WO2016206650A1 - 上行数据传输的方法和装置 - Google Patents

上行数据传输的方法和装置 Download PDF

Info

Publication number
WO2016206650A1
WO2016206650A1 PCT/CN2016/087333 CN2016087333W WO2016206650A1 WO 2016206650 A1 WO2016206650 A1 WO 2016206650A1 CN 2016087333 W CN2016087333 W CN 2016087333W WO 2016206650 A1 WO2016206650 A1 WO 2016206650A1
Authority
WO
WIPO (PCT)
Prior art keywords
ctu
transmission
dcs
uplink data
information
Prior art date
Application number
PCT/CN2016/087333
Other languages
English (en)
French (fr)
Inventor
韩玮
刘亚林
陈大庚
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680036142.0A priority Critical patent/CN107710850B/zh
Priority to EP16813766.9A priority patent/EP3307002B1/en
Priority to ES16813766T priority patent/ES2773506T3/es
Publication of WO2016206650A1 publication Critical patent/WO2016206650A1/zh
Priority to US15/852,395 priority patent/US10420131B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method and apparatus for uplink data transmission.
  • the selection of the uplink data sharing channels is based on the scheduling/granting mechanism and is completely affected by the base station (
  • the base station (referred to as "BS") is controlled.
  • the user equipment User Equipment, referred to as "UE”
  • UE User Equipment
  • the BS receives the request, it sends an uplink Grant to the UE.
  • the UE is notified of the uplink transmission resource allocated to the UE, and the UE performs data transmission on the permitted uplink transmission resource accordingly.
  • next-generation communication network will adopt the Grant Free transmission mode to support massive user access.
  • the BS delimits the access area of the Contention Transmission Unit (CTU) in the uplink transmission resource.
  • CTU Contention Transmission Unit
  • the UE accesses the uplink transmission resource in a competitive manner in the area without following the Scheduling/Grant mechanism.
  • the UE In order to successfully perform Grant Free uplink transmission, the UE should first determine the CTU resources of the uplink transmission. Determining the CTU resources may be based on predetermined UE-CTU mapping rules known to both the UE and the BS.
  • the mapping rule can be foreseen by the UE in an implicit manner such as standard specification or firmware implementation. It can also be notified by the BS through explicit high-level signaling. For example, different mapping rules may be first defined in the standard, and then the BS notifies the UE by signaling the sequence number of the corresponding mapping rule.
  • Signature can be regarded as a code resource.
  • Signature can be regarded as a code resource.
  • the same time-frequency resource that is, the same time-frequency-code resource
  • a conflict occurs, and a corresponding advanced detection method is needed to solve the problem.
  • multiple UEs using the same time-frequency-code resource further use the same pilot, the collision is generally considered to be impossible to solve by the detection method alone. This situation needs to be combined with special conflict avoidance or resolution mechanisms, such as remapping, retransmission, and so on.
  • special conflict avoidance or resolution mechanisms such as remapping, retransmission, and so on.
  • some UEs may be remapped onto new CTU resources.
  • the embodiment of the invention provides a method and a device for uplink data transmission, which can improve the reliability of data transmission and reduce the transmission delay.
  • a method for uplink data transmission comprising: receiving a first message including transmission mode information, where the transmission mode information is used to indicate that the terminal device can pass the same time At least two competing transmission unit CTUs in the interval TTI transmit uplink data, where the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time, a transmission resource combining a frequency, a code domain, and a pilot, where the uplink data portions of the at least two CTU transmissions are the same or the same; sending a second message including the indication information, where the indication information is used to enable the terminal device to perform the indication information according to the indication information Determine the CTU used for upstream data transmission.
  • a second aspect provides a method for uplink data transmission, which is performed by a terminal device, the method comprising: transmitting a first message including transmission mode information, where the transmission mode information is used to indicate that the terminal device can pass the same At least two competing transmission unit CTUs in the time interval TTI transmit uplink data, where the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time. a transmission resource combining frequency, code domain, and pilot, where the uplink data portions of the at least two CTU transmissions are the same or all the same; receiving a second message including indication information, where the indication information is used to enable the terminal device to follow the indication The information determines the CTU used for uplink data transmission.
  • the third aspect provides an apparatus for uplink data transmission, including: a receiving module, configured to receive a first message including transmission mode information, where the transmission mode information is used to indicate that the terminal device is capable of At least two competing transmission unit CTUs in the same time interval TTI transmit uplink data, where the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or The transmission resource of the combination of the time, the frequency, the code domain, and the pilot, where the uplink data portions of the at least two CTU transmissions are the same or all the same; the sending module is configured to send a second message including the indication information, where the indication information is used for And causing the terminal device to determine, according to the indication information, a CTU used for performing uplink data transmission.
  • a receiving module configured to receive a first message including transmission mode information, where the transmission mode information is used to indicate that the terminal device is capable of At least two competing transmission unit CTUs in the same time interval TTI transmit uplink data, where
  • the fourth aspect provides an apparatus for uplink data transmission, including: a sending module, configured to send a first message including transmission mode information, where the transmission mode information is used to indicate that the apparatus can pass at least two of the same time interval TTI
  • the CTUs of the contention transmission unit transmit uplink data.
  • the CTU refers to a transmission resource combining time, frequency and code domain, or a transmission resource combining time, frequency and pilot, or time, frequency, code domain, and guide. a frequency-combined transmission resource, the uplink data portions of the at least two CTU transmissions being the same or all the same; the receiving module, configured to receive a second message including the indication information, where the indication information is used to determine, by the device, according to the indication information
  • the CTU used for upstream data transmission including: a sending module, configured to send a first message including transmission mode information, where the transmission mode information is used to indicate that the apparatus can pass at least two of the same time interval TTI
  • the CTUs of the contention transmission unit transmit uplink data.
  • the network device receives a first message that includes the transmission mode information sent by the terminal device, and sends a second message including the indication information to the terminal device, so that The terminal device may determine, according to the indication information, a CTU used for uplink data transmission, and the terminal device can transmit uplink data by using at least two CTUs in the same TTI, thereby improving reliability of data transmission and reducing transmission delay. .
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present invention is applied;
  • FIG. 2 is a schematic flowchart of a method for uplink data transmission according to an embodiment of the present invention
  • 3(a) to (d) are schematic diagrams showing a mapping relationship between a terminal device and a plurality of CTUs in the same TTI according to an embodiment of the present invention
  • FIG. 5(a) and (b) are schematic diagrams showing a mapping relationship between a terminal device and a CTU according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for uplink data transmission according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method for uplink data transmission according to still another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for uplink data transmission according to still another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for uplink data transmission according to still another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an apparatus for uplink data transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an apparatus for uplink data transmission according to an embodiment of the present invention.
  • FIG. 12 is an intentional block diagram of an apparatus for uplink data transmission according to another embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of an apparatus for uplink data transmission according to another embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of a method for uplink data transmission according to still another embodiment of the present invention.
  • FIG. 15 is a schematic block diagram of an apparatus for uplink data transmission according to still another embodiment of the present invention.
  • 16 is a schematic block diagram of an apparatus for uplink data transmission according to still another embodiment of the present invention.
  • 17 is a schematic block diagram of an apparatus for uplink data transmission according to still another embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the solution of the embodiment of the present invention can be applied to an existing cellular communication system, such as Global System for Mobile Communication (GSM), and Wideband Code Division Multiple Access (WCDMA).
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the supported communication is mainly for voice and data communication.
  • a traditional base station supports a limited number of connections and is easy to implement.
  • the next-generation mobile communication system will support not only traditional communication, but also machine-to-machine (M2M) communication, or Machine Type Communication (MTC) communication.
  • M2M machine-to-machine
  • MTC Machine Type Communication
  • V2V device-to-device
  • a large number of connections require more resources to access the terminal device and need to consume more resources for the transmission of scheduling signaling related to the data transmission of the terminal device.
  • the solution according to the embodiment of the present invention can effectively solve the above resource consumption problem.
  • the network device is a base station, and the terminal device is a user equipment.
  • a terminal device may also be referred to as a user equipment (User Equipment, abbreviated as "UE") user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal. , a wireless communication device, a user agent, or a user device.
  • the terminal device may be a station (Station, simply referred to as "ST”) in a Wireless Local Area Networks (“WLAN”), and may be a cellular phone, a cordless phone, or a Session Initiation Protocol (Session Initiation Protocol).
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device may be a device for communicating with the mobile device, such as a network device, and the network device may be an Access Point (AP) in the WLAN, and Code Division Multiple Access (referred to as “Code Division Multiple Access”).
  • AP Access Point
  • Code Division Multiple Access referred to as “Code Division Multiple Access”.
  • a base station in GSM or “CDMA”
  • BTS Base Transceiver Station
  • NodeB base station
  • NB Long Term Evolution
  • eNB Evolution Base Node B
  • LTE Long Term Evolution
  • a computer readable medium can include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (eg, a compact disk (“CD”), a digital versatile disk (Digital Versatile) Disk (referred to as "DVD”), etc.), smart card and flash memory device (for example, Erasable Programmable Read-Only Memory (EPROM), card, stick or key driver, etc.).
  • a magnetic storage device eg, a hard disk, a floppy disk, or a magnetic tape, etc.
  • an optical disk eg, a compact disk (“CD”), a digital versatile disk (Digital Versatile) Disk (referred to as "DVD”), etc.
  • EPROM Erasable Programmable Read-Only Memory
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present invention is applied.
  • the communication system 100 can include a network device 102 and terminal devices 104-114 (referred to as UEs in the figure) connected by a wireless connection or a wired connection or other means.
  • UEs terminal devices
  • the communication system 100 may refer to a Public Land Mobile Network (PLMN) or a D2D network or an M2M network or other network.
  • PLMN Public Land Mobile Network
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may be included in the communication system. , not shown in Figure 1.
  • Unauthorized transmission of English can be expressed as Grant Free.
  • the exemption here can be targeted for uplink data transmission.
  • Unauthorized transmission can be understood as any meaning of the following meanings, or multiple meanings, or some of the various meanings A combination of features, or other similar meaning:
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has the uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected one.
  • the transmission resource sends the uplink data; the network device detects the uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and used.
  • the selected transmission resource sends uplink data.
  • the unlicensed transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when the uplink data transmission request is required, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unlicensed transmission may refer to a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device.
  • the dynamic scheduling may refer to that the network device indicates the transmission by using signaling for each uplink data transmission of the terminal device.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be one or more transmission time units of transmission resources after the time when the UE receives the signaling.
  • a transmission time unit may refer to a minimum time unit for one transmission, such as a Transmission Time Interval ("TTI"), the value may be 1 ms, or may be a preset transmission time unit.
  • TTI Transmission Time Interval
  • Unauthorized transmission may refer to: the terminal device performs uplink data transmission without requiring network device authorization.
  • the authorization may be performed by the terminal device sending an uplink scheduling request to the network device. After receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates the uplink transmission resource allocated to the terminal device.
  • the unlicensed transmission may be a competitive transmission mode. Specifically, multiple terminals may simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance, without requiring the base station to perform authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as the detection of data that may arrive without predicting whether or not data has arrived.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources:
  • time domain resources such as radio frames, subframes, symbols, etc.
  • - frequency domain resources such as subcarriers, resource blocks, etc.
  • - airspace resources such as transmit antennas, beams, etc.
  • SCMA Sparse Code Multiple Access
  • LDS Low Density Signature
  • CDMA Code Division Multiple Access
  • the above transmission resources may be transmitted according to a control mechanism including, but not limited to, the following:
  • uplink power control such as uplink transmit power upper limit control, etc.
  • Modulation coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • the above transmission resources may be further divided into one or more Contention Transmission Units ("CTUs").
  • the CTU can be a basic transmission resource for unauthorized transmission.
  • a CTU may refer to a transmission resource combining time, frequency, and code domain, or may refer to a transmission resource combining time, frequency, and pilot, or may refer to a transmission resource combining time, frequency, code domain, and pilot.
  • the access area of the CTU may refer to a time-frequency area for unauthorized transmission.
  • Patent No. PCT/CN2014/073084 the patent application entitled “System and Method for Uplink Grant-free Transmission Scheme", provides a technical solution for uplink grant-free transmission.
  • the PCT/CN2014/073084 application describes that radio resources can be divided into various CTUs, and the UE is mapped to a certain CTU.
  • Each CTU may be assigned a set of codes, and the assigned set of codes may be a set of CDMA codes, or may be an SCMA codebook set or an LDS group or a signature group.
  • Each code can correspond to a set of pilots. The user can select a code and one of the pilot groups corresponding to the code for uplink transmission.
  • the content of the PCT/CN2014/073084 application is also to be understood as a part of the content of the embodiments of the present invention, and is not described again.
  • FIG. 2 shows a schematic flow chart of a method for uplink data transmission according to an embodiment of the present invention.
  • the method is performed by a network device, as shown in FIG. 2, the method 200 includes:
  • S210 Receive a first message that includes transmission mode information, where the transmission mode information is used to indicate that the terminal device can transmit uplink data by using at least two contention transmission unit CTUs in the same time interval TTI, where the CTU refers to time, frequency, and code domain phase.
  • the uplink data portions of the at least two CTU transmissions are the same or all the same.
  • the first message indicates that the terminal device can perform redundant transmission, wherein the redundant transmission includes a transmission mode: transmitting uplink data through at least two competing transmission unit CTUs in the same time interval TTI; understanding of the first message can be applied
  • the redundant transmission includes a transmission mode: transmitting uplink data through at least two competing transmission unit CTUs in the same time interval TTI; understanding of the first message can be applied
  • Other embodiments are not described in other embodiments.
  • S220 Send a second message that includes indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a CTU used for uplink data transmission.
  • the CTU used by the uplink data transmission includes at least two CTUs in the same TTI, and further optionally, at least two CTUs in the same TTI included in the CTU used by the uplink data transmission are used for redundancy.
  • the remaining transmissions, or at least two CTUs within the same TTI included in the used CTU, are used to transmit some of the same or all of the same uplink data.
  • the network device receives the first message that is sent by the terminal device, including the transmission mode information, and determines, according to the transmission mode information, that the terminal device can transmit the uplink data by using at least two contention transmission unit CTUs in the same time interval TTI, and The uplink data part of the terminal device transmitted by the at least two CTUs is the same or the same.
  • the network device may determine, by using the CTU, the indication information used by the terminal device to perform uplink data transmission, and The terminal device transmits a second message including the indication information.
  • the network device receives the first message that includes the transmission mode information that is sent by the terminal device, and sends a second message that includes the indication information to the terminal device, so that the terminal device can
  • the indication information determines the CTU used for the uplink data transmission. Since the terminal equipment can transmit the uplink data through at least two CTUs in the same TTI, the reliability of the data transmission can be improved, and the transmission delay can be reduced.
  • the redundant transmission may be understood to include a transmission mode in which data transmitted during one data transmission includes at least first data and second data, and the second data and the first A data portion is the same or all the same.
  • redundant transmissions can also be referred to as reliability transmissions or as a category of reliability transmission. Redundant transmissions may be referred to as other names including the above transmission methods.
  • the method of the embodiments of the present invention can be applied to any one or more of the following fields: device to device D2D domain, machine to machine M2M domain, machine type communication MTC domain.
  • the invention is not limited to this.
  • the transmission of the uplink data in the embodiment of the present invention is an unauthorized transmission.
  • the terminal device that cannot perform redundant transmission may send the transmission mode information to the network device, indicating that the terminal device cannot perform redundant transmission, and the terminal device capable of performing redundant transmission does not go to the network.
  • the device sends the transmission mode information, and the network device does not receive the transmission mode information sent by the terminal device within a certain period of time, and the terminal can be considered as capable of redundant transmission.
  • the terminal device capable of performing redundant transmission sends the transmission mode information to the network device, indicating that the terminal device can perform redundant transmission, and the terminal device that cannot perform redundant transmission does not send the transmission mode information to the network device, and the network device is in a certain time If the transmission mode information transmitted by the terminal device is not received, the terminal device is considered to be unable to perform redundant transmission, but the present invention is not limited thereto.
  • the network device when the terminal device cannot perform the redundant transmission, the network device also sends a message including the indication information to the terminal device. At this time, the terminal device may determine, according to the indication information, the CTU used for the normal transmission, and Perform an initial transfer or retransmission.
  • the same or all the same uplink data portions of the at least two CTU transmissions may be understood as: each of the at least two CTUs transmits a part of data of the uplink data to be transmitted and each CTU transmission The data is different; or, some CTUs of the at least two CTUs transmit the same and complete uplink data to be transmitted, and the other CTUs of the at least two CTUs transmit part of the data of the uplink data to be transmitted.
  • the invention is not limited thereto.
  • the network device may receive the first message sent by the terminal device by using an uplink common control channel, where the first message may further include a corresponding requirement for the terminal device to perform redundant transmission, and the present invention Not limited.
  • the terminal device may add a field related to the redundant transmission in an RRC Connection Request message.
  • any indication information including but not limited to the following indication information may be added to the RRC connection setup request message: grantFreeCapability BITSTRING (SIZE (8)), indicating different Grant Free support capabilities, the indication information
  • SIZE (8) grantFreeCapability BITSTRING
  • One of the included 8 bits is used to indicate whether the terminal device can perform redundant transmission. For example, when the value of the one bit is taken as 1, the terminal device can be instructed to perform redundant transmission (1-Enable).
  • the candidateMappingRule indicates the candidate CTU sequence number mapping rule set
  • the redundancyTransmissionPattern indicates the data transmission mode
  • the redundantTransmissionPattern may be the above transmission mode.
  • An example of information Information indicating whether the terminal device is capable of redundant transmission and indicating a data transmission mode, such as the above
  • the redundant transmission can include multiple data transmission modes, and the transmission of the uplink data by at least two competing transmission unit CTUs within the same time interval TTI is one of the transmission modes.
  • the Grant Free time-frequency diversity transmission mode may be added to the existing standard transmission mode definition to determine the transmission mode during redundant transmission. For example, according to Table 1 The method definition shown:
  • the indication information includes at least one of the following information: information of a dedicated connection signature DCS of the terminal device; information of the CTU; and quantity information of the CTU that the terminal device can use to transmit the uplink data.
  • CTU access area information CTU access area information in the CTU access area; initial CTU information in the CTU access area; CTU sequence number mapping rule information.
  • the network device may allocate a unique dedicated connection signature DCS to the terminal device, and the network device may directly notify the terminal device of the value of the exclusive connection signature, or notify the terminal device of the index value of the exclusive connection signature, and the terminal device according to the
  • the index value may determine the DCS allocated by the network device for itself; the information of the CTU may be specifically the sequence number of the CTU; the information of the CTU access area may be specifically the sequence number of the CTU access area; the CTU sequence number mapping rule information may be specific.
  • the mapping rule may also be a sequence number corresponding to the specific mapping rule.
  • the CTU sequence number mapping rule set ⁇ f UE-TR ( ⁇ ) ⁇ may be predefined by a standard specification or a manner agreed by the communication parties in advance, and the CTU sequence number mapping The rule set includes different CTU mapping rules.
  • the network device sends the sequence number of the corresponding mapping rule to the UE by signaling, or the network device can also send the CTU sequence number mapping rule to the UE by using the display signaling.
  • the invention is not limited thereto.
  • one form of the sequence number may be an index.
  • the network device may only notify the terminal device of the DCS allocated to the UE, and the terminal device may be according to the standard or pre-agreed DCS and CTU. Corresponding relationship determines a CTU for transmitting uplink data; the network device may also inform the UE of the sequence number display of the determined CTU access area, and the UE according to the serial number of the CTU access area and the CTU access area specified or pre-agreed according to the standard The number of CTUs in the CTU and the number of the starting CTUs in the CTU access area and the number of CTUs that can be used to transmit uplink data determine the CTU for transmitting uplink data; the network equipment can also only use the CTU access area.
  • the number of CTUs in the UE tells the UE that the UE according to the standard or pre-agreed CTU access area, the sequence number of the starting CTU in the CTU access area, the number of CTUs that can be used to transmit uplink data, and the CTU access
  • the number of CTUs in the area determines the CTU for transmitting uplink data; the network device may also inform the UE of any one or more of the above seven kinds of information, and the UE determines other numbers according to standard regulations or prior agreements.
  • Information, and determining a CTU for transmitting uplink data based on the information obtained by the display and implicitly determined. The invention is not limited thereto.
  • the network device may use a broadcast channel, such as a Broadcast Control Channel (BCCH) in the Long Term Evolution (LTE) system, to broadcast all or part of the terminal devices in the system.
  • a broadcast channel such as a Broadcast Control Channel (BCCH) in the Long Term Evolution (LTE) system
  • BCCH Broadcast Control Channel
  • DCCH Dedicated Control Channel
  • the network device may use a broadcast channel, such as a Broadcast Control Channel (BCCH) in the Long Term Evolution (LTE) system, to broadcast all or part of the terminal devices in the system.
  • BCCH Broadcast Control Channel
  • DCCH Dedicated Control Channel
  • the second message includes, in addition to the indication information, an enabling information of whether the network device supports Grant Free transmission and Grant Free redundancy transmission, and the Grant Free redundancy transmission.
  • the enabling information includes whether the network device supports the Grant Free redundant transmission, and the information such as the Modulation and Coding Scheme (MCS) of the Grant Free Redundancy transmission, and may include other information. Not limited.
  • the network device may add indication information related to redundant transmission in a RRC message. For example, you can add "grantFreeCapability BITSTRING(SIZE(8))" to the existing standard "SystemInformationBlockTypeX" to define different Grant Free support capabilities.
  • One of the 8 bits is used to indicate whether the network device can support redundancy.
  • the transmission may indicate that the network device can support redundant transmission (1-Enable) when the value of the one bit takes 1, and when the value of the one bit takes 0, indicating that the network device cannot support redundant transmission ( 0-Disable).
  • connection establishment message includes any one or more indication information including but not limited to the following indication information: ueDCSIndex, indicating the DCS sequence number unique to the UE; ctuAccessRegion indicating the CTU access area; ctuNumber, indicating the CTU in the CTU access area The number; ctuMappingRule, indicating the UE-CTU sequence number mapping rule.
  • indication information including but not limited to the following indication information: ueDCSIndex, indicating the DCS sequence number unique to the UE; ctuAccessRegion indicating the CTU access area; ctuNumber, indicating the CTU in the CTU access area The number; ctuMappingRule, indicating the UE-CTU sequence number mapping rule.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; the terminal device can be used for transmitting uplink The number of CTUs of data; the number of CTUs in the CTU access zone; the sequence number of the starting CTU in the CTU access zone.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I TR-ij (I TR-INT + DCS i + j) mod N TR , or
  • I TR-ij f(I TR-INT +DCS i +j)mod N TR ,
  • the terminal device capable of performing redundant transmission and the terminal device capable of performing redundant transmission may have the same CTU access area, thereby improving utilization of transmission resources.
  • a dedicated area for redundant transmission may be demarcated.
  • the dedicated area may understand that only terminal devices capable of redundant transmission are allowed to compete for access, and uplink data is transmitted, and redundant transmission is performed. It can be understood as described above. That is to say, the CTU access area may also be referred to as a CTU access area for redundant transmission, or the CTU access area is a CTU access area for reliability transmission, or the CTU connection
  • the inbound area is a CTU access area of Reliable Ultra-Low Latency ("RULL") transmission, or an access area of other names, but the present invention is not limited thereto.
  • RULL Reliable Ultra-Low Latency
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; a number of CTUs that the terminal device can use for redundantly transmitting uplink data; The number of CTUs in the CTU access area for redundant transmission; the sequence number of the starting CTU in the CTU access area for redundant transmission.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I TR-ij (I TR-INT + DCS i + j) mod N TR , or
  • I TR-ij f(I TR-INT +DCS i +j)mod N TR ,
  • the CTU access area is one or more CTU access areas, where the multiple CTU access areas are CTU access areas belonging to the same TTI. That is to say, the terminal device can map to multiple CTUs in the same TTI for uplink data transmission.
  • FIGS. 3(a) to (d) are diagrams showing a mapping relationship between a terminal device and a CTU in the same TTI according to an embodiment of the present invention.
  • the eight terminal devices of the UE1 to the UE8 are mapped to eight CTUs in sequence, and each CTU has two different terminals for uplink data transmission.
  • the eight terminal devices are mapped to the first group of four CTUs 302-308 according to the combination defined by the first CTU sequence number mapping rule.
  • UE1 and UE2 are mapped to CTU 302, UE3 and UE4 are mapped to CTU 304, UE5 and UE6 are mapped to CTU 306, and UE7 and UE8 are mapped to CTU 308.
  • the eight terminal devices are mapped to the second group of four CTUs 310-316 according to the combination defined by the second CTU sequence number mapping rule.
  • UE1 and UE5 are mapped to CTU310
  • UE2 and UE6 are mapped to CTU 312
  • UE3 and UE7 are mapped to CTU 314, and
  • UE4 and UE8 are mapped to CTU 316.
  • the all or part of the terminal devices may continue to be mapped to other CTUs in the same TTI according to a combination manner similar to that defined by the CTU sequence number mapping rule.
  • the eight terminal devices are further mapped to the third group of four CTUs 318-324 according to the combination defined by the third CTU sequence number mapping rule.
  • UE1 and UE3 are mapped to CTU 318
  • UE5 and UE7 are mapped to CTU 320
  • UE2 and UE4 are mapped to CTU 322
  • UE6 and UE8 are mapped to CTU 324.
  • the above terminal devices can be mapped to other group CTUs according to a combination manner defined by other CTU sequence number mapping rules.
  • multiple sets of terminal devices may be mapped in whole or in part To all or part of the above CTU resources. For example, in FIG. 3(c), a portion of the UE11 and UE13 of the second group of terminal devices are mapped to the CTU 302 and the CTU 304, respectively, and a portion of the UE 16 and UE 17 of the third group of terminal devices are mapped to the CTU 312 and the CTU 314, respectively.
  • the terminal device that performs redundant transmission and the terminal device that performs regular transmission may be mapped to CTUs in the same TTI.
  • UE1, UE2 and UE5 performs Grant Free redundancy transmission, where UE1 is mapped to CTU 302 and CTU 310, UE2 is mapped to CTU 302 and CTU 312, and UE 5 is mapped to CTUs 306 and 310.
  • UE3, UE4, UE7 and UE8 perform GrantFree regular transmission, where UE3 is mapped to CTU 304, UE4 is mapped to CTU 316, UE7 is mapped to CTU 314, and UE8 is mapped to CTU 308.
  • the above-mentioned terminal device can also be mapped to different CTUs according to the combination manner defined by other CTU sequence number mapping rules, which is not limited by the present invention.
  • the multiple CTU access areas further include CTU access areas belonging to different TTIs. That is to say, the terminal device can be mapped to the CTU in different TTIs for uplink data transmission.
  • FIG. 4 illustrates a mapping relationship between a terminal device and CTUs in multiple TTIs according to an embodiment of the present invention.
  • UE6, UE7 and UE8 perform GrantFree regular transmission in TTI1, where UE6 is mapped to CTU 404, UE7 is mapped to CTU 414, and UE8 is mapped to CTU 408.
  • the UE 12 performs a Grant Free regular transmission within the TTI 2 and maps to the CTU 416.
  • UE 13 and UE 15 perform Grant Free regular transmissions within TTI 3, where UE 13 is mapped to CTU 408 and UE 15 is mapped to CTU 416.
  • the UE1 is mapped to the CTU 402 in the TTI1, the CTU 402 and the CTU 410 in the TTI2.
  • UE2 is mapped to CTU 402 and CTU 410 within TTI1.
  • UE3 is mapped to CTU 410 within TTI1, CTU 410 and CTU 414 within TTI2.
  • UE4 maps to CTU 416 within TTI1, CTU 404 within TTI2, and CTU 412 within TTI3.
  • UE5 is mapped to CTU 406 and CTU 410 within TTI1, CTU 404 within TTI2.
  • UE9 maps to CTU 406 within TTI2, CTU 406 and CTU 410 within TTI3.
  • UE 10 maps to CTU 408 within TTI2 and CTU 408 within TTI3.
  • UE 11 maps to CTU 612 within TTI2 and CTU 406 within TTI3.
  • UE 14 maps to CTU 404 and CTU 414 within TTI3.
  • the invention is not limited to this.
  • the uplink data transmitted by the at least two CTUs is retransmitted data. That is, the terminal device may determine, according to the indication information, that the initial transmission is performed. The CTU and the CTU that performs retransmission, when determining the initial transmission failure, the terminal device determines, according to the indication information, the CTU for retransmission to perform retransmission data transmission.
  • the terminal device may select to retransmit the part of the data that is not successfully received, or may choose to retransmit all the data in the network.
  • the terminal device retransmits all the uplink data, and the data transmission mode adopted by the present invention for retransmission is not limited.
  • the CTU for retransmission may be determined according to the new CTU sequence number mapping rule, where the new CTU sequence number mapping rule may be specified by the standard. Or the UE and the network device agree in advance, or the network device may send the UE to the UE through a broadcast channel or other downlink channel. For example, when the terminal device fails to transmit the uplink data, the network device may receive the CTU remapping rule. The message is that the terminal device determines the CTU for retransmission according to the CTU re-mapping rule, which is not limited by the present invention.
  • the new CTU sequence number mapping rule may be a new mapping rule reselected from the optional mapping scheme set ⁇ f UE-TR ( ⁇ ) ⁇ . It is also possible to re-allocate DCS i for UE i and update according to the currently adopted rule for determining the CTU sequence number. Assignment, thereby mapping UE i to a new CTU, and providing UE i with new CTU transmission resources. Can also be partially changed The assignment of one or more elements in the medium provides a partial new CTU transmission resource for UE i .
  • the invention is not limited to this.
  • the network device sends an ACK to the UE after the successful detection. If the UE does not receive an ACK after waiting for a certain period of time, it considers that the uplink transmission conflicts, and the network device fails to successfully receive the uplink data. If the UE and the network device agree to acknowledge the reception detection failure in the NACK manner, the network device will send a NACK to the UE after the detection fails. If the UE receives the NACK, it considers that the uplink transmission conflicts, and the network device fails to successfully receive the uplink data.
  • the network device receives the uplink Grant Free transmission of the plurality of terminal devices.
  • the network device identifies the CTUs for performing the Grant Free redundant transmission according to the correspondence between the I CTU and the CTU access area and the correspondence between the I CTU and the DCS of the terminal device, and performs redundant reception on the CTUs.
  • the ACK/NACK feedback for the UE i is not detected for the I CTU, and each CTU indicated by ij is performed separately, but a unified ACK/NACK is performed after the UE i redundant merge reception is completed.
  • the network device when performing redundancy reception for UE i , may be configured according to The indications are respectively performed on the corresponding CTU for channel estimation, signal detection and decoding, and the signal bits on the successfully decoded CTU are combined to obtain a bit-level combined reception gain, thereby improving the transmission reliability of the UE i .
  • Network devices can also be based on The indication is performed on the corresponding CTU, and then the CTU channel estimation result and each received signal are jointly detected to obtain combined receive gain output bit information, thereby improving the transmission reliability of UE i .
  • the invention is not limited to this.
  • UE1 and UE2 are mapped to CTU 502, and UE1 and UE5 are mapped to CTU 510. Therefore, there is an uplink transmission conflict between CTU 502 and CTU 510.
  • the signal model on the corresponding CTU can be described as the following linear equations (1):
  • y 1 is the received signal model on CTU 502
  • y 2 is the received signal model on CTU 506
  • y 3 is the received signal model on CTU 510
  • y 4 is the received signal model on CTU 512.
  • X j denotes a signal transmitted by UE j
  • H ij denotes channel information of UE j to y i
  • n i denotes noise received by y i .
  • the information of UE5 and UE2 can be first solved from the CTU 506 and the CTU 512 without collision, and then the UE2 and UE5 are respectively removed from the CTU 502 and the CTU 510 by using the solved information. The interference, and finally the UE1.
  • UE1 and UE2 are mapped to CTU 502, and UE1 and UE5 are mapped to CTU 510, so there is a conflict between CTU 502 and CTU 510.
  • the signal model on the corresponding CTU can be described as a linear system of equations (4):
  • y 1 is the received signal model on CTU 502
  • y 2 is the received signal model on CTU 506
  • y 3 is the received signal model on CTU 510.
  • X j denotes a signal transmitted by UE j
  • H ij denotes channel information of UE j to y i
  • n i denotes noise received by y i .
  • the information of the UE5 may be first solved from the CTU 506 where the collision does not occur, and then the interference of the UE5 to the UE1 is removed from the CTU 510 by using the solved UE5 information, thereby solving the information of the UE1. Finally, the UE1 information is used to cancel the interference of the UE1 to the UE2 from the CTU 502, and finally the UE2 is solved.
  • UE3 is mapped to CTU 504 and CTU 514, respectively, and no other terminal devices collide, and the received signal model can be expressed as formula (5):
  • y 5 is the received signal model on CTU 504
  • y 6 is the received signal model on CTU 514
  • H ij is the channel information of UE j to y i
  • n i is the noise received by y i .
  • Grant Free redundant transmission provides additional degrees of freedom for the corresponding UE to improve transmission reliability.
  • FIG. 6 shows a schematic flow of a method for uplink data transmission according to another embodiment of the present invention.
  • the method 300 includes:
  • a network device receives report information sent by a terminal device (for example, a UE).
  • the reporting information may be transmitted by the terminal device on a certain uplink common channel, including the enabling information of the UE Grant Free transmission, such as whether to support the Grant Free transmission, and the UE Grant Free redundant transmission. Information, such as whether to support Grant Free redundant transmission, and the corresponding requirements for redundant transmission.
  • the network device allocates a unique dedicated connection signature DCS sequence number to each terminal device according to the reporting information of the terminal device and other system conditions, delimits the CTU access region, and assigns a unique CTU sequence number to each CTU in the access region.
  • the network device sends the Grant Free enable information by using the high layer signaling.
  • the network device may send the enabling information by using a broadcast channel, where the enabling information may include the enabling information of the Grant Free transmission, where the enabled information of the transmission includes whether the network device supports the Grant Free transmission, the CTU access area, The number of CTUs in the CTU access area, the DCS of the UE, and the CTU sequence number mapping rule may also include the enable information of the Grant Free redundancy transmission, including whether the network device supports Grant Free redundancy transmission, and supports Grant Free redundancy.
  • the modulation of the transmission encodes information such as MCS.
  • the network device receives uplink data transmitted by the terminal device.
  • the uplink data includes uplink data transmitted by a conventional transmission terminal device and uplink data transmitted by a redundant transmission terminal device.
  • the network device sends an ACK/NACK to the terminal device.
  • the network device after receiving the uplink data, performs normal transmission terminal device detection or redundant transmission terminal device detection, and notifies the terminal device whether the uplink data is successfully transmitted through ACK/NACK.
  • the network device sends an ACK to the terminal device after the successful detection. If the terminal device does not receive an ACK after waiting for a certain period of time, it considers that the uplink transmission conflicts. If the terminal device and the network device agree to confirm the reception detection failure in the NACK manner, the network device will send a NACK to the terminal device after the detection fails. If the terminal device receives the NACK, it considers that the uplink transmission conflicts.
  • the network device informs the terminal device of the CTU remapping rule by using high layer signaling.
  • the network device receives uplink data that is sent by the terminal device according to the CTU re-mapping rule.
  • the network device sends an ACK/NACK to the terminal device.
  • the method 300 for the uplink data transmission may not include the S305.
  • the remapping rule of the CTU may be a mapping rule specified by the standard or a mapping rule that is agreed by the network device and the terminal device in advance.
  • FIG. 7 is a schematic flowchart of a method for uplink data transmission according to still another embodiment of the present invention. As shown in FIG. 7, the method 400 can be performed by a network device, the method 400 comprising:
  • S401 Receive report information sent by a terminal device (for example, a UE).
  • a terminal device for example, a UE
  • S402. Determine a CTU access area of the UE.
  • S407 proceeds to S409 to determine a conflict resolution solution.
  • the solution one determined in S409 is: directly executing S405 and subsequent steps thereof.
  • the solution 2 determined in S409 is: performing S410, re-determining the CTU sequence number mapping rule; and then performing the steps S404 and subsequent steps in sequence.
  • BBU Base Band Unite
  • Cloud-RAN Cloud Communication Center Architecture
  • the invention is not limited to this.
  • the network device receives the first message that includes the transmission mode information that is sent by the terminal device, and sends a second message that includes the indication information to the terminal device, so that the terminal device can
  • the indication information determines the CTU used for the uplink data transmission. Since the terminal equipment can transmit the uplink data through at least two CTUs in the same TTI, the reliability of the data transmission can be improved, and the transmission delay can be reduced.
  • the method for uplink data transmission according to the embodiment of the present invention is described in detail above with reference to FIG. 2 to FIG. 7. Referring to FIG. 8 and FIG. 9, the following is a detailed description from the terminal device side.
  • the method of uplink data transmission of the embodiment It should be understood that the interaction between the terminal device and the network device described in the network device side and related features, functions, and the like correspond to the description on the terminal device side, and the repeated description is omitted as appropriate for brevity.
  • FIG. 8 shows a schematic flow chart of a method for uplink data transmission according to still another embodiment of the present invention.
  • the method is performed by a terminal device, as shown in FIG. 8, the method 500 includes:
  • S510 Send a first message that includes transmission mode information, where the transmission mode information is used to indicate that the terminal device can transmit uplink data by using at least two contention transmission unit CTUs in the same time interval TTI, where the CTU refers to time, frequency, and code domain.
  • the combined transmission resource, or the transmission resource combining time, frequency, and pilot, or the transmission resource combining time, frequency, code domain, and pilot, the uplink data part of the at least two CTU transmissions is the same Or all the same;
  • S520. Receive a second message that includes indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a CTU used for performing uplink data transmission.
  • the first message sent by the terminal device to the network device includes the transmission mode information, where the transmission mode indicates that the terminal device can transmit uplink data by using at least two CTUs in a TTI, and the at least two CTUs are transmitted.
  • the uplink data part is the same or all the same, and then the terminal device receives the second message that is sent by the network device, including the indication information, and the terminal device can determine, according to the indication information, the CTU used for the uplink data transmission.
  • the terminal device sends a first message including the transmission mode information to the network device, and receives a second message that is sent by the network device, including the indication information, so that the terminal device can according to the indication.
  • the information determines the CTU used for the uplink data transmission. Since the terminal device can transmit the uplink data through at least two CTUs in the same TTI, the reliability of the data transmission can be improved, and the transmission delay can be reduced.
  • the indication information includes at least one of the following information: information of a dedicated connection signature DCS of the terminal device; information of the CTU; and quantity information of the CTU that the terminal device can use to transmit the uplink data; CTU access area information; CTU access area information in the CTU access area; initial CTU information in the CTU access area; CTU sequence number mapping rule information.
  • the terminal device may receive the value of the DCS sent by the network device, and may also determine the DCS by receiving an index value of the DCS sent by the network device;
  • the information of the CTU may be specifically a sequence number of the CTU;
  • the information may be specifically the sequence number of the CTU access area;
  • the CTU sequence number mapping rule information may be a specific mapping rule, or may be a sequence number corresponding to a specific mapping rule, for example, may be specified by a standard or agreed by the communication parties in advance.
  • the CTU sequence number mapping rule set includes different CTU sequence number mapping rules
  • the terminal device can receive the sequence number corresponding to the mapping rule sent by the network device during the communication process.
  • the specific CTU number mapping rule is determined according to the sequence number, or the terminal device can receive the specific CTU sequence number mapping rule sent by the network device during the communication process, and directly determine the CTU used for uplink data transmission according to the CTU sequence number mapping rule.
  • the invention is not limited thereto.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; and a CTU that the terminal device can use to transmit uplink data.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • interleaving range [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the sequence number of the starting CTU in the CTU access area
  • DCS i is the terminal The DCS of the device UE i
  • ⁇ i is the number of CTUs that the UE i can use to transmit uplink data
  • the N CTU is the number of CTUs in the CTU access region.
  • the CTU access area is a CTU access area for redundant transmission.
  • the redundant transmission may be understood as: the data transmitted during one data transmission includes at least the first data and the second data, and the second data is identical or identical to the first data portion.
  • the CTU access area is a CTU access area for reliability transmission, or the CTU access area is a CTU of Reliable Ultra-Low Latency (“RULL”) transmission. Access area, but the invention is not limited thereto.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; the terminal device can be used for redundantly transmitting uplink data.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • Is an interleaving function the interleaving range is [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the starting CTU in the CTU access area for redundant transmission.
  • the serial number, DCS i is the DCS of the terminal device UE i
  • ⁇ i is the number of CTUs that the UE i can use for redundant transmission of uplink data
  • the N CTU is the number of CTUs in the CTU access region for redundant transmission .
  • the CTU access area is one or more CTU access areas, where the multiple CTU access areas are CTU access areas belonging to the same TTI. That is to say, the terminal device can map to multiple CTUs in the same TTI for uplink data transmission.
  • the multiple CTU access areas further include CTU access areas belonging to different TTIs. That is to say, the terminal device can be mapped to the CTU in different TTIs for uplink data transmission.
  • the uplink data transmitted by the at least two CTUs is retransmitted data. That is, the terminal device may determine, according to the indication information, a CTU that performs initial transmission and a CTU that performs retransmission, and when determining that the initial transmission fails, the terminal device determines, according to the indication information, a CTU for performing retransmission, and performs retransmission. The transmission of data.
  • the CTU for retransmission may be determined according to the new CTU sequence number mapping rule, where the new CTU sequence number mapping rule may be specified by the standard. Or the UE and the network device agree in advance, or the network device may send the UE to the UE through a broadcast channel or other downlink channel. For example, when the terminal device fails to transmit the uplink data, the network device may receive the CTU remapping rule. The message is that the terminal device determines the CTU for retransmission according to the CTU re-mapping rule, which is not limited by the present invention.
  • the transmission of the uplink data is an unauthorized transmission.
  • the method of the embodiments of the present invention can be applied to any one or more of the following fields: device to device D2D domain, machine to machine M2M domain, machine type communication MTC domain.
  • the invention is not limited to this.
  • FIG. 9 is a schematic flowchart of a method for uplink data transmission according to still another embodiment of the present invention. As shown in FIG. 9, the method 600 can be performed by a terminal device, and the method 600 includes:
  • S602. Receive broadcast information sent by a network device.
  • the solution one determined in S606 is: directly executing S604 and subsequent steps thereof.
  • the solution 2 determined in S606 is: directly executing S602 and subsequent steps.
  • the UE may transmit the report information to the network device on a certain uplink common channel, where the report information may include the enable information of the UE Grant Free transmission, such as whether to support the Grant Free transmission, and the UE. Grant Free Redundant enable information, such as whether to support Grant Free redundant transmission, and the corresponding requirements for redundant transmission.
  • the broadcast information received by the UE may include the enable information of the Grant Free transmission, where the enabled information of the transmission includes whether the network device supports the Grant Free transmission, the CTU access area, and the CTU access area.
  • the number of CTUs, the DCS of the UE, the CTU sequence number mapping rules, etc. also includes the enabling information of the Grant Free redundancy transmission, including whether the network device supports Grant Free redundancy transmission, and the modulation coding MCS supporting Grant Free redundancy transmission. information.
  • the network device sends an ACK to the UE after the successful detection. If the UE does not receive an ACK after waiting for a certain time, it considers that the uplink transmission conflicts. If the UE and the network device agree to acknowledge the reception detection failure in the NACK manner, the network device will send a NACK to the UE after the detection fails. If the UE receives a NACK, it considers that the uplink transmission conflicts.
  • the terminal device sends a first message including the transmission mode information to the network device, and receives a second message that is sent by the network device, including the indication information, so that the terminal device can according to the indication.
  • the information determines the CTU used for the uplink data transmission. Since the terminal device can transmit the uplink data through at least two CTUs in the same TTI, the reliability of the data transmission can be improved, and the transmission delay can be reduced.
  • Figure 10 illustrates an apparatus for uplink data transmission in accordance with an embodiment of the present invention. As shown in FIG. 10, the device 10 includes:
  • the receiving module 11 is configured to receive a first message that includes transmission mode information, where the transmission mode information is used to indicate that the terminal device can transmit uplink data by using at least two contention transmission unit CTUs in the same time interval TTI, where the CTU refers to time and frequency. a transmission resource combined with a code domain, or a transmission resource combining time, frequency, and pilot, or a transmission resource combining time, frequency, code domain, and pilot, and uplink of the at least two CTU transmissions
  • the data portions are the same or all the same;
  • the sending module 12 is configured to send a second message that includes indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a CTU used for uplink data transmission.
  • the apparatus for uplink data transmission receives the first message including the transmission mode information sent by the terminal device, and sends a second message including the indication information to the terminal device, so that the terminal device can determine according to the indication information.
  • the CTU used for uplink data transmission can improve the reliability of data transmission and reduce the transmission delay because the terminal equipment can transmit uplink data through at least two CTUs in the same TTI.
  • the indication information includes at least one of the following information: information of a dedicated connection signature DCS of the terminal device; information of the CTU; and a CTU of the terminal device that can be used to transmit uplink data. Quantity information; information of the CTU access area; information of the number of CTUs in the CTU access area; information of the initial CTU in the CTU access area; CTU sequence number mapping rule information.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; the terminal device can be used for transmitting uplink The number of CTUs of data; the number of CTUs in the CTU access zone; the sequence number of the starting CTU in the CTU access zone.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • the interleaving range is [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the sequence number of the starting CTU in the CTU access area
  • DCS i is the terminal The DCS of the device UE i
  • ⁇ i is the number of CTUs that the UE i can use to transmit uplink data
  • the N CTU is the number of CTUs in the CTU access region.
  • the CTU access area is a CTU access area for redundant transmission.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; the terminal device can be used for redundancy The number of CTUs transmitting uplink data; the number of CTUs in the CTU access area for redundant transmission; the sequence number of the starting CTU in the CTU access area for redundant transmission.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU
  • Is an interleaving function the interleaving range is [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the starting CTU in the CTU access area for redundant transmission.
  • the serial number, DCS i is the DCS of the terminal device UE i
  • ⁇ i is the number of CTUs that the UE i can use for redundant transmission of uplink data
  • the N CTU is the number of CTUs in the CTU access region for redundant transmission .
  • the CTU access area is one or more CTU access areas, where the multiple CTU access areas are CTU access areas belonging to the same TTI.
  • the multiple CTU access areas further include CTU access areas belonging to different TTIs.
  • the uplink data transmitted by the at least two CTUs is retransmitted data.
  • the transmission of the uplink data is an unauthorized transmission.
  • the device can be applied to any one or more of the following fields: device to device D2D domain, machine to machine M2M domain, and machine type communication MTC domain.
  • the device is a network device.
  • the foregoing operation steps and algorithms may be performed on a Building Base Band Unite (BBU) in a network device, or may be in a cloud communication center architecture ( Cloud-RAN) is processed in the processing pool.
  • BBU Building Base Band Unite
  • Cloud-RAN cloud communication center architecture
  • the invention is not limited to this.
  • the apparatus 10 for uplink data transmission may correspond to the method 200 of performing uplink data transmission in the embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the apparatus 10 are respectively implemented.
  • the corresponding processes of the respective methods in FIG. 2 are not described herein for the sake of brevity.
  • the apparatus for uplink data transmission receives the first message including the transmission mode information sent by the terminal device, and sends a second message including the indication information to the terminal device, so that the terminal device can determine according to the indication information.
  • the CTU used for uplink data transmission can improve the reliability of data transmission and reduce the transmission delay because the terminal equipment can transmit uplink data through at least two CTUs in the same TTI.
  • FIG. 11 shows an apparatus for uplink data transmission in accordance with another embodiment of the present invention.
  • the device 20 includes:
  • the sending module 21 is configured to send a first message that includes transmission mode information, where the transmission mode information is used to indicate that the apparatus can transmit uplink data by using at least two contention transmission unit CTUs in the same time interval TTI, where the CTU refers to time and frequency.
  • a transmission resource combined with a code domain, or a transmission resource combining time, frequency, and pilot, or a transmission resource combining time, frequency, code domain, and pilot, and uplink of the at least two CTU transmissions
  • the data portions are the same or all the same;
  • the receiving module 22 is configured to receive a second message that includes indication information, where the indication information is used to enable the apparatus to determine, according to the indication information, a CTU used for uplink data transmission.
  • the apparatus for uplink data transmission in the embodiment of the present invention sends a first message including the transmission mode information to the network device, and receives a second message that is sent by the network device, including the indication information, thereby determining that the uplink data is performed according to the indication information.
  • the CTU used for transmission can improve the reliability of data transmission and reduce the transmission delay because the device can transmit uplink data through at least two CTUs in the same TTI.
  • the indication information includes at least one of the following information: information of a dedicated connection signature DCS of the apparatus; information of the CTU; and quantity information of the CTU that the apparatus can transmit the uplink data.
  • CTU access area information CTU access area information in the CTU access area; initial CTU information in the CTU access area; CTU sequence number mapping rule information.
  • the CTU sequence number mapping rule information is based on the following parameters. Any one or more of the rules for determining the CTU sequence number: information of the DCS of the device; the number of CTUs that the device can use to transmit uplink data; the number of CTUs in the CTU access region; the CTU access region The sequence number of the starting CTU in .
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • interleaving range [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the sequence number of the starting CTU in the CTU access area
  • DCS i is the device The DCS of UE i , ⁇ i is the number of CTUs that the UE i can use to transmit uplink data, and the N CTU is the number of CTUs in the CTU access area.
  • the CTU access area is a CTU access area for redundant transmission.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: DCS information of the device; the device can be used for redundant transmission uplink The number of CTUs of data; the number of CTUs in the CTU access area for redundant transmission; the sequence number of the starting CTU in the CTU access area for redundant transmission.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • Is an interleaving function the interleaving range is [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the starting CTU in the CTU access area for redundant transmission.
  • the sequence number, DCS i is the DCS of the device UE i
  • ⁇ i is the number of CTUs that the UE i can use for redundant transmission of uplink data
  • the N CTU is the number of CTUs in the CTU access region for redundant transmission.
  • the CTU access area is one or more CTU access areas, where the multiple CTU access areas are CTU access areas belonging to the same TTI.
  • the multiple CTU access areas further include CTU access areas of different TTIs.
  • the uplink data transmitted by the at least two CTUs is retransmitted data.
  • the transmission of the uplink data is an unauthorized transmission.
  • the device can be applied to any one or more of the following fields: device to device D2D domain, machine to machine M2M domain, and machine type communication MTC domain.
  • the device is a terminal device.
  • the above operation steps and algorithms may be executed on the CPU of the device, but the present invention is not limited thereto.
  • the apparatus 20 for uplink data transmission in accordance with embodiments of the present invention may correspond to the method 500 of performing uplink data transmission in embodiments of the present invention, and that the above and other operations and/or functions of the various modules in the apparatus 20 are respectively Corresponding processes for implementing the various methods in FIG. 8 are omitted for brevity.
  • the apparatus for uplink data transmission in the embodiment of the present invention sends a first message including the transmission mode information to the network device, and receives a second message that is sent by the network device, including the indication information, thereby determining that the uplink data is performed according to the indication information.
  • the CTU used for transmission can improve the reliability of data transmission and reduce the transmission delay because the device can transmit uplink data through at least two CTUs in the same TTI.
  • an embodiment of the present invention further provides an apparatus 30 for uplink data transmission.
  • the apparatus 30 includes a processor 31, a memory 32, a receiver 33, a transmitter 34, and a bus system 35.
  • the bus system 35 is selected.
  • the processor 31, the memory 32, the receiver 33 and the transmitter 34 may be connected by a bus system 35 for storing instructions for executing instructions stored in the memory 32 to control the receiver 33.
  • the received signal and transmitter 34 send a signal.
  • the receiver 33 is configured to receive a first message that includes transmission mode information, where the transmission mode information is used to indicate that the terminal device can transmit uplink data by using at least two competing transmission unit CTUs in the same time interval TTI, where the CTU refers to time a transmission resource combining frequency and code domain, or a transmission resource combining time, frequency, and pilot, or a transmission resource combining time, frequency, code domain, and pilot, the at least two CTU transmissions
  • the uplink data portion is the same or all the same;
  • the transmitter 34 is configured to send a second message including the indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a CTU used for uplink data transmission.
  • the apparatus for uplink data transmission receives the first message including the transmission mode information sent by the terminal device, and sends a second message including the indication information to the terminal device, so that the terminal device can determine according to the indication information.
  • the CTU used for uplink data transmission can improve the reliability of data transmission and reduce the transmission delay because the terminal equipment can transmit uplink data through at least two CTUs in the same TTI.
  • the processor 31 may be a central processing unit (“CPU"), and the processor 31 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 32 can include read only memory and random access memory and provides instructions and data to the processor 31. A portion of the memory 32 may also include a non-volatile random access memory. For example, the memory 32 can also store information of the device type.
  • the bus system 35 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 35 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 31 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 32, and the processor 31 reads the information in the memory 32 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the indication information includes at least one of the following information: information of a dedicated connection signature DCS of the terminal device; information of the CTU; and quantity information of the CTU that the terminal device can use to transmit the uplink data.
  • CTU access area information CTU access area information in the CTU access area; initial CTU information in the CTU access area; CTU sequence number mapping rule information.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; the terminal device can be used to transmit uplink data.
  • information of a DCS of the terminal device the terminal device can be used to transmit uplink data.
  • the number of CTUs; the CTU in the CTU access area The number of the starting CTU in the CTU access area.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • interleaving range [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the sequence number of the starting CTU in the CTU access area
  • DCS i is the terminal The DCS of the device UE i
  • ⁇ i is the number of CTUs that the UE i can use to transmit uplink data
  • the N CTU is the number of CTUs in the CTU access region.
  • the CTU access area is a CTU access area for redundant transmission.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the terminal device; the terminal device can be used for redundant transmission uplink.
  • the number of CTUs of data the number of CTUs in the CTU access area for redundant transmission; the sequence number of the starting CTU in the CTU access area for redundant transmission.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • Is an interleaving function the interleaving range is [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the starting CTU in the CTU access area for redundant transmission.
  • the serial number, DCS i is the DCS of the terminal device UE i
  • ⁇ i is the number of CTUs that the UE i can use for redundant transmission of uplink data
  • the N CTU is the number of CTUs in the CTU access region for redundant transmission .
  • the CTU access area is one or more CTU access areas, where the multiple CTU access areas are CTU access areas that belong to the same TTI.
  • the multiple CTU access areas further include CTU access areas that belong to different TTIs.
  • the uplink data transmitted by using the at least two CTUs is Retransmit the data.
  • the transmission of the uplink data is an unauthorized transfer.
  • the apparatus can be applied to any one or more of the following fields: device to device D2D domain, machine to machine M2M domain, machine type communication MTC domain.
  • the device is a network device.
  • the apparatus 30 for uplink data transmission may correspond to the apparatus 10 for uplink data transmission in the embodiment of the present invention, and may correspond to a corresponding body in a method according to an embodiment of the present invention, and the apparatus The above and other operations and/or functions of the respective modules in the 30 are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 2, and are not described herein again for brevity.
  • the apparatus for uplink data transmission receives the first message including the transmission mode information sent by the terminal device, and sends a second message including the indication information to the terminal device, so that the terminal device can determine according to the indication information.
  • the CTU used for uplink data transmission can improve the reliability of data transmission and reduce the transmission delay because the terminal equipment can transmit uplink data through at least two CTUs in the same TTI.
  • an embodiment of the present invention further provides an apparatus 40 for uplink data transmission.
  • the apparatus 40 includes a processor 41, a memory 42, a transmitter 43, a receiver 44, and a bus system 45.
  • the bus system 45 is selected.
  • the processor 41, the memory 42, the transmitter 43, and the receiver 44 may be connected by a bus system 45 for storing instructions for executing instructions stored in the memory 42 to control the transmitter 43.
  • the transmit signal and receiver 44 receive the signal.
  • the transmitter 43 is configured to send a first message that includes transmission mode information, where the transmission mode information is used to indicate that the apparatus can transmit uplink data by using at least two competing transmission unit CTUs in the same time interval TTI, where the CTU refers to time.
  • the uplink data portions are the same or all the same; the receiver 44 is configured to receive a second message including indication information, and the indication information is used to cause the device to determine, according to the indication information, a CTU used for uplink data transmission.
  • the apparatus for uplink data transmission in the embodiment of the present invention sends a first message including the transmission mode information to the network device, and receives a second message that is sent by the network device, including the indication information, thereby determining that the uplink data is performed according to the indication information.
  • the CTU used for transmission since the device can transmit uplink data through at least two CTUs in the same TTI, it can improve data transmission. Reliability and reduced transmission delay.
  • the processor 41 may be a central processing unit (“CPU"), and the processor 41 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 42 can include read only memory and random access memory and provides instructions and data to the processor 41.
  • a portion of the memory 42 may also include a non-volatile random access memory.
  • the memory 42 can also store information of the device type.
  • the bus system 45 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 45 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 41 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 42, and the processor 41 reads the information in the memory 42 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the indication information includes at least one of the following information: information of a dedicated connection signature DCS of the apparatus; information of a CTU; quantity information of a CTU that the apparatus can transmit for uplink data; CTU Information of the access area; information about the number of CTUs in the CTU access area; information of the initial CTU in the CTU access area; CTU sequence number mapping rule information.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information about a DCS of the device; and the device can be used to transmit a CTU of the uplink data. Quantity; the number of CTUs in the CTU access area; the sequence number of the starting CTU in the CTU access area.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • interleaving range [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the sequence number of the starting CTU in the CTU access area
  • DCS i is the device The DCS of UE i , ⁇ i is the number of CTUs that the UE i can use to transmit uplink data, and the N CTU is the number of CTUs in the CTU access area.
  • the CTU access area is a CTU access area for redundant transmission.
  • the CTU sequence number mapping rule information is a rule for determining a CTU sequence number according to any one or more of the following parameters: information of a DCS of the device; the device can be used for redundantly transmitting uplink data.
  • the rule for determining the CTU sequence number is any one or more of the following formulas:
  • I CTU-ij (I CTU-INT + DCS i + j) mod N CTU , or
  • I CTU-ij f(I CTU-INT +DCS i +j)mod N CTU ,
  • Is an interleaving function the interleaving range is [0...N CTU -1]
  • I CTU-ij is the sequence number of the CTU
  • I CTU-INT is the starting CTU in the CTU access area for redundant transmission.
  • the sequence number, DCS i is the DCS of the device UE i
  • ⁇ i is the number of CTUs that the UE i can use for redundant transmission of uplink data
  • the N CTU is the number of CTUs in the CTU access region for redundant transmission.
  • the CTU access area is one or more CTU access areas, where the multiple CTU access areas are CTU access areas that belong to the same TTI.
  • the multiple CTU access areas further include CTU access areas that belong to different TTIs.
  • the uplink data transmitted by the at least two CTUs is retransmitted data.
  • the transmission of the uplink data is an unauthorized transfer.
  • the apparatus can be applied to any one or more of the following fields: device to device D2D domain, machine to machine M2M domain, machine type communication MTC domain.
  • the device is a terminal device.
  • the apparatus 40 for uplink data transmission may correspond to the apparatus 20 for uplink data transmission in the embodiment of the present invention, and may correspond to a corresponding body in performing the method according to an embodiment of the present invention, and the apparatus
  • the above and other operations and/or functions of the respective modules in the 40 are respectively implemented in order to implement the respective processes of the respective methods in FIG. 8, and are not described herein again for brevity.
  • the apparatus for uplink data transmission in the embodiment of the present invention sends a first message including the transmission mode information to the network device, and receives a second message that is sent by the network device, including the indication information, thereby determining that the uplink data is performed according to the indication information.
  • the CTU used for transmission can improve the reliability of data transmission and reduce the transmission delay because the device can transmit uplink data through at least two CTUs in the same TTI.
  • FIG. 14 illustrates a method for uplink data transmission according to an embodiment of the present invention.
  • the description of the foregoing method embodiments and device embodiments may also be applied to the embodiment of FIG. 14 and will not be further described.
  • the method 700 includes:
  • the network device sends a second message, including the indication information, to the terminal device, where the indication information is used to enable the terminal device to determine, according to the indication information, a contention transmission unit CTU used for uplink data transmission, where the uplink data transmission is through the same time.
  • the uplink data is transmitted by at least two CTUs in the interval TTI, where the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time, frequency,
  • the transmission resource combined with the code domain and the pilot, and the uplink data portions of the at least two CTU transmissions are the same or all the same.
  • the terminal may receive the second message that is sent by the network device, including the indication information, and details are not described herein.
  • the “at least two CTUs” described in the embodiments of the present application may be at least two CTUs different in at least one element of the elements constituting the CTU, for example, If the CTU refers to a transmission resource combining time, frequency, and code domain, the at least two CTUs include, but are not limited to, the following various possibilities: 1) at least two CTUs with different frequencies, such as the same time and code domain.
  • but different frequency transmission resources or 2) at least two CTUs with different code domains, such as the same time and frequency, but different code domain transmission resources, or, 3) at least two different time CTUs , is the same frequency and code domain, but different time transmission resources, or, 4) at least two CTUs of different frequencies and code domains, such as The same time, but different frequencies and code fields, and so on.
  • the method further includes:
  • the network device receives, by the terminal device, a first message that includes the transmission mode information, where the transmission mode information is used to indicate that the terminal device can transmit the uplink data by using at least two CTUs in the same TTI.
  • method 700 may not include S710. It can be understood that the terminal device may not send the first message to the network device.
  • the network device may be that all terminal devices support Grant Free redundancy transmission, and the network device sends a second message including the indication information to all terminal devices.
  • the terminal device may determine, according to the indication information, a CTU used for performing normal transmission, and perform initial transmission or retransmission.
  • the terminal device sends the first message in a manner that the first message is included in the signaling sent by the network device in the initial access process, and the network device may also include the second message in the initial access process.
  • the second message is sent in a manner of signaling sent by the terminal device.
  • the terminal device sends the first message in a manner that the first message is included in the signaling sent by the network device in the random access process, and the network device may also include the second message in the random access process to the terminal device.
  • the second message is sent in the manner of the sent signaling.
  • FIG. 15 shows an apparatus for uplink data transmission according to still another embodiment of the present invention.
  • the apparatus 50 includes:
  • the sending module 51 is configured to send a second message that includes the indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a contention transmission unit CTU used for uplink data transmission, where the uplink data transmission is through the same time interval TTI
  • the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time, frequency, and code domain.
  • a combination of pilot transmission resources, the uplink data portions of the at least two CTU transmissions being the same or all the same.
  • the device for uplink data transmission in the embodiment of the present invention sends a second message including the indication information to the terminal device, so that the terminal device can determine, according to the indication information, the CTU used for uplink data transmission, because the terminal device can pass the same TTI.
  • At least two CTUs within the network transmit uplink data, thereby improving the reliability of data transmission and reducing transmission delay.
  • the apparatus 50 further includes: a receiving module 52, before the sending module 51 sends a second message including the indication information, the receiving module 52 is configured to: receive Transmitting a first message of the mode information, the transmission mode information is used to indicate that the terminal device can Uplink data can be transmitted through at least two CTUs within the same TTI.
  • apparatus 50 for uplink data transmission in accordance with embodiments of the present invention may correspond to network devices in method 700, and that the above and other operations and/or functions of various modules in apparatus 50 are respectively implemented to implement the various methods of FIG. The corresponding process, for the sake of brevity, will not be described here.
  • device 60 includes:
  • the receiving module 61 is configured to receive a second message that includes indication information, where the indication information is used to enable the apparatus to determine, according to the indication information, a contention transmission unit CTU used for uplink data transmission, where the uplink data transmission is through the same time interval TTI At least two CTUs are used to transmit uplink data, where the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time, frequency, and code domain. And a combination of pilot transmission resources, the uplink data portions of the at least two CTU transmissions being the same or all the same.
  • the apparatus for uplink data transmission in the embodiment of the present invention receives the second message including the indication information, and can determine, according to the indication information, the CTU used for uplink data transmission, because the apparatus can pass at least two CTUs in the same TTI.
  • the transmission of uplink data can improve the reliability of data transmission and reduce the transmission delay.
  • the device 60 further includes: a sending module 62, before the receiving module 62 receives the second message including the indication information, the sending module 62 is configured to: send, include And transmitting, by the first message of the mode information, the transmission mode information is used to indicate that the apparatus can transmit uplink data by using at least two CTUs in the same TTI.
  • the apparatus 60 for uplink data transmission in accordance with an embodiment of the present invention may correspond to the terminal equipment in the method 700 of uplink data transmission in the embodiment of the present invention, and the above and other operations and/or operations of the various modules in the apparatus 60.
  • the functions are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 14 , and are not described herein for brevity.
  • FIG. 17 shows an apparatus for uplink data transmission according to still another embodiment of the present invention.
  • the apparatus 70 includes a processor 71 and a transceiver 72.
  • the processor 71 is connected to the transceiver 72, optionally
  • the device 70 also includes a memory 73 coupled to the processor 71. Further optionally, the device 70 further includes a bus system 74.
  • the processor 71, the memory 73 and the transceiver 72 may be connected by a bus system 74, which may be used to store instructions for executing instructions stored in the memory 73 to control the transceiver 72 to transmit information or Signal,
  • the transceiver 72 is configured to send a second message that includes indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a contention transmission unit CTU used for uplink data transmission, where the uplink data transmission is through the same time interval.
  • the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time, frequency, and code.
  • the transmission resources combined by the domain and the pilot, and the uplink data portions of the at least two CTU transmissions are the same or all the same.
  • the transceiver 72 is further configured to: before transmitting the second message including the indication information, receive a first message that includes transmission mode information, where the transmission mode information is used to indicate that the terminal device can pass At least two CTUs within the same TTI transmit uplink data.
  • the apparatus 70 for uplink data transmission may correspond to a network device in the method 700 of the embodiment of the present invention, and each unit in the apparatus 70, that is, the module and the other operations and/or functions described above, respectively, The corresponding process, for the sake of brevity, will not be described here.
  • the transceiver 72 is configured to receive a second message including indication information, where the indication information is used to enable the apparatus to determine, according to the indication information, a contention transmission unit CTU used for uplink data transmission, where the uplink data transmission is through the same At least two CTUs in the time interval TTI are used to transmit uplink data, where the CTU refers to a transmission resource combining time, frequency, and code domain, or a transmission resource combining time, frequency, and pilot, or time and frequency.
  • the transmission resource combined with the code domain and the pilot, and the uplink data portions of the at least two CTU transmissions are the same or all the same.
  • the transceiver 72 before receiving the second message including the indication information, is further configured to: send a first message that includes transmission mode information, where the transmission mode information is used to indicate that the device can be the same At least two CTUs within the TTI transmit uplink data.
  • the apparatus 70 for uplink data transmission may correspond to a terminal device in the method 700 of the embodiment of the present invention, and each unit in the apparatus 70, that is, a module and the other operations and/or functions described above, respectively, The corresponding process, for the sake of brevity, will not be described here.
  • system and “network” are used interchangeably herein. It should be understood that the term “and/or” herein is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist simultaneously. There are three cases of B alone. In addition, the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present invention may be integrated in one processing unit. It is also possible that each unit physically exists alone, or two or more units may be integrated in one unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or a CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the sending module or the sending unit or the sender in the above embodiment may refer to sending on the air interface, but may not send on the air interface, but send it to other devices to facilitate other devices to send on the air interface.
  • the receiving module or the receiving unit or the receiver in the above embodiment may refer to receiving on the air interface, and may not receive on the air interface, but receive from other devices received on the air interface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种上行传输数据的方法和装置,该方法包括:接收包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。

Description

上行数据传输的方法和装置
本申请要求于2015年06月25日提交中国专利局、申请号为PCT/CN2015/082357、发明名称为“上行数据传输的方法和装置”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,并且更具体地,涉及上行数据传输的方法和装置。
背景技术
在典型无线通信网络(比如,长期演进(Long Term Evolution,简称为“LTE”网络)中,上行数据共享信道(Shared Data Channels)的选择基于调度/准许(Scheduling/Grant)机制,完全受基站(Base Station,简称为“BS”)控制。在该机制中,用户设备(User Equipment,简称为“UE”)首先向BS发出上行调度请求。当BS接收到该请求后,向UE发出上行Grant以通知该UE为该UE分配给的上行传输资源。UE据此在经过准许的上行传输资源上进行数据传输。
大规模用户接入是下一代通信网络的典型应用场景之一。当海量用户接入时,如果沿用上述Scheduling/Grant机制,则一方面将导致巨大的信令传输开销以及BS资源分配的调度压力,另一方面将造成显著的传输时延。鉴于此,下一代通信网络为支撑海量用户接入将采用免授权(Grant Free)传输方式。在Grant Free传输方式下,BS在上行传输资源中划定竞争传输单元(Contention Transmission Unit,简称为“CTU”)的接入区域。UE在该区域内以竞争方式接入上行传输资源,而无需遵循Scheduling/Grant机制。
为成功进行Grant Free上行传输,UE应当首先确定上行传输的CTU资源。确定CTU资源可以基于UE和BS双方已知的预定UE-CTU映射规则。该映射规则可以通过标准规定或固件实现等隐性方式为UE预知。也可以由BS通过显性高层信令方式予以通知。比如,不同的映射规则可以首先在标准中进行定义,然后由BS将相应映射规则的序号通过信令告知UE。
不同UE被允许采用相同特征波(特征波可以称为Signature)进行上行接入传输,Signature可以被认为是码资源。当多个UE采用相同Signature同 时接入相同的时频资源(即相同的时-频-码资源)时就会发生冲突,需要相应的高级检测方法予以解决。当多个采用相同时-频-码资源的UE进一步采用相同导频时,其冲突一般被认为是无法单纯通过检测方法解决的。此种情况需要配合特殊的冲突避免或解决机制,比如重映射、重传等。为降低特定UE或特定CTU上的冲突,部分UE可以重新映射到新的CTU资源上。
上述海量用户接入的Grant Free传输,由于允许多个UE在同一CTU资源上竞争传输,因此会导致竞争冲突,降低Grant Free传输可靠性。为确保低时延高可靠性Grant Free传输,有必要为部分有特殊业务需求的UE提供额外的传输保障。
发明内容
本发明实施例提供了一种上行数据传输的方法和装置,能够提高数据传输的可靠性,降低传输时延。
第一方面,提供了一种上行数据传输的方法,该方法是由网络设备执行的,该方法包括:接收包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
第二方面,提供了一种上行数据传输的方法,该方法是由终端设备执行的,该方法包括:发送包括传输模式信息的第一消息,该传输模式信息用于指示该终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;接收包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
第三方面,提供了一种上行数据传输的装置,包括:接收模块,用于接收包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通 过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;发送模块,用于发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
第四方面,提供了一种上行数据传输的装置,包括:发送模块,用于发送包括传输模式信息的第一消息,该传输模式信息用于指示该装置能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;接收模块,用于接收包括指示信息的第二消息,该指示信息用于使该装置根据该指示信息确定进行上行数据传输所使用的CTU。
基于上述技术特征,本发明实施例提供的上行数据传输的方法和装置,网络设备接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是应用本发明实施例的一种通信***的示意性架构图;
图2是根据本发明实施例的上行数据传输的方法的示意性流程图;
图3(a)~(d)是根据本发明实施例的终端设备与同一TTI内的多个CTU的映射关系示意图;
图4是根据本发明实施例的终端设备与多个TTI内的多个CTU的映射 关系示意图;
图5(a)和(b)是根据本发明另一实施例的终端设备与CTU的映射关系的示意图;
图6是根据本发明另一实施例的上行数据传输的方法的示意性流程图;
图7是根据本发明再一实施例的上行数据传输的方法的示意性流程图;
图8是根据本发明再一实施例的上行数据传输的方法的示意性流程图;
图9是根据本发明再一实施例的上行数据传输的方法的示意性流程图;
图10是根据本发明实施例的上行数据传输的装置的示意性框图;
图11是根据本发明实施例的上行数据传输的装置的示意性框图;
图12是根据本发明另一实施例的上行数据传输的装置的意性框图;
图13是根据本发明另一实施例的上行数据传输的装置的示意性框图;
图14是根据本发明再一实施例的上行数据传输的方法的示意性流程图;
图15是根据本发明再一实施例的上行数据传输的装置的示意性框图;
图16是根据本发明再一实施例的上行数据传输的装置的示意性框图;
图17是根据本发明再一实施例的上行数据传输的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
本发明实施例的方案可以应用于现有的蜂窝通信***,如全球移动通讯(Global System for Mobile Communication,简称为“GSM”),宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”),长期演进(Long Term Evolution,简称为“LTE”)等***中,所支持的通信主要是针对语音和数据通信的。通常来说,一个传统基站支持的连接数有限,也易于实现。
下一代移动通信***将不仅支持传统的通信,还将支持机器对机器(Machine to Machine,简称为“M2M”)通信,或者叫做机器类通信(Machine Type Communication,简称为“MTC”)通信。根据预测,到2020年,连接在网络上的MTC设备将会达到500到1000亿,这将远超现在的连接数。对M2M类业务,由于其业务种类千差万别,对网络需求存在很大差异。大致来说,会存在如下几种需求:
可靠传输,但对时延不敏感;
低延迟,高可靠传输。
对可靠传输,而对时延不敏感业务,较容易处理。但是,对低延迟、高可靠传输类的业务,不仅要求传输时延短,而且要求可靠,比如设备对设备(Vehicle to Vehicle,简称为“V2V”)业务。如果传输不可靠,会导致重传而造成传输时延过大,不能满足要求。
由于大量连接的存在,使得未来的无线通信***和现有的通信***存在很大差异。大量连接需要消耗更多的资源接入终端设备以及需要消耗更多的资源用于终端设备的数据传输相关的调度信令的传输。根据本发明实施例的方案能够有效解决上述资源消耗问题。
可选地,该网络设备为基站,该终端设备为用户设备。
本发明结合终端设备描述了各个实施例。终端设备也可以称为用户设备(User Equipment,简称为“UE”)用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,简称为“WLAN”)中的站点(Station,简称为“ST”),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线 通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
此外,本发明结合网络设备描述了各个实施例。网络设备可以是网络设备等用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,简称为“AP”),码分多址(Code Division Multiple Access,简称为“GSM”或“CDMA”)中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA中的基站(NodeB,简称为“NB”),还可以是长期演进(Long Term Evolution,简称为“LTE”)中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disk,简称为“CD”)、数字通用盘(Digital Versatile Disk,简称为“DVD”)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,简称为“EPROM”)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1示出了应用本发明实施例的一种通信***的示意性架构图。如图1所示,该通信***100可以包括网络设备102和终端设备104~114(图中简称为UE)通过无线连接或有线连接或其它方式连接。
该通信***100可以是指公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)或者D2D网络或者M2M网络或者其他网络,图1只是举例的简化示意图,通信***中还可以包括其他网络设备,图1中未予以画出。
为了解决未来网络大量的MTC类业务,以及满足低时延、高可靠的业务传输,本专利提出了免授权传输的一种方案。免授权传输英文可以表示为Grant Free。这里的免授权可以针对的是上行数据传输。免授权传输可以理解为如下含义的任意一种含义,或,多种含义,或者多种含义中的部分技术 特征的组合,或者其他类似的含义:
1、免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
2、免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
3、免授权传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
4、免授权传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是UE接收所述的信令的时刻以后的一个或多个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如传输时间间隔(Transmission Time Interval,简称为“TTI”),数值可以为1ms,或者可以是预先设定的传输时间单元。
5、免授权传输可以指:终端设备在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行授权,其中所述上行授权指示分配给终端设备的上行传输资源。
6、免授权传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的检测。所述盲检测也可以理解为没有显式的信令指示下的检测。 所述传输资源可以包括但不限于如下资源的一种或多种的组合:
-时域资源,如无线帧、子帧、符号等;
-频域资源,如子载波、资源块等;
-空域资源,如发送天线、波束等;
-码域资源,如稀疏码多址接入(Sparse Code Multiple Access,简称为“SCMA”)码本、低密度签名(Low Density Signature,简称为“LDS”)、CDMA码等;
-上行导频资源。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:
-上行功率控制,如上行发送功率上限控制等
-调制编码方式设置,如传输块大小、码率、调制阶数设置等;
-重传机制,如HARQ机制等。
上述传输资源可以进一步被分成一个或多个竞争传输单元(Contention Transmission Unit,简称为“CTU”)。CTU可以为免授权传输的基本传输资源。CTU可以指时间、频率、码域相结合的传输资源,或者,可以指时间、频率、导频相结合的传输资源,或者,可以指时间、频率、码域、导频相结合的传输资源。CTU的接入区域可以指用于免授权传输的时频区域。
专利号PCT/CN2014/073084,申请名称为“System and Method for Uplink Grant-free Transmission Scheme”的专利申请给出了一种上行免授权传输的技术方案。PCT/CN2014/073084申请介绍可以将无线资源划分为各种CTU,UE被映射到某个CTU。每个CTU可以被分配一组码,所分配的一组码可以是一组CDMA码,也可以是SCMA码本集或LDS组或签名(signature)组等。每一个码可以对应一组导频。用户可以选择一个码以及与该码对应的导频组中的一个导频进行上行传输。PCT/CN2014/073084申请内容也可以理解为通过引用作为本发明实施例内容的一部分,不再赘述。
图2示出了根据本发明实施例的上行数据传输的方法的示意性流程图。该方法是由网络设备执行的,如图2所示,该方法200包括:
S210,接收包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的 传输资源,该至少两个CTU传输的上行数据部分相同或全部相同。
也可以理解第一消息指示终端设备能够进行冗余传输,其中冗余传输包括一种传输模式:通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据;对第一消息理解可以适用于其他实施例,其他实施例不在赘述。
S220,发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
可选地,该上行数据传输所使用的CTU包括同一TTI内的至少两个CTU,进一步可选地,该上行数据传输所使用的CTU中包括的同一TTI内的至少两个CTU用于进行冗余传输,或者称所使用的CTU中包括的同一TTI内的至少两个CTU用于传输部分相同或全部相同的上行数据。上述对于指示信息的理解可以适用于其他实施例,其他实施例不在赘述。
具体而言,网络设备接收终端设备发送的包括传输模式信息的第一消息,并根据该传输模式信息确定该终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,并且该终端设备通过该至少两个CTU传输的上行数据部分相同或全部相同,网络设备接收到该第一消息后,可以确定终端设备用于确定进行上行数据传输能够使用的CTU的指示信息,并向终端设备发送包括该指示信息的第二消息。
因此,本发明实施例的上行数据传输的方法,网络设备接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
应理解,在本发明实施例中,冗余传输可以理解包含如下一种传输方式:在一次数据传输过程中所传输的数据至少包括第一数据和第二数据,且该第二数据与该第一数据部分相同或全部相同。当然冗余传输也可以被称为可靠性传输,或者属于可靠性传输的一种类别。冗余传输或者可以被称为包含上述传输方式的其他名称。
可选地,本发明实施例的方法能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。但本发明并不限于此。
可选地,本发明实施例中的上行数据的传输为免授权传输。
在本发明实施例中,可选地,不能进行冗余传输的终端设备可以向网络设备发送传输模式信息,指示该终端设备不能进行冗余传输,而能够进行冗余传输的终端设备不向网络设备发送传输模式信息,网络设备在一定时间内未接收到终端设备发送的传输模式信息,可以认为该终端能够进行冗余传输。或者能够进行冗余传输的终端设备向网络设备发送传输模式信息,指示该终端设备能够进行冗余传输,不能进行冗余传输的终端设备不向网络设备发送传输模式信息,网络设备在一定时间内未收到终端设备发送的传输模式信息,则认为该终端设备不能进行冗余传输,但本发明并不限于此。
应理解,在终端设备不能进行冗余传输时,网络设备同样也会向该终端设备发送包括指示信息的消息,此时,该终端设备可以根据该指示信息确定进行常规传输所采用的CTU,并进行初始传输或重传。
可选地,在S210中,该至少两个CTU传输的上行数据部分相同或全部相同可以理解为:该至少两个CTU中的每个CTU传输待传输的上行数据的一部分数据且每个CTU传输的数据不同;或者,该至少两个CTU中的某些CTU传输相同且完整的待传输的上行数据,该至少两个CTU中其他的CTU传输该待传输的上行数据的部分数据。本发明对此不作限定。
可选地,在S210中,网络设备可以通过某一上行公共控制信道接收终端设备发送的该第一消息,该第一消息还可以包括该终端设备进行冗余传输的相应要求,本发明对此不作限定。
举例来说,终端设备可以在RRC连接建立请求消息(RRC ConnectionRequest Message)中添加与冗余传输相关的字段。例如,可以在RRC连接建立请求消息中增加包括但不限于以下指示信息中的任一种指示信息:grantFreeCapability BITSTRING(SIZE(8)),指示不同的免授权(Grant Free)支撑能力,该指示信息包括的8个比特中的一个比特用于指示终端设备是否能够进行冗余传输,例如,可以在该一个比特的值取1时,指示该终端设备能够进行冗余传输(1-Enable),在该一个比特的值取0时,指示该终端设备不能够进行冗余传输(0-Disable);candidateMappingRule,指示备选CTU序号映射规则集合,redundantTransmissionPattern,指示数据传输模式,这个redundantTransmissionPattern可以为上述传输模式信息的一种举例。当指示终端设备是否能够进行冗余传输和指示数据传输模式的信息比如上述 的比特信息同时存在的时候,那么可以理解为冗余传输可以包括多种数据传输模式,能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据是其中一种传输模式。
在本发明实施例中,可选地,可以在现有标准的传输模式(Transmission mode)定义中添加Grant Free时频分集传输模式来确定冗余传输时的传输模式,例如,可以按表1所示的方法定义:
表1
Figure PCTCN2016087333-appb-000001
可选地,在S220中,该指示信息包括下列信息中的至少一种:该终端设备的专属连接签名DCS的信息;CTU的信息,;该终端设备能够用于传输上行数据的CTU的数量信息;CTU接入区域的信息;CTU接入区域中的CTU的数量信息;CTU接入区域中的起始CTU的信息;CTU序号映射规则信息。
应理解,网络设备可以为终端设备分配唯一的专属连接签名DCS,网络设备可以直接将该专属连接签名的值通知终端设备,也可以将该专属连接签名的索引值通知终端设备,终端设备根据该索引值可以确定网络设备为自己分配的DCS;该CTU的信息可以具体为CTU的序号;该CTU接入区域的信息可以具体为CTU接入区域的序号;该CTU序号映射规则信息可以是具体的映射规则,也可以是与具体映射规则相对应的序号,比如说,可以通过标准规定或者通信双方事先约定的方式预定义CTU序号映射规则集合{fUE-TR(·)},该CTU序号映射规则集合包含不同的CTU映射规则,在通信过程中网络设备将相应的映射规则的序号通过信令告诉UE,或通信过程中网络设备也可以通过显示信令将CTU序号映射规则发送给UE。本发明对此不作限定。在本发明实施例中,序号的一种形式可以是索引。
具体而言,在本发明实施例中,网络设备可以只将为UE分配的DCS告知终端设备,终端设备可以根据标准规定的或事先约定的DCS与CTU的 对应关系确定用于进行传输上行数据的CTU;网络设备也可以将确定的CTU接入区域的序号显示告知UE,UE根据该CTU接入区域的序号和标准规定的或事先约定的CTU接入区域中的CTU的数量和该CTU接入区域中的起始CTU的序号及能够用于进行传输上行数据的CTU的数量,确定用于传输上行数据的CTU;网络设备也可以只将CTU接入区域中的CTU的数量告诉UE,UE根据标准规定的或事先约定的CTU接入区域、该CTU接入区域中的起始CTU的序号、能够用于传输上行数据的CTU的数量及该CTU接入区域中的CTU的数量确定用于进行传输上行数据的CTU;网络设备还可以将上述七种信息中的任意一种或几种信息显示告知UE,UE根据标准的规定或者事先的约定确定另外几种信息,并根据显示获取的和隐式确定的信息确定用于进行传输上行数据的CTU。本发明对此不作限定。
可选地,在S220中,网络设备可以使用广播信道,如长期演进LTE***中的广播控制信道(Broadcast Control Channel,简称为“BCCH”),以广播的方式向***中的全部或部分终端设备发送包括指示信息的消息;也可以使用专用控制信道,如长期演进LTE***中的(Dedicated Control Channel,简称为“DCCH”),以单播的方式向特定的一个或一组终端设备发送包括指示信息的消息等;也可以使用其他信道,以其他方式向***中的全部终端设备,或部分终端设备,或特定的一个终端设备或一组终端设备下发包括指示信息的消息,本发明对此不作限定。
在本发明实施例中,可选地,该第二消息中除包括该指示信息外,还可以包括网络设备是否支持Grant Free传输和Grant Free冗余传输的使能信息,该Grant Free冗余传输的使能信息包括网络设备是否支持Grant Free冗余传输,支持Grant Free冗余传输的调制编码方式(Modulation and Coding Scheme,简称为“MCS”)等信息,还可以包括其他信息,本发明对此不作限定。
举例来说,网络设备可以在无线资源控制消息(RRC Message)中添加与冗余传输相关的指示信息。例如,可以在现有标准的“SystemInformationBlockTypeX”中添加“grantFreeCapability BITSTRING(SIZE(8))”来定义不同的Grant Free支撑能力,该8个比特中的一个比特用于指示网络设备是否能够支持冗余传输,例如,可以在该一个比特的值取1时,指示该网络设备能够支持冗余传输(1-Enable),在该一个比特的值取0时,指示该网络设备不能支持冗余传输(0-Disable)。网络设备可以在RRC 连接建立消息中增加包括但不限于以下指示信息中的任一种或多种指示信息:ueDCSIndex,指示UE专属的DCS序号;ctuAccessRegion,指示CTU接入区域;ctuNumber,指示CTU接入区域中的CTU的数量;ctuMappingRule,指示UE-CTU序号映射规则。
在本发明实施例中,可选地,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于传输上行数据的CTU的数量;该CTU接入区域中的CTU的数量;该CTU接入区域中的起始CTU的序号。
在本发明实施例中,可选地,该确定CTU序号的规则为如下公式中的任意一种或多种:
ITR-ij=(ITR-INT+DCSi+j)mod NTR,或
ITR-ij=f(ITR-INT+DCSi+j)mod NTR
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NTR-1],ITR-ij为CTU的序号,ITR-INT为该CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于传输上行数据的CTU的数量,NTR为该CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,能够进行冗余传输的终端设备和不能进行冗余传输的终端设备可以具有相同的CTU接入区域,由此可以提高传输资源的利用率。
在本发明实施例中,可选地,可以划定冗余传输的专属区域,该专属区域可以理解只允许能够进行冗余传输的终端设备竞争接入,进行上行数据的传输,而冗余传输可以按照上述进行理解。也就是说该CTU接入区域也可以被称为用于冗余传输的CTU接入区域,或者说,该CTU接入区域为用于可靠性传输的CTU接入区域,或者说,该CTU接入区域为可靠-低时延(Reliable Ultra-Low Latency,简称为“RULL”)传输的CTU接入区域,或者其他名称的接入区域,但本发明并不限于此。
相应地,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于冗余传输上行数据的CTU的数量;该用于冗余传输的CTU接入区域中的CTU的数量;该用于冗余传输的CTU接入区域中的起始CTU的序号。
可选地,该确定CTU序号的规则为如下公式中的任意一种或多种:
ITR-ij=(ITR-INT+DCSi+j)mod NTR,或
ITR-ij=f(ITR-INT+DCSi+j)mod NTR
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NTR-1],ITR-ij为CTU的序号,ITR-INT为该用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于冗余传输上行数据的CTU的数量,NTR为该用于冗余传输的CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,该CTU接入区域为一个或多个CTU接入区域,其中,该多个CTU接入区域为属于同一个TTI的CTU接入区域。也就是说,终端设备可以在同一个TTI内映射至多个CTU进行上行数据的传输。
举例来说,图3(a)~(d)示出了根据本发明实施例的终端设备与同一个TTI内的CTU的映射关系图。在图3(a)中,序号依次为UE1~UE8的8个终端设备共映射至8个CTU,每个CTU上均有两个不同终端进行上行数据的传输。8个终端设备按照第一种CTU序号映射规则定义的组合方式映射至第一组4个CTU302-308。其中,UE1和UE2映射至CTU302,UE3和UE4映射至CTU304,UE5和UE6映射至CTU306,UE7和UE8映射至CTU308。同时这8个终端设备又按照第二种CTU序号映射规则定义的组合方式映射至第二组4个CTU310-316。其中,UE1和UE5映射至CTU310,UE2和UE6映射至CTU312,UE3和UE7映射至CTU314,UE4和UE8映射至CTU316。
如果时频资源充足且终端设备有进一步增加冗余传输自由度的需求,则上述全部或部分终端设备可继续按照类似CTU序号映射规则所定义的组合方式映射至同一TTI内其它CTU上。比如,在图3(b)中,这8个终端设备又按照第三CTU序号映射规则定义的组合方式映射至第三组4个CTU318-324。其中,UE1和UE3映射至CTU318,UE5和UE7映射至CTU320,UE2和UE4映射至CTU322,UE6和UE8映射至CTU324。以此类推,上述终端设备可以按照其它CTU序号映射规则定义的组合方式映射至其它组CTU。
在考虑多组终端设备冗余传输时,多组终端设备可以全部或部分地映射 至上述全部或部分CTU资源。例如,在图3(c)中,第二组终端设备的一部分UE11和UE13分别映射至CTU302和CTU304,第三组终端设备的一部分UE16和UE17分别映射至CTU312和CTU314。
在本发明实施例中,进行冗余传输的终端设备和进行常规传输的终端设备可以映射至同一TTI内的CTU,例如,如图3(d)所示,在同一TTI内,UE1,UE2和UE5进行Grant Free冗余传输,其中UE1映射至CTU302和CTU310,UE2映射至CTU302和CTU312,UE5映射至CTU306和310。UE3,UE4,UE7和UE8进行GrantFree常规传输,其中UE3映射至CTU304,UE4映射至CTU316,UE7映射至CTU314,UE8映射至CTU308。以此类推,上述终端设备还可以按照其他CTU序号映射规则定义的组合方式映射至不同的CTU上,本发明对此不作限定。
在本发明实施例中,可选地,该多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。也就是说,终端设备可以映射至不同TTI内的CTU上进行上行数据的传输。
举例来说,图4示出了根据本发明实施例的终端设备与多个TTI内的CTU的映射关系。如图4所示,UE6,UE7和UE8在TTI1内进行GrantFree常规传输,其中UE6映射至CTU404,UE7映射至CTU414,UE8映射至CTU408。UE12在TTI2内进行Grant Free常规传输,映射至CTU416。UE13和UE15在TTI3内进行Grant Free常规传输,其中UE13映射至CTU408,UE15映射至CTU416。
其它UE分别在多个TTI内进行Grant Free冗余传输。其中,UE1映射至TTI1内的CTU402,TTI2内的CTU402和CTU410。UE2映射至TTI1内的CTU402和CTU410。UE3映射至TTI1内的CTU410,TTI2内的CTU410和CTU414。UE4映射至TTI1内的CTU416,TTI2内的CTU404和TTI3内的CTU412。UE5映射至TTI1内的CTU406和CTU410,TTI2内的CTU404。UE9映射至TTI2内的CTU406,TTI3内的CTU406和CTU410。UE10映射至TTI2内的CTU408和TTI3内的CTU408。UE11映射至TTI2内的CTU612和TTI3内的CTU406。UE14映射至TTI3内的CTU404和CTU414。但本发明并不限于此。
在本发明实施例中,可选地,通过该至少两个CTU来传输的上行数据为重传数据。也就是说,终端设备可以根据该指示信息确定进行初始传输的 CTU和进行重传的CTU,终端设备在确定初始传输失败时,根据该指示信息确定用于进行重传的CTU进行重传数据的传输。
在本发明实施例中,可选地,在网络设备未成功接收上行数据的部分数据时,终端设备可以选择重传未被成功接收的该部分数据,也可以选择重传全部数据,在该网络设备未成功接收该上行数据的全部数据时,该终端设备重新传输该上行数据的全部,本发明对进行重传时采用的数据传输模式不作限定。
在本发明实施例中,可选地,在终端设备传输上行数据失败时,还可以根据新的CTU序号映射规则确定用于进行重传的CTU,该新的CTU序号映射规则可以是标准规定的或UE与网络设备事先约定好的,也可以是网络设备通过广播信道或其他下行信道发送给UE的,比如说,在终端设备传输上行数据失败时,可以接收网络设备发送的包括CTU重映射规则的消息,终端设备根据该CTU重映射规则确定用于进行重传的CTU,本发明对此不作限定。
举例来说,该新的CTU序号映射规则可以是从可选映射方案集合{fUE-TR(·)}中重新选取的一个新的映射规则。也可以是为UEi重新分配DCSi,根据当前采用的确定CTU序号的规则更新
Figure PCTCN2016087333-appb-000002
赋值,从而将UEi映射至新的CTU,为UEi提供新的CTU传输资源。还可以是部分地改变
Figure PCTCN2016087333-appb-000003
中一个或多个元素的赋值,从而为UEi提供部分新的CTU传输资源。但本发明并不限于此。
在本发明实施例中,可选地,如果UE与网络设备(例如,基站BS)双方约定以ACK方式确认接收检测成功,则网络设备在成功检测后将向UE发出ACK。如果UE在等待一定时间后未收到ACK,则认为上行传输发生冲突,网络设备未能成功接收上行数据。如果UE与网络设备双方约定以NACK方式确认接收检测失败,则网络设备在检测失败后将向UE发出NACK。如果UE接收到NACK,则认为上行传输发生冲突,网络设备未能成功接收上行数据。
应理解,在本发明实施例中,网络设备接收多个终端设备的上行Grant Free传输。网络设备根据ICTU与CTU接入区域的对应关系,以及ICTU与终端设备的DCS的对应关系,识别出进行Grant Free冗余传输的CTU,并在这些CTU上进行冗余接收。
在冗余接收过程中,针对UEi的接收检测ACK/NACK反馈不针对ICTU,ij指示的每一个CTU单独进行,而是在UEi冗余合并接收完成后做统一的ACK/NACK。
在本发明实施例中,可选地,在针对UEi进行冗余接收时,网络设备可以根据
Figure PCTCN2016087333-appb-000004
的指示,分别在相应CTU上进行信道估计、信号检测与解码,将解码成功的CTU上的信号比特进行合并,获得比特级合并接收增益,从而提升UEi的传输可靠性。网络设备还可以根据
Figure PCTCN2016087333-appb-000005
的指示,分别在相应CTU上进行信道估计,然后用各CTU信道估计结果以及各接收信号做联合检测,获得合并接收增益输出比特信息,从而提升UEi的传输可靠性。但本发明并不限于此。
举例来说,如图5(a)所示,UE1和UE2映射至CTU502,UE1和UE5映射至CTU510,因此CTU502与CTU510上均存在上行传输冲突。为解决Grant Free传输冲突,可将相应CTU上信号模型描述为如下线性方程组(1):
Figure PCTCN2016087333-appb-000006
其中,y1为CTU502上的接收信号模型,y2为CTU506上的接收信号模型,y3为CTU510上的接收信号模型,y4为CTU512上的接收信号模型。Xj表示UEj发出的信号,Hij表示UEj至yi的信道信息,ni表示yi接收到的噪声。
从该线性方程组(1)中的两个独立的方程(2):
Figure PCTCN2016087333-appb-000007
中解得X5和X2的估计值
Figure PCTCN2016087333-appb-000008
Figure PCTCN2016087333-appb-000009
然后根据估计值从剩余两个方程中消去X5和X2,使之转化为求解方程(3):
Figure PCTCN2016087333-appb-000010
也就是说,为解决Grant Free传输冲突,可以首先从没有发生冲突的CTU506和CTU512上分别解出UE5和UE2的信息,然后利用已解得的信息从CTU502和CTU510上分别消除UE2和UE5对UE1的干扰,从而最终解得UE1。
可选地,在图5(b)中,UE1和UE2映射至CTU502,UE1和UE5映射至CTU510,因此CTU502与CTU510上均存在冲突。为解决Grant Free传输冲突,可将相应CTU上信号模型描述为线性方程组(4):
Figure PCTCN2016087333-appb-000011
其中,y1为CTU502上的接收信号模型,y2为CTU506上的接收信号模型,y3为CTU510上的接收信号模型。Xj表示UEj发出的信号,Hij表示UEj至yi的信道信息,ni表示yi接收到的噪声。
可以先从独立方程y2=h25x5+n2中解得X5的估计值
Figure PCTCN2016087333-appb-000012
然后根据估计值从y3中消去X5,并从y3=h31x1+n3中解得X1的估计值
Figure PCTCN2016087333-appb-000013
最后根据估计值从y1中消去X1,并从y1=h12x2+n1中解得X2的估计值
Figure PCTCN2016087333-appb-000014
也就是说,为解决Grant Free传输冲突,可以首先从没有发生冲突的CTU506上解出UE5的信息,然后利用已解得的UE5信息从CTU510上消除UE5对UE1的干扰,从而解出UE1的信息,最后利用已解得的UE1信息从CTU502上消除UE1对UE2的干扰,并最终解得UE2。
在本发明实施例中,如图5(a)和5(b)所示,UE3分别映射至CTU504和CTU514,且没有其它终端设备冲突,其接收信号模型可以表示为公式(5):
Figure PCTCN2016087333-appb-000015
其中,y5为CTU504上的接收信号模型,y6为CTU514上的接收信号模型,Hij表示UEj至yi的信道信息,ni表示yi接收到的噪声。
另一方面,经过解决冲突后针对UE1的接收模型为公式(3):
Figure PCTCN2016087333-appb-000016
由此可见,Grant Free冗余传输为相应UE提供了额外的自由度以提升传输可靠性。
下面将结合具体的例子详细描述本发明实施例,应注意,这些例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
图6示出了根据本发明另一实施例的上行数据传输的方法的示意性流程 图。如图6所示,该方法300包括:
S301,网络设备(例如BS)接收终端设备(例如UE)发送的上报信息;
可选地,该上报信息可以是由终端设备在某一上行公共信道上传输的,包括UE Grant Free传输的使能信息,比如是否支持Grant Free传输等,也包括UE Grant Free冗余传输的使能信息,比如是否支持Grant Free冗余传输,以及冗余传输的相应要求。并且网络设备根据终端设备上报信息以及其他***条件为每个终端设备分配唯一的专属连接签名DCS序号,划定CTU接入区域,为接入区域内的每一CTU赋予唯一的CTU序号。
S302,网络设备通过高层信令发送Grant Free的使能信息;
可选地,网络设备可以通过广播信道发送该使能信息,该使能信息可以包括Grant Free传输的使能信息,该传输的使能信息包括网络设备是否支持Grant Free传输,CTU接入区域,CTU接入区域中的CTU的数量,UE的DCS,CTU序号映射规则等信息,还可以包括Grant Free冗余传输的使能信息,包括网络设备是否支持Grant Free冗余传输,支持Grant Free冗余传输的调制编码MCS等信息。
S303,网络设备接收终端设备传输的上行数据;
应理解,该上行数据包括常规传输终端设备传输的上行数据和冗余传输终端设备传输的上行数据。
S304,网络设备向终端设备发送ACK/NACK;
可选地,网络设备在接收到上行数据后,进行常规传输终端设备检测或冗余传输终端设备检测,并通过ACK/NACK告知终端设备上行数据是否传输成功。
可选地,如果终端设备与网络设备双方约定以ACK方式确认接收检测成功,则网络设备在成功检测后将向终端设备发出ACK。如果终端设备在等待一定时间后未收到ACK,则认为上行传输发生冲突。如果终端设备与网络设备双方约定以NACK方式确认接收检测失败,则网络设备在检测失败后将向终端设备发出NACK。如果终端设备接收到NACK,则认为上行传输发生冲突。
S305,网络设备通过高层信令告知终端设备CTU重映射规则;
S306,网络设备接收终端设备根据CTU重映射规则传输的上行数据;
S307,网络设备向终端设备发送ACK/NACK。
可选地,该上行数据传输的方法300可以不包括S305,此时CTU的重映射规则可以为标准规定的映射规则或者网络设备和终端设备事先约定好的映射规则,本发明对此不作限定。
图7是根据本发明再一实施例的上行数据传输的方法的示意性流程图。如图7所示,该方法400可以由网络设备执行,该方法400包括:
S401,接收终端设备(例如UE)发送的上报信息;
S402,确定UE的CTU接入区域;
S403,确定CTU接入区域中每个CTU的序号;
S404,向UE发送广播信息;
S405,接收UE根据该广播信息传输的上行数据;
S406,对接收的上行数据进行检测;
S407,根据检测结果确定上行数据是否传输成功;
S408,在确定上行数据传输成功时,向UE发送确认成功接收上行数据的信息;
可选地,在确定上行数据未传输成功时,S407转至S409,确定冲突解决方案。
可选地,S409中确定的解决方案一为:直接执行S405及其后续步骤。
可选地,S409中确定的解决方案二为:执行S410,重新确定CTU序号映射规则;之后顺序执行步骤S404及其之后的步骤。
应理解,方法400中的相关步骤中包括的信息的内容与方法300中相关步骤中包括的信息的内容相同,为避免重复,在此不再赘述。
在本发明实施例中,可选地,上述的操作步骤与算法可以在网络设备中的基带单元(Base band Unite,简称为“BBU”)上执行,也可以在云通信中心架构(Cloud-RAN)处理池中执行。但本发明并不限于此。
因此,本发明实施例的上行数据传输的方法,网络设备接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
以上结合图2至图7从网络设备侧详细描述了根据本发明实施例的上行数据传输的方法,下面将结合图8和图9,从终端设备侧详细描述根据本发 明实施例的上行数据传输的方法。应理解,网络设备侧描述的终端设备与网络设备的交互及相关特性、功能等与终端设备侧的描述相应,为了简洁,适当省略重复的描述。
图8示出了根据本发明再一实施例的上行数据传输的方法的示意性流程图。该方法是由终端设备执行的,如图8所示,该方法500包括:
S510,发送包括传输模式信息的第一消息,该传输模式信息用于指示该终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;
S520,接收包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
具体而言,终端设备向网络设备发送的包括传输模式信息的第一消息,该传输模式指示该终端设备能够通过统一个TTI内的至少两个CTU传输上行数据,并且该至少两个CTU传输的上行数据部分相同或者全部相同,之后该终端设备接收网络设备发送的包括指示信息的第二消息,该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU。
因此,本发明实施例的上行数据传输的方法,终端设备向网络设备发送包括传输模式信息的第一消息,并接收网络设备发送的包括指示信息的第二消息,由此终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
可选地,在S520中,该指示信息包括下列信息中的至少一种:该终端设备的专属连接签名DCS的信息;CTU的信息;该终端设备能够用于传输上行数据的CTU的数量信息;CTU接入区域的信息;CTU接入区域中的CTU的数量信息;CTU接入区域中的起始CTU的信息;CTU序号映射规则信息。
应理解,终端设备可以接收网络设备发送的该DCS的值,也可以通过接收网络设备发送的该DCS的索引值确定该DCS;该CTU的信息可以具体为CTU的序号;该CTU接入区域的信息可以具体为CTU接入区域的序号;该CTU序号映射规则信息可以是具体的映射规则,也可以是与具体映射规 则相对应的序号,比如说,可以通过标准规定或者通信双方事先约定的方式预定义CTU序号映射规则集合{fUE-CTU(·)},该CTU序号映射规则集合包含不同的CTU序号映射规则,在通信过程中终端设备可以接收网络设备发送的与映射规则相对应的序号,根据该序号确定具体采用的CTU序号映射规则,或通信过程中终端设备也可以接收网络设备发送的具体的CTU序号映射规则,直接根据该CTU序号映射规则确定进行上行数据传输使用的CTU。本发明对此不作限定。
可选地,在S520中,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于传输上行数据的CTU的数量;该CTU接入区域中的CTU的数量;该CTU接入区域中的起始CTU的序号。
可选地,在S520中,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于传输上行数据的CTU的数量,NCTU为该CTU接入区域中的CTU的数量。
可选地,在S520中,该CTU接入区域为用于冗余传输的CTU接入区域。其中,冗余传输可以理解为:在一次数据传输过程中所传输的数据至少包括第一数据和第二数据,且该第二数据与该第一数据部分相同或全部相同。或者说,该CTU接入区域为用于可靠性传输的CTU接入区域,或者说,该CTU接入区域为可靠-低时延(Reliable Ultra-Low Latency,简称为“RULL”)传输的CTU接入区域,但本发明并不限于此。
可选地,在S520中,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于冗余传输上行数据的CTU的数量;该用于冗余传输的CTU接入区域中的CTU的数量;该用于冗余传输的CTU接入区域中的起始CTU的序号。
可选地,在S520中,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于冗余传输上行数据的CTU的数量,NCTU为该用于冗余传输的CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,该CTU接入区域为一个或多个CTU接入区域,其中,该多个CTU接入区域为属于同一个TTI的CTU接入区域。也就是说,终端设备可以在同一个TTI内映射至多个CTU进行上行数据的传输。
在本发明实施例中,可选地,该多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。也就是说,终端设备可以映射至不同TTI内的CTU上进行上行数据的传输。
在本发明实施例中,可选地,通过该至少两个CTU来传输的上行数据为重传数据。也就是说,终端设备可以根据该指示信息确定进行初始传输的CTU和进行重传的CTU,终端设备在确定初始传输失败时,根据该指示信息确定用于进行重传的CTU,并进行重传数据的传输。
在本发明实施例中,可选地,在终端设备传输上行数据失败时,还可以根据新的CTU序号映射规则确定用于进行重传的CTU,该新的CTU序号映射规则可以是标准规定的或UE与网络设备事先约定好的,也可以是网络设备通过广播信道或其他下行信道发送给UE的,比如说,在终端设备传输上行数据失败时,可以接收网络设备发送的包括CTU重映射规则的消息,终端设备根据该CTU重映射规则确定用于进行重传的CTU,本发明对此不作限定。
在本发明实施例中,可选地,上行数据的传输为免授权传输。
可选地,本发明实施例的方法能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。但本发明并不限于此。
图9是根据本发明再一实施例的上行数据传输的方法的示意性流程图。如图9所示,该方法600可以由终端设备执行,该方法600包括:
S601,向网络设备发送上报信息;
S602,接收网络设备发送的广播信息;
S603,根据该广播信息确定用于传输上行数据的CTU;
S604,通过确定的CTU冗余传输上行数据;
S605,确定上行传输过程中是否发生冲突;
S606,在确定发生冲突时,确定冲突解决方案;
可选地,S606中确定的解决方案一为:直接执行S604及其后续步骤。
可选地,S606中确定的解决方案二为:直接执行S602及其之后的步骤。
可选地,在S601中,UE可以在某一上行公共信道上向网络设备传输该上报信息,该上报信息可以包括UE Grant Free传输的使能信息,比如是否支持Grant Free传输等,还包括UE Grant Free冗余传输的使能信息,比如是否支持Grant Free冗余传输,以及冗余传输的相应要求。
可选地,在S602中,UE接收到的该广播信息可以包括Grant Free传输的使能信息,该传输的使能信息包括网络设备是否支持Grant Free传输,CTU接入区域,CTU接入区域中的CTU的数量,UE的DCS,CTU序号映射规则等信息,也包括Grant Free冗余传输的使能信息,包括网络设备是否支持Grant Free冗余传输,支持Grant Free冗余传输的调制编码MCS等信息。
可选地,在S605中,如果UE与网络设备双方约定以ACK方式确认接收检测成功,则网络设备在成功检测后将向UE发出ACK。如果UE在等待一定时间后未收到ACK,则认为上行传输发生冲突。如果UE与网络设备双方约定以NACK方式确认接收检测失败,则网络设备在检测失败后将向UE发出NACK。如果UE接收到NACK,则认为上行传输发生冲突。
应理解,在本发明实施例中,上述与UE相关的操作步骤与算法可以在UE端的CPU上执行,但本发明并不限于此。
因此,本发明实施例的上行数据传输的方法,终端设备向网络设备发送包括传输模式信息的第一消息,并接收网络设备发送的包括指示信息的第二消息,由此终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
上文中结合图2至图9,详细描述了根据本发明实施例的上行数据传输的方法,下面将结合图10至图13详细描述根据本发明实施例的上行数据传输的装置。
图10示出了根据本发明实施例的上行数据传输的装置。如图10所示,该装置10包括:
接收模块11,用于接收包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;
发送模块12,用于发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
因此,本发明实施例的上行数据传输的装置接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
在本发明实施例中,可选地,该指示信息包括下列信息中的至少一种:该终端设备的专属连接签名DCS的信息;CTU的信息;该终端设备能够用于传输上行数据的CTU的数量信息;CTU接入区域的信息;CTU接入区域中的CTU的数量信息;CTU接入区域中的起始CTU的信息;CTU序号映射规则信息。
在本发明实施例中,可选地,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于传输上行数据的CTU的数量;该CTU接入区域中的CTU的数量;该CTU接入区域中的起始CTU的序号。
在本发明实施例中,可选地,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·) 为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于传输上行数据的CTU的数量,NCTU为该CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,该CTU接入区域为用于冗余传输的CTU接入区域。
在本发明实施例中,可选地,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于冗余传输上行数据的CTU的数量;该用于冗余传输的CTU接入区域中的CTU的数量;该用于冗余传输的CTU接入区域中的起始CTU的序号。
在本发明实施例中,可选地,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于冗余传输上行数据的CTU的数量,NCTU为该用于冗余传输的CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,该CTU接入区域为一个或多个CTU接入区域,其中,该多个CTU接入区域为属于同一个TTI的CTU接入区域。
在本发明实施例中,可选地,该多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
在本发明实施例中,可选地,通过该至少两个CTU来传输的上行数据为重传数据。
在本发明实施例中,可选地,上行数据的传输为免授权传输。
在本发明实施例中,可选地,该装置能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
在本发明实施例中,可选地,该装置为网络设备。
在本发明实施例中,可选地,上述的操作步骤与算法可以在网络设备中的射频拉远单元(Building Base band Unite,简称为“BBU”)上执行,也可以在云通信中心架构(Cloud-RAN)处理池中执行。但本发明并不限于此。
应理解,根据本发明实施例上行数据传输的装置10可对应于执行本发明实施例中的上行数据传输的方法200,并且装置10中的各个模块的上述和其它操作和/或功能分别为了实现图2中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的上行数据传输的装置接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
图11示出了根据本发明另一实施例的上行数据传输的装置。如图11所示,该装置20包括:
发送模块21,用于发送包括传输模式信息的第一消息,该传输模式信息用于指示该装置能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;
接收模块22,用于接收包括指示信息的第二消息,该指示信息用于使该装置根据该指示信息确定进行上行数据传输所使用的CTU。
因此,本发明实施例的上行数据传输的装置向网络设备发送包括传输模式信息的第一消息,并接收网络设备发送的包括指示信息的第二消息,由此可以根据该指示信息确定进行上行数据传输所使用的CTU,由于该装置能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
在本发明实施例中,可选地,该指示信息包括下列信息中的至少一种:该装置的专属连接签名DCS的信息;CTU的信息;该装置能够用于传输上行数据的CTU的数量信息;CTU接入区域的信息;CTU接入区域中的CTU的数量信息;CTU接入区域中的起始CTU的信息;CTU序号映射规则信息。
在本发明实施例中,可选地,该CTU序号映射规则信息是根据如下参 数中的任意一个或多个确定CTU序号的规则:该装置的DCS的信息;该装置能够用于传输上行数据的CTU的数量;该CTU接入区域中的CTU的数量;该CTU接入区域中的起始CTU的序号。
在本发明实施例中,可选地,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该CTU接入区域中的起始CTU的序号,DCSi为装置UEi的DCS,Δi为该UEi能够用于传输上行数据的CTU的数量,NCTU为该CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,该CTU接入区域为用于冗余传输的CTU接入区域。
在本发明实施例中,可选地,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该装置的DCS的信息;该装置能够用于冗余传输上行数据的CTU的数量;该用于冗余传输的CTU接入区域中的CTU的数量;该用于冗余传输的CTU接入区域中的起始CTU的序号。
在本发明实施例中,可选地,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为装置UEi的DCS,Δi为该UEi能够用于冗余传输上行数据的CTU的数量,NCTU为该用于冗余传输的CTU接入区域中的CTU的数量。
在本发明实施例中,可选地,该CTU接入区域为一个或多个CTU接入区域,其中,该多个CTU接入区域为属于同一个TTI的CTU接入区域。
在本发明实施例中,可选地,该多个CTU接入区域还进一步包括属于 不同TTI的CTU接入区域。
在本发明实施例中,可选地,通过该至少两个CTU来传输的上行数据为重传数据。
在本发明实施例中,可选地,上行数据的传输为免授权传输。
在本发明实施例中,可选地,该装置能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
在本发明实施例中,可选地,该装置为终端设备。
在本发明实施例中,可选地,上述的操作步骤与算法可以在装置的CPU上执行,但本发明并不限于此。
应理解,根据本发明实施例的上行数据传输的装置20可对应于执行本发明实施例中的上行数据传输的方法500,并且装置20中的各个模块的上述和其它操作和/或功能分别为了实现图8中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的上行数据传输的装置向网络设备发送包括传输模式信息的第一消息,并接收网络设备发送的包括指示信息的第二消息,由此可以根据该指示信息确定进行上行数据传输所使用的CTU,由于该装置能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
如图12所示,本发明实施例还提供了一种上行数据传输的装置30,该装置30包括处理器31、存储器32、接收器33、发送器34和总线***35,总线***35为可选。其中,处理器31、存储器32、接收器33和发送器34可以通过总线***35相连,该存储器32用于存储指令,该处理器31用于执行该存储器32存储的指令,以控制接收器33接收信号和发送器34发送信号。其中,该接收器33用于接收包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;该发送器34用于发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的CTU。
因此,本发明实施例的上行数据传输的装置接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
应理解,在本发明实施例中,该处理器31可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器31还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器32可以包括只读存储器和随机存取存储器,并向处理器31提供指令和数据。存储器32的一部分还可以包括非易失性随机存取存储器。例如,存储器32还可以存储设备类型的信息。
该总线***35除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***35。
在实现过程中,上述方法的各步骤可以通过处理器31中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器32,处理器31读取存储器32中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该指示信息包括下列信息中的至少一种:该终端设备的专属连接签名DCS的信息;CTU的信息;该终端设备能够用于传输上行数据的CTU的数量信息;CTU接入区域的信息;CTU接入区域中的CTU的数量信息;CTU接入区域中的起始CTU的信息;CTU序号映射规则信息。
可选地,作为一个实施例,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于传输上行数据的CTU的数量;该CTU接入区域中的CTU 的数量;该CTU接入区域中的起始CTU的序号。
可选地,作为一个实施例,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于传输上行数据的CTU的数量,NCTU为该CTU接入区域中的CTU的数量。
可选地,作为一个实施例,该CTU接入区域为用于冗余传输的CTU接入区域。
可选地,作为一个实施例,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该终端设备的DCS的信息;该终端设备能够用于冗余传输上行数据的CTU的数量;该用于冗余传输的CTU接入区域中的CTU的数量;该用于冗余传输的CTU接入区域中的起始CTU的序号。
可选地,作为一个实施例,该确定CTU序号的规则是为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为该UEi能够用于冗余传输上行数据的CTU的数量,NCTU为该用于冗余传输的CTU接入区域中的CTU的数量。
可选地,作为一个实施例,该CTU接入区域为一个或多个CTU接入区域,其中,该多个CTU接入区域为属于同一个TTI的CTU接入区域。
可选地,作为一个实施例,该多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
可选地,作为一个实施例,通过该至少两个CTU来传输的上行数据为 重传数据。
可选地,作为一个实施例,上行数据的传输为免授权传输。
可选地。作为一个实施例,该装置能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
在本发明实施例中,可选地,该装置为网络设备。
应理解,根据本发明实施例的上行数据传输的装置30可对应于本发明实施例中的上行数据传输的装置10,并可以对应于执行根据本发明实施例的方法中的相应主体,并且装置30中的各个模块的上述和其它操作和/或功能分别为了实现图2中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的上行数据传输的装置接收终端设备发送的包括传输模式信息的第一消息,并向该终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
如图13所示,本发明实施例还提供了一种上行数据传输的装置40,该装置40包括处理器41、存储器42、发送器43、接收器44和总线***45,总线***45为可选。其中,处理器41、存储器42、发送器43和接收器44可以通过总线***45相连,该存储器42用于存储指令,该处理器41用于执行该存储器42存储的指令,以控制发送器43发送信号和接收器44接收信号。其中,该发送器43用于发送包括传输模式信息的第一消息,该传输模式信息用于指示该装置能够通过同一时间间隔TTI内的至少两个竞争传输单元CTU传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同;该接收器44用于接收包括指示信息的第二消息,该指示信息用于使该装置根据该指示信息确定进行上行数据传输所使用的CTU。
因此,本发明实施例的上行数据传输的装置向网络设备发送包括传输模式信息的第一消息,并接收网络设备发送的包括指示信息的第二消息,由此可以根据该指示信息确定进行上行数据传输所使用的CTU,由于该装置能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的 可靠性,并能降低传输时延。
应理解,在本发明实施例中,该处理器41可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器41还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器42可以包括只读存储器和随机存取存储器,并向处理器41提供指令和数据。存储器42的一部分还可以包括非易失性随机存取存储器。例如,存储器42还可以存储设备类型的信息。
该总线***45除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***45。
在实现过程中,上述方法的各步骤可以通过处理器41中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器42,处理器41读取存储器42中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该指示信息包括下列信息中的至少一种:该装置的专属连接签名DCS的信息;CTU的信息;该装置能够用于传输上行数据的CTU的数量信息;CTU接入区域的信息;CTU接入区域中的CTU的数量信息;CTU接入区域中的起始CTU的信息;CTU序号映射规则信息。
可选地,作为一个实施例,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该装置的DCS的信息;该装置能够用于传输上行数据的CTU的数量;该CTU接入区域中的CTU的数量;该CTU接入区域中的起始CTU的序号。
可选地,作为一个实施例,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该CTU接入区域中的起始CTU的序号,DCSi为装置UEi的DCS,Δi为该UEi能够用于传输上行数据的CTU的数量,NCTU为该CTU接入区域中的CTU的数量。
可选地,作为一个实施例,该CTU接入区域为用于冗余传输的CTU接入区域。
可选地,作为一个实施例,该CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:该装置的DCS的信息;该装置能够用于冗余传输上行数据的CTU的数量;该用于冗余传输的CTU接入区域中的CTU的数量;该用于冗余传输的CTU接入区域中的起始CTU的序号。
可选地,作为一个实施例,该确定CTU序号的规则为如下公式中的任意一种或多种:
ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为该用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为装置UEi的DCS,Δi为该UEi能够用于冗余传输上行数据的CTU的数量,NCTU为该用于冗余传输的CTU接入区域中的CTU的数量。
可选地,作为一个实施例,该CTU接入区域为一个或多个CTU接入区域,其中,该多个CTU接入区域为属于同一个TTI的CTU接入区域。
可选地,作为一个实施例,该多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
可选地,作为一个实施例,通过该至少两个CTU来传输的上行数据为重传数据。
可选地,作为一个实施例,上行数据的传输为免授权传输。
可选地。作为一个实施例,该装置能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
在本发明实施例中,可选地,该装置为终端设备。
应理解,根据本发明实施例的上行数据传输的装置40可对应于本发明实施例中的上行数据传输的装置20,并可以对应于执行根据本发明实施例的方法中的相应主体,并且装置40中的各个模块的上述和其它操作和/或功能分别为了实现图8中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的上行数据传输的装置向网络设备发送包括传输模式信息的第一消息,并接收网络设备发送的包括指示信息的第二消息,由此可以根据该指示信息确定进行上行数据传输所使用的CTU,由于该装置能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
上述实施例已经对于第一消息和第二消息做了描述,为了使方案更加清楚,申请人增加如下描述:
图14示出了根据本发明一实施例的上行数据传输的方法,上述各方法实施例和装置实施例的描述也可以适用图14的实施例,不再一一赘述了。如图14所示,方法700包括:
S720,网络设备向终端设备发送包括指示信息的第二消息,该指示信息用于使该终端设备根据该指示信息确定进行上行数据传输所使用的竞争传输单元CTU,该上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同。
可选地,终端可以收到网络设备发送的包括指示信息的第二消息,在此不再赘述。
为了方便理解,在这里增加说明但不等于增加方案的是:本申请各实施例描述的“至少两个CTU”,可以是组成CTU的元素中至少有一种元素不同的至少两个CTU,举例地:如果CTU指时间、频率、码域相结合的传输资源,那么该至少两个CTU是包括但不限于如下各种可能:1),至少两个频率不同的CTU,比如相同的时间和码域,但不同的频率的传输资源,或者,2)至少两个码域不同的CTU,比如是相同的时间和频率,但不同的码域的传输资源,或者,3)至少两个时间不同的CTU,是相同的频率和码域,但不同的时间的传输资源,或者,4)至少两个不同频率和码域的CTU,比如 相同的时间,但不同的频率和码域,等等。
可选地,方法还包括:
S710,网络设备接收终端设备发送的包括传输模式信息的第一消息,该传输模式信息用于指示终端设备能够通过同一TTI内的至少两个CTU传输上行数据;
可以理解的是,方法700可以不包括S710。可以理解,终端设备可以不向网络设备发送第一消息,此时网络设备可以是默认所有终端设备均支持Grant Free冗余传输,网络设备向所有终端设备发送包括指示信息的第二消息。可选地,在终端设备不能进行冗余传输时,终端设备可以根据指示信息确定进行常规传输所采用的CTU,并进行初始传输或重传。
可选地,终端设备采用将第一消息包含在初始接入过程中向网络设备发送的信令中的方式发送第一消息,网络设备也可以采用将第二消息包含在初始接入过程中向终端设备发送的信令中的方式发送第二消息。或者,终端设备采用将第一消息包含在随机接入过程中向网络设备发送的信令中的方式发送第一消息,网络设备也可以采用将第二消息包含在随机接入过程中向终端设备发送的信令中的方式发送第二消息。
图15示出了本发明再一实施例的上行数据传输的装置,如图15所示,装置50包括:
发送模块51,用于发送包括指示信息的第二消息,该指示信息用于使终端设备根据该指示信息确定进行上行数据传输所使用的竞争传输单元CTU,该上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同。
因此,本发明实施例的上行数据传输的装置向终端设备发送包括指示信息的第二消息,使得该终端设备可以根据该指示信息确定进行上行数据传输所使用的CTU,由于终端设备能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
在本发明实施例中,可选地,如图15所示,装置50还包括:接收模块52,在该发送模51发送包括指示信息的第二消息之前,该接收模块52用于:接收包括传输模式信息的第一消息,该传输模式信息用于指示该终端设备能 够通过同一TTI内的至少两个CTU传输上行数据。
应理解,根据本发明实施例的上行数据传输的装置50可对应于方法700中的网络设备,并且装置50中的各个模块的上述和其它操作和/或功能分别为了实现图14中的各个方法的相应流程,为了简洁,在此不再赘述。
下面将结合图16描述根据本发明再一实施例上行数据传输的装置。如图16所示,装置60包括:
接收模块61,用于接收包括指示信息的第二消息,该指示信息用于使该装置根据该指示信息确定进行上行数据传输所使用的竞争传输单元CTU,该上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同。
因此,本发明实施例的上行数据传输的装置接收包括指示信息的第二消息,并能够根据该指示信息确定进行上行数据传输所使用的CTU,由于该装置能够通过同一TTI内的至少两个CTU传输上行数据,因此能够提升数据传输的可靠性,并能降低传输时延。
在本发明实施例中,可选地,如图16所示,装置60还包括:发送模块62,在该接收模块62接收包括指示信息的第二消息之前,该发送模块62用于:发送包括传输模式信息的第一消息,该传输模式信息用于指示该装置能够通过同一TTI内的至少两个CTU传输上行数据。
应理解,根据本发明实施例的上行数据传输的装置60可对应于本发明实施例中的上行数据传输的方法700中的终端设备,并且装置60中的各个模块的上述和其它操作和/或功能分别为了实现图14中的各个方法的相应流程,为了简洁,在此不再赘述。
图17示出了根据本发明再一实施例的上行数据传输的装置,如图17所示,该装置70包括:处理器71和收发器72,处理器71和收发器72相连,可选地,该装置70还包括存储器73,存储器73与处理器71相连,进一步可选地,该装置70还包括总线***74。其中,处理器71、存储器73和收发器72可以通过总线***74相连,该存储器73可以用于存储指令,该处理器71用于执行该存储器73存储的指令,以控制收发器72发送信息或信号,
该收发器72,用于发送包括指示信息的第二消息,该指示信息用于使终端设备根据该指示信息确定进行上行数据传输所使用的竞争传输单元CTU,该上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同。
可选地,作为一个实施例,该收发器72还用于:在发送包括指示信息的第二消息之前,接收包括传输模式信息的第一消息,该传输模式信息用于指示该终端设备能够通过同一TTI内的至少两个CTU传输上行数据。
根据本发明实施例的上行数据传输的装置70可对应于本发明实施例的方法700中的网络设备,并且,装置70中的各单元即模块和上述其他操作和/或功能分别为了实现方法700的相应流程,为了简洁,在此不再赘述。
或者,该收发器72,用于接收包括指示信息的第二消息,该指示信息用于使该装置根据该指示信息确定进行上行数据传输所使用的竞争传输单元CTU,该上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,该CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,该至少两个CTU传输的上行数据部分相同或全部相同。
可选地,作为一个实施例,在接收包括指示信息的第二消息之前,该收发器72还用于:发送包括传输模式信息的第一消息,该传输模式信息用于指示该装置能够通过同一TTI内的至少两个CTU传输上行数据。
根据本发明实施例的上行数据传输的装置70可对应于本发明实施例的方法700中的终端设备,并且,装置70中的各单元即模块和上述其他操作和/或功能分别为了实现方法700的相应流程,为了简洁,在此不再赘述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应 对本发明实施例的实施过程构成任何限定。
另外,本文中术语“***”和“网络”在本文中常可互换使用。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,比如方法实施例的技术特征可以适用于装置实施例或其他方法实施例,在其他实施例不再一一赘述。
以上实施例中的发送模块或发送单元或发送器可以指在空口上进行发送,可以不是空口上发送,而是发送给其他设备以便于其他设备在空口上发送。以上实施例中的接收模块或接收单元或接收器可以指在空口上进行接收,可以不是空口上接收,而是从在空口上接收的其他设备进行接收。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (54)

  1. 一种上行数据传输的方法,其特征在于,所述方法是由网络设备执行的,所述方法包括:
    发送包括指示信息的第二消息,所述指示信息用于使终端设备根据所述指示信息确定进行上行数据传输所使用的竞争传输单元CTU,所述上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,所述CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,所述至少两个CTU传输的上行数据部分相同或全部相同。
  2. 根据权利要求1所述的方法,其特征在于,在发送包括指示信息的第二消息之前,所述方法还包括:
    接收包括传输模式信息的第一消息,所述传输模式信息用于指示所述终端设备能够通过同一TTI内的至少两个CTU传输上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息包括下列信息中的至少一种:
    所述终端设备的专属连接签名DCS的信息;
    CTU的信息;
    所述终端设备能够用于传输上行数据的CTU的数量信息;
    CTU接入区域的信息;
    CTU接入区域中的CTU的数量信息;
    CTU接入区域中的起始CTU的信息;
    CTU序号映射规则信息。
  4. 根据权利要求3所述的方法,其特征在于,所述CTU接入区域为用于冗余传输的CTU接入区域。
  5. 根据权利要求3所述的方法,其特征在于,所述CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述终端设备的DCS的信息;
    所述终端设备能够用于传输上行数据的CTU的数量;
    所述CTU接入区域中的CTU的数量;
    所述CTU接入区域中的起始CTU的序号。
  6. 根据权利要求4所述的方法,其特征在于,所述CTU序号映射规则 信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述终端设备的DCS的信息;
    所述终端设备能够用于冗余传输上行数据的CTU的数量;
    所述用于冗余传输的CTU接入区域中的CTU的数量;
    所述用于冗余传输的CTU接入区域中的起始CTU的序号。
  7. 根据权利要求5所述的方法,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICIU-ij为CTU的序号,ICTU-INT为所述CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为所述UEi能够用于传输上行数据的CTU的数量,NCTU为所述CTU接入区域中的CTU的数量。
  8. 根据权利要求6所述的方法,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICIU-ij为CTU的序号,ICTU-INT为所述用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为所述UEi能够用于冗余传输上行数据的CTU的数量,NCTU为所述用于冗余传输的CTU接入区域中的CTU的数量。
  9. 根据权利要求3至8中任一项所述的方法,其特征在于,所述CTU接入区域为一个或多个CTU接入区域,其中,所述多个CTU接入区域为属于同一个TTI的CTU接入区域。
  10. 根据权利要求9所述的方法,其特征在于,所述多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,通过所述至少两个CTU来传输的上行数据为重传数据。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,上行数 据的传输为免授权传输。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述方法能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
  14. 一种上行数据传输的方法,其特征在于,所述方法是由终端设备执行的,所述方法包括:
    接收包括指示信息的第二消息,所述指示信息用于使所述终端设备根据所述指示信息确定进行上行数据传输所使用的竞争传输单元CTU,所述上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,所述CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,所述至少两个CTU传输的上行数据部分相同或全部相同。
  15. 根据权利要求14所述的方法,其特征在于,在接收包括指示信息的第二消息之前,所述方法还包括:
    发送包括传输模式信息的第一消息,所述传输模式信息用于指示所述终端设备能够通过同一TTI内的至少两个CTU传输上行数据。
  16. 根据权利要求14或15所述的方法,其特征在于,所述指示信息包括下列信息中的至少一种:
    所述终端设备的专属连接签名DCS的信息;
    CTU的信息;
    所述终端设备能够用于传输上行数据的CTU的数量信息;
    CTU接入区域的信息;
    CTU接入区域中的CTU的数量信息;
    CTU接入区域中的起始CTU的信息;
    CTU序号映射规则信息。
  17. 根据权利要求16所述的方法,其特征在于,所述CTU接入区域为用于冗余传输的CTU接入区域。
  18. 根据权利要求16所述的方法,其特征在于,所述CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述终端设备的DCS的信息;
    所述终端设备能够用于传输上行数据的CTU的数量;
    所述CTU接入区域中的CTU的数量;
    所述CTU接入区域中的起始CTU的序号。
  19. 根据权利要求17所述的方法,其特征在于,所述CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述终端设备的DCS的信息;
    所述终端设备能够用于冗余传输上行数据的CTU的数量;
    所述用于冗余传输的CTU接入区域中的CTU的数量;
    所述用于冗余传输的CTU接入区域中的起始CTU的序号。
  20. 根据权利要求18所述的方法,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICIU-ij为CTU的序号,ICTU-INT为所述CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为所述UEi能够用于传输上行数据的CTU的数量,NCTU为所述CTU接入区域中的CTU的数量。
  21. 根据权利要求19所述的方法,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICIU-ij为CTU的序号,ICTU-INT为所述用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为所述UEi能够用于冗余传输上行数据的CTU的数量,NCTU为所述用于冗余传输的CTU接入区域中的CTU的数量。
  22. 根据权利要求16至21中任一项所述的方法,其特征在于,所述CTU接入区域为一个或多个CTU接入区域,其中,所述多个CTU接入区域为属于同一个TTI的CTU接入区域。
  23. 根据权利要求22所述的方法,其特征在于,所述多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
  24. 根据权利要求14至23中任一项所述的方法,其特征在于,通过所述至少两个CTU来传输的上行数据为重传数据。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,上行数据的传输为免授权传输。
  26. 根据权利要求14至25中任一项所述的方法,其特征在于,所述方法能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
  27. 一种上行数据传输的装置,其特征在于,包括:
    发送模块,用于发送包括指示信息的第二消息,所述指示信息用于使终端设备根据所述指示信息确定进行上行数据传输所使用的竞争传输单元CTU,所述上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,所述CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,所述至少两个CTU传输的上行数据部分相同或全部相同。
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括接收模块,在所述发送模块发送包括指示信息的第二消息之前,所述接收模块用于:
    接收包括传输模式信息的第一消息,所述传输模式信息用于指示所述终端设备能够通过同一TTI内的至少两个CTU传输上行数据。
  29. 根据权利要求27或28所述的装置,其特征在于,所述指示信息包括下列信息中的至少一种:
    所述终端设备的专属连接签名DCS的信息;
    CTU的信息;
    所述终端设备能够用于传输上行数据的CTU的数量信息;
    CTU接入区域的信息;
    CTU接入区域中的CTU的数量信息;
    CTU接入区域中的起始CTU的信息;
    CTU序号映射规则信息。
  30. 根据权利要求29所述的装置,其特征在于,所述CTU接入区域为用于冗余传输的CTU接入区域。
  31. 根据权利要求29所述的装置,其特征在于,所述CTU序号映射规 则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述终端设备的DCS的信息;
    所述终端设备能够用于传输上行数据的CTU的数量;
    所述CTU接入区域中的CTU的数量;
    所述CTU接入区域中的起始CTU的序号。
  32. 根据权利要求30所述的装置,其特征在于,所述CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述终端设备的DCS的信息;
    所述终端设备能够用于冗余传输上行数据的CTU的数量;
    所述用于冗余传输的CTU接入区域中的CTU的数量;
    所述用于冗余传输的CTU接入区域中的起始CTU的序号。
  33. 根据权利要求31所述的装置,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICIU-ij为CTU的序号,ICTU-INT为所述CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为所述UEi能够用于传输上行数据的CTU的数量,NCTU为所述CTU接入区域中的CTU的数量。
  34. 根据权利要求32所述的装置,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICIU-ij为CTU的序号,ICTU-INT为所述用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为终端设备UEi的DCS,Δi为所述UEi能够用于冗余传输上行数据的CTU的数量,NCTU为所述用于冗余传输的CTU接入区域中的CTU的数量。
  35. 根据权利要求29至34中任一项所述的装置,其特征在于,所述CTU接入区域为一个或多个CTU接入区域,其中,所述多个CTU接入区域 为属于同一个TTI的CTU接入区域。
  36. 根据权利要求35所述的装置,其特征在于,所述多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
  37. 根据权利要求27至36中任一项所述的装置,其特征在于,通过所述至少两个CTU来传输的上行数据为重传数据。
  38. 根据权利要求27至37中任一项所述的装置,其特征在于,上行数据的传输为免授权传输。
  39. 根据权利要求27至38中任一项所述的装置,其特征在于,所述装置能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
  40. 根据权利要求27至39中任一项所述的装置,其特征在于,所述装置为网络设备。
  41. 一种上行数据传输的装置,其特征在于,包括:
    接收模块,用于接收包括指示信息的第二消息,所述指示信息用于使所述装置根据所述指示信息确定进行上行数据传输所使用的竞争传输单元CTU,所述上行数据传输是通过同一时间间隔TTI内的至少两个CTU来传输上行数据,所述CTU指时间、频率、码域相结合的传输资源,或者,指时间、频率、导频相结合的传输资源,或者,指时间、频率、码域、导频相结合的传输资源,所述至少两个CTU传输的上行数据部分相同或全部相同。
  42. 根据权利要求41所述的装置,其特征在于,所述装置还包括发送模块,在所述接收模块接收包括指示信息的第二消息之前,所述发送模块用于:
    发送包括传输模式信息的第一消息,所述传输模式信息用于指示所述装置能够通过同一TTI内的至少两个CTU传输上行数据。
  43. 根据权利要求41或42所述的装置,其特征在于,所述指示信息包括下列信息中的至少一种:
    所述装置的专属连接签名DCS的信息;
    CTU的信息;
    所述装置能够用于传输上行数据的CTU的数量信息;
    CTU接入区域的信息;
    CTU接入区域中的CTU的数量信息;
    CTU接入区域中的起始CTU的信息。
    CTU序号映射规则信息。
  44. 根据权利要求43所述的装置,其特征在于,所述CTU接入区域为用于冗余传输的CTU接入区域。
  45. 根据权利要求43所述的装置,其特征在于,所述CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述装置的DCS的信息;
    所述装置能够用于传输上行数据的CTU的数量;
    所述CTU接入区域中的CTU的数量;
    所述CTU接入区域中的起始CTU的序号。
  46. 根据权利要求44所述的装置,其特征在于,所述CTU序号映射规则信息是根据如下参数中的任意一个或多个确定CTU序号的规则:
    所述装置的DCS的信息;
    所述装置能够用于冗余传输上行数据的CTU的数量;
    所述用于冗余传输的CTU接入区域中的CTU的数量;
    所述用于冗余传输的CTU接入区域中的起始CTU的序号。
  47. 根据权利要求45所述的装置,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为所述CTU接入区域中的起始CTU的序号,DCSi为装置UEi的DCS,Δi为所述UEi能够用于传输上行数据的CTU的数量,NCTU为所述CTU接入区域中的CTU的数量。
  48. 根据权利要求46所述的装置,其特征在于,所述确定CTU序号的规则为如下公式中的任意一种或多种:
    ICTU-ij=(ICTU-INT+DCSi+j)mod NCTU,或
    ICTU-ij=f(ICTU-INT+DCSi+j)mod NCTU
    其中,j=0,1,...,Δi-1,DCS1=0,DCSi=DCSi-1i-1,i=2,3......,f(·)为交织函数,交织范围为[0...NCTU-1],ICTU-ij为CTU的序号,ICTU-INT为所述 用于冗余传输的CTU接入区域中的起始CTU的序号,DCSi为装置UEi的DCS,Δi为所述UEi能够用于冗余传输上行数据的CTU的数量,NCTU为所述用于冗余传输的CTU接入区域中的CTU的数量。
  49. 根据权利要求43至48中任一项所述的装置,其特征在于,所述CTU接入区域为一个或多个CTU接入区域,其中,所述多个CTU接入区域为属于同一个TTI的CTU接入区域。
  50. 根据权利要求49所述的装置,其特征在于,所述多个CTU接入区域还进一步包括属于不同TTI的CTU接入区域。
  51. 根据权利要求42至50中任一项所述的装置,其特征在于,通过所述至少两个CTU来传输的上行数据为重传数据。
  52. 根据权利要求42至51中任一项所述的装置,其特征在于,上行数据的传输为免授权传输。
  53. 根据权利要求42至52中任一项所述的装置,其特征在于,所述装置能够应用于如下领域中的任意一个或多个领域:设备到设备D2D领域、机器对机器M2M领域、机器类通信MTC领域。
  54. 根据权利要求42至53中任一项所述的装置,其特征在于,所述装置为终端设备。
PCT/CN2016/087333 2015-06-25 2016-06-27 上行数据传输的方法和装置 WO2016206650A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680036142.0A CN107710850B (zh) 2015-06-25 2016-06-27 上行数据传输的方法和装置
EP16813766.9A EP3307002B1 (en) 2015-06-25 2016-06-27 Uplink data transmission method and apparatus
ES16813766T ES2773506T3 (es) 2015-06-25 2016-06-27 Procedimiento y aparato de transmisión de datos de enlace ascendente
US15/852,395 US10420131B2 (en) 2015-06-25 2017-12-22 Uplink data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015082357 2015-06-25
CNPCT/CN2015/082357 2015-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/852,395 Continuation US10420131B2 (en) 2015-06-25 2017-12-22 Uplink data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2016206650A1 true WO2016206650A1 (zh) 2016-12-29

Family

ID=57584539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/087333 WO2016206650A1 (zh) 2015-06-25 2016-06-27 上行数据传输的方法和装置

Country Status (5)

Country Link
US (1) US10420131B2 (zh)
EP (1) EP3307002B1 (zh)
CN (1) CN107710850B (zh)
ES (1) ES2773506T3 (zh)
WO (1) WO2016206650A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289333A (zh) * 2017-01-10 2018-07-17 北京佰才邦技术有限公司 一种上行传输起始位置的配置方法、接入网实体及ue
WO2018144344A1 (en) * 2017-02-04 2018-08-09 Qualcomm Incorporated Physical uplink shared channel coverage enhancements
WO2018177092A1 (en) * 2017-03-27 2018-10-04 Huawei Technologies Co., Ltd. Methods and apparatus for enhanced spectral efficiency and reliability of transmissions without grant
WO2019029741A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种无线通信方法及装置
CN109391374A (zh) * 2017-08-03 2019-02-26 维沃移动通信有限公司 一种数据传输方法、数据检测方法及装置
WO2019158054A1 (en) * 2018-02-13 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication
CN110731066A (zh) * 2017-07-26 2020-01-24 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN112543503A (zh) * 2020-12-01 2021-03-23 海能达通信股份有限公司 上行数据的同步方法及相关装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9750056B2 (en) * 2015-01-27 2017-08-29 Huawei Technologies Co., Ltd. System and method for transmission in a grant-free uplink transmission scheme
WO2017000143A1 (zh) * 2015-06-30 2017-01-05 华为技术有限公司 传输上行数据的方法和装置
CN106470096B (zh) * 2015-08-14 2021-03-23 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
RU2733277C1 (ru) * 2017-02-07 2020-10-01 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ и устройство для передачи данных
CN113260061A (zh) * 2018-09-28 2021-08-13 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
EP4075905A4 (en) * 2019-12-24 2022-12-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN114499570B (zh) * 2021-12-31 2023-09-29 华为技术有限公司 一种传输信息的方法,射频装置和控制装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135126A1 (en) * 2013-03-08 2014-09-12 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
WO2015034310A1 (ko) * 2013-09-05 2015-03-12 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 할당 방법 및 이를 위한 장치
CN104640211A (zh) * 2013-11-08 2015-05-20 电信科学技术研究院 一种发送和接收数据的方法、***及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034965B (zh) 2006-03-07 2010-05-12 华为技术有限公司 高速下行分组接入中协议数据单元传输方法及其***
EP2715948A1 (en) * 2011-06-02 2014-04-09 Broadcom Corporation Frequency hopping in license-exempt/shared bands
JP6088504B2 (ja) 2011-06-29 2017-03-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 移動装置の位置推定
US20140192767A1 (en) 2012-12-14 2014-07-10 Futurewei Technologies, Inc. System and Method for Small Traffic Transmissions
CN104202749B (zh) 2014-01-23 2019-09-24 中兴通讯股份有限公司 无线资源确定、获取方法及装置
CN104104492B (zh) 2014-06-09 2017-07-28 北京创毅视讯科技有限公司 一种lte***链路增强的方法和装置
US9750056B2 (en) 2015-01-27 2017-08-29 Huawei Technologies Co., Ltd. System and method for transmission in a grant-free uplink transmission scheme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135126A1 (en) * 2013-03-08 2014-09-12 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
WO2015034310A1 (ko) * 2013-09-05 2015-03-12 엘지전자 주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 자원 할당 방법 및 이를 위한 장치
CN104640211A (zh) * 2013-11-08 2015-05-20 电信科学技术研究院 一种发送和接收数据的方法、***及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Resource Allocation for D2D Communication, Rl-134230", 3GPP TSG RAN WG1 MEETING #74BIS, 11 October 2013 (2013-10-11), XP050717413 *
See also references of EP3307002A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289333A (zh) * 2017-01-10 2018-07-17 北京佰才邦技术有限公司 一种上行传输起始位置的配置方法、接入网实体及ue
WO2018130111A1 (zh) * 2017-01-10 2018-07-19 北京佰才邦技术有限公司 上行传输起始位置的配置方法、接入网实体及ue
CN108289333B (zh) * 2017-01-10 2020-12-18 北京佰才邦技术有限公司 一种上行传输起始位置的配置方法、接入网实体及ue
WO2018144344A1 (en) * 2017-02-04 2018-08-09 Qualcomm Incorporated Physical uplink shared channel coverage enhancements
CN110301158B (zh) * 2017-02-04 2022-06-24 高通股份有限公司 物理上行链路共享信道覆盖增强
CN110301158A (zh) * 2017-02-04 2019-10-01 高通股份有限公司 物理上行链路共享信道覆盖增强
US11057926B2 (en) 2017-02-04 2021-07-06 Qualcomm Incorporated Physical uplink shared channel coverage enhancements
WO2018177092A1 (en) * 2017-03-27 2018-10-04 Huawei Technologies Co., Ltd. Methods and apparatus for enhanced spectral efficiency and reliability of transmissions without grant
US11102786B2 (en) 2017-03-27 2021-08-24 Huawei Technologies Co., Ltd. Methods and apparatus for enhanced spectral efficiency and reliability of transmission without grant
CN110476382B (zh) * 2017-03-27 2021-07-20 华为技术有限公司 用于提高无授权传输的频谱效率和可靠性的方法和装置
CN110476382A (zh) * 2017-03-27 2019-11-19 华为技术有限公司 用于提高无授权传输的频谱效率和可靠性的方法和装置
CN110731066B (zh) * 2017-07-26 2020-12-01 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
EP3606103A4 (en) * 2017-07-26 2020-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION METHOD, TERMINAL EQUIPMENT AND NETWORK DEVICE
US10931358B2 (en) 2017-07-26 2021-02-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device and network device
CN110731066A (zh) * 2017-07-26 2020-01-24 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
CN109391374B (zh) * 2017-08-03 2020-08-28 维沃移动通信有限公司 一种数据传输方法、数据检测方法及装置
CN109391374A (zh) * 2017-08-03 2019-02-26 维沃移动通信有限公司 一种数据传输方法、数据检测方法及装置
US11109444B2 (en) 2017-08-11 2021-08-31 Huawei Technologies Co., Ltd. Wireless communication method and apparatus for uplink transmission without scheduling
WO2019029741A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 一种无线通信方法及装置
WO2019158054A1 (en) * 2018-02-13 2019-08-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication
US11219042B2 (en) 2018-02-13 2022-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication
US11825507B2 (en) 2018-02-13 2023-11-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method for performing vehicle to everything communication
CN112543503A (zh) * 2020-12-01 2021-03-23 海能达通信股份有限公司 上行数据的同步方法及相关装置
CN112543503B (zh) * 2020-12-01 2023-02-07 海能达通信股份有限公司 上行数据的同步方法及相关装置

Also Published As

Publication number Publication date
US10420131B2 (en) 2019-09-17
CN107710850A (zh) 2018-02-16
US20180124816A1 (en) 2018-05-03
EP3307002A1 (en) 2018-04-11
EP3307002A4 (en) 2018-06-27
CN107710850B (zh) 2020-06-26
ES2773506T3 (es) 2020-07-13
EP3307002B1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
WO2016206650A1 (zh) 上行数据传输的方法和装置
WO2016206083A1 (zh) 上行数据传输的方法和装置
US11576199B2 (en) Systems and methods for grant-free uplink transmissions
EP4013161B1 (en) Data transmission method and device
US11240800B2 (en) Method to determine the starting subframe of data channel
CN107005971B (zh) 设备到设备通信中用于调度指派的资源分配的方法和设备
WO2018059173A1 (zh) 免授权的传输上行信息的方法、网络设备和终端设备
KR101783007B1 (ko) 통신 자원들의 할당
JP2018518915A (ja) グラントフリー伝送のためのハンドオーバ方法、端末装置、およびネットワーク装置
TWI389588B (zh) 執行半持續性資源之資料傳輸之方法
JP5647119B2 (ja) 通信方法、1次局、2次局及び通信システム
WO2016206006A1 (zh) 上行数据传输的方法和装置
CN110547038B (zh) 通信***
KR20200061284A (ko) 사이드링크 피드백 정보를 전송하는 방법 및 이를 위한 장치
WO2023011218A1 (zh) 一种资源共享方法及通信装置
WO2021062734A1 (zh) 一种上行信息传输方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016813766

Country of ref document: EP