脂複合体が得られる。
 また、得られた本発明のシリコーン樹脂複合体においては、金属酸化物粒子とシリコーン樹脂との架橋点が増加していることから、金属酸化物粒子とシリコーン樹脂とが強固に一体化している。これにより、当該樹脂複合体は機械的特性がより向上しているだけでなく、熱負荷時においても金属酸化物粒子の凝集(粒子分散性の低下)が抑制されるので透過率の低下も抑制される。
 さらに、このシリコーン樹脂複合体は金属酸化物粒子を含むとともに該金属酸化物粒子とシリコーン樹脂とが強固に一体化していることから、ガスバリア性も高いものとすることができる。
 なおここで、「樹脂複合体」は特定の形状を有するが、この「所定の形状を有する」とは、樹脂複合体が液状、ゲル状等の不可逆的な変形性を有しておらず、使用の目的や方法に合わせた一定の形状を維持することができることを示すものである。すなわち、通常のほとんど変形しない固体状の他、ゴム状等の弾性変形性(形状復元性)を有するものを含むものであり、形状自体が特定の形状であることを示すものではない。
 当該シリコーン樹脂複合体の形状は特に限定されるものではなく、その形状は用途に合わせて選択すれば良い。ここで、本発明に用いられるシリコーン樹脂は、付加反応や縮合反応により重合硬化した後では、一般的な樹脂が示すような熱可塑性や溶媒溶解性を示さない。このため、シリコーン樹脂複合体の成形は、前記硬化性シリコーン樹脂組成物を硬化してシリコーン樹脂複合体する際に行うか、硬化後のシリコーン樹脂複合体を切削等の機械加工により行うことが好ましい。ここでは、硬化性シリコーン樹脂組成物を硬化してシリコーン樹脂複合体する際に成形を行う場合について説明する。
 まず、本発明の硬化性シリコーン樹脂組成物を、金型や型枠を用いて成形したり、金型や型枠状の容器に充填したりすることにより、目的の形状に成形された成形体または充填物を得る。この時点では、成形体や充填物は流動性を有する状態である。
 ここで、使用する硬化性シリコーン樹脂組成物は、前記(C)成分の配合量を調整し、さらに必要に応じて(B)成分の配合量も調整することで、その粘度を1.0Pa・s以上100Pa・s以下としているので、ハンドリング性に優れており、容易に成形や充填を行うことができる。
 しかしながら、使用する硬化性シリコーン樹脂組成物の粘度がまだ高い場合には、予め、有機溶媒等を添加し撹拌・混合して粘度を低下させ、成形や充填により適した粘度となるように調整してもよい。
 また、使用する硬化性シリコーン樹脂組成物の粘度が低い場合には、予め、硬化性シリコーン樹脂形成成分の一部や、硬化性シリコーン樹脂形成成分と表面修飾材料の一部、硬化性シリコーン樹脂形成成分とシリコーン化合物の一部等を重合や架橋させておくことで粘度を高め、成形や充填により適した粘度となるように調整してもよい。また、硬化性シリコーン樹脂組成物が有機溶媒を含む場合には、この有機溶媒の一部あるいは全部を揮発させる等で除去することで、粘度を高めることもできる。さらに、上記硬化性シリコーン樹脂組成物をマスターバッチとして他の樹脂に混合して用いてもよい。
 次いで、この成形体または充填物を、室温(25℃程度)のままや、所定の温度(室温~150℃、好ましくは80℃~150℃)に加温して所定時間静置したり、あるいは、この成形体または充填物に、電子線や紫外線領域から赤外線領域の任意の波長を有する光線(活性エネルギー線)を照射することによって、この硬化性シリコーン樹脂組成物中の硬化性シリコーン樹脂形成成分等を付加反応や縮合反応等により重合硬化させる。ここでは、前述のように、硬化性シリコーン樹脂形成成分、表面修飾金属酸化物粒子の表面修飾材料及びシリコーン化合物が相互に反応して結合することから、硬化過程で表面修飾金属酸化物粒子と硬化性シリコーン樹脂とが相分離することを防ぎ、またシリコーン化合物の揮発による気泡の発生等を防ぐことができる。さらに、シリコーン化合物により金属酸化物粒子とシリコーン樹脂との架橋点が増加することから、より透明性が高く、機械的特性が向上し、熱負荷時における透過率の低下も抑制され、ガスバリア性も高いシリコーン樹脂複合体を得ることができる。
 なお、この成形体または充填物に有機溶媒が残留する場合には、予めこの有機溶媒を揮発除去しておくことが好ましい。
 これにより、この成形体または充填物は、金型や容器から外した後、外力を加えても、一定の形状を維持できる状態、すなわちシリコーン樹脂複合体が得られる。
 なお、シリコーン樹脂複合体は、用途において問題が無ければ、必ずしも金型や容器から外す必要はない。例えば、後述の光半導体発光装置では、装置自体が容器を形成した形である。
 本発明のシリコーン樹脂複合体を光半導体発光装置等の封止材に用いる場合には、その屈折率が1.54より高いことが好ましく、1.56以上であることがより好ましく、1.58以上であればさらに好ましく、1.6以上であれば最も好ましい。また、光路長1.0mmとした場合の波長400~800nmにおける透過率は、60%以上であることが好ましく、70%以上であることがより好ましい。透過率がこの範囲であれば、例えば光半導体素子を直接被覆した際にも高い透明性を維持することができ、構成部材として光透過損失の低下を抑制することができる。
 シリコーン樹脂複合体の屈折率や透過率は、金属酸化物粒子の種類や粒子径、マトリックスシリコーン樹脂の組成、シリコーン樹脂複合体中の金属酸化物粒子の量等を適宜調整することにより、所望の範囲とすることができる。
 例えば、シリコーン樹脂複合体の屈折率を高めるためには、金属酸化物粒子として屈折率が1.5以上の高屈折率粒子を用いることが好ましい。屈折率は1.7以上であることがより好ましく、1.9以上であればさらに好ましい。このような金属酸化物粒子としては、ジルコニウム、チタン、スズ、セリウム、タンタル、ニオブ、亜鉛の群から選択される1種または2種以上を含有してなる金属酸化物粒子を選択することができるが、これらの中でも酸化チタンや酸化ジルコニウム(ジルコニア)が好ましく、特にジルコニアが好ましい。また、シリコーン樹脂中にフェニル基等を導入することにより、樹脂自体の屈折率を高めることもできる。
 なお、上記シリコーン樹脂複合体の屈折率は、アルミニウム基板上に形成した複合体(1mm厚)を用い、プリズムカプラーによって室温で波長594nmの値を測定することによって求められる。透過率の測定方法については後述する。
 本発明のシリコーン樹脂複合体の用途は、特に制限されない。特に、該シリコーン樹脂複合体の前記優れた特性を利用した光学部品等として好適に利用することができる。かかる光学部品を備えた光学機能装置としては、次項に示す光半導体発光装置を始めとして、各種ディスプレイ装置(液晶ディスプレイやプラズマディスプレイ等)、各種プロジェクタ装置(OHP、液晶プロジェクタ等)、光ファイバー通信装置(光導波路、光増幅器等)、カメラやビデオなどの撮影装置等、LED照明装置などの照明器具等が例示される。
[3.光半導体発光装置]
 本発明の光半導体発光装置は、半導体発光素子が封止材により封止されてなり、該封止材が本発明のシリコーン樹脂複合体からなる。
 本発明のシリコーン樹脂複合体は、硬化時の気泡発生等が防止され、透明性が高く、機械的特性が向上し、熱負荷時における透過率の低下も抑制され、ガスバリア性も高い。また、金属酸化物粒子として屈折率が1.5以上の高屈折材料粒子を用いることにより、シリコーン樹脂複合体を高屈折率化することができる。これらの特性により、光半導体発光装置の封止材として好適に用いることができる。
 なお、該封止材からなる封止層の厚さが50μm以上であることが好ましい。封止層の厚さが50μm未満だとガス透過性を十分に低く抑えることができない場合がある。封止層の厚さは、100μm以上であることが好ましく、200μm以上であることがより好ましい。
 本発明に係る封止層の構成は、光半導体発光装置の封止層全体が本発明のシリコーン樹脂複合体の層でもよく(第1の態様)、光半導体発光装置の封止層の一部が本発明のシリコーン樹脂複合体の層であってその他の封止層が積層されていてもよい(第2の態様)。また、これらの封止層に蛍光体を含有してもよい。
 本発明の光半導体発光装置は、上記のように封止層のガスバリア性に優れるため、例えばLEDパッケージにおける銀メッキ反射板の劣化を抑制でき、LEDの輝度を高く保ちつつその低下を少なくすることができるので、これを備えた照明器具や液晶画像装置として有効に利用することができる。
 当該光半導体発光装置について具体的に説明する。なお、本発明は以下の例に特に限定されるものではない。
 本発明に係る第1の態様(発光装置10)は、図1に示すように、反射カップ12の凹部12Aに発光素子14が配置され、発光素子14に接して凹部を埋め込むように、本発明のシリコーン樹脂複合体からなる封止材により構成された第1の封止層16が形成されてなる。
 かかる装置によれば、発光素子14から出射された光は封止材との境界面を通過した後、封止材内を通り、直接に、あるいは反射カップ12の壁面で反射されて外部に取り出される。
 発光装置を構成する発光素子としては、例えば、発光ダイオード(LED)及び半導体レーザを挙げることができる。ここで、発光ダイオードとしては、赤色光(例えば、波長640nmの光)を発光する赤色発光ダイオード、緑色光(例えば、波長530nmの光)を発光する緑色発光ダイオード、青色光(例えば、波長450nmの光)を発光する青色発光ダイオードを例示することができる。発光ダイオードは、いわゆるフェイスアップ構造を有していてもよいし、フリップチップ構造を有していてもよい。すなわち、発光ダイオードは、基板、及び、基板上に形成された発光層から構成されており、発光層から光が外部に出射される構造としてもよいし、発光層からの光が基板を通過して外部に出射される構造としてもよい。
 より具体的には、発光ダイオードは、例えば、基板上に形成された第1導電型(例えばn型)を有する化合物半導体層からなる第1クラッド層、第1クラッド層上に形成された活性層、活性層上に形成された第2導電型(例えばp型)を有する化合物半導体層からなる第2クラッド層が積層された構造を有し、第1クラッド層に電気的に接続された第1電極、及び、第2クラッド層に電気的に接続された第2電極を備えている。発光ダイオードを構成する層は、発光波長に依存して、周知の化合物半導体材料から構成すればよい。
 ここで、発光ダイオードの発光層の屈折率は、例えばGaAs系で3.5程度、GaP系で3.2程度、GaN系で2.5程度であり、また通常用いられるサファイア基板の屈折率は1.75程度であって、いずれの場合もかなり高い。しかしながら、従来用いられているシリコーン樹脂系やエポキシ樹脂系等の封止材の屈折率は高々1.4~1.5程度であり、発光層と封止材間、あるいはサファイア基板と封止材間での屈折率差が大きいために、発光層からの光の大半がこれらの界面で全反射されて発光層内やサファイア基板内に閉じ込められてしまい、光の取り出し効率を高くすることができなかった。
 本発明の光半導体発光装置では、封止材として本発明のシリコーン樹脂複合体を用いており、当該樹脂複合体において高屈折率の金属酸化物粒子を用いることにより、シリコーン樹脂複合体としての屈折率を容易に高めることができる。なお、高屈折率金属酸化物粒子としては、ジルコニウム、チタン、スズ、セリウム、タンタル、ニオブ、亜鉛の群から選択される1種または2種以上を含有してなる金属酸化物粒子を選択することができるが、これらの中でも酸化チタンや酸化ジルコニウム(ジルコニア)が好ましく、特にジルコニアが好ましい。
 このように、封止材であるシリコーン樹脂複合体の屈折率を高めることにより、発光層と封止材間、あるいはサファイア基板と封止材間において全反射する発光光量を低減させることで、光の取り出し効率を高めることができる。封止材の屈折率は1.54より高いことが好ましく、1.56以上であることがより好ましく、1.58以上であればさらに好ましく、1.6以上であれば最も好ましい。
 また、従来用いられているシリコーン樹脂系やエポキシ樹脂系等の封止材の透過率としては、光路長0.5mmとした場合の波長450nmにおける透過率が40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましいとされている。
 本発明の光半導体発光装置では、封止材として本発明のシリコーン樹脂複合体を用いており、当該樹脂複合体は、その構成から光路長1.0mmとした場合の波長400~800nmにおける透過率を容易に60%以上とすることができることから、やはり光の取り出し効率を高めることができる。
 本発明に係る第2の態様(発光装置20)は、図2に示すように、第1の封止層16が発光素子14の表面を覆うように形成されてなり、その外側に第2の封止層18が形成されてなる以外は、第1の態様と同様である。
 第2の封止層18は、第1の封止層16で不足する特性を補完するために設けるものでもよく、第1の封止層16の表面(外部との界面)における界面反射を低減して光の取り出し効率を高くするために設けるものでもよい。なお、界面反射の低減を目的とする場合には、第2の封止層18の屈折率を第1の封止層16の屈折率未満かつ1(大気の屈折率)を超えた値とすることが好ましい。
 第2の封止層18の材料としては、メチルシリコーン、変性シリコーン、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂等の各種樹脂又は樹脂複合体が挙げられる。また、本発明のシリコーン樹脂複合体を用いてもよく、この場合、原料となる硬化性シリコーン樹脂形成成分、表面修飾金属酸化物粒子及びシリコーン化合物の成分や配合比を調整することで第1の封止層16とは異なる特性や屈折率をもたせることが好ましい。さらにまた、第2の封止層18の屈折率を調整する目的で、第2の封止層中に本発明に係る表面修飾金属酸化物粒子を含有してもよい。
 また、本発明の光半導体発光装置は、発光素子と蛍光体とを組み合わせた光半導体発光装置とすることもできる。本発明の光半導体発光装置によれば、光半導体素子に接する第1封止層が既述の本発明のシリコーン樹脂複合体であるが、この第1の封止層に、例えば、青色InGaN用のYAG蛍光体や紫外光用のRGB蛍光体等の蛍光体を含有させればよい。この蛍光体は、本発明の封止材であるシリコーン樹脂複合体を形成するための硬化性シリコーン樹脂組成物(硬化性シリコーン樹脂形成成分と、表面修飾金属酸化物粒子と、反応性官能基を有するシリコーン化合物とを少なくとも含む流動体)中に予め含有させればよく、その方法としては、硬化性シリコーン樹脂組成物の作製時に蛍光体を直接混合する方法、未硬化の硬化性シリコーン樹脂中に蛍光体を混合する方法、蛍光体を有機溶剤等に分散させた分散液を硬化性シリコーン樹脂組成物に混合した後有機溶剤等を除去する方法、等を挙げることができる。
 特に、コスト面で蛍光体の使用量を削減する場合や発光素子近傍に蛍光体を集中的に配置して光変換効率を高める場合を考慮すると、第2の態様における第1の封止層に蛍光体を含有させることが好ましい。蛍光体は、第1の封止層の質量に対して5質量%以上80質量%以下であることが好ましく、20質量%以上70質量%以下であることがより好ましい。なお、第2の封止層にも蛍光体を含有させることができる。
 また、本発明の光半導体発光素子では、発光素子からの発光光を効率良く蛍光体に照射するために、蛍光体と併せて光散乱材を用いることもできる。この場合、蛍光体が存在する第1の封止層に光散乱材を含有させることが好ましい。光散乱材としては、封止層を形成するマトリックス樹脂、すなわちシリコーン樹脂複合体を形成するシリコーン樹脂とは屈折率が異なる粒子を用いことが好ましく、その粒子径はミー散乱に基づく光散乱が発生する20nm以上が好ましい。なお、光散乱材の混合方法等は蛍光体と同様であることから記載を省略する。
 このような、発光素子と蛍光体とを組み合わせた光半導体発光装置としては、白色発光ダイオード(例えば、紫外または青色発光ダイオードと蛍光体粒子とを組み合わせて白色光を出射する発光ダイオード)を例示することができる。
 なお、以上の説明においては、反応性官能基がアルケニル基とSi-H基であるとしたが、この内アルケニル基については、少なくともその一部がアルキニル基であってもよい。すなわち、(A)硬化性シリコーン樹脂形成成分における(a)アルケニル基含有オルガノポリシロキサンのアルケニル基の少なくとも一部がアルキニル基であってもよく、(B)表面修飾金属酸化物粒子において、金属酸化物粒子の表面修飾に用いられる表面修飾材料が含有する反応性官能基としてのアルケニル基の少なくとも一部がアルキニル基であってもよく、(C)反応性官能基を有するシリコーン化合物における反応性官能基としてのアルケニル基の少なくとも一部がアルキニル基であってもよい。炭素―炭素二重結合(C=C)を有するアルケニル基の代わりに、炭素―炭素三重結合(C≡C)を有するアルキニル基を用いた場合においても、Si-H基とヒドロシリル化反応により付加反応する限り、その反応性や使用条件はほとんど変わらないからである。これらのアルキニル基としては、エチニル基、プロパギル基(プロピニル基)が挙げられる。
 一方、アルケニル基とSi-H基は1:1の割合で反応するのに対して、アルキニル基とSi-H基は1:2の割合で反応するため、アルケニル基の代わりにアルキニル基を用いた場合、Si-H基の必要量は増加する。そこで、アルケニル基に代えてその一部にアルキニル基を用いた場合には、(a)アルケニル基(アルキニル基を含む)含有オルガノポリシロキサン、表面修飾材料及びシリコーン化合物中に含まれるアルケニル基とアルキニル基の数を求めておき、(b)オルガノハイドロジェンポリシロキサン、表面修飾材料及びシリコーン化合物中に含まれるSi-H基の総数が、[(アルケニル基の数)×1+(アルキニル基の数)×2]と等しくなるか、その1.1~1.2倍程度にすることが好ましい。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
 本実施例について、各種測定及び評価は下記のようにして行った。
(金属酸化物粒子の平均一次粒子径)
 金属酸化物粒子の平均一次粒子径は、X線回折ピークの半値幅から計算によって得られるシェラー径とした。これは、一次粒子径がナノメートルサイズであれば、1粒子が複数個の結晶子で構成される可能性が低くなることで、平均一次粒子径とシェラー径とが実質的に同一となるからである。
(硬化性シリコーン樹脂、シリコーン化合物、硬化性シリコーン樹脂組成物の粘度)
 硬化性シリコーン樹脂等の粘度は、レオメーター(レオストレスRS-6000、HAAKE社製)を用いて測定した。なお、粘度の測定は、温度25℃、剪断速度1.0(1/s)にて行った。
(硬化性シリコーン樹脂組成物、シリコーン樹脂複合体の透過率)
 硬化性シリコーン樹脂組成物の透過率は、硬化性シリコーン組成物を0.5mmの薄層石英セルに挟んだものを試料とし、分光光度計(V-570、日本分光社製)にて積分球を用いて測定した。
 またシリコーン樹脂複合体の透過率は、土手を設けたガラス基板上に、硬化性シリコーン組成物を硬化後の厚みが0.5mmとなるように流し込み、150℃で6時間処理した後、分光光度計(V-570、日本分光社製)にて積分球を用いて測定した。なお、透過率は、ともに分光波長460nmにおける値を測定値とした。
(シリコーン樹脂複合体の硬度)
 シリコーン樹脂複合体の硬度は、デュロメータ(WR-104A及びWR-105D、西東京精密社製)によって測定した。
[実施例1]
(ジルコニア粒子の作製)
 オキシ塩化ジルコニウム8水塩2615gを純水40L(リットル)に溶解させたジルコニウム塩溶液に、28%アンモニア水344gを純水20Lに溶解させた希アンモニア水を攪拌しながら加え、ジルコニア前駆体スラリーを調製した。
 次いで、このスラリーに、硫酸ナトリウム300gを5Lの純水に溶解させた硫酸ナトリウム水溶液を攪拌しながら加えた。このときの硫酸ナトリウムの添加量は、ジルコニウム塩溶液中のジルコニウムイオンのジルコニア換算値に対して30質量%であった。
 次いで、この混合物を、乾燥器を用いて、大気中、130℃にて24時間乾燥させ、固形物を得た。
 次いで、この固形物を自動乳鉢で粉砕した後、電気炉を用いて、大気中、520℃にて1時間焼成した。
 次いで、この焼成物を純水中に投入し、攪拌してスラリー状とした後、遠心分離器を用いて洗浄を行い、添加した硫酸ナトリウムを十分に除去した後、乾燥器にて乾燥させ、平均一次粒子径5.5nmのジルコニア粒子を得た。
(ジルコニア粒子への表面修飾:表面修飾ジルコニア粒子の作製)
 次いで、ジルコニア粒子20gに、トルエン170g、メトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製、KR-9218)6gを加えて、混合し、ビーズミルで6時間、表面修飾処理を行った後、ビーズを除去した。次いで、ビニルトリメトキシシラン(信越化学工業社製、KBM-1003)を4g添加し、130℃にて6時間環流下で修飾・分散処理を行い、ジルコニア透明分散液を調製した。
(硬化性シリコーン樹脂組成物の作製)
 上記ジルコニア透明分散液66.7gに、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6630、A液/B液配合比:1/4、粘度:2.0Pa・s)9.4g(A液1.9g、B液7.5g)を加え、さらに(C)成分であるポリフェニル-ジメチルヒドロキシシロキサン(Gelest社製、HDP-111、粘度:0.08Pa・s)0.6gを加えて撹拌した後、減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とポリフェニル-ジメチルヒドロキシシロキサンと反応触媒とを含有した硬化性シリコーン樹脂組成物(表面修飾ジルコニア粒子含有量:50質量%、粘度:10Pa・s)を得た。この硬化性シリコーン樹脂組成物の透過率は85%であった。
(シリコーン樹脂複合体の作製)
 上記硬化性シリコーン樹脂組成物を150℃で3時間加熱処理して硬化することで、シリコーン樹脂複合体を得た。
 このシリコーン樹脂複合体を用いて既述の各種評価を行った。
[実施例2]
(ジルコニア粒子の作製)
 実施例1のジルコニア粒子の作製において、電気炉での焼成を大気中、550℃で行った以外は同様にして、平均一次粒子径が7.8nmのジルコニア粒子を作製した。
(ジルコニア粒子への表面修飾:表面修飾ジルコニア粒子の作製)
 次いで、ジルコニア粒子20gに、トルエン170g、メトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製、KR-9218)6gを加えて、混合し、ビーズミルで6時間、表面修飾処理を行った後、ビーズを除去した。次いで、ジメトキシメチルシラン(東京化成工業社製、D2100)を4g添加し、130℃にて6時間環流下で修飾・分散処理を行い、ジルコニア透明分散液を調製した。
(硬化性シリコーン樹脂組成物、シリコーン樹脂複合体の作製)
 上記ジルコニア透明分散液93.3gに、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6630、A液/B液配合比:1/4、粘度:2.0Pa・s)5.4g(A液1.1g、B液4.3g)を加え、さらに(C)成分であるビニル末端ポリジメチルシロキサン(Gelest社製、DMS-V21、粘度:0.08Pa・s)0.6gを加えて撹拌した後、減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とビニル末端ポリジメチルシロキサンと反応触媒とを含有した硬化性シリコーン樹脂組成物(表面修飾ジルコニア粒子含有量:70質量%、粘度:5.0Pa・s)を得た。この硬化性シリコーン樹脂組成物の透過率は76%であった。
 この硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
[実施例3~6]
 実施例1におけるジルコニア透明分散液を用い、(C)成分であるシリコーン化合物として各々第1表に示したものを表中の含有量となるように配合した以外は、実施例1と同様にして、4種の硬化性シリコーン樹脂組成物を作製した。
 なお、各実施例で用いたシリコーン化合物は以下の通りである。
 ・実施例3:ポリメチルヒドロシロキサン(Gelest社製、HMS-993、粘度:0.05Pa・s)
 ・実施例4:メチルヒドロシロキサン-ジメチルシロキサンコポリマー(Gelest社製、HMS-082、粘度:0.15Pa・s)
 ・実施例5、6:メチルヒドロシロキサン-フェニルメチルシロキサンコポリマー(Gelest社製、HPM-502、粘度:0.08Pa・s)
 上記4種の硬化性シリコーン樹脂組成物を各々用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
[実施例7]
 実施例1におけるジルコニア透明分散液を用い、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6636、A液/B液配合比:1/2、粘度:7.5Pa・s)9.4g(A液3.13g、B液6.27g)を使用した以外は、実施例1と同様にして、硬化性シリコーン樹脂組成物を作製した。
 この硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
[実施例8]
 実施例1におけるジルコニア透明分散液を用い、(A)成分であるフェニルシリコーン樹脂(信越化学工業社製、SCR-1016、A液/B液配合比:1/1、粘度:0.35Pa・s)9.6g(A液4.8g、B液4.8g)を使用したこと、(C)成分であるポリフェニル-ジメチルヒドロキシシロキサン(Gelest社製、HDP-111、粘度:0.08Pa・s)の使用量を0.4gとした以外は、実施例1と同様にして、硬化性シリコーン樹脂組成物を作製した。
 この硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
 [実施例9]
(シリカ粒子の作製)
 メタノール80gに濃度24%アンモニア水20g、10N-NaOH0.8g、界面活性剤としてポリオキシエチレンアルキルエーテル(商品名:エマルゲン707、花王社製)4gを混合した。そこへ、メタノールにて希釈したテトラエチルシリケート(商品名:エチルシリケート28、コルコート社製)を4g滴下した。その混合液を20℃で1時間撹拌した。撹拌終了後、デカンテーションにより沈降物を取り出し、メタノールへ再分散してデカンテーション作業を繰り返した。得られたウェット状のシリカ粒子を減圧乾燥にてメタノールを乾燥させ、生成したシリカ粒子を得た。得られたシリカ粒子の平均一次粒子径は10nmであった。
(シリカ粒子への表面修飾:表面修飾シリカ粒子の作製)
 次いで、シリカ粒子20gに、トルエン170g、メトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製、KR-9218)6gを加えて、混合し、ビーズミルで6時間、表面修飾処理を行った後、ビーズを除去した。次いで、ジメトキシメチルシラン(東京化成工業社製、D2100)を4g添加し、130℃にて6時間環流下で修飾・分散処理を行い、シリカ透明分散液を調製した。
(硬化性シリコーン樹脂組成物、シリコーン樹脂複合体の作製)
 上記シリカ透明分散液53.3gに、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6630、A液/B液配合比:1/4、粘度:2.0Pa・s)11.4g(A液2.3g、B液9.1g)を加え、さらに(C)成分であるビニルメチルシロキサン ホモポリマー(Gelest社製、VMS-T11、粘度:0.011Pa・s)0.6gを加えて撹拌した後、減圧乾燥によりトルエンを除去し、表面修飾二酸化ケイ素粒子とフェニルシリコーン樹脂とビニルメチルシロキサン ホモポリマーと反応触媒とを含有した硬化性シリコーン樹脂組成物(表面修飾シリカ粒子含有量:40質量%、粘度:1.0Pa・s)を得た。この硬化性シリコーン樹脂組成物の透過率は75%であった。
 この硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
[比較例1]
 実施例1の硬化性シリコーン樹脂組成物の作製において、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6630、A液/B液配合比:1/4、粘度:2.0Pa・s)を10.0g用い、(C)成分であるポリフェニル-ジメチルヒドロキシシロキサンを用いなかった以外は実施例1と同様にして、硬化性シリコーン樹脂組成物、さらにはシリコーン樹脂複合体を作製し、同様の評価を行った。
[比較例2]
(ジルコニア粒子、表面修飾ジルコニア粒子の作製)
 実施例1の表面修飾ジルコニア粒子の作製において、トルエン175g、表面修飾材料をメチルトリメトキシシラン(信越化学工業社製、KBM-13)5gに変更した以外は実施例1と同様にして表面修飾を行い、ジルコニア透明分散液を調製した。
(硬化性シリコーン樹脂組成物、シリコーン樹脂複合体の作製)
  上記ジルコニア透明分散液80gに、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6630、A液/B液配合比:1/4、粘度:2.0Pa・s)9.4g(A液1.9g、B液7.5g)を加え、さらに(C)成分であるジメチルポリシロキサン(信越化学工業社製、KF-96-100cs、粘度:0.08Pa・s)0.6gを加えて撹拌した後、減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とジメチルポリシロキサンと反応触媒とを含有した硬化性シリコーン樹脂組成物(表面修飾ジルコニア粒子含有量:50質量%、粘度:10Pa・s)を得た。この硬化性シリコーン樹脂組成物の透過率は38%であった。
 この硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
 [比較例3]
(ジルコニア粒子の作製)
 実施例1のジルコニア粒子の作製において、電気炉での焼成を大気中、500℃で行った以外は同様にして、平均一次粒子径が2.1nmのジルコニア粒子を作製した。
(ジルコニア粒子への表面修飾:表面修飾ジルコニア粒子の作製)
 次いで、ジルコニア粒子20gに、トルエン170g、メトキシ基含有メチルフェニルシリコーンレジン(信越化学工業社製、KR-9218)6gを加えて、混合し、ビーズミルで6時間、表面修飾処理を行った後、ビーズを除去した。次いで、ビニルトリメトキシシラン(信越化学工業社製、KBM-1003)を4g添加し、130℃にて6時間環流下で修飾・分散処理を行い、ジルコニア透明分散液を調製した。
(硬化性シリコーン樹脂組成物、シリコーン樹脂複合体の作製)
 上記ジルコニア透明分散液66.7gに、(A)成分であるフェニルシリコーン樹脂(東レ・ダウコーニング社製、OE-6630、A液/B液配合比:1/4、粘度:2.0Pa・s)7.0g(A液1.4g、B液5.6g)を加え、さらに(C)成分であるポリメチルヒドロシロキサン(Gelest社製、HMS-992、粘度:0.03Pa・s)3.0gを加えて撹拌した後、減圧乾燥によりトルエンを除去し、表面修飾ジルコニア粒子とフェニルシリコーン樹脂とポリメチルヒドロシロキサンと反応触媒とを含有した硬化性シリコーン樹脂組成物(表面修飾ジルコニア粒子含有量:50質量%、粘度:550Pa・s)を得た。この硬化性シリコーン樹脂組成物の透過率は97%であった。
 この硬化性シリコーン樹脂組成物を用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
[比較例4]
 実施例1のジルコニア粒子の作製において、電気炉での焼成を大気中520℃から600℃にした以外は実施例1と同様にして、平均一次粒子径が15nmのジルコニア粒子を作製した。当該ジルコニア粒子を用いた以外は実施例1と同様にして硬化性シリコーン樹脂組成物、さらにシリコーン樹脂複合体を作製し、各種評価を行った。
[比較例5~8]
 実施例1におけるジルコニア透明分散液を用い、(C)成分であるシリコーン化合物として各々第1表に示したものを表中の含有量となるように配合した以外は、実施例1と同様にして4種の硬化性シリコーン樹脂組成物を作製した。
 なお、各比較例で用いたシリコーン化合物は以下の通りである。
 ・比較例5:ポリジメチルシロキサン(Gelest社製、DMS-H11、粘度:0.008Pa・s)
 ・比較例6:ポリジメチルシロキサン(Gelest社製、DMS-H25、粘度:0.3Pa・s)
 ・比較例7:ポリメチルヒドロシロキサン(Gelest社製、HMS-992、粘度:0.03Pa・s)
 ・比較例8:メチルヒドロシロキサン-ジメチルシロキサンコポリマー(Gelest社製、HMS-082、粘度:0.15Pa・s)
 上記4種の硬化性シリコーン樹脂組成物を各々用い、実施例1と同様にしてシリコーン樹脂複合体を作製し、各種評価を行った。
 以上の各実施例、比較例における硬化性シリコーン樹脂組成物の配合、及びシリコーン樹脂複合体の評価結果をまとめて第1表に示す。
 
Figure JPOXMLDOC01-appb-T000006
 実施例1~9における硬化性シリコーン樹脂組成物の粘度は、いずれも100Pa・s以下であり、パッケージへの注入などのハンドリング性に関してはまったく問題がなかった。また、これらの硬化性シリコーン樹脂組成物の透過率は75%以上と良好であり、これらを用いて得られるシリコーン樹脂複合体の透過率も同等レベルで良好であった。さらに、これらのシリコーン樹脂複合体の硬度は(A)成分の樹脂であるOE-6630のみを硬化させた場合の値である43、OE-6636のみを硬化させた場合の値である33、SCR-1016のみを硬化させた場合の値である70に比べて強度が高くなっており、良好な特性を示していた。
 一方、(C)成分であるシリコーン化合物を含まない、あるいは所定のシリコーン化合物を用いていない等の比較例1、3、6、7では、硬化性シリコーン樹脂組成物の粘度が高いためにハンドリング性が低下し、また、(C)成分等が反応性官能基を有していない、あるいは粘度が低すぎる等の比較例2、4、5、8では、シリコーン樹脂複合体の特性が不良となり、いずれも光半導体発光素子の封止材等への使用には不適当であった。
 本発明は、半導体発光素子(LED等)の封止材はもちろんのこと、これ以外の様々な工業分野において、材料や部材等として利用することができる。
10、20:発光装置
12:反射カップ
12A:凹部
14:発光素子
16:第1の封止層
18:第2の封止層

Claims (7)

  1.  (A)粘度が0.02Pa・s以上100Pa・s以下である硬化性シリコーン樹脂形成成分、
     (B)反応性官能基を有する表面修飾材料によって表面修飾された平均一次粒子径が3nm以上10nm以下である表面修飾金属酸化物粒子、
     及び(C)粘度が(A)成分の粘度未満であり、かつ0.01Pa・s以上1.0Pa・s以下である反応性官能基を有するシリコーン化合物を組成物全量基準で0.1質量%以上15質量%以下含み、
     粘度が1.0Pa・s以上100Pa・s以下である硬化性シリコーン樹脂組成物。
  2.  前記表面修飾材料及び前記シリコーン化合物が、ともに、反応性官能基としてアルケニル基及びSi-H基から選択される1種以上を有する請求項1に記載の硬化性シリコーン樹脂組成物。
  3.  前記硬化性シリコーン樹脂形成成分が、(a)アルケニル基含有オルガノポリシロキサン、(b)オルガノハイドロジェンポリシロキサン及び(c)ヒドロシリル化触媒を含む請求項1または2に記載の硬化性シリコーン樹脂組成物。
  4.  請求項1~3のいずれか1項に記載の硬化性シリコーン樹脂組成物を硬化させてなるシリコーン樹脂複合体。
  5.  半導体発光素子が封止材により封止されてなり、該封止材が請求項4に記載のシリコーン樹脂複合体からなる光半導体発光装置。
  6.  請求項5に記載の光半導体発光装置を備えてなる照明器具。
  7.  請求項5に記載の光半導体発光装置を備えてなる液晶画像装置。
     
PCT/JP2016/068563 2015-06-24 2016-06-22 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置 WO2016208640A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/739,748 US10269670B2 (en) 2015-06-24 2016-06-22 Curable silicone resin composition, silicone resin composite, photosemiconductor light emitting device, luminaire and liquid crystal imaging device
CN201680037088.1A CN107709465B (zh) 2015-06-24 2016-06-22 固化性硅酮树脂组合物、硅酮树脂复合体、光半导体发光装置、照明器具及液晶图像装置
KR1020187001261A KR20180020216A (ko) 2015-06-24 2016-06-22 경화성 실리콘 수지 조성물, 실리콘 수지 복합체, 광반도체 발광 장치, 조명 기구 및 액정 화상 장치
JP2017524952A JPWO2016208640A1 (ja) 2015-06-24 2016-06-22 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015126672 2015-06-24
JP2015-126672 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208640A1 true WO2016208640A1 (ja) 2016-12-29

Family

ID=57585010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068563 WO2016208640A1 (ja) 2015-06-24 2016-06-22 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置

Country Status (6)

Country Link
US (1) US10269670B2 (ja)
JP (1) JPWO2016208640A1 (ja)
KR (1) KR20180020216A (ja)
CN (1) CN107709465B (ja)
TW (1) TWI725974B (ja)
WO (1) WO2016208640A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050363A (ja) * 2017-08-27 2019-03-28 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 半導体パッケージ構造
JP2020033515A (ja) * 2018-08-31 2020-03-05 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具および表示装置
CN111567143A (zh) * 2017-12-15 2020-08-21 积水化学工业株式会社 电子设备用密封剂及有机el显示元件用密封剂

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983041B2 (ja) * 2017-11-16 2021-12-17 スタンレー電気株式会社 半導体受光装置及びその製造方法
IT201800003535A1 (it) * 2018-03-14 2019-09-14 Getters Spa Composizione chimica distribuibile con elevata quantità di materiale di carica e bassi livelli di indice tixotropico
JP2020169291A (ja) * 2019-04-05 2020-10-15 信越化学工業株式会社 スラリー組成物、該スラリー組成物の硬化物、該硬化物を用いた基板、フィルム、及びプリプレグ
WO2021089110A1 (en) * 2019-11-04 2021-05-14 Max-Planck-Gesellschaft Zurförderung Der Wissenschaften E. V. Photocatalytically active and superhydrophobic elastic films, method for preparing the same and applications thereof, in particular as a wound dressing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049573A1 (ja) * 2005-10-28 2007-05-03 Sumitomo Osaka Cement Co., Ltd. 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法
JP2009173837A (ja) * 2008-01-28 2009-08-06 Momentive Performance Materials Inc シリコーンゲル組成物
JP2013124297A (ja) * 2011-12-14 2013-06-24 Momentive Performance Materials Inc 硬化性ポリオルガノシロキサン組成物
WO2013133430A1 (ja) * 2012-03-09 2013-09-12 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
WO2013172476A1 (ja) * 2012-05-18 2013-11-21 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
WO2014034621A1 (ja) * 2012-08-28 2014-03-06 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置
WO2014088115A1 (ja) * 2012-12-07 2014-06-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置
WO2015056726A1 (ja) * 2013-10-17 2015-04-23 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200657A (ja) 2001-02-23 2005-07-28 Kaneka Corp 光学材料用組成物、光学材料、その製造方法、並びにそれを用いた液晶表示装置
JP5167582B2 (ja) * 2005-10-28 2013-03-21 住友大阪セメント株式会社 ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
JP2009024117A (ja) 2007-07-23 2009-02-05 Sony Corp 硬化性樹脂材料−微粒子複合材料及びその製造方法、光学材料、並びに発光装置
JP2009120437A (ja) 2007-11-14 2009-06-04 Niigata Univ シロキサンをグラフト化したシリカ及び高透明シリコーン組成物並びに該組成物で封止した発光半導体装置
JP5154519B2 (ja) 2009-07-24 2013-02-27 日東電工株式会社 光半導体素子封止材料
JP2011144272A (ja) 2010-01-15 2011-07-28 Nippon Shokubai Co Ltd ジルコニアナノ粒子を含むシリコーン樹脂組成物
KR101819873B1 (ko) * 2010-07-30 2018-01-17 노파르티스 아게 가교된 친수성 코팅을 갖는 실리콘 히드로겔 렌즈
KR20140034122A (ko) * 2010-12-08 2014-03-19 다우 코닝 코포레이션 봉지재의 형성에 적합한 금속 산화물 나노입자 함유 실록산 조성물
JP5780003B2 (ja) * 2011-06-08 2015-09-16 住友大阪セメント株式会社 無機酸化物粒子とシリコーン樹脂との複合組成物及び透明複合体
CN104271495B (zh) * 2012-05-18 2017-08-25 住友大阪水泥股份有限公司 表面修饰金属氧化物粒子材料、分散液、聚硅氧烷树脂组合物、聚硅氧烷树脂复合体、光半导体发光装置、照明器具及液晶图像装置
CN107674206B (zh) * 2012-08-31 2021-05-25 株式会社大赛璐 固化性组合物及其固化物、光学构件以及光学装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049573A1 (ja) * 2005-10-28 2007-05-03 Sumitomo Osaka Cement Co., Ltd. 無機酸化物透明分散液と無機酸化物粒子含有樹脂組成物、発光素子封止用組成物及び発光素子、ハードコート膜と光学機能膜及び光学部品、並びに無機酸化物粒子含有樹脂組成物の製造方法
JP2009173837A (ja) * 2008-01-28 2009-08-06 Momentive Performance Materials Inc シリコーンゲル組成物
JP2013124297A (ja) * 2011-12-14 2013-06-24 Momentive Performance Materials Inc 硬化性ポリオルガノシロキサン組成物
WO2013133430A1 (ja) * 2012-03-09 2013-09-12 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料及び光半導体素子封止組成物、並びに光半導体装置
WO2013172476A1 (ja) * 2012-05-18 2013-11-21 住友大阪セメント株式会社 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
WO2014034621A1 (ja) * 2012-08-28 2014-03-06 住友大阪セメント株式会社 光半導体発光装置、照明器具、及び表示装置
WO2014088115A1 (ja) * 2012-12-07 2014-06-12 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置
WO2015056726A1 (ja) * 2013-10-17 2015-04-23 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050363A (ja) * 2017-08-27 2019-03-28 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. 半導体パッケージ構造
CN111567143A (zh) * 2017-12-15 2020-08-21 积水化学工业株式会社 电子设备用密封剂及有机el显示元件用密封剂
CN111567143B (zh) * 2017-12-15 2023-11-07 积水化学工业株式会社 电子设备用密封剂及有机el显示元件用密封剂
JP2020033515A (ja) * 2018-08-31 2020-03-05 住友大阪セメント株式会社 分散液、組成物、封止部材、発光装置、照明器具および表示装置

Also Published As

Publication number Publication date
JPWO2016208640A1 (ja) 2018-04-12
TW201710393A (zh) 2017-03-16
TWI725974B (zh) 2021-05-01
US20180323124A1 (en) 2018-11-08
CN107709465B (zh) 2021-05-07
KR20180020216A (ko) 2018-02-27
CN107709465A (zh) 2018-02-16
US10269670B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2016208640A1 (ja) 硬化性シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
KR101757786B1 (ko) 표면수식 금속산화물 입자재료, 분산액, 실리콘 수지 조성물, 실리콘 수지 복합체, 광반도체 발광 장치, 조명 기구 및 액정 화상 장치
JP5814175B2 (ja) Ledのリフレクター用熱硬化性シリコーン樹脂組成物並びにこれを用いたled用リフレクター及び光半導体装置
JP4591690B2 (ja) 蛍光物質入りled発光装置
CN107431114B (zh) 光散射复合体形成用组合物、光散射复合体及其制造方法
JP6010503B2 (ja) 硬化性樹脂組成物、その硬化物及び光半導体デバイス
WO2013172476A1 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
EP3101062B1 (en) Nanoparticle, method for producing nanoparticle, addition curing silicone resin composition, and semiconductor apparatus
JP7413881B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
CN110785860B (zh) 分散液、组合物、密封构件、发光装置、照明器具、显示装置及发光装置的制造方法
JP5788839B2 (ja) 硬化性樹脂組成物、その硬化物及びそれを用いた光半導体デバイス
JP7439824B2 (ja) 分散液、組成物、封止部材、発光装置、照明器具、表示装置および分散液の製造方法
JP2019508565A (ja) Led封入用材料
CN110785859B (zh) 分散液、组合物、密封构件、发光装置、照明器具、显示装置及发光装置的制造方法
JP2018056588A (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP6354119B2 (ja) 表面修飾金属酸化物粒子材料、分散液、シリコーン樹脂組成物、シリコーン樹脂複合体、光半導体発光装置、照明器具及び液晶画像装置
JP6873654B2 (ja) 硬化性ポリシロキサン組成物、該硬化性ポリシロキサン組成物を含む半導体発光装置用封止材及び、該封止材の硬化物を備えた半導体発光装置
JP2020033515A (ja) 分散液、組成物、封止部材、発光装置、照明器具および表示装置
JP2020002305A (ja) 組成物、封止部材、発光装置、照明器具および表示装置
JP2013105946A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524952

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15739748

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187001261

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16814410

Country of ref document: EP

Kind code of ref document: A1