WO2016205971A1 - Ultra-sensitive method for gastric cancer biomarker detection - Google Patents

Ultra-sensitive method for gastric cancer biomarker detection Download PDF

Info

Publication number
WO2016205971A1
WO2016205971A1 PCT/CL2016/050035 CL2016050035W WO2016205971A1 WO 2016205971 A1 WO2016205971 A1 WO 2016205971A1 CL 2016050035 W CL2016050035 W CL 2016050035W WO 2016205971 A1 WO2016205971 A1 WO 2016205971A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
methylated
rprm
dna
raman
Prior art date
Application number
PCT/CL2016/050035
Other languages
Spanish (es)
French (fr)
Inventor
Alejandro CORVALÁN
Marcelo Kogan
Leda GUZMÁN
Ariel GUERRERO
María José MARCHANT
Original Assignee
Pontificia Universidad Catolica De Chile
Pontificia Universidad Católica De Valparaíso
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Catolica De Chile, Pontificia Universidad Católica De Valparaíso, Universidad De Chile filed Critical Pontificia Universidad Catolica De Chile
Publication of WO2016205971A1 publication Critical patent/WO2016205971A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • Gastric cancer is the fifth most common cancer and the third one related to cause of death in the world.
  • the prognosis is negative since it is frequently detected in invasive stages.
  • the survival rate is 95% at 5 years.
  • the survival of patients drops substantially to 10 to 20% at 5 years.
  • gastric atrophy precursor lesion of gastric cancer
  • pepsinogen l / ll the marker of gastric atrophy
  • gastric atrophy has a risk of developing gastric cancer between 5 to 10%, which implies that these patients will require special surveillance with invasive methods such as radiology and endoscopy.
  • gastric atrophy in addition to being the precursor lesion of gastric cancer is an injury associated with aging. Therefore, its predictive value is lost as the age of the population under evaluation increases.
  • the Reprimo gene (official RPRM symbol) is located on chromosome 2q23.3. Repress is induced after X-ray irradiation in a p53-dependent manner, causing cell cycle arrest in G2 phase (1). Additionally, the ectopic expression of RPRM also induces G2 arrest, where an inhibition of both cdc2 activity and cyclin -Bl nuclear translocation has been observed. These antecedents suggest the participation of Reprimo in the regulation pathway of the cdc2 / cyclin-Bl complex. DNA-level analyzes indicate that RPRM is contained in a single 393 bp exon, which codes for a 109 amino acid protein. The region i Reprimo promoter contains 56 CpG dinucleotides around the transcription start site (STT).
  • the invention now provides a method of detecting this ultrasensitive and specific biomarker, which can be applied in blood tests of the patient.
  • the invention is based on the specificity of oligonucleotides that detect the promoter region of the methylated RPRM gene, combined with the sensitivity of the use of nanoparticles, which comprise these oligonucleotides.
  • the sensitivity of the method can be increased by the optional use of fluorescence or Raman markers in the nanoparticles.
  • the properties of the nanoparticles allow amplifying the signals of this type of markers, which further increases the sensitivity of the method.
  • WO 211035453 (Corvalán, A. 31.03.2011), of one of the inventors of the present invention, the utility of evaluating the methylation of the promoter region of the RPRM gene as a gastric cancer biomarker is established and a reaction is proposed PCR as a detection method.
  • the present invention is a continuation of this work, where splitters other than oligonucleotides used in WO 211035453 are used and a new ultrasensitive method is provided to detect said marker. Subsequently, the inventors developed a method of early detection of gastric cancer disclosed in WO 2015/181804 (Corvalán A.
  • 24.06.2014 discloses a method based on nanostructures attached to a metal surface and an anchor probe. Where 2 specific probes are designed for a particular white DNA, one attached to a fluorescent marker and the other attached to a molecule that binds to said first anchor probe that is attached to the metal structure, thus markings Fluorescents would be attached to the metal surface in the presence of white nucleic acid.
  • the method of the invention is simpler than that of US Patent 8,759,110 B2, since nanoparticle hybrids are formed in solution and separated by simple centrifugation; Additionally, the method of the invention can be carried out with or without fluorescent probes, since hybrids of nanoparticles and methylated RPRM DNA present in the sample can be detected even by molecular absorption: UV-Visible spectroscopy.
  • the inventors have designed an ultrasensitive and selective method of detecting the promoter region of the methylated RPRM gene, mediating the use of functionalized metal nanoparticles with specific recognition oligonucleotides for the promoter region of the methylated RPRM gene .
  • This system designed in this way, is what makes it possible to improve the sensitivity and selectivity of current techniques, in order to carry out an early stage diagnosis of Gastric Cancer (GC).
  • GC Gastric Cancer
  • the method of the invention comprises using two nanoparticles functionalized with each of the oligonucleotides of the invention, a metal nanoparticle of between 40 and 80 nm is required that contains on its surface several copies of a primer that recognizes methylated RPRM, chosen from the SEQ ID N ⁇ l and SEQ ID N ⁇ 2 and a second metal nanoparticle between 8 to 20 nm (or a quantum point between 2 and 10 nm) that contains on its surface several copies of a primer that recognizes methylated RPRM chosen from the SEQ ID N ⁇ l and SEQ ID N ⁇ 2, different from that included in the first nanoparticle.
  • This oligonucleotide-coupled nanoparticle system recognizes the methylated RPRM sequence, forming a hybrid with both nanoparticles, as outlined in Figure 1.
  • the nanoparticles can be coupled to a Raman spectroscopy marker, fluorescence marker, or quantum dots.
  • the marker used is fluorescent, it allows a plasmonic effect known as fluorescence amplified by nanoparticles (surface-enhanced fluorescence, SEF) to occur, giving greater sensitivity to the method.
  • Figure 1 Scheme of the method of the invention, showing each of the oligonucleotides of the invention attached to each nanoparticle. Said nanoparticles in the presence of methylated RPRM, form a hybrid for base complementarity.
  • the oligonucleotides have a fluorescent probe attached (- * ⁇ )
  • the large nanoparticle can be gold, silver or copper
  • the small nanoparticle can be gold, silver, copper or quantum dots or quantum dots of cadmium-tellurium or Cadmium Selenium
  • Figure 2 Scheme describing the SEF effect.
  • a fluorophore located on the surface of the nanoparticle undergoes fluorescence quenching, which is much greater than the amplification of the fluorescence provided by the electric field of the nanoparticle at that point. Both switching off and amplification decrease with distance; however, as the distance increases, the quenching decreases much faster than the amplification, reaching a point where the quenching is minimal and the molecule undergoes effective amplification of the fluorescence.
  • FIG. 1 Transmission electron microscopy (TEM) images of the 12 and 55 nm gold nanoparticle (AuNPs) hybridization reaction with different samples.
  • FIG. 6 UV-Vis spectra of the hybridization reaction between AuNPs-DNA.
  • A Hybridization reaction. In the presence of DNA there is a greater absorption at 533 nm with respect to the reaction without DNA. This increase to 533 nm accounts for the formation of a hybrid with the specific sequence for Reprimo. A change can also be observed in the area near the UV (350 nm). This increase is attributable to the presence of DNA and the formation of hybrids, which are observed by TEM.
  • B UV-Vis spectrum of control reaction supernatants.
  • C UV-Vis spectrum of the reaction supernatants with Reprimo DNA.
  • Figure 7 Graph showing an increase in absorption at 533 nm when a hybrid is formed with the nanoparticles of the invention with different concentrations of methylated RPRM tempered DNA expressed as nanograms of DNA, where concentrations of the order of 0.001 ng of Methylated RPRM DNA is detected by the method of the invention, giving absorbances on the negative control without DNA, or with a DNA that does not contain the sequence for repression. DETAILED DESCRIPTION OF THE INVENTION.
  • the present invention describes an ultrasensitive and selective method of detecting the promoter region of the methylated Reprimo gene (RPRM), mediating the use of functionalized metal nanoparticles with specific recognition oligonucleotides for said promoter region of the methylated Repress gene, hereinafter simply Repressed methylated or methylated RPRM, which is a biomarker of gastric cancer.
  • RPRM methylated Reprimo gene
  • the ultrasensitive detection of these modified sequences in the blood of a patient allows an early detection of Gastric Cancer through a non-invasive method that allows to investigate patients with gastric cancer in very early stages of the disease, even asymptomatic.
  • the invention discloses a new ultrasensitive method of detecting the promoter region of the RPRM gene methylated in a DNA sample, which comprises the following steps: a) treating the DNA sample with sodium bisulfite so that unmethylated cytosines become in uracil, while methylated cytosines remain intact;
  • b) provide a metal nanoparticle between 40 and 80 nm, which comprises on its surface several copies of an oligonucleotide that recognizes methylated RPRM chosen between SEQ ID N ⁇ 1 and SEQ ID N ⁇ 2 and optionally a fluorescence or Raman marker;
  • a second metal nanoparticle between 8 to 20 nm or is a quantum point of cadmium-tellurium or cadmium-selenium of 2 to 10 nm, which comprises on its surface several copies of an oligonucleotide that recognizes methylated RPRM chosen from the SEQ ID N ⁇ l and SEQ ID N ⁇ 2, other than that included in the first nanoparticle and optionally a fluorescence or Raman marker;
  • oligonucleotide sequences are as follows:
  • the metal nanoparticles of both sizes used in the invention can be gold, silver or copper. If necessary, the small nanoparticle can be replaced by a quantum dot or quantum dot of cadmium-tellurium or cadmium-selenium from 2 to 10 nm.
  • Both nanoparticles are coated by silica; organic polymers including (but not limited to): polyethylene glycol (ethylene polyoxide), polylactoglyconic acid (PLGA), polyvinyl alcohol, polystyrene sulfonate, polymethacrylate, polymethylmethacrylate, polycaprolactone, poloxamers; natural and synthetic polysaccharides including: chitosan and derivatives, alginates, ursolic acid, etc; polypeptide chains including (but not limited to): peptides and proteins; aptamers (long chains of nucleic acids), hydrocarbons including (but not limited to): alkanothiols, functionalized alkanothiols and combinations of any of the foregoing.
  • organic polymers including (but not limited to): polyethylene glycol (ethylene polyoxide), polylactoglyconic acid (PLGA), polyvinyl alcohol, polystyrene sulfonate, polymethacrylate, polymethylmethacryl
  • the nanoparticles may be coupled to marker compounds, which may be attached to the coating or oligonucleotides of the invention.
  • markers can be fluorescent probes or Raman reporters.
  • the hybrid complexes can be detected by molecular absorption, or if it uses fluorescent probes or if the small nanoparticle is a quantum dot or quantum dot of Cadmium Telurium the hybrid complexes can be detected by fluorescence spectroscopy; or by Raman spectroscopy in the case of having these devices.
  • fluorescent markers that can be used in the method of the invention are: Rhodamine and derivatives, fluorescein and derivatives, cyanine derivatives, anthracenes, pyrenes and other fluorescent dyes.
  • Raman markers that can be used in the method of the invention are: violet crystal, methylene blue, p-mercaptobenzoic acid, 5,5'-dithiobis (succinimidyl-2-nitrobenzoate) (DSNB), rhodamine and derivatives , and other dyes.
  • the conditions under which DNA hybridization of the samples to be evaluated with the method of the invention is carried out and the nanoparticles functionalized with the oligonucleotides of the invention first include a suitable buffer, such as for example PBS buffer IX. pH 7.4, but the nature of the buffer is not critical and any other suitable buffer available in the art can be used.
  • a suitable buffer such as for example PBS buffer IX. pH 7.4, but the nature of the buffer is not critical and any other suitable buffer available in the art can be used.
  • the mixture of the sample and the functionalized nanoparticles of the invention is incubated at 95 ° C for 5 to 10 minutes, and then allowed to stir at 37 ° C at 300 rpm for at least 2 hours, and preferably overnight.
  • hybrids formed in the presence of methylated RPRM are centrifuged at speeds between 2500 to 10500 g for 5 to 20 minutes, where the hybrid is in the sediment, which is resuspended in buffer, for example PBS IX pH 7.4.
  • the sensitivity of the method can be favored by the characteristics of the nanoparticles used, which amplify the detection signals.
  • Nanotechnology in biomedicine has had an important development since the beginning of the 21st century since it has provided new tools for the therapy and diagnosis of various diseases such as cancer (3) or Alzheimer's (4).
  • AuNP gold
  • AgNP silver
  • CuNP copper
  • LSPR local surface plasmon resonance
  • This term is defined as the collective oscillation of the electrons on the surface of the nanoparticle, and is the origin of the particular optical properties of metals such as gold, silver and copper, which in the nanometric scale absorb light causing these solutions acquire very striking colorations (eg AuNP of 20 nm are deep red).
  • metals such as gold, silver and copper
  • they have the property of scattering light (scattering) in all directions, at wavelengths close to which these particles absorb, which can be used in diagnosis for the detection of tumor cells.
  • nanoparticles in particular those of gold, silver and copper, since it allows the functionalization with biomolecules that contain thiol groups through a process of chemisorption forming stable Au-S bonds , Ag-S and Cu-S, respectively.
  • the nanoparticles can be coated with biomolecules.
  • EAP plasmon-amplified spectroscopy
  • SERS surface-enhanced Raman spectroscopy
  • Another useful concept for this description is that of plasmon coupling that modifies the effective cross-section of the particles.
  • two plasmonic particles approach the combined effect of both is observed and not that of each separated.
  • a large gold nanoparticle is coupled with several small ones, they absorb as a single large particle, increasing the effective absorption section.
  • EAP techniques are used for the detection of cancer-associated biomarkers and also of tumor cells, using as functionalized AuNP, AgNP or CuNP probes.
  • an ultrasensitive methodology has been developed for the detection of biomarkers, specifically methylated RPRM.
  • EAP Plasmon amplified spectroscopy
  • EAP plasmon-amplified spectroscopy
  • SERS surface-enhanced Raman scattering
  • SEF surface-enhanced fluorescence spectroscopy
  • SEF refers to amplified fluorescence (surface-enhanced fluorescence, also called metal-enhanced fluorescence, or more recently plasmon-enhanced fluorescence, MEF and PEF respectively).
  • SERS and SEF depend on the distance between the target molecule and the nanoparticle. In this regard, it should be noted that such distances have optimal values for amplification. In the case of the SERS, said distance must be the smallest possible with respect to the surface of the nanoparticle being the same independent of its size, while for the SEF said distance is dependent on the size of the nanoparticle, see Figure 2.
  • metal nanoparticles with plasmon must be used. This is related to the power of nanoparticles to absorb and scatter light from light at certain wavelengths. These processes reach their maximum at the wavelengths in which the so-called resonance condition occurs, which is related to the optical properties of the material with which the nanoparticle is made in accordance with the dielectric function £ (complex type) of the material from which the particle is made:
  • the real part of the dielectric function of the material from which the nanoparticles are made must be close to -2 and the imaginary part must be close to zero, for the incident light of a certain wavelength (expressed as angular frequency ⁇ in the formula above).
  • Silver fulfills this condition in the visible very well, and gold and copper to a lesser extent (its imaginary part is more significant), and for this reason they are the most used metals for EAP.
  • Alkali metals also fulfill this property, but given their chemical reactivity they are not practical for use. What interests us most about nanoparticles, with a view to amplification of fluorescence, absorbance and Raman signals, is their power to scatter light (scattering).
  • the nanoparticles must exceed 40 nm in diameter for a spherical particle, but remain below 100 nm since the contributions of the higher order poles (quadrupoles, octapoles, etc., beyond 100 nm). ) begins to be significant, and this reduces the power of plasmon that is dipole in character, turning it off and lowering the amplification values.
  • Stamplecoskie and Scaiano have experimentally determined an optimal size for silver nanospheres between 50-60 nm towards SERS, and Hong and Li (12) have obtained very similar values for gold nanospheres. According to the above, silver provides better SERS and SEF amplification values than gold, for particles of equal size, but also causes greater reactivity on the surface of the nanoparticle, and that is why gold nanoparticles are often preferred .
  • quantum dots or quantum dots which are nanoparticles made of semiconductor materials such as cadmium, tellurium and selenium. These materials, being of very small sizes, have the effect of quantum confinement, which makes them fluorescent such as traditional fluorophores molecules, but they are not molecules but nanoparticles, functionalizable and large surface area, which makes them particularly useful for fluorescence detection.
  • the inventors have determined that a large nanoparticle of gold, silver or copper between 40 and 80 nm (in diameter), which provides plasmonic amplification, and a small nanoparticle of gold, silver or copper between 8 and 20 nm, or a quantum dot or quantum dot of cadmium-tellurium or cadmium-selenium between 2 and 10 nm are the most appropriate for carrying out the invention.
  • the nanoparticles used in the method of the invention are of vital importance in terms of the sensitivity of the method, another critical aspect is the specificity thereof, so that the results obtained are of diagnostic utility.
  • the specificity of the method is given by the oligonucleotides used, which allow detecting DNA sequences from the promoter region of the methylated RPRM gene, which are biomarkers of gastric cancer.
  • a previous treatment of the total DNA to be analyzed with sodium bisulfite is required. DNA reacts with this reagent and unmethylated cytosines become uracil, while methylated cytosines remain intact.
  • Example 1 Obtaining Nanoparticles of the invention.
  • concentration of added sodium citrate determines the size of the nanoparticles.
  • concentration of added sodium citrate determines the size of the nanoparticles.
  • 500 ⁇ of 29.4 mM aqueous HAuCU solution and 500 ⁇ of 38.8 mM trisodium citrate aqueous solution were used.
  • 1,709 mL of 29.4 mM aqueous HAuCU solution and 5 mL of 38.8 mM trisodium citrate aqueous solution were used.
  • Oligonucleotides to detect methylated RPRM 2 oligonucleotides were used that are at a distance of approximately 100 base pairs in the promoter region of the Reprimo gene. They were sent to Synthesize Integrated ADN Technologies, Inc., with a modification of an amino group at one end of the oligonucleotide. Once received, they were prepared at a final concentration of 100 ⁇ in TE buffer pH 8.0.
  • the oligonucleotide sequences are as follows:
  • oligonucleotide coupling reaction was carried out by reaction with EDC (l-ethyl-3- (3-dimethylaminopropyl) carbodiimide).
  • EDC l-ethyl-3- (3-dimethylaminopropyl) carbodiimide
  • 1 ⁇ of oligonucleotide was diluted in 2.4 mL of PBS IX.
  • 2.5 mL of peeled nanoparticles previously washed with PBS IX
  • 0.8 mg of EDC dissolved in 100 ⁇ of PBS IX was added.
  • the reaction was left for 3 hours at 25 ⁇ C at 300 rpm of agitation.
  • nanoparticles of the invention were washed 3 times with PBS IX pH 7.4, and stored at 4 ⁇ C.
  • the hybridization assay is performed by incubating nanoparticles of the invention, obtained in example 1, ie AuNPs of 12 and 55 nm functionalized with the oligonucleotides of the invention; in the presence of 100 and 50 ng DNA containing the promoter region of methylated RPRM, in PBS buffer IX pH 7.4. The mixture is incubated at 95 ° C for 5 minutes, and then left under stirring at 300 rpm at 37 ° C overnight to favor the formation of hybrids. The samples are washed with PBS IX and subjected to centrifugations at 2200 g for 10 minutes, and the supernatants are separated from the sediment.
  • Hybrids due to their higher molecular weight are expected to be in the sediment, while unreacted nanoparticles remain in the supernatant.
  • Each sample - supernatant and sediment - is made UV-Vis spectra, and analyzed by TEM.
  • Figure 6 shows these results
  • Figure 6 A shows the absorption resulting from the Hybridization Reaction of the AuNPs nanoparticles obtained in example 1 and white DNA, that is, from the promoter region of the methylated RPRM gene, where it is observed that in presence of DNA there is a greater absorption at 533 nm with respect to the reaction without DNA.
  • This increase to 533 nm accounts for the formation of a hybrid with the specific sequence for Reprimo.
  • a change can also be observed in the area near UV (350 nm). This increase is attributable to the presence of DNA and the formation of hybrids, which are observed by TEM.
  • Figure 6 B shows the UV-Vis spectrum of the control reaction supernatants.
  • Figure 6 C shows the UV-Vis spectrum of the supernatants of the reaction with Reprimo DNA. It is observed that there is an absorption close to 520 nm greater in graph B, compared to the graph in C. The 12 nm AuNPs when the hybrid does not form (because there is no DNA (control reaction)), are suspended, the which are separated by centrifugations. On the contrary, in the presence of a DNA containing the methylated region of Reprimo, hybridization occurs between both nanoparticles, forming a triad (Fig. 5 B and C).
  • oligonucleotide-coupled gold nanoparticles system allows us to specifically determine a methylated RPRM DNA sequence and form a hybrid, which can be detected through the use of molecular absorption spectroscopy.
  • the increase in absorption at 533 nm is mainly due to the coupling of plasmons described at the beginning of this invention.
  • the technique also allows the determination of concentrations of the order of 0.001 ng of methylated RPRM DNA.
  • This technique requires a bisulfite treated DNA sample and a detection system based on molecular absorption.
  • our system does not require amplifications of a sample by PCR, which decreases costs, obtaining better results, since the sensitivity of the method is higher.
  • Nanomaterials in combating cancer Therapeutic appl ications and develo pments.
  • Nanomedicine Nanotechnology, Biology and Medicine. 2014; 10 (1): 19-34.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to an ultra-sensitive method for the detection of the gastric cancer biomarker, the reprimo gene (RPRM) methylated in a DNA sample, said method comprising: treating the DNA sample with sodium bisulphite; supplying a metal nanoparticle of between 40 and 80 nm, the surface of which includes an oligonucleotide that recognises methylated RPRM and is selected from SEQ ID Nº1 and SEQ ID Nº2 and, optionally, a Raman or fluorescence marker; supplying a second metal nanoparticle of between 8 and 20 nm or a quantum dot of between 2 and 10 nm, the surface of which includes an oligonucleotide that recognises methylated RPRM and is selected from SEQ ID Nº1 and SEQ ID Nº2, different from that contained in the first nanoparticle, and, optionally, a Raman or fluorescence marker; allowing the hybridization of the sample and both nanoparticles, and centrifuging and detecting the presence of hybrid complexes of nanoparticles and DNA in the resuspended sediment. The detection can be performed by molecular absorption and, if necessary, optionally by fluorescence spectroscopy or Raman spectroscopy.

Description

METODO ULTRASENSIBLE DE DETECCION DE BIOMARCADOR DE CANCER GASTRICO REPRIMO  ULTRASENSIBLE METHOD OF DETECTION OF BIOMARCADOR DE CANCER GASTRICO REPRIMO
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
Antecedentes Background
El cáncer gástrico es el quinto cáncer más común y el tercero relacionado con causa de muerte en el mundo. A pesar de los adelantos en su tratamiento, el pronóstico es negativo ya que frecuentemente se detecta en estadios invasivos. Cuando la enfermedad se confina a capas de mucosa y submucosa del estómago (estadios tempranos), la tasa de supervivencia es de 95% a 5 años. En contraste, cuando se extiende a las capas muscular propia o serosa (estadios avanzados) la supervivencia de los pacientes cae sustancialmente a un 10 a 20% a 5 años.  Gastric cancer is the fifth most common cancer and the third one related to cause of death in the world. Despite the advances in its treatment, the prognosis is negative since it is frequently detected in invasive stages. When the disease is confined to layers of mucosa and submucosa of the stomach (early stages), the survival rate is 95% at 5 years. In contrast, when it extends to the own or serous muscle layers (advanced stages), the survival of patients drops substantially to 10 to 20% at 5 years.
El diagnóstico del cáncer gástrico en estadios tempranos es difícil, debido a que en la mayoría de los casos son asintomáticos hasta una etapa muy avanzada.  The diagnosis of gastric cancer in early stages is difficult, because in most cases they are asymptomatic until a very advanced stage.
Existen varios biomarcadores que se detectan directamente en muestras no invasivas para diagnosticar el cáncer gástrico en población asintomática. El más conocido es el marcador de atrofia gástrica (lesión precursora del cáncer gástrico) llamado pepsinógeno l/ll. La atrofia gástrica tiene un riesgo de desarrollar cáncer gástrico entre un 5 a 10%, lo que implica que estos pacientes van a requerir una vigilancia especial con métodos invasivos como radiología y endoscopía .  There are several biomarkers that are directly detected in non-invasive samples to diagnose gastric cancer in asymptomatic population. The best known is the marker of gastric atrophy (precursor lesion of gastric cancer) called pepsinogen l / ll. Gastric atrophy has a risk of developing gastric cancer between 5 to 10%, which implies that these patients will require special surveillance with invasive methods such as radiology and endoscopy.
Por otra parte la atrofia gástrica, además de ser la lesión precursora del cáncer gástrico es una lesión asociada al envejecimiento. Por lo tanto su valor predictivo se pierde en la medida que aumenta la edad de la población sometida a evaluación.  On the other hand, gastric atrophy, in addition to being the precursor lesion of gastric cancer is an injury associated with aging. Therefore, its predictive value is lost as the age of the population under evaluation increases.
En vista de la necesidad de contar con métodos de diagnóstico temprano para preveni r la alta tasa de mortalidad de cánceres gástricos avanzados es necesario buscar nuevos métodos de diagnóstico precoz que sean aplicables a la población asintomática, en forma rápida, no invasiva, efectiva y de bajo costo.  In view of the need for early diagnostic methods to prevent the high mortality rate of advanced gastric cancers, it is necessary to look for new early diagnostic methods that are applicable to the asymptomatic population, in a rapid, non-invasive, effective and effective way. low cost.
El gen Reprimo (símbolo oficial RPRM) se localiza en el cromosoma 2q23.3. Reprimo es inducido después de irradiación con rayos X de manera dependiente de p53, causando detención del ciclo celular en fase G2 (1). Adicionalmente, la expresión ectópica de RPRM también induce la detención G2, en donde se ha observado una inhibición tanto de la actividad de cdc2 como de la translocación nuclear de ciclina -Bl. Estos antecedentes sugieren la participación de Reprimo en la vía de regulación del complejo cdc2/ciclina-Bl. Análisis a nivel de ADN indican que RPRM está contenido en un único exón de 393 pb, que codifica para una proteína de 109 aminoácidos. La región i promotora de Reprimo contiene 56 dinucleótidos CpG en torno al sitio de inicio de transcripción (STT, start transe ri tion site). The Reprimo gene (official RPRM symbol) is located on chromosome 2q23.3. Repress is induced after X-ray irradiation in a p53-dependent manner, causing cell cycle arrest in G2 phase (1). Additionally, the ectopic expression of RPRM also induces G2 arrest, where an inhibition of both cdc2 activity and cyclin -Bl nuclear translocation has been observed. These antecedents suggest the participation of Reprimo in the regulation pathway of the cdc2 / cyclin-Bl complex. DNA-level analyzes indicate that RPRM is contained in a single 393 bp exon, which codes for a 109 amino acid protein. The region i Reprimo promoter contains 56 CpG dinucleotides around the transcription start site (STT).
En trabajos anteriores se evaluó la metilacion de la región promotora de 24 genes supresores de tumores que cubren las seis principales vías fisiológicas del cáncer, entre ellos RPRM. En este análisis, se encontraron diferencias significativas en la metilacion del gen RPRM entre los pacientes con cáncer gástrico y controles asintomáticos de banco de muestras de plasma . De manera específica, RPRM se encontró metilado en un 96,8% (41/43) y 83,3% (40/43) de las muestras de tumor y plasma de los casos con cáncer gástrico, respectivamente. En los controles asintomáticos, la metilacion de RPRM se encontró sólo en el 9,7% (31/33) de los casos analizados (2).  Previous studies evaluated the methylation of the promoter region of 24 tumor suppressor genes that cover the six main physiological pathways of cancer, including RPRM. In this analysis, significant differences were found in the methylation of the RPRM gene between patients with gastric cancer and asymptomatic controls of plasma sample banks. Specifically, RPRM was found methylated in 96.8% (41/43) and 83.3% (40/43) of the tumor and plasma samples of cases with gastric cancer, respectively. In asymptomatic controls, methylation of RPRM was found only in 9.7% (31/33) of the cases analyzed (2).
De este modo los inventores han establecido la utilidad del gen RPRM como biomarcador de cáncer gástrico, incluso en pacientes asintomáticos. La invención provee ahora un método de detección de este biomarcador ultrasensible y específico, que puede aplicarse en exámenes sanguíneos del paciente.  In this way the inventors have established the utility of the RPRM gene as a biomarker of gastric cancer, even in asymptomatic patients. The invention now provides a method of detecting this ultrasensitive and specific biomarker, which can be applied in blood tests of the patient.
La invención se basa en la especificidad de oligonucleótidos que detectan la región promotora del gen RPRM metilado, combinado con la sensibilidad del uso de nanopartículas, que comprenden estos oligonucleótidos. La sensibilidad del método puede ser incrementada por el uso opcional de fluorescencia o marcadores Raman en las nanopartículas. Como se discutirá en la descripción de la invención las propiedades de las nanopartículas permiten amplificar las señales de este tipo de ma rcadores, lo que aumenta aún más la sensibilidad del método.  The invention is based on the specificity of oligonucleotides that detect the promoter region of the methylated RPRM gene, combined with the sensitivity of the use of nanoparticles, which comprise these oligonucleotides. The sensitivity of the method can be increased by the optional use of fluorescence or Raman markers in the nanoparticles. As will be discussed in the description of the invention, the properties of the nanoparticles allow amplifying the signals of this type of markers, which further increases the sensitivity of the method.
Arte previo Prior art
En la publicación WO 211035453 (Corvalán, A. 31.03.2011), de uno de los inventores de la presente invención, se establece la utilidad de evaluar la metilacion de la región promotora del gen RPRM como biomarcador de cáncer gástrico y se propone una reacción de PCR como método de detección. La presente invención, es una continuación de este trabajo, donde se emplean partidores distintos de los oligonucleótidos utilizados en la publicación WO 211035453 y se entrega un nuevo método ultrasensible para detectar dicho marcador. Posteriormente, los inventores desarrollaron un método de detección precoz de cáncer gástrico divulgada en la publicación WO 2015/181804 (Corvalán A. et al 3.12.2015) donde se propone evaluar simultáneamente la presencia de la región promotora del gen RPRM metilado y el biomarcador de atrofia gástrica, lesión precursora del cáncer gástrico pepsinógeno l/ll. La utilidad de correlacionar ambos marcadores sigue vigente y es independiente del método de detección del biomarcador, por lo que la presente invención no se afecta por el contenido de la publicación WO 2015/181804. Por otra parte, el uso de nanopartículas acopladas a oligonucleótidos para la detección específica de un biomarcador de ADN, también es conocido en el estado de la técnica, no obstante el método particular de la presente invención no se anticipa en el arte previo. Por ejemplo, la patente US 8,759,110 B2 (GEDDES, C. 24.06.2014) divulga un método basado en nanoestructuras unidas a una superficie metálica y a una sonda de anclaje. Donde para un ADN blanco en particular se diseñan 2 sondas específicas, una de ellas unida a un marcador fluorescente y la otra unida a una molécula que se une a dicha primera sonda de anclaje que está unida a la estructura metálica, de este modo las marcas fluorescentes quedarían unidas a la superficie metálica en presencia del ácido nucleico blanco. El método de la invención es más simple que el de la patente US 8,759,110 B2, ya que los híbridos de nanopartículas se forman en solución y separan por simple centrifugación; Adicionalmente el método de la invención se puede realizar con o sin sondas fluorescentes, ya que híbridos de nanopartículas y ADN de RPRM metilado presente en la muestra se puede detectar incluso por absorción molecular: espectroscopia UV-Visible. In WO 211035453 (Corvalán, A. 31.03.2011), of one of the inventors of the present invention, the utility of evaluating the methylation of the promoter region of the RPRM gene as a gastric cancer biomarker is established and a reaction is proposed PCR as a detection method. The present invention is a continuation of this work, where splitters other than oligonucleotides used in WO 211035453 are used and a new ultrasensitive method is provided to detect said marker. Subsequently, the inventors developed a method of early detection of gastric cancer disclosed in WO 2015/181804 (Corvalán A. et al 3.12.2015) where it is proposed to simultaneously evaluate the presence of the promoter region of the methylated RPRM gene and the biomarker of gastric atrophy, precursor lesion of gastric cancer pepsinogen l / ll. The utility of correlating both markers is still valid and independent of the biomarker detection method, so the present invention is not affected by the content of WO 2015/181804. On the other hand, the use of oligonucleotide-coupled nanoparticles for the specific detection of a DNA biomarker is also known in the state of the art, however the particular method of the present invention is not anticipated in the prior art. For example, US Patent 8,759,110 B2 (GEDDES, C. 24.06.2014) discloses a method based on nanostructures attached to a metal surface and an anchor probe. Where 2 specific probes are designed for a particular white DNA, one attached to a fluorescent marker and the other attached to a molecule that binds to said first anchor probe that is attached to the metal structure, thus markings Fluorescents would be attached to the metal surface in the presence of white nucleic acid. The method of the invention is simpler than that of US Patent 8,759,110 B2, since nanoparticle hybrids are formed in solution and separated by simple centrifugation; Additionally, the method of the invention can be carried out with or without fluorescent probes, since hybrids of nanoparticles and methylated RPRM DNA present in the sample can be detected even by molecular absorption: UV-Visible spectroscopy.
DESCRIPCIÓN RESUMIDA DE LA INVENCIÓN SUMMARY DESCRIPTION OF THE INVENTION
El enfoque actual para la determinación de regiones metiladas en genes asociados a Cáncer se han basado en la amplificación por PCR, Pirosecuenciación o MethyLight. Estas técnicas permiten determinar en muestras biológicas un número determinado de copias de aproximadamente 1000. A pesar de ello, carecen de la sensibilidad y selectividad necesarias en etapas tempranas de la patología, donde el número de copias del gen blanco es bastante menor. Las nanopartículas metálicas, en particular las de oro, plata o cobre poseen propiedades optoelectrónicas únicas que las hace n útiles para el desarrollo de biosensores. En base a las interesantes propiedades de estas nanopartículas, los inventores han diseñado un método ultrasensible y selectivo de detección de la región promotora del gen RPRM metilado, mediando el uso de nanopartículas metálicas funcionalizadas con oligonucleótidos de reconocimiento específico para la región promotora del gen RPRM metilado. Este sistema así diseñado, es lo que permite mejorar le sensibilidad y selectividad de las técnicas actuales, para realiza r un diagnóstico en fase temprana de Cáncer gástrico (CG). The current approach to the determination of methylated regions in Cancer-associated genes has been based on amplification by PCR, Pyrosequencing or MethyLight. These techniques allow a certain number of copies of approximately 1000 copies to be determined in biological samples. Despite this, they lack the sensitivity and selectivity needed in the early stages of the pathology, where the number of copies of the white gene is considerably smaller. Metal nanoparticles, particularly those of gold, silver or copper have unique optoelectronic properties that make them useful for the development of biosensors. Based on the interesting properties of these nanoparticles, the inventors have designed an ultrasensitive and selective method of detecting the promoter region of the methylated RPRM gene, mediating the use of functionalized metal nanoparticles with specific recognition oligonucleotides for the promoter region of the methylated RPRM gene . This system, designed in this way, is what makes it possible to improve the sensitivity and selectivity of current techniques, in order to carry out an early stage diagnosis of Gastric Cancer (GC).
El método de la invención comprende utilizar dos nanopartículas funcionalizadas con cada uno de los oligonucleótidos de la invención, se requiere una nanopartícula metálica de entre 40 a 80 nm que contiene en su superficie varias copias de un cebador que reconoce RPRM metilado, escogido entre la SEQ ID N^l y la SEQ ID N^2 y una segunda nanopartícula metálica de entre 8 a 20 nm (o un punto cuántico de entre 2 y 10 nm) que contiene en su superficie varias copias de un cebador que reconoce RPRM metilado escogido entre la SEQ ID N^l y la SEQ ID N^2, distinto al comprendido en la primera nanopartícula. Este sistema de nanopartículas acoplado a los oligonucleótidos reconocen la secuencia de RPRM metilado, formándose un híbrido con ambas nanopartículas, como se esquematiza en la Figura 1. Para la detección de los híbridos formados, las nanopartículas pueden estar acopladas a un marcador para espectroscopia Raman, marcador de fluorescencia, o puntos cuánticos. Cuando el marcador utilizado es fluorescente, permite que ocurra un efecto plasmónico conocido como fluorescencia amplificada por nanopartículas (surface-enhanced fluorescence, SEF), entregando una mayor sensibilidad al método.  The method of the invention comprises using two nanoparticles functionalized with each of the oligonucleotides of the invention, a metal nanoparticle of between 40 and 80 nm is required that contains on its surface several copies of a primer that recognizes methylated RPRM, chosen from the SEQ ID N ^ l and SEQ ID N ^ 2 and a second metal nanoparticle between 8 to 20 nm (or a quantum point between 2 and 10 nm) that contains on its surface several copies of a primer that recognizes methylated RPRM chosen from the SEQ ID N ^ l and SEQ ID N ^ 2, different from that included in the first nanoparticle. This oligonucleotide-coupled nanoparticle system recognizes the methylated RPRM sequence, forming a hybrid with both nanoparticles, as outlined in Figure 1. For the detection of the formed hybrids, the nanoparticles can be coupled to a Raman spectroscopy marker, fluorescence marker, or quantum dots. When the marker used is fluorescent, it allows a plasmonic effect known as fluorescence amplified by nanoparticles (surface-enhanced fluorescence, SEF) to occur, giving greater sensitivity to the method.
La utilización de nanopartículas plasmónicas que permiten amplificación de las señales de fluorescencia, absorbancia o Raman, y moléculas fluorescentes o puntos cuánticos, hace que el método de la invención sea ultrasensible, con respecto a las otras técnicas existentes para determinar ADN metilado. Por otra parte, una ventaja adicional de la invención es que no requiere de la amplificación de una muestra por PCR, ni la utilización de herramientas más complejas para un uso masivo de la técnica. DESCRIPCIÓN DE LAS FIGURAS The use of plasmonic nanoparticles that allow amplification of the fluorescence, absorbance or Raman signals, and fluorescent molecules or quantum dots, makes the method of the invention ultrasensitive, with respect to the other existing techniques for determining methylated DNA. On the other hand, an additional advantage of the invention is that it does not require the amplification of a sample by PCR, nor the use of more complex tools for a massive use of the technique. DESCRIPTION OF THE FIGURES
Figura 1. Esquema del método de la invención, donde se muestran cada uno de los oligonucleótidos de la invención unidos a cada nanopartícula. Dichas nanopartículas en presencia de RPRM metilado, forman un híbrido por complementariedad de bases. En este caso los oligonucleótidos llevan acoplado una sonda fluorescente ( -*■), la nanopartícula grande puede ser de oro, plata o cobre y la nanopartícula pequeña puede ser de oro, plata, cobre o puntos cuánticos o quantum dots de cadmio-telurio o cadmio- selenio.  Figure 1. Scheme of the method of the invention, showing each of the oligonucleotides of the invention attached to each nanoparticle. Said nanoparticles in the presence of methylated RPRM, form a hybrid for base complementarity. In this case the oligonucleotides have a fluorescent probe attached (- * ■), the large nanoparticle can be gold, silver or copper and the small nanoparticle can be gold, silver, copper or quantum dots or quantum dots of cadmium-tellurium or Cadmium Selenium
Figura 2. Esquema que describe el efecto SEF. Un fluoróforo ubicado sobre la superficie de la nanopartícula experimenta apagamiento de la fluorescencia, el que es mucho mayor que la amplificación de la fluorescencia provista por el campo eléctrico de la nanopartícula en ese punto. Tanto el apagamiento como la amplificación disminuyen con la distancia; sin embargo, al aumentar la distancia, el apagamiento disminuye mucho más rápido que la amplificación, llegando a un punto en que el apagamiento es mínimo y la molécula experimenta amplificación efectiva de la fluorescencia.  Figure 2. Scheme describing the SEF effect. A fluorophore located on the surface of the nanoparticle undergoes fluorescence quenching, which is much greater than the amplification of the fluorescence provided by the electric field of the nanoparticle at that point. Both switching off and amplification decrease with distance; however, as the distance increases, the quenching decreases much faster than the amplification, reaching a point where the quenching is minimal and the molecule undergoes effective amplification of the fluorescence.
Figura 3. Demostración de la amplificación de la fluorescencia del fluoróforo octadecil rodamina B (R18) mediante nanopartículas de oro encapsuladas (SHINEF)  Figure 3. Demonstration of the fluorescence amplification of the octadecyl rhodamine B fluorophore (R18) by encapsulated gold nanoparticles (SHINEF)
Figura 4. Demostración de la amplificación plasmónica de la señal Raman (SERS) de cristal violeta usando nanopartículas de plata encapsuladas  Figure 4. Demonstration of the plasma crystal amplification of the Raman signal (SERS) of violet crystal using encapsulated silver nanoparticles
Figura 5. Imágenes de microscopía electrónica de transmisión (TEM) de la reacción de hibridación Nanopartículas de la invención de oro (AuNPs) de 12 y 55 nm con distintas muestras. A. Reacción control, sin ADN. B. Sistema híbrido entre AuNPs de 12 y 55 nm y ADN conteniendo secuencia de RPRM metilado. C. Interacción entre diferentes híbridos formados. Las barras representan 100 nm.  Figure 5. Transmission electron microscopy (TEM) images of the 12 and 55 nm gold nanoparticle (AuNPs) hybridization reaction with different samples. A. Control reaction, without DNA. B. Hybrid system between 12 and 55 nm AuNPs and DNA containing methylated RPRM sequence. C. Interaction between different hybrids formed. The bars represent 100 nm.
Figura 6. Espectros UV-Vis de la reacción de hibridación entre AuNPs-ADN. A. Reacción de hibridación. En presencia de ADN hay una mayor absorción a los 533 nm con respecto a la reacción sin ADN. Este aumento a 533 nm da cuenta de la formación de un híbrido con la secuencia específica para Reprimo. También se puede observar un cambio en la zona cercana al UV (350 nm). Este aumento es atribuible a la presencia del ADN y a la formación de híbridos, lo que son observados por TEM. B. Espectro UV-Vis de los sobrenadantes de la reacción control. C. Espectro UV-Vis de los sobrenadantes de la reacción con ADN de Reprimo.  Figure 6. UV-Vis spectra of the hybridization reaction between AuNPs-DNA. A. Hybridization reaction. In the presence of DNA there is a greater absorption at 533 nm with respect to the reaction without DNA. This increase to 533 nm accounts for the formation of a hybrid with the specific sequence for Reprimo. A change can also be observed in the area near the UV (350 nm). This increase is attributable to the presence of DNA and the formation of hybrids, which are observed by TEM. B. UV-Vis spectrum of control reaction supernatants. C. UV-Vis spectrum of the reaction supernatants with Reprimo DNA.
Figura 7. Gráfico que muestra un aumento de la absorción a 533 nm al formarse un híbrido con la nanopartículas de la invención con distintas concentraciones de ADN templado de RPRM metilado expresado como nanogramos de ADN, donde se advierte que concentraciones del orden de 0,001 ng de ADN de RPRM metilado es detectado por el método de la invención, dando absorba ncias sobre el control negativo sin ADN, o con un ADN que no contiene la secuencia para reprimo. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN. Figure 7. Graph showing an increase in absorption at 533 nm when a hybrid is formed with the nanoparticles of the invention with different concentrations of methylated RPRM tempered DNA expressed as nanograms of DNA, where concentrations of the order of 0.001 ng of Methylated RPRM DNA is detected by the method of the invention, giving absorbances on the negative control without DNA, or with a DNA that does not contain the sequence for repression. DETAILED DESCRIPTION OF THE INVENTION.
La presente invención describe un método ultrasensible y selectivo de detección de la región promotora del gen Reprimo (RPRM) metilado, mediando el uso de nanopartículas metálicas funcionalizadas con oligonucleótidos de reconocimiento específico para dicha región promotora del gen Reprimo metilado, de aquí en adelante simplemente Reprimo metilado o RPRM metilado, el que es un biomarcador propio de cáncer gástrico. La detección ultrasensible de estas secuencias modificadas en la sangre de un paciente, permiten una detección temprana de Cáncergástrico a través de un método no invasivo que permite pesquisar pacientes con cáncer gástrico en estadios muy precoces de la enfermedad, incluso asintomáticos. The present invention describes an ultrasensitive and selective method of detecting the promoter region of the methylated Reprimo gene (RPRM), mediating the use of functionalized metal nanoparticles with specific recognition oligonucleotides for said promoter region of the methylated Repress gene, hereinafter simply Repressed methylated or methylated RPRM, which is a biomarker of gastric cancer. The ultrasensitive detection of these modified sequences in the blood of a patient, allows an early detection of Gastric Cancer through a non-invasive method that allows to investigate patients with gastric cancer in very early stages of the disease, even asymptomatic.
La invención divulga un nuevo método ultrasensible de detección de región promotora del gen RPRM metilado en una muestra de ADN, el que comprende las siguientes etapas: a) tratar la muestra de ADN con bisulfito de sodio de modo que l as citosinas no metiladas se conviertan en uracilo, mientras que las citosinas metiladas permanecen intactas; The invention discloses a new ultrasensitive method of detecting the promoter region of the RPRM gene methylated in a DNA sample, which comprises the following steps: a) treating the DNA sample with sodium bisulfite so that unmethylated cytosines become in uracil, while methylated cytosines remain intact;
b) proveer una nanopartícula metálica de entre 40 a 80 nm, que comprende en su superficie varias copias de un oligonucleótido que reconoce RPRM metilado escogido entre la SEQ ID N^l y la SEQ ID N^2 y opcionalmente un marcador para fluorescencia o Raman;  b) provide a metal nanoparticle between 40 and 80 nm, which comprises on its surface several copies of an oligonucleotide that recognizes methylated RPRM chosen between SEQ ID N ^ 1 and SEQ ID N ^ 2 and optionally a fluorescence or Raman marker;
c) proveer una segunda nanopartícula metálica de entre 8 a 20 nm o es un punto cuántico de cadmio-telurio o cadmio-selenio de 2 a 10 nm, que comprende en su superficie varias copias de un oligonucleótido que reconoce RPRM metilado escogido entre la SEQ ID N^l y la SEQ ID N^2, distinto al comprendido en la primera nanopartícula y opcionalmente un marcador para fluorescencia o Raman;  c) providing a second metal nanoparticle between 8 to 20 nm or is a quantum point of cadmium-tellurium or cadmium-selenium of 2 to 10 nm, which comprises on its surface several copies of an oligonucleotide that recognizes methylated RPRM chosen from the SEQ ID N ^ l and SEQ ID N ^ 2, other than that included in the first nanoparticle and optionally a fluorescence or Raman marker;
d) incubar ambas nanopartículas funcionalizadas con la muestra de ADN tratada del paso (a) para permitir la hibridación;  d) incubating both functionalized nanoparticles with the DNA sample treated in step (a) to allow hybridization;
e) separar por centrifugación las nanopartículas sin reaccionar de los complejos híbridos de nanopartículas y ADN de RPRM metilado presente en la muestra, los que quedan en el sedimento;  e) centrifugally separating unreacted nanoparticles from the hybrid complexes of nanoparticles and methylated RPRM DNA present in the sample, which remain in the sediment;
f) resuspender el sedimento y detectar la presencia de complejos híbridos de nanopartículas y ADN ya sea por absorción molecular u opcionalmente en caso dado, por espectroscopia de fluorescencia, o por espectroscopia Raman.  f) resuspend the sediment and detect the presence of hybrid nanoparticle and DNA complexes either by molecular absorption or optionally, by fluorescence spectroscopy, or by Raman spectroscopy.
Donde las secuencias de los oligonucleótidos son las siguientes: Where the oligonucleotide sequences are as follows:
SEQ ID N? 1: RPRM_B_FW 5' -TTGTAAAAGTAAGTAATAAAAAGTAAG -3' SEQ ID N? 2: RPRM_B_RV 5'-CTACTATTAACCAAAAACAAAC-3' SEQ ID N? 1: RPRM_B_FW 5 '-TTGTAAAAGTAAGTAATAAAAAGTAAG -3' SEQ ID N? 2: RPRM_B_RV 5'-CTACTATTAACCAAAAACAAAC-3 '
Las nanopartículas metálicas de ambos tamaños empleadas en la invención pueden ser de oro, plata o cobre. En caso dado, la nanopartícula pequeña puede reemplazarse por un punto cuántico o quantum dot de cadmio-telurio o cadmio-selenio de 2 a 10 nm. Ambas nanopartículas se encuentran recubiertas por sílice; polímeros orgánicos incluyendo (pero no limitado a): polietilenglicol (polióxido de etileno), ácido polilactoglicónico (PLGA), polivinilalcohol, sulfonato de poliestireno, polimetacrilato, polimetilmetacrilato, policaprolactona, poloxámeros; polisacáridos naturales y sintéticos incluyendo: quitosano y derivados, alginatos, ácido ursólico, etc; cadenas polipeptídicas incluyendo (pero no limitado a): péptidos y proteínas; aptámeros (cadenas largas de ácidos nucleicos), hidrocarburos incluyendo (pero no limitado a): alcanotioles, alcanotioles funcionalizados y combinaciones de cualquiera de los mismos anteriores. The metal nanoparticles of both sizes used in the invention can be gold, silver or copper. If necessary, the small nanoparticle can be replaced by a quantum dot or quantum dot of cadmium-tellurium or cadmium-selenium from 2 to 10 nm. Both nanoparticles are coated by silica; organic polymers including (but not limited to): polyethylene glycol (ethylene polyoxide), polylactoglyconic acid (PLGA), polyvinyl alcohol, polystyrene sulfonate, polymethacrylate, polymethylmethacrylate, polycaprolactone, poloxamers; natural and synthetic polysaccharides including: chitosan and derivatives, alginates, ursolic acid, etc; polypeptide chains including (but not limited to): peptides and proteins; aptamers (long chains of nucleic acids), hydrocarbons including (but not limited to): alkanothiols, functionalized alkanothiols and combinations of any of the foregoing.
En caso que se requiera, dependiendo esencialmente de los medios disponibles para realizar el método de la invención, las nanopartículas pueden estar acopladas a compuestos marcadores, los que pueden estar unidos al recubrimiento o a los oligonucleótidos de la invención. Donde los marcadores pueden ser sondas fluorescentes o reporteros Raman. De este modo los complejos híbridos pueden ser detectados por absorción molecular, o si usa sondas fluorescentes o si la nanopartícula pequeña es un punto cuántico o quantum dot de Cadmio Telurio los complejos híbridos pueden ser detectados por espectroscopia de fluorescencia; o por espectroscopia Raman en el caso de contar con estos aparatos.  If required, essentially depending on the means available to perform the method of the invention, the nanoparticles may be coupled to marker compounds, which may be attached to the coating or oligonucleotides of the invention. Where markers can be fluorescent probes or Raman reporters. Thus the hybrid complexes can be detected by molecular absorption, or if it uses fluorescent probes or if the small nanoparticle is a quantum dot or quantum dot of Cadmium Telurium the hybrid complexes can be detected by fluorescence spectroscopy; or by Raman spectroscopy in the case of having these devices.
Dentro de los marcadores fluorescentes que pueden usarse en el método de la invención se encuentran: Rodamina y derivados, fluoresceína y derivados, derivados de cianinas, antracenos, pirenos y otros colorantes fluorescentes.  Among the fluorescent markers that can be used in the method of the invention are: Rhodamine and derivatives, fluorescein and derivatives, cyanine derivatives, anthracenes, pyrenes and other fluorescent dyes.
Asimismo dentro de los marcadores Raman que pueden emplearse en el método de la invención se encuentran: cristal violeta, azul de metileno, ácido p-mercaptobenzoico, 5,5'-ditiobis(succinimidil-2-nitrobenzoate) (DSNB), rodamina y derivados, y otros colorantes.  Also within the Raman markers that can be used in the method of the invention are: violet crystal, methylene blue, p-mercaptobenzoic acid, 5,5'-dithiobis (succinimidyl-2-nitrobenzoate) (DSNB), rhodamine and derivatives , and other dyes.
En términos generales, las condiciones en que se realiza la hibridación del ADN de las muestras a evaluar con el método de la invención y las nanopartículas funcionalizadas con los oligonucleótidos de la invención incluye en primer lugar un tampón adecuado, tal como por ejemplo tampón PBS IX pH 7,4, pero la naturaleza del tampón no es crítica y puede usarse cualquier otro tampón adecuado disponible en la técnica . La mezcla de la muestra y las nanopartículas funcionalizadas de la invención se incuba a 95°C por entre 5 a 10 minutos, y luego se deja agitando a 37°C a 300 rpm al menos 2 horas, y preferentemente toda la noche. Posteriormente los híbridos formados en presencias de RPRM metilado se centrifugan a velocidades entre 2500 a 10500 g por 5 a 20 minutos, donde el híbrido queda en el sedimento, el que se resuspende en tampón, por ejemplo PBS IX pH 7,4. In general terms, the conditions under which DNA hybridization of the samples to be evaluated with the method of the invention is carried out and the nanoparticles functionalized with the oligonucleotides of the invention first include a suitable buffer, such as for example PBS buffer IX. pH 7.4, but the nature of the buffer is not critical and any other suitable buffer available in the art can be used. The mixture of the sample and the functionalized nanoparticles of the invention is incubated at 95 ° C for 5 to 10 minutes, and then allowed to stir at 37 ° C at 300 rpm for at least 2 hours, and preferably overnight. Subsequently, hybrids formed in the presence of methylated RPRM are centrifuged at speeds between 2500 to 10500 g for 5 to 20 minutes, where the hybrid is in the sediment, which is resuspended in buffer, for example PBS IX pH 7.4.
Como indicamos, si se utiliza fluorescencia o espectroscopia Raman, la sensibilidad del método puede verse favorecida por características propias de las nanopartículas utilizadas, las que amplifican las señales de detección.  As we indicated, if fluorescence or Raman spectroscopy is used, the sensitivity of the method can be favored by the characteristics of the nanoparticles used, which amplify the detection signals.
A continuación explicaremos las propiedades de las nanopartículas metálicas, por lo que se escogieron para realizar esta invención.  Next we will explain the properties of metal nanoparticles, so they were chosen to carry out this invention.
Propiedades optoelectrónicas de las Nanopartículas de la invención. Optoelectronic properties of the Nanoparticles of the invention.
La nanotecnología en biomedicina ha tenido un desarrollo importante desde los comienzos del siglo XXI ya que ha proporcionado nuevas herramientas para la terapia y el diagnóstico de diversas enfermedades como cáncer (3) o Alzheimer (4). En este sentido, puede mencionarse el casode las nanopartículas de oro (AuNP), de plata (AgNP) y de cobre (CuNP) que por sus propiedades físicas son de gran utilidad para el diagnóstico y tratamiento de diversas patologías (5). Gran parte del valor de éstas se debe a lo que se ha llamado resonancia local del plasmón de superficie (LSPR, del inglés local surface plasmon resonance) y que normalmente se denomina plasmón. Éste término está definido como la oscilación colectiva de los electrones de la superficie de la nanopartícula, y es el origen de las particulares propiedades ópticas de metales como el oro, la plata y el cobre, que en la escala nanométrica absorben luz causando que estas soluciones adquieran coloraciones muy llamativas (ej. AuNP de 20 nm son de color rojo intenso). Además, poseen la propiedad de dispersar la luz (scattering) en todas direcciones, en longitudes de onda cercanas a las que estas partículas absorben, lo cual puede ser empleado en diagnóstico para la detección de células tumorales.  Nanotechnology in biomedicine has had an important development since the beginning of the 21st century since it has provided new tools for the therapy and diagnosis of various diseases such as cancer (3) or Alzheimer's (4). In this regard, the case of gold (AuNP), silver (AgNP) and copper (CuNP) nanoparticles can be mentioned, which due to their physical properties are very useful for the diagnosis and treatment of various pathologies (5). Much of the value of these is due to what has been called local surface plasmon resonance (LSPR) and is usually called plasmon. This term is defined as the collective oscillation of the electrons on the surface of the nanoparticle, and is the origin of the particular optical properties of metals such as gold, silver and copper, which in the nanometric scale absorb light causing these solutions acquire very striking colorations (eg AuNP of 20 nm are deep red). In addition, they have the property of scattering light (scattering) in all directions, at wavelengths close to which these particles absorb, which can be used in diagnosis for the detection of tumor cells.
Otro aspecto muy importante de señalar es la química en la superficie de las nanopartículas, en particular las de oro, plata y cobre, ya que permite la funcionalización con biomoléculas que contienen grupos tioles a través de un proceso de quemisorción formando uniones estables Au-S, Ag-S y Cu-S, respectivamente. De esta manera las nanopartículas se pueden recubrir con biomoléculas. Asimismo, debido a sus propiedades físicas y empleando técnicas de espectroscopia amplificada por plasmón (EAP) como espectroscopia Raman amplificada por superficie (SERS, del inglés surface- enhanced Raman scattering) se puede realizar la detección ultrasensible de moléculas biomarcadoras de determinadas patologías así como también de células tumorales, lográndose de esta manera desarrollar nuevas herramientas de diagnóstico precoz (6). Another very important aspect to point out is the chemistry on the surface of the nanoparticles, in particular those of gold, silver and copper, since it allows the functionalization with biomolecules that contain thiol groups through a process of chemisorption forming stable Au-S bonds , Ag-S and Cu-S, respectively. In this way the nanoparticles can be coated with biomolecules. Also, due to its physical properties and using plasmon-amplified spectroscopy (EAP) techniques such as surface-enhanced Raman spectroscopy (SERS), ultrasensitive detection of biomarker molecules of certain pathologies can be performed as well as of tumor cells, thus achieving new tools for early diagnosis (6).
Otro concepto útil para esta descripción es el de acoplamiento de plasmones que modifica la sección eficaz (cross section) de las partículas. Al aproximarse dos partículas plasmónicas, se observa el efecto combinado de ambas y no el de cada una por separado. Al acoplarse una nanopartícula de oro grande con varias pequeñas, éstas absorben como una sola gran partícula, aumentando la sección eficaz de absorción.Another useful concept for this description is that of plasmon coupling that modifies the effective cross-section of the particles. When two plasmonic particles approach, the combined effect of both is observed and not that of each separated. When a large gold nanoparticle is coupled with several small ones, they absorb as a single large particle, increasing the effective absorption section.
En la presente invención se utilizan técnicas de EAP para la detección de biomarcadores asociados a cáncer y también de células tumorales, empleando como sondas AuNP, AgNP o CuNP funcionalizadas. De esta forma se ha desarrollado una metodología ultrasensible para la detección de los biomarcadores, específicamente RPRM metilado. In the present invention, EAP techniques are used for the detection of cancer-associated biomarkers and also of tumor cells, using as functionalized AuNP, AgNP or CuNP probes. In this way an ultrasensitive methodology has been developed for the detection of biomarkers, specifically methylated RPRM.
Espectroscopia amplificada por plasmón (EAP) Plasmon amplified spectroscopy (EAP)
El término espectroscopia amplificada por plasmón (EAP, del inglés plasmon-enhanced spectroscopy), comprende la espectroscopia de scattering Raman amplificado por superficies (surface-enhanced Raman scattering, SERS) y la espectroscopia de fluorescencia amplificada por superficies (surface-enhanced fluorescence, SEF). En ambos casos se utiliza el efecto de la propiedad de dispersar la luz (scattering) de la nanopartícula para amplificar las señales, ya sea Raman o fluorescencia .  The term plasmon-amplified spectroscopy (EAP), includes surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence spectroscopy (surface-enhanced fluorescence, SEF) ). In both cases the effect of the scattering property of the nanoparticle is used to amplify the signals, either Raman or fluorescence.
En la espectroscopia Raman normal, la luz láser ilumina a las moléculas y la radiación Raman se dispersa en todas las direcciones y perdiéndose la mayor parte de ésta; el proceso es muy poco eficiente. En cambio, en SERS, con el láser se excita a las nanoestructuras, las que atrapan esta luz y la dispersan en todas direcciones. De esta manera si una molécula se encuentra adsorbida a la nanopartícula, el scattering Raman se hace mucho más eficiente que el Raman normal, y esta radiación Raman amplificada también puede ser redispersada por la nanoestructura, amplificando aún más la señal. Los factores de amplificación (donde el factor de amplificación está definido como el cociente entre las intensidades del SERS y el Raman normal) que se obtienen típicamente en condiciones SERS van desde 106 hasta 1010. Esto incrementa de forma dramática la sensibilidad de la técnica, al punto que bajo ciertas condiciones se puede alcanzar la detección de moléculas individuales. In normal Raman spectroscopy, laser light illuminates the molecules and Raman radiation is dispersed in all directions and missing most of it; The process is very inefficient. On the other hand, in SERS, the laser excites nanostructures, which trap this light and disperse it in all directions. In this way, if a molecule is adsorbed to the nanoparticle, Raman scattering becomes much more efficient than normal Raman, and this amplified Raman radiation can also be redispersed by the nanostructure, further amplifying the signal. The amplification factors (where the amplification factor is defined as the ratio between the intensities of the SERS and the normal Raman) that are typically obtained under SERS conditions range from 10 6 to 10 10 . This dramatically increases the sensitivity of the technique, to the point that under certain conditions the detection of individual molecules can be achieved.
Análogo al SERS es el SEF, que se refiere a fluorescencia amplificada (surface-enhanced fluorescence, también llamado metal-enhanced fluorescence, o más recientemente plasmon-enhanced fluorescence, MEF y PEF respectivamente). Es notable señalar que tanto el SERS como el SEF dependen de la distancia entre la molécula objetivo y la nanopartícula. En este sentido, cabe destacar que tales distancias poseen valores óptimos para la amplificación. Para el caso del SERS, dicha distancia debe ser la menor posible respecto de la superficie de la nanopartícula siendo la misma independiente de su tamaño, mientras que para el SEF dicha distancia es dependiente del tamaño de la nanopartícula, ver Figura 2. Por ejemplo, para una AuNP de 60 nm de diámetro, dicha distancia es de aproximadamente 6 nm, lo cual ha sido descrito teórica y experimental mente utilizando nanopartículas de plata recubiertas de sílice, en una especialidad del SEF llamada shell-isolated nanoparticle-enhanced fluorescence (SHINEF) (7). En las Figuras 3 y 4 se describe como la presencia de AuNP incrementa las señales de SEF y de SERS de los colorantes octadecil rodamina B (R18) y cristal violeta (CV).Similar to SERS is the SEF, which refers to amplified fluorescence (surface-enhanced fluorescence, also called metal-enhanced fluorescence, or more recently plasmon-enhanced fluorescence, MEF and PEF respectively). It is notable to note that both the SERS and the SEF depend on the distance between the target molecule and the nanoparticle. In this regard, it should be noted that such distances have optimal values for amplification. In the case of the SERS, said distance must be the smallest possible with respect to the surface of the nanoparticle being the same independent of its size, while for the SEF said distance is dependent on the size of the nanoparticle, see Figure 2. For example, for an AuNP of 60 nm in diameter, said distance is approximately 6 nm, which has been theoretically and experimentally described using silica coated silver nanoparticles, in a SEF specialty called shell-isolated nanoparticle-enhanced fluorescence (SHINEF) (7). In Figures 3 and 4 it is described how the presence of AuNP increases the SEF and SERS signals of the octadecyl rhodamine B (R18) and violet crystal (CV) dyes.
Para el caso de SEF es importante tener en cuenta que normalmente, las AuNP, AgNP y CuNP apagan la fluorescencia, pero este apagamiento depende de la distancia entre el fluoróforo y la nanopartícula, y al alejar al fluoróforo de la superficie, se ha encontrado que el apagamiento disminuye mucho más pronunciadamente que la amplificación electromagnética que provee la nanopartícula (Figura 3). Esto implica que existe una distancia óptima a la cual el apagamiento es mínimo y el aumento electromagnético es máximo, obteniéndose amplificación de la fluorescencia, en lugar de apagamiento. Esto se logra colocando espaciadores como polietilenglicol (PEG) o sílice entre la molécula fluorescente y la superficie de las AuNP, de las AgNP y de las CuNP. In the case of SEF it is important to keep in mind that normally, the AuNP, AgNP and CuNP turn off the fluorescence, but this shutdown depends on the distance between the fluorophore and the nanoparticle, and when moving the fluorophore away from the surface, it has been found that the shutdown decreases much more sharply than the electromagnetic amplification provided by the nanoparticle (Figure 3). This implies that there is an optimal distance at which the switching off is minimal and the electromagnetic increase is maximum, obtaining amplification of the fluorescence, instead of switching off. This is achieved by placing spacers such as polyethylene glycol (PEG) or silica between the fluorescent molecule and the surface of AuNP, AgNP and CuNP.
Uso de AuNP y AgNP para la amplificación de la señal en EAP. Use of AuNP and AgNP for signal amplification in EAP.
Para realizar la detección empleando estas técnicas de EAP deben emplearse nanopartículas metálicas que presenten plasmón. Esto está relacionado con el poder de las nanopartículas de absorber y realizar la dispersión de la luz (scattering) de la luz a determinadas longitudes de onda. Estos procesos alcanzan su máximo a las longitudes de onda en las cuales se produce la llamada condición de resonancia, la cual está relacionada con las propiedades ópticas del material con que está hecha la nanopartícula de acuerdo con la función dieléctrica £(de tipo compleja) del material del cual está hecha la partícula:  To detect using these EAP techniques, metal nanoparticles with plasmon must be used. This is related to the power of nanoparticles to absorb and scatter light from light at certain wavelengths. These processes reach their maximum at the wavelengths in which the so-called resonance condition occurs, which is related to the optical properties of the material with which the nanoparticle is made in accordance with the dielectric function £ (complex type) of the material from which the particle is made:
ε(ω) = ε'(ω) + ίε"(ω)  ε (ω) = ε '(ω) + ίε "(ω)
Al iluminar la nanopartícula con una fuente externa, se induce un campo eléctrico local, el cual es proporcional al siguiente factor: ε(ω) + 2em When the nanoparticle is illuminated with an external source, a local electric field is induced, which is proportional to the following factor: ε (ω) + 2e m
Donde em es la constante dieléctrica del medio. De aquí se establece que la condición de resonancia (o condición de Fróhlich), que es cuando la amplificaciones máxima, se da cuando:(8-10)
Figure imgf000011_0001
Where e m is the dielectric constant of the medium. Hence it is established that the resonance condition (or Fróhlich condition), which is when the maximum amplifications, occurs when: (8-10)
Figure imgf000011_0001
Es decir, la parte real de la función dieléctrica del material del cual están hechas las nanopartículas debe sercercana a -2 y la parte imaginaria debe sercercana a cero, para la luz incidente de una cierta longitud de onda (expresada como frecuencia angular ω en la fórmula de más arriba). La plata cumple muy bien con esta condición en el visible, y el oro y el cobre en menor medida (su parte imaginaria es más significativa), y porello son los metales más empleados para EAP. Los metales alcalinos también cumplen esta propiedad, pero dada su reactividad química no son prácticos para su utilización. Lo que más nos interesa de las nanopartículas, con miras a la amplificación de las señales de fluorescencia, de absorbancia y Raman, es su poder de dispersar la luz (scattering). Para aprovechar al máximo esta propiedad, las nanopartículas deben exceder los 40 nm de diámetro para una partícula esférica, pero mantenerse por debajo de 100 nm ya que más allá de 100 nm las contribuciones de los polos de orden superior (cuadrupolos, octapolos, etc.) comienza a ser significativa, y ésta le resta poder al plasmón que es de carácter dipolar, apagándolo y bajando los valores de amplificación. Stamplecoskie y Scaiano (ll) han determinado experimental mente un tamaño óptimo para nanoesferas de plata entre 50-60 nm hacia SERS, y Hong y Li (12) han obtenido valores muy similares para nanoesferas de oro. De acuerdo a lo anterior, la plata proporciona mejores valores de amplificación SERS y SEF que el oro, para partículas de igual tamaño, pero también causa mayor reactividad en la superficie de la nanopartícula, y por esto muchas veces se prefiere el las nanopartículas de oro. That is, the real part of the dielectric function of the material from which the nanoparticles are made must be close to -2 and the imaginary part must be close to zero, for the incident light of a certain wavelength (expressed as angular frequency ω in the formula above). Silver fulfills this condition in the visible very well, and gold and copper to a lesser extent (its imaginary part is more significant), and for this reason they are the most used metals for EAP. Alkali metals also fulfill this property, but given their chemical reactivity they are not practical for use. What interests us most about nanoparticles, with a view to amplification of fluorescence, absorbance and Raman signals, is their power to scatter light (scattering). To take full advantage of this property, the nanoparticles must exceed 40 nm in diameter for a spherical particle, but remain below 100 nm since the contributions of the higher order poles (quadrupoles, octapoles, etc., beyond 100 nm). ) begins to be significant, and this reduces the power of plasmon that is dipole in character, turning it off and lowering the amplification values. Stamplecoskie and Scaiano (ll) have experimentally determined an optimal size for silver nanospheres between 50-60 nm towards SERS, and Hong and Li (12) have obtained very similar values for gold nanospheres. According to the above, silver provides better SERS and SEF amplification values than gold, for particles of equal size, but also causes greater reactivity on the surface of the nanoparticle, and that is why gold nanoparticles are often preferred .
Por otro lado, existen los puntos cuánticos o quantum dots, que son nanopartículas fabricadas con materiales semiconductores como cadmio, telurio y selenio. Estos materiales al ser de tamaños muy pequeños poseen el efecto de confinamiento cuántico, el que los hace ser fluorescentes tal como las moléculas fluoróforos tradicionales, pero no son moléculas sino nanopartículas, funcionalizables y de gran área superficial, lo que los hace particularmente útiles para la detección por fluorescencia. On the other hand, there are quantum dots or quantum dots, which are nanoparticles made of semiconductor materials such as cadmium, tellurium and selenium. These materials, being of very small sizes, have the effect of quantum confinement, which makes them fluorescent such as traditional fluorophores molecules, but they are not molecules but nanoparticles, functionalizable and large surface area, which makes them particularly useful for fluorescence detection.
Basado en lo anterior los inventores han determinado que una nanopartícula grande de oro, plata o cobre de entre 40 a 80 nm (de diámetro), que provee la amplificación plasmónica, y una nanopartícula pequeña de oro, plata o cobre de entre 8 a 20 nm, o un punto cuántico o quantum dot de cadmio-telurio o cadmio-selenio de entre 2 a 10 nm son las más apropiadas para la realización de la invención. Based on the above, the inventors have determined that a large nanoparticle of gold, silver or copper between 40 and 80 nm (in diameter), which provides plasmonic amplification, and a small nanoparticle of gold, silver or copper between 8 and 20 nm, or a quantum dot or quantum dot of cadmium-tellurium or cadmium-selenium between 2 and 10 nm are the most appropriate for carrying out the invention.
Si bien, como se explicó las nanopartículas empleada s en el método de la invención son de vital importancia en cuanto a la sensibilidad del método, otro aspecto crítico es la especificidad del mismo, para que los resultados obtenidos sean de utilidad diagnóstica. La especificidad del método está dada por los oligonucleótidos utilizados, los que permiten detectar secuencias de ADN de la región promotora del gen RPRM metilado, que son biomarcadores de cáncer gástrico. Para poder detectar este ADN metilado se requiere un tratamiento previo del ADN total a analizar con Bisulfito de sodio. El ADN reacciona con este reactivo y las citosinas no metiladas se convierten en uracilo, mientras que las citosinas metiladas permanecen intactas . De este modo en una muestra de un paciente sano, sin CpG metiladas, la reacción con bisulfito da origen a una secuencia nueva, mientras que en una muestra con RPRM metilado (paciente enfermo) la secuencia permanece intacta, y puede ser detectada por los oligonucleótidos de la SEQ ID N^l y la SEQ ID N^2. Ejemplos Although, as explained the nanoparticles used in the method of the invention are of vital importance in terms of the sensitivity of the method, another critical aspect is the specificity thereof, so that the results obtained are of diagnostic utility. The specificity of the method is given by the oligonucleotides used, which allow detecting DNA sequences from the promoter region of the methylated RPRM gene, which are biomarkers of gastric cancer. In order to detect this methylated DNA, a previous treatment of the total DNA to be analyzed with sodium bisulfite is required. DNA reacts with this reagent and unmethylated cytosines become uracil, while methylated cytosines remain intact. Thus, in a sample of a healthy patient, without methylated CpG, the bisulfite reaction gives rise to a new sequence, while in a sample with methylated RPRM (sick patient) the sequence remains intact, and can be detected by oligonucleotides. of SEQ ID N ^ l and SEQ ID N ^ 2. Examples
Ejemplo 1. Obtención de Nanopartículas de la invención.  Example 1. Obtaining Nanoparticles of the invention.
1.1 Síntesis de Nanopartículas de Oro: La síntesis fue realizada mediante una reacción de reducción química. Se mezclaron diferentes proporciones de HAuCU 9,5 mM y agua desionizada, en un balón conectado a sistema de reflujo, con agitación constante a 190°C por 15 minutos. Luego se agregó diferentes volúmenes de citrato de sodio 38,8 mM, previamente calentado, de una sola vez.  1.1 Synthesis of Gold Nanoparticles: The synthesis was performed by a chemical reduction reaction. Different proportions of 9.5 mM HAuCU and deionized water were mixed in a balloon connected to the reflux system, with constant stirring at 190 ° C for 15 minutes. Then, different volumes of 38.8 mM sodium citrate, previously heated, were added at once.
Donde la concentración de citrato de sodio agregado determina el tamaño de las nanopartículas. Para las nanopartículas de 55 nm se utilizó 500 μί de solución acuosa de HAuCU 29,4 mM y 500 μί de solución acuosa de citrato trisódico 38,8 mM. Para las nanopartículas de 12 nm se utilizó 1,709 mL de solución acuosa de HAuCU 29,4 mM y 5 mL de solución acuosa de citrato trisódico 38,8 mM.  Where the concentration of added sodium citrate determines the size of the nanoparticles. For the 55 nm nanoparticles, 500 μί of 29.4 mM aqueous HAuCU solution and 500 μί of 38.8 mM trisodium citrate aqueous solution were used. For the 12 nm nanoparticles, 1,709 mL of 29.4 mM aqueous HAuCU solution and 5 mL of 38.8 mM trisodium citrate aqueous solution were used.
Se dejó con agitación a 190°C por 30 minutos, formándose una solución color rojo vino. Se dejó enfriar a T° ambiente por 2 horas y posteriorme nte se le ajustó el pH a 8 con NaOH 0,2 M, para finalmente filtrarlas con filtros de 0,22 μιη y almacenarlas a 4°C para usos posteriores.  It was left under stirring at 190 ° C for 30 minutes, forming a wine red solution. It was allowed to cool to room temperature for 2 hours and subsequently the pH was adjusted to 8 with 0.2 M NaOH, to finally filter them with 0.22 μιη filters and store them at 4 ° C for later use.
1.2 Recubrimiento de nanopartículas con SH-(CH2-CH20)n-CH2CH2COOH (SH-PEG- COOH de 5000 Da): Se preparó una solución del SH-PEG-COOH 50 mg/mL en agua des ionizada. Se preparó una solución de 5 nM de las diferentes nanopartículas y se mezclaron con 1,5 mg del SH-PEG-COOH. La mezcla se dejó en agitación toda la noche a 300 rpm a 25°C. Luego las nanopartículas fueron lavadas 3 veces mediante centrifugaciones con agua grado biología molecular. Fueron resuspendidas en 4 mL y almacenadas a 4°C para usos posteriores. 1.2 Coating of nanoparticles with SH- (CH2-CH20) n-CH2CH2COOH (SH-PEG-COOH 5000 Da): A solution of SH-PEG-COOH 50 mg / mL in deionized water was prepared. A solution of 5 nM of the different nanoparticles was prepared and mixed with 1.5 mg of SH-PEG-COOH. The mixture was allowed to stir overnight at 300 rpm at 25 ° C. The nanoparticles were then washed 3 times by centrifugation with molecular biology water. They were resuspended in 4 mL and stored at 4 ° C for later use.
1.3 Oligonucleótidos para detectar RPRM metilado: Se utilizaron 2 oligonucleótidos que se encuentran a una distancia de aproximadamente 100 pares de bases en la región promotora del gen Reprimo. Se mandaron a sintetizar a Integrated ADN Technologies, Inc., con una modificación de un grupo amino en uno de los extremos del oligonucleotido. Una vez recibidos fueron preparados a una concentración final de 100 μΜ en tampón TE pH 8,0. Las secuencias de los oligonucleótidos son los siguientes: 1.3 Oligonucleotides to detect methylated RPRM: 2 oligonucleotides were used that are at a distance of approximately 100 base pairs in the promoter region of the Reprimo gene. They were sent to Synthesize Integrated ADN Technologies, Inc., with a modification of an amino group at one end of the oligonucleotide. Once received, they were prepared at a final concentration of 100 μΜ in TE buffer pH 8.0. The oligonucleotide sequences are as follows:
RPRM_B_FW 5' -TTGTAAAAGTAAGTAATAAAAAGTAAG -3' RPRM_B_FW 5 '-TTGTAAAAGTAAGTAATAAAAAGTAAG -3'
R PR M_B_R V 5' -CTACTATTAACC AAAAAC AAAC -3'  R PR M_B_R V 5 '-CTACTATTAACC AAAAAC AAAC -3'
1.4 Funcionalización de nanopartículas peguiladas con oligonucleótidos: Se realizó la reacción de acoplamiento de oligonucleótidos mediante reacción con EDC (l-etil-3- (3-dimetilaminopropil)carbodiimida). Para ello se diluyó 1 μί de oligonucleotido en 2,4 mL de PBS IX. Luego se le agregó 2,5 mL de nanopartículas peguiladas (lavadas previamente con PBS IX) y se agitó brevemente. Luego se le agregaron 0,8 mg de EDC disueltos en 100 μί de PBS IX. La reacción se dejó por 3 horas a 25^C a 300 rpm de agitación. Para inactivar los grupos COOH que no reaccionaron se le agregó a la reacción 1 mL de buffer Tris HCI 100 mM, y se agitó brevemente. Las Nanopartículas de 55 nm fueron acopladas con el oligonucleótido RPRM_B_FW 5'- TTGTAAAAGTAAGTAATAAAAAGTAAG -3' y las Nanopartículas de 12 nm fueron acopladas con el oligonucleótido RPRM_B_RV 5'-CTACTATTAACCAAAAACAAAC-3'.1.4 Functionalization of oiled nanoparticles with oligonucleotides: The oligonucleotide coupling reaction was carried out by reaction with EDC (l-ethyl-3- (3-dimethylaminopropyl) carbodiimide). For this, 1 μί of oligonucleotide was diluted in 2.4 mL of PBS IX. Then 2.5 mL of peeled nanoparticles (previously washed with PBS IX) was added and stirred briefly. Then 0.8 mg of EDC dissolved in 100 μί of PBS IX was added. The reaction was left for 3 hours at 25 ^ C at 300 rpm of agitation. To inactivate the unreacted COOH groups, 1 mL of 100 mM Tris HCI buffer was added to the reaction, and briefly stirred. The 55 nm Nanoparticles were coupled with the oligonucleotide RPRM_B_FW 5'-TTGTAAAAGTAAGTAATAAAAAGTAAG -3 'and the 12 nm Nanoparticles were coupled with the oligonucleotide RPRM_B_RV 5'-CTACTATTAACCAAAAACAAAC-3'.
Finalmente, las nanopartículas de la invención fueron lavadas 3 veces con PBS IX pH 7,4, y almacenadas a 4^C. Finally, the nanoparticles of the invention were washed 3 times with PBS IX pH 7.4, and stored at 4 ^ C.
El ensayo de hibridación se realiza incubando nanopartículas de la invención, obtenidas en el ejemplo 1, es decir AuNPs de 12 y 55 nm funcionalizadas con los oligonucleótidos de la invención; en presencia de 100 y 50 ng ADN que contiene la región promotora de RPRM metilada, en tampón PBS IX pH 7,4. La mezcla se incuba a 95°C por 5 minutos, y luego se deja en agitación a 300 rpm a 37°C toda la noche para favorecer la formación de los híbridos. Las muestras son lavadas con PBS IX y sometidas a centrifugaciones a 2200 g por 10 minutos, y se separan los sobrenadantes del sedimento. Se espera que los híbridos por su mayor peso molecular se encuentren en el sedimento, mientras que las nanopartículas sin reaccionar se mantengan en el sobrenadante. A cada muestra - sobrenadante y sedimento- se les realiza espectros UV-Vis, y se analizan mediante TEM.The hybridization assay is performed by incubating nanoparticles of the invention, obtained in example 1, ie AuNPs of 12 and 55 nm functionalized with the oligonucleotides of the invention; in the presence of 100 and 50 ng DNA containing the promoter region of methylated RPRM, in PBS buffer IX pH 7.4. The mixture is incubated at 95 ° C for 5 minutes, and then left under stirring at 300 rpm at 37 ° C overnight to favor the formation of hybrids. The samples are washed with PBS IX and subjected to centrifugations at 2200 g for 10 minutes, and the supernatants are separated from the sediment. Hybrids due to their higher molecular weight are expected to be in the sediment, while unreacted nanoparticles remain in the supernatant. Each sample - supernatant and sediment - is made UV-Vis spectra, and analyzed by TEM.
Los resultados pueden apreciarse en la Figura 5, donde se aprecia en la imagen A la reacción control sin ADN y por lo tanto sin formación de híbridos, en las imágenes B y C se aprecian los híbridos de nanopartículas en presencia del ADN blanco, de regulador de RPRM metilado. The results can be seen in Figure 5, where the control reaction without DNA and therefore without hybrid formation can be seen in the image A, in the images B and C the nanoparticle hybrids can be seen in the presence of the regulator white DNA of methylated RPRM.
Adicionalmente se determinó la absorción molecular a 533 nm de las reacciones de hibridación por espectroscopia UV-Visible. La Figura 6 muestra estos resultados, la Figura 6 A muestra la absorción resultante de la Reacción de hibridación de las nanopartículas AuNPs obtenidas en el ejemplo 1 y ADN blanco, es decir, de la región promotora del gen RPRM metilado, donde se observa que en presencia de ADN hay una mayor absorción a los 533 nm con respecto a la reacción sin ADN. Este aumento a 533 nm da cuenta de la formación de un híbrido con la secuencia específica para Reprimo. También se puede observar un cambio en la zona cercana al UV (350 nm). Este aumento es atribuible a la presencia del ADN y la formación de híbridos, lo que son observados por TEM. La Figura 6 B muestra el espectro UV-Vis de los sobrenadantes de la reacción control. Mientras que la Figura 6 C muestra el espectro UV-Vis de los sobrenadantes de la reacción con ADN de Reprimo. Se observa que hay una absorción cercana a los 520 nm mayor en el gráfico B, comparado con la gráfica en C. Las AuNPs de 12 nm al no formar el híbrido (porque no hay ADN (reacción control)), quedan en suspensión, las que son separadas por centrifugaciones. Al contrario, en presencia de un ADN que contiene la región metilada de Reprimo, se produce la hibridación entre ambas nanopartículas, formando una triada (Fig.5 B y C). Additionally, the molecular absorption at 533 nm of the hybridization reactions was determined by UV-Visible spectroscopy. Figure 6 shows these results, Figure 6 A shows the absorption resulting from the Hybridization Reaction of the AuNPs nanoparticles obtained in example 1 and white DNA, that is, from the promoter region of the methylated RPRM gene, where it is observed that in presence of DNA there is a greater absorption at 533 nm with respect to the reaction without DNA. This increase to 533 nm accounts for the formation of a hybrid with the specific sequence for Reprimo. A change can also be observed in the area near UV (350 nm). This increase is attributable to the presence of DNA and the formation of hybrids, which are observed by TEM. Figure 6 B shows the UV-Vis spectrum of the control reaction supernatants. While Figure 6 C shows the UV-Vis spectrum of the supernatants of the reaction with Reprimo DNA. It is observed that there is an absorption close to 520 nm greater in graph B, compared to the graph in C. The 12 nm AuNPs when the hybrid does not form (because there is no DNA (control reaction)), are suspended, the which are separated by centrifugations. On the contrary, in the presence of a DNA containing the methylated region of Reprimo, hybridization occurs between both nanoparticles, forming a triad (Fig. 5 B and C).
Los experimentos fueron realizados nuevamente utilizando menores cantidades de ADN metilado para RPRM para evaluar la sensibilidad. Además se incorporó una secuencia de ADN que no contienen Reprimo, para evaluar la especificidad de la metodología diseñada. En la siguiente gráfica se muestra la absorba ncia a 533 nm v/s la cantidad de ng de ADN usado para esta técnica. The experiments were performed again using smaller amounts of methylated DNA for RPRM to assess sensitivity. In addition, a DNA sequence that does not contain Reprimo was incorporated to evaluate the specificity of the designed methodology. The following graph shows the absorbance at 533 nm v / s the amount of ng of DNA used for this technique.
En la figura 7 se puede observar que a medida que disminuimos la concentración de ADN para Reprimo, no hay cambios en la absorba ncia comparado con ensayos sin ADN. Estos resultados, indican que el método es sensible. Cuando la reacción se realiza con un ADN distinto, la absorba ncia disminuye a niveles similares al control sin ADN, lo cual da cuenta de la selectividad del método propuesto.  In Figure 7 it can be seen that as we decrease the DNA concentration for Reprimo, there is no change in absorbance compared to tests without DNA. These results indicate that the method is sensitive. When the reaction is carried out with a different DNA, the absorbency decreases to levels similar to the control without DNA, which accounts for the selectivity of the proposed method.
Conclusiones: Conclusions:
Nuestros resultados demuestran que el sistema nanopartículas de oro acoplado a oligonucleotidos, permite determinar específicamente una secuencia de ADN de RPRM metilado y formar un híbrido, el cual puede ser detectado a través de la utilización de espectroscopia de absorción molecular. El aumento de absorción a los 533 nm se debe principalmente al acoplamiento de plasmones descritos al inicio de esta invención. La técnica, además permite la determinación de concentraciones del orden de 0,001 ng de ADN de RPRM metilado. Esta técnica requiere de una muestra de ADN tratado con bisulfito y un sistema de detección en base a absorción molecular. A diferencia de las metodologías propuestas a la fecha, donde se requiere la utilización de reacciones enzimáticas como PCR, nuestro sistema no requiere de amplificaciones de una muestra por PCR, lo cual disminuye los costos obteniendo además mejores resultados, ya que la sensibilidad del método es mayor. Our results show that the oligonucleotide-coupled gold nanoparticles system allows us to specifically determine a methylated RPRM DNA sequence and form a hybrid, which can be detected through the use of molecular absorption spectroscopy. The increase in absorption at 533 nm is mainly due to the coupling of plasmons described at the beginning of this invention. The technique also allows the determination of concentrations of the order of 0.001 ng of methylated RPRM DNA. This technique requires a bisulfite treated DNA sample and a detection system based on molecular absorption. Unlike the methodologies proposed to date, where the use of enzymatic reactions such as PCR is required, our system does not require amplifications of a sample by PCR, which decreases costs, obtaining better results, since the sensitivity of the method is higher.
Bi bliografía Bibliography
1. Ohki R, Nemoto J, Murasawa H, Oda E, Inazawa J, Tanaka N, et al . Reprimo, a New Candidate Mediator of the p53-mediated Cel l Cycle Arrest at the G2 Phase. J Biol Chem. 2000;275(30) :22627-30.  1. Ohki R, Nemoto J, Murasawa H, Oda E, Inazawa J, Tanaka N, et al. I repress, a New Candidate Mediator of the p53-mediated Cel l Cycle Arrest at the G2 Phase. J Biol Chem. 2000; 275 (30): 22627-30.
2. C Bernal, C, Aguayo, F., Vi l larroel, C, Vargas, M., Díaz, I., Ossandon, F. J., ... & Corvalan, A. H. (2008). Repri mo as a potential biomarker for early detection i n gastric cáncer. Cli nical Cáncer Research, 14(19), 6264-6269.  2. C Bernal, C, Aguayo, F., Vi l larroel, C, Vargas, M., Díaz, I., Ossandon, F. J., ... & Corvalan, A. H. (2008). It represses a potential biomarker for early detection and gastric cancer. Clinical Cancer Research, 14 (19), 6264-6269.
3. NazirS, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: Therapeutic appl ications and develo pments. Nanomedicine: Nanotechnology, Biology and Medicine. 2014; 10( 1): 19-34.  3. NazirS, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: Therapeutic appl ications and develo pments. Nanomedicine: Nanotechnology, Biology and Medicine. 2014; 10 (1): 19-34.
4. Kogan MJ, Bastus NG, Amigo R, Gri l lo-Bosch D, Araya E, Turiel A, et al. Nanoparticle- Mediated Local and Remote Manipulation of Protei n Aggregation. Nano Lett. 2006;6(l) :110-5. 4. Kogan MJ, Bastus NG, Amigo R, Gri l lo-Bosch D, Araya E, Turiel A, et al. Nanoparticle- Mediated Local and Remote Manipulation of Protei n Aggregation. Nano Lett. 2006; 6 (l): 110-5.
5. Kogan MJ, Ol medo I, Hosta L, Guerrero AR, Cruz U, Al bericio F. Peptides and metallic nanoparticles for biomedical applications. Nanomedici ne. 2007;2(3):287-306. 5. Kogan MJ, Ol medo I, Hosta L, Guerrero AR, Cruz U, Al Bericio F. Peptides and metallic nanoparticles for biomedical applications. Nanomedici ne. 2007; 2 (3): 287-306.
6. Samanta Ajana S, Das RK, ChangYT. Biocompati ble surface -enhanced Raman scattering nanotags for in vivo cáncer detection. Nanomedici ne. 2014;9(3):523-35.  6. Samanta Ajana S, Das RK, ChangYT. Biocompati ble surface-enhanced Raman scattering nanotags for in vivo cancer detection. Nanomedici ne. 2014; 9 (3): 523-35.
7. Guerrero AR, Aroca RF. Surface-Enhanced Fl uorescence with Shel l -Isolated Nanoparticles (SHI N EF). Angew Chem Int Ed. 2011;50(3) :665-8.  7. Guerrero AR, Aroca RF. Surface-Enhanced Fl uorescence with Shel l -Isolated Nanoparticles (SHI N EF). Angew Chem Int Ed. 2011; 50 (3): 665-8.
8. Meier SA. Plasmonics: Fundamentáis and Appl ications, lst ed. New York, NY: Springer Science; 2007.  8. Meier SA. Plasmonics: Fundamentalis and Appl ications, lst ed. New York, NY: Springer Science; 2007
9. Le Ru EC, Etchegoin PG. Pri ncipies of Surface Enhanced Raman Spectroscopy (and related plasmonic effects). Amsterdam: Elsevier; 2009.  9. Le Ru EC, Etchegoin PG. Pri ncipies of Surface Enhanced Raman Spectroscopy (and related plasmonic effects). Amsterdam: Elsevier; 2009
10. Aroca R. Surface-Enhanced Vi brational Spectroscopy. Chichester: John Wiley & Sons.; 2006.  10. Aroca R. Surface-Enhanced Vi brational Spectroscopy. Chichester: John Wiley & Sons .; 2006
11. Stamplecoskie KG, Scaiano JC, Tiwari VS, Anís H. Optimal Size of Sil ver Nanoparticlesfor Surface-Enhanced Raman Spectroscopy. J Phys Chem C. 2011;115(5) :1403-9.  11. Stamplecoskie KG, Scaiano JC, Tiwari VS, Anise H. Optimal Size of Sil see Nanoparticles for Surface-Enhanced Raman Spectroscopy. J Phys Chem C. 2011; 115 (5): 1403-9.
12. Hong S, Li X. Opti mal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under DifferentConditions. Journal of Nanomaterials [Internet]. 2013; 2013:[9 p.]. Available from: httDJ/dx.doi .ors/10.1155/2013/790323.  12. Hong S, Li X. Opti mal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under DifferentConditions. Journal of Nanomaterials [Internet]. 2013; 2013: [9 p.]. Available from: httDJ / dx.doi .ors / 10.1155 / 2013/790323.

Claims

REIVINDICACIONES. CLAIMS.
1. Método ultrasensible de detección de Reprimo (RPRM) metilado en una muestra de ADN CARACTERIZADO porque comprende: 1. Ultrasensitive method of repression detection (RPRM) methylated in a sample of CHARACTERIZED DNA because it comprises:
a. tratar la muestra de ADN con bisulfito de sodio de modo que las citosinas no metiladas se conviertan en uracilo, mientras que las citosinas metiladas permanecen intactas;  to. Treat the DNA sample with sodium bisulfite so that unmethylated cytosines become uracil, while methylated cytosines remain intact;
b. proveer una nanopartícula metálica de entre 40 a 80 nm, que comprende en su superficie varias copias de un oligonucleótido que reconoce RPRM metilado escogido entre la SEQ ID N^l y la SEQ ID N^2 y opcionalmente un marcador para fluorescencia o Raman;  b. providing a metal nanoparticle between 40 and 80 nm, which comprises on its surface several copies of an oligonucleotide that recognizes methylated RPRM chosen between SEQ ID N ^ l and SEQ ID N ^ 2 and optionally a fluorescence or Raman marker;
c. proveer una segunda nanopartícula metálica de entre 8 a 20 nm o es un punto cuántico de cadmio-telurio o cadmio-selenio de 2 a 10 nm, que comprende en su superficie varias copias de un oligonucleótido que reconoce RPRM metilado escogido entre la SEQ ID N^l y la SEQ ID N^2, distinto al comprendido en la primera nanopartícula y opcionalmente un marcador para fluorescencia oRaman;  C. provide a second metal nanoparticle between 8 to 20 nm or is a quantum point of cadmium-tellurium or cadmium-selenium of 2 to 10 nm, which comprises on its surface several copies of an oligonucleotide that recognizes methylated RPRM chosen from SEQ ID N ^ l and SEQ ID N ^ 2, other than that included in the first nanoparticle and optionally a fluorescent marker or Raman;
d. incubar ambas nanopartículas funcionalizadas con la muestra de ADN tratada del paso (a) para permitir la hibridación;  d. incubate both functionalized nanoparticles with the treated DNA sample from step (a) to allow hybridization;
e. separar por centrifugación las nanopartículas sin reaccionar de los complejos híbridos de nanopartículas y ADN de RPRM metilado presente en la muestra, los que quedan en el sedimento;  and. centrifuge the unreacted nanoparticles from the hybrid complexes of nanoparticles and methylated RPRM DNA present in the sample, which remain in the sediment;
f. resuspender el sedimento y detectar la presencia de complejos híbridos de nanopartículas y ADN ya sea por absorción molecular u opcionalmente en caso dado, por espectroscopia de fluorescencia, o por espectroscopia Raman.  F. resuspend the sediment and detect the presence of hybrid nanoparticle and DNA complexes either by molecular absorption or optionally, by fluorescence spectroscopy, or by Raman spectroscopy.
2. Método de acuerdo a la reivindicación 1 CARACTERIZADO porque las nanopartículas metálicas de ambos tamaños son de oro, plata o cobre. 2. Method according to claim 1 CHARACTERIZED because the metal nanoparticles of both sizes are gold, silver or copper.
3. Método de acuerdo a la reivindicación 1 CARACTERIZADO porque las segundas nanopartículas metálicas son punto cuántico de Cadmio Telurio. 3. Method according to claim 1 CHARACTERIZED because the second metal nanoparticles are quantum point of Cadmium Telurium.
4. Método de acuerdo a la reivindicación 1 CARACTERIZADO porque las nanopartículas metálicas están recubiertas por sílice; polímeros orgánicos incluyendo (pero no limitado a): polietilenglicol (polióxido de etileno), ácido polilactoglicónico (PLGA), polivinilalcohol, sulfonato de poliestireno, polimetacrilato, polimetilmetacrilato, policaprolactona, poloxámeros; polisacáridos naturales y sintéticos incluyendo: quitosano y derivados, alginatos, ácido ursólico, etc; cadenas polipeptídicas incluyendo (pero no limitado a): péptidos y proteínas; aptámeros (cadenas largas de ácidos nucleicos), hidrocarburos incluyendo (pero no limitado a): alcanotioles, alcanotioles funcionalizados y combinaciones de cualquiera de los mismos anteriores. 4. Method according to claim 1 CHARACTERIZED in that the metal nanoparticles are coated by silica; organic polymers including (but not limited to): polyethylene glycol (ethylene polyoxide), polylactoglyconic acid (PLGA), polyvinyl alcohol, polystyrene sulfonate, polymethacrylate, polymethylmethacrylate, polycaprolactone, poloxamers; natural and synthetic polysaccharides including: chitosan and derivatives, alginates, ursolic acid, etc; polypeptide chains including (but not limited to): peptides and proteins; aptamers (long chains of nucleic acids), hydrocarbons including (but not limited to): alkanothiols, functionalized alkanothiols and combinations of any of the foregoing.
5. Método de acuerdo a la reivindicación 4 CARACTERIZADO porque los compuestos de recubrimiento de las nanopartículas están acopladas a compuestos marcadores para fluorescencia o Raman. 5. Method according to claim 4 CHARACTERIZED in that the coating compounds of the nanoparticles are coupled to marker compounds for fluorescence or Raman.
6. Método de acuerdo a la reivindicación 1 CARACTERIZADO porque los oligonucleotidos están acopladas a compuestos marcadores para fluorescencia o Raman. 6. Method according to claim 1 CHARACTERIZED in that the oligonucleotides are coupled to fluorescent or Raman marker compounds.
7. Método de acuerdo a las reivindicaciones 1, 5 ó 6 CARACTERIZADO porque los marcadores para fluorescencia se escogen entre rodamina fluoresceína, cianinas, antracenos, pirenos y sus derivados. 7. Method according to claims 1, 5 or 6 CHARACTERIZED because the fluorescence markers are chosen from rhodamine fluorescein, cyanines, anthracenes, pyrenes and their derivatives.
8. Método de acuerdo a las reivindicaciones 1, 5 ó 6 CARACTERIZADO porque los marcadores Raman se escogen entre cristal violeta, azul de metileno, ácido p- mercaptobenzoico, 5,5'-ditiobis(succinimidil-2-nitrobenzoate) (DSNB), rodamina y sus derivados. 8. Method according to claims 1, 5 or 6 CHARACTERIZED in that the Raman markers are chosen from violet crystal, methylene blue, p-mercaptobenzoic acid, 5,5'-dithiobis (succinimidyl-2-nitrobenzoate) (DSNB), rhodamine and its derivatives.
9. Método de acuerdo a la reivindicación 1 CARACTERIZADO porque en la etapa (e) la centrifugación se realiza a 2500 a 10500 g por 5 a 20 minutos. 9. Method according to claim 1 CHARACTERIZED because in step (e) the centrifugation is carried out at 2500 to 10500 g for 5 to 20 minutes.
PCT/CL2016/050035 2015-06-26 2016-06-24 Ultra-sensitive method for gastric cancer biomarker detection WO2016205971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562185194P 2015-06-26 2015-06-26
US62/185,194 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016205971A1 true WO2016205971A1 (en) 2016-12-29

Family

ID=57584397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/050035 WO2016205971A1 (en) 2015-06-26 2016-06-24 Ultra-sensitive method for gastric cancer biomarker detection

Country Status (2)

Country Link
CL (1) CL2016001649A1 (en)
WO (1) WO2016205971A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827935A (en) * 2018-06-08 2018-11-16 南京师范大学 It is a kind of based on the DNA methylation Surface Enhanced Raman Scattering Spectrum detection method of gold nano hole array and its application
CN109929919A (en) * 2018-09-14 2019-06-25 深圳市晋百慧生物有限公司 DNA methylation detection method and related application
RU2723160C1 (en) * 2019-08-15 2020-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method of detecting and determining dna with a given sequence using giant raman scattering spectroscopy
US11746387B2 (en) 2018-06-20 2023-09-05 Pontificia Universidad Catolica De Chile Non-invasive detection of gastric cancer by detecting the methylation of Reprimo-like in the blood

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241828A1 (en) * 2007-03-30 2008-10-02 Kai Wu Detection of dna methylation using raman spectroscopy
US20130095477A1 (en) * 2009-09-28 2013-04-18 Alejandro Corvalán Non-Invasive Method for the Early Detection of Stomach Cancer
WO2015181804A2 (en) * 2014-05-30 2015-12-03 Pontificia Universidad Católica De Chile Method and assay for the non-invasive detection of early gastric cancer by the combined use of methylated reprimo cell-free dna and pepsinogen i/ii

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241828A1 (en) * 2007-03-30 2008-10-02 Kai Wu Detection of dna methylation using raman spectroscopy
US20130095477A1 (en) * 2009-09-28 2013-04-18 Alejandro Corvalán Non-Invasive Method for the Early Detection of Stomach Cancer
WO2015181804A2 (en) * 2014-05-30 2015-12-03 Pontificia Universidad Católica De Chile Method and assay for the non-invasive detection of early gastric cancer by the combined use of methylated reprimo cell-free dna and pepsinogen i/ii

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BERNAL, C. ET AL.: "Reprimo as a potential biomarker for early detection in gastric cancer.", CLINICAL CANCER RESEARCH, vol. 14, no. 19, 1 October 2008 (2008-10-01), pages 6264 - 6269, XP055341459 *
CORVALAN, A.: "Bases epigenéticas del cáncer gástrico: oprtunidades para la búsqueda de nuevos biomarcadores.", REVISTA MÉDICA DE CHILE, vol. 141, no. 12, 2013, pages 1570 - 1577, XP055341465 *
HU , J. ET AL.: "Single base extension reaction-based surface enhanced Raman spectroscopy for DNA methylation assay.", BIOSENSORS AND BIOELECTRONICS, vol. 31, no. 1, 2012, pages 451 - 457, XP028353788 *
MURCIA, M. J. ET AL.: "Biofunctionalization of fluorescent nanoparticles.", NANOTECHNOLOGIES FOR THE LIFE SCIENCES, 2007 *
NAZIR, S. ET AL.: "Nanomaterials in combating cancer: therapeutic applications and developments.", NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE, vol. 10, no. 1, 2014, pages 19 - 34, XP055341475 *
OH, E. ET AL.: "One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities.", LANGMUIR, vol. 26, no. 10, 2010, pages 7604 - 7613, XP055341473 *
OYARZUN-AMPUERO, F. ET AL.: "Organic and inorganic nanoparticles for prevention and diagnosis of gastric cancer.", CURRENT PHARMACEUTICAL DESIGN, vol. 21, no. 29, 2015, pages 4145 - 4154 *
SAAVEDRA, K. ET AL.: "Loss of expression of Reprimo, a p53-induced cell cycle arrest gene , correlates with invasive stage of tumor progression and p73 expression in gastric cancer.", PLOS ONE, vol. 10, no. 5, 8 May 2015 (2015-05-08), pages e0125834, XP055341455 *
SAMANTA, A. ET AL.: "Biocompatible surface-enhanced Raman scattering nanotags for in vivo cancer detection.", NANOMEDICINE, vol. 9, no. 3, 2014, pages 523 - 535 *
SPERLING, R. A. ET AL.: "Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London A: Mathematical", PHYSICAL AND ENGINEERING SCIENCES, vol. 368, no. 1915, 2010, pages 1333 - 1383, XP055045855 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827935A (en) * 2018-06-08 2018-11-16 南京师范大学 It is a kind of based on the DNA methylation Surface Enhanced Raman Scattering Spectrum detection method of gold nano hole array and its application
US11746387B2 (en) 2018-06-20 2023-09-05 Pontificia Universidad Catolica De Chile Non-invasive detection of gastric cancer by detecting the methylation of Reprimo-like in the blood
CN109929919A (en) * 2018-09-14 2019-06-25 深圳市晋百慧生物有限公司 DNA methylation detection method and related application
RU2723160C1 (en) * 2019-08-15 2020-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Method of detecting and determining dna with a given sequence using giant raman scattering spectroscopy

Also Published As

Publication number Publication date
CL2016001649A1 (en) 2016-12-30

Similar Documents

Publication Publication Date Title
Pal et al. DNA-enabled rational design of fluorescence-Raman bimodal nanoprobes for cancer imaging and therapy
Alkahtani et al. Fluorescent nanodiamonds: past, present, and future
Huang et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging
Yao et al. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy
Wyatt et al. Applications of pHLIP technology for cancer imaging and therapy
Sekhon et al. 2D graphene oxide–aptamer conjugate materials for cancer diagnosis
He et al. Many birds, one stone: a smart nanodevice for ratiometric dual-spectrum assay of intracellular microRNA and multimodal synergetic cancer therapy
Meng et al. Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy
Zhang et al. Aptamer-decorated self-assembled aggregation-induced emission organic dots for cancer cell targeting and imaging
Yang et al. Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles
Tian et al. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles
Yao et al. Multifunctional Fe3O4@ polydopamine@ DNA-fueled molecular machine for magnetically targeted intracellular Zn2+ imaging and fluorescence/MRI guided photodynamic-photothermal therapy
Xu et al. Gold nanobipyramids as dual-functional substrates for in situ “turn on” analyzing intracellular telomerase activity based on target-triggered plasmon-enhanced fluorescence
EP1487343B1 (en) Biospecific contrast agents
Conde et al. Nanophotonics for molecular diagnostics and therapy applications
WO2016205971A1 (en) Ultra-sensitive method for gastric cancer biomarker detection
Kumar et al. Optical molecular imaging agents for cancer diagnostics and therapeutics
Carvalho et al. Evaluating the glycophenotype on breast cancer tissues with quantum dots-Cramoll lectin conjugates
Polo et al. Colloidal bioplasmonics
Liu et al. Photo-gated and self-powered three-dimensional DNA motors with boosted biostability for exceptionally precise and efficient tracing of intracellular survivin mRNA
Borghei et al. A novel dual-mode and label-free aptasensor based methodology for breast cancer tissue marker targeting
Davodabadi et al. Aptamer‐functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: a comprehensive overview of recent trends
Grumezescu Design of nanostructures for theranostics applications
Deng et al. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer
Yu et al. Fluorescence analysis with quantum dot probes for hepatoma under one-and two-photon excitation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16813463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16813463

Country of ref document: EP

Kind code of ref document: A1