WO2016207016A1 - Machine de forgeage par laminage et procédé de forgeage par laminage - Google Patents

Machine de forgeage par laminage et procédé de forgeage par laminage Download PDF

Info

Publication number
WO2016207016A1
WO2016207016A1 PCT/EP2016/063544 EP2016063544W WO2016207016A1 WO 2016207016 A1 WO2016207016 A1 WO 2016207016A1 EP 2016063544 W EP2016063544 W EP 2016063544W WO 2016207016 A1 WO2016207016 A1 WO 2016207016A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
shaping
movement
route
roll
Prior art date
Application number
PCT/EP2016/063544
Other languages
English (en)
Inventor
Toshio Ochi
Klaus Berglar-Bartsch
Reinhard FRIZ
Original Assignee
Manyo Co., Ltd.
Schuler Pressen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manyo Co., Ltd., Schuler Pressen Gmbh filed Critical Manyo Co., Ltd.
Priority to CN201680037122.5A priority Critical patent/CN108112241B/zh
Priority to JP2017566372A priority patent/JP2018528862A/ja
Priority to KR1020187002042A priority patent/KR102037889B1/ko
Priority to DE112016002792.3T priority patent/DE112016002792T5/de
Publication of WO2016207016A1 publication Critical patent/WO2016207016A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/22Making articles shaped as bodies of revolution characterised by use of rolls having circumferentially varying profile ; Die-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H9/00Feeding arrangements for rolling machines or apparatus manufacturing articles dealt with in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/08Accessories for handling work or tools
    • B21J13/10Manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0033Gripping heads and other end effectors with gripping surfaces having special shapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • B25J15/0266Gripping heads and other end effectors servo-actuated comprising parallel grippers actuated by articulated links
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0096Programme-controlled manipulators co-operating with a working support, e.g. work-table

Definitions

  • the present invention relates to a roll forging machine and roll forging method in which forming with dies is performed on a material for forging using a pair of roll dies. More specifically, the present invention relates to a roll forging machine and roll forging method in which materials to be shaped are fed to a pair of roll dies one after another with two carrying units and shaping with dies is performed successively using the pair of roll dies to improve productivity.
  • a working method is known in which a desired product is formed through forging press, etc., after the material has been preformed beforehand into a desired form.
  • This preforming is also called as preforging, etc.
  • a roll forging machine also called as forging roll
  • forging machine for performing such working (see, e.g., Patent Document l).
  • a robot hand for forging roll in which an impact can be prevented from being transferred to the robot hand even if such impact is applied to a metal material during roll forging in a forging roll (see, e.g., Patent Document 2).
  • a robot hand is provided on the wrist of the second arm of the robot, and an arrangement is disclosed in which the robot is of an articulated type that has a first arm, a second arm and so on, and the robot controlling unit controls movement of the robot hand.
  • techniques of a forging roll are known which necessitate a low cost without increasing the space for installation, improve the cycle time twice and allow an expensive forging press to be utilized efficiently (see, e.g., Patent Document 3).
  • Patent Document 1 Publication of Examined Patent Application No. S52-8783 (JP, S52-8783, B)
  • Patent Document 2- Publication of Examined Patent Application No. Hl-33262 (JP, H01-33262, B)
  • Patent Document 3 Publication of Patent Application No. H5-169176 (JP, H05-169176, A)
  • Patent Document 4 Publication of Patent Application No. 3435314 (JP, 3435314, B)
  • Patent Documents 1 and 2 disclose techniques of composition of roll forging machines, they do not disclose improvement of productivity by a roll forging machine.
  • Patent Document 3 discloses techniques of composition of a robot hand, there is no disclosure of further improvement of productivity by a roll forging machine.
  • Patent Document 4 discloses techniques of a forging roll having a purpose of improving the cycle time, the techniques require two sets of roll set, i.
  • portions for performing roll forming such as a first roll with a first manitong and a second roll with a second manitong, and remain to merely provide improvement of the cycle time twice compared with a previous roll forging machine having a set of roll set. Thus, many matters still remain to be improved.
  • the present invention is made for solving the above mentioned problems, attaining the following objects.
  • the present invention provides the following features for attaining the above mentioned objects.
  • the roll forging machine according to the first aspect of the invention comprises:
  • a pair of roll driving axles that are provided to be rotatable on the body of the roll forging machine and caused to be rotated driven by a driver, a pair of roll dies that are provided on the pair of roll driving axles respectively and on which a plurality of shaping dies for shaping are formed with a predetermined space therebetween, and
  • a first robot having a robot hand moving along a first rectangular route for movement including a straight route for movement in shaping connecting the positions corresponding to the shaping positions with the plurality of shaping dies and a first route for turning aside spaced apart on one side by a predetermined amount from the straight route for movement in shaping, and
  • a second robot having a robot hand moving along a second rectangular route for movement including the straight route for movement in shaping and a second route for turning aside spaced apart on the other side by a predetermined amount from the straight route for movement in shaping! and wherein the first robot and the second robot is controlled respectively such that the robot hand of the second robot moves along the part of the second rectangular route for movement other than the straight route for movement in shaping when the robot hand of the first robot moves along the straight route for movement in shaping and the robot hand of the first robot moves along the part of the first rectangular route for movement other than the straight route for movement in shaping when the robot hand of the second robot moves along the straight route for movement in shaping.
  • the roll forging machine according to the second aspect of the invention is such that, in the first aspect, the receiving position of the materials to be shaped and the shaped article carrying out position are disposed in the extension of the route for movement in shaping.
  • the roll forging machine according to the third aspect of the invention is such that, in any one of the first to second aspects, the first robot and the second robot are articulated robots respectively.
  • each of the first robot and the second robot comprises a turning base that is fixed to the machine body and able to make turning movement, a plurality of arms that are connected in series so as to make swinging movement or turning movement relative to each other and one end of the serial arms is connected to the turning base to be able to make swinging movement, and a robot hand that that has a gripping portion of a material to be shaped and is connected to the other end of the serial arms.
  • the roll forging machine according to the fifth aspect of the invention is such that, in any one of the first to fourth aspect, one of the first robot and the second robot is one of a floor type and the other is one of a hung type.
  • the roll forging machine according to the sixth aspect of the invention is such that, in any one of the first to fourth aspect, the first robot and the second robot are ones of a floor type disposed on their respective positions having different heights.
  • the roll forging machine according to the seventh aspect of the invention is such that, in any one of the first to sixth aspect, the robot hand of the first robot moves from the receiving position to the first step position for shaping with dies, when the robot hand of the second robot moves from the final step position for shaping to the carrying out position, and the robot hand of the second robot moves from the receiving position to the first step position for shaping with dies, when the robot hand of the first robot moves from the final step position for shaping to the carrying out position.
  • the roll forging method according to the eighth aspect of the invention is such that, using a roll forging machine comprising:
  • a pair of roll driving axles that are provided to be rotatable on the body of the roll forging machine and caused to be rotated driven by a driver, a pair of roll dies that are provided on the pair of roll driving axles respectively and on which a plurality of shaping dies for shaping are provided with a predetermined space therebetween, and
  • said carrying unit comprising:
  • a first robot having a robot hand moving along a first rectangular route for movement including a straight route for movement in shaping connecting the positions corresponding to the shaping positions with the plurality of shaping dies and a first route for turning aside spaced apart on one side by a predetermined amount from the straight route for movement in shaping
  • a second robot having a robot hand moving along a second rectangular route for movement including the straight route for movement in shaping and a second route for turning aside spaced apart on the other side by a predetermined amount from the straight route for movement in shaping!
  • the robot hand of the second robot moves along the part of the second rectangular route for movement other than the route for movement in shaping when the robot hand of the first robot moves along the route for movement in shaping
  • the robot hand of the first robot moves along the part of the first rectangular route for movement other than the route for movement in shaping when the robot hand of the second robot moves along the route for movement in shaping
  • either one of the first robot and the second robot can perform shaping with the pair of roll dies.
  • the roll forging method according to the ninth aspect of the invention is such that, in the eighth aspect, the robot hand of the first robot moves from the receiving position to the first step position for shaping with dies, when the robot hand of the second robot moves from the final step position for shaping to the carrying out position, and
  • the robot hand of the second robot moves from the receiving position to the first step position for shaping with dies, when the robot hand of the first robot moves from the final step position for shaping to the carrying out position.
  • shaping of materials to be shaped gripped by a first carrying unit (first robot) or a second carrying unit (second robot) can be performed one after another with a pair of roll dies while the pair of dies are kept rotating continuously, thus improving productivity.
  • first carrying unit first robot
  • second carrying unit second robot
  • the robot hand of the first robot moves from a receiving position of materials to be shaped to a position of first shaping step with dies (for example, a first step position)
  • the robot hand of the second robot moves from a position of final shaping step with dies (for example, fourth step position) to a shaped article carrying out position.
  • the robot hands of the first robot and the second robot can be prevented from interfering with each other and shaping with a pair of dies cab be performed successively.
  • this roll forging machine With this roll forging machine, two robots are operated in rotation. For this sake, the time for feeding operation of materials to be shaped and the time for carrying out shaped articles are not loss time now, though these were loss times in conventional roll forging machines. Further, this roll forging machine has a composition such that two robot hands are disposed in the upper and lower positions individually so as to avoid interference therebetween, thus allowing two carrying units to be operated in rotation. With this, improvement in productivity by the roll forging machine can be attained.
  • this roll forging machine does not require two sets of roll dies, so that reduction of expense for fabricating dies, spaces for maintaining dies, operation times for exchanging dies, or the like can be attained. Therefore, a large economic merit can be obtained.
  • the roll forging method in the roll forging machine is one in which roll forging (shaping with a pair of roll dies) is performed by controlling the two robots in a manner such that, when the robot hand of one robot moves along the route for movement in shaping, the robot hand of the other robot moves along a first route for turning aside or the second route for turning aside.
  • the robot hands of both robots do not interfere with each other and shaping is performed by feeding materials to be shaped to a pair of roll dies one after another, thus providing improvement in productivity.
  • Fig. 1 is a front view showing an embodiment of a roll forging machine according to the present invention.
  • Fig. 2 is a plan view of the roll forging machine.
  • Fig. 3 is a front view of the robot hand in the roll forging machine with a part of the robot hand shown in section.
  • Fig. 4 is a side view of the robot hand.
  • Fig. 5 is an explanatory view of showing schematically the roll dies in the roll forging machine.
  • Fig. 6 is an explanatory view showing routes for movement of the robot hands of the first robot and the second robot.
  • Fig. 7 is an explanatory view of operation showing relation among the first robot, the second robot and the roll forging machine.
  • Fig. 8 is an explanatory view 1 showing schematically positional relation between the first robot and the second robot.
  • Fig. 9 is an explanatory view 2 showing schematically positional relation between the first robot and the second robot.
  • Fig. 10 is an explanatory view 3 showing schematically positional relation between the first robot and the second robot.
  • Fig. 11 is an explanatory view 4 showing schematically positional relation between the first robot and the second robot.
  • Fig. 1 is a front view showing an embodiment of a roll forging machine according to the present invention
  • Fig. 2 is a plan view of the roll forging machine
  • Fig. 3 is a front view of the robot hand in the roll forging machine with a part of the robot hand shown in section
  • Fig. 4 is a side view of the robot hand
  • Fig. 5 is an explanatory view of showing schematically the roll dies in the roll forging machine
  • Fig. 6 is an explanatory view showing routes for movement of the robot hands of the first robot and the second robot
  • Fig. 7 is an explanatory view of operation showing relation among the first robot, the second robot and the roll forging machine.
  • Fig. 8 is an explanatory view 1 showing schematically positional relation between the first robot and the second robot
  • Fig. 9 is an explanatory view 2 showing schematically positional relation between the first robot and the second robot
  • Fig. 10 is an explanatory view 3 showing schematically positional relation between the first robot and the second robot
  • Fig. 11 is an explanatory view 4 showing schematically positional relation between the first robot and the second robot.
  • the composition of a roll forging machine 1 will be explained, referring to Figs. 1 to 5.
  • the roll forging machine 1 is composed of a main body 2 of the roll forging machine, a first robot 10 as a first carrying unit, a second robot 30 as a second carrying unit, or the like.
  • a first roll driving axle 3 and a second roll driving axle 5 are held rotatably on the main body 2 of the roll forging machine.
  • the first roll driving axle 3 and the second roll driving axle 5 are provided as forming a paired composition with the axes thereof being parallel each other. Both ends of the first roll driving axle 3 are held on the main body 2 via a bearing (not shown). Similarly, both ends of the second roll driving axle 5 also are held on the main body 2 via a bearing (not shown).
  • the first roll driving axle 3 is driven to be rotated by output transmitted from a servomotor SM via a transmission gear mechanism (not shown).
  • the second roll driving axle 5 is driven to be rotated by output transmitted from a servomotor (not shown but similar to one used for the first roll driving axle 3) via a transmission gear mechanism (not shown).
  • a servomotor not shown but similar to one used for the first roll driving axle 3
  • a transmission gear mechanism not shown.
  • first roll driving axle 3 and the second roll driving axle 5 are usually controlled so as to be rotated and stop simultaneously. Further, the first roll driving axle 3 and the second roll driving axle 5 are usually controlled so as to be rotated in directions opposite to each other (direction R and direction R' in Fig. 5) and at the same rotational rate.
  • a first roll die 4 is fixed detachably on the outer circumferential face of the first roll driving axle 3 and a second roll die 6 is fixed detachably on the outer circumferential face of the second roll driving axle 5.
  • the first roll die 4 has a plurality of shaping dies 4a formed with a certain distance therebetween for performing shaping with dies through roll forging (shaping with a pair of roll dies).
  • the second roll die 6 has a plurality of shaping dies 6a formed with a certain distance therebetween for performing roll forging.
  • a first carrying unit and a second carrying unit for feeding materials m to be shaped to shaping dies 4a and 6a, performing shaping with dies and carrying out articles shaped to have a desired configuration are provided in front of the main body 2 of the roll forging machine.
  • the first carrying unit is a first robot 10 called an articulated robot and the second carrying unit is a second robot 30 called an articulated robot. While the first robot 10 and the second robot 30 are well known in the art as articulated robots that enable three dimensional movement of robot hands, explanation of arrangement will be made here briefly for easier understanding of explanation of this arrangement.
  • the first robot 10 is a robot of a hung type provided to be hung on a hanging base 7.
  • the hanging base 7, as a base body for hanging, is composed such that an upper plate 73 is fixed on the upper ends of three poles 72 fixed on a base plate 71 and vertically extending respectively.
  • a robot base 11 of the first robot 10 is fixed to the underside face of the upper plate 73.
  • a first turning mechanism 12 is provided between the robot base 11 and a first turning base 13.
  • the first turning base 13 makes turning movement around the axis CI (in the direction by arrow ⁇ 1) relative to the robot base 11 and is positioned to be in a desired turning position.
  • a first swinging mechanism 14 is provided between the first turning base 13 and a first arm 15.
  • the first arm 15 makes swinging movement around the axis C2 (in the direction of arrow ⁇ 2) relative to the first turning base 13 and is positioned to be in a desired swinging position.
  • a second swinging mechanism 16 is provided between the first arm 15 and a second arm 17.
  • the second arm 17 makes swinging movement around the axis C3 relative to the first arm 15 in the direction of arrow ⁇ 3 and is positioned to be in a desired swinging position.
  • a second turning mechanism 18 is provided between the second arm 17 and a third arm 19.
  • the third arm 19 makes turning movement around the axis C4 (in the direction of arrow ⁇ 4) relative to the second arm 17 and is positioned to be in . " 'a desired turning position.
  • a third swinging mechanism 20 is provided between the third arm 19 and a fourth arm 21.
  • the fourth arm 21 makes swinging movement around the axis C5 in the direction of arrow ⁇ 5 relative to the third arm 19 and is positioned to be in a desired swinging position.
  • a robot hand 25 is attached to the fourth arm 21.
  • the first turning mechanism 12, the second turning mechanism 18, the first swinging mechanism 14, the second swinging mechanism 16, the third swinging mechanism 20 or the like are controlled by a first robot control apparatus (not shown) that controls driving and positioning of servomotors (not shown).
  • the second robot 30 is a robot of a floor type.
  • the robot base 31 of the second robot 30 is fixed on the upper face of the base plate place on the floor.
  • a first turning mechanism 32 is provided between the robot base 31 and a first turning base 33.
  • the first turning base 33 makes turning movement around the axis Cll (in the direction of arrow ⁇ 11) relative to the robot base 31 and is positioned to be in a desired turning position.
  • a first swinging mechanism 34 is provided between the first turning mechanism 33 and a first arm 35.
  • the first arm 35 makes swinging movement around the axis C12 in the direction of arrow ⁇ 12 relative to the first turning base 33 and is positioned to be in a desired swinging position.
  • a second swinging mechanism 36 is provided between the first arm 35 and a second arm 37.
  • the second arm 37 makes swinging movement around the C13 in the direction of arrow ⁇ 13 relative to the first arm 35 and is positioned to be in a desired swinging position.
  • a second turning mechanism 38 is provided between the second arm 37 and a third arm 39.
  • the third arm 39 makes turning movement around the axis C14 (in the direction of arrow ⁇ 14) relative to the second arm 37 and is positioned to be in a desired turning position.
  • a third swinging mechanism 40 is provided between the third arm 39 and a fourth arm 41.
  • the fourth arm 41 makes swinging movement around the axis C15 in the direction of arrow ⁇ 15 relative to the third arm 39 and is positioned to be in a desired swinging position.
  • a robot hand 45 is attached to the fourth arm 41.
  • the first turning mechanism 32, the second turning mechanism 38, the first swinging mechanism 34, the second swinging mechanism 36, the third swinging mechanism 40 or the like are controlled by a second robot control apparatus (not shown) that controls driving and positioning of servomotors (not shown).
  • the robot hand 25 of the first robot 10 and the robot hand 45 of the second robot 30 will be explained, referring to Figs. 3 and 4.
  • the robot hand 25 and the robot hand 45 are of a same composition. So explanation of the arrangement will be made for the robot hand 25 as an example.
  • a robot hand base (referred to as a hand base below) 253 is attached to the fourth arm 21 or the fourth arm 41.
  • a robot hand rotating axle (referred to as a hand rotating axle below) 254 is provided to be supported in a rotatable manner by bearings 255, 255 in the hand base 253.
  • a pair of gripping pawls 251, 251 is provided for gripping a material m to be shaped at the front side of the hand axle 254.
  • a robot hand opening- closing driving unit (referred to as a hand driving unit below) 252 is provided in the back side of the hand axle 254.
  • Connecting rods (not shown) and linkages (not shown) for opening-closing of the hand are provided between the hand driving unit 252 and the pair of gripping pawls 251, 251.
  • the hand driving unit 252 causes the connecting rods to be reciprocated in the lengthwise direction of the hand base 253 (parallel to the axis C6 in Fig. 3).
  • the linkages for opening-closing of the hand convert reciprocation movement of the connecting rods to opening-closing movement of the gripping pawls 251, 251.
  • the pair of gripping pawls 251, 251 performs opening-closing action with operation of the hand driving unit 252 via the linkages for opening-closing of the hand.
  • Clamping spring (not shown) for retracting the connecting rods backward to cause the pair of gripping pawls 251, 251 make closing movement.
  • a cylinder 252a is provided in the hand driving unit 252 for advancing the connecting rod forward against the clamping spring when pressurized fluid (e. g., pressurized oil) is supplied. The forward advancing movement of the connecting rod by the cylinder 252a causes the pair of gripping pawls 251, 251 to make opening movement via the linkages for opening-closing of the hand.
  • the clamping spring retracts the connecting rod backward with its stored force.
  • the backward movement of the connecting rod by the clamping spring causes the pair of gripping pawls 251, 251 to make closing movement via the linkages for opening-closing of the hand.
  • the forward and backward movement of the connecting rod by the hand driving unit 252 can be detected by an opening-closing movement detecting portion 252b.
  • Such opening-closing mechanism of the robot hand comprising linkages for opening-closing of the hand, connecting rods or the like is well known in the art, thus explanation of further details are omitted here.
  • a servomotor 261 for rotating and positioning the robot hand (referred to as a servomotor for the rotating axle below) to rotate the hand rotating axle 254 around the axis C6 (in the direction of arrow ⁇ 6 in Fig. 3) is attached to the hand base 253.
  • a toothed pulley-toothed belt mechanism is provided between the output axle of the servomotor 261 for the rotating axle and the hand rotating axle 254. That is, one toothed pulley is attached to the output axle of the servomotor 261 for the rotating axle and the other toothed pulley 262 is attached to the hand rotating axle 254.
  • a toothed belt is looped over the one toothed pulley and the other toothed pulley 262 to surround them.
  • a robot hand rotating and positioning unit (referred to as a hand rotating unit below) 26 is composed of the servomotor 261 for the rotating axle and the toothed pulley-toothed belt mechanism.
  • roll forging shapeing with a pair of roll dies
  • the toothed pulley-toothed belt mechanism may be replaced by another transmission mechanism such as a gear mechanism.
  • the robot hand 25 and the robot hand 45 move along the routes shown in Fig. 6 respectively.
  • the first roll die 4 has four shaping dies 4a (4al, 4a2, 4a3 and 4a4) formed thereon and the second roll die 6 has four shaping dies 6a (6al, 6a2, 6a3 and 6a4) formed thereon respectively.
  • the shaping dies 4a and shaping dies 6a compose pairs of shaping dies.
  • the shaping die 4al and shaping die 6al compose a first shaping dies Fl
  • the shaping die 4a2 and shaping die 6a2 compose a second shaping dies F2
  • the shaping die 4a3 and shaping die 6a3 compose a third shaping dies F3
  • the shaping die 4a4 and shaping die 6a4 compose a fourth shaping dies Fl (see Fig. 5).
  • the first robot 10 and the second robot 30 cause the robot hand 25 and the robot hand 45 to move to a first step position P2 corresponding to the first shaping dies Fl, to a second step position P3 corresponding to the second shaping dies F2, to a third step position P4 corresponding to the third shaping dies F3 and to a fourth step position P5 corresponding to the fourth shaping dies F4, respectively.
  • the roll forging machine 1 shapes the material to be shaped into a desired form with the shaping dies Fl comprising shaping die 4al and the shaping die 6al in the first step position P2.
  • first shaping dies Fl, second shaping dies F2, third shaping dies F3 and fourth shaping dies F4 are generally used as follows. With the first shaping dies Fl in the first step position P2, the material m to be shaped is pressed. With the second shaping dies F2 in the second step position P3, corrective shaping is performed on the widened portion of the material m to be shaped pressed with the shaping dies Fl after rotating the pressed material around the axis C6 by 90 degrees with the hand rotating unit 26. With the third shaping dies F3 in the third step position P4, the material m to be shaped is rotated reversely around the axis C6 by 90 degrees by the hand rotating unit 26 and is pressed.
  • a roll forging method using the roll forging machine 1 will be explained referring to Figs. 6 to 11.
  • the first roll die 4 and the second roll die 6 are rotated at a predetermined rotational frequency.
  • rotation of the first roll driving axle 3 and the second roll driving axle 5 is controlled by a servomotor SM and the rotational positions of them are synchronized.
  • a first route for movement 50A is formed such that the robot hand 25 of the first robot 10 moves so as to take the following positions sequentially: a receiving position of a material m to be shaped PI (referred to as a receiving position below) for receiving a material m to be shaped that has been heated to a determined temperature from the feeding unit of materials to be shaped (not shown), a first step position P2, a second step position P3, a third step position P4, a fourth step position P5, a position for carrying out the shaped article P6 for carrying out the shaped article onto a shaped article carrying out unit 8 (referred to as a carrying out position below), a position for turning aside P7 and a position before receiving a material to be shaped P8 (referred to as a position before receiving below).
  • a receiving position of a material m to be shaped PI for receiving a material m to be shaped that has been heated to a determined temperature from the feeding unit of materials to be shaped (not shown)
  • the first step position P2, the second step position P3, the third step position P4 and the fourth step position P5 are disposed in line and form a route for movement in shaping 51 for shaping the material m to be shaped.
  • the receiving position PI and the carrying out position P6 are disposed in the extension of the route for movement in shaping 51.
  • the robot hand 25 moves along the first route for movement 50A with a box-shaped (closed-loop) form including the route for movement, which includes the route for movement in shaping 51 comprising the first step position P2, the second step position P3, the third step position P4 and the fourth step position P5 and in which the receiving position PI to the carrying out position P6 through are disposed in line, and also including a first route for turning aside 52 which is spaced apart from the route for movement in shaping 51 by a predetermined distance on one side (e.g. on the lower side in the shown arrangement).
  • a second route for movement 50B is formed such that the robot hand 45 of the second robot 30 moves so as to take the following positions sequentially: the receiving position PI, the first step position P2, the second step position P3, the third step position P4, the fourth step position P5, the carrying out position P6, a position for turning aside P17 and a position before receiving a material to be shaped P18 (referred to as a position before receiving below).
  • the robot hand 45 moves along the second route for movement 50B with a box-shaped (closed-loop) form including the route for movement, which includes the route for movement in shaping 51 comprising the first step position P2, the second step position P3, the third step position P4, the fourth step position P5 and in which the receiving position PI to the carrying out position P6 through are disposed in line, and also including a second route for turning aside 53 which is spaced apart from the route for movement in shaping 51 by a predetermined distance on the other side (e.g. on the upper side in the shown arrangement).
  • the movement of the first robot 10 and the second robot 30 will be explained, relating these with the movement on the side of the main body 2 of the roll forging machine 1.
  • the first roll driving axle 3 and the second roll driving axle 5 are rotated at a determined rotational frequency. Further explanation will be made referring to the "flow chart of movement and operation" shown in Fig. 7.
  • the robot hand 25 of the first robot 10 moves from the third step position P4 to the fourth step position P5.
  • the robot hand 45 of the second robot 30 moves from the position before receiving P18 to the receiving position PI (see Fig. 9).
  • the first robot 10 performs shaping with the fourth shaping dies F4 after the robot hand 25 has moved to the fourth step position P5.
  • the second robot 30 receives the material m to be shaped from the feeding unit of materials to be shaped in the receiving position PI with the robot hand gripping the material.
  • the robot hand 45 of the second robot 30 that has received the material m to be shaped moves from the receiving position PI to the first step position P2.
  • the robot hand 25 of the first robot 10 moves from the fourth step position P5 to the carrying out position P6, releases gripping of the shaped article and transfers it to the shaped article carrying out unit 8.
  • the second robot 30 performs shaping of the material m to be shaped gripped by the robot hand 45 with the first shaping dies Fl after the robot hand 45 has moved to the first step position P2. (Step S2)
  • the robot hand 45 of the second robot 30 moves from the first step position P2 to the second step position P3. At this time, the robot hand 25 of the first robot 10 moves from the carrying out position P6 to the position for turning aside P7.
  • the second robot 30 performs shaping of the material m to be shaped gripped by the robot hand 45 with the second shaping dies F2 after the robot hand 45 has moved to the second step position P3. (Step S3) [0044]
  • the robot hand 45 of the second robot 30 moves from the second step position P3 to the third step position P4.
  • the robot hand 25 of the first robot 10 moves from the position for turning aside P7 to the position before receiving P8 (see Fig. 10).
  • the second robot 30 performs shaping of the material to be shaped gripped by the robot hand 45 with the third shaping dies F3 after the robot hand 45 has moved to the third step position P4. (Step S4)
  • the robot hand 45 of the second robot 30 moves from the third step position P4 to the fourth step position P5.
  • the robot hand 25 of the first robot 10 moves from the position before receiving P8 to the receiving position PI (see Fig. 11).
  • the second robot 30 performs shaping of the material m to be shaped gripped by the robot hand 45 with the fourth shaping dies F4 after the robot hand 45 has moved to the fourth step position P5.
  • the robot hand 25 of the first robot 10 receives a material m to be shaped from the feeding unit of materials to be shaped. (Step S5)
  • the robot hand 45 of the second robot 30 moves from the fourth step position P5 to the carrying out position P6.
  • the robot hand 25 of the first robot 10 moves from the receiving position PI to the first step position P2.
  • the first robot 10 performs shaping of the material m to be shaped gripped by the robot hand 25 with the first shaping dies Fl after the robot hand 25 has moved to the first step position P2.
  • the second robot 30 releases gripping by the robot hand 45 and hands over the shaped article to the shaped article carrying out unit 8 in the carrying out position P6.
  • the robot hand 25 of the first robot 10 moves from the first step position P2 to the second step position P3.
  • the robot hand 45 of the second robot 30 moves from the carrying out position P6 to the position for turning aside P17.
  • the first robot 10 performs shaping of the material m to be shaped gripped by the robot hand 25 with the second shaping dies F2 after the robot hand 25 has moved to the step position P3. (Step S7)
  • the robot hand 25 of the first robot 10 moves from the second step position P3 to the third step position P4.
  • the robot hand 45 of the second robot 30 moves from the position for turning aside P17 to the receiving position P18 (see Fig. 8).
  • the first robot 10 performs shaping of the material m to be shaped gripped by the robot hand 25 with the third shaping dies F3 after the robot hand 25 has moved to the third step position P4. (Step S8)
  • Step SI operation of shaping with the shaping dies on materials to be shaped is repeated.
  • the receiving position PI and the carrying out position P6 need not necessarily be disposed in the extension of the route for movement in shaping 51.
  • the receiving position PI and/or the carrying out position P6 may be disposed on the first route for turning aside or the second route for turning aside.
  • the receiving position PI and/or the carrying out position 8P6 may be disposed in the middle between the route for movement in shaping and the first route for turning aside or the second route for turning aside.
  • such a composition may be possible that the robot hand 25 of the first robot 10 and the robot hand 45 of the second robot 30 do not perform shaping simultaneously coexisting on the route for movement in shaping 51 extending over the first step position P2, the second step position P3, the third step position P4 and the fourth step position P5.
  • the robot hand 25 of the first robot 10 (or the robot hand 45 of the second robot 30) is in the carrying out position P6
  • the robot hand 45 of the second robot 30 (or the robot hand 25 of the first robot 10) is in the first step position P2.
  • the robot hand 25 of the first robot 10 and the robot hand 45 of the second robot 30 do not interfere with each other as well as shaping with the roll die 4 and the roll die 6 at all times, thereby allowing improvement of productivity.
  • the first robot 10 and the second robot 30 are controlled such that the robot hand 45 of the second robot 30 moves along the route for movement including the second route for tuning aside 53 except the route for movement in shaping 51 of the second route for movement 50B when the robot hand 25 of the first robot 10 moves along the route for movement in shaping 51 of the first route for movement 50A and performs working of shaping in the positions from the first step position P2 to the fourth step position P5.
  • the first robot 10 and the second robot 30 are controlled such that the robot hand 25 of the first robot 10 moves along the route for movement including the first route for tuning aside 52 except the route for movement in shaping 51 of the first route for movement 50A when the robot hand 45 of the second robot 30 moves along the route for movement in shaping 51 of the second route for movement 50B and performs working of shaping in the positions from the first step position P2 to the fourth step position P5.
  • the first route for turning aside 52 for the first robot 10 and the second route and the second route for turning aside 53 for the second robot 30 are provided such that they are spaced apart by a predetermined distance upward or downward (as shown) from the route for movement in shaping 51 respectively.
  • the predetermined distance of the first and second routes for turning aside 52 and 53 from the route for movement in shaping 51 are to be set as follows. As shown in Fig. 6, the distance from the first route for turning aside 52 to the route for movement in shaping 51 is LI and the distance from the second route for turning aside 53 to the route for movement in shaping 51 is L2, respectively. Let the maximum radiuses of the robot hands 25 and 45 of the first robot 10 and 30 be Rl and R2, respectively. In order to avoid interference between the robot hand 25 of the first robot 10 moving along the first route for turning aside 52 and the robot hand 45 of the second robot hand 45 of the second robot 30 moving along the route for movement in shaping 51, the distance Ll must be larger than R1+R2 by a certain amount Dl. This certain amount Dl is determined to securely avoiding interference between the two robot hands.
  • the case in which the robot hand 25 of the first robot 10 moves along the route for movement in shaping 51 and the robot hand 45 of the second robot 30 moves along the second route for turning aside 53 is considered similarly and the distance L2 must be must be larger than Rl +R2 by a certain amount D2.
  • the amount of margin Dl and D2 may be taken as substantially the same.
  • the first robot 10 and the second robot 30 With this roll forging machine 1, it is possible for the first robot 10 and the second robot 30 to perform alternately shaping with the pair of roll dies 4 and 6 rotated constantly, thus improving productivity.
  • the robot hand 45 of the second robot 30 (or the robot hand 25 of the first robot 10) moves from the fourth step position P5 to the carrying out position P6 when the robot hand 25 of the first robot 10 (or the robot hand 45 of the second robot 30) moves from the receiving position PI to the first step position P2.
  • the robot hand 25 of the first robot 10 and the robot hand 45 of the second robot 30 can move without interfering with each other and perform shaping with the pair of dies 4 and 6 at all times.
  • two robots 10 and 30 are operated in rotation in this roll forging machines 1.
  • the time for feeding the materials to be shaped and the time for carrying out the shaped articles, which were loss times for the conventional roll forging machine, are not loss times for this roll forging machine 1.
  • This roll forging machine has a composition in which two robot hands 25 and 45 are disposed in upper and lower positions (as shown) respectively and interference between them can be avoided, so that rotational operation of the two robots 10 and 30 can be attained. For this sake, improvement of productivity by this roll forging machine can be attained.
  • this roll forging machine enables reduction in expense of die fabrication, reduction in area of die preservation space and shortening the time for die exchange, which brings economical merits.
  • cycle time can be shortened and temperature variation in the material to be shaped decreases, thus improvement of product quality can be attained.
  • rotation can be of same direction so that the direction of applied load is same with this roll forging machine 1, thus lifetime of the product by the roll forging machine 1 can be improved compared with the roll forging machine in which rotation is made both in one direction and in the other direction.
  • successive shaping can be made with same roll dies, thus variation of form can be restrained and quality of products can be improved.
  • the roll forging method by the roll forging machine is such that roll forging is performed through controlling two robots in a manner in which, when the robot hand of one robot moves along the route for movement in shaping, the robot hand of the other robot moves along the route for movement including the first route for turning aside or the second route for turning aside except the route for movement in shaping.
  • the robot hands 25 and 45 of both robots perform roll forging (shaping with a pair of dies) feeding materials to be shaped to the roll dies 4 and 6 alternately without interference of the robot hands with each other, so that improvement of productivity can be attained.
  • the carrying unit may be a robot of orthogonal coordinate type or the like that can move in three axis directions. That is, it may be such a carrying unit that can control movement of the robot hand in three dimensional directions.
  • such a carrying unit can be composed that, when one robot hand is in a position from the first step position to the fourth step position moving along the route for movement in shaping, the other robot hand can be controlled so as to move along the route for movement except the route for movement in shaping (the first route for turning aside or the second route for turning aside) and interference of two robot hands with each other can be avoided.
  • the articulated robot may be one having another composition or with another number of axes, thus enabling such composition with which movement of robot hands can be controlled in three dimensional directions.
  • the pair of roll dies may be ones on which a plurality of dies (e. g. two or six shaping dies) are formed. Also, while the embodiments has been made for the example in which working of shaping is performed through four steps, working of shaping may be performed through six steps or two steps or another number of steps if articles can be shaped. [0063]
  • a composition may be considered in which two carrying units of a floor type are provided on planes for mounting them (floors) with a height difference therebetween.
  • a bottom plane of a pit dug down below the first floor plane by a determined amount may be taken as a second floor plane for mounting the other carrying unit, thus mounting the other carrying unit on the plane for mounting in the pit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Forging (AREA)

Abstract

La présente invention concerne une machine de forgeage par laminage qui comprend une paire de matrices à rouleaux (4 et 6) qui sont disposées sur une paire d'essieux d'entraînement de rouleau (3 et 5) mis en rotation par un dispositif de commande et comportent une pluralité de matrices de mise en forme (4a1 à 4a4 ; 6a1 à 6a4) formées sur ces dernières respectivement, et des unités de transport destinées à transporter des matériaux qui doivent être mis en forme à une position de mise en forme avec les matrices, jusqu'à une position de réception et jusqu'à une position de mise en œuvre. Les unités de transport comprennent un premier robot (10) qui comporte une main de robot (25) qui se déplace le long d'un premier trajet rectangulaire pour un mouvement (50A) comprenant un trajet en ligne droite pour un mouvement de mise en forme (51) reliant les positions correspondant aux positions de mise en forme avec la pluralité de matrices de mise en forme et un premier trajet pour s'écarter (52) sur un côté d'une distance prédéterminée (L1) du trajet en ligne droite pour un mouvement de mise en forme (51), et un second robot (30) qui comporte une main de robot (45) qui se déplace le long d'un second trajet rectangulaire pour un mouvement (50B) comprenant le trajet en ligne droite pour un mouvement de mise en forme (51) et un second trajet pour s'écarter (53) sur l'autre côté d'une distance prédéterminée (L2) du trajet en ligne droite pour un mouvement de mise en forme (51). Une machine de forgeage par laminage et un procédé de forgeage par laminage sont obtenus selon lesquels les matériaux qui doivent être mis en forme sont transmis en alternance à une paire de matrices à rouleaux comportant deux unités de transport et une mise en forme avec des matrices est réalisée successivement.
PCT/EP2016/063544 2015-06-22 2016-06-14 Machine de forgeage par laminage et procédé de forgeage par laminage WO2016207016A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680037122.5A CN108112241B (zh) 2015-06-22 2016-06-14 辊锻机及辊锻方法
JP2017566372A JP2018528862A (ja) 2015-06-22 2016-06-14 ロール鍛造機とそのロール鍛造方法
KR1020187002042A KR102037889B1 (ko) 2015-06-22 2016-06-14 롤 단조기와 그 롤 단조 방법
DE112016002792.3T DE112016002792T5 (de) 2015-06-22 2016-06-14 Reckwalzmaschine und Reckwalzverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-124642 2015-06-22
JP2015124642A JP6588743B2 (ja) 2015-06-22 2015-06-22 ロール鍛造機とそのロール鍛造方法

Publications (1)

Publication Number Publication Date
WO2016207016A1 true WO2016207016A1 (fr) 2016-12-29

Family

ID=56131526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/063544 WO2016207016A1 (fr) 2015-06-22 2016-06-14 Machine de forgeage par laminage et procédé de forgeage par laminage

Country Status (6)

Country Link
JP (2) JP6588743B2 (fr)
KR (1) KR102037889B1 (fr)
CN (1) CN108112241B (fr)
CZ (1) CZ308188B6 (fr)
DE (1) DE112016002792T5 (fr)
WO (1) WO2016207016A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116570A1 (de) * 2017-03-22 2018-09-27 Sms Group Gmbh Reckwalzverfahren und Reckwalzwerk
WO2020015554A1 (fr) * 2018-07-17 2020-01-23 韩静涛 Machine composite à forger et à former de tube métallique par laminage
US20220362827A1 (en) * 2019-09-11 2022-11-17 Sms Group Gmbh Stretch rolling device and stretch rolling method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110102689A (zh) * 2019-06-15 2019-08-09 淄博宏杰自动化设备有限公司 一种辊锻机90度旋转机构
KR102232173B1 (ko) * 2019-08-19 2021-03-26 주식회사 포메탈 로봇 유닛 및 단조 롤을 이용하여 알루미늄 소재를 자동적으로 소성 가공하는 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528783B2 (fr) 1971-08-19 1977-03-11
JPH0133262B2 (fr) 1979-11-23 1989-07-12 Gurootonzu Metarufuoomingu Shisutemuzu Inc
JPH05169176A (ja) 1991-12-24 1993-07-09 Aichi Steel Works Ltd フォージングロール用ロボットハンド
JPH1157921A (ja) * 1997-08-08 1999-03-02 Sumitomo Heavy Ind Ltd フォージングロールおよびそれを用いた鍛造プレスライン
EP2316589A1 (fr) * 2009-10-29 2011-05-04 SMS Meer GmbH Procédé et presse destinés au laminage de forgeage d'une pièce usinée

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528783A (en) 1975-07-10 1977-01-22 Nec Corp Semconductor resistance devices
JPS5942889U (ja) * 1982-09-11 1984-03-21 住友重機械工業株式会社 熱間鍛造用マニプレ−タ
JPS6085886A (ja) * 1983-10-14 1985-05-15 三菱長崎機工株式会社 鍛造用マニピユレ−タにおけるクランピング装置
JP2696846B2 (ja) 1987-07-30 1998-01-14 アイシン精機株式会社 ミシンの刺繍枠取付け装置
JP3322156B2 (ja) * 1997-03-28 2002-09-09 住友金属工業株式会社 型鍛造ロール設備におけるマニピュレータの移動制御方法およびその移動制御装置
CN201921961U (zh) * 2010-11-02 2011-08-10 天津市轩宇科技有限公司 一种整体式自动辊锻机
CN102430678B (zh) * 2011-11-08 2014-06-18 北京机电研究所 一种煤机系列齿轨锻件的辊锻方法
KR20150050917A (ko) * 2013-11-01 2015-05-11 현대중공업 주식회사 프레스 라인의 이송로봇 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528783B2 (fr) 1971-08-19 1977-03-11
JPH0133262B2 (fr) 1979-11-23 1989-07-12 Gurootonzu Metarufuoomingu Shisutemuzu Inc
JPH05169176A (ja) 1991-12-24 1993-07-09 Aichi Steel Works Ltd フォージングロール用ロボットハンド
JPH1157921A (ja) * 1997-08-08 1999-03-02 Sumitomo Heavy Ind Ltd フォージングロールおよびそれを用いた鍛造プレスライン
JP3435314B2 (ja) 1997-08-08 2003-08-11 住友重機械工業株式会社 フォージングロールおよびそれを用いた鍛造プレスライン
EP2316589A1 (fr) * 2009-10-29 2011-05-04 SMS Meer GmbH Procédé et presse destinés au laminage de forgeage d'une pièce usinée

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116570A1 (de) * 2017-03-22 2018-09-27 Sms Group Gmbh Reckwalzverfahren und Reckwalzwerk
WO2018171828A1 (fr) 2017-03-22 2018-09-27 Sms Group Gmbh Procédé de laminage de réduction et cylindres finisseurs
DE102017116570B4 (de) 2017-03-22 2019-01-17 Sms Group Gmbh Reckwalzverfahren und Reckwalzwerk
US11498116B2 (en) 2017-03-22 2022-11-15 Sms Group Gmbh Stretch rolling method and stretch rolling unit
WO2020015554A1 (fr) * 2018-07-17 2020-01-23 韩静涛 Machine composite à forger et à former de tube métallique par laminage
US20220362827A1 (en) * 2019-09-11 2022-11-17 Sms Group Gmbh Stretch rolling device and stretch rolling method

Also Published As

Publication number Publication date
JP2017006947A (ja) 2017-01-12
JP2018528862A (ja) 2018-10-04
CN108112241B (zh) 2019-12-17
CZ308188B6 (cs) 2020-02-12
CN108112241A (zh) 2018-06-01
CZ201818A3 (cs) 2018-03-14
DE112016002792T5 (de) 2018-06-28
KR102037889B1 (ko) 2019-10-29
JP6588743B2 (ja) 2019-10-09
KR20180021099A (ko) 2018-02-28

Similar Documents

Publication Publication Date Title
WO2016207016A1 (fr) Machine de forgeage par laminage et procédé de forgeage par laminage
US8511135B2 (en) Bending apparatus
US11192164B2 (en) Centering blanks
CN102335714A (zh) 基于多关节机器人的锻压工业用多工位步进送料方法
US10954577B2 (en) Hot-forming line for manufacturing hot-formed and press-hardened steel-sheet products, and method for operating said hot-forming line
US4887446A (en) System for transferring workpieces through a series of work stations
US4586365A (en) Apparatus for automatically transporting work-pieces in a drop forging press
US11453042B2 (en) Forging roll device
CN106040796A (zh) 板材滚压折弯机
CN106881427B (zh) 输送装置、生产装置、多级的压力成型机和用于借助于生产装置由工件制造产品的方法
CN104668405A (zh) 一种用于铁线折弯机的送料及收集装置
US20220314298A1 (en) Transfer method, manipulation system designed therefor, and bending installation
EP3838436A1 (fr) Procédure améliorée pour le cisaillage rapide d'un flan dans une bande métallique
JP7304906B2 (ja) トランスファープレス化装置
CN105290306B (zh) 编制混合链机械手
KR101217482B1 (ko) 회전식 냉간 포머
CN206108236U (zh) 一种五金产品的全自动加工生产线
US2389139A (en) Square plug flanger
RU2429931C1 (ru) Полуавтомат для гибки проволочных изделий
US2038542A (en) Bolt machine
RU2521909C2 (ru) Грейферная подача для перемещения деталей в прессе
SU1058684A1 (ru) Автоматизированный комплекс дл штамповки
US423731A (en) Third to charles baltzell
SU1496877A1 (ru) Автоматическа лини дл штамповки крупногабаритных деталей
JPH06530U (ja) トランスファフィーダの把持爪昇降装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16729254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566372

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002792

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: PV2018-18

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 20187002042

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16729254

Country of ref document: EP

Kind code of ref document: A1