WO2016208193A1 - 気体吸着デバイスおよびこれを用いた真空断熱材 - Google Patents

気体吸着デバイスおよびこれを用いた真空断熱材 Download PDF

Info

Publication number
WO2016208193A1
WO2016208193A1 PCT/JP2016/003026 JP2016003026W WO2016208193A1 WO 2016208193 A1 WO2016208193 A1 WO 2016208193A1 JP 2016003026 W JP2016003026 W JP 2016003026W WO 2016208193 A1 WO2016208193 A1 WO 2016208193A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorbent
porous member
heat insulating
gas adsorption
Prior art date
Application number
PCT/JP2016/003026
Other languages
English (en)
French (fr)
Inventor
里紗 谷口
山本 直樹
和也 嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680002317.6A priority Critical patent/CN106794413B/zh
Publication of WO2016208193A1 publication Critical patent/WO2016208193A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a gas adsorption device and a vacuum heat insulating material using the same.
  • a vacuum heat insulating material has been proposed as a heat insulating material having excellent heat insulating performance. This is because a core material having a high gas phase volume ratio and fine voids, such as glass wool, is formed in a bag-like laminate film (hereinafter referred to as a jacket material) processed into a bag shape. It is produced by storing and sealing the core material storage space by reducing the pressure.
  • the vacuum heat insulating material can obtain high-performance heat insulating performance by raising the degree of vacuum inside.
  • raising the degree of vacuum is hindered by the gas present inside the vacuum insulation.
  • the gas existing inside the vacuum heat insulating material is roughly divided into the following three types. One is the gas that remains without being evacuated at the time of vacuum insulation material preparation, and the other is the gas generated from the core material and the jacket material after being vacuum-sealed (adsorbed to the core material and the jacket material). The remaining gas and gas generated by the reaction of unreacted components of the core material), and the other one is gas that passes through the jacket material and enters from the outside.
  • a gas adsorbing device In order to adsorb and remove these gases, a gas adsorbing device is hermetically sealed together with the core material in the jacket material of the vacuum heat insulating material.
  • the gas adsorption device is configured by filling a gas adsorbent in a gas barrier container and vacuum-sealing the gas barrier container (see, for example, Patent Document 1).
  • FIG. 21 is a diagram showing a configuration of a conventional gas adsorption device 1100 described in Patent Document 1. As shown in FIG. 21
  • a conventional gas adsorption device 1100 is a constricted portion 1104 provided in an opening 1103 of a gas barrier container 1101 under a reduced pressure, in which a gas adsorbent 1102 is filled in a metal cylindrical gas barrier container 1101 in a vacuum or an argon gas atmosphere.
  • the glass sealing material 1105 that has been melted is allowed to flow into and cooled and solidified. Thereby, the opening 1103 of the gas barrier container 1101 is sealed.
  • the gas adsorbent 1102 in the gas barrier container 1101 is isolated from the external atmosphere at the time of storage before being applied to the vacuum heat insulating material, so that the performance deterioration of the gas adsorbent is prevented.
  • an external force is applied to the gas barrier container 1101 from the outside of the envelope of the vacuum heat insulating material, the glass sealing material 1105 is broken, and the inside and outside of the gas barrier container 1101 communicate.
  • the gas adsorbent 1102 adsorbs the gas present in the jacket material.
  • the gas adsorbing device 1100 can exhibit a good heat insulating property to the vacuum heat insulating material by adsorbing the gas in the jacket material of the vacuum heat insulating material and maintaining the degree of vacuum.
  • the molten glass flows into the constriction 1104 of the gas barrier container 1101 by melting the glass, so that the molten glass stays and adheres to the inner surface of the constriction 1104 due to surface tension. Then, the molten glass is cooled and solidified while being held in the narrowed portion 1104, whereby the narrowed portion 1104 is sealed. For this reason, time for melting and cooling and solidifying the glass is required, and it is difficult to increase productivity. At the same time, a special and expensive vacuum heat treatment furnace or the like is required to control the melt viscosity of the glass with high accuracy. Due to these problems, there is a problem that it is difficult to reduce the cost of the gas adsorption device 1100.
  • the glass sealing material 1105 broken by applying an external force causes the inside of the gas barrier container 1101 to communicate with the inside of the vacuum insulation material through the cracked portion.
  • the glass sealing material 1105 needs to be a lump having a certain thickness.
  • the opening of the constricted portion 1104 serving as a sealing port of the gas barrier container 1101 has a certain amount. It is necessary to have a cross-sectional area. Also from this point, it is necessary to make the glass sealing material 1105 for melting and sealing the narrowed portion 1104 into a lump having a certain thickness.
  • the gas barrier container 1101 has at least the thickness of the lump of the glass sealing material 1105 and the thickness of the plate thickness of the gas barrier container 1101, and there is a limit to reducing the thickness.
  • the gas adsorption device 1100 since the gas adsorption device 1100 includes the glass sealing material 1105 having a high melting temperature, the gas barrier container 1101 also needs to be made of a material that can withstand high temperatures, for example, metal, and is a rigid body. Therefore, the vacuum heat insulating material cannot be deformed in accordance with the shape of the device used, and there is a limit to providing flexibility, and there is a problem that the applied device is limited.
  • vacuum insulation materials with a thickness of several millimeters and curved surface or cylindrical shape can be processed.
  • vacuum heat insulating materials used in water heaters and the like are also being commercialized.
  • gas adsorption device that can also be applied to vacuum heat insulating materials that are being commercialized, and the needs are becoming apparent.
  • the use of the vacuum heat insulating material is expanding from the conventional heat insulating material for heat insulation equipment such as a refrigerator to the heat insulating material for building materials and LNG ships in recent years. Therefore, the vacuum heat insulating material is required to be large in size and maintain high heat insulating properties for a longer period. For this reason, increasing the filling amount of the gas adsorbent has also become a problem.
  • the present disclosure has been made in view of the above-mentioned problems, has high productivity, is thin and flexible, and can increase the filling amount of the gas adsorbing material to maintain the gas adsorbing ability over a long period of time. And a vacuum heat insulating material using the gas adsorption device.
  • the gas adsorption device includes a gas bag and flexible packaging bag, a gas adsorbent sealed under reduced pressure in the bag, and a gas adsorbent adjacent to the gas bag in a planar state. And a porous member disposed.
  • a porous member arranged adjacent to the gas adsorbent in a planar state means that a surface other than the largest area among the surfaces constituting the porous member is a gas adsorbent. It is arranged next to each other.
  • the “adjacent arrangement” does not mean only when the gas adsorbent and the porous member are arranged adjacent to each other in a contact state, but between them, some member, for example, the first As illustrated in the second embodiment, it includes those arranged next to each other through a moisture adsorbing material or the like.
  • the “shape” of the porous member may be a shape other than a flat plate shape such as a polyhedron or a cylindrical body.
  • the gas adsorption device of the present disclosure can be manufactured by performing thermal welding after the pressure is reduced using a general vacuuming apparatus.
  • the inside of the sachet in which the gas adsorbent is inserted is sealed under reduced pressure, the inside of the sachet is sucked and depressurized from the porous member side toward the gas adsorbent, so that the gas adsorbent in the sachet is porous.
  • the presence of the member can prevent suction and exhaust from the inside of the bag. Therefore, it can be manufactured without using a special device, and can be sealed under reduced pressure without slowing the vacuuming speed, thereby improving productivity and providing at low cost.
  • the gas adsorbing material and the porous member are arranged adjacent to each other in a planar state in a flexible bag.
  • the thickness is thin and curved. It can be easily deformed, and can also be applied to a thin vacuum heat insulating material of about several millimeters, a vacuum heat insulating material used by being curved in an arc shape, and the like.
  • the amount of the gas adsorbent can be increased while keeping the thickness thin, and the gas adsorption capacity can be made sustainable over a long period of time. it can. That is, the gas adsorption capacity can be maintained over a long period of time while realizing an expanded application to various vacuum heat insulating materials.
  • the present disclosure is highly productive, can be provided at a low cost, and is thin and flexible, so that it can be applied to a wide variety of vacuum heat insulating materials. It is possible to provide a gas adsorption device and a vacuum heat insulating material using the gas adsorption device with sustainable adsorption capacity.
  • a first aspect of the present disclosure includes a gas bag having flexibility and a gas barrier, a gas adsorbent sealed under reduced pressure in the bag, and a gas adsorbent in a flat state inside the bag. It is a gas adsorption device provided with the porous member arranged adjacently.
  • the gas adsorption device can be manufactured by heat welding after reducing the pressure using a general vacuuming device.
  • a general vacuuming device When the inside of the sachet in which the gas adsorbent is inserted is sealed under reduced pressure, the inside of the sachet is sucked and depressurized from the porous member side toward the gas adsorbent, so that the gas adsorbent in the sachet is porous.
  • the presence of the member can prevent suction and exhaust from the inside of the bag. Therefore, it can be manufactured without using a special device, can be sealed under reduced pressure without slowing the vacuuming speed, can improve productivity, and can be provided at low cost.
  • the thickness is larger than the case where the gas adsorbent and the porous member are arranged in a polymerized manner. Can be made thin and easily deformed such as curved. Therefore, the present invention can be applied to a thin vacuum heat insulating material of about several millimeters, a vacuum heat insulating material used by being bent in an arc shape, and the like. Furthermore, by increasing the planar width dimension of the wrapping bag, the amount of the gas adsorbing material can be increased while keeping the thickness thin, and the gas adsorbing ability can be maintained over a long period of time.
  • the second aspect of the present disclosure is a configuration in which, in the first aspect, an intersecting surface portion of the porous member that intersects the surface adjacent to the gas adsorbent is adhered to the wrapping bag.
  • the term “adhesion” refers to the case where the inner surface of the sachet is bonded to the surface of the porous member by thermal welding or an adhesive, as described in the embodiment, or by atmospheric pressure or external force. This includes a state in which it is pressed against the surface of the porous member and in close contact therewith.
  • the gas adsorption speed of the gas adsorbent can be arbitrarily set and controlled by the pore diameter and the porosity of the porous member.
  • the dispersion width of the gas adsorption rate is reduced to stabilize the adsorption performance, and the gas adsorption rate is decreased to increase the gas adsorption capacity for a longer period. Can last for a long time.
  • the communication area caused by the crack formed by being crushed becomes a matter of course, and the gas adsorption speed is fast and slow. It is easy to mix and the variation width becomes large. Even if the variation width can be set within the design dimension range, it is very difficult to further reduce the variation width and stabilize the gas adsorption performance. In addition, there is a great difficulty in restricting the communication area due to cracks to a certain value or less, reducing the gas adsorption speed, and maintaining the gas adsorption capacity for a longer time.
  • the gas adsorbing material adsorbs gas through the porous member while exhibiting the effect described in the first aspect.
  • the gas adsorption rate can be made substantially constant with little variation.
  • the third aspect of the present disclosure is a configuration in which, in the second aspect, the intersecting surface portion of the porous member is thermally welded to the inner surface of the sachet.
  • the gas flowing in from the holes drilled in the intersecting surface portion of the porous member It can be reliably adsorbed by the gas adsorbent through the porous member. Therefore, the effect of the second aspect can be made more reliable.
  • the wrapping bag is composed of a plurality of laminated films including a gas barrier layer made of a metal foil.
  • the innermost film member and the porous member are heat-welded.
  • the fifth aspect is a structure in which the porous member is formed by sintering resin powder in any of the first aspect to the third aspect.
  • the gas adsorbent always adsorbs gas through the pores of the porous member, and can promote stabilization of gas adsorption performance.
  • the porous member has a porous structure that allows gas to pass therethrough but cannot pass the powder particles of the gas adsorbent. Yes.
  • the gas adsorbent in the sachet can be reliably prevented from passing through the porous member and discharged from the inside of the sachet, and the effect of the first aspect It is possible to more reliably prevent the gas adsorbent from being evacuated from the wrapping bag at the time of vacuum sealing.
  • the gas adsorbent is a copper ion exchanged ZSM-5 type zeolite.
  • the laminate film which forms a sachet in a 4th aspect further has the protective layer which covers the surface of a gas barrier layer.
  • the protective layer is made of PET (polyethylene terephthalate) or a resin having a water absorption equal to or lower than that of PET.
  • a moisture adsorbing material is interposed between the gas adsorbing material and the porous member.
  • the gas from the porous member passes through the moisture adsorbing material and is adsorbed by the gas adsorbing material, and the moisture contained in the gas can be adsorbed and removed. Therefore, waste due to moisture adsorption of the gas adsorbent can be prevented, good gas adsorption performance can be ensured over a longer period, and reliability can be improved.
  • An eleventh aspect is a vacuum heat insulating material, and includes the gas adsorption device according to any one of the first aspect to the tenth aspect, a core material, and a jacket material. The material is inserted into the jacket material and sealed under reduced pressure.
  • the twelfth aspect is the structure according to the eleventh aspect, wherein the gas adsorbing device communicates with the inside of the jacket material and the gas adsorbing device by perforating the porous member.
  • the gas in the vacuum heat insulating material passes through the porous member and is adsorbed by the gas adsorbing material. Therefore, the gas adsorbing speed of the gas adsorbing material can be arbitrarily determined by the pore diameter and the porosity of the porous member. It is possible to control the setting. Therefore, while obtaining the effects of the first aspect, the gas adsorption performance is stabilized without variation, and the gas adsorption speed is slowed down to maintain the gas adsorption capacity, thereby exhibiting good heat insulation performance for a longer period of time.
  • a vacuum heat insulating material can be realized.
  • the gas adsorbing device has an opening member having protrusions on the facing portion of the crossing surface portion of the porous member of the envelope.
  • the wrapping bag is perforated by the protrusions of the opening member, and the internal gas adsorbent and the vacuum region in the envelope are separated. Can communicate. Therefore, it is possible to prevent the gas adsorbing material from adsorbing and deteriorating the outside air in the atmosphere at the time of perforating the sachet, and to maintain and guarantee the heat insulating property of the vacuum heat insulating material for a longer period. .
  • the fourteenth aspect of the present disclosure is a gas adsorbing device opening member.
  • This unsealing member for a gas adsorbing device is provided with a grip portion for sandwiching the gas adsorbing device on one end side of a spring made of a wire.
  • tip of the other end side is comprised as a perforation part which opens a hole in a gas adsorption device.
  • the unsealing member perforates the adsorbent storage container of the gas adsorbing device with the tip of the spring wire as the perforated portion.
  • the diameter of the hole becomes the wire diameter of the spring wire, and becomes a constant size even if the perforation depth varies depending on how the external force is applied. Therefore, the gas around the adsorbent storage container can be stably adsorbed without variation in adsorption speed.
  • the material cost can be significantly reduced compared to the leaf spring, and the number of processing steps can be limited to bending the spring wire, resulting in a significant cost reduction. Can be provided at low cost.
  • the spring made of the wire is coiled.
  • suction device is comprised by making the coil winding density of the one end part side denser than the coil winding density of the other end side.
  • grip part side, and opens a hole in a gas adsorption device is comprised.
  • the gas adsorption device can be securely gripped.
  • the perforation part can perforate the gas adsorption device of the part hold
  • the gripping portion is configured by bringing the coil windings into close contact with each other at least one turn.
  • the gas adsorbing device can be gripped strongly by the tightly wound part. Accordingly, misalignment of the opening member and perforation errors due to dropping off are suppressed, and more reliable perforation can be realized.
  • the perforated portion bends the distal end portion of the wire rod bent from the coil-shaped portion toward the coil central portion toward the gripping portion. Is made up of.
  • the perforation part perforates the coil center of the coil-shaped part, that is, the vicinity of the coil center of the grip part for gripping the gas adsorption device. Therefore, it is possible to prevent a perforation error such as perforating around the edge of the outer periphery of the gas adsorbing device where there is no gas adsorbing material and to enable reliable perforation.
  • the cross section of the wire rod is a circle or an ellipse, and the outer peripheral surface thereof is an arc.
  • the outer peripheral surface of the spring wire becomes an arc shape even when the envelope of the vacuum heat insulator is strongly pressed against the spring wire of the opening member by atmospheric pressure in a state where it is used for the vacuum heat insulator. Therefore, stress concentration due to the corners of the leaf spring does not occur unlike the case where a leaf spring is used as the jacket material. Therefore, the envelope material can be prevented from being broken, and the vacuum of the vacuum heat insulating material can be securely held, thereby improving the reliability.
  • the nineteenth aspect is a gas adsorption device.
  • This gas adsorption device includes a flat adsorbent storage container in which a gas adsorbent is sealed under reduced pressure, and the opening member described in any of the fourteenth to eighteenth aspects. Yes. Then, the unsealing member is attached to the adsorbent storage container by sandwiching the adsorbent storage container with the grip portion. And it is the structure which can pierce an adsorbent storage container by a perforation part being pushed in to the adsorbent storage container side.
  • the gas adsorbing device is capable of stably adsorbing the gas around the adsorbent storage container because the adsorbent storage container is perforated with little variation. Furthermore, the opening member can be provided at a low cost as much as the cost is reduced.
  • the twentieth aspect is the nineteenth aspect, wherein the adsorbent storage container is composed of a laminated film bag having gas barrier properties, the opening of the bag is sealed, and the gas adsorbent is sealed under reduced pressure, And the opening part of a bag is the structure made into the thin part only of a laminate film layer.
  • the opening member can be easily inserted into the adsorbent storage container of the gas adsorbing device and held from the thin-walled portion of the laminate film layer, thereby improving the work efficiency. Can do.
  • the adsorbent storage container is sealed under reduced pressure by inserting a porous member that allows gas to pass but does not allow the powder particles of the gas adsorbent to pass through, and The gas adsorbent and the porous member are adjacent to each other in a planar state.
  • the gas adsorbing device is manufactured by being sealed and welded after being depressurized using a general evacuation apparatus.
  • a general evacuation apparatus In this case, that is, an adsorbent storage container into which the gas adsorbent is inserted.
  • the bag is sealed under reduced pressure, by sucking and reducing the pressure in the bag from the porous member side toward the gas adsorbing material side, the gas adsorbing material in the bag is removed from the bag by the presence of the porous member. Suction exhaust can be prevented. Therefore, it can be manufactured by preventing unnecessary suction and exhaust of the gas adsorbent without using a special device, and can be sealed under reduced pressure without slowing down the vacuuming speed, improving productivity and being inexpensive. Can be provided.
  • the present invention can also be applied to a thin vacuum heat insulating material of about several millimeters and a vacuum heat insulating material that is used while being curved in an arc shape.
  • the amount of the gas adsorbent can be increased while keeping the thickness thin, and the gas adsorption capacity can be maintained over a long period of time. can do.
  • the twenty-second aspect is the structure according to the twenty-first aspect, wherein the opening member is mounted so as to perforate the porous member portion of the adsorbent storage container.
  • the gas adsorption speed of the gas adsorbent can be arbitrarily set and controlled by the pore diameter of the porous member. While obtaining the productivity improvement effect and the like of the above-mentioned twenty-first aspect, the gas adsorption performance is further stabilized without variation, and the gas adsorption speed is maintained by slowing the gas adsorption speed, which is good for a longer period of time. It is possible to realize a gas adsorption device capable of exhibiting excellent gas adsorption performance.
  • the twenty-third aspect is configured such that, in the twenty-second aspect, a moisture adsorbent is interposed between the gas adsorbent and the porous member.
  • the bag constituting the adsorbent storage container is composed of a multi-layer laminate film including a gas barrier layer made of metal foil.
  • the innermost film member and the porous member are resin materials that can be thermally welded to each other, and are heat-welded.
  • the adsorbed gas does not leak through the gap between the laminate film forming the bag and the porous member, and the performance stability can be improved.
  • the bag inner surface and the porous member surface can be bonded simultaneously with the bag sealing and sealing, and productivity can be improved.
  • the 25th aspect is a vacuum heat insulating material.
  • This vacuum heat insulating material is constructed by inserting the gas adsorbing device described in any one of the nineteenth aspect to the twenty-fourth aspect into a jacket material together with a core material, and sealing under reduced pressure. Yes.
  • the opening member can be provided at a low cost by the cost reduction.
  • the twenty-sixth aspect is an apparatus using the vacuum heat insulating material described in the twenty-fifth aspect.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of a vacuum heat insulating material using the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration viewed from the side of the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 3 is a plan view of the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 4 is an enlarged view of a main part schematically illustrating the configuration of the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 5 is an enlarged cross-sectional view illustrating a film configuration of the envelope of the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of a vacuum heat insulating material using the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration viewed from the side
  • FIG. 6 is a diagram schematically illustrating a state in which an opening member is set in the gas adsorption device according to the first embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram for explaining a manufacturing method of a vacuum heat insulating material in which the gas adsorption device according to the first embodiment of the present disclosure is hermetically sealed in a jacket material.
  • FIG. 8 is a side view schematically showing the configuration of the gas adsorption device according to the second embodiment of the present disclosure.
  • FIG. 9 is a side view illustrating the configuration of the gas adsorption device according to the third embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing a configuration of a gas adsorbing device opening member and a vacuum heat insulating material with a gas adsorbing device using the same according to the fourth embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a configuration viewed from the side showing a state where the gas adsorbing device opening member and the gas adsorbing device are set in the fourth embodiment of the present disclosure.
  • FIG. 12 is an enlarged cross-sectional view schematically showing the film configuration of the storage container of the gas adsorption device according to the fourth embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a configuration viewed from the side showing a state where the gas adsorbing device opening member and the gas adsorbing device are set in the fourth embodiment of the present disclosure.
  • FIG. 12 is an enlarged cross-sectional view schematically showing the film configuration of the storage container of the gas adsorption device according to the fourth embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram illustrating an enlarged cross-sectional configuration illustrating a state where the gas adsorbing device opening member and the gas adsorbing device are set according to the fourth embodiment of the present disclosure.
  • FIG. 14 is a plan view illustrating a state in which the gas adsorbing device opening member and the gas adsorbing device are set according to the fourth embodiment of the present disclosure.
  • FIG. 15 is a perspective view illustrating a state in which the gas adsorbing device opening member and the gas adsorbing device are set according to the fourth embodiment of the present disclosure.
  • FIG. 16 is a perspective view illustrating an appearance of a gas adsorbing device opening member according to the fourth embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram for explaining a manufacturing method of a vacuum heat insulating material in which a gas adsorption device according to the fourth embodiment of the present disclosure is hermetically sealed in a jacket material.
  • FIG. 18 is a plan view illustrating a state in which the gas adsorbing device opening member and the gas adsorbing device are set according to the fifth embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram illustrating an enlarged cross-sectional configuration illustrating a state where the gas adsorbing device opening member and the gas adsorbing device are set according to the fifth embodiment of the present disclosure.
  • FIG. 18 is a plan view illustrating a state in which the gas adsorbing device opening member and the gas adsorbing device are set according to the fifth embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram illustrating an enlarged cross-sectional configuration illustrating a state where the gas adsorbing device opening member and the gas adsorbing device are set according
  • FIG. 20 is a schematic diagram illustrating an enlarged cross-sectional configuration illustrating a state where the gas adsorbing device opening member and the gas adsorbing device are set according to the sixth embodiment of the present disclosure.
  • FIG. 21 is a diagram showing a configuration of a conventional gas adsorption device described in Patent Document 1. As shown in FIG.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of a vacuum heat insulating material using a gas adsorption device according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating a configuration viewed from the side of the gas adsorption device.
  • FIG. 3 is a plan view of the gas adsorption device
  • FIG. 4 is an enlarged view of a main part schematically showing the configuration of the gas adsorption device
  • FIG. 5 is a package of the gas adsorption device. It is an expanded sectional view which shows the film structure of a bag.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of a vacuum heat insulating material using a gas adsorption device according to a first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating a configuration viewed from the side of the gas adsorption device.
  • FIG. 3 is a plan view of the gas adsorption device
  • FIG. 4 is an
  • FIG. 6 is a diagram schematically illustrating a state in which an unsealing member is set on the gas adsorption device according to the first embodiment of the present disclosure
  • FIG. 7 is a diagram illustrating the sealing of the gas adsorption device in a jacket material. It is a schematic diagram for demonstrating the manufacturing method of the sealed vacuum heat insulating material.
  • FIG. 6 shows a configuration viewed from the direction of the arrow line 6-6 in FIG.
  • the vacuum heat insulating material 1 has a gas adsorbing device 4 and a core material 3 installed inside a jacket material 2, and then sealed under reduced pressure. And the inside of the jacket material 2 are communicated.
  • moisture-content adsorption agent was installed in the jacket material 2 with the core material 3 and the gas adsorption device 4 may be sufficient.
  • the moisture adsorbent adsorbs moisture (water vapor) that remains or enters the vacuum heat insulating material.
  • the moisture adsorbent is not particularly limited, and a chemical adsorbent such as calcium oxide or magnesium oxide, a physical adsorbent such as zeolite, or a mixture thereof can be used.
  • the gas adsorbing device 4 is configured by inserting a porous member 7 together with a gas adsorbing material 6 into a flexible wrapping bag 5 having a gas barrier property, and sealing under reduced pressure. . And the gas adsorption material 6 and the porous member 7 are comprised so that it may become adjacent arrangement
  • gas adsorbent 6 and the porous member 7 are arranged in different portions in the longitudinal direction of the gas adsorption device 4.
  • the gas adsorbing device 4 has an opening member 9 having a protrusion 8 (see FIG. 6) at a portion facing the intersecting surface portion 7 a of the porous member of the envelope 5. It has.
  • the envelope 5 of the gas adsorption device 4 is a film having a high gas barrier property, for example, as shown in FIG. 5, at least an outermost layer includes a protective layer 10a, an intermediate gas barrier layer 10b, and an innermost layer an adhesive layer 10c. It is configured by thermally welding at least three layers of laminated film (film 10) in a bag shape.
  • the bag 5 is formed in a bag shape by thermally welding (thin gray portions) around the two laminated films.
  • the wrapping bag 5 of the present disclosure is not limited to this configuration, and may take any form, for example, a single laminated film is formed into a bag shape.
  • the adhesive layer 10c composed of the innermost film member of the film 10 is to firmly bond the outer peripheral portions of the films 10 by thermal welding, and a resin that can be thermally welded is used.
  • a resin that can be thermally welded is used.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • EAA ethylene-acrylic acid copolymer
  • EAA ethylene-methacrylic acid copolymer
  • EAA ethylene-methacrylic acid copolymer
  • EAA ethylene-methacrylic acid copolymer
  • Resin films such as unstretched polypropylene (CPP), biaxially stretched polypropylene (OPP), polyethylene terephthalate (PET), ethylene / vinyl acetate copolymer (EVA), or ionomer are also used.
  • CPP unstretched polypropylene
  • OPP biaxially stretched polypropylene
  • PET polyethylene terephthalate
  • EVA ethylene / vinyl acetate copolymer
  • ionomer ionomer
  • the gas barrier layer 10b which is an intermediate layer of the film 10, is made of a metal foil such as an aluminum foil (Al foil), a copper foil (Cu foil), or a stainless steel foil that does not transmit gas.
  • a film in which a metal such as Al or Cu is deposited on a resin film such as an ethylene-vinyl alcohol copolymer resin film (EVOH film) or a polyethylene terephthalate film (PET film) having low gas permeability ( Metal vapor deposition film), or a film on which metal oxide such as silica or alumina, diamond-like carbon (DLC), or the like is vapor-deposited may be used.
  • the protective layer 10a which is the outermost layer of the film 10 protects the gas barrier layer 10b, such as nylon film, polyethylene terephthalate film (PET film), polyethylene film (PE film), or polypropylene film (PP film).
  • the gas barrier layer 10b such as nylon film, polyethylene terephthalate film (PET film), polyethylene film (PE film), or polypropylene film (PP film).
  • PET film polyethylene terephthalate film
  • PE film polyethylene film
  • PP film polypropylene film
  • a film having a low water absorption rate for example, a PET film, a PE film, or a PP film is preferable, and any resin having a water absorption rate equal to or lower than that of PET can be used.
  • any resin having a water absorption rate equal to or lower than that of PET can be used.
  • a nylon film between the gas barrier layer 10b and the adhesive layer 10c is effective to use as the film 10 constituting the sachet 5 because the strength of the entire film 10 can be increased. That is, when, for example, a copper ion exchange ZSM-5 type zeolite is used as the gas adsorbent 6, if there is a large particle size in the zeolite particles, the portion of the film 10 facing the particles is large. A tensile force is applied, and cracks and pinholes may occur in the aluminum foil constituting the gas barrier layer 10b starting from large particles.
  • the use of a nylon film for the film 10 is effective because cracks and pinholes originating from large particles can be suppressed.
  • the porous member 7 enclosed with the gas adsorbing material 6 in the sachet 5 has a structure in which resin powder is sintered to have a three-dimensional network hole, and the powder particles of the gas adsorbing material 6 are not allowed to pass through. It has a porous structure that allows gas to pass through.
  • the inner surface of the sachet 5 is bonded to the porous member 7 by atmospheric pressure by evacuation in the manufacturing process of the gas adsorption device.
  • the resin constituting the porous member 7 is a thermoplastic resin that is compatible with the adhesive layer 10c that is the innermost layer of the sachet 5, for example, a linear low-density polyethylene (as described above) LLDPE) or the like, and the intersecting surface portion 7a is physically integrated with the adhesive layer 10c constituting the innermost layer of the bag 5 by thermal welding.
  • the gas adsorbing material 6 it is possible to apply a chemical adsorption material such as calcium oxide or magnesium oxide, a physical adsorption material such as zeolite, a mixture thereof, or a gas adsorption alloy such as BaLi4. .
  • a copper ion exchanged ZSM-5 type zeolite having a particularly high gas adsorption capacity and adsorption capacity is used.
  • ZSM-5 type zeolite containing barium (Ba) or strontium (Sr), and ZSM-5 type zeolite are MOM species (M: Ba or There are adsorbents containing Sr, O: oxygen), and these may be used, or these may be used in combination.
  • the opening member 9 is made of an appropriate synthetic resin or metal having strength and elasticity.
  • a resin it is sufficient that the gas generation is small and the hardness of the protrusion 8 can be ensured, and polypropylene, polybutylene terephthalate, polystyrene, polyamide, polycarbonate, polyoxymethylene, AS resin, and ABS resin or the like is a candidate.
  • the unsealing member 9 is mounted such that the protrusion 8 faces the intersecting surface portion 7 a of the porous member 7.
  • the gas adsorbing device 4 is sealed under reduced pressure in the jacket material 2 of the vacuum heat insulating material 1, it is pushed into the porous member 7 side of the gas adsorbing device 4 by atmospheric pressure. And the wrapping bag 5 is pierced, and the gas adsorbent 6 inside communicates with the inside of the jacket material 2 of the vacuum heat insulating material 1.
  • a gas adsorbent 6 is sealed under reduced pressure in a sachet 5 having gas barrier properties.
  • the wrapping bag 5 is flexible, and the gas adsorbing material 6 and the porous member 7 are adjacently disposed inside the wrapping bag 5 in a planar state. Thereby, it can manufacture by heat-welding, after reducing pressure using a general vacuum drawing apparatus.
  • the thermally welded portion is the portion shown in dark gray in FIG.
  • the inside of the bag 5 into which the gas adsorbing material 6 is inserted is sealed under reduced pressure, the inside of the bag 5 is sucked and decompressed from the porous member 7 side toward the gas adsorbing material 6 side.
  • the gas adsorbent 6 in 5 can be prevented from being exhausted from the bag 5 due to the presence of the porous member 7. That is, it is possible to prevent the gas adsorbent 6 in the wrapping bag 5 from being exhausted from the wrapping bag 5 by sucking and evacuating from the heat-welded sealed portion side shown in dark gray in FIG.
  • the gas adsorption device 4 of the present embodiment can be manufactured without using a special apparatus as described in the background art section, and can be sealed under reduced pressure without slowing the vacuuming speed, thereby improving productivity. Can be provided inexpensively.
  • the gas adsorbing material 6 and the porous member 7 are arranged adjacent to each other in a flat state in the flexible bag 5. Since the sachet 5 is made of a flexible film, the thickness can be reduced and deformation such as bending can be easily performed as compared with the case where the gas adsorbent 6 and the porous member 7 are arranged in a superposed manner. Things can be realized. Therefore, the present invention can be applied to a thin vacuum heat insulating material of about several millimeters, a vacuum heat insulating material used by being bent in an arc shape, and the like.
  • gas adsorbent 6 and the porous member 7 are arranged at different portions in the arrangement of the gas adsorption device 4 in the longitudinal direction.
  • the flexibility of the gas adsorbing device 4 can be obtained regardless of whether the porous member 7 is flexible.
  • the porous member 7 when the porous member 7 is made 1/2 or less of the total length in the longitudinal direction of the gas adsorption device 4, the gas adsorption speed can be slowed down and the gas adsorption ability can be maintained for a longer period. Since it becomes possible, it is preferable. Further, when the porous member 7 is set to 1 ⁇ 4 or less of the total length in the longitudinal direction of the gas adsorption device 4, even if the flexibility of the porous member 7 is poor, the gas adsorption device 4 as a whole is flexible. It is preferable because it can be imparted.
  • the planar width dimension means, for example, when the packaging bag 5 is a quadrangle or a polygon in plan view, it means at least the dimension of one side or the dimension of the opposite sides, and in the case of an ellipse, the long side Refers to the dimensions of the part, and in the case of a circle, it refers to dimensions such as its diameter.
  • the intersecting surface portion 7 a of the porous member 7 that intersects the surface adjacent to the gas adsorbent 6 is bonded to the inner surface of the wrapping bag 5.
  • the bag 5 is perforated at the intersecting surface portion 7a of the porous member 7, so that the gas from the outside of the bag 5 is porous.
  • the gas adsorbent 6 is adsorbed through the material member 7.
  • the gas adsorption speed of the gas adsorbent 6 can be arbitrarily set and controlled by the pore diameter and the porosity of the porous member 7.
  • the variation range of the gas adsorption performance can be reduced, the adsorption performance can be stabilized, and the gas adsorption speed can be slowed to maintain the gas adsorption capacity for a longer period.
  • the communication area caused by the crack formed by the crushing is a matter of course, and the gas adsorption speed is fast, And slow things are mixed, and the variation width tends to be large.
  • this variation width is set to be within the design dimension range, it is difficult to further reduce the variation to stabilize the gas adsorption performance.
  • the gas adsorbing material 6 comes to adsorb gas through the porous member 7, so that the pore diameter and porosity of the porous member 7 are regulated.
  • the gas adsorption rate can be made substantially constant with little variation. Therefore, it is possible to achieve both a further stabilization of the gas adsorption performance and a longer gas adsorption capacity duration.
  • the gas adsorption device 4 of this Embodiment since the gas adsorption device 4 of this Embodiment has adhere
  • the film member of the adhesive layer 10c that is the innermost layer of the sachet 5 and the porous member 7 are made of a heat-weldable resin material and are heat-welded. Therefore, the intersecting surface portion 7a of the porous member 7 is melted and physically integrated with the inner surface of the sachet 5 as shown by the broken line in FIG. Therefore, a partial minute gap remains between the inner surface of the sachet 5 and the intersecting surface portion 7 a of the porous member 7, and gas can be prevented from being adsorbed to the gas adsorbent 6 from this portion.
  • the gas from the hole formed in the intersecting surface portion 7 a by the perforation is always adsorbed by the gas adsorbent 6 through the porous member 7.
  • suction speed control are realizable accurately.
  • the above-mentioned adhesion between the inner surface of the wrapping bag 5 and the intersecting surface portion 7a of the porous member 7 can be performed simultaneously with the thermal welding performed when the wrapping bag 5 is sealed.
  • the thermoplastic resin material since the thermoplastic resin material is used, the entire surface can be reliably bonded by the compatibility of the resins, and the performance stability and the accuracy of the adsorption speed control can be improved while improving the productivity.
  • the porous member 7 is formed by sintering resin powder, the porous member 7 is not cracked by an external force at the time of drilling, and gas is adsorbed through the crack. 6 can be prevented from leaking and adsorbing. Therefore, the gas adsorbent 6 always adsorbs gas through the pores of the porous member 7 and can promote stabilization of gas adsorption performance.
  • the porous member 7 has a three-dimensional network hole, and has a porous structure that allows gas to pass but does not pass the powder particles of the gas adsorbent 6.
  • the gas adsorbing device 4 is held in a vacuum sealed state by the wrapping bag 5 without being pierced by the opening member 9 during storage. For this reason, the gas adsorbent 6 does not come into contact with external air, and the adsorption capacity of the gas adsorbent 6 is maintained.
  • the film 10 constituting the sachet 5 includes a gas barrier layer 10b made of a metal foil that does not allow gas to pass therethrough. Therefore, it can suppress strongly that external air osmose
  • the gas barrier property of the sachet 5 is high, even if an adsorbent having a high gas adsorbing capacity such as a copper ion exchange ZSM-5 type zeolite is used as the gas adsorbing material 6, the adsorbing capacity can be reliably maintained. In combination with the use of a gas adsorbent having a high adsorption capacity, a better gas adsorption capacity can be exhibited over a long period of time.
  • the film 10 forming the sachet 5 has a configuration having a protective layer 10a covering the surface of the gas barrier layer 10b. Therefore, the metal foil which becomes the gas barrier layer 10b is protected by the protective layer 10a, and when the film 10 of the wrapping bag 5 receives unnecessary external force, the metal foil can be prevented from being carelessly damaged and stored. It is possible to reliably prevent deterioration of the gas adsorbent 6 at the time.
  • the protective layer 10a of the sachet 5 is made of PET (polyethylene terephthalate) or a resin having a water absorption equal to or lower than that of PET. Therefore, when the gas adsorption device is stored, the protective layer 10a absorbs moisture in the atmosphere. Therefore, when the protective layer 10a is applied to the vacuum heat insulating material 1, the water is released in the outer covering material 2 of the vacuum heat insulating material 1 and the outer cover. It is possible to prevent the degree of vacuum in the material 2 from being lowered or to prevent the gas adsorbing capacity of the gas adsorbing material 6 from being consumed by moisture absorption. Therefore, gas adsorption performance is maintained over a longer period, and the heat insulation of the vacuum heat insulating material 1 to which the gas adsorption device is applied can be kept good.
  • the protective layer 10a is more preferably a PET or a resin having a water absorption comparable to or lower than that of PET, but is not particularly limited to these examples.
  • the gas adsorbing device 4 described above is inserted into the bag-shaped outer covering material 2 together with the core material 3, and after being evacuated to vacuum, the bag opening of the outer covering material 2 is heat-sealed and sealed. It is used as an adsorbent for the vacuum heat insulating material 1.
  • FIG. 7 is a schematic diagram for explaining a method of manufacturing the vacuum heat insulating material 1 described above.
  • the vacuum heat insulating material 1 is put in the decompression chamber 12 of the vacuum packaging device 11, and the inside of the decompression chamber 12 is evacuated by the vacuum pump 13. Thereby, the gas in the jacket material 2 is evacuated and depressurized, and the opening of the jacket material 2 is thermally welded and sealed by the heat sealer 14, whereby the vacuum heat insulating material 1 is manufactured.
  • the gas adsorbing device 4 has the protrusion 8 pierced into the film 10 when the opening member 9 is pushed in by atmospheric pressure, or when the opening member 9 is mechanically pushed after vacuum sealing. Is perforated.
  • the inside of the gas adsorbing device 4 communicates with the inside of the jacket material 2 of the vacuum heat insulating material 1, and the gas adsorbing material 6 can adsorb the gas remaining in the jacket material 2. .
  • the film perforation is performed while the outer cover material 2 of the vacuum heat insulating material 1 is being evacuated or after vacuum sealing.
  • the gas adsorbent 6 is exposed to the air in the atmosphere when the film is perforated, as in the case where the film is perforated in the atmosphere and then evacuated and put into the jacket material, and the atmosphere is adsorbed and deteriorated. Can be prevented. Therefore, the gas adsorbing performance of the gas adsorbing material 6 can be maintained and guaranteed to be good for a longer period of time.
  • the opening member 9 for punching the film 10 is formed of a metal or a resin with less gas generation.
  • gas is released in the jacket material 2 of the vacuum heat insulating material 1 to reduce the degree of vacuum in the jacket material 2, or the gas adsorption capacity of the gas adsorbent 6 is the same as in the case of the film 10. It is possible to prevent the gas adsorption from being consumed. Therefore, it is effective because it can maintain good gas adsorption performance over a longer period of time and keep the heat insulating property of the vacuum heat insulating material 1 good.
  • the vacuum heat insulating material 1 formed in this way is a gas adsorbing device 4 that is thin and flexible, it may be a vacuum heat insulating material having a thickness of several millimeters or a vacuum heat insulating material that is curved.
  • a gas adsorbing effect can be provided, and a vacuum heat insulating material having good heat insulating properties can be realized over a long period of time.
  • the porous member 7 portion is perforated, and the inside of the jacket material 2 communicates with the inside of the gas adsorption device 4. Therefore, as already described, the gas in the vacuum heat insulating material 1 passes through the porous member 7 and is adsorbed by the gas adsorbing material 6, and the gas adsorbing speed of the gas adsorbing material 6 is changed to the porous member. 7 can be arbitrarily set and controlled by at least one of the hole diameter and the porosity. Therefore, it is possible to realize a vacuum heat insulating material that stabilizes gas adsorption performance and exhibits good heat insulating performance over a longer period of time.
  • the gas adsorbing device 4 has a configuration in which an opening member 9 having a protrusion 8 is provided at a portion facing the intersecting surface portion 7 a of the porous member 7 of the envelope 5. Therefore, when the gas adsorbing device 4 is vacuum-sealed in the jacket material 2 of the vacuum heat insulating material 1, the wrapping bag 5 is perforated by the protrusions 8 of the opening member 9, and the internal gas adsorbing material 6 is removed. It is possible to communicate with the vacuum region in the workpiece 2.
  • FIG. 8 is a side view schematically showing the configuration of the gas adsorption device according to the second embodiment of the present disclosure.
  • the gas adsorption device 4 in the present embodiment has a configuration in which a moisture adsorbent 15 is interposed between the gas adsorbent 6 and the porous member 7.
  • the gas from the porous member 7 passes through the moisture adsorbing material 15 and is adsorbed on the gas adsorbing material 6, so that moisture contained in the gas can be adsorbed and removed. Therefore, waste due to moisture adsorption of the gas adsorbent 6 can be prevented, good gas adsorption performance can be ensured over a longer period, and reliability can be improved.
  • waste of adsorption capacity due to moisture adsorption of the gas adsorbent 6 can be suppressed, it is not necessary to consider the consumption due to moisture adsorption of the copper ion exchange ZSM-5 type zeolite used as the gas adsorbent 6, and the copper ion exchange ZSM.
  • the amount of ⁇ 5 type zeolite applied can be reduced, and the gas adsorption device 4 can be downsized.
  • the adhesive layer 10c of the film 10 constituting the sachet 5 is melted at a temperature much lower than the melting temperature of glass or the like, the heat welding temperature can be greatly reduced. Therefore, even if the moisture adsorbing material 15 is provided in the wrapping bag 5, the performance of the gas adsorbing material 6 can be prevented from being deteriorated by the gas generated from the moisture adsorbing material 15, and the moisture adsorbing material 15 is provided. In addition, a high-performance gas adsorption device 4 can be realized.
  • the material used as the adhesive layer such as PE, melts at 100 ° C. to 140 ° C., PP about 130 ° C., and EMAA or ethylene ionomer melts at about 100 ° C.
  • these can be welded at about 160 ° C. to 190 ° C., depending on the laminated structure and thickness. Even if the moisture adsorbent 15 is provided in the wrapping bag 5, it is possible to prevent the performance of the gas adsorbent 6 from being deteriorated by degassing the moisture adsorbent 15, and the moisture adsorbent 15 is provided.
  • a high-performance gas adsorption device 4 can be realized.
  • moisture adsorbing material 15 various materials such as calcium oxide (CaO), silica gel, zeolite, or molecular sieve can be used.
  • CaO calcium oxide
  • silica gel silica gel
  • zeolite zeolite
  • molecular sieve molecular sieve
  • FIG. 9 is a side view schematically showing the configuration of the gas adsorption device according to the third embodiment of the present disclosure.
  • the gas adsorbing device 4 in the present embodiment is configured such that a plurality of combinations of the gas adsorbing material 6 and the porous member 7 are sealed in a single bag 5 under reduced pressure.
  • the gas adsorption rate can be changed, and both the immediate effect and the sustainability of the gas adsorption can be achieved. It is.
  • the porous member 7 having the larger pore diameter and porosity has a higher gas adsorption rate. Therefore, the gas in the vacuum heat insulating material is adsorbed in a short time, and at the time of producing the vacuum heat insulating material, it exhibits an immediate effect in the adsorption removal of the remaining gas that cannot be evacuated under reduced pressure.
  • the porous member 7 having a small pore diameter and porosity has a low gas adsorption rate.
  • the adsorption rate of the gas adsorbent 6 is made slower than the adsorption rate of the moisture adsorbent installed separately from the gas adsorption device in the jacket material.
  • Most of the moisture contained in the invading gas can be adsorbed and removed by the moisture adsorbent. For this reason, waste due to moisture adsorption of the gas adsorbing material 6 can be prevented, and the gas in the vacuum heat insulating material can be continuously adsorbed over a long period of time. Therefore, it is suitable for applying to a large-sized vacuum heat insulating material used for building materials or LNG ships.
  • gas adsorption device and the vacuum heat insulating material using the gas adsorption device according to the present disclosure have been described above, but the present invention is not limited to these.
  • the porous member 7 a material configured by sintering resin powder is exemplified, but the powder particles of the gas adsorbent 6 are not allowed to pass but have a function of allowing gas to pass.
  • a non-woven fabric or glass wool may be used.
  • the hole shape may be a group of linear through holes having a smaller diameter than the powder particles of the gas adsorbing material 6 instead of the three-dimensional network hole.
  • a nonwoven fabric or glass wool since it is more flexible than a porous member, it becomes easier to deform
  • the form of the wrapping bag 5 is not limited to the three-sided bag exemplified in the embodiment, and may be any form such as a jointed bag, a two-sided bag, or a gusseted bag.
  • adhesion between the inner surface of the sachet 5 and the intersecting surface portion 7a of the porous member 7 may be performed using an adhesive instead of heat welding.
  • an opening member for a gas adsorption device capable of performing drilling with low cost and less variation, and a gas adsorption device capable of obtaining stable gas adsorption performance, The vacuum heat insulating material using them, and an apparatus are provided.
  • FIG. 10 is sectional drawing which shows the structure of the vacuum heat insulating material with the opening member for gas adsorption devices in 4th Embodiment of this indication, and a gas adsorption device using the same
  • FIG. 11 is the gas adsorption device It is the schematic diagram of the structure seen from the side which shows the state by which the opening member for gas and the gas adsorption device were set.
  • FIG. 12 is an enlarged cross-sectional view schematically showing the film configuration of the storage container of the gas adsorption device according to the fourth embodiment of the present disclosure
  • FIG. 13 is an opening member for the gas adsorption device and the gas adsorption It is a schematic diagram which shows the expanded cross-sectional structure which shows the state in which the device was set.
  • FIG. 14 is a plan view showing a state in which the gas adsorbing device opening member and the gas adsorbing device are set according to the fourth embodiment of the present disclosure
  • FIG. 15 is the gas adsorbing device opening member. It is a perspective view which shows the state by which the gas adsorption device was set.
  • FIG. 16 is a perspective view showing an appearance of a gas adsorbing device opening member according to the fourth embodiment of the present disclosure
  • FIG. 17 shows the gas adsorbing device sealed and sealed in a jacket material. It is a schematic diagram for demonstrating the manufacturing method of a vacuum heat insulating material.
  • the vacuum heat insulating material 101 of the present embodiment is sealed under reduced pressure after the gas adsorbing device 104 is installed together with the core material 103 inside the outer cover material 102, and the gas adsorbing device The inside of 104 and the outer covering material 102 are communicated with each other.
  • a moisture adsorbent may be installed inside the jacket material 102 together with the core material 103 and the gas adsorption device 104.
  • the moisture adsorbent adsorbs moisture (water vapor) that remains or enters the vacuum heat insulating material.
  • the moisture adsorbent is not particularly limited, and a chemical adsorbent such as calcium oxide or magnesium oxide, a physical adsorbent such as zeolite, or a mixture thereof can be used.
  • the gas adsorbing device 104 has a flat shape in which a gas adsorbing material 106 is inserted into an adsorbing material storage container 105 formed of a flexible laminate film having gas barrier properties, and is sealed under reduced pressure. Is formed.
  • the gas adsorbing device 4 includes an opening member 108 on the surface of the adsorbent storage container 105 where the gas adsorbent 106 is provided.
  • the unsealing member 108 is configured by using a spring wire made of stainless steel or the like.
  • the spring wire is coiled, and a grip portion 109 that sandwiches the gas adsorption device 104 is formed by making the coil winding density on one end side denser than the coil winding density on the other end side.
  • a perforated portion 110 that opens a hole in the gas adsorbing device 104 is formed by bending a tip portion on the other end side where the coil density is coarse toward the grip portion 109 side.
  • the grip portion 109 is configured by bringing the coil windings into close contact with each other at least one turn.
  • the perforated portion 110 is configured by further bending and cutting the tip portion bent from the coil-shaped portion toward the coil center portion toward the grip portion 109 side.
  • the spring wire of the unsealing member 108 is made of a wire having a diameter of about 0.5 to 1.0 mm, for example, which can be easily perforated by the perforated part 110, and has a circular or oval cross section.
  • the outer peripheral surface is configured to have an arc shape.
  • a metal material such as stainless steel is used.
  • any material may be used as long as it generates little gas in a vacuum atmosphere.
  • a resin material that can be used may be used.
  • the adsorbent storage container 105 of the gas adsorption device 104 is a film having a high gas barrier property, for example, as shown in FIG. 12, at least the outermost layer is a protective layer 112a, the middle is a gas barrier layer 112b, and the innermost layer is an adhesive layer 112c.
  • the laminate film 112 having at least three layers is sealed and welded in a bag shape.
  • the adsorbent storage container 105 has a bag shape in which the periphery of the two laminated films 112 is sealed and welded (light gray portions), and the opening portion (dark gray portion) ) Is a configuration in which the thin film portion 105a of only the laminate film layer is formed along with the periphery of the laminate film 112.
  • This may have any form, for example, a single laminate film 112 is formed into a bag shape.
  • the adhesive layer 112c constituted by the innermost film member of the laminate film 112 firmly adheres the outer peripheral portions of the laminate films 112 to each other by seal welding.
  • the adhesive layer 112c include heat-weldable resins such as linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), metallocene polyethylene, and ethylene-acrylic acid copolymer (EAA). Or ethylene-methacrylic acid copolymer (EMAA).
  • a resin film such as unstretched polypropylene (CPP), biaxially stretched polypropylene (OPP), polyethylene terephthalate (PET), ethylene / vinyl acetate copolymer (EVA), or ionomer is also used.
  • CPP unstretched polypropylene
  • OPP biaxially stretched polypropylene
  • PET polyethylene terephthalate
  • EVA ethylene / vinyl acetate copolymer
  • ionomer ionomer
  • the gas barrier layer 112b serving as an intermediate layer of the laminate film 112 a metal foil such as an aluminum foil (Al foil), a copper foil (Cu foil), or a stainless steel foil having no gas permeability is used.
  • the gas barrier layer 112b is formed of a resin film such as an ethylene-vinyl alcohol copolymer resin film (EVOH film) or a polyethylene terephthalate film (PET film) having a low gas permeability on a metal or metal oxide such as Al or Cu.
  • EVOH film ethylene-vinyl alcohol copolymer resin film
  • PET film polyethylene terephthalate film
  • the gas barrier layer 112b is protected.
  • a nylon film, a polyethylene terephthalate film (PET film), a polyethylene film (PE film), a polypropylene film (PP film), or the like is used.
  • a film having a low water absorption rate for example, a PET film, a PE film, or a PP film is preferable, but any resin having a water absorption rate equal to or lower than that of PET may be used. It is not limited to examples.
  • the gas adsorbing material 106 a chemical adsorbing substance such as calcium oxide or magnesium oxide, a physical adsorbing substance such as zeolite, a mixture thereof, or a gas adsorbing alloy such as BaLi4 can be applied.
  • a copper ion exchanged ZSM-5 type zeolite having a particularly high gas adsorption capacity and adsorption capacity is used.
  • ZSM-5 type zeolite containing barium (Ba) or strontium (Sr), or ZSM-5 type zeolite is MOM type (M: Ba or There are adsorbents containing Sr, O: oxygen), and these may be used, or these may be used in combination.
  • the gas adsorbing device 104 is held in a vacuum sealed state by the adsorbent storage container 105 without being pierced by the opening member 108 during storage. Thereby, the gas adsorbent 106 does not come into contact with external air, and the adsorption capacity of the gas adsorbent 106 is maintained.
  • the unsealing member 108 is formed using a spring wire, the material can be greatly reduced as compared with an unsealing member composed of a leaf spring.
  • the grip portion 109 and the perforated portion 110 of the unsealing member 108 can be formed simply by bending the spring wire, and like a leaf spring type unsealing member, such as press cutting, several times of bending of the brace, and cutting and raising processing, etc. Many processes are unnecessary. Therefore, this material reduction and man-hour reduction can greatly reduce the cost and provide the gas adsorption device 104 at low cost.
  • the unsealing member 108 is used in a state in which the gas adsorbing container is sandwiched by the grip portion 109 and attached to the gas adsorbing container. Since the outer peripheral edge of the bag serving as the adsorbent storage container 105 is a thin wall portion 105a, the opening member 108 is set by inserting the grip portion 109 from the thin wall portion 105a. Attachment to the storage container 105 can be easily performed.
  • the holding part 109 of the unsealing member 108 is configured such that the spring wire is coiled, and the coil winding density on one end side is made denser than the coil winding density on the other end side. Therefore, the gas adsorbing device 104 can be elastically held between the spring wires, and the mounting can be ensured.
  • the grip portion 109 is configured such that the coil windings are in close contact with each other at least one turn, it is strongly elastic due to the spring force, and can strongly grip the gas adsorption device 104. .
  • the unsealing member 108 is displaced and dropped from the adsorbent storage container 105 is reduced, and is attached and fixed at a predetermined position.
  • the adsorption device 104 can be realized.
  • the end of the coiled spring wire opposite to the grip portion 109 is pushed in by applying an external force, so that the perforated portion 110 is stuck into the adsorbent storage container 105. Perforate.
  • the perforated part 110 is configured using the tip of the spring wire as it is. Therefore, the hole opened in the adsorbent storage container 105 of the gas adsorbing device 104 has the same diameter throughout the entire length of the perforated part 110, so even if the perforation depth varies depending on how the external force is applied, it remains constant. It becomes the size of.
  • the gas adsorption device 104 can stably adsorb the gas around the adsorbent storage container 105 without variation in adsorption speed, and the gas adsorption performance is stabilized and the reliability is improved.
  • the perforated part 110 constitutes a perforated part 110 that opens a hole in the gas adsorbing device 104 by bending a tip part bent from the coil-shaped part toward the center of the coil toward the grip part 109.
  • the perforation part 110 perforates the coil center of the coiled portion, that is, the vicinity of the coil center of the grip part 109 that grips the gas adsorption device 104. Therefore, it is possible to prevent a perforation mistake such as perforating around the edge of the outer periphery of the gas adsorbing device 104 where there is no gas adsorbent 106 and to realize reliable perforation.
  • the bag opening of the jacket material 102 is thermally welded. Sealed and manufactured.
  • FIG. 17 is a schematic diagram for explaining a method of manufacturing the vacuum heat insulating material 101 described above.
  • the vacuum heat insulating material 101 is put in the decompression chamber 115 of the vacuum packaging device 114, and the inside of the decompression chamber 115 is evacuated by the vacuum pump 116. Thereby, the gas in the jacket material 102 is evacuated and decompressed, and the opening of the jacket material 102 is thermally welded and sealed by the heat sealing machine 117.
  • the unsealing member 108 of the gas adsorbing device 104 is an atmospheric pressure external force applied when the vacuum heat insulating material 101 sealed under reduced pressure by the vacuum pump 116 is taken out under atmospheric pressure, or a roll press performed after decompression sealing. Due to the mechanical external force, etc., the vacuum heat insulating material 101 is pushed through the outer covering material 102, and the perforated part 110 pierces the adsorbent storage container 105 to perforate the adsorbent storage container 105.
  • the vacuum heat insulating material 101 can exhibit good and stable vacuum heat insulating performance.
  • the unsealing member 108 for punching the gas adsorbing device 104 is elastically fixed to the adsorbent storage container 105 without being displaced, and reliably punches the adsorbent portion of the adsorbent storage container 105. Therefore, poor gas adsorption due to perforation mistakes is also suppressed. Therefore, also from this point, the vacuum heat insulating material 101 reliably adsorbs the gas remaining in the jacket material 102 and maintains the degree of vacuum. Thereby, the vacuum heat insulating material 101 can exhibit a high vacuum heat insulating effect without causing poor heat insulation, and a highly reliable material can be realized.
  • reliable perforation of the gas adsorption device 104 can also be achieved by forming the perforated portion 110 of the opening member 108 at the center portion rather than the coil-shaped outer peripheral portion. In addition to this action, it is possible to reliably suppress the gas adsorption failure due to the perforation mistake and to further improve the reliability with respect to the vacuum heat insulating effect.
  • the perforation is performed on the gas adsorption device 104 in a state of being sealed in the outer cover material 102 of the vacuum heat insulating material 101. Therefore, the gas adsorbent 106 is exposed to the air in the atmosphere when the adsorbent storage container 105 is perforated, as in the case where the adsorbent storage container 105 is evacuated, after being pierced in the atmosphere and then put into the jacket material 102. Is prevented from being deteriorated, and the gas adsorption performance of the gas adsorbent 106 can be maintained and ensured to be good for a longer period of time.
  • the spring wire constituting the unsealing member 108 has a cross section of a circle or an ellipse and an outer peripheral surface of the arc. Therefore, even if the jacket material 102 of the vacuum heat insulating material 101 is strongly pressed against the spring wire material of the opening member 108 by atmospheric pressure, the outer peripheral surface of the spring wire material has an arc shape. Can be prevented, the degree of vacuum of the vacuum heat insulating material 101 can be reliably maintained, and reliability can be ensured. That is, if the opening member 108 is formed of a plate material, stress concentration at atmospheric pressure may occur in the jacket material 102 at the corner of the plate material, which may break the bag.
  • the unsealing member 108 is a wire, and its outer peripheral surface has an arc shape. Thereby, stress concentration does not occur, and the envelope material 102 can be prevented from being broken. As a result, the vacuum heat insulating material 101 can reliably maintain the degree of vacuum over a long period of time and can ensure the reliability as the vacuum heat insulating material 101.
  • the opening member 108 for punching the gas adsorption device 104 is made of a metal such as stainless steel. Therefore, gas is released in the jacket material 102 of the vacuum heat insulating material 101, and the degree of vacuum in the jacket material 102 is lowered, or the gas adsorption capability of the gas adsorbent 106 is consumed by this gas adsorption. Can be prevented. Therefore, good gas adsorption performance can be maintained over a long period of time, and the heat insulating property of the vacuum heat insulating material 101 can be kept good.
  • the protective layer 112a of the laminate film 112 forming the adsorbent storage container 105 is made of PET (polyethylene terephthalate) or a resin having a water absorption equal to or lower than that of PET.
  • PET polyethylene terephthalate
  • the protective layer 112a absorbs moisture in the atmosphere and is applied to the vacuum heat insulating material 101, the water is released in the outer covering material 102 of the vacuum heat insulating material 101, It is possible to prevent the vacuum degree in the jacket material 102 from being lowered and the gas adsorbing capacity of the gas adsorbing material 106 from being consumed by this moisture adsorption. Therefore, the gas adsorption performance is maintained over a longer period, and the heat insulating property of the vacuum heat insulating material 101 to which the gas adsorbing performance is applied is kept good.
  • the protective layer 112a is more preferably PET or a resin having a water absorption equivalent to or lower than that of PET, but is not particularly limited to these examples.
  • the vacuum heat insulating material 101 formed in this way is a gas adsorbing device 104 that is thin and flexible
  • the vacuum heat insulating material 101 having a thickness of about several millimeters and a vacuum heat insulating material to be curved are used. Can be used. That is, the vacuum heat insulating material which can be used without being restrict
  • the vacuum heat insulating material 101 formed in this way includes various refrigeration equipment such as refrigerators and vending machines, thermal insulation equipment such as thermostatic baths or pots, tanks for building ultra-low temperature materials such as building materials and LNG, ships, etc. It can also be used as a heat insulating wall, a heat insulating panel, or a heat insulating device.
  • FIG. 18 is a plan view showing a state in which the gas adsorbing device opening member and the gas adsorbing device are set according to the fifth embodiment of the present disclosure
  • FIG. It is a schematic diagram which shows the expanded cross-section structure which shows the state by which the gas adsorption device was set.
  • a porous member 118 is inserted into the adsorbent storage container 105 together with the gas adsorbent 106 and sealed under reduced pressure. Further, the gas adsorbent 106 and the porous member 118 are adjacent to each other in a planar state.
  • the porous member 118 has a structure in which resin powder is sintered and has a three-dimensional network hole, and does not pass the powder of the gas adsorbent 106 but has a porous structure that allows gas to pass. is doing.
  • the porous member 118 is in contact with the inner surface of the laminate film 112 serving as the adsorbent storage container 105 by atmospheric pressure by evacuation in the manufacturing process of the gas adsorbing device 104.
  • the resin constituting the porous member 118 is a heat-meltable resin that is compatible with the adhesive layer 112c that is the innermost layer of the laminate film 112, such as linear low density polyethylene (LLDPE), high It is made of resin such as high density polyethylene (HDPE), low density polyethylene (LDPE), ultrahigh molecular weight polyethylene (UHPE), or polypropylene (PP).
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • UHPE ultrahigh molecular weight polyethylene
  • PP polypropylene
  • the opening member 108 has the same configuration as that described in the fourth embodiment, but the opening member 108 is configured to perforate the porous member 118 portion of the adsorbent storage container 105. It is installed.
  • the gas adsorption device 104 configured as described above is manufactured by performing seal welding after reducing the pressure using a vacuuming device. At that time, that is, when the bag of the adsorbent storage container 105 is sealed under reduced pressure, the gas adsorbent 106 in the bag is made porous by sucking and depressurizing from the porous member 118 side toward the gas adsorbent 106 side. The presence of the member 118 can prevent unnecessary suction and exhaust from the bag. Therefore, it can be manufactured by vacuuming without using a special device that has the function of preventing leakage of gas adsorbents, and can be sealed under reduced pressure without slowing down the vacuuming speed, improving productivity and inexpensive gas adsorption devices 104 can be provided.
  • the gas adsorbent 106 and the porous member 118 are disposed adjacent to each other in a planar state in a flexible bag. Thereby, compared with the case where the gas adsorbent 106 and the porous member 118 are superposed, the thickness can be reduced and deformation such as bending can be facilitated. Therefore, similarly to the fourth embodiment, it can be applied to a thin vacuum heat insulating material of about several millimeters, a vacuum heat insulating material used by being curved in an arc shape, and the like.
  • the amount of the gas adsorbent 106 can be increased while keeping the thickness thin, and the gas adsorption capacity can be made sustainable over a long period of time.
  • the unsealing member 108 can be easily attached and workability can be improved.
  • the gas adsorption device 104 adsorbs the surrounding gas through the inside of the porous member 118.
  • the gas adsorption speed of the gas adsorbent 106 can be arbitrarily set and controlled by the pore diameter and porosity of the porous member 118.
  • the jacket material is aged over time by slowing down the adsorption speed of the gas adsorbent 106 than the adsorption speed of the moisture adsorbent installed separately from the gas adsorption device 104 in the jacket material 102.
  • the moisture adsorbent can adsorb and remove most of the moisture contained in the gas that passes through and enters.
  • the gas in the vacuum heat insulating material 106 can be continuously adsorbed over a long period of time. Therefore, while obtaining the above-described productivity improvement effect, etc., the gas adsorption performance is further stabilized without variation, and the gas adsorption speed is maintained by slowing the gas adsorption rate, so that good heat insulation can be achieved over a longer period of time.
  • the vacuum heat insulating material 101 which exhibits performance can be realized.
  • the adsorbent storage container 105 of the gas adsorbent 106 has the innermost film member and the porous member 118 thermally welded, that is, the laminate film 112 constituting the adsorbent storage container 105 and the porous member 118.
  • the entire surface is bonded without a gap.
  • the gas adsorbed from around the gas adsorbent 106 does not leak through the gap between the laminate film 112 and the porous member 118 constituting the adsorbent storage container 105, and performance stability is improved. Can be increased.
  • the bag inner surface and the surface of the porous member 118 can be bonded at the same time as the bag is welded and sealed, and productivity can be improved.
  • the porous member 118 is formed by sintering resin powder, the porous member 118 is not cracked by an external force at the time of drilling, and the gas is adsorbed by the gas adsorbent 106 through the crack. It is possible to prevent leak adsorption. Therefore, the gas adsorbent 106 always adsorbs gas through the holes of the porous member 118, and can stabilize the gas adsorption performance.
  • FIG. 20 is a schematic diagram illustrating an enlarged cross-sectional configuration illustrating a state where the gas adsorbing device opening member and the gas adsorbing device are set according to the sixth embodiment of the present disclosure.
  • the gas adsorption device 104 in the sixth embodiment has a configuration in which a moisture adsorbent 119 is disposed between the gas adsorbent 106 and the porous member 118 as shown in the fifth embodiment. .
  • the moisture adsorbing material 119 can be made of calcium oxide (CaO), and other materials such as silica gel, zeolite, or molecular sieve can be used.
  • CaO calcium oxide
  • other materials such as silica gel, zeolite, or molecular sieve can be used.
  • the moisture adsorbing material 119 can reliably adsorb and remove the moisture. . Therefore, waste due to moisture adsorption of the gas adsorbent 106 can be prevented, good gas adsorption performance can be ensured over a longer period, and reliability can be improved.
  • the gas adsorption device 104 can be reduced in size.
  • the adhesive layer 112c of the laminate film 112 constituting the adsorbent storage container 105 is melted at a temperature much lower than the melting temperature of glass or the like, the heat welding temperature can be greatly reduced. Therefore, even if the moisture adsorbent 119 is provided in the adsorbent storage container 105, it is possible to prevent the performance of the gas adsorbent 106 from being deteriorated due to degassing of the moisture adsorbent 119.
  • a high-performance gas adsorption device 104 provided with 119 can be realized.
  • PE as an adhesive layer itself melts at about 100 ° C. to 140 ° C., PP about 130 ° C., EMAA or ethylene ionomer at about 100 ° C., and when these are laminated films, they are laminated. Although it depends on the structure and thickness, it can be welded at about 160 ° C. to 190 ° C. Therefore, even if the moisture adsorbent 119 is provided in the adsorbent storage container 105, the performance of the gas adsorbent 106 can be prevented from deteriorating due to degassing of the moisture adsorbent 119, and the moisture adsorbent 119 can be prevented. Can be realized.
  • the strength of the laminate film 112 as a whole. can be effective. That is, for example, when calcium oxide is used as the moisture adsorbing material 119, if there is a calcium oxide particle having a large particle size, the laminate film 112 has a large tensile force at a portion facing the particle. Join. Then, cracks or pinholes may occur in the aluminum foil constituting the gas barrier layer 112b, starting from the large particles described above.
  • a nylon film for the laminate film 112 generation of cracks and pinholes starting from the large particles described above can be suppressed, and performance can be effectively guaranteed. it can.
  • the other structure and effect of the gas adsorption device 104 and the structure and manufacturing method and effect of the vacuum heat insulating material 101 are the same as those in the fifth embodiment, and the description thereof is omitted.
  • the opening member 108 for the gas adsorption device according to the present disclosure, the gas adsorption device 104 using the same, and the vacuum heat insulating material 101 have been described using the fourth to sixth embodiments.
  • the present disclosure is not limited to these.
  • the coil shape of the opening member 108 exemplifies that the free length (full length) from the grip portion 109 to the portion where the perforated portion 110 is provided is formed by a cylindrical coil having the same diameter.
  • the perforated portion 110 can be positioned at the coil-shaped central portion, and there are few perforation errors. Reliable drilling can be easily realized. Also, in the case of a rectangular coil shape, the direction of insertion into the adsorbent storage container 105 can be specified, that is, it can be specified by inserting into the adsorbent storage container 105 from the short side of the rectangle. Workability can be improved.
  • the perforated part 110 illustrated what was bent and bent toward the coil center part from the coil-shaped part, the front-end
  • the coil portion may be bent as it is toward the grip portion 109.
  • the adsorbent storage container 105 of the gas adsorbing device 104 is exemplified by the laminate film 112 formed into a bag shape. This is because the opening of a flat metal container is sealed with the laminate film 112. It may be the configuration.
  • porous member 118 illustrated what was comprised by sintering resin powder, this may be things like a nonwoven fabric etc.
  • a hole shape is not a three-dimensional network hole, A linear through hole group having a smaller diameter than the powder particles of the gas adsorbent 106 may be used.
  • the core material 103 is sealed under reduced pressure in the flexible jacket material 102, but this is because the jacket material 102 is made of a rigid body having no flexibility.
  • a metal plate or a resin plate, or a box made of a metal plate or a resin plate, which is configured by sealing an opening of a box with a flexible sheet, etc. Can be assumed.
  • the present disclosure is highly productive, can be provided at a low cost, and is thin and flexible, so that it can be applied to a wide variety of vacuum heat insulating materials. There is a special effect that the adsorption capacity is sustainable. Therefore, the present disclosure is used for applications that require a heat insulating material that has excellent heat insulation performance and durability over time, such as a refrigerator, a heat insulating container, a vending machine, a heat pump water heater, an electric water heater, a shipping container, an automobile, a railway vehicle, In addition, it can be suitably used for heat insulators of LNG ships and houses, and is useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Packages (AREA)

Abstract

気体吸着デバイス(4)であって、ガスバリア性および可撓性を有する包袋(5)と、包袋(5)内に減圧封止された気体吸着材(6)と、包袋(5)の内部に、平面状の状態で気体吸着材(6)と隣接配置された多孔質部材(7)とを備えている。これにより、生産性が高く、安価に提供でき、しかも、薄くかつ可撓性があるので、多種多様な真空断熱材に適用でき、さらには、長期間に亘って気体吸着能力を持続可能な真空断熱材を提供することができる。

Description

気体吸着デバイスおよびこれを用いた真空断熱材
 本発明は、気体吸着デバイスおよびこれを用いた真空断熱材に関する。
 近年、地球温暖化防止の観点から、家庭用電化製品についても省エネルギー化が緊急の課題となっている。特に、冷蔵庫、冷凍庫、および自動販売機等の保温保冷機器では、熱を効率的に利用するという観点から、優れた断熱性能を有する断熱材が求められている。
 優れた断熱性能を有する断熱材として、真空断熱材が提案されている。これは、袋状に加工された、ガスバリア性を有するラミネートフィルム(以下、外被材)内に、グラスウールのような、気相容積比率が高く、かつ、微細な空隙が構成された芯材を収納し、芯材収納空間を減圧して密封することにより作製されるものである。
 真空断熱材は、その内部の真空度を上げることにより、高性能な断熱性能を得ることができる。しかしながら、真空度を上げることは、真空断熱材内部に存在する気体によって妨げられる。真空断熱材内部に存在する気体には、大きく分けて次の三つがある。一つは、真空断熱材作製時、減圧排気されずに残存する気体、別の一つは、減圧封止後、芯材および外被材から発生する気体(芯材および外被材に吸着している気体、ならびに、芯材の未反応成分が反応することによって発生するガス等)、残りの一つは、外被材を通過して外部から侵入してくる気体である。
 これらの気体を吸着除去するため、真空断熱材の外被材内には、芯材とともに気体吸着デバイスが密封封止されている。
 気体吸着デバイスは、ガスバリア容器内に気体吸着材が充填され、ガスバリア容器が真空封止されることによって構成されている(例えば、特許文献1参照)。
 図21は、特許文献1に記載された、従来の気体吸着デバイス1100の構成を示す図である。
 従来の気体吸着デバイス1100は、真空またはアルゴンガス雰囲気中で、金属筒状のガスバリア容器1101内に気体吸着材1102が充填され、減圧下で、ガスバリア容器1101の開口1103に設けられた狭窄部1104に、溶融させたガラス封止材1105を流入させ、冷却固化させることにより、構成されている。これにより、ガスバリア容器1101の開口1103が封止される。
 従来の気体吸着デバイス1100においては、真空断熱材に適用される前の保管時には、ガスバリア容器1101内の気体吸着材1102が、外部雰囲気から隔絶されているので、気体吸着材の性能劣化が防止される。また、真空断熱材に適用されたときには、真空断熱材の外被材の外側からガスバリア容器1101に外力が加えられて、ガラス封止材1105が破壊され、ガスバリア容器1101の内外が連通する。これにより、気体吸着材1102が、外被材内に存在する気体を吸着する。
 このように、気体吸着デバイス1100は、真空断熱材の外被材内の気体を吸着して真空度を保つことで、真空断熱材に良好な断熱性を発揮させることができる。
 従来の気体吸着デバイス1100は、ガラスを溶融させてガスバリア容器1101の狭窄部1104に流入させることにより、溶融ガラスが、表面張力により、狭窄部1104内面へ滞留接着する。そして、溶融ガラスが狭窄部1104に保持された状態で冷却固化することにより、狭窄部1104が封止される。このため、ガラスの溶融および冷却固化のための時間が必要となるので、生産性を高めることが困難である。同時に、精度の高いガラスの溶融粘度を管理するために、特殊で高額な真空熱処理炉等が必要となる。これらに起因して、気体吸着デバイス1100のコスト低減は困難であるという課題がある。
 また、外力を加えて破壊されたガラス封止材1105は、ひび割れ部分を介して、ガスバリア容器1101内と真空断熱材の外被材内とを連通させる。このとき、ガスバリア容器1101の内外を連通させるようなひび割れを生じさせるためには、ガラス封止材1105を、ある程度の厚みを持つ塊とする必要がある。また、気体吸着材1102を加熱処理する際に発生するガス、および、活性化時に発生するガスの流路を確保するため、ガスバリア容器1101の封止口となる狭窄部1104の開口は、ある程度の断面積を有することが必要である。この点からも、狭窄部1104を溶融封止するガラス封止材1105を、ある程度の厚みを有する塊とする必要がある。
 このため、ガスバリア容器1101は、少なくともガラス封止材1105の塊の厚みと、ガスバリア容器1101の板厚分の厚みとを持つものとなってしまい、厚さを薄くするには限界がある。
 さらに、気体吸着デバイス1100は、溶融温度が高温なガラス封止材1105を有するため、ガスバリア容器1101も、高温に耐えうる素材、例えば金属製とする必要があり、剛体物となる。よって、真空断熱材を、使用される機器の形状に応じて変形させることができず、可撓性を持たせることにも限界があり、適用機器が制限されるという課題もある。
 一方で、最近は、真空断熱材の断熱性能の向上に伴い、使用される機器の要求断熱能力によっては、厚さ数ミリ程度の真空断熱材、および、湾曲面状または円筒状に加工して、例えば給湯器等に使用される真空断熱材も商品化されつつある。このように、新たに商品化されつつある真空断熱材にも適用できる気体吸着デバイスが求められており、そのニーズが顕在化しつつある。
 さらに、真空断熱材は、従来の、冷蔵庫等の保温保冷機器の断熱材から、近年は、建材およびLNG船等の断熱材としても、その用途が広がりつつある。よって、真空断熱材は、それ自体の大型化、および、より長い期間高い断熱性を維持できることも必要となってきている。このため、気体吸着材の充填量を多くすることも課題となってきている。
 しかしながら、気体吸着材の充填量を増やす場合、従来の気体吸着デバイス1100の構成のままであると、気体吸着材を加熱処理する際に発生するガス、および、活性化時に発生するガスが多くなってしまい、加熱処理に膨大な時間が必要となって、生産性の低下につながってしまう。
 したがって、生産性を低下させることなく気体吸着材の充填量を多くする、または、生産性を上げると同時に気体吸着材の充填量を多くすることが課題となっている。
特開2013-68323号公報
 本開示は上述した課題に鑑みてなされたものであり、生産性が高く、薄くて可撓性を備え、かつ、気体吸着材の充填量を増やして、長期間に亘り気体吸着能力を持続可能とすることのできる気体吸着デバイス、およびこれを用いた真空断熱材を提供するものである。
 本開示の気体吸着デバイスは、ガスバリア性および可撓性を有する包袋と、包袋内に減圧封止された気体吸着材と、包袋の内部に、平面状の状態で気体吸着材と隣接配置された多孔質部材とを備えている。
 なお、本開示で、「平面状の状態で気体吸着材と隣接配置された多孔質部材」とは、多孔質部材を構成する面のうち、最も面積が大きい面以外の面が、気体吸着材と隣り合わせに配置されていることを意味する。
 また、本開示で「隣接配置」とは、気体吸着材と多孔質部材とが接触状態で隣り合わせに配置されている場合のみを意味するのではなく、これら両者の間に、何らかの部材、例えば第2の実施の形態で例示されるように、水分吸着材等を介して隣り合わせに配置されているものも含む。
 また、この開示において、多孔質部材の「形状」は、例えば、多面体または円柱体等の、平板状以外の形状であってもよい。
 これにより、本開示の気体吸着デバイスは、一般的な真空引き装置を用いて減圧された後、熱溶着することにより製造できる。気体吸着材が挿入された包袋内を減圧封止する際、多孔質部材側から気体吸着材側に向かって包袋内を吸引減圧することにより、包袋内の気体吸着材が、多孔質部材が存在することにより、包袋内部から吸引排気されることを防止できる。よって、特殊な装置を用いることなく製造でき、しかも、真空引き速度を遅くすることなく減圧封止でき、生産性を向上させ、安価に提供することができる。
 また、気体吸着材および多孔質部材は、可撓性の包袋内に、平面状の状態に隣接配置されている。これにより、気体吸着材と多孔質部材とが重合配置(気体吸着材および多孔質部材それぞれの、最も面積が大きい面同士が接する状態で配置)されている場合と比べて、厚みが薄く、湾曲等の変形も容易にでき、数ミリ程度の薄い真空断熱材、および、円弧状に湾曲させて使用する真空断熱材等にも適用することができる。
 しかも、包袋の平面幅寸法を大きくすることによって、厚みを薄く保ったまま気体吸着材の量を多くすることができ、長期間に亘って、気体吸着能力を持続可能なものとすることができる。つまり、多種多様な真空断熱材への適用拡大を実現しつつ、長期間に亘って気体吸着能力を持続可能にすることができる。
 以上述べたように、本開示は、生産性が高く、安価に提供でき、しかも、薄くかつ可撓性があるので、多種多様な真空断熱材に適用でき、さらには、長期間に亘って気体吸着能力を持続可能な、気体吸着デバイスおよびこれを用いた真空断熱材を提供することができる。
 本開示の第1の態様は、ガスバリア性および可撓性を有する包袋と、包袋内に減圧封止された気体吸着材と、包袋の内部に、平面状の状態で気体吸着材と隣接配置された多孔質部材とを備えた気体吸着デバイスである。
 これにより、この気体吸着デバイスは、一般的な真空引き装置を用いて減圧した後、熱溶着することにより製造できる。気体吸着材が挿入された包袋内を減圧封止する際、多孔質部材側から気体吸着材側に向かって包袋内を吸引減圧することにより、包袋内の気体吸着材が、多孔質部材が存在することによって、包袋内部から吸引排気されることを防止できる。よって、特殊な装置を用いることなく製造でき、真空引き速度を遅くすることなく減圧封止でき、生産性を向上させ、安価に提供することができる。
 また、気体吸着材および多孔質部材は、可撓性の包袋内に、平面状の状態で隣接配置されているから、気体吸着材と多孔質部材とを重合配置した場合と比べて、厚みを薄く、かつ、湾曲等の変形が容易なものとすることができる。よって、数ミリ程度の薄い真空断熱材、および、円弧状に湾曲させて使用する真空断熱材等にも適用することができる。さらに、包袋の平面幅寸法を大きくすることによって、厚みを薄く保ったままで気体吸着材の量を多くすることもでき、長期間に亘って、気体吸着能力を持続可能にできる。
 次に、本開示の第2の態様は、第1の態様において、多孔質部材の、気体吸着材に隣接する面と交差する交差面部分が、包袋に接着されている構成である。
 なお、本開示で「接着」とは、実施の形態で説明したような、包袋内面が、多孔質部材表面に熱溶着または接着剤等で接着されている場合はもちろん、大気圧または外力によって多孔質部材表面に押し付けられ、これと密着している状態をも含むものである。
 これにより、真空断熱材内と気体吸着デバイス内とを連通させるにあたって、多孔質部材の交差面部分で包袋を穿孔すれば、包袋外部からの気体は、多孔質部材内を通って気体吸着材に吸着されることになる。これにより、気体吸着材の気体吸着速度を、多孔質部材の孔径および空孔率によって、任意に設定制御することができる。その結果、上述した第1の態様の効果を得つつ、気体吸着速度のばらつき幅を縮小して吸着性能を安定させ、かつ、気体吸着速度を遅くして、気体吸着能力を、より長期間に亘って持続させることができる。
 すなわち、従来の気体吸着デバイスのように、ガラス封止材を押しつぶして連通させる構成では、押しつぶされて形成されたひび割れによって生じる連通面積は、成り行き任せとなり、気体吸着速度の速いものおよび遅いものが混在し、そのばらつき幅が大きくなりやすい。このばらつき幅を、設計寸法範囲内に収まるようにすることはできても、さらにばらつき幅を縮小して、気体吸着性能を安定させるには大きな困難を伴う。また、ひび割れによる連通面積を一定値以下に規制して、気体吸着速度を低速化し、気体吸着能力を一段と長時間持続するようにすることにも大きな困難が伴う。
 しかしながら、この態様によれば、第1の態様で記載した効果を発揮しつつ、気体吸着材が、多孔質部材を介して気体を吸着するようになる。これにより、多孔質部材の孔径および空孔率を規制することによって、気体吸着速度をばらつき幅の少ない略一定のものにすることができる。そして、気体吸着性能の一段の安定化と気体吸着能力持続時間の長時間化とを両立させることができる。
 本開示の第3の態様は、第2の態様において、多孔質部材の交差面部分が、包袋の内面に熱溶着された構成である。
 これにより、多孔質部材の交差面部分と包袋の内面とは、その全面が物理的に一体化することになるので、多孔質部材の交差面部分に穿孔された孔から流入する気体を、確実に多孔質部材内を通して、気体吸着材で吸着させることができる。したがって、第2の態様の効果を、より確実なものとすることができる。
 第4の態様は、第1の態様~第3の態様までのいずれかの態様において、包袋は、金属箔からなるガスバリア層を含む複数層のラミネートフィルムで構成され、複数層のラミネートフィルムのうち、最内層のフィルム部材と多孔質部材とが熱溶着された構成である。
 これにより、包袋の内面と多孔質部材とは樹脂同士の相溶により、その全面が隙間なく確実に接着する。しかも、包袋を封止する際に、包袋の溶着封止と同時に、包袋内面と多孔質部材表面との接着を行うこともでき、性能安定性を高めつつ、生産性を向上させることができる。
 第5の態様は、第1の態様から第3の態様のいずれかの態様において、多孔質部材は、樹脂粉末を焼結させて形成された構成である。
 これにより、多孔質部材が、穿孔時の外力によってひび割れするようなことがなく、ひび割れ部分を介して、気体が気体吸着材にリーク吸着されることを防止できる。したがって、気体吸着材は、必ず多孔質部材の孔を介して気体を吸着するようになり、気体吸着性能の安定化を促進することができる。
 第6の態様は、第1の態様~第5の態様のいずれかの態様において、多孔質部材は、気体を通過させるが、気体吸着材の粉末粒子は通過できない多孔質構造体を有している。
 これにより、包袋内を減圧封止する際、包袋内の気体吸着材が、多孔質部材を通過して包袋内部から排出されることを確実に防止でき、第1の態様の効果である、減圧封止時における気体吸着材の包袋からの排気防止を、より確実なものとすることができる。
 第7の態様は、第1の態様~第6の態様のいずれかの態様において、気体吸着材は、銅イオン交換ZSM-5型ゼオライトである。
 これにより、既存の気体吸着デバイスよりも気体吸着容量が大きい銅イオン交換ZSM-5型ゼオライトの特徴を活かして、長期間に亘って良好な気体吸着性能を発揮させることができる。
 第8の態様は、第4の態様において、包袋を形成するラミネートフィルムは、ガスバリア層の表面を覆う保護層をさらに有している。
 これにより、ガスバリア層となる金属箔を保護層で保護するので、包袋のフィルムが無用な外力を受けたときに、金属箔が不用意に破損することを防止することができ、保管時における気体吸着材の劣化防止を確実なものとすることができる。
 第9の態様は、第8の態様において、保護層は、PET(ポリエチレンテレフタレート)、または、PETと同等以下の吸水率を有する樹脂で構成されている。
 これにより、気体吸着デバイス保管時には、保護層が大気中の水分を吸収し、真空断熱材等に適用したときに、水分が真空断熱材等の外被材内で放出されて外被材内の真空度を低下させたり、気体吸着材の気体吸着能力が、この水分吸収で費やされてしまうことを防止できる。したがって、より長い期間に亘って気体吸着性能を維持し、気体吸着デバイスを適用した真空断熱材等の断熱性を良好に保つことができる。
 第10の態様は、第1の態様~第9の態様のいずれかの態様において、気体吸着材と多孔質部材との間に、水分吸着材が介在している。
 これにより、多孔質部材からの気体は、水分吸着材を通過して気体吸着材に吸着されるようになり、気体中に含まれる水分を吸着除去することができる。したがって、気体吸着材の水分吸着による浪費を防止し、より長期間に亘って、良好な気体吸着性能を保証し、信頼性を向上させることができる。
 第11の態様は真空断熱材であり、第1の態様~第10の態様までのいずれかの態様の気体吸着デバイスと、芯材と、外被材とを備えており、気体吸着デバイスと芯材とが外被材内に挿入され、減圧封止されて構成されている。
 これにより、数ミリ厚程度の薄い真空断熱材、および、湾曲等させる真空断熱材であっても、気体吸着効果を持たせて、長期間に亘り、良好な断熱性を持つ真空断熱材を実現することができる。
 第12の態様は、第11の態様において、気体吸着デバイスは、多孔質部材の部分が穿孔されることにより、外被材内と気体吸着デバイス内とが連通する構成である。
 これにより、真空断熱材内の気体は、多孔質部材内を通って気体吸着材に吸着されることになるから、気体吸着材の気体吸着速度を、多孔質部材の孔径および空孔率によって任意に設定制御することができる。よって、第1の態様の効果を得つつ、気体吸着性能をばらつきなく安定させ、かつ、気体吸着速度を遅くして気体吸着能力を持続させ、より長期間に亘って、良好な断熱性能を発揮する真空断熱材を実現することができる。
 第13の態様は、第11の態様または第12の態様において、気体吸着デバイスは、包袋の、多孔質部材の交差面部分の対向部分に、突起物を有する開封部材を有している。
 これにより、気体吸着デバイスを真空断熱材の外被材内に真空封止するときに、開封部材の突起物によって包袋を穿孔し、内部の気体吸着材と外被材内の真空領域とを連通させることができる。よって、包袋穿孔時に、気体吸着材が大気中の外気を吸着して劣化することを防止でき、真空断熱材の断熱性を、より長期間に亘って良好なものに維持保証することができる。
 以下の各態様の技術的な教示は、上述した第1の態様から第13の態様までの各態様の技術的な教示とは独立した教示であり得る。
 本開示の第14の態様は、気体吸着デバイス用開封部材である。この気体吸着デバイス用の開封部材は、線材からなるバネの一端側に気体吸着デバイスを挟み込む把持部が設けられたものである。そして、他端側の先端が、気体吸着デバイスに孔を開ける穿孔部として構成されている。
 このような構成により、開封部材は、バネ線材の先端部を穿孔部として、気体吸着デバイスの吸着材収納容器を穿孔する。これにより、その孔の径は、バネ線材の線材径となり、外力の加え方によって穿孔深さがばらついても一定の大きさとなる。よって、吸着材収納容器の周囲の気体を、吸着速度のばらつきなく安定的に吸着することができる。しかも、バネ線材を屈曲させるだけで形成できるので、板バネに比べて材料費を格段に安くでき、かつ、加工工数も、バネ線材の屈曲加工のみとすることができるので、大幅なコストダウンができ、安価に提供することができる。
 本開示の第15の態様は、第14の態様において、線材からなるバネはコイル状とされている。その一端部側のコイル巻密度を、他端側のコイル巻密度よりも密にして、気体吸着デバイスを挟み込む把持部が構成されている。また、コイル密度が粗となっている他端側の先端部分を把持部側に屈曲させて、気体吸着デバイスに孔を開ける穿孔部が構成されている。
 これにより、把持部においては、コイル巻密度が密になっているので、気体吸着デバイスを確実に把持することが可能になる。また、穿孔部は、把持部側に押し込まれることにより、把持部で保持された部分の気体吸着デバイスを穿孔することができるので、確実な穿孔を実現することができる。
 また、本開示の第16の態様は、第14の態様または第15の態様において、把持部は、コイル巻線同士を少なくとも一巻以上密着させることによって構成されている。
 これにより、把持部は、バネ線材が密着巻状態となっているので、密着巻部分によって、気体吸着デバイスを強力に把持することができる。よって、開封部材の位置ずれ、および脱落による穿孔ミスが抑制され、さらに確実な穿孔を実現することができる。
 本開示の第17の態様は、第14の態様~第16の態様において、穿孔部は、コイル状部分からコイル中心部に向かって屈曲させた線材の、その先端部分を把持部側に屈曲させることによって構成されている。
 これにより、穿孔部は、コイル状部分のコイル中心、すなわち、気体吸着デバイスを把持する把持部のコイル中心付近を穿孔することになる。よって、気体吸着デバイスの外周の、気体吸着材がない端縁付近を穿孔するような穿孔ミスを防止し、確実な穿孔を可能とすることができる。
 第18の態様は、第14の態様から第17の態様のいずれかの態様において、線材の断面は、円または楕円形状であり、その外周面が円弧状とされている。
 これにより、真空断熱材に使用された状態で、真空断熱材の外被材が、大気圧によって開封部材のバネ線材に強く押し付けられたような場合でも、バネ線材の外周面が円弧状となっているので、外被材に板バネを用いたときのように、板バネの角による応力集中が生じない。よって、外被材の破袋を防止して、真空断熱材の真空を確実に保持させ、信頼性を高めることができる。
 第19の態様は、気体吸着デバイスである。この気体吸着デバイスは、気体吸着材が減圧密封された、扁平状の吸着材収納容器と、第14の態様~第18の態様のうち、いずれかの態様に記載された開封部材とを備えている。そして、開封部材は、把持部で吸着材収納容器を挟み込むことにより、吸着材収納容器に装着される。そして、穿孔部が吸着材収納容器側に押し込まれることにより、吸着材収納容器を穿孔することが可能な構成である。
 これにより、この気体吸着デバイスは、吸着材収納容器にばらつきの少ない穿孔が施されるので、吸着材収納容器の周囲の気体を安定的に吸着することができる。さらに、開封部材がコストダウンされる分だけ、安価に提供することができる。
 また、第20の態様は、第19の態様において、吸着材収納容器が、ガスバリア性を有するラミネートフィルムの袋で構成されるとともに、袋の開口部がシールされて気体吸着材が減圧密封され、かつ、袋の開口部は、ラミネートフィルム層のみの薄肉部とされた構成である。
 これにより、開封部材は、その把持部を、ラミネートフィルム層のみの薄肉部となっている部分から、容易に気体吸着デバイスの吸着材収納容器に差し込んで把持させることができ、作業効率を高めることができる。
 第21の態様は、第19の態様または第20の態様において、吸着材収納容器は、気体を通過させるが、気体吸着材の粉末粒子を通過させない多孔質部材が挿入されて減圧密封され、かつ、気体吸着材と多孔質部材とが、平面状の状態で隣接する構成である。
 これにより、この気体吸着デバイスは、一般的な真空引き装置を用いて減圧された後、シール溶着されて製造されるが、その際、すなわち、気体吸着材が挿入された吸着材収納容器となる袋が減圧封止される際に、多孔質部材側から気体吸着材側に向かって袋内を吸引減圧することにより、袋内の気体吸着材が、多孔質部材が存在することによって、袋から吸引排気されることを防止できる。よって、特殊な装置を用いることなく、気体吸着材の無用な吸引排気を防止して製造でき、しかも、真空引き速度を遅くすることなく減圧密封することができ、生産性を向上させて、安価に提供することができる。
 また、気体吸着材と多孔質部材とは、可撓性の吸着材収納容器内に平面状の状態に隣接配置されているので、気体吸着材と多孔質部材とを重合配置した場合に比べて、厚みを薄く、湾曲等の変形を容易なものとすることができる。よって、数ミリ程度の薄い真空断熱材、および、円弧状に湾曲させて使用される真空断熱材にも適用することができる。しかも、吸着材収納容器の平面幅寸法を大きくすることによって、厚みを薄く保ったまま、気体吸着材の量を多くすることもでき、長期間に亘って、気体吸着能力を持続可能なものとすることができる。
 第22の態様は、第21の態様において、開封部材は、吸着材収納容器の多孔質部材部分を穿孔するように装着された構成とされている。
 これにより、気体吸着デバイスは、多孔質部材を介して周囲の気体を吸着するようになる。よって、気体吸着材の気体吸着速度を、多孔質部材の孔径によって任意に設定制御することができる。上述した第21の態様の生産性向上効果等を得つつ、気体吸着性能を、さらにばらつきなく安定させ、かつ、気体吸着速度を遅くして気体吸着能力を持続させ、より長期間に亘って良好な気体吸着性能を発揮させることのできる気体吸着デバイスを実現できる。
 第23の態様は、第22の態様において、気体吸着材と多孔質部材との間に水分吸着材が介在する構成とされている。
 これにより、気体吸着デバイスの周囲から吸着される気体に水分が含まれていても、この水分を水分吸着材で吸着除去することができる。したがって、気体吸着材の、水分吸着による浪費を防止し、より長期間に亘って、良好な気体吸着性能を保証し、信頼性の高い気体吸着デバイスとすることができる。
 第24の態様は、第21の態様~第23の態様のいずれかの態様において、吸着材収納容器を構成する袋は、金属箔からなるガスバリア層を含む複数層のラミネートフィルムで構成されており、その最内層のフィルム部材と、多孔質部材とは、互いに熱溶着可能な樹脂材料であり、熱溶着された構成である。
 これにより、吸着材収納容器を構成する袋の内面と、多孔質部材とが、樹脂同士の相溶によりその全面が隙間なく確実に接着する。よって、吸着する気体が、袋を形成するラミネートフィルムと多孔質部材との間の隙間を通ってリークするようなことがなくなり、性能安定性を高めることができる。しかも、袋を密封する際に、袋の溶着封止と同時に、袋内面と多孔質部材表面との接着を行うこともでき、生産性を向上させることもできる。
 第25の態様は、真空断熱材である。この真空断熱材は、第19の態様~第24の態様のうち、いずれかの態様に記載された気体吸着デバイスが、芯材とともに外被材内に挿入され、減圧封止されて構成されている。
 これにより、気体吸着デバイスの、安定かつ確実な気体吸着作用により、良好な真空断熱性能が、長期にわたって安定的に発揮される。しかも、上述したように、開封部材がコストダウンされた分だけ、安価に提供することができる。
 第26の態様は、第25の態様に記載された真空断熱材を用いた機器である。
 これにより、長期にわたって安定的に発揮される、真空断熱材の真空断熱効果によって、良好な断熱性能を有する機器を実現できるとともに、機器を、開封部材がコストダウンされた分だけ、安価に提供することができる。
図1は、本開示の第1の実施の形態における気体吸着デバイスを用いた真空断熱材の断面構成を示す図である。 図2は、本開示の第1の実施の形態における気体吸着デバイスの側方から見た構成を示す模式図である。 図3は、本開示の第1の実施の形態における気体吸着デバイスの平面図である。 図4は、本開示の第1の実施の形態における気体吸着デバイスの構成を模式的に示す要部拡大図である。 図5は、本開示の第1の実施の形態における気体吸着デバイスの包袋のフィルム構成を示す拡大断面図である。 図6は、本開示の第1の実施の形態における気体吸着デバイスに開封部材をセットした状態を模式的に示す図である。 図7は、本開示の第1の実施の形態における気体吸着デバイスを外被材内に密封封止した真空断熱材の製造方法を説明するための模式図である。 図8は、本開示の第2の実施の形態における気体吸着デバイスの構成を模式的に示す側方から見た図である。 図9は、本開示の第3の実施の形態における気体吸着デバイスの構成を示す側方から見た図である。 図10は、本開示の第4の実施の形態における気体吸着デバイス用開封部材およびそれを用いた気体吸着デバイス付の真空断熱材の構成を示す断面図である。 図11は、本開示の第4の実施の形態における、気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す側方から見た構成の模式図である。 図12は、本開示の第4の実施の形態における気体吸着デバイスの収納容器のフィルム構成を模式的に示す拡大断面図である。 図13は、本開示の第4の実施の形態における気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す拡大された断面構成を示す模式図である。 図14は、本開示の第4の実施の形態における気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す平面図である。 図15は、本開示の第4の実施の形態における、気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す斜視図である。 図16は、本開示の第4の実施の形態における気体吸着デバイス用開封部材の外観を示す斜視図である。 図17は、本開示の第4の実施の形態における気体吸着デバイスが外被材内に密封封止された真空断熱材の製造方法を説明するための模式図である。 図18は、本開示の第5の実施の形態における、気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す平面図である。 図19は、本開示の第5の実施の形態における、気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す拡大断面構成を示す模式図である。 図20は、本開示の第6の実施の形態における気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す拡大断面構成を示す模式図である。 図21は、特許文献1に記載された、従来の気体吸着デバイスの構成を示す図である。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本開示が限定されるものではない。
 (第1の実施の形態)
 まず、本開示の第1の実施の形態について説明する。
 図1は、本開示の第1の実施の形態における気体吸着デバイスを用いた真空断熱材の断面構成を示す図であり、図2は、同気体吸着デバイスの側方から見た構成を示す模式図であり、図3は、同気体吸着デバイスの平面図であり、図4は、同気体吸着デバイスの構成を模式的に示す要部拡大図であり、図5は、同気体吸着デバイスの包袋のフィルム構成を示す拡大断面図である。また、図6は、本開示の第1の実施の形態における気体吸着デバイスに開封部材をセットした状態を模式的に示す図であり、図7は、同気体吸着デバイスを外被材内に密封封止した真空断熱材の製造方法を説明するための模式図である。なお、図6は、図3における6-6線分を矢視した方向から見た構成を示している。
 図1に示されるように、本実施の形態の真空断熱材1は、外被材2の内部に、芯材3とともに気体吸着デバイス4を設置した後に、減圧封止し、気体吸着デバイス4内部と外被材2内部とを連通させることにより構成されている。なお、図示しないが、外被材2内部に、芯材3および気体吸着デバイス4とともに、水分吸着剤が設置された構成であってもよい。水分吸着剤は、真空断熱材内に残存、または侵入する水分(水蒸気)を吸着する。なお、水分吸着剤としては、特に限定されるものではないが、酸化カルシウムあるいは酸化マグネシウム等の化学吸着性物質、ゼオライトのような物理吸着性物質、または、それらの混合物を使用することができる。
 気体吸着デバイス4は、図2に示されるように、ガスバリア性を有する可撓性の包袋5内に、気体吸着材6とともに多孔質部材7が挿入され、減圧封止されて構成されている。そして、気体吸着材6と多孔質部材7とは、平面状の状態で隣接配置となるように構成されている。
 なお、気体吸着材6と多孔質部材7とは、気体吸着デバイス4の長手方向において、異なる部分に配置されている。
 さらに、気体吸着デバイス4は、図2および図3に示されるように、包袋5の多孔質部材の交差面部分7aと対向する部分に、突起物8(図6参照)を有する開封部材9を備えている。
 ここで、気体吸着デバイス4の包袋5は、ガスバリア性の高いフィルム、例えば、図5に示されるように、少なくとも最外層に保護層10a、中間にガスバリア層10b、最内層に接着層10cを有する、少なくとも三層のラミネートフィルム(フィルム10)を袋状に熱溶着することにより、構成されている。
 本実施の形態では、包袋5として、図3に示されるように、二枚のラミネートフィルムの周囲を熱溶着(薄いグレー部分)して袋状に形成している。しかしながら、本開示の包袋5はこの構成に限定されず、例えば一枚のラミネートフィルムを袋状にするなど、どのような形態のものであってもよい。
 一方、フィルム10のうち、最内層のフィルム部材で構成された接着層10cは、フィルム10同士の外周部を、熱溶着によって強固に接着させるものであり、熱溶着可能である樹脂が用いられている。例えば、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、メタロセンポリエチレン、エチレン-アクリル酸共重合体(EAA)、またはエチレン-メタクリル酸共重合体(EMAA)が用いられている。また、無延伸ポリプロピレン(CPP)、二軸延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、エチレン・酢酸ビニル共重合体(EVA)、または、アイオノマー等の樹脂フィルムも用いられている。
 また、フィルム10の中間層となるガスバリア層10bは、ガス透過のないアルミニウム箔(Al箔)、銅箔(Cu箔)、またはステンレス箔等の金属箔が用いられている。また、場合によっては、ガス透過性の低いエチレン-ビニルアルコール共重合樹脂フィルム(EVOHフィルム)、あるいはポリエチレンテレフタレートフィルム(PETフィルム)等の樹脂フィルムに、AlあるいはCu等の金属が蒸着されたフィルム(金属蒸着フィルム)、または、シリカ、アルミナ等の金属酸化物あるいはダイヤモンドライクカーボン(DLC)等が蒸着されたフィルムで構成されていてもよい。
 さらに、フィルム10の最外層となる保護層10aは、ガスバリア層10bを保護するものであり、ナイロンフィルム、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリエチレンフィルム(PEフィルム)、またはポリプロピレンフィルム(PPフィルム)等が用いられている。これらの中でも、吸水率の低いフィルム、例えばPETフィルム、PEフィルム、またはPPフィルム等が好ましく、PETと同等以下の吸水率を持つ樹脂であれば、どのようなものであっても用いることができ、特に上述の例に限定されるものではない。
 なお、図示しないが、包袋5を構成するフィルム10として、ガスバリア層10bと接着層10cとの間にナイロンフィルムを用いると、フィルム10全体の強度を高めることができるので、効果的である。すなわち、気体吸着材6として、例えば銅イオン交換ZSM-5型ゼオライトを用いた場合、ゼオライトの粒子の中に粒径の大きなものがあると、フィルム10の、この粒子と対向する部分には大きな引張り力が加わり、ガスバリア層10bを構成するアルミ箔に、大きな粒子を起点としてクラックおよびピンホールが発生することがある。しかしながら、フィルム10にナイロンフィルムを用いておくことにより、大きな粒子を起点とするクラックおよびピンホールの発生を抑制することができ、効果的である。
 また、包袋5内に、気体吸着材6とともに封入された多孔質部材7は、樹脂粉末を焼結させて三次元網状孔を有する構造であり、気体吸着材6の粉末粒子を通過させないが、気体を通過させる多孔質構造を有している。
 多孔質部材7には、気体吸着デバイスの製造過程における真空引きにより、包袋5の内面が、大気圧によって接着される。本実施の形態では、多孔質部材7を構成する樹脂が、包袋5の最内層となる接着層10cと相溶性のある熱可塑性の樹脂、例えば既述したような直鎖状低密度ポリエチレン(LLDPE)等の樹脂で構成されており、その交差面部分7aが、包袋5の最内層を構成する接着層10cに、熱溶着によって物理的に一体化されている。
 一方、気体吸着材6としては、酸化カルシウム、あるいは、酸化マグネシウム等の化学吸着物質、ゼオライトのような物理吸着物質、または、それらの混合物あるいはBaLi4等の気体吸着合金を適用することが可能である。本実施の形態では、気体吸着容量、および吸着能力が特に高い、銅イオン交換ZSM-5型ゼオライトが用いられている。他に、気体吸着能力が高い吸着材としては、バリウム(Ba)またはストロンチウム(Sr)を含有するZSM-5型ゼオライト、および、ZSM-5型ゼオライトがM-O-M種(M:BaまたはSr、O:酸素)を含む吸着材等があり、これらを用いても、またはこれらを組み合わせて用いてもよい。
 また、開封部材9は、適度な、強度および弾性のある合成樹脂、または金属で構成されている。樹脂の場合には、ガス発生が少ないものであって、突起物8の硬さを確保できるものであればよく、ポリプロピレン、ポリブチレンテレフタレート、ポリスチレン、ポリアミド、ポリカーボネート、ポリオキシメチレン、AS樹脂、およびABS樹脂等が候補となる。
 開封部材9は、図3および図6に示されるように、突起物8が、多孔質部材7の交差面部分7aと対向するように装着されている。気体吸着デバイス4は、真空断熱材1の外被材2内に減圧封止される際、大気圧によって気体吸着デバイス4の多孔質部材7側に押し込まれる。そして、包袋5が穿孔されて、内部の気体吸着材6が真空断熱材1の外被材2内部と連通する。
 以上のように構成された、気体吸着デバイス4およびそれを用いた真空断熱材1について、次にその動作および作用を説明する。
 気体吸着デバイス4は、ガスバリア性を有する包袋5内に、気体吸着材6が減圧封止されている。包袋5は可撓性であり、包袋5の内部には、気体吸着材6と多孔質部材7とが、平面状状態において、隣接配置されている。これにより、一般的な真空引き装置を用いて減圧した後に熱溶着することにより、製造できる。その熱溶着された部分は、図3の濃いグレーで示された部分となる。
 ここで、気体吸着材6が挿入された包袋5内を減圧封止する際に、多孔質部材7側から気体吸着材6側に向かって包袋5内を吸引減圧することにより、包袋5内の気体吸着材6が、多孔質部材7が存在することにより、包袋5から排気されることを防止できる。すなわち、図3における濃いグレーで示された熱溶着封止部分側から吸引排気することにより、包袋5内の気体吸着材6が、包袋5から排気されることを防止できる。
 よって、本実施の形態の気体吸着デバイス4は、背景技術欄で記載したような特殊な装置を用いることなく製造でき、しかも真空引き速度を遅くすることなく減圧封止でき、生産性を向上させ、安価に提供することができる。
 また、気体吸着材6と多孔質部材7とは、可撓性を有する包袋5内に、平面状の状態において隣接配置されている。包袋5は可撓性を有するフィルムで構成されているから、気体吸着材6と多孔質部材7とが重合配置されている場合と比べて、厚みを薄くでき、湾曲等の変形が容易なものを実現できる。したがって、数ミリ程度の薄い真空断熱材、および、円弧状に湾曲させて使用する真空断熱材等にも適用することができる。
 なお、気体吸着材6と多孔質部材7とは、気体吸着デバイス4の長手方向の配置において、異なる部分に配置されている。
 これにより、例えば、粉状の気体吸着材6を用いた場合には、多孔質部材7の可撓性の有無に関わらず、気体吸着デバイス4の可撓性を得ることができる。
 また、多孔質部材7を、気体吸着デバイス4の長手方向の全長の1/2以下とした場合には、気体吸着速度を遅くし、気体吸着能力を、より長期間に亘って持続させることが可能となるため、好ましい。また、多孔質部材7を、気体吸着デバイス4の長手方向の全長の1/4以下とした場合には、多孔質部材7の可撓性が悪い場合でも、気体吸着デバイス4全体として、可撓性を持たせることができるため、好ましい。
 さらに、包袋5の平面幅寸法を大きくすることによって、厚みを薄く保ったままで、気体吸着材6の量を多くすることができ、長期間に亘って気体吸着能力を持続可能にすることができる。ここで、平面幅寸法とは、例えば、包袋5が平面視において、四角形または多角形の場合には、少なくともその一辺の寸法または相対向する辺の寸法をいい、楕円の場合には長辺部分の寸法をいい、そして、円形の場合には、その直径寸法等の寸法をいう。
 また、本実施の形態の気体吸着デバイス4は、多孔質部材7の、気体吸着材6に隣接する面と交差する交差面部分7aが、包袋5内面に接着されている。これにより、真空断熱材1内と気体吸着デバイス4内とを連通させるにあたって、多孔質部材7の交差面部分7a部分で包袋5を穿孔することにより、包袋5外部からの気体は、多孔質部材7内を通って気体吸着材6に吸着されることになる。これにより、気体吸着材6の気体吸着速度を、多孔質部材7の孔径および空孔率によって、任意に設定制御することができる。
 したがって、気体吸着性能のばらつき幅を縮小して、吸着性能を安定させ、かつ、気体吸着速度を遅くして、気体吸着能力を、より長期間に亘って持続させることができる。
 すなわち、従来の気体吸着デバイスのように、ガラス封止材を押しつぶして連通させるような構成では、押しつぶしによって形成されたひび割れによって生じた連通面積は成り行き任せとなって、気体吸着速度の速いもの、および、遅いものが混在し、そのばらつき幅が大きくなりやすい。このばらつき幅は、設計寸法範囲内に収まるようにされているものの、さらにばらつきを縮小させて気体吸着性能を安定したものとするには、大きな困難を伴う。また、ひび割れによる連通面積を一定値以下に規制して気体吸着速度を低速化し、気体吸着能力を一段と長時間持続するようにすることにも多大な困難が伴う。
 しかしながら、本実施の形態の気体吸着デバイス4によれば、気体吸着材6が多孔質部材7を介して気体を吸着するようになるので、多孔質部材7の孔径および空孔率を規制することによって、気体吸着速度を、ばらつき幅の少ない略一定のものにすることができる。よって、気体吸着性能の一段の安定化と、気体吸着能力持続時間の長時間化とを両立させることができる。
 また、本実施の形態の気体吸着デバイス4は、包袋5の内面と多孔質部材7の交差面部分7aとが接着しているので、穿孔によって交差面部分7aにあけられた孔からの気体は、多孔質部材7内を通って気体吸着材6で吸着されるようになる。よって、上述したように、多孔質部材7による気体吸着性能の安定化と吸着速度制御とを精度よく実現することができる。
 本実施の形態では、包袋5の最内層となる接着層10cのフィルム部材と、多孔質部材7とが、熱溶着可能な樹脂材料で構成され、熱溶着されている。よって、多孔質部材7の交差面部分7aは、図4の破線で示されるように溶融して、包袋5内面と物理的に一体化している。したがって、包袋5の内面と多孔質部材7の交差面部分7aとの間に部分的な微小隙間が残って、この部分から気体が気体吸着材6に吸着されることを防止できる。すなわち、本実施の形態であれば、穿孔によって、交差面部分7aにあけられた孔からの気体は、必ず多孔質部材7内を通って気体吸着材6で吸着される。これにより、上述した多孔質部材7による気体吸着性能の安定化と、吸着速度制御とを精度よく実現することができる。
 さらに、上述した、包袋5の内面と多孔質部材7の交差面部分7aとの接着は、包袋5を封止する際に行う熱溶着と同時に行うことができる。しかも、熱可塑性の樹脂材料を用いるので、樹脂同士の相溶により、確実にその全面が接着し、生産性を高めつつ、性能安定性および吸着速度制御の精度を上げることができる。
 また、多孔質部材7は、樹脂粉末を焼結させて形成されているから、多孔質部材7が、穿孔時の外力によってひび割れするようなことがなく、ひび割れを介して、気体が気体吸着材6にリークして吸着されることを防止できる。したがって、気体吸着材6は、必ず多孔質部材7の孔を介して気体を吸着するようになり、気体吸着性能の安定化を促進することができる。
 加えて、多孔質部材7は、三次元網状孔を有していて、気体を通過させるが、気体吸着材6の粉末粒子を通過しない多孔質構造体を有している。これにより、包袋5内を減圧封止する際、包袋5内の気体吸着材6が、多孔質部材7を通過して包袋5から排気されることを確実に防止でき、減圧封止時における気体吸着材6の包袋5からの排気防止を、より確実なものとすることができる。
 一方、気体吸着デバイス4は、保管時には、開封部材9によって穿孔されることなく、包袋5により減圧密閉状態のまま保持されている。このため、気体吸着材6は外部の空気に接触せず、気体吸着材6の吸着能力が維持される。
 包袋5を構成するフィルム10は、ガスを透過させない金属箔からなるガスバリア層10bを備えている。よって、包袋5内に外気が浸透して、経時的に気体吸着材6が劣化していくことを強力に抑制することができる。したがって、気体吸着材6の吸着能力を高いまま維持し、長期間に亘って良好な気体吸着能力を発揮させることができる。
 また、包袋5のガスバリア性が高いことにより、気体吸着材6として銅イオン交換ZSM-5型ゼオライトのような気体吸着能力の高い吸着材を用いても、その吸着能力を確実に維持することができ、高い吸着能力を有する気体吸着材を用いることと相まって、長期間に亘り、さらに良好な気体吸着能力を発揮させることができるようになる。
 さらに、包袋5を形成するフィルム10は、ガスバリア層10bの表面を覆う保護層10aを有する構成である。よって、ガスバリア層10bとなる金属箔を保護層10aで保護し、包袋5のフィルム10が無用な外力を受けたときに、金属箔が不用意に破損することを防止することができ、保管時における気体吸着材6の劣化防止を確実にすることができる。
 また、包袋5の保護層10aは、PET(ポリエチレンテレフタレート)またはPETと同等以下の吸水率を持つ樹脂で構成されている。よって、気体吸着デバイスの保管時に、保護層10aが大気中の水分を吸収するので、真空断熱材1に適用したときに、水分が真空断熱材1の外被材2内で放出されて外被材2内の真空度を低下させたり、気体吸着材6の気体吸着能力が、水分吸収で費やされてしまうことを防止できる。したがって、より長い期間に亘って気体吸着性能を維持し、気体吸着デバイスを適用した真空断熱材1の断熱性を、良好に保つことができる。
 なお、保護層10aは、PETまたはPETと同等以下程度の吸水率を有する樹脂であれば、より好ましいが、特にこれらの例に限定されるものではない。
 以上、説明した気体吸着デバイス4は、芯材3とともに袋状の外被材2内部に挿入され、真空に排気された後、外被材2の袋開口部が熱溶着封止されることにより、真空断熱材1の吸着材として用いられる。
 図7は、上述した真空断熱材1の製造方法を説明するための模式図である。
 真空断熱材1は、真空包装器11の減圧チャンバー12内に入れられ、減圧チャンバー12内が真空ポンプ13によって真空排気される。これにより、外被材2内の気体が真空排気されて減圧され、外被材2の開口部がヒートシール機14によって熱溶着され、封止されることによって真空断熱材1が製造される。
 このとき、気体吸着デバイス4は、開封部材9が大気圧によって押し込まれることにより、または、真空封止後に開封部材9が機械的に押し込まれることによって、突起物8がフィルム10に突き刺さり、フィルム10が穿孔される。
 これにより、気体吸着デバイス4の内部と真空断熱材1の外被材2の内部とが連通し、気体吸着材6による、外被材2内に残存等している気体の吸着が可能となる。
 また、フィルム穿孔は、真空断熱材1の外被材2内が真空排気されている最中、または、真空封止後に行われる。これにより、大気中でフィルムを穿孔してから外被材内に入れて真空排気する場合のように、フィルム穿孔時に気体吸着材6が大気中の空気に曝露されて、大気を吸着し、劣化することを防止できる。よって、気体吸着材6の気体吸着性能を、より長期間に亘って良好なものに維持保証することができる。
 また、フィルム10を穿孔する開封部材9は、金属またはガス発生の少ない樹脂で形成されている。これにより、真空断熱材1の外被材2内でガスが放出されて、外被材2内の真空度が低下したり、フィルム10の場合と同様に、気体吸着材6の気体吸着能力が、このガス吸着で費やされてしまうことを防止できる。したがって、より長期間に亘って、良好な気体吸着性能を維持し、真空断熱材1の断熱性を良好に保つことができるので、効果的である。
 このようにして形成された真空断熱材1は、気体吸着デバイス4が薄くて可撓性を有するものであるので、数ミリ厚程度の真空断熱材、または湾曲等させる真空断熱材であっても、芯材3とともに気体吸着デバイス4を封入して使用することにより、気体吸着効果を持たせることができ、長期間に亘り、良好な断熱性を持つ真空断熱材を実現することができる。
 また、気体吸着デバイス4においては、多孔質部材7部分が穿孔され、外被材2内と気体吸着デバイス4内とが連通している。よって、既に述べたように、真空断熱材1内の気体は、多孔質部材7内を通って気体吸着材6に吸着されることになり、気体吸着材6の気体吸着速度を、多孔質部材7の孔径および空孔率の少なくともいずれかによって任意に設定制御することができる。よって、気体吸着性能を安定させ、かつ、より長期間に亘って、良好な断熱性能を発揮する真空断熱材を実現することができる。
 また、気体吸着デバイス4は、その包袋5の多孔質部材7の交差面部分7aの対向部分に、突起物8を有する開封部材9を備えた構成である。よって、気体吸着デバイス4は、真空断熱材1の外被材2内に真空封止されるときに、開封部材9の突起物8によって包袋5が穿孔され、内部の気体吸着材6を外被材2内の真空領域に連通させることができる。よって、包袋穿孔時に、気体吸着材6が大気中の外気を吸着して劣化することを防止でき、真空断熱材1の断熱性を、より長期間に亘って良好なものに維持保証することができる。
 (第2の実施の形態)
 次に、本開示の第2の実施の形態について説明する。
 図8は、本開示の第2の実施の形態における気体吸着デバイスの構成を模式的に示す側方から見た図である。
 本実施の形態における気体吸着デバイス4は、気体吸着材6と多孔質部材7との間に、水分吸着材15が介在した構成である。
 この構成によれば、多孔質部材7からの気体は、水分吸着材15を通過して気体吸着材6に吸着されるようになり、気体中に含まれる水分を吸着除去することができる。したがって、気体吸着材6の水分吸着による浪費を防止し、より長期間に亘って、良好な気体吸着性能を保証し、信頼性を向上させることができる。
 また、気体吸着材6の水分吸着による吸着能力の浪費を抑制できるので、気体吸着材6として用いられる銅イオン交換ZSM-5型ゼオライトの水分吸着による消費を考慮する必要がなくなり、銅イオン交換ZSM-5型ゼオライトの適用量を低減することが可能となり、気体吸着デバイス4の小型化を図ることができる。
 さらに、包袋5を構成するフィルム10の接着層10cは、ガラス等の溶融温度と比べて、はるかに低い温度で溶融するので、熱溶着温度を大幅に低下させることができる。したがって、包袋5内に水分吸着材15が併設されていても、水分吸着材15から発生するガスによって気体吸着材6の性能が劣化してしまうことを防止でき、水分吸着材15が併設された、高性能の気体吸着デバイス4を実現することができる。
 例えば、接着層となる材料、例えば、PEは、それ自体は100℃~140℃、PPは、130℃程度、EMAAまたはエチレン系アイオノマーは、100℃程度でそれぞれ溶融する。これらをラミネートフィルムとした場合には、その積層構造および厚みにもよるが、約160℃~190℃程度で溶着させることが可能である。包袋5内に水分吸着材15が併設されていても、水分吸着材15の脱ガスによって、気体吸着材6の性能を劣化させてしまうことを防止でき、水分吸着材15が併設された、高性能の気体吸着デバイス4を実現することができる。
 なお、水分吸着材15としては、酸化カルシウム(CaO)、シリカゲル、ゼオライト、または、モレキュラーシーブ等、種々の材料を使用することができる。
 その他の構成、および作用効果は、第1の実施の形態と同様であり、同じ要素部分には同一番号を附記して説明は省略している。
 (第3の実施の形態)
 次に、第3の実施の形態について説明する。
 図9は、本開示の第3の実施の形態における気体吸着デバイスの構成を模式的に示す側方から見た図である。
 本実施の形態における気体吸着デバイス4は、一つの包袋5内に、気体吸着材6と多孔質部材7の組み合わせが複数組、減圧封入されて構成されたものである。
 この構成によれば、それぞれの多孔質部材7の孔径および空孔率を変えておくことによって、気体吸着速度を変更でき、気体吸着の即効性と持続性とを両立することができて効果的である。
 例えば、複数の多孔質部材7それぞれの孔径および空孔率を、一方は大きくし、他方は小さくしておけば、孔径および空孔率の大きい方の多孔質部材7では、気体吸着速度が速くなることから、真空断熱材内の気体が短時間で吸着され、真空断熱材の作製時、減圧排気できずに残存した気体の吸着除去に即効性を発揮する。また、他方の、孔径および空孔率の小さい多孔質部材7は、気体吸着速度が遅くなる。ここで、外被材内に、気体吸着デバイスとは別途設置されている水分吸着剤の吸着速度よりも、気体吸着材6の吸着速度を遅くすることにより、経年で外被材を通過して侵入してくる気体に含まれる水分の大部分を、水分吸着剤によって吸着除去することができる。このため、気体吸着材6の、水分吸着による浪費を防止し、長期間に亘って、真空断熱材内の気体を吸着し続けることができる。したがって、建材またはLNG船等に用いられる、大型の真空断熱材に適用するのに好適である。
 その他の作用効果は、第1の実施の形態および第2の実施の形態で説明したものと同様であるので、説明を省略する。
 以上、本開示に係る、気体吸着デバイスおよびこれを用いた真空断熱材について説明してきたが、本発明は、これらに限定されるものではない。
 例えば、実施の形態では、多孔質部材7として、樹脂粉末を焼結させて構成したものを例示したが、気体吸着材6の粉末粒子を通過させないが、気体を通過させる機能を有するものであれば、例えば、不織布またはグラスウール等のようなものであってもよい。また、孔形状も、三次元網状孔ではなくて、気体吸着材6の粉末粒子よりも小径の、直線的な貫通孔群であってもよい。なお、不織布またはグラスウールを用いた場合には、多孔質部材よりも可撓性に優れているため、真空断熱材を湾曲等に変形させることが、より容易となる。
 また、包袋5の形態も、実施の形態で例示した三方袋に限らず、合掌袋、二方袋、またはガゼット袋等、どのような形態のものであってもよい。
 さらに、包袋5の内面と多孔質部材7の交差面部分7aとの接着についても、熱溶着ではなく、接着剤を用いて行ってもよい。
 すなわち、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきであり、本発明の範囲は、上述した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 (第4の実施の形態)
 次に、本開示の第4の実施の形態について説明する。本開示の第4の実施の形態から第6の実施の形態は、安価でばらつきの少ない穿孔を行うことができる気体吸着デバイス用開封部材、および、安定した気体吸着性能が得られる気体吸着デバイス、それらを用いた真空断熱材、ならびに、機器を提供するものである。
 図10は、本開示の第4の実施の形態における気体吸着デバイス用開封部材およびそれを用いた気体吸着デバイス付の真空断熱材の構成を示す断面図であり、図11は、同気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す側方から見た構成の模式図である。また、図12は、本開示の第4の実施の形態における気体吸着デバイスの収納容器のフィルム構成を模式的に示す拡大断面図であり、図13は、同気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す拡大された断面構成を示す模式図である。
 また、図14は、本開示の第4の実施の形態における気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す平面図であり、図15は、同気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す斜視図である。また、図16は、本開示の第4の実施の形態における気体吸着デバイス用開封部材の外観を示す斜視図であり、図17は、同気体吸着デバイスが外被材内に密封封止された真空断熱材の製造方法を説明するための模式図である。
 まず、図10に示されるように、本実施の形態の真空断熱材101は、外被材102内部に、芯材103とともに気体吸着デバイス104が設置された後、減圧封止され、気体吸着デバイス104内部と外被材102内部とが連通されることにより構成されている。
 なお、図示しないが、外被材102内部には、芯材103および気体吸着デバイス104とともに、水分吸着剤が設置されていてもよい。水分吸着剤は、真空断熱材内に残存、または侵入する水分(水蒸気)を吸着する。なお、水分吸着剤としては、特に限定されるものではないが、酸化カルシウムあるいは酸化マグネシウム等の化学吸着性物質、ゼオライトのような物理吸着性物質、または、それらの混合物を使用することができる。
 気体吸着デバイス104は、図11に示されるように、ガスバリア性を有する可撓性のラミネートフィルムで形成された吸着材収納容器105内に、気体吸着材106が挿入され、減圧密封されて扁平形状に形成されている。
 さらに、気体吸着デバイス4は、図11にも示されるように、吸着材収納容器105の気体吸着材106が設けられた部分の表面に、開封部材108を備えている。
 開封部材108は、図16に示されるように、ステンレス等からなるバネ線材を用いて構成されている。バネ線材はコイル状とされ、その一端部側のコイル巻密度を、他端側のコイル巻密度よりも密にすることにより、気体吸着デバイス104を挟み込む把持部109が形成されている。また、コイル密度が粗となっている他端側の先端部分を、把持部109側に屈曲させることにより、気体吸着デバイス104に孔を開ける穿孔部110が形成されている。
 把持部109は、コイル巻線同士を少なくとも一巻以上密着させることにより構成されている。穿孔部110は、コイル状部分からコイル中心部に向かって屈曲した先端部分を、把持部109側にさらに屈曲させて切断することによって構成されている。
 また、開封部材108のバネ線材は、穿孔部110による穿孔が無理なく行える線径、例えば、0.5~1.0mm程度の線材で構成されており、断面は、円形状または楕円形状とされ、その外周面が円弧状となるように構成されている。線径が小さい場合には、穿孔による孔径が小さくなり、気体吸着速度が遅くなるが、外被材内に、気体吸着デバイスとは別途設置されている水分吸着剤の吸着速度よりも、気体吸着材106の吸着速度を遅くすることにより、経年的に外被材102を通過して侵入してくる気体に含まれる水分の大部分を、水分吸着剤により吸着除去することができる。そのため、気体吸着材106が水分を吸着することによる浪費を防止し、長期間に亘って、真空断熱材内の気体を吸着させ続けることができる。したがって、建材およびLNG船等に用いられる大型の真空断熱材に適用するのに好適である。
 なお、開封部材108のバネ線材としては、ステンレス等の金属材が用いられるが、真空雰囲気中においてガス発生が少ないものであれば、どのような材料であってもよく、例えば、ばね性を持たせることができる樹脂材を用いてもよい。
 一方、気体吸着デバイス104の吸着材収納容器105は、ガスバリア性の高いフィルム、例えば、図12に示されるような、少なくとも最外層に保護層112a、中間にガスバリア層112b、最内層に接着層112cを有する、少なくとも三層のラミネートフィルム112を、袋状にシール溶着することにより構成されている。
 本実施の形態では、図14に示されるように、吸着材収納容器105は、二枚のラミネートフィルム112の周囲がシール溶着(薄いグレー部分)されて袋状となり、その開口部(濃いグレー部分)は、ラミネートフィルム112の周囲とともにラミネートフィルム層のみの薄肉部105aとされた構成である。これは、例えば、一枚のラミネートフィルム112を袋状にする等、どのような形態のものであってもよい。
 また、ラミネートフィルム112のうち、最内層のフィルム部材で構成された接着層112cは、ラミネートフィルム112同士の外周部を、シール溶着によって強固に接着させるものである。接着層112cとしては、熱溶着可能である樹脂、例えば直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、メタロセンポリエチレン、エチレン-アクリル酸共重合体(EAA)、または、エチレン-メタクリル酸共重合体(EMAA)が用いられる。また接着層112cとしては、無延伸ポリプロピレン(CPP)、二軸延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、エチレン・酢酸ビニル共重合体(EVA)、またはアイオノマー等の樹脂フィルムも用いられる。
 ラミネートフィルム112の中間層となるガスバリア層112bとしては、ガス透過性のないアルミニウム箔(Al箔)、銅箔(Cu箔)、またはステンレス箔等の金属箔等が用いられている。場合によっては、ガスバリア層112bは、ガス透過性の低いエチレン-ビニルアルコール共重合樹脂フィルム(EVOHフィルム)、またはポリエチレンテレフタレートフィルム(PETフィルム)等の樹脂フィルムに、Al、Cu等の金属あるいは金属酸化物を蒸着したフィルム(金属蒸着フィルム)、または、シリカ、アルミナ等の金属酸化物あるいはダイヤモンドライクカーボン(DLC)等が蒸着されたフィルムで構成してもよい。
 ラミネートフィルム112の最外層となる保護層112aとしては、ガスバリア層112bを保護するものである。保護層112aは、ナイロンフィルム、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリエチレンフィルム(PEフィルム)、またはポリプロピレンフィルム(PPフィルム)等が用いられている。その中でも、吸水率の低いフィルム、例えばPETフィルム、PEフィルム、またはPPフィルム等が好ましいが、PETと同等以下の吸水率を持つ樹脂であればどのようなものであってもよく、特に上述の例に限定されるものではない。
 一方、気体吸着材106は、酸化カルシウム、あるいは酸化マグネシウム等の化学吸着性物質、ゼオライトのような物理吸着性物質、または、それらの混合物あるいはBaLi4等の気体吸着合金が適用可能である。本実施の形態では、気体吸着容量、および吸着能力が特に高い、銅イオン交換ZSM-5型ゼオライトが用いられている。他に、気体吸着能力が高い吸着材としては、バリウム(Ba)あるいはストロンチウム(Sr)を含有するZSM-5型ゼオライト、または、ZSM-5型ゼオライトがM-O-M種(M:BaまたはSr、O:酸素)を含む吸着材等があり、これらを用いても、または、これらを組み合わせて用いてもよい。
 気体吸着デバイス104は、保管時には、開封部材108によって穿孔されることなく、吸着材収納容器105により減圧密閉状態のまま保持されている。これにより、気体吸着材106は外部の空気に接触せず、気体吸着材106の吸着能力が維持される。
 以上のように構成された、気体吸着デバイス用開封部材およびそれを用いた気体吸着デバイス104ならびに真空断熱材101について、次にその動作、および作用を説明する。
 まず、開封部材108は、バネ線材を用いて形成されているので、板バネから構成された開封部材に比べて、その材料を大幅に低減できる。しかも、開封部材108の把持部109および穿孔部110は、バネ線材を屈曲させるだけで形成でき、板バネ式の開封部材のように、プレス裁断、数回のブレス折り曲げ、および切り起こし加工等の数多くの工程が不要となる。したがって、この材料低減と工数削減とにより、大幅なコストダウンができ、気体吸着デバイス104を安価に提供することができる。
 また、開封部材108は、その把持部109で気体吸着容器を挟み込んで、気体吸着容器に装着された状態で使用される。吸着材収納容器105となる袋は、その外周端縁部が薄肉部105aとされているので、開封部材108は、この薄肉部105aから把持部109を差し込んでいけばセットされるので、吸着材収納容器105への装着を容易に行うことができる。
 そして、開封部材108の把持部109は、バネ線材をコイル状とし、その一端部側のコイル巻密度を、他端側のコイル巻密度よりも密にして構成されている。よって、気体吸着デバイス104をバネ線材同士間で弾性的に挟持することができ、装着を確実なものとすることができる。
 特に、把持部109は、コイル巻線同士を、少なくとも一巻以上密着させて構成されているから、バネ力による弾着が強いものとなって、気体吸着デバイス104を強力に把持することができる。
 したがって、開封部材108の、吸着材収納容器105に対する位置ずれ、および脱落が生じる可能性が低減し、所定位置に装着固定されるので、位置ずれ等による穿孔ミス等のない、信頼性の高い気体吸着デバイス104が実現できる。
 また、この開封部材108では、コイル状にしたバネ線材の、把持部109とは反対側の端部が、外力を加えて押し込まれることにより、穿孔部110が吸着材収納容器105に突き刺ささって穿孔する。このとき、穿孔部110は、バネ線材の先端部を、そのまま利用して構成されている。よって、気体吸着デバイス104の吸着材収納容器105に開けられた孔は、穿孔部110の線材径が全長にわたって同径であるから、外力の加え方によって穿孔深さにばらつきが生じても、一定の大きさとなる。
 したがって、気体吸着デバイス104は、吸着材収納容器105の周囲の気体を、吸着速度のばらつきなく、安定的に吸着することができ、気体吸着性能が安定して信頼性が向上する。
 また、穿孔部110は、コイル状部分からコイル中心部に向かって屈曲させた先端部分を、把持部109側に屈曲させて、気体吸着デバイス104に孔を開ける穿孔部110を構成している。穿孔部110は、コイル状部分のコイル中心、すなわち、気体吸着デバイス104を把持する把持部109のコイル中心付近を穿孔することになる。したがって、気体吸着デバイス104の外周の、気体吸着材106がない端縁付近を穿孔してしまうような穿孔ミスを防止して、確実な穿孔を実現することができる。
 次に、開封部材108を用いた気体吸着デバイス104と、それを使用した真空断熱材101について、その作用、および効果を説明する。
 まず、真空断熱材101は、外被材102内部に、開封部材108の装着された気体吸着デバイス104が挿入され、内部が真空に排気された後、外被材102の袋開口部が熱溶着封止されて製造される。
 図17は、上述した真空断熱材101の製造方法を説明するための模式図である。真空断熱材101は、真空包装器114の減圧チャンバー115内に入れられ、減圧チャンバー115内が真空ポンプ116によって真空排気される。これにより、外被材102内の気体が真空排気されて減圧され、外被材102の開口部がヒートシール機117によって熱溶着され、封止されることによって製造される。
 このとき、気体吸着デバイス104の開封部材108は、真空ポンプ116により減圧封止された真空断熱材101が大気圧下に取り出されることによって加わる大気圧外力、または、減圧封止後に行われるロールプレス等による機械的外力によって、真空断熱材101の外被材102を介して押し込まれ、穿孔部110が吸着材収納容器105に突き刺さり、吸着材収納容器105を穿孔する。
 これにより、気体吸着デバイス104内部と、真空断熱材101の外被材102内部とが連通し、気体吸着材106が、外被材102内に残存等している気体の吸着を行う。
 ここで、気体吸着デバイス104にあけられる孔は、ばらつきのない、略一定の大きさのものであるから、外被材102内に残存等している気体は、吸着速度のばらつきなく確実に吸着されることになる。したがって、真空断熱材101は、良好かつ安定した真空断熱性能を発揮することができる。
 また、気体吸着デバイス104を穿孔する開封部材108は、吸着材収納容器105に対して、位置ずれすることなく弾着固定されており、吸着材収納容器105の吸着材部分を確実に穿孔する。よって、穿孔ミスによる気体吸着不良も抑制される。したがって、この点からも、真空断熱材101は、外被材102内に残存等している気体を確実に吸着し、真空度を維持するようになる。これにより、真空断熱材101は、断熱不良を起こすことなく、高い真空断熱効果を発揮できるようになり、信頼性の高いものが実現できる。
 また、気体吸着デバイス104の確実な穿孔は、開封部材108の穿孔部110を、コイル状の外周部分よりも中心部に形成したことによっても達成される。この作用も加わって、穿孔ミスによる気体吸着不良を確実に抑制でき、真空断熱効果に対する信頼性をより高めることができる。
 また、穿孔は、真空断熱材101の外被材102内に密封された状態の気体吸着デバイス104に対して行われる。よって、大気中で穿孔してから外被材102内に入れ、真空排気する場合のように、吸着材収納容器105を穿孔する時に、気体吸着材106が、大気中の空気に曝露されてこれを吸着し、劣化してしまうことが防止され、気体吸着材106の気体吸着性能を、より長期間に亘って良好なものに維持保証することができる。
 また、開封部材108を構成するバネ線材は、その断面を、円または楕円形状としてその外周面を円弧状としている。よって、真空断熱材101の外被材102が、大気圧によって開封部材108のバネ線材に強く押し付けられても、バネ線材の外周面が円弧状となっているので、外被材102の破袋を防止して、真空断熱材101の真空度を確実に保持させ、信頼性を確保することができる。すなわち、開封部材108が板材で形成されていると、板材の角において、外被材102に大気圧の応力集中が起こり、破袋する可能性がある。しかしながら、本実施の形態では、開封部材108は線材であって、その外周面が円弧状である。これにより、応力集中が起こらず、外被材102の破袋が防止できる。この結果、真空断熱材101は、その真空度を長期間に亘って確実に保持し、真空断熱材101としての信頼性を確保できる。
 また、気体吸着デバイス104を穿孔する開封部材108は、ステンレス等の金属で形成されている。よって、真空断熱材101の外被材102内でガスが放出され、外被材102内の真空度を低下させたり、気体吸着材106の気体吸着能力が、このガス吸着によって費やされてしまうことを防止できる。したがって、長期間に亘って良好な気体吸着性能を維持し、真空断熱材101の断熱性を良好に保つことができる。
 さらに、吸着材収納容器105を形成するラミネートフィルム112の保護層112aは、PET(ポリエチレンテレフタレート)またはPETと同等以下の吸水率を持つ樹脂で構成されている。これにより、気体吸着デバイス104保管時に、保護層112aが大気中の水分を吸収し、真空断熱材101に適用したときに、この水分が真空断熱材101の外被材102内で放出されて、外被材102内の真空度を低下させたり、気体吸着材106の気体吸着能力が、この水分吸着によって費やされてしまうことを防止できる。したがって、より長い期間に亘って気体吸着性能が維持され、これを適用した真空断熱材101の断熱性が良好に保たれる。
 なお、保護層112aは、PETまたはPETと同等以下程度の吸水率を有する樹脂を用いることが、より好ましいが、特にこれらの例に限定されるものではない。
 一方、このようにして形成された真空断熱材101は、気体吸着デバイス104が、薄くて可撓性を有するものであるから、数ミリ厚程度の真空断熱材101および湾曲等させる真空断熱材として利用することができる。すなわち、適用される機器の形態および形状に制約されることなく使用できる真空断熱材を実現することができる。
 そして、このようにして形成された真空断熱材101は、冷蔵庫あるいは自動販売機等の各種冷凍機器、恒温槽あるいはポット等の保温保冷機器、建材、LNG等の超低温物質を保管するタンク、船舶等の断熱壁体、断熱パネル、または断熱機器等としても使用できる。
 (第5の実施の形態)
 次に、本開示の第5の実施の形態について説明する。
 図18は、本開示の第5の実施の形態における、気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す平面図であり、図19は、同気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す拡大断面構成を示す模式図である。
 本実施の形態における気体吸着デバイス104は、吸着材収納容器105内に、気体吸着材106とともに多孔質部材118が挿入されて減圧密封されている。また、気体吸着材106と多孔質部材118とは、平面状の状態で、隣接する構成を有している。
 ここで、多孔質部材118は、樹脂粉末を焼結させて構成され、三次元網状孔を有する構造であり、気体吸着材106の粉体を通過させないが、気体を通過させる多孔質構造を有している。
 また、多孔質部材118には、気体吸着デバイス104の製造過程における真空引きにより、吸着材収納容器105となるラミネートフィルム112の内面が、大気圧によって接している。本実施の形態では、多孔質部材118を構成する樹脂を、ラミネートフィルム112の最内層となる接着層112cと相溶性のある熱溶融性の樹脂、例えば直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、超高分子量ポリエチレン(UHPE)、またはポリプロピレン(PP)、等々の樹脂で構成している。これにより、多孔質部材118と、ラミネートフィルム112の最内層を構成する接着層112cとは、熱溶着により物理的に一体化されている。
 また、開封部材108は、上述した第4の実施の形態で説明したものと同様の構成のものであるが、開封部材108は、吸着材収納容器105の多孔質部材118部分を穿孔するように装着されている。
 以上のように構成された気体吸着デバイス104は、既述したように、真空引き装置を用いて減圧した後に、シール溶着することにより製造される。その際、すなわち、吸着材収納容器105の袋を減圧封止する際、多孔質部材118側から気体吸着材106側に向かって吸引減圧することにより、袋内の気体吸着材106が、多孔質部材118が存在することによって、袋から無用に吸引排気されることを防止できる。よって、気体吸着材の漏出防止機能を有する、特殊な装置を用いることなく真空引きにより製造でき、しかも真空引き速度を遅くすることなく減圧密封できるので、生産性を向上させ、安価な気体吸着デバイス104を提供することができる。
 また、気体吸着材106と多孔質部材118とは、可撓性を有する袋内に、平面状状態に隣接配置されている。これにより、気体吸着材106と多孔質部材118とを重合配置する場合に比べて、厚みを薄くできるとともに、湾曲等の変形が容易なものとすることができる。よって、第4の実施の形態と同様に、数ミリ程度の薄い真空断熱材、および、円弧状に湾曲させて使用する真空断熱材等にも適用することができる。
 しかも、袋の平面幅寸法を大きくすることによって、厚みを薄く保ったまま気体吸着材106の量を多くすることもでき、長期間に亘って、気体吸着能力を持続可能なものとすることができるとともに、開封部材108の装着も容易なものとすることができ、作業性を向上させることができる。
 また、吸着材収納容器105の多孔質部材118部分を穿孔するので、気体吸着デバイス104は、多孔質部材118内を介して、周囲の気体を吸着することになる。これにより、気体吸着材106の気体吸着速度を、多孔質部材118の孔径および空孔率によって、任意に設定制御することができる。さらに、外被材102内に、気体吸着デバイス104とは別途設置されている水分吸着剤の吸着速度よりも、気体吸着材106の吸着速度を遅くすることにより、経年的に、外被材を通過して侵入してくる気体に含まれる水分の大部分を、水分吸着剤が吸着除去することができるようになる。そのため、気体吸着材106の水分吸着による浪費を防止し、長期間に亘って、真空断熱材内の気体を吸着し続けることができる。したがって、上述した生産性向上効果等を得つつ、気体吸着性能を、さらにばらつきなく安定させ、かつ、気体吸着速度を遅くして気体吸着能力を持続させ、より長期間に亘って、良好な断熱性能を発揮する真空断熱材101を実現することができる。
 また、気体吸着材106の吸着材収納容器105は、最内層のフィルム部材と多孔質部材118とが熱溶着、すなわち、吸着材収納容器105を構成するラミネートフィルム112と、多孔質部材118とが、樹脂同士の相溶により、その全面で隙間なく接着している。これにより、気体吸着材106の周囲から吸着される気体が、吸着材収納容器105を構成するラミネートフィルム112と多孔質部材118との間の隙間をリークするようなことがなくなり、性能安定性を高めることができる。さらに、吸着材収納容器105の袋を密封する際に、袋の溶着封止と同時に、袋内面と多孔質部材118表面との接着を行うこともでき、生産性を向上させることもできる。
 また、多孔質部材118は、樹脂粉末を焼結させて形成されているから、多孔質部材118が穿孔時の外力によってひび割れするようなことがなく、ひび割れを介して、気体が気体吸着材106にリーク吸着されることを防止できる。したがって、気体吸着材106は、必ず多孔質部材118の孔を介して気体を吸着するようになり、気体吸着性能の安定化を促進することができる。
 なお、気体吸着デバイス104のその他の構成と効果、ならびに、真空断熱材101の構成、および製造方法と効果は、第4の実施の形態と同様であり、説明を省略する。
 (第6の実施の形態)
 次に、第6の実施の形態について説明する。
 図20は、本開示の第6の実施の形態における気体吸着デバイス用開封部材と気体吸着デバイスとがセットされた状態を示す拡大断面構成を示す模式図である。
 第6の実施の形態における気体吸着デバイス104は、第5の実施の形態で示されたような気体吸着材106と多孔質部材118との間に、水分吸着材119が配置された構成である。
 なお、水分吸着材119は、酸化カルシウム(CaO)を用いることができるし、これ以外にも、シリカゲル、ゼオライト、またはモレキュラーシーブ等、種々の材料を使用することができる。
 このような構成により、気体吸着デバイス104は、気体吸着デバイス104の周囲から吸着される気体に水分が含まれていたとしても、この水分を、水分吸着材119で確実に吸着除去することができる。したがって、気体吸着材106の水分吸着による浪費を防止し、より長期間に亘って、良好な気体吸着性能を保証し、信頼性を向上させることができる。
 また、水分吸着による吸着能力の浪費を抑制できるので、気体吸着材106として用いられる、銅イオン交換ZSM-5型ゼオライトの水分吸着による消費を考慮する必要がなくなり、銅イオン交換ZSM-5型ゼオライトの適用量を低減することが可能となり、気体吸着デバイス104の小型化を図ることができる。
 加えて、吸着材収納容器105を構成するラミネートフィルム112の接着層112cは、ガラス等の溶融温度に比べて、はるかに低い温度で溶融するから、熱溶着温度を大幅に低下させることができる。したがって、吸着材収納容器105内に水分吸着材119が併設されていても、水分吸着材119の脱ガスによって、気体吸着材106の性能が劣化してしまうようなことを防止でき、水分吸着材119が併設された、高性能の気体吸着デバイス104を実現することができる。
 例えば、接着層となるPEは、それ自体は100℃~140℃、PPは130℃程度、EMAAまたはエチレン系アイオノマーは100℃程度でそれぞれ溶融し、これらをラミネートフィルムとした場合には、その積層構造や厚みにもよるが、約160℃~190℃程度で溶着させることが可能である。よって、吸着材収納容器105内に、水分吸着材119が併設されていても、水分吸着材119の脱ガスによって、気体吸着材106の性能が劣化してしまうことを防止でき、水分吸着材119が併設された、高性能の気体吸着デバイス104を実現することができる。
 なお、水分吸着材119を用いる場合、図示しないが、吸着材収納容器105を構成するラミネートフィルム112において、ガスバリア層112bと接着層112cとの間にナイロンフィルムを用いると、ラミネートフィルム112全体の強度を高めることができ、効果的である。すなわち、水分吸着材119として、例えば酸化カルシウムを用いた場合、酸化カルシウムの粒子のうちに、粒径の大きなものがあると、ラミネートフィルム112には、この粒子と対向する部分に大きな引張り力が加わる。そして、ガスバリア層112bを構成するアルミ箔に、上述した大きな粒子を起点として、クラックまたはピンホール等が発生することがある。しかしながら、上述したように、ラミネートフィルム112にナイロンフィルムを用いておくことにより、上述した大きな粒子を起点とする、クラックおよびピンホールの発生を抑制することができ、効果的に性能保証することができる。
 なお、気体吸着デバイス104のその他の構成と効果、および真空断熱材101の構成および製造方法と効果は、第5の実施の形態と同様であり、説明を省略する。
 以上、本開示に係る気体吸着デバイス用の開封部材108およびこれを用いた気体吸着デバイス104、ならびに真空断熱材101について、第4の実施の形態から第6の実施の形態を用いて説明してきたが、本開示は、これらに限定されるものではない。
 例えば、実施の形態では、開封部材108のコイル形状は、把持部109から穿孔部110が設けられた部分までの自由長(全長)が、同径の筒状コイルによって形成されたものを例示したが、本開示はこれに限定されるものではなく、穿孔部110側が小径となる円錐状コイル、楕円筒状コイル、長方形等の多角筒状コイル、または、コイル部を有する、つる巻バネ形状等であってもよい。
 そして、開封部材108のコイル形状を円錐状としたものにおいては、その頂点部分に穿孔部110が設けられることによって、コイル状中心部分に穿孔部110を位置させることができ、穿孔ミスの少ない、確実な穿孔を容易に実現することができる。また、長方形のコイル状としたものにおいては、吸着材収納容器105への差し込み装着の方向を特定、すなわち、長方形の短辺側から吸着材収納容器105に差し込んで装着する、というように特定でき、作業性を向上させることができる。
 また、穿孔部110は、コイル状部分からコイル中心部に向かって屈曲させた、その先端部分を把持部109側に屈曲させて構成したものを例示したが、コイル中心部に向かって屈曲させることなくコイル状部分からそのまま把持部109側に屈曲させて構成してもよい。
 さらに、気体吸着デバイス104の吸着材収納容器105は、上述の実施の形態では、ラミネートフィルム112を袋状にしたものを例示したが、これは扁平な金属容器の開口を、ラミネートフィルム112で密封した構成であってもよい。
 また、多孔質部材118は、樹脂粉末を焼結させて構成したものを例示したが、これは不織布等のようなものであってもよく、また、孔形状も、三次元網状孔ではなく、気体吸着材106の粉体粒子よりも小径の直線的な貫通孔群であってもよい。
 さらに、真空断熱材101は、可撓性のある外被材102内に、芯材103が減圧密封されたものを例示したが、これは、外被材102が可撓性のない剛体からなるもの、例えば、金属板あるいは樹脂板からなるもの、または、金属板あるいは樹脂板からなる箱体の開口を可撓性のシートで密封して構成したもの等であってもよく、種々のものが想定できる。
 以上のように、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきであり、本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 以上述べたように、本開示は、生産性が高く、安価に提供でき、しかも、薄くかつ可撓性があるので、多種多様な真空断熱材に適用でき、さらには、長期間に亘って気体吸着能力を持続可能であるという格別な効果を奏する。よって、本開示は、断熱性能に優れ、かつ経時耐久性に優れる断熱材を求める用途、例えば冷蔵庫、保温保冷容器、自動販売機、ヒートポンプ給湯器、電気湯沸かし器、輸送用コンテナ、自動車、鉄道車両、ならびに、LNG船および住宅等の断熱体等に好適に利用することができ、有用である。
 1,101  真空断熱材
 2,102  外被材
 3,103  芯材
 4,104  気体吸着デバイス
 5  包袋
 6,106  気体吸着材
 7,118  多孔質部材
 7a  交差面部分
 8  突起物
 9,108  開封部材
 10  フィルム
 10a  保護層
 10b  ガスバリア層
 10c  接着層
 11,114  真空包装器
 12,115  減圧チャンバー
 13,116  真空ポンプ
 14,117  ヒートシール機
 15,119  水分吸着材
 105  吸着材収納容器
 105a  薄肉部
 109  把持部
 110  穿孔部
 112  ラミネートフィルム
 112a  保護層
 112b  ガスバリア層
 112c  接着層

Claims (13)

  1. ガスバリア性および可撓性を有する包袋と、
    前記包袋内に減圧封止された気体吸着材と、
    前記包袋の内部に、平面状の状態で前記気体吸着材と隣接配置された多孔質部材とを備えた
    気体吸着デバイス。
  2. 前記多孔質部材の、前記気体吸着材に隣接する面と交差する交差面部分は、前記包袋に接着されている
    請求項1に記載の気体吸着デバイス。
  3. 前記多孔質部材の前記交差面部分は、包袋の内面に熱溶着されている
    請求項2に記載の気体吸着デバイス。
  4. 前記包袋は、金属箔からなるガスバリア層を含む複数層のラミネートフィルムで構成され、
    前記複数層のラミネートフィルムのうち、最内層のフィルム部材と前記多孔質部材とが、熱溶着された
    請求項1から請求項3までのいずれか1項に記載の気体吸着デバイス。
  5. 前記多孔質部材は、樹脂粉末を焼結させて形成された
    請求項1から請求項3までのいずれか1項に記載の気体吸着デバイス。
  6. 前記多孔質部材は、気体を通過させるが、前記気体吸着材の粉末粒子は通過できない多孔質構造体を有する
    請求項1から請求項5までのいずれか1項に記載の気体吸着デバイス。
  7. 前記気体吸着材は、銅イオン交換ZSM-5型ゼオライトである
    請求項1から請求項6までのいずれか1項に記載の気体吸着デバイス。
  8. 前記包袋を形成する前記ラミネートフィルムは、前記ガスバリア層の表面を覆う保護層をさらに有する
    請求項4に記載の気体吸着デバイス。
  9. 前記保護層は、PET(ポリエチレンテレフタレート)、または、PETと同等以下の吸水率を有する樹脂で構成された
    請求項8に記載の気体吸着デバイス。
  10. 前記気体吸着材と、前記多孔質部材との間に、水分吸着材が介在する
    請求項1から請求項9までのいずれか1項に記載の気体吸着デバイス。
  11. 請求項1から請求項10までのいずれか1項に記載の気体吸着デバイスと、
    芯材と、
    外被材とを備え、
    前記気体吸着デバイスと前記芯材とが前記外被材内に挿入され、減圧封止されて構成された
    真空断熱材。
  12. 前記気体吸着デバイスは、前記多孔質部材の部分が穿孔されることにより、前記外被材内と前記気体吸着デバイス内とが連通する
    請求項11に記載の真空断熱材。
  13. 前記気体吸着デバイスは、前記包袋の、前記多孔質部材の前記交差面部分の対向部分に、突起物を有する開封部材を有する
    請求項11または請求項12に記載の真空断熱材。
PCT/JP2016/003026 2015-06-24 2016-06-23 気体吸着デバイスおよびこれを用いた真空断熱材 WO2016208193A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680002317.6A CN106794413B (zh) 2015-06-24 2016-06-23 气体吸附器件和使用其的真空绝热件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-126146 2015-06-24
JP2015126146 2015-06-24
JP2016062988 2016-03-28
JP2016-062988 2016-03-28

Publications (1)

Publication Number Publication Date
WO2016208193A1 true WO2016208193A1 (ja) 2016-12-29

Family

ID=57585329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003026 WO2016208193A1 (ja) 2015-06-24 2016-06-23 気体吸着デバイスおよびこれを用いた真空断熱材

Country Status (2)

Country Link
CN (1) CN106794413B (ja)
WO (1) WO2016208193A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056454A (ja) * 2018-10-02 2020-04-09 パナソニックIpマネジメント株式会社 気体吸着デバイスおよび真空断熱材
JP2020190264A (ja) * 2019-05-20 2020-11-26 パナソニックIpマネジメント株式会社 気体吸着デバイスおよび真空断熱材
US11137201B2 (en) 2015-08-03 2021-10-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
WO2021241617A1 (ja) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 真空断熱体及びそれを用いた断熱容器と断熱壁
US11274785B2 (en) 2015-08-03 2022-03-15 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11365931B2 (en) 2015-08-04 2022-06-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11573048B2 (en) 2015-08-03 2023-02-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11585591B2 (en) 2015-08-03 2023-02-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11592230B2 (en) 2015-08-03 2023-02-28 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11598573B2 (en) 2015-08-03 2023-03-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
EP3332188B1 (en) * 2015-08-03 2023-05-10 LG Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body
US11920858B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920857B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920723B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11927386B2 (en) 2015-08-03 2024-03-12 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
WO2024084774A1 (ja) * 2022-10-19 2024-04-25 パナソニックIpマネジメント株式会社 真空断熱材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259336A (ja) * 2000-03-23 2001-09-25 Hideaki Terauchi 空気浄化器およびこれを利用した複合空気浄化装置と空気の浄化方法
JP2008055365A (ja) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd 気体吸着デバイス
JP2008055363A (ja) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd 気体吸着デバイス
JP2009078261A (ja) * 2007-09-05 2009-04-16 Panasonic Corp 気体吸着デバイス
JP2009168092A (ja) * 2008-01-15 2009-07-30 Panasonic Corp 真空断熱材および真空断熱材を適用した建築部材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101801A (zh) * 1985-04-01 1987-01-10 菲利浦光灯制造公司 真空包装细粉末的方法和用这种方法所得到的产品
JPH11351493A (ja) * 1998-06-09 1999-12-24 Mitsubishi Electric Corp 真空断熱パネルおよびその製造方法
KR100940975B1 (ko) * 2005-09-26 2010-02-05 파나소닉 주식회사 기체 흡착 디바이스, 기체 흡착 디바이스를 이용한 진공단열체 및 진공 단열체의 제조 방법
JP4752422B2 (ja) * 2005-09-26 2011-08-17 パナソニック株式会社 真空断熱体の製造方法
JP2010259968A (ja) * 2009-04-30 2010-11-18 Panasonic Corp 気体吸着デバイス
CN103338832A (zh) * 2011-01-20 2013-10-02 松下电器产业株式会社 气体吸附器件和具备其的真空隔热材料
KR101447767B1 (ko) * 2011-12-02 2014-10-07 (주)엘지하우시스 고온용 진공단열재
CN104203372B (zh) * 2012-03-21 2017-09-26 松下电器产业株式会社 气体吸附器件和收纳其的中空体
US9546481B2 (en) * 2013-12-06 2017-01-17 Samsung Electronics Co., Ltd. Vacuum insulation material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001259336A (ja) * 2000-03-23 2001-09-25 Hideaki Terauchi 空気浄化器およびこれを利用した複合空気浄化装置と空気の浄化方法
JP2008055365A (ja) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd 気体吸着デバイス
JP2008055363A (ja) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd 気体吸着デバイス
JP2009078261A (ja) * 2007-09-05 2009-04-16 Panasonic Corp 気体吸着デバイス
JP2009168092A (ja) * 2008-01-15 2009-07-30 Panasonic Corp 真空断熱材および真空断熱材を適用した建築部材

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592230B2 (en) 2015-08-03 2023-02-28 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11796246B2 (en) 2015-08-03 2023-10-24 Lg Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
US11927386B2 (en) 2015-08-03 2024-03-12 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
EP3332188B1 (en) * 2015-08-03 2023-05-10 LG Electronics Inc. Vacuum adiabatic body, fabrication method for the vacuum adiabatic body
US11598573B2 (en) 2015-08-03 2023-03-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11274785B2 (en) 2015-08-03 2022-03-15 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920723B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920857B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11573048B2 (en) 2015-08-03 2023-02-07 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11585591B2 (en) 2015-08-03 2023-02-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11137201B2 (en) 2015-08-03 2021-10-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11920858B2 (en) 2015-08-03 2024-03-05 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
US11365931B2 (en) 2015-08-04 2022-06-21 Lg Electronics Inc. Vacuum adiabatic body and refrigerator
JP2020056454A (ja) * 2018-10-02 2020-04-09 パナソニックIpマネジメント株式会社 気体吸着デバイスおよび真空断熱材
JP7209352B2 (ja) 2019-05-20 2023-01-20 パナソニックIpマネジメント株式会社 気体吸着デバイスおよび真空断熱材
JP2020190264A (ja) * 2019-05-20 2020-11-26 パナソニックIpマネジメント株式会社 気体吸着デバイスおよび真空断熱材
EP4160075A4 (en) * 2020-05-27 2023-07-19 Panasonic Intellectual Property Management Co., Ltd. VACUUM INSULATION MATERIAL AND THERMAL INSULATION CONTAINER AND THERMAL INSULATION WALL WITH IT
WO2021241617A1 (ja) * 2020-05-27 2021-12-02 パナソニックIpマネジメント株式会社 真空断熱体及びそれを用いた断熱容器と断熱壁
JP2021188640A (ja) * 2020-05-27 2021-12-13 パナソニックIpマネジメント株式会社 真空断熱体及びそれを用いた断熱容器と断熱壁
JP7474921B2 (ja) 2020-05-27 2024-04-26 パナソニックIpマネジメント株式会社 真空断熱体及びそれを用いた断熱容器と断熱壁
WO2024084774A1 (ja) * 2022-10-19 2024-04-25 パナソニックIpマネジメント株式会社 真空断熱材

Also Published As

Publication number Publication date
CN106794413B (zh) 2021-04-23
CN106794413A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016208193A1 (ja) 気体吸着デバイスおよびこれを用いた真空断熱材
EP2676715B1 (en) Gas adsorption device and vacuum heat insulating panel provided therewith
JP2010060045A (ja) 真空断熱材及びこれを用いた冷蔵庫、並びに真空断熱材の製造方法
WO2007034906A1 (ja) 気体吸着デバイス、気体吸着デバイスを用いた真空断熱体および真空断熱体の製造方法
JP3507776B2 (ja) 冷蔵庫
WO2016006186A1 (ja) 気体吸着デバイス、およびこれを用いた真空断熱材、ならびに、冷蔵庫および断熱壁
JP5356619B2 (ja) 真空断熱体
JP2012102758A (ja) 真空断熱材
JP5194823B2 (ja) 真空断熱箱体
JP2010096291A (ja) 真空断熱箱体
JP2014113524A (ja) 吸着材及び吸着デバイスおよび真空断熱材
JP2010260619A (ja) 袋体およびその製造方法
WO2017029727A1 (ja) 真空断熱材及び断熱箱
JP5493706B2 (ja) 気体吸着デバイスおよび気体吸着デバイスの使用方法
JP2012026512A (ja) 袋体および真空断熱材
JP2020056454A (ja) 気体吸着デバイスおよび真空断熱材
JP5256595B2 (ja) 気体吸着デバイスおよび気体吸着デバイスを備えた真空機器
JP5381306B2 (ja) 袋体、および真空断熱材
JP7482437B2 (ja) 真空断熱材の生産方法、真空断熱容器の生産方法、および、保温袋の生産方法
JP2010139006A (ja) 真空断熱材
JP5256596B2 (ja) 気体吸着デバイスおよび真空断熱材
JP2017137955A (ja) 真空断熱材用外装材及びそれを用いた真空断熱材
JP2012026513A (ja) 袋体および真空断熱材
WO2018025399A1 (ja) 真空断熱材及び断熱箱
JP2012026511A (ja) 袋体および真空断熱材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP