WO2016203925A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2016203925A1
WO2016203925A1 PCT/JP2016/065605 JP2016065605W WO2016203925A1 WO 2016203925 A1 WO2016203925 A1 WO 2016203925A1 JP 2016065605 W JP2016065605 W JP 2016065605W WO 2016203925 A1 WO2016203925 A1 WO 2016203925A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
plane
quinacridone
distance
crystal
Prior art date
Application number
PCT/JP2016/065605
Other languages
French (fr)
Japanese (ja)
Inventor
小林 一
戸木田 裕一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016203925A1 publication Critical patent/WO2016203925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to a photoelectric conversion element using, for example, quinacridone or a quinacridone derivative as an organic semiconductor material.
  • Patent Document 1 for example, in one pixel, for example, an organic photoelectric conversion unit that detects green light and generates a signal charge corresponding thereto, and a photodiode that detects red light and blue light ( There is disclosed a solid-state imaging device in which a decrease in sensitivity is improved by providing an inorganic photoelectric conversion unit) and obtaining signals of three colors in one pixel.
  • the photoelectric conversion layer constituting the organic photoelectric conversion unit in this solid-state imaging device has a bulk heterostructure in which a p-type organic semiconductor material and an n-type organic semiconductor material are randomly mixed.
  • quinacridone having excellent spectral characteristics is widely used as a p-type organic semiconductor material.
  • quinacridone in Non-Patent Document 1, at least five kinds of crystal structures ( ⁇ -QD crystal phase, ⁇ 1 -QD crystal phase, ⁇ 2 -QD crystal phase, ⁇ 3 -QD crystal phase, ⁇ -QD crystal phase, ) has been confirmed experimentally. Since these crystal structures all have a large lattice energy of about 80 kcal / mol, they are easily crystallized during the film forming process. For this reason, many crystal grains and crystal grain boundaries exist in the quinacridone film.
  • Non-Patent Documents 2 to 10 Although the crystal grain boundary increases the charge separation interface to improve the photoelectric conversion efficiency, it has been reported in Non-Patent Documents 2 to 10 that the charge mobility (charge mobility) is lowered. When the charge mobility is lowered, the time required for the charge generated at the charge separation interface to reach the electrode becomes longer, and the afterimage characteristics are lowered. Therefore, there is a demand for a method for improving the afterimage characteristics while maintaining the photoelectric conversion efficiency.
  • a photoelectric conversion element is provided between a first electrode and a second electrode that are arranged to face each other, and between the first electrode and the second electrode, and an anisotropy coefficient related to charge transfer is 0. And a photoelectric conversion layer containing crystal grains that are 3 or more and 1 or less.
  • a photoelectric conversion including crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less between a first electrode and a second electrode arranged to face each other. A layer was provided. Thereby, a charge conduction network is formed between the crystal grains, the electric field is easily moved, and the electric field mobility in the photoelectric conversion layer is improved.
  • the photoelectric conversion layer includes crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less. A network is formed. Therefore, the movement of charges between crystal grains is facilitated, and the charge mobility in the photoelectric conversion layer is improved. That is, it is possible to improve the afterimage characteristics. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
  • FIG. 5A It is sectional drawing showing schematic structure of the photoelectric conversion element which concerns on 1st Embodiment of this indication. It is a top view showing the formation positional relationship of an organic photoelectric converting layer, a protective film (upper electrode), and a contact hole. It is sectional drawing showing the example of 1 structure of an inorganic photoelectric conversion part. It is other sectional drawing of the inorganic photoelectric conversion part shown to FIG. 3A. It is sectional drawing showing the structure (lower side electron extraction) of the electric charge (electron) storage layer of an organic photoelectric conversion part. It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion element shown in FIG. It is sectional drawing showing the process of following FIG. 5A. It is sectional drawing showing the process of following FIG. 5B.
  • FIG. 6A It is sectional drawing showing the process of following FIG. 6A. It is sectional drawing showing the process of following FIG. 6B. It is sectional drawing showing the process of following FIG. 7A. It is sectional drawing showing the process of following FIG. 7B. It is principal part sectional drawing explaining the effect
  • FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the ⁇ -QD crystal phase and the charge transfer rate between HOMOs of adjacent crystal grains.
  • FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the ⁇ -QD crystal phase and the charge transfer rate between LUMOs of adjacent crystal grains.
  • FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the ⁇ 2 -QD crystal phase and the charge transfer rate between HOMOs of adjacent crystal grains.
  • FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the ⁇ 2 -QD crystal phase and the charge transfer rate between LUMOs of adjacent crystal grains.
  • FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the ⁇ -QD crystal phase and the charge transfer rate between HOMOs of adjacent crystal grains.
  • FIG. 6 is a characteristic diagram showing the relationship between the distance between crystal grain boundaries of a ⁇ -QD crystal phase and the charge transfer rate between LUMOs of adjacent crystal grains. It is sectional drawing showing schematic structure of the photoelectric conversion element which concerns on 2nd Embodiment of this indication. It is a schematic diagram explaining a charge conduction network.
  • FIG. 1 illustrates a cross-sectional configuration of the photoelectric conversion element (photoelectric conversion element 10) according to the first embodiment of the present disclosure.
  • the photoelectric conversion element 10 constitutes one pixel in a solid-state imaging device (described later) such as a CCD image sensor or a CMOS image sensor.
  • the photoelectric conversion element 10 includes a pixel transistor (including transfer transistors Tr1 to 3 described later) formed on the surface (surface S2 opposite to the light receiving surface; second surface) side of the semiconductor substrate 11, and multilayer wiring. It has a layer (multilayer wiring layer 51).
  • one organic photoelectric conversion unit 11G that selectively detects light in different wavelength ranges and performs photoelectric conversion, and two inorganic photoelectric conversion units 11B and 11R are in the vertical direction.
  • the organic photoelectric conversion part 11G has an organic photoelectric conversion layer 17 containing quinacridone or a quinacridone derivative.
  • This quinacridone or quinacridone derivative has an ⁇ crystal phase, a ⁇ 2 crystal phase, or a ⁇ crystal phase including crystal planes each having a (001) plane, a (010) plane, and a (100) plane in the organic photoelectric conversion layer 17.
  • a plurality of crystal grains composed of any one of them, and the distance between adjacent crystal grains in each crystal phase has a predetermined range for each facing surface.
  • the photoelectric conversion element 10 has a laminated structure of one organic photoelectric conversion unit 11G and two inorganic photoelectric conversion units 11B and 11R. With this, red (R) and green (G) are obtained with one element. , Blue (B) color signals can be acquired.
  • the organic photoelectric conversion unit 11G is formed on the back surface (surface S1; first surface) of the semiconductor substrate 11, and the inorganic photoelectric conversion units 11B and 11R are embedded in the semiconductor substrate 11.
  • the organic photoelectric conversion unit 11G is an organic photoelectric conversion element that generates an electron-hole pair by absorbing light in a selective wavelength range (here, green light) using an organic semiconductor material.
  • the organic photoelectric conversion unit 11G has a configuration in which the organic photoelectric conversion layer 17 is sandwiched between a pair of electrodes (lower electrode 15a and upper electrode 18) for extracting signal charges.
  • the lower electrode 15a and the upper electrode 18 are electrically connected to conductive plugs 120a1 and 120b1 embedded in the semiconductor substrate 11 through a wiring layer and a contact metal layer, as will be described later.
  • interlayer insulating films 12 and 14 are formed on the surface S1 of the semiconductor substrate 11, and the interlayer insulating film 12 is opposed to respective conductive plugs 120a1 and 120b1 described later. Through-holes are provided in the regions to be conducted, and conductive plugs 120a2 and 120b2 are embedded in the respective through-holes.
  • wiring layers 13a and 13b are embedded in regions facing the conductive plugs 120a2 and 120b2, respectively.
  • a lower electrode 15 a is provided on the interlayer insulating film 14, and a wiring layer 15 b electrically separated by the lower electrode 15 a and the insulating film 16 is provided.
  • the organic photoelectric conversion layer 17 is formed on the lower electrode 15 a, and the upper electrode 18 is formed so as to cover the organic photoelectric conversion layer 17.
  • a protective film 19 is formed on the upper electrode 18 so as to cover the surface thereof.
  • a contact hole H is provided in a predetermined region of the protective film 19, and a contact metal layer 20 is formed on the protective film 19 so as to fill the contact hole H and extend to the upper surface of the wiring layer 15b.
  • the conductive plug 120a2 functions as a connector together with the conductive plug 120a1, and together with the conductive plug 120a1 and the wiring layer 13a, forms a charge (electron) transmission path from the lower electrode 15a to the green power storage layer 110G described later.
  • the conductive plug 120b2 functions as a connector together with the conductive plug 120b1, and together with the conductive plug 120b1, the wiring layer 13b, the wiring layer 15b, and the contact metal layer 20, provides a discharge path for charges (holes) from the upper electrode 18. To form.
  • the conductive plugs 120a2 and 120b2 are desirably formed of a laminated film of a metal material such as titanium (Ti), titanium nitride (TiN) and tungsten in order to function as a light shielding film.
  • a metal material such as titanium (Ti), titanium nitride (TiN) and tungsten in order to function as a light shielding film.
  • the use of such a laminated film is desirable because contact with silicon can be ensured even when the conductive plugs 120a1 and 120b1 are formed as n-type or p-type semiconductor layers.
  • the interlayer insulating film 12 is made of an insulating film having a small interface state in order to reduce the interface state with the semiconductor substrate 11 (silicon layer 110) and to suppress the generation of dark current from the interface with the silicon layer 110. Desirably configured.
  • an insulating film for example, a stacked film of a hafnium oxide (HfO 2 ) film and a silicon oxide (SiO 2 ) film can be used.
  • the interlayer insulating film 14 is composed of, for example, a single layer film made of one of silicon oxide, silicon nitride, silicon oxynitride (SiON), or the like, or a laminated film made of two or more of these. .
  • the insulating film 16 is formed of, for example, a single layer film made of one of silicon oxide, silicon nitride, silicon oxynitride (SiON), or the like, or a laminated film made of two or more of these.
  • the surface of the insulating film 16 is flattened, and has a shape and a pattern substantially free of steps from the lower electrode 15a.
  • the insulating film 16 has a function of electrically separating the lower electrodes 15a of each pixel when the photoelectric conversion element 10 is used as a pixel of a solid-state imaging device.
  • the lower electrode 15a is provided in a region covering the light receiving surfaces facing the light receiving surfaces of the inorganic photoelectric conversion portions 11B and 11R formed in the semiconductor substrate 11.
  • the lower electrode 15a is made of a light-transmitting conductive film, for example, ITO (Indium Tin Oxide).
  • ITO Indium Tin Oxide
  • a tin oxide (SnO 2 ) -based material to which a dopant is added, or a zinc oxide-based material obtained by adding a dopant to aluminum zinc oxide (ZnO) May be used.
  • zinc oxide-based material examples include aluminum zinc oxide (AZO) to which aluminum (Al) is added as a dopant, gallium zinc oxide (GZO) to which gallium (Ga) is added, and indium zinc oxide to which indium (In) is added. (IZO).
  • AZO aluminum zinc oxide
  • GZO gallium zinc oxide
  • Indium zinc oxide to which indium (In) is added.
  • IZO indium zinc oxide
  • CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIN 2 O 4 , CdO, ZnSnO 3, or the like may be used.
  • signal charges are taken out from the lower electrode 15a, the lower electrode 15a is separated for each pixel in a solid-state imaging device described later using the photoelectric conversion element 10 as a pixel. Formed.
  • the organic photoelectric conversion layer 17 includes, for example, quinacridone or a quinacridone derivative as an organic semiconductor material that photoelectrically converts light in a selective wavelength range and transmits light in other wavelength ranges.
  • the organic photoelectric conversion layer 17 is preferably configured to include one or both of an organic p-type semiconductor and an organic n-type semiconductor, and the organic p-type semiconductor and the organic n-type semiconductor are the quinacridone or the quinacridone derivative, or The organic semiconductor material shown below. That is, the organic photoelectric conversion layer 17 uses subphthalocyanine or a derivative thereof, or fullerene or a derivative thereof together with quinacridone or a quinacridone derivative.
  • quinacridone and a quinacridone derivative act as a p-type semiconductor
  • subphthalocyanine and a derivative thereof, fullerene and a derivative thereof act as an n-type semiconductor.
  • the material which comprises the organic photoelectric converting layer 17 with a quinacridone or a quinacridone derivative is not specifically limited.
  • any one of naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives is preferably used.
  • a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof may be used.
  • metal complex dyes cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rhodacyanine dyes, xanthene dyes, macrocyclic azaannulene dyes, azulene dyes, naphthoquinone, anthraquinone dyes, Condensed polycyclic aromatic compounds such as anthracene and pyrene and chain compounds condensed with aromatic or heterocyclic compounds, or two compounds such as quinoline, benzothiazole and benzoxazole having a squarylium group and a croconic methine group as a linking chain.
  • a cyanine-like dye or the like bonded by a nitrogen heterocycle or a squarylium group and a croconite methine group can be preferably used.
  • the metal complex dye is preferably a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye, but is not limited thereto.
  • the organic photoelectric conversion layer 17 can photoelectrically convert green light corresponding to a part or all of the wavelength range of 495 nm to 570 nm, for example.
  • the thickness of such an organic photoelectric conversion layer 17 is, for example, 50 nm to 500 nm.
  • the quinacridone or quinacridone derivative contained in the organic photoelectric conversion layer 17 includes a plurality of crystal grains composed of an ⁇ crystal phase, a ⁇ 1 crystal phase, a ⁇ 2 crystal phase, a ⁇ 3 crystal phase, or a ⁇ crystal phase in the organic photoelectric conversion layer 17.
  • Have These crystal phases include crystal planes having (001) plane, (010) plane, and (100) plane, respectively.
  • it is preferable that the plurality of crystal grains made of each crystal phase have the smallest possible distance between the faces facing each other (that is, crystal grain boundaries).
  • the organic photoelectric conversion layer 17 includes a structure in which the distance between the crystal grain boundaries of quinacridone or a quinacridone derivative is in the following range, so that the decrease in charge mobility due to the crystal grain boundaries is reduced.
  • the crystal grains composed of ⁇ 1 crystal phase, ⁇ 2 crystal phase and ⁇ 3 crystal phase will be described in detail later, but the ⁇ 2 crystal phase has the highest probability of existence of the stable ⁇ 2 crystal phase with the smallest lattice energy. Defines the distance between crystal grains composed of ⁇ 2 crystal phase.
  • the distances between the mutually facing faces of the plurality of crystal grains composed of the ⁇ crystal phase are 2.8 ⁇ 10 ⁇ 10 m or less facing each other on the (001) face and the (001) face facing each other.
  • the (001) plane and the (010) plane are 2.8 ⁇ 10 ⁇ 10 m or less, and the (001) plane and the (100) plane are 3.1 ⁇ 10 ⁇ 10 m or less and the (010) plane facing each other.
  • And (010) plane is 4.1 ⁇ 10 ⁇ 10 m or less, and the (010) plane and (100) plane facing each other are 3.6 ⁇ 10 ⁇ 10 m or less and the (100) plane and (100) facing each other In terms of surface, it is preferable that at least one condition of 3.2 ⁇ 10 ⁇ 10 m or less is satisfied.
  • the distance between the mutually facing faces of the plurality of crystal grains composed of ⁇ 2 crystal phase is 2.3 ⁇ 10 ⁇ 10 m or less between the (001) face and the (001) face facing each other, and the (001) faces facing each other.
  • And (010) plane is 2.9 ⁇ 10 ⁇ 10 m or less
  • (001) plane and (100) plane facing each other are 3.3 ⁇ 10 ⁇ 10 m or less and (010) plane and (010) facing each other 3.2 ⁇ 10 ⁇ 10 m or less on the surface, 3.7 ⁇ 10 ⁇ 10 m or less on the (010) plane and (100) plane facing each other, and 4. on the (100) plane and (100) plane facing each other. It is preferable that at least one condition of 1 ⁇ 10 ⁇ 10 m or less is satisfied.
  • the distances between the mutually opposing faces of the plurality of crystal grains composed of the ⁇ crystal phase are 1.7 ⁇ 10 ⁇ 10 m or less for the (001) face and the (001) face facing each other, and the (001) face facing each other.
  • the (010) plane is 2.7 ⁇ 10 ⁇ 10 m or less, and the (001) plane and (100) plane facing each other are 2.1 ⁇ 10 ⁇ 10 m or less and the (010) plane and (010) plane facing each other.
  • Is 3.9 ⁇ 10 ⁇ 10 m or less, (010) plane and (100) plane facing each other is 3.2 ⁇ 10 ⁇ 10 m or less, and (100) plane and (100) plane facing each other are 2.7. It is preferable that at least one condition of ⁇ 10 ⁇ 10 m or less is satisfied.
  • the quinacridone derivative is represented by the following formula (1), and specific examples include compounds represented by the following formulas (1-1) to (1-3).
  • R1 and R2 are each independently a hydrogen atom, halogen atom, mercapto group, amino group, nitro group, cyano group, carboxyl group, sulfonic acid group, hydroxyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group.
  • R4 each independently represents a hydrogen atom, a halogen atom, a mercapto group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, Substituted or unsubstituted alkoxyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylamino group, substituted or unsubstituted arylamino group Substituted or unsubstituted carboxylic acid ester group, substituted or unsubstituted carboxylic acid amide group, substituted or unsubstituted sulfonic acid ester group, substituted
  • buffer layers buffer layers 212 and 214.
  • buffer layers 212 and 214 may be provided between the lower electrode 15a of the organic photoelectric conversion layer 17 and the upper electrode 18 (see FIG. 10).
  • an undercoat film, a hole transport layer, an electron blocking film, an organic photoelectric conversion layer 17, a hole blocking film, a buffer film, an electron transport layer, and a work function adjusting film are stacked in this order from the lower electrode 15a side. It may be.
  • the upper electrode 18 is composed of a conductive film having the same optical transparency as the lower electrode 15a.
  • the upper electrode 18 may be separated for each pixel, or may be formed as a common electrode for each pixel.
  • the thickness of the upper electrode 18 is, for example, 10 nm to 200 nm.
  • the protective film 19 is made of a light-transmitting material.
  • the protective film 19 is a single-layer film made of any of silicon oxide, silicon nitride, silicon oxynitride, or the like, or a laminated film made of two or more of them. It is.
  • the thickness of the protective film 19 is, for example, 100 nm to 30000 nm.
  • the contact metal layer 20 is made of, for example, any one of titanium, tungsten, titanium nitride, aluminum and the like, or a laminated film made of two or more of them.
  • FIG. 2 shows a planar configuration of the organic photoelectric conversion layer 17, the protective film 19 (upper electrode 18), and the contact hole H.
  • the peripheral edge e2 of the protective film 19 (the same applies to the upper electrode 18) is located outside the peripheral edge e1 of the organic photoelectric conversion layer 17, and the protective film 19 and the upper electrode 18 are organic photoelectric photoelectric. It is formed to protrude outward from the conversion layer 17.
  • the upper electrode 18 is formed so as to cover the upper surface and side surfaces of the organic photoelectric conversion layer 17 and to extend onto the insulating film 16.
  • the protective film 19 covers the upper surface of the upper electrode 18 and is formed in the same planar shape as the upper electrode 18.
  • the contact hole H is provided in a region of the protective film 19 that is not opposed to the organic photoelectric conversion layer 17 (a region outside the peripheral edge e1) and exposes a part of the surface of the upper electrode 18.
  • the distance between the peripheral portions e1 and e2 is not particularly limited, but is, for example, 1 ⁇ m to 500 ⁇ m.
  • one rectangular contact hole H is provided along the edge of the organic photoelectric conversion layer 17, but the shape and number of the contact holes H are not limited to this, and other shapes (for example, , Circular, square, etc.) or a plurality of them may be provided.
  • a planarizing film 21 is formed on the protective film 19 and the contact metal layer 20 so as to cover the entire surface.
  • an on-chip lens 22 (microlens) is provided on the planarization film 21, an on-chip lens 22 (microlens) is provided.
  • the on-chip lens 22 focuses light incident from above on the light receiving surfaces of the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R.
  • the multilayer wiring layer 51 is formed on the surface S2 side of the semiconductor substrate 11, the light receiving surfaces of the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R are arranged close to each other. Thus, it is possible to reduce the variation in sensitivity between the colors depending on the F value of the on-chip lens 22.
  • the photoelectric conversion element 10 of the present embodiment signal charges (electrons) are taken out from the lower electrode 15a. Therefore, in the solid-state imaging device using this as a pixel, the upper electrode 18 may be used as a common electrode. In this case, the transmission path including the contact hole H, the contact metal layer 20, the wiring layers 15b and 13b, and the conductive plugs 120b1 and 120b2 may be formed in at least one place for all the pixels.
  • the semiconductor substrate 11 is, for example, formed by embedding inorganic photoelectric conversion portions 11B and 11R and a green power storage layer 110G in a predetermined region of an n-type silicon (Si) layer 111.
  • the semiconductor substrate 11 is also embedded with conductive plugs 120a1 and 120b1 serving as a transmission path for charges (electrons or holes (holes)) from the organic photoelectric conversion unit 11G.
  • the back surface (surface S1) of the semiconductor substrate 11 can be said to be a light receiving surface.
  • a plurality of pixel transistors (including transfer transistors Tr1 to Tr3) corresponding to the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R are formed on the surface (surface S2) side of the semiconductor substrate 11.
  • a plurality of pixel transistors (including transfer transistors Tr1 to Tr3) corresponding to the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R are formed.
  • Examples of the pixel transistor include a transfer transistor, a reset transistor, an amplification transistor, and a selection transistor.
  • Each of these pixel transistors is composed of, for example, a MOS transistor, and is formed in a p-type semiconductor well region on the surface S2.
  • a circuit including such a pixel transistor is formed for each of the red, green, and blue photoelectric conversion units.
  • Each circuit may have a three-transistor configuration including a total of three transistors including a transfer transistor, a reset transistor, and an amplifying transistor, among these pixel transistors.
  • a transistor configuration may be used.
  • the transfer transistors Tr1 to Tr3 are shown and described.
  • pixel transistors other than the transfer transistor can be shared between photoelectric conversion units or between pixels. Further, a so-called pixel sharing structure that shares a floating diffusion can also be applied.
  • the transfer transistors Tr1 to Tr3 include gate electrodes (gate electrodes TG1 to TG3) and floating diffusions (FDs 113, 114, and 116).
  • the transfer transistor Tr1 transfers the signal charge corresponding to green (electrons in the present embodiment) generated in the organic photoelectric conversion unit 11G and accumulated in the green power storage layer 110G to a vertical signal line Lsig described later. It is.
  • the transfer transistor Tr2 transfers the signal charge (electrons in the present embodiment) corresponding to blue generated and accumulated in the inorganic photoelectric conversion unit 11B to a vertical signal line Lsig described later.
  • the transfer transistor Tr3 transfers signal charges (electrons in the present embodiment) corresponding to red color generated and accumulated in the inorganic photoelectric conversion unit 11R to a vertical signal line Lsig described later.
  • the inorganic photoelectric conversion units 11B and 11R are photodiodes having pn junctions (Photo-Diodes), and are formed in the order of the inorganic photoelectric conversion units 11B and 11R from the surface S1 side on the optical path in the semiconductor substrate 11.
  • the inorganic photoelectric conversion unit 11B selectively detects blue light and accumulates signal charges corresponding to blue. For example, from a selective region along the surface S1 of the semiconductor substrate 11, It is formed to extend over a region near the interface with the multilayer wiring layer 51.
  • the inorganic photoelectric conversion unit 11R selectively detects red light and accumulates signal charges corresponding to red.
  • the inorganic photoelectric conversion unit 11R is formed over a lower layer (surface S2 side) than the inorganic photoelectric conversion unit 11B.
  • blue (B) is a color corresponding to a wavelength range of 450 nm to 495 nm
  • red (R) is a color corresponding to a wavelength range of 620 nm to 750 nm, for example, and the inorganic photoelectric conversion units 11B and 11R are respectively It is only necessary that light in a part or all of the wavelength range can be detected.
  • FIG. 3A shows a detailed configuration example of the inorganic photoelectric conversion units 11B and 11R.
  • FIG. 3B corresponds to a structure in another cross section of FIG. Note that in this embodiment, a case where electrons are read out as signal charges out of a pair of electrons and holes generated by photoelectric conversion (when an n-type semiconductor region is used as a photoelectric conversion layer) will be described.
  • “+ (plus)” superscripted on “p” and “n” represents a high p-type or n-type impurity concentration.
  • the gate electrodes TG2 and TG3 of the transfer transistors Tr2 and Tr3 are also shown.
  • the inorganic photoelectric conversion unit 11B includes, for example, a p-type semiconductor region (hereinafter simply referred to as a p-type region, also referred to as an n-type) 111p serving as a hole accumulation layer, and an n-type photoelectric conversion layer serving as an electron accumulation layer. (N-type region) 111n.
  • a p-type semiconductor region hereinafter simply referred to as a p-type region, also referred to as an n-type
  • N-type photoelectric conversion layer serving as an electron accumulation layer.
  • N-type region 111n.
  • Each of the p-type region 111p and the n-type photoelectric conversion layer 111n is formed in a selective region in the vicinity of the surface S1, and a part thereof is bent so as to extend to reach the interface with the surface S2. .
  • the p-type region 111p is connected to a p-type semiconductor well region (not shown) on the surface S1 side.
  • the n-type photoelectric conversion layer 111n is connected to the FD 113 (n-type region) of the blue transfer transistor Tr2. Note that a p-type region 113p (hole accumulation layer) is formed in the vicinity of the interface between each end of the p-type region 111p and the n-type photoelectric conversion layer 111n on the surface S2 side and the surface S2.
  • the inorganic photoelectric conversion unit 11R is formed, for example, by sandwiching an n-type photoelectric conversion layer 112n (electron storage layer) between p-type regions 112p1112p2 (hole storage layer) (a pnp stacked structure). Have). A part of the n-type photoelectric conversion layer 112n is bent and extended so as to reach the interface with the surface S2. The n-type photoelectric conversion layer 112n is connected to the FD 114 (n-type region) of the red transfer transistor Tr3. A p-type region 113p (hole accumulation layer) is formed at least near the interface between the end of the n-type photoelectric conversion layer 111n on the surface S2 side and the surface S2.
  • FIG. 4 shows a detailed configuration example of the green electricity storage layer 110G.
  • a description will be given of a case where electrons out of the pair of electrons and holes generated by the organic photoelectric conversion unit 11G are read from the lower electrode 15a side as signal charges.
  • FIG. 4 also shows the gate electrode TG1 of the transfer transistor Tr1 among the pixel transistors.
  • the green power storage layer 110G includes an n-type region 115n that serves as an electron storage layer.
  • a part of the n-type region 115n is connected to the conductive plug 120a1, and accumulates electrons transmitted from the lower electrode 15a side through the conductive plug 120a1.
  • the n-type region 115n is also connected to the FD 116 (n-type region) of the green transfer transistor Tr1.
  • a p-type region 115p (hole accumulation layer) is formed in the vicinity of the interface between the n-type region 115n and the surface S2.
  • the conductive plug 120a1 is electrically connected to the lower electrode 15a of the organic photoelectric conversion unit 11G and is connected to the green power storage layer 110G.
  • the conductive plug 120b1 is electrically connected to the upper electrode 18 of the organic photoelectric conversion unit 11G, and serves as a wiring for discharging holes.
  • Each of these conductive plugs 120a1 and 120b1 is made of, for example, a conductive semiconductor layer and is embedded in the semiconductor substrate 11.
  • the conductive plug 120a1 may be n-type (because it becomes an electron transmission path), and the conductive plug 120b1 may be p-type (because it becomes a hole transmission path).
  • the conductive plugs 120a1 and 120b1 may be, for example, those in which a conductive film material such as tungsten is embedded in the through via.
  • the via side surface be covered with an insulating film such as silicon oxide (SiO 2 ) or silicon nitride (SiN).
  • a multilayer wiring layer 51 is formed on the surface S2 of the semiconductor substrate 11.
  • a plurality of wirings 51 a are arranged via an interlayer insulating film 52.
  • the multilayer wiring layer 51 is formed on the side opposite to the light receiving surface, and a so-called back-illuminated solid-state imaging device can be realized.
  • a support substrate 53 made of silicon is bonded to the multilayer wiring layer 51.
  • 7A to 7C show only the main configuration of the photoelectric conversion element 10.
  • the semiconductor substrate 11 is formed. Specifically, a so-called SOI substrate in which a silicon layer 110 is formed on a silicon substrate 1111 via a silicon oxide film 1112 is prepared. The surface of the silicon layer 110 on the silicon oxide film 1112 side is the back surface (surface S1) of the semiconductor substrate 11. 5A and 5B, the structure shown in FIG. 1 is shown upside down. Subsequently, as shown in FIG. 5A, conductive plugs 120 a 1 and 120 b 1 are formed in the silicon layer 110. At this time, the conductive plugs 120a1 and 120b1 are formed by, for example, forming a through via in the silicon layer 110 and then burying the barrier metal such as silicon nitride and tungsten as described above in the through via.
  • the barrier metal such as silicon nitride and tungsten
  • a conductive impurity semiconductor layer may be formed by ion implantation into the silicon layer 110.
  • the conductive plug 120a1 is formed as an n-type semiconductor layer
  • the conductive plug 120b1 is formed as a p-type semiconductor layer.
  • inorganic photoelectric conversion units 11B and 11R each having a p-type region and an n-type region as shown in FIG. 3A, for example, in regions with different depths in the silicon layer 110 (so as to overlap each other) It is formed by ion implantation.
  • a green storage layer 111G is formed by ion implantation in a region adjacent to the conductive plug 120a1. In this way, the semiconductor substrate 11 is formed.
  • a multilayer wiring layer 51 is formed by forming a plurality of layers of wirings 51 a via the interlayer insulating film 52. Subsequently, after a support substrate 53 made of silicon is pasted on the multilayer wiring layer 51, the silicon substrate 1111 and the silicon oxide film 1112 are peeled off from the surface S1 side of the semiconductor substrate 11, and the surface S1 of the semiconductor substrate 11 is removed. Expose.
  • the organic photoelectric conversion unit 11G is formed on the surface S1 of the semiconductor substrate 11. Specifically, first, as shown in FIG. 6A, on the surface S1 of the semiconductor substrate 11, the interlayer insulating film 12 made of the laminated film of the hafnium oxide film and the silicon oxide film as described above is formed. For example, after forming a hafnium oxide film by an ALD (atomic layer deposition) method, a silicon oxide film is formed by, for example, a plasma CVD (Chemical Vapor Deposition) method.
  • ALD atomic layer deposition
  • a silicon oxide film is formed by, for example, a plasma CVD (Chemical Vapor Deposition) method.
  • contact holes H1a and H1b are formed at positions facing the conductive plugs 120a1 and 120b1 of the interlayer insulating film 12, and the conductive plugs made of the above-described materials so as to embed these contact holes H1a and H1b, respectively.
  • 120a2 and 120b2 are formed.
  • the conductive plugs 120a2 and 120b2 may be formed so as to extend to a region where light shielding is desired (so as to cover the region where light shielding is desired), or a light shielding layer may be formed in a region separated from the conductive plugs 120a2 and 120b2. May be.
  • the interlayer insulating film 14 made of the above-described material is formed by, for example, a plasma CVD method.
  • a plasma CVD method it is desirable to planarize the surface of the interlayer insulating film 14 by, for example, a CMP (Chemical Mechanical Polishing) method.
  • contact holes are respectively opened at positions of the interlayer insulating film 14 facing the conductive plugs 120a2 and 120b2, and the wiring layers 13a and 13b are formed by embedding the above-described materials.
  • a lower electrode 15 a is formed on the interlayer insulating film 14. Specifically, first, the above-described transparent conductive film is formed over the entire surface of the interlayer insulating film 14 by, eg, sputtering. Thereafter, the lower electrode 15a is removed by removing a selective portion using, for example, dry etching or wet etching using a photolithography method (exposure, development, post-bake, etc. of the photoresist film). Form. At this time, the lower electrode 15a is formed in a region facing the wiring layer 13a. Further, when the transparent conductive film is processed, the transparent conductive film is also left in the region facing the wiring layer 13b, so that the wiring layer 15b constituting a part of the hole transmission path is formed together with the lower electrode 15a. Form.
  • an insulating film 16 is formed.
  • the insulating film 16 made of the above-described material is formed by, for example, a plasma CVD method so as to cover the entire surface of the semiconductor substrate 11 so as to cover the interlayer insulating film 14, the lower electrode 15a, and the wiring layer 15b.
  • the formed insulating film 16 is polished by, for example, a CMP method so that the lower electrode 15a and the wiring layer 15b are exposed from the insulating film 16, and the lower electrode 15a and the insulating film 16 are insulated. Steps between the films 16 are alleviated (preferably planarized).
  • the organic photoelectric conversion layer 17 is formed on the lower electrode 15a.
  • the photoelectric conversion material made of the above-described material is patterned by, for example, a vacuum deposition method using a metal mask.
  • a vacuum deposition method using a metal mask.
  • each layer is used in the vacuum process using the same metal mask. It is desirable to form continuously (in a vacuum consistent process).
  • the method for forming the organic photoelectric conversion layer 17 is not necessarily limited to the method using the metal mask as described above, and other methods such as a printing technique may be used.
  • the grain boundary formed in the organic photoelectric conversion layer 17 is preferably as small as possible.
  • a wet method can be mentioned.
  • an organic semiconductor film in which an organic semiconductor material (2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene (C 8 -BTBT)) is formed by a wet method exceeds 30 cm 2 / Vs.
  • High mobility has been reported (H. Minemawari1, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 475, 364 (2011) ).
  • the mobility corresponds to a charge mobility of 1 ⁇ 10 15 s ⁇ 1 or more.
  • a film having a small grain boundary can be formed by controlling the type, concentration, and drying conditions of the solvent, and high mobility can be obtained.
  • C 8 -BTBT is a low-molecular electron conjugated semiconductor like quinacridone, it is presumed that the mobility of the quinacridone film can also be improved by a wet method.
  • the wet method include a dip coating method, a spin coating method, and an ink jet method.
  • the dip coating method is a method in which a substrate is immersed in a solution at a certain angle, pulled up at a constant speed, and a coating film adhered to the substrate is dried to form a film.
  • the spin coating method is a method in which a coating solution is dropped on a substrate that rotates at high speed, and the coating solution is spread over the entire substrate by centrifugal force to form a uniform film, and a laminated film can also be formed.
  • the inkjet method is a process technology that manufactures devices by applying inkjet technology that prints characters and photos. It is a method that ejects minute ink droplets from a fine nozzle and sprays them directly onto the substrate, without using a mask. Can be formed.
  • the upper electrode 18 and the protective film 19 are formed.
  • the upper electrode 18 made of the above-described transparent conductive film is formed over the entire surface of the substrate so as to cover the upper surface and side surfaces of the organic photoelectric conversion layer 17 by, for example, vacuum deposition or sputtering. Note that the characteristics of the organic photoelectric conversion layer 17 are likely to fluctuate due to the influence of moisture, oxygen, hydrogen, etc., and therefore it is desirable that the upper electrode 18 be formed with the organic photoelectric conversion layer 17 by a consistent vacuum process.
  • the protective film 19 made of the above-described material is formed by, for example, a plasma CVD method so as to cover the upper surface of the upper electrode 18.
  • the upper electrode 18 is processed.
  • a contact hole H is formed in the protective film 19 by etching using, for example, a photolithography method.
  • the contact hole H is desirably formed in a region not facing the organic photoelectric conversion layer 17.
  • the upper electrode 18 is exposed from the protective film 19 in a region facing the contact hole H in order to remove the photoresist and perform cleaning using a chemical solution as described above. become. For this reason, in consideration of the generation of pin holes as described above, it is desirable to provide the contact hole H while avoiding the formation region of the organic photoelectric conversion layer 17.
  • the contact metal layer 20 made of the above-described material is formed using, for example, a sputtering method.
  • the contact metal layer 20 is formed on the protective film 19 so as to bury the contact hole H and extend to the upper surface of the wiring layer 15b.
  • the planarization film 21 is formed over the entire surface of the semiconductor substrate 11, the on-chip lens 22 is formed on the planarization film 21, thereby completing the photoelectric conversion element 10 shown in FIG.
  • signal charges are acquired as pixels of a solid-state imaging device as follows. That is, as shown in FIG. 8, when the light L is incident on the photoelectric conversion element 10 via the on-chip lens 22 (not shown in FIG. 8), the light L is converted into the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion element.
  • the conversion units 11B and 11R pass in order, and photoelectric conversion is performed for each of the red, green, and blue color lights in the passing process.
  • FIG. 9 schematically shows the flow of signal charge (electron) acquisition based on incident light.
  • signal charge electron
  • the green light Lg is selectively detected (absorbed) by the organic photoelectric conversion unit 11G and subjected to photoelectric conversion.
  • electrons Eg out of the generated electron-hole pairs are taken out from the lower electrode 15a side, and then transferred to the green power storage layer 110G via the transmission path A (the wiring layer 13a and the conductive plugs 120a1 and 120a2). Accumulated.
  • the accumulated electron Eg is transferred to the FD 116 during a read operation.
  • the holes Hg are discharged from the upper electrode 18 side through the transmission path B (contact metal layer 20, wiring layers 13b and 15b, and conductive plugs 120b1 and 120b2).
  • signal charges are accumulated as follows. That is, in the present embodiment, for example, a predetermined negative potential VL ( ⁇ 0 V) is applied to the lower electrode 15a, and a potential VU ( ⁇ VL) lower than the potential VL is applied to the upper electrode 18. .
  • the potential VL is applied to the lower electrode 15a from the wiring 51a in the multilayer wiring layer 51 through the transmission path A, for example.
  • the potential VL is applied to the upper electrode 18 from the wiring 51a in the multilayer wiring layer 51 through the transmission path B, for example.
  • the electrode 15a side It is led to the electrode 15a side (holes are led to the upper electrode 18 side).
  • the electrons Eg are extracted from the lower electrode 15a and accumulated in the green power storage layer 110G (specifically, the n-type region 115n) via the transmission path A.
  • the potential VL of the lower electrode 15a connected to the green power storage layer 110G also varies.
  • the amount of change in the potential VL corresponds to the signal potential (here, the potential of the green signal).
  • the transfer transistor Tr1 is turned on, and the electron Eg stored in the green power storage layer 110G is transferred to the FD.
  • a green signal based on the amount of received light of the green light Lg is read out to a vertical signal line Lsig described later through another pixel transistor (not shown).
  • the reset transistor and transfer transistor Tr1 are turned on, and the FD 116, which is the n-type region, and the power storage region (n-type region 115n) of the green power storage layer 110G are reset to the power supply voltage VDD, for example. .
  • electrons Er corresponding to the incident red light are accumulated in the n-type region (n-type photoelectric conversion layer 112n), and the accumulated electrons Er are transferred to the FD 114 during the read operation. Transferred. Holes are accumulated in a p-type region (not shown).
  • the negative potential VL is applied to the lower electrode 15a of the organic photoelectric conversion unit 11G. Therefore, the p-type region (in FIG. 2) that is the hole accumulation layer of the inorganic photoelectric conversion unit 11B.
  • the hole concentration of the p-type region 111p tends to increase. For this reason, generation of dark current at the interface between the p-type region 111p and the interlayer insulating film 12 can be suppressed.
  • the transfer transistors Tr2 and Tr3 are turned on, and the electrons Eb and Er accumulated in the n-type photoelectric conversion layers 111n and 112n are transferred to the FDs 113 and 114, respectively. Is done.
  • a blue signal based on the amount of received light of the blue light Lb and a red signal based on the amount of received light of the red light Lr are read out to a vertical signal line Lsig described later through another pixel transistor (not shown).
  • the reset transistor and transfer transistors Tr2, 3 (not shown) are turned on, and the FDs 113, 114, which are n-type regions, are reset to the power supply voltage VDD, for example.
  • the organic photoelectric conversion unit 11G in the vertical direction and the inorganic photoelectric conversion units 11B and 11R, the red, green and blue color lights are separated and detected without providing a color filter. A signal charge can be obtained. Thereby, it is possible to suppress light loss (sensitivity reduction) due to color light absorption of the color filter and generation of false color associated with pixel interpolation processing.
  • FIG. 10 illustrates a cross-sectional configuration of the organic photoelectric conversion unit 200 including the photoelectric conversion layer 213 having a bulk heterostructure.
  • the photoelectric conversion layer 213 is composed of a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor layer 213a and the n-type semiconductor layer 213b are mixed in the photoelectric conversion layer 213. is doing.
  • the light L incident from the outside is converted into a charge at the boundary between the p-type semiconductor layer 213a and the n-type semiconductor layer 213b, that is, the P / N interface.
  • Electrons are transported to electrodes (for example, holes are transferred to the lower electrode 211 and electrons are transferred to the upper electrode 215) that are opposed to each other by an n-type organic semiconductor material. For this reason, in order to obtain high responsiveness in the organic photoelectric conversion unit 200 having the bulk heterostructure as shown in FIG. 10, both the p-type organic semiconductor material and the n-type organic semiconductor material have high charge transport characteristics. Is required.
  • quinacridone having excellent spectral characteristics is widely used as a p-type organic semiconductor material.
  • quinacridone has at least five kinds of crystal structures ( ⁇ -QD crystal phase, ⁇ 1 -QD crystal phase, ⁇ 2 -QD crystal phase, ⁇ 3 -QD crystal phase, ⁇ -QD crystal phase).
  • the existence probability of these crystal structures can be estimated by calculating the lattice energy using the density functional method.
  • the lattice energy is obtained by subtracting the total energy of isolated quinacridone molecules from the total energy of one quinacridone molecule in the crystal structure.
  • the PBE functional was used for the calculation, and the cutoff energy of the wave function was 40 Ry.
  • Table 1 summarizes the lattice energy in each crystal structure. From Table 1, it can be seen that the ⁇ 2 -QD crystal phase has the smallest lattice energy and is stable. Therefore, it is presumed that the existence probability of the ⁇ 2 -QD crystal phase is the highest among the five types of crystal structures.
  • quinacridone has a large lattice energy of about 80 kcal / mol, and thus is easily crystallized during the film forming process. Therefore, in the photoelectric conversion layer using quinacridone, as shown in FIG. 11, a large number of crystal grains 1231 are generated, and a discontinuous boundary surface, that is, a crystal grain, is formed between the crystal grains 1231. A field 1232 is formed. The crystal grain boundary 1232 increases the charge separation interface to improve the photoelectric conversion efficiency, but reduces the charge mobility.
  • an ⁇ crystal phase including crystal planes each having a (001) plane, a (010) plane, and a (100) plane between the lower electrode 15a and the upper electrode 18 arranged to face each other.
  • FIG. 12 illustrates an example of a structure of a crystal grain boundary formed between a large number of crystal grains of quinacridone in the organic photoelectric conversion layer 17 in the present embodiment. Specifically, it shows the structure when the (001) plane and the (010) plane of the ⁇ -QD crystal phase face each other. The crystal planes of the two crystal grains are parallel to each other, and the distance between the atoms (outermost surface atoms) existing on the crystal plane is defined as the distance d of the crystal grain boundary.
  • the organic photoelectric conversion layer 17 containing quinacridone or a quinacridone derivative has (001) and (010) planes of the ⁇ -QD crystal phase as the interface between crystal grains consisting of the ⁇ -QD crystal phase.
  • Plane, (001) plane and (001) plane, (001) plane and (100) plane, (010) plane and (010) plane, (010) ) Plane and (100) plane, and (100) plane and (100) plane face each other, and six kinds of crystal grain boundaries are formed. These six crystal grain boundaries are also formed between crystal grains composed of ⁇ 2 -QD crystal phases and crystal grains composed of ⁇ -QD crystal phases.
  • the charge transfer rate between these grain boundaries is calculated by the density functional method (H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. Kudo, D. Hobara, Y. Tokita, and M. Itabashi, J. Chem. Phys. 139, 014707 (2013)).
  • the transfer integral was calculated by systematically changing the positional relationship of the other molecule (molecule B) with respect to the molecule A with one molecule (molecule A) as a reference.
  • the charge transfer rate is obtained based on Marcus theory.
  • a B3LYP functional was used, and 3-21 + G (d) was used as the basis function.
  • d distance between crystal grain boundaries
  • 10 points were calculated. Specifically, the relative position in the yz plane parallel to the crystal plane is 25 points indicated by black circles in FIG. 14, and the rotation angle ⁇ around the axis perpendicular to the crystal plane is 4 points (0 °). , 90 [deg.], 180 [deg.], 270 [deg.]), And calculating the average of charge transfer rates at 100 points with respect to the distance (d) of one crystal grain boundary.
  • FIG. 15A and FIG. 15B show the relationship between the distance (d) of the grain boundary in each facing surface of the ⁇ -QD crystal phase and the charge transfer rate.
  • FIG. 15A shows the charge transfer rate between the highest occupied molecular orbitals (HOMO)
  • FIG. 15B shows the charge transfer rate between the lowest unoccupied molecular orbitals (LUMO)
  • FIG. 15A and FIG. 15B respectively, the distance (d) of the grain boundary and the charge transfer at the opposing faces of the ⁇ 2 crystal phase (FIGS. 16A and 16B) and the ⁇ crystal phase (FIGS. 17A and 17B), respectively. It represents the relationship with the rate.
  • Table 2 summarizes the range of the grain boundary distance (d) in the ⁇ crystal phase, ⁇ 2 crystal phase, and ⁇ crystal phase that satisfy this condition.
  • the charge transfer rate of 1 ⁇ 10 10 s ⁇ 1 or more at the grain boundary including the (001) plane of the ⁇ -QD crystal phase is 2.8 ⁇ 10 ⁇ 10 when the distance (d) of the grain boundary is It can be seen that it can be obtained at m or less.
  • the crystal grain boundary distance (d) is 2.8 ⁇ 10 ⁇ 10 m or less at the crystal grain boundary including the (010) plane, and the crystal grain boundary distance (d) is at the crystal grain boundary including the (100) plane. It can be seen that it is 3.1 ⁇ 10 ⁇ 10 m or less.
  • the charge transfer rate of 1 ⁇ 10 10 s ⁇ 1 or more has a crystal grain boundary distance (d) of 2.3 ⁇ 10 ⁇ 10 m or less.
  • the grain boundary distance (d) is 2.9 ⁇ 10 ⁇ 10 m or less at the crystal grain boundary including the (010) plane, and the crystal grain boundary distance (d) is at the crystal grain boundary including the (100) plane. It can be seen that it can be obtained at 3.3 ⁇ 10 ⁇ 10 m or less.
  • the charge transfer rate of 1 ⁇ 10 10 s ⁇ 1 or more at a grain boundary including the (001) plane of the ⁇ -QD crystal phase is such that the distance (d) of the crystal grain boundary is 1.7 ⁇ 10 ⁇ 10 m or less.
  • the crystal grain boundary distance (d) is 2.7 ⁇ 10 ⁇ 10 m or less at the crystal grain boundary including the (010) plane, and the crystal grain boundary distance (d) is 2 at the crystal grain boundary including the (100) plane. It can be seen that it is 1 ⁇ 10 ⁇ 10 m or less.
  • the distance between the mutually facing surfaces of the plurality of crystal grains composed of the ⁇ crystal phase is 2.8 ⁇ 10 ⁇ 10 m or less in the (001) plane and the (001) plane facing each other.
  • the (001) plane and the (010) plane are 2.8 ⁇ 10 ⁇ 10 m or less, and the (001) plane and the (100) plane are 3.1 ⁇ 10 ⁇ 10 m or less and the (010) plane facing each other.
  • And (010) plane is 4.1 ⁇ 10 ⁇ 10 m or less, and the (010) plane and (100) plane facing each other are 3.6 ⁇ 10 ⁇ 10 m or less, or the (100) plane and (100 ) Surface, it is preferable that at least one condition of 3.2 ⁇ 10 ⁇ 10 m or less is satisfied.
  • the distance between the mutually facing faces of the plurality of crystal grains composed of ⁇ 2 crystal phase is 2.3 ⁇ 10 ⁇ 10 m or less between the (001) face and the (001) face facing each other, and the (001) faces facing each other.
  • And (010) plane is 2.9 ⁇ 10 ⁇ 10 m or less
  • (001) plane and (100) plane facing each other are 3.3 ⁇ 10 ⁇ 10 m or less and (010) plane and (010) facing each other 3.2 ⁇ 10 ⁇ 10 m or less for the surface, 3.7 ⁇ 10 ⁇ 10 m or less for the (010) plane and (100) plane facing each other, or 4 for the (100) plane and (100) plane facing each other. It is preferable that at least one condition of 1 ⁇ 10 ⁇ 10 m or less is satisfied.
  • the distances between the mutually opposing faces of the plurality of crystal grains composed of the ⁇ crystal phase are 1.7 ⁇ 10 ⁇ 10 m or less for the (001) face and the (001) face facing each other, and the (001) face facing each other.
  • the (010) plane is 2.7 ⁇ 10 ⁇ 10 m or less, and the (001) plane and (100) plane facing each other are 2.1 ⁇ 10 ⁇ 10 m or less and the (010) plane and (010) plane facing each other.
  • Is 3.9 ⁇ 10 ⁇ 10 m or less, and the (010) plane and (100) plane facing each other are 3.2 ⁇ 10 ⁇ 10 m or less, or the (100) plane and (100) plane facing each other are 2.
  • the charge mobility at the crystal grain boundary of each crystal phase is achieved by setting the distance between the mutually opposing faces of the crystal grains in each crystal phase (distance of the crystal grain boundary) within the above range. Is suppressed.
  • the organic photoelectric conversion layer 17 is formed from an ⁇ crystal phase, a ⁇ 2 crystal phase, or a ⁇ crystal phase including crystal planes each having a (001) plane, a (010) plane, and a (100) plane. Formed by using quinacridone or a quinacridone derivative that forms a plurality of crystal grains, and the organic photoelectric conversion layer 17 containing the quinacridone or quinacridone derivative is adjacent to each other among the plurality of crystal grains in each crystal phase. A structure in which the distance between the opposing surfaces has a value within the above range is included. Accordingly, it is possible to provide a photoelectric conversion element in which a decrease in charge mobility at a crystal grain boundary is suppressed and an afterimage characteristic is improved, that is, generation of an afterimage can be suppressed.
  • FIG. 18 illustrates a cross-sectional configuration of a photoelectric conversion element (photoelectric conversion element 60) according to the second embodiment of the present disclosure.
  • the photoelectric conversion element 60 constitutes one pixel in a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, for example, in the same manner as the photoelectric conversion element 10 in the first embodiment.
  • pixel transistors including transfer transistors Tr1 to 3 described later
  • multilayer wiring It has a layer (multilayer wiring layer 51).
  • the organic photoelectric conversion unit 61G includes an organic photoelectric conversion layer 67 formed using an organic semiconductor material.
  • the organic semiconductor material constituting the organic photoelectric conversion layer 67 forms a plurality of crystal grains in the organic photoelectric conversion layer 67, and the crystal grains have an anisotropy coefficient ( ⁇ ) relating to charge transfer in the crystal grains of 0. .3 or more and 1 or less.
  • the organic photoelectric conversion layer 67 of the present embodiment is a specific example of “photoelectric conversion layer” in the present disclosure.
  • the photoelectric conversion element 60 has the same configuration as that of the photoelectric conversion element 10, and has a stacked structure of one organic photoelectric conversion unit 61G and two inorganic photoelectric conversion units 11B and 11R as described above. Yes. Thereby, the photoelectric conversion element 60 acquires each color signal of red (R), green (G), and blue (B) with one element.
  • the organic photoelectric conversion layer 67 is configured using an organic semiconductor material that photoelectrically converts light in a selective wavelength range while transmitting light in other wavelength ranges.
  • This organic semiconductor material forms a plurality of crystal grains having an anisotropy coefficient ( ⁇ ) relating to charge transfer of 0.3 or more and 1 or less in the organic photoelectric conversion layer 67.
  • Organic semiconductor materials constituting the organic photoelectric conversion layer 67 of the present embodiment include quinacridone and quinacridone derivatives, chlorinated boron subphthalocyanine and chlorinated boron subphthalocyanine derivatives, pentacene and pentacene that form an ⁇ crystal phase or a ⁇ crystal phase. Derivatives, benzothienobenzothiophene and benzothienobenzothiophene derivatives, fullerenes and fullerene derivatives.
  • the organic photoelectric conversion layer 67 includes one or more of the above organic semiconductor materials. These organic semiconductor materials act as a p-type semiconductor or an n-type semiconductor in the organic photoelectric conversion layer 67.
  • the organic photoelectric conversion layer 67 is preferably configured to include one or both of an organic p-type semiconductor and an organic n-type semiconductor.
  • the organic semiconductor material acts as a p-type semiconductor or an n-type semiconductor depending on the combination with the organic semiconductor material used together. The combination of each material and the role in that case are the same as in the first embodiment.
  • the organic photoelectric conversion layer 67 may contain, for example, naphthalene, anthracene, phenanthrene, tetracene, pyrene, perylene, fluoranthene, or derivatives thereof in addition to the organic semiconductor material.
  • a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, acetylene, diacetylene, or a derivative thereof may be used.
  • metal complex dyes cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rhodacyanine dyes, xanthene dyes, macrocyclic azaannulene dyes, azulene dyes, naphthoquinone, anthraquinone dyes, Condensed polycyclic aromatic compounds such as anthracene and pyrene and chain compounds condensed with aromatic or heterocyclic compounds, or two compounds such as quinoline, benzothiazole and benzoxazole having a squarylium group and a croconic methine group as a linking chain.
  • a cyanine-like dye or the like bonded by a nitrogen heterocycle or a squarylium group and a croconite methine group can be preferably used.
  • the metal complex dye is preferably a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye, but is not limited thereto.
  • the organic photoelectric conversion layer 67 can photoelectrically convert green light corresponding to a part or all of the wavelength range of 495 nm to 570 nm, for example.
  • the thickness of such an organic photoelectric conversion layer 67 is, for example, 50 nm to 500 nm.
  • the charge transfer rate between molecules varies depending on the charge transfer direction.
  • 20A to 20C show three types of conductivity of crystal grains of the organic semiconductor material.
  • the crystal grain shown in FIG. 20A is a one-dimensional conduction crystal (charge diffusion coefficient D 1 ) capable of diffusing charges only in a one-dimensional direction, and the crystal grain shown in FIG. It is a two-dimensional conductive crystal (charge diffusion coefficients D 1 and D 2 ) capable of diffusing charges in the direction.
  • the crystal grains shown in FIG. 20C are three-dimensional conductive crystals (charge diffusion coefficients D 1 , D 2 , D 3 ) capable of diffusing charges in a three-dimensional direction. In the crystal grains in FIG.
  • each crystal grain of the organic semiconductor material often has anisotropy in the charge diffusion coefficient.
  • the degree of anisotropy of the charge diffusion coefficient in each crystal grain greatly depends on the molecular structure and crystal structure of the organic semiconductor material.
  • FIG. 21 schematically shows the conductivity of the charge conduction network including only the two-dimensional conduction crystal shown in FIG. 20 (B).
  • FIG. 21A if a path in which the diffusible crystal orientation is connected between adjacent crystal grains is formed, a charge conduction network is formed as indicated by an arrow, and a large network mobility is obtained ( Percolation).
  • FIG. 21B when the crystal orientation that can be diffused is interrupted between adjacent crystal grains and a narrow path is formed, the charge conduction network is interrupted and the network is interrupted. Mobility decreases (non-percolation-like). Whether the charge conduction network is percolated or non-percolated is largely related to the anisotropy of charge transfer.
  • the time required for the charge generated at the charge separation interface to reach the electrode becomes longer. That is, even if there is no gap at the crystal grain boundary, when crystal grains having anisotropy of the charge diffusion coefficient are aggregated, the charge mobility is lowered and the afterimage characteristic is lowered. was there.
  • FIG. 22 schematically shows the structure of the crystal grains 1231 included in the organic photoelectric conversion layer 67 in the present embodiment.
  • the anisotropy coefficient ( ⁇ ) relating to the charge transfer in the crystal grains is defined by the following formula (1) using the charge diffusion coefficients D 1 , D 2 , and D 3 .
  • the charge diffusion coefficients D 1 , D 2 , and D 3 are defined by the diffusion coefficients Dx, Dy, and Dz in the X-axis, Y-axis, and Z-axis directions orthogonal to each other in descending order.
  • the X axis is defined as the a axis of the crystal, and the Y axis is defined so that the XY plane coincides with the ab plane of the crystal.
  • takes a value from 0 to 1, and as it approaches 1, it is three-dimensionally conductive as shown in FIG. 20C, and as it is close to 0, it is one-dimensionally conductive as shown in FIG. Indicates that there is.
  • Table 3 shows quinacridone in the ⁇ crystal phase ( ⁇ -QD), quinacridone in the ⁇ 2 crystal phase ( ⁇ 2 -QD), quinacridone in the ⁇ crystal phase ( ⁇ -QD), chlorinated boron subphthalocyanine (SubPc-Cl),
  • a summary of diffusion coefficients D 1 , D 2 , D 3 and ⁇ in each crystal grain of fullerene (C 60 ), pentacene, rubrene and dioctylbenzothienobenzothiophene (C 8 -BTBT). is there.
  • the diffusion coefficients D 1 , D 2 and D 3 of the organic semiconductor material are obtained from Marcus theory, and the anisotropy coefficient ( ⁇ ) is calculated by applying this to the above equation (1).
  • the network mobility can be calculated using the following method, for example.
  • the calculation method described below was developed to calculate network mobility and is referred to as a coarse-grained kinetic-Monte-Carlo (kMC) method.
  • each of the crystal grain i and the crystal grain j is a cube having one side a, and the charge is present only at the center of the crystal grain.
  • the charge transfer rate between the two crystal grains is expressed by the following formula (2).
  • Di is the charge diffusion coefficient of crystal grain i in the direction of crystal grain j
  • Dj is the charge diffusion coefficient of crystal grain j in the direction of crystal grain i.
  • the charge mobility ⁇ can be obtained from the following Einstein relational expression (4).
  • FIG. 26 shows a state in which crystal orientations of crystal grains are aligned (single crystal; FIG. 26A) and a case where crystal orientations are random (polycrystal; FIG. 26B).
  • Table 4 summarizes the network mobility ( ⁇ s ) in the single crystal state, the network mobility ( ⁇ p ) and the charge conduction network efficiency ( ⁇ ) in the polycrystalline state of the organic semiconductor material.
  • the network mobility ( ⁇ s , ⁇ p ) of each crystal state was calculated using the coarse-grained kMC method.
  • the charge conduction network efficiency ( ⁇ ) was defined by the following equation (5).
  • FIG. 27 shows the relationship between the anisotropy coefficient ( ⁇ ) and the charge conduction network efficiency ( ⁇ ). From FIG. 27, it can be seen that the following equation (6) holds between the two. That is, it can be seen that the charge conduction network efficiency ( ⁇ ) can be predicted from the anisotropy coefficient ( ⁇ ) of the crystal grains.
  • the charge mobility is different between the gap of the crystal grain boundary 1232 and the charge mobility in the crystal grain 1231. Decreased by two factors, the directionality. That is, by reducing both of these two factors of reduction, the charge transfer rate can be increased by a synergistic effect, and the charge transfer rate of the single crystal can be approached.
  • the charge transfer rate is expressed by the following equation (7).
  • is the overall charge transfer rate
  • ⁇ sc is the charge transfer rate of the single crystal
  • is the rate of decrease of the charge transfer rate at the grain boundaries. Note that the overall charge transfer rate of ⁇ is the charge transfer rate of the organic photoelectric conversion layer 67 here.
  • the charge transfer rate ( ⁇ sc ) of a typical organic single crystal is 1 ⁇ 10 13 to 1 ⁇ 10 14 s ⁇ 1 .
  • the rate of decrease in charge transfer rate at the grain boundary ( ⁇ ) varies depending on the film formation process conditions (film formation temperature, growth rate, annealing conditions, etc.), but in a dense structure fabricated under optimum process conditions, the crystal grains The gap in the field is narrowed.
  • the rate of decrease in the charge transfer rate ( ⁇ ) at the grain boundary is about 0.01.
  • the crystal grain boundary widens, and thus the rate of decrease in charge transfer rate ( ⁇ ) at the crystal grain boundary generally decreases to about 0.003.
  • the charge transfer rate of the photoelectric conversion element is 1 ⁇ 10 10 s ⁇ 1 or more. desirable.
  • the charge transfer rate ( ⁇ sc ) of the organic single crystal is 1 ⁇ 10 13 s ⁇ 1 and the rate of decrease of the charge transfer rate ( ⁇ ) at the grain boundary is 0.003, ⁇ > 1 ⁇ 10 10 s ⁇ 1 It can be seen that ⁇ > 0.3 is necessary to realize.
  • the organic photoelectric conversion layer 67 is preferably formed using crystal grains having an anisotropy coefficient of charge transfer of 0.3 or more.
  • a charge conduction network having a high charge transfer rate of 1 ⁇ 10 10 s ⁇ 1 or more is formed between crystal grains.
  • the upper limit of the anisotropy coefficient regarding charge transfer in the present embodiment is a value when the organic semiconductor material constituting the organic photoelectric conversion layer 67 is a single crystal.
  • the organic photoelectric conversion layer 67 is formed using crystal grains having an anisotropy coefficient of charge transfer of 0.3 or more. As a result, a charge conduction network having a high charge transfer rate of, for example, 1 ⁇ 10 10 s ⁇ 1 or more is formed between crystal grains. That is, it is possible to provide the photoelectric conversion element 60 with improved afterimage characteristics.
  • the photoelectric conversion element of this indication is good also as a structure which combined the photoelectric conversion element 10 in the said 1st Embodiment, and the photoelectric conversion element 60 in the said 2nd Embodiment.
  • the organic photoelectric conversion layer constituting the organic photoelectric conversion unit is formed of a plurality of crystal grains composed of an ⁇ crystal phase or a ⁇ crystal phase each including a crystal plane having a (001) plane, a (010) plane, and a (100) plane.
  • the adjacent crystal grains among the plurality of crystal grains in each crystal phase have a distance between the faces facing each other within the range described in the first embodiment.
  • the anisotropy coefficient relating to the charge transfer in the crystal grains is 0.3 to 1 inclusive.
  • the decrease in charge mobility is caused by the fact that crystal grain boundaries included in the organic photoelectric conversion layer and crystals having anisotropy in the charge diffusion coefficient aggregate to form a polycrystalline structure. Arise.
  • the technique in the first embodiment that suppresses the decrease in charge mobility at the crystal grain boundary of each crystal phase and the second that suppresses the decrease in charge mobility between crystal grains forming each crystal phase.
  • an organic photoelectric conversion layer having a higher charge transfer rate can be formed. That is, it is possible to provide a photoelectric conversion element with improved afterimage characteristics.
  • FIG. 28 illustrates an overall configuration of a solid-state imaging device (solid-state imaging device 1) using the photoelectric conversion element 10 described in the above embodiment for each pixel.
  • the solid-state imaging device 1 is a CMOS image sensor, and has a pixel unit 1a as an imaging area on a semiconductor substrate 11, and, for example, a row scanning unit 131 and a horizontal selection unit 133 in a peripheral region of the pixel unit 1a.
  • the peripheral circuit unit 130 includes a column scanning unit 134 and a system control unit 132.
  • the pixel unit 1a has, for example, a plurality of unit pixels P (corresponding to the photoelectric conversion element 10) arranged two-dimensionally in a matrix.
  • a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column.
  • the pixel drive line Lread transmits a drive signal for reading a signal from the pixel.
  • One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
  • the row scanning unit 131 is configured by a shift register, an address decoder, or the like, and is a pixel driving unit that drives each unit pixel P of the pixel unit 1a, for example, in units of rows.
  • a signal output from each unit pixel P of the pixel row that is selectively scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig.
  • the horizontal selection unit 133 is configured by an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
  • the column scanning unit 134 includes a shift register, an address decoder, and the like, and drives the horizontal selection switches in the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signal of each pixel transmitted through each of the vertical signal lines Lsig is sequentially output to the horizontal signal line 135 and transmitted to the outside of the semiconductor substrate 11 through the horizontal signal line 135. .
  • the circuit portion including the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the horizontal signal line 135 may be formed directly on the semiconductor substrate 11, or provided in the external control IC. It may be. In addition, these circuit portions may be formed on another substrate connected by a cable or the like.
  • the system control unit 132 receives a clock given from the outside of the semiconductor substrate 11, data for instructing an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1.
  • the system control unit 132 further includes a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Peripheral circuit drive control.
  • FIG. 29 shows a schematic configuration of the electronic apparatus 2 (camera) as an example.
  • the electronic device 2 is, for example, a video camera capable of taking a still image or a moving image, and includes a solid-state imaging device 1, an optical system (optical lens) 310, a shutter device 311, the solid-state imaging device 1 and the shutter device 311.
  • a driving unit 313 for driving and a signal processing unit 312 are included.
  • the optical system 310 guides image light (incident light) from a subject to the pixel unit 1 a of the solid-state imaging device 1.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls the light irradiation period and the light shielding period for the solid-state imaging device 1.
  • the drive unit 313 controls the transfer operation of the solid-state imaging device 1 and the shutter operation of the shutter device 311.
  • the signal processing unit 312 performs various types of signal processing on the signal output from the solid-state imaging device 1.
  • the video signal Dout after the signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
  • the present disclosure is not limited to the above-described embodiments and the like, and various modifications can be made.
  • a photoelectric conversion element solid-state imaging device
  • an organic photoelectric conversion unit 11G that detects green light
  • inorganic photoelectric conversion units 11B and 11R that detect blue light and red light
  • the present disclosure is not limited to such a structure. That is, red light or blue light may be detected in the organic photoelectric conversion unit, or green light may be detected in the inorganic photoelectric conversion unit.
  • the number and ratio of these organic photoelectric conversion units and inorganic photoelectric conversion units are not limited, and two or more organic photoelectric conversion units may be provided. A signal may be obtained.
  • the organic photoelectric conversion part and the inorganic photoelectric conversion part are not limited to the structure in which the organic photoelectric conversion part and the inorganic photoelectric conversion part are stacked in the vertical direction, but may be arranged in parallel along the substrate surface.
  • the configuration of the back-illuminated solid-state imaging device has been exemplified.
  • the present disclosure can also be applied to a front-illuminated solid-state imaging device.
  • the solid-state imaging device (photoelectric conversion element) of the present disclosure does not have to include all the components described in the first embodiment, and may include other layers.
  • the present disclosure may be configured as follows. (1) A first electrode and a second electrode disposed opposite to each other; A photoelectric conversion element comprising: a photoelectric conversion layer that is provided between the first electrode and the second electrode and includes crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less. (2) The photoelectric conversion layer contains quinacridone or a quinacridone derivative, The said crystal grain is a photoelectric conversion element as described in said (1) comprised by the said quinacridone of the (alpha) crystal phase, or the said quinacridone derivative.
  • the photoelectric conversion layer contains quinacridone or a quinacridone derivative, The photoelectric conversion element according to (1) or (2), wherein the crystal grains are constituted by the quinacridone or the quinacridone derivative having a ⁇ crystal phase.
  • the photoelectric conversion layer includes a chlorinated boron subphthalocyanine or a chlorinated boron subphthalocyanine derivative, The photoelectric conversion element according to any one of (1) to (3), wherein the crystal grains are configured by the chlorinated boron subphthalocyanine or the chlorinated boron subphthalocyanine derivative.
  • the photoelectric conversion layer contains pentacene or a pentacene derivative, The photoelectric conversion element according to any one of (1) to (4), wherein the crystal grain is configured by the pentacene or the pentacene derivative.
  • the photoelectric conversion layer includes benzothienobenzothiophene or a benzothienobenzothiophene derivative, The photoelectric conversion element according to any one of (1) to (5), wherein the crystal grain is configured by the benzothienobenzothiophene or the benzothienobenzothiophene derivative.
  • the photoelectric conversion layer contains fullerene or a fullerene derivative, The photoelectric conversion element according to any one of (1) to (6), wherein the crystal grains are configured by the fullerene or the fullerene derivative.
  • the photoelectric conversion layer includes two or more of quinacridone, a quinacridone derivative, a chlorinated boron subphthalocyanine, a chlorinated boron subphthalocyanine derivative, a pentacene, a pentacene derivative, a benzothienobenzothiophene, a benzothienobenzothiophene derivative, a fullerene, and a fullerene derivative.
  • the photoelectric conversion element according to any one of (7) to (9).
  • (11) In each pixel, an organic photoelectric conversion unit having one or more of the photoelectric conversion layers and one or more inorganic photoelectric conversion units that perform photoelectric conversion in a wavelength region different from the organic photoelectric conversion unit are stacked.
  • (12) The inorganic photoelectric conversion part is embedded in a semiconductor substrate, The said organic photoelectric conversion part is a photoelectric conversion element as described in said (11) currently formed in the 1st surface side of the said semiconductor substrate.
  • the organic photoelectric conversion unit performs green light photoelectric conversion, The photoelectric conversion according to (12) or (13), wherein an inorganic photoelectric conversion unit that performs photoelectric conversion of blue light and an inorganic photoelectric conversion unit that performs photoelectric conversion of red light are stacked in the semiconductor substrate. element.
  • the photoelectric conversion layer includes a plurality of the crystal grains composed of a quinacridone derivative or a quinacridone derivative having a ⁇ 2 crystal phase
  • the quinacridone or the quinacridone derivative of the ⁇ 2 crystal phase includes crystal planes each having a (001) plane, a (010) plane, and a (100) plane, Among adjacent crystal grains among the plurality of crystal grains,
  • the distance between the (001) plane and the (001) plane facing each other is 2.3 ⁇ 10 ⁇ 10 m or less
  • the distance between the (001) plane and the (010) plane facing each other is 2.9 ⁇ 10 ⁇ 10 m or less
  • the distance between the (001) plane and the (100) plane facing each other is 3.3 ⁇ 10 ⁇ 10 m or less
  • the distance between the (010) plane and the (010) plane facing each other is 3.2 ⁇ 10 ⁇ 10 m or less
  • the distance between the (010) plane and the (100) plane facing each other is 3.7 ⁇ 10 ⁇ 10 m
  • the plurality of crystal grains constituted by the quinacridone or the quinacridone derivative in the ⁇ crystal phase each include a crystal plane having a (001) plane, a (010) plane, and a (100) plane, Among adjacent crystal grains among the plurality of crystal grains,
  • the distance between the (001) plane and the (001) plane facing each other is 2.8 ⁇ 10 ⁇ 10 m or less
  • the distance between the (001) plane and the (010) plane facing each other is 2.8 ⁇ 10 ⁇ 10 m or less
  • the distance between the (001) plane and the (100) plane facing each other is 3.1 ⁇ 10 ⁇ 10 m or less
  • the distance between the (010) plane and the (010) plane facing each other is 4.1 ⁇ 10 ⁇ 10 m or less
  • the distance between the (010) plane and the (100) plane facing each other is 3.6 ⁇ 10 ⁇ 10 m or less
  • the distance between the (100) plane and the (100) plane facing each other is 3.2 ⁇ 10 ⁇ 10 m
  • the plurality of crystal grains constituted by the quinacridone or the quinacridone derivative of the ⁇ crystal phase include crystal planes each having a (001) plane, a (010) plane, and a (100) plane, Among adjacent crystal grains among the plurality of crystal grains, The distance between the (001) plane and the (001) plane facing each other is 1.7 ⁇ 10 ⁇ 10 mm or less, The distance between the (001) plane and the (010) plane facing each other is 2.7 ⁇ 10 ⁇ 10 mm or less, The distance between the (001) plane and the (100) plane facing each other is 2.1 ⁇ 10 ⁇ 10 mm or less, The distance between the (010) plane and the (010) plane facing each other is 3.9 ⁇ 10 ⁇ 10 m or less, The distance between the (010) plane and the (100) plane facing each other is 3.2 ⁇ 10 ⁇ 10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 2.7 ⁇ 10 ⁇ 10 m
  • the quinacridone or the quinacridone derivative forms a plurality of crystal grains composed of ⁇ 2 crystal phase each including a crystal plane having a (001) plane, a (010) plane, and a (100) plane, Among adjacent crystal grains among the plurality of crystal grains,
  • the distance between the (001) plane and the (001) plane facing each other is 2.3 ⁇ 10 ⁇ 10 m or less, The distance between the (001) plane and the (010) plane facing each other is 2.9 ⁇ 10 ⁇ 10 m or less, The distance between the (001) plane and the (100) plane facing each other is 3.3 ⁇ 10 ⁇ 10 m or less,
  • the distance between the (010) plane and the (010) plane facing each other is 3.2 ⁇ 10 ⁇ 10 m or less,
  • the quinacridone or the quinacridone derivative forms a plurality of crystal grains composed of an ⁇ crystal phase each including a crystal plane having a (001) plane, a (010) plane, and a (100) plane, Among adjacent crystal grains among the plurality of crystal grains,
  • the distance between the (001) plane and the (001) plane facing each other is 2.8 ⁇ 10 ⁇ 10 m or less
  • the distance between the (001) plane and the (010) plane facing each other is 2.8 ⁇ 10 ⁇ 10 m or less
  • the distance between the (001) plane and the (010) plane facing each other is 3.1 ⁇ 10 ⁇ 10 m or less
  • the distance between the (010) plane and the (010) plane facing each other is 4.1 ⁇ 10 ⁇ 10 m or less
  • the quinacridone or the quinacridone derivative forms a plurality of crystal grains each composed of a ⁇ crystal phase including a crystal plane having a (001) plane, a (010) plane, and a (100) plane, Among adjacent crystal grains among the plurality of crystal grains,
  • the distance between the (001) plane and the (001) plane facing each other is 1.7 ⁇ 10 ⁇ 10 mm or less, The distance between the (001) plane and the (010) plane facing each other is 2.7 ⁇ 10 ⁇ 10 mm or less, The distance between the (001) plane and the (100) plane facing each other is 2.1 ⁇ 10 ⁇ 10 mm or less,
  • the distance between the (010) plane and the (010) plane facing each other is 3.9 ⁇ 10 ⁇ 10 m or less,

Abstract

A photoelectric conversion element according to an embodiment of the present invention is provided with a first electrode and a second electrode disposed facing each other, and a photoelectric conversion layer provided between the first electrode and the second electrode, the photoelectric conversion layer including crystal grains having an anisotropy coefficient in relation to charge transfer of 0.3-1.

Description

光電変換素子Photoelectric conversion element
 本開示は、有機半導体材料として、例えば、キナクリドンまたはキナクリドン誘導体を用いた光電変換素子に関する。 The present disclosure relates to a photoelectric conversion element using, for example, quinacridone or a quinacridone derivative as an organic semiconductor material.
 近年、CCD(Charge Coupled Device)イメージセンサ、あるいはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像装置では、画素サイズの縮小化が進んでいる。これにより、単位画素へ入射するフォトン数が減少することから感度が低下すると共に、S/N比の低下が生じている。また、カラー化のために、赤,緑,青の原色フィルタを2次元配列してなるカラーフィルタを用いた場合、赤画素では、緑と青の光がカラーフィルタによって吸収されるために、感度の低下を招いている。また、各色信号を生成する際に、画素間で補間処理を行うことから、いわゆる偽色が発生する。 In recent years, the pixel size of a solid-state imaging device such as a CCD (Charge Coupled Device) image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor has been reduced. As a result, the number of photons incident on the unit pixel is reduced, so that the sensitivity is lowered and the S / N ratio is lowered. In addition, when a color filter formed by two-dimensionally arranging primary color filters of red, green, and blue is used for colorization, since red and green light are absorbed by the color filter in the red pixel, sensitivity is increased. Has led to a decline. In addition, when each color signal is generated, interpolation processing is performed between pixels, so that a so-called false color is generated.
 そこで、例えば、特許文献1では、1つの画素内に、例えば、緑色光を検出してこれに応じた信号電荷を発生する有機光電変換部と、赤色光および青色光をそれぞれ検出するフォトダイオード(無機光電変換部)とを設け、1画素において3色の信号を得ることで感度の低下を改善した固体撮像装置が開示されている。この固体撮像装置における有機光電変換部を構成する光電変換層は、p型有機半導体材料とn型有機半導体材料とがランダムに混ざったバルクヘテロ構造を有する。 Therefore, in Patent Document 1, for example, in one pixel, for example, an organic photoelectric conversion unit that detects green light and generates a signal charge corresponding thereto, and a photodiode that detects red light and blue light ( There is disclosed a solid-state imaging device in which a decrease in sensitivity is improved by providing an inorganic photoelectric conversion unit) and obtaining signals of three colors in one pixel. The photoelectric conversion layer constituting the organic photoelectric conversion unit in this solid-state imaging device has a bulk heterostructure in which a p-type organic semiconductor material and an n-type organic semiconductor material are randomly mixed.
 一般的にp型有機半導体材料としては、分光特性に優れたキナクリドン(QD)が広く用いられている。キナクリドンには、非特許文献1において、少なくとも5種類の結晶構造(α-QD結晶相,β1-QD結晶相,β2-QD結晶相,β3-QD結晶相,γ-QD結晶相,)が実験的に確認されている。これら結晶構造はいずれも約80kcal/molの大きな格子エネルギーを有するため、成膜工程中に結晶化しやすい。このため、キナクリドン膜中には、多数の結晶粒および結晶粒界が存在する。 In general, quinacridone (QD) having excellent spectral characteristics is widely used as a p-type organic semiconductor material. In quinacridone, in Non-Patent Document 1, at least five kinds of crystal structures (α-QD crystal phase, β 1 -QD crystal phase, β 2 -QD crystal phase, β 3 -QD crystal phase, γ-QD crystal phase, ) Has been confirmed experimentally. Since these crystal structures all have a large lattice energy of about 80 kcal / mol, they are easily crystallized during the film forming process. For this reason, many crystal grains and crystal grain boundaries exist in the quinacridone film.
特開2003-332551号公報JP 2003-332551 A
 結晶粒界は、電荷分離界面を増やして光電変換効率を向上させる反面、非特許文献2~10において、電荷の移動度(電荷移動度)を低下させるという報告がなされている。電荷移動度が低下すると、電荷分離界面で発生した電荷が電極に到達までに要する時間が長くなり、残像特性が低下する。このため、光電変換効率を維持したまま、残像特性を向上させる方法が求められている。 Although the crystal grain boundary increases the charge separation interface to improve the photoelectric conversion efficiency, it has been reported in Non-Patent Documents 2 to 10 that the charge mobility (charge mobility) is lowered. When the charge mobility is lowered, the time required for the charge generated at the charge separation interface to reach the electrode becomes longer, and the afterimage characteristics are lowered. Therefore, there is a demand for a method for improving the afterimage characteristics while maintaining the photoelectric conversion efficiency.
 従って、残像特性を向上させることが可能な光電変換素子を提供することが望ましい。 Therefore, it is desirable to provide a photoelectric conversion element capable of improving afterimage characteristics.
 本開示の一実施形態の光電変換素子は、対向配置された第1電極および第2電極と、第1電極と第2電極との間に設けられると共に、電荷移動に関する異方性係数が0.3以上1以下である結晶粒を含む光電変換層とを備えたものである。 A photoelectric conversion element according to an embodiment of the present disclosure is provided between a first electrode and a second electrode that are arranged to face each other, and between the first electrode and the second electrode, and an anisotropy coefficient related to charge transfer is 0. And a photoelectric conversion layer containing crystal grains that are 3 or more and 1 or less.
 本開示の一実施形態の光電変換素子では、対向配置された第1電極と第2電極との間に、電荷移動に関する異方性係数が0.3以上1以下である結晶粒を含む光電変換層を設けるようにした。これにより、結晶粒間において電荷伝導ネットワークが形成され、電界の移動が容易となり、光電変換層内における電界移動度が向上する。 In the photoelectric conversion element according to an embodiment of the present disclosure, a photoelectric conversion including crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less between a first electrode and a second electrode arranged to face each other. A layer was provided. Thereby, a charge conduction network is formed between the crystal grains, the electric field is easily moved, and the electric field mobility in the photoelectric conversion layer is improved.
 本開示の一実施形態の光電変換素子によれば、光電変換層を、電荷移動に関する異方性係数が0.3以上1以下である結晶粒を含むようにしたので、結晶粒間に電荷伝導ネットワークが形成される。よって、結晶粒間における電荷の移動が容易となり、光電変換層内における電荷移動度が向上する。即ち、残像特性を向上させることが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。 According to the photoelectric conversion element of one embodiment of the present disclosure, the photoelectric conversion layer includes crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less. A network is formed. Therefore, the movement of charges between crystal grains is facilitated, and the charge mobility in the photoelectric conversion layer is improved. That is, it is possible to improve the afterimage characteristics. Note that the effects described here are not necessarily limited, and may be any effects described in the present disclosure.
本開示の第1の実施の形態に係る光電変換素子の概略構成を表す断面図である。It is sectional drawing showing schematic structure of the photoelectric conversion element which concerns on 1st Embodiment of this indication. 有機光電変換層、保護膜(上部電極)およびコンタクトホールの形成位置関係を表す平面図である。It is a top view showing the formation positional relationship of an organic photoelectric converting layer, a protective film (upper electrode), and a contact hole. 無機光電変換部の一構成例を表す断面図である。It is sectional drawing showing the example of 1 structure of an inorganic photoelectric conversion part. 図3Aに示した無機光電変換部の他の断面図である。It is other sectional drawing of the inorganic photoelectric conversion part shown to FIG. 3A. 有機光電変換部の電荷(電子)蓄積層の構成(下部側電子取り出し)を表す断面図である。It is sectional drawing showing the structure (lower side electron extraction) of the electric charge (electron) storage layer of an organic photoelectric conversion part. 図1に示した光電変換素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion element shown in FIG. 図5Aに続く工程を表す断面図である。It is sectional drawing showing the process of following FIG. 5A. 図5Bに続く工程を表す断面図である。It is sectional drawing showing the process of following FIG. 5B. 図6Aに続く工程を表す断面図である。It is sectional drawing showing the process of following FIG. 6A. 図6Bに続く工程を表す断面図である。It is sectional drawing showing the process of following FIG. 6B. 図7Aに続く工程を表す断面図である。It is sectional drawing showing the process of following FIG. 7A. 図7Bに続く工程を表す断面図である。It is sectional drawing showing the process of following FIG. 7B. 図1に示した光電変換素子の作用を説明する要部断面図である。It is principal part sectional drawing explaining the effect | action of the photoelectric conversion element shown in FIG. 図1に示した光電変換素子の作用を説明するための模式図である。It is a schematic diagram for demonstrating an effect | action of the photoelectric conversion element shown in FIG. バルクヘテロ構造を有する光電変換層における電荷の移動を説明する模式図である。It is a schematic diagram explaining the movement of the electric charge in the photoelectric converting layer which has a bulk heterostructure. 図10に示したp型半導体層中の構造を表す模式図である。It is a schematic diagram showing the structure in the p-type semiconductor layer shown in FIG. α-QD結晶相における結晶粒界構造の一例を表したものである。2 shows an example of a grain boundary structure in an α-QD crystal phase. 結晶粒界における電荷移動率の計算方法を説明する図である。It is a figure explaining the calculation method of the charge transfer rate in a crystal grain boundary. 結晶粒界における電荷移動率の計算方法を説明する図である。It is a figure explaining the calculation method of the charge transfer rate in a crystal grain boundary. α-QD結晶相の結晶粒界の距離と隣接する結晶粒のHOMO間の電荷移動率との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the α-QD crystal phase and the charge transfer rate between HOMOs of adjacent crystal grains. α-QD結晶相の結晶粒界の距離と隣接する結晶粒のLUMO間の電荷移動率との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the α-QD crystal phase and the charge transfer rate between LUMOs of adjacent crystal grains. β2-QD結晶相の結晶粒界の距離と隣接する結晶粒のHOMO間の電荷移動率との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the β 2 -QD crystal phase and the charge transfer rate between HOMOs of adjacent crystal grains. β2-QD結晶相の結晶粒界の距離と隣接する結晶粒のLUMO間の電荷移動率との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the β 2 -QD crystal phase and the charge transfer rate between LUMOs of adjacent crystal grains. γ-QD結晶相の結晶粒界の距離と隣接する結晶粒のHOMO間の電荷移動率との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the distance between the grain boundaries of the γ-QD crystal phase and the charge transfer rate between HOMOs of adjacent crystal grains. γ-QD結晶相の結晶粒界の距離と隣接する結晶粒のLUMO間の電荷移動率との関係を表す特性図である。FIG. 6 is a characteristic diagram showing the relationship between the distance between crystal grain boundaries of a γ-QD crystal phase and the charge transfer rate between LUMOs of adjacent crystal grains. 本開示の第2の実施の形態に係る光電変換素子の概略構成を表す断面図である。It is sectional drawing showing schematic structure of the photoelectric conversion element which concerns on 2nd Embodiment of this indication. 電荷伝導ネットワークを説明する模式図である。It is a schematic diagram explaining a charge conduction network. 有機半導体材料の結晶粒の3種類の伝導性を表す図である。It is a figure showing three types of conductivity of the crystal grain of organic-semiconductor material. 2次元伝導結晶のみで構成される電荷伝導ネットワークの伝導性を説明する模式図である。It is a schematic diagram explaining the conductivity of the charge conduction network comprised only by a two-dimensional conduction crystal. 有機光電変換層に含まれる結晶粒の構造を表す模式図である。It is a schematic diagram showing the structure of the crystal grain contained in an organic photoelectric converting layer. ネットワーク移動度の算出方法を説明する図である。It is a figure explaining the calculation method of network mobility. ネットワーク移動度の算出方法を説明する図である。It is a figure explaining the calculation method of network mobility. 粗視化kMC法による電荷の拡散のシミュレーション図である。It is a simulation diagram of charge diffusion by the coarse-grained kMC method. ネットワーク移動度の計算に用いた単結晶構造(A)および多結晶構造(B)の一例を表す図である。It is a figure showing an example of the single crystal structure (A) and the polycrystalline structure (B) which were used for calculation of network mobility. 結晶粒の異方性と、電荷伝導ネットワーク効率との関係を表す図である。It is a figure showing the relationship between the anisotropy of a crystal grain, and a charge conduction network efficiency. 図1に示した光電変換素子を画素として用いた固体撮像装置の機能ブロック図である。It is a functional block diagram of the solid-state imaging device using the photoelectric conversion element shown in FIG. 1 as a pixel. 図28に示した固体撮像装置を用いた電子機器の概略構成を表すブロック図である。It is a block diagram showing schematic structure of the electronic device using the solid-state imaging device shown in FIG.
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。
1.第1の実施の形態(所定の結晶粒界の距離を有する光電変換層を設けた例)
 1-1.光電変換素子の構成
 1-2.製造方法
 1-3.作用・効果
2.第2の実施の形態(電荷移動に関して所定の異方性係数を有する結晶粒を含む光電変換層を設けた例)
 2-1.有機光電変換層の構成
 2-2.作用・効果
3.変形例(第1の実施の形態および第2の実施の形態を組み合わせた例)
4.適用例
Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the drawings. The order of explanation is as follows.
1. 1st Embodiment (example which provided the photoelectric converting layer which has the distance of a predetermined crystal grain boundary)
1-1. Configuration of photoelectric conversion element 1-2. Manufacturing method 1-3. Action / Effect Second Embodiment (Example in which a photoelectric conversion layer including crystal grains having a predetermined anisotropy coefficient with respect to charge transfer is provided)
2-1. Configuration of organic photoelectric conversion layer 2-2. Action and effect 3. Modified example (example in which the first embodiment and the second embodiment are combined)
4). Application examples
<1.第1の実施の形態>
 図1は、本開示の第1の実施の形態の光電変換素子(光電変換素子10)の断面構成を表したものである。光電変換素子10は、例えば、CCDイメージセンサまたはCMOSイメージセンサ等の固体撮像装置(後述)において1つの画素を構成するものである。光電変換素子10は、半導体基板11の表面(受光面とは反対側の面S2;第2面)側に、画素トランジスタ(後述の転送トランジスタTr1~3を含む)が形成されると共に、多層配線層(多層配線層51)を有するものである。
<1. First Embodiment>
FIG. 1 illustrates a cross-sectional configuration of the photoelectric conversion element (photoelectric conversion element 10) according to the first embodiment of the present disclosure. The photoelectric conversion element 10 constitutes one pixel in a solid-state imaging device (described later) such as a CCD image sensor or a CMOS image sensor. The photoelectric conversion element 10 includes a pixel transistor (including transfer transistors Tr1 to 3 described later) formed on the surface (surface S2 opposite to the light receiving surface; second surface) side of the semiconductor substrate 11, and multilayer wiring. It has a layer (multilayer wiring layer 51).
 本実施の形態の光電変換素子10は、それぞれ異なる波長域の光を選択的に検出して光電変換を行う1つの有機光電変換部11Gと、2つの無機光電変換部11B,11Rとが縦方向に積層された構造を有し、有機光電変換部11Gは、キナクリドンまたはキナクリドン誘導体を含む有機光電変換層17を有する。このキナクリドンまたはキナクリドン誘導体は、有機光電変換層17中に、各々が(001)面、(010)面、(100)面を有する結晶面を含むα結晶相,β2結晶相またはγ結晶相のいずれかからなる複数の結晶粒を有し、各結晶相において隣接する結晶粒間の距離は、対向する面ごとに所定の範囲を有する。 In the photoelectric conversion element 10 according to the present embodiment, one organic photoelectric conversion unit 11G that selectively detects light in different wavelength ranges and performs photoelectric conversion, and two inorganic photoelectric conversion units 11B and 11R are in the vertical direction. The organic photoelectric conversion part 11G has an organic photoelectric conversion layer 17 containing quinacridone or a quinacridone derivative. This quinacridone or quinacridone derivative has an α crystal phase, a β 2 crystal phase, or a γ crystal phase including crystal planes each having a (001) plane, a (010) plane, and a (100) plane in the organic photoelectric conversion layer 17. A plurality of crystal grains composed of any one of them, and the distance between adjacent crystal grains in each crystal phase has a predetermined range for each facing surface.
(1-1.光電変換素子の構成)
 光電変換素子10は、1つの有機光電変換部11Gと、2つの無機光電変換部11B,11Rとの積層構造を有しており、これにより、1つの素子で赤(R),緑(G),青(B)の各色信号を取得できるようになっている。有機光電変換部11Gは、半導体基板11の裏面(面S1;第1面)上に形成され、無機光電変換部11B,11Rは、半導体基板11内に埋め込み形成されている。以下、各部の構成について説明する。
(1-1. Configuration of photoelectric conversion element)
The photoelectric conversion element 10 has a laminated structure of one organic photoelectric conversion unit 11G and two inorganic photoelectric conversion units 11B and 11R. With this, red (R) and green (G) are obtained with one element. , Blue (B) color signals can be acquired. The organic photoelectric conversion unit 11G is formed on the back surface (surface S1; first surface) of the semiconductor substrate 11, and the inorganic photoelectric conversion units 11B and 11R are embedded in the semiconductor substrate 11. Hereinafter, the configuration of each unit will be described.
(有機光電変換部11G)
 有機光電変換部11Gは、有機半導体材料を用いて、選択的な波長域の光(ここでは緑色光)を吸収して、電子-正孔対を発生させる有機光電変換素子である。有機光電変換部11Gは、信号電荷を取り出すための一対の電極(下部電極15a,上部電極18)間に有機光電変換層17を挟み込んだ構成を有している。下部電極15aおよび上部電極18は、後述するように、配線層やコンタクトメタル層を介して、半導体基板11内に埋設された導電性プラグ120a1,120b1に電気的に接続されている。
(Organic photoelectric conversion unit 11G)
The organic photoelectric conversion unit 11G is an organic photoelectric conversion element that generates an electron-hole pair by absorbing light in a selective wavelength range (here, green light) using an organic semiconductor material. The organic photoelectric conversion unit 11G has a configuration in which the organic photoelectric conversion layer 17 is sandwiched between a pair of electrodes (lower electrode 15a and upper electrode 18) for extracting signal charges. The lower electrode 15a and the upper electrode 18 are electrically connected to conductive plugs 120a1 and 120b1 embedded in the semiconductor substrate 11 through a wiring layer and a contact metal layer, as will be described later.
 具体的には、有機光電変換部11Gでは、半導体基板11の面S1上に、層間絶縁膜12,14が形成され、層間絶縁膜12には、後述する導電性プラグ120a1,120b1のそれぞれと対向する領域に貫通孔が設けられ、各貫通孔に導電性プラグ120a2,120b2が埋設されている。層間絶縁膜14には、導電性プラグ120a2,120b2のそれぞれと対向する領域に、配線層13a,13bが埋設されている。この層間絶縁膜14上に、下部電極15aが設けられると共に、この下部電極15aと絶縁膜16によって電気的に分離された配線層15bが設けられている。これらのうち、下部電極15a上に、有機光電変換層17が形成され、有機光電変換層17を覆うように上部電極18が形成されている。詳細は後述するが、上部電極18上には、その表面を覆うように保護膜19が形成されている。保護膜19の所定の領域にはコンタクトホールHが設けられ、保護膜19上には、コンタクトホールHを埋め込み、かつ配線層15bの上面まで延在するコンタクトメタル層20が形成されている。 Specifically, in the organic photoelectric conversion unit 11G, interlayer insulating films 12 and 14 are formed on the surface S1 of the semiconductor substrate 11, and the interlayer insulating film 12 is opposed to respective conductive plugs 120a1 and 120b1 described later. Through-holes are provided in the regions to be conducted, and conductive plugs 120a2 and 120b2 are embedded in the respective through-holes. In the interlayer insulating film 14, wiring layers 13a and 13b are embedded in regions facing the conductive plugs 120a2 and 120b2, respectively. A lower electrode 15 a is provided on the interlayer insulating film 14, and a wiring layer 15 b electrically separated by the lower electrode 15 a and the insulating film 16 is provided. Among these, the organic photoelectric conversion layer 17 is formed on the lower electrode 15 a, and the upper electrode 18 is formed so as to cover the organic photoelectric conversion layer 17. Although details will be described later, a protective film 19 is formed on the upper electrode 18 so as to cover the surface thereof. A contact hole H is provided in a predetermined region of the protective film 19, and a contact metal layer 20 is formed on the protective film 19 so as to fill the contact hole H and extend to the upper surface of the wiring layer 15b.
 導電性プラグ120a2は、導電性プラグ120a1と共にコネクタとして機能すると共に、導電性プラグ120a1および配線層13aと共に、下部電極15aから後述する緑用蓄電層110Gへの電荷(電子)の伝送経路を形成するものである。導電性プラグ120b2は、導電性プラグ120b1と共にコネクタとして機能すると共に、導電性プラグ120b1、配線層13b、配線層15bおよびコンタクトメタル層20と共に、上部電極18からの電荷(正孔)の排出経路を形成するものである。導電性プラグ120a2,120b2は、遮光膜としても機能させるために、例えば、チタン(Ti)、窒化チタン(TiN)およびタングステン等の金属材料の積層膜により構成されることが望ましい。また、このような積層膜を用いることにより、導電性プラグ120a1,120b1をn型またはp型の半導体層として形成した場合にも、シリコンとのコンタクトを確保することができるため望ましい。 The conductive plug 120a2 functions as a connector together with the conductive plug 120a1, and together with the conductive plug 120a1 and the wiring layer 13a, forms a charge (electron) transmission path from the lower electrode 15a to the green power storage layer 110G described later. Is. The conductive plug 120b2 functions as a connector together with the conductive plug 120b1, and together with the conductive plug 120b1, the wiring layer 13b, the wiring layer 15b, and the contact metal layer 20, provides a discharge path for charges (holes) from the upper electrode 18. To form. The conductive plugs 120a2 and 120b2 are desirably formed of a laminated film of a metal material such as titanium (Ti), titanium nitride (TiN) and tungsten in order to function as a light shielding film. In addition, the use of such a laminated film is desirable because contact with silicon can be ensured even when the conductive plugs 120a1 and 120b1 are formed as n-type or p-type semiconductor layers.
 層間絶縁膜12は、半導体基板11(シリコン層110)との界面準位を低減させると共に、シリコン層110との界面からの暗電流の発生を抑制するために、界面準位の小さな絶縁膜から構成されることが望ましい。このような絶縁膜としては、例えば、酸化ハフニウム(HfO2)膜と酸化シリコン(SiO2)膜との積層膜を用いることができる。層間絶縁膜14は、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン(SiON)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。 The interlayer insulating film 12 is made of an insulating film having a small interface state in order to reduce the interface state with the semiconductor substrate 11 (silicon layer 110) and to suppress the generation of dark current from the interface with the silicon layer 110. Desirably configured. As such an insulating film, for example, a stacked film of a hafnium oxide (HfO 2 ) film and a silicon oxide (SiO 2 ) film can be used. The interlayer insulating film 14 is composed of, for example, a single layer film made of one of silicon oxide, silicon nitride, silicon oxynitride (SiON), or the like, or a laminated film made of two or more of these. .
 絶縁膜16は、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン(SiON)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。絶縁膜16は、例えば、その表面が平坦化されており、下部電極15aとほぼ段差のない形状およびパターンを有している。この絶縁膜16は、光電変換素子10が、固体撮像装置の画素として用いられる場合に、各画素の下部電極15a間を電気的に分離する機能を有している。 The insulating film 16 is formed of, for example, a single layer film made of one of silicon oxide, silicon nitride, silicon oxynitride (SiON), or the like, or a laminated film made of two or more of these. For example, the surface of the insulating film 16 is flattened, and has a shape and a pattern substantially free of steps from the lower electrode 15a. The insulating film 16 has a function of electrically separating the lower electrodes 15a of each pixel when the photoelectric conversion element 10 is used as a pixel of a solid-state imaging device.
 下部電極15aは、半導体基板11内に形成された無機光電変換部11B,11Rの受光面と正対して、これらの受光面を覆う領域に設けられている。この下部電極15aは、光透過性を有する導電膜により構成され、例えば、ITO(インジウム錫酸化物)により構成されている。但し、下部電極15aの構成材料としては、このITOの他にも、ドーパントを添加した酸化スズ(SnO2)系材料、あるいはアルミニウム亜鉛酸化物(ZnO)にドーパントを添加してなる酸化亜鉛系材料を用いてもよい。酸化亜鉛系材料としては、例えば、ドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、ガリウム(Ga)添加のガリウム亜鉛酸化物(GZO)、インジウム(In)添加のインジウム亜鉛酸化物(IZO)が挙げられる。また、この他にも、CuI、InSbO4、ZnMgO、CuInO2、MgIN24、CdO、ZnSnO3等が用いられてもよい。なお、本実施の形態では、下部電極15aから信号電荷(電子)の取り出しがなされるので、光電変換素子10を画素として用いた後述の固体撮像装置では、この下部電極15aは画素毎に分離されて形成される。 The lower electrode 15a is provided in a region covering the light receiving surfaces facing the light receiving surfaces of the inorganic photoelectric conversion portions 11B and 11R formed in the semiconductor substrate 11. The lower electrode 15a is made of a light-transmitting conductive film, for example, ITO (Indium Tin Oxide). However, as a constituent material of the lower electrode 15a, besides this ITO, a tin oxide (SnO 2 ) -based material to which a dopant is added, or a zinc oxide-based material obtained by adding a dopant to aluminum zinc oxide (ZnO) May be used. Examples of the zinc oxide-based material include aluminum zinc oxide (AZO) to which aluminum (Al) is added as a dopant, gallium zinc oxide (GZO) to which gallium (Ga) is added, and indium zinc oxide to which indium (In) is added. (IZO). In addition, CuI, InSbO 4 , ZnMgO, CuInO 2 , MgIN 2 O 4 , CdO, ZnSnO 3, or the like may be used. In this embodiment, since signal charges (electrons) are taken out from the lower electrode 15a, the lower electrode 15a is separated for each pixel in a solid-state imaging device described later using the photoelectric conversion element 10 as a pixel. Formed.
 有機光電変換層17は、選択的な波長域の光を光電変換する一方、他の波長域の光を透過させる有機半導体材料として、例えば、キナクリドンまたはキナクリドン誘導体を含んで構成されている。 The organic photoelectric conversion layer 17 includes, for example, quinacridone or a quinacridone derivative as an organic semiconductor material that photoelectrically converts light in a selective wavelength range and transmits light in other wavelength ranges.
 有機光電変換層17は、有機p型半導体および有機n型半導体のうちの一方または両方を含んで構成されることが望ましく、有機p型半導体および有機n型半導体は、上記キナクリドンまたはキナクリドン誘導体、あるいは、以下に示す有機半導体材料である。即ち、有機光電変換層17には、キナクリドンまたはキナクリドン誘導体と共に、サブフタロシアニンまたはその誘導体、あるいは、フラーレンまたはその誘導体が用いられている。サブフタロシアニンまたはその誘導体、あるいは、フラーレンまたはその誘導体が用いられる場合には、キナクリドンおよびキナクリドン誘導体がp型半導体として、サブフタロシアニンおよびその誘導体、フラーレンおよびその誘導体がn型半導体として作用する。なお、キナクリドンまたはキナクリドン誘導体と共に有機光電変換層17を構成する材料は特に限定されない。サブフタロシアニンおよびその誘導体、フラーレンおよびその誘導体以外の材料としては、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、およびフルオランテン誘導体のうちのいずれか1種が好適に用いられる。あるいは、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体やその誘導体が用いられていてもよい。加えて、金属錯体色素、シアニン系色素、メロシアニン系色素、フェニルキサンテン系色素、トリフェニルメタン系色素、ロダシアニン系色素、キサンテン系色素、大環状アザアヌレン系色素、アズレン系色素、ナフトキノン、アントラキノン系色素、アントラセンおよびピレン等の縮合多環芳香族および芳香環ないし複素環化合物が縮合した鎖状化合物、または、スクアリリウム基およびクロコニツクメチン基を結合鎖として持つキノリン、ベンゾチアゾール、ベンゾオキサゾール等の二つの含窒素複素環、または、スクアリリウム基およびクロコニツクメチン基により結合したシアニン系類似の色素等を好ましく用いることができる。なお、上記金属錯体色素としては、ジチオール金属錯体系色素、金属フタロシアニン色素、金属ポルフィリン色素、またはルテニウム錯体色素が好ましいが、これに限定されるものではない。本実施の形態では、この有機光電変換層17が、例えば、495nm~570nmの波長域の一部または全部の波長域に対応する緑色光を光電変換可能となっている。このような有機光電変換層17の厚みは、例えば、50nm~500nmである。 The organic photoelectric conversion layer 17 is preferably configured to include one or both of an organic p-type semiconductor and an organic n-type semiconductor, and the organic p-type semiconductor and the organic n-type semiconductor are the quinacridone or the quinacridone derivative, or The organic semiconductor material shown below. That is, the organic photoelectric conversion layer 17 uses subphthalocyanine or a derivative thereof, or fullerene or a derivative thereof together with quinacridone or a quinacridone derivative. When subphthalocyanine or a derivative thereof, or fullerene or a derivative thereof is used, quinacridone and a quinacridone derivative act as a p-type semiconductor, and subphthalocyanine and a derivative thereof, fullerene and a derivative thereof act as an n-type semiconductor. In addition, the material which comprises the organic photoelectric converting layer 17 with a quinacridone or a quinacridone derivative is not specifically limited. As materials other than subphthalocyanine and derivatives thereof, fullerene and derivatives thereof, any one of naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, and fluoranthene derivatives is preferably used. Alternatively, a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, or a derivative thereof may be used. In addition, metal complex dyes, cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rhodacyanine dyes, xanthene dyes, macrocyclic azaannulene dyes, azulene dyes, naphthoquinone, anthraquinone dyes, Condensed polycyclic aromatic compounds such as anthracene and pyrene and chain compounds condensed with aromatic or heterocyclic compounds, or two compounds such as quinoline, benzothiazole and benzoxazole having a squarylium group and a croconic methine group as a linking chain. A cyanine-like dye or the like bonded by a nitrogen heterocycle or a squarylium group and a croconite methine group can be preferably used. The metal complex dye is preferably a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye, but is not limited thereto. In the present embodiment, the organic photoelectric conversion layer 17 can photoelectrically convert green light corresponding to a part or all of the wavelength range of 495 nm to 570 nm, for example. The thickness of such an organic photoelectric conversion layer 17 is, for example, 50 nm to 500 nm.
 有機光電変換層17に含まれるキナクリドンまたはキナクリドン誘導体は、有機光電変換層17中に、α結晶相,β1結晶相,β2結晶相,β3結晶相あるいはγ結晶相からなる複数の結晶粒を有する。これら結晶相は、それぞれ(001)面、(010)面、(100)面を有する結晶面を含む。本実施の形態では、各結晶相からなる複数の結晶粒は、互いに対向する各面(即ち、結晶粒界)の距離ができるだけ小さいことが好ましい。具体的には、有機光電変換層17は、キナクリドンまたはキナクリドン誘導体の結晶粒界の距離が以下に示す範囲の構造を含むことで、結晶粒界による電荷移動度の低下が低減される。なお、β1結晶相,β2結晶相およびβ3結晶相からなる結晶粒では、詳細は後述するが、最も格子エネルギーの小さく安定なβ2結晶相の存在確率が最も高いため、β型結晶ではβ2結晶相からなる結晶粒間の距離を規定する。 The quinacridone or quinacridone derivative contained in the organic photoelectric conversion layer 17 includes a plurality of crystal grains composed of an α crystal phase, a β 1 crystal phase, a β 2 crystal phase, a β 3 crystal phase, or a γ crystal phase in the organic photoelectric conversion layer 17. Have These crystal phases include crystal planes having (001) plane, (010) plane, and (100) plane, respectively. In the present embodiment, it is preferable that the plurality of crystal grains made of each crystal phase have the smallest possible distance between the faces facing each other (that is, crystal grain boundaries). Specifically, the organic photoelectric conversion layer 17 includes a structure in which the distance between the crystal grain boundaries of quinacridone or a quinacridone derivative is in the following range, so that the decrease in charge mobility due to the crystal grain boundaries is reduced. The crystal grains composed of β 1 crystal phase, β 2 crystal phase and β 3 crystal phase will be described in detail later, but the β 2 crystal phase has the highest probability of existence of the stable β 2 crystal phase with the smallest lattice energy. Defines the distance between crystal grains composed of β 2 crystal phase.
 具体的には、α結晶相からなる複数の結晶粒の互いに対向する各面の距離は、互いに対向する(001)面と(001)面では2.8×10-10m以下、互いに対向する(001)面と(010)面では2.8×10-10m以下、互いに対向する(001)面と(100)面では3.1×10-10m以下、互いに対向する(010)面と(010)面では4.1×10-10m以下、互いに対向する(010)面と(100)面では3.6×10-10m以下および互いに対向する(100)面と(100)面では3.2×10-10m以下のうちの少なくとも1つの条件を満たすことが好ましい。β2結晶相からなる複数の結晶粒の互いに対向する各面の距離は、互いに対向する(001)面と(001)面では2.3×10-10m以下、互いに対向する(001)面と(010)面では2.9×10-10m以下、互いに対向する(001)面と(100)面では3.3×10-10m以下、互いに対向する(010)面と(010)面では3.2×10-10m以下、互いに対向する(010)面と(100)面では3.7×10-10m以下および互いに対向する(100)面と(100)面では4.1×10-10m以下のうちの少なくとも1つの条件を満たすことが好ましい。γ結晶相からなる複数の結晶粒の互いに対向する各面の距離は、互いに対向する(001)面と(001)面では1.7×10-10m以下、互いに対向する(001)面と(010)面では2.7×10-10m以下、互いに対向する(001)面と(100)面では2.1×10-10m以下、互いに対向する(010)面と(010)面では3.9×10-10m以下、互いに対向する(010)面と(100)面では3.2×10-10m以下および互いに対向する(100)面と(100)面では2.7×10-10m以下のうちの少なくとも1つの条件を満たすことが好ましい。 Specifically, the distances between the mutually facing faces of the plurality of crystal grains composed of the α crystal phase are 2.8 × 10 −10 m or less facing each other on the (001) face and the (001) face facing each other. The (001) plane and the (010) plane are 2.8 × 10 −10 m or less, and the (001) plane and the (100) plane are 3.1 × 10 −10 m or less and the (010) plane facing each other. And (010) plane is 4.1 × 10 −10 m or less, and the (010) plane and (100) plane facing each other are 3.6 × 10 −10 m or less and the (100) plane and (100) facing each other In terms of surface, it is preferable that at least one condition of 3.2 × 10 −10 m or less is satisfied. The distance between the mutually facing faces of the plurality of crystal grains composed of β 2 crystal phase is 2.3 × 10 −10 m or less between the (001) face and the (001) face facing each other, and the (001) faces facing each other. And (010) plane is 2.9 × 10 −10 m or less, and (001) plane and (100) plane facing each other are 3.3 × 10 −10 m or less and (010) plane and (010) facing each other 3.2 × 10 −10 m or less on the surface, 3.7 × 10 −10 m or less on the (010) plane and (100) plane facing each other, and 4. on the (100) plane and (100) plane facing each other. It is preferable that at least one condition of 1 × 10 −10 m or less is satisfied. The distances between the mutually opposing faces of the plurality of crystal grains composed of the γ crystal phase are 1.7 × 10 −10 m or less for the (001) face and the (001) face facing each other, and the (001) face facing each other. The (010) plane is 2.7 × 10 −10 m or less, and the (001) plane and (100) plane facing each other are 2.1 × 10 −10 m or less and the (010) plane and (010) plane facing each other. Is 3.9 × 10 −10 m or less, (010) plane and (100) plane facing each other is 3.2 × 10 −10 m or less, and (100) plane and (100) plane facing each other are 2.7. It is preferable that at least one condition of × 10 −10 m or less is satisfied.
 なお、キナクリドン誘導体は、下記式(1)で表わされるものであり、具体的には、例えば、下記式(1-1)~(1-3)で表わされる化合物が挙げられる。 The quinacridone derivative is represented by the following formula (1), and specific examples include compounds represented by the following formulas (1-1) to (1-3).
Figure JPOXMLDOC01-appb-C000001
(R1、R2は各々独立して水素原子、ハロゲン原子、メルカプト基、アミノ基、ニトロ基、シアノ基、カルボキシル基、スルホン酸基、水酸基、置換または未置換のアルキル基、置換または未置換のアリール基、置換または未置換のアルコキシル基、置換または未置換のアリールオキシ基、置換または未置換のアルキルチオ基、置換または未置換のアリールチオ基、置換または未置換のアルキルアミノ基、置換または未置換のアリールアミノ基、置換または未置換のカルボン酸エステル基、置換または未置換のカルボン酸アミド基、置換または未置換のスルホン酸エステル基、置換または未置換のスルホン酸アミド基、置換または未置換のカルボニル基、置換または未置換のシリル基、置換または未置換のシロキシ基等の置換基である。R3、R4は各々独立して水素原子、ハロゲン原子、メルカプト基、アミノ基、ニトロ基、シアノ基、カルボキシル基、スルホン酸基、水酸基、置換または未置換のアルキル基、置換または未置換のアリール基、置換または未置換のアルコキシル基、置換または未置換のアリールオキシ基、置換または未置換のアルキルチオ基、置換または未置換のアリールチオ基、置換または未置換のアルキルアミノ基、置換または未置換のアリールアミノ基、置換または未置換のカルボン酸エステル基、置換または未置換のカルボン酸アミド基、置換または未置換のスルホン酸エステル基、置換または未置換のスルホン酸アミド基、置換または未置換のカルボニル基、置換または未置換のシリル基、置換または未置換のシロキシ基等の置換基である。n1,n2は、各々独立した0または1以上整数である。)
Figure JPOXMLDOC01-appb-C000001
(R1 and R2 are each independently a hydrogen atom, halogen atom, mercapto group, amino group, nitro group, cyano group, carboxyl group, sulfonic acid group, hydroxyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group. Group, substituted or unsubstituted alkoxyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylamino group, substituted or unsubstituted aryl Amino group, substituted or unsubstituted carboxylic acid ester group, substituted or unsubstituted carboxylic acid amide group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonic acid amide group, substituted or unsubstituted carbonyl group , Substituted or unsubstituted silyl groups, substituted or unsubstituted siloxy groups, and the like. R4 each independently represents a hydrogen atom, a halogen atom, a mercapto group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a hydroxyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, Substituted or unsubstituted alkoxyl group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylamino group, substituted or unsubstituted arylamino group Substituted or unsubstituted carboxylic acid ester group, substituted or unsubstituted carboxylic acid amide group, substituted or unsubstituted sulfonic acid ester group, substituted or unsubstituted sulfonic acid amide group, substituted or unsubstituted carbonyl group, substituted Or a substituent such as an unsubstituted silyl group or a substituted or unsubstituted siloxy group. 2 are each independent 0 or 1 or more integer.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 有機光電変換層17の下部電極15aとの間、および上部電極18との間には、他の層例えば、バッファ層(バッファ層212,214)が設けられていてもよい(図10参照)。この他、例えば、下部電極15a側から順に、下引き膜、正孔輸送層、電子ブロッキング膜 、有機光電変換層17、正孔ブロッキング膜、バッファ膜、電子輸送層および仕事関数調整膜が積層されていてもよい。 Other layers such as buffer layers (buffer layers 212 and 214) may be provided between the lower electrode 15a of the organic photoelectric conversion layer 17 and the upper electrode 18 (see FIG. 10). In addition, for example, an undercoat film, a hole transport layer, an electron blocking film, an organic photoelectric conversion layer 17, a hole blocking film, a buffer film, an electron transport layer, and a work function adjusting film are stacked in this order from the lower electrode 15a side. It may be.
 上部電極18は、下部電極15aと同様の光透過性を有する導電膜により構成されている。光電変換素子10を画素として用いた固体撮像装置では、この上部電極18が画素毎に分離されていてもよいし、各画素に共通の電極として形成されていてもよい。上部電極18の厚みは、例えば、10nm~200nmである。 The upper electrode 18 is composed of a conductive film having the same optical transparency as the lower electrode 15a. In the solid-state imaging device using the photoelectric conversion element 10 as a pixel, the upper electrode 18 may be separated for each pixel, or may be formed as a common electrode for each pixel. The thickness of the upper electrode 18 is, for example, 10 nm to 200 nm.
 保護膜19は、光透過性を有する材料により構成され、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン等のうちのいずれかよりなる単層膜、あるいはそれらのうちの2種以上よりなる積層膜である。この保護膜19の厚みは、例えば、100nm~30000nmである。 The protective film 19 is made of a light-transmitting material. For example, the protective film 19 is a single-layer film made of any of silicon oxide, silicon nitride, silicon oxynitride, or the like, or a laminated film made of two or more of them. It is. The thickness of the protective film 19 is, for example, 100 nm to 30000 nm.
 コンタクトメタル層20は、例えば、チタン、タングステン、窒化チタンおよびアルミニウム等のいずれか、あるいはそれらのうちの2種以上よりなる積層膜により構成されている。 The contact metal layer 20 is made of, for example, any one of titanium, tungsten, titanium nitride, aluminum and the like, or a laminated film made of two or more of them.
 上部電極18および保護膜19は、例えば、有機光電変換層17を覆うように設けられている。図2は、有機光電変換層17、保護膜19(上部電極18)およびコンタクトホールHの平面構成を表したものである。 The upper electrode 18 and the protective film 19 are provided so as to cover the organic photoelectric conversion layer 17, for example. FIG. 2 shows a planar configuration of the organic photoelectric conversion layer 17, the protective film 19 (upper electrode 18), and the contact hole H.
 具体的には、保護膜19(上部電極18も同様)の周縁部e2は、有機光電変換層17の周縁部e1よりも外側に位置しており、保護膜19および上部電極18は、有機光電変換層17よりも外側に張り出して形成されている。詳細には、上部電極18は、有機光電変換層17の上面および側面を覆うと共に、絶縁膜16上まで延在するように形成されている。保護膜19は、そのような上部電極18の上面を覆って、上部電極18と同等の平面形状で形成されている。コンタクトホールHは、保護膜19のうちの有機光電変換層17に非対向の領域(周縁部e1よりも外側の領域)に設けられ、上部電極18の表面の一部を露出させている。周縁部e1,e2間の距離は、特に限定されるものではないが、例えば、1μm~500μmである。なお、図2では、有機光電変換層17の端辺に沿った1つの矩形状のコンタクトホールHを設けているが、コンタクトホールHの形状や個数はこれに限定されず、他の形状(例えば、円形、正方形等)であってもよいし、複数設けられていてもよい。 Specifically, the peripheral edge e2 of the protective film 19 (the same applies to the upper electrode 18) is located outside the peripheral edge e1 of the organic photoelectric conversion layer 17, and the protective film 19 and the upper electrode 18 are organic photoelectric photoelectric. It is formed to protrude outward from the conversion layer 17. Specifically, the upper electrode 18 is formed so as to cover the upper surface and side surfaces of the organic photoelectric conversion layer 17 and to extend onto the insulating film 16. The protective film 19 covers the upper surface of the upper electrode 18 and is formed in the same planar shape as the upper electrode 18. The contact hole H is provided in a region of the protective film 19 that is not opposed to the organic photoelectric conversion layer 17 (a region outside the peripheral edge e1) and exposes a part of the surface of the upper electrode 18. The distance between the peripheral portions e1 and e2 is not particularly limited, but is, for example, 1 μm to 500 μm. In FIG. 2, one rectangular contact hole H is provided along the edge of the organic photoelectric conversion layer 17, but the shape and number of the contact holes H are not limited to this, and other shapes (for example, , Circular, square, etc.) or a plurality of them may be provided.
 保護膜19およびコンタクトメタル層20上には、全面を覆うように、平坦化膜21が形成されている。平坦化膜21上には、オンチップレンズ22(マイクロレンズ)が設けられている。オンチップレンズ22は、その上方から入射した光を、有機光電変換部11G、無機光電変換部11B,11Rの各受光面へ集光させるものである。本実施の形態では、多層配線層51が半導体基板11の面S2側に形成されていることから、有機光電変換部11G、無機光電変換部11B,11Rの各受光面を互いに近づけて配置することができ、オンチップレンズ22のF値に依存して生じる各色間の感度のばらつきを低減することができる。 A planarizing film 21 is formed on the protective film 19 and the contact metal layer 20 so as to cover the entire surface. On the planarization film 21, an on-chip lens 22 (microlens) is provided. The on-chip lens 22 focuses light incident from above on the light receiving surfaces of the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R. In the present embodiment, since the multilayer wiring layer 51 is formed on the surface S2 side of the semiconductor substrate 11, the light receiving surfaces of the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R are arranged close to each other. Thus, it is possible to reduce the variation in sensitivity between the colors depending on the F value of the on-chip lens 22.
 なお、本実施の形態の光電変換素子10では、下部電極15aから信号電荷(電子)を取り出すことから、これを画素として用いる固体撮像装置においては、上部電極18を共通電極としてもよい。この場合には、上述したコンタクトホールH、コンタクトメタル層20、配線層15b,13b、導電性プラグ120b1,120b2からなる伝送経路は、全画素に対して少なくとも1箇所に形成されればよい。 In the photoelectric conversion element 10 of the present embodiment, signal charges (electrons) are taken out from the lower electrode 15a. Therefore, in the solid-state imaging device using this as a pixel, the upper electrode 18 may be used as a common electrode. In this case, the transmission path including the contact hole H, the contact metal layer 20, the wiring layers 15b and 13b, and the conductive plugs 120b1 and 120b2 may be formed in at least one place for all the pixels.
 半導体基板11は、例えば、n型のシリコン(Si)層111の所定の領域に、無機光電変換部11B,11Rと緑用蓄電層110Gとが埋め込み形成されたものである。半導体基板11には、また、有機光電変換部11Gからの電荷(電子または正孔(正孔))の伝送経路となる導電性プラグ120a1,120b1が埋設されている。本実施の形態では、この半導体基板11の裏面(面S1)が受光面となっていえる。半導体基板11の表面(面S2)側には、有機光電変換部11G,無機光電変換部11B,11Rのそれぞれに対応する複数の画素トランジスタ(転送トランジスタTr1~Tr3を含む)が形成されると共に、ロジック回路等からなる周辺回路が形成されている。 The semiconductor substrate 11 is, for example, formed by embedding inorganic photoelectric conversion portions 11B and 11R and a green power storage layer 110G in a predetermined region of an n-type silicon (Si) layer 111. The semiconductor substrate 11 is also embedded with conductive plugs 120a1 and 120b1 serving as a transmission path for charges (electrons or holes (holes)) from the organic photoelectric conversion unit 11G. In the present embodiment, the back surface (surface S1) of the semiconductor substrate 11 can be said to be a light receiving surface. On the surface (surface S2) side of the semiconductor substrate 11, a plurality of pixel transistors (including transfer transistors Tr1 to Tr3) corresponding to the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion units 11B and 11R are formed. A peripheral circuit composed of a logic circuit or the like is formed.
 画素トランジスタとしては、例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタおよび選択トランジスタが挙げられる。これらの画素トランジスタは、いずれも例えば、MOSトランジスタにより構成され、面S2側のp型半導体ウェル領域に形成されている。このような画素トランジスタを含む回路が、赤、緑、青の光電変換部毎に形成されている。各回路では、これらの画素トランジスタのうち、例えば、転送トランジスタ、リセットトランジスタおよび増幅トランジスタからなる、計3つのトランジスタを含む3トランジスタ構成を有していてもよいし、これに選択トランジスタを加えた4トランジスタ構成であってもよい。ここでは、これらの画素トランジスタのうち、転送トランジスタTr1~Tr3についてのみ図示および説明を行っている。また、転送トランジスタ以外の他の画素トランジスタについては、光電変換部間あるいは画素間において共有することもできる。また、フローティングディフージョンを共有する、いわゆる画素共有構造を適用することもできる。 Examples of the pixel transistor include a transfer transistor, a reset transistor, an amplification transistor, and a selection transistor. Each of these pixel transistors is composed of, for example, a MOS transistor, and is formed in a p-type semiconductor well region on the surface S2. A circuit including such a pixel transistor is formed for each of the red, green, and blue photoelectric conversion units. Each circuit may have a three-transistor configuration including a total of three transistors including a transfer transistor, a reset transistor, and an amplifying transistor, among these pixel transistors. A transistor configuration may be used. Here, among these pixel transistors, only the transfer transistors Tr1 to Tr3 are shown and described. Further, pixel transistors other than the transfer transistor can be shared between photoelectric conversion units or between pixels. Further, a so-called pixel sharing structure that shares a floating diffusion can also be applied.
 転送トランジスタTr1~Tr3は、ゲート電極(ゲート電極TG1~TG3)と、フローティングディフージョン(FD113,114,116)とを含んで構成されている。転送トランジスタTr1は、有機光電変換部11Gにおいて発生し、緑用蓄電層110Gに蓄積された、緑色に対応する信号電荷(本実施の形態では電子)を、後述の垂直信号線Lsigへ転送するものである。転送トランジスタTr2は、無機光電変換部11Bにお
いて発生し、蓄積された、青色に対応する信号電荷(本実施の形態では電子)を、後述の垂直信号線Lsigへ転送するものである。同様に、転送トランジスタTr3は、無機光電変換部11Rにおいて発生し、蓄積された、赤色に対応する信号電荷(本実施の形態では電子)を、後述の垂直信号線Lsigへ転送するものである。
The transfer transistors Tr1 to Tr3 include gate electrodes (gate electrodes TG1 to TG3) and floating diffusions ( FDs 113, 114, and 116). The transfer transistor Tr1 transfers the signal charge corresponding to green (electrons in the present embodiment) generated in the organic photoelectric conversion unit 11G and accumulated in the green power storage layer 110G to a vertical signal line Lsig described later. It is. The transfer transistor Tr2 transfers the signal charge (electrons in the present embodiment) corresponding to blue generated and accumulated in the inorganic photoelectric conversion unit 11B to a vertical signal line Lsig described later. Similarly, the transfer transistor Tr3 transfers signal charges (electrons in the present embodiment) corresponding to red color generated and accumulated in the inorganic photoelectric conversion unit 11R to a vertical signal line Lsig described later.
 無機光電変換部11B,11Rはそれぞれ、pn接合を有するフォトダイオード(Photo Diode)であり、半導体基板11内の光路上において、面S1側から無機光電変換部11B,11Rの順に形成されている。これらのうち、無機光電変換部11Bは、青色光を選択的に検出して青色に対応する信号電荷を蓄積させるものであり、例えば、半導体基板11の面S1に沿った選択的な領域から、多層配線層51との界面近傍の領域にかけて延在して形成されている。無機光電変換部11Rは、赤色光を選択的に検出して赤色に対応する信号電荷を蓄積させるものであり、例えば、無機光電変換部11Bよりも下層(面S2側)の領域にわたって形成されている。なお、青(B)は、例えば、450nm~495nmの波長域、赤(R)は、例えば、620nm~750nmの波長域にそれぞれ対応する色であり、無機光電変換部11B,11Rはそれぞれ、各波長域のうちの一部または全部の波長域の光を検出可能となっていればよい。 The inorganic photoelectric conversion units 11B and 11R are photodiodes having pn junctions (Photo-Diodes), and are formed in the order of the inorganic photoelectric conversion units 11B and 11R from the surface S1 side on the optical path in the semiconductor substrate 11. Among these, the inorganic photoelectric conversion unit 11B selectively detects blue light and accumulates signal charges corresponding to blue. For example, from a selective region along the surface S1 of the semiconductor substrate 11, It is formed to extend over a region near the interface with the multilayer wiring layer 51. The inorganic photoelectric conversion unit 11R selectively detects red light and accumulates signal charges corresponding to red. For example, the inorganic photoelectric conversion unit 11R is formed over a lower layer (surface S2 side) than the inorganic photoelectric conversion unit 11B. Yes. For example, blue (B) is a color corresponding to a wavelength range of 450 nm to 495 nm, red (R) is a color corresponding to a wavelength range of 620 nm to 750 nm, for example, and the inorganic photoelectric conversion units 11B and 11R are respectively It is only necessary that light in a part or all of the wavelength range can be detected.
 図3(A)は、無機光電変換部11B,11Rの詳細構成例を表したものである。図3(B)は、図3(A)の他の断面における構成に相当するものである。なお、本実施の形態では、光電変換によって生じる電子および正孔の対のうち、電子を信号電荷として読み出す場合(n型半導体領域を光電変換層とする場合)について説明を行う。また、図中において、「p」「n」に上付きで記した「+(プラス)」は、p型またはn型の不純物濃度が高いことを表している。また、画素トランジスタのうち、転送トランジスタTr2,Tr3のゲート電極TG2,TG3についても示している。 FIG. 3A shows a detailed configuration example of the inorganic photoelectric conversion units 11B and 11R. FIG. 3B corresponds to a structure in another cross section of FIG. Note that in this embodiment, a case where electrons are read out as signal charges out of a pair of electrons and holes generated by photoelectric conversion (when an n-type semiconductor region is used as a photoelectric conversion layer) will be described. In the figure, “+ (plus)” superscripted on “p” and “n” represents a high p-type or n-type impurity concentration. In addition, among the pixel transistors, the gate electrodes TG2 and TG3 of the transfer transistors Tr2 and Tr3 are also shown.
 無機光電変換部11Bは、例えば、正孔蓄積層となるp型半導体領域(以下、単にp型領域という、n型の場合についても同様。)111pと、電子蓄積層となるn型光電変換層(n型領域)111nとを含んで構成されている。p型領域111pおよびn型光電変換層111nはそれぞれ、面S1近傍の選択的な領域に形成されると共に、その一部が屈曲し、面S2との界面に達するように延在形成されている。p型領域111pは、面S1側において、図示しないp型半導体ウェル領域に接続されている。n型光電変換層111nは、青色用の転送トランジスタTr2のFD113(n型領域)に接続されている。なお、p型領域111pおよびn型光電変換層111nの面S2側の各端部と面S2との界面近傍には、p型領域113p(正孔蓄積層)が形成されている。 The inorganic photoelectric conversion unit 11B includes, for example, a p-type semiconductor region (hereinafter simply referred to as a p-type region, also referred to as an n-type) 111p serving as a hole accumulation layer, and an n-type photoelectric conversion layer serving as an electron accumulation layer. (N-type region) 111n. Each of the p-type region 111p and the n-type photoelectric conversion layer 111n is formed in a selective region in the vicinity of the surface S1, and a part thereof is bent so as to extend to reach the interface with the surface S2. . The p-type region 111p is connected to a p-type semiconductor well region (not shown) on the surface S1 side. The n-type photoelectric conversion layer 111n is connected to the FD 113 (n-type region) of the blue transfer transistor Tr2. Note that a p-type region 113p (hole accumulation layer) is formed in the vicinity of the interface between each end of the p-type region 111p and the n-type photoelectric conversion layer 111n on the surface S2 side and the surface S2.
 無機光電変換部11Rは、例えば、p型領域112p1112p2(正孔蓄積層)間に、n型光電変換層112n(電子蓄積層)を挟み込んで形成されている(p-n-pの積層構造を有する)。n型光電変換層112nは、その一部が屈曲し、面S2との界面に達するように延在形成されている。n型光電変換層112nは、赤色用の転送トランジスタTr3のFD114(n型領域)に接続されている。なお、少なくともn型光電変換層111nの面S2側の端部と面S2との界面近傍にはp型領域113p(正孔蓄積層)が形成されている。 The inorganic photoelectric conversion unit 11R is formed, for example, by sandwiching an n-type photoelectric conversion layer 112n (electron storage layer) between p-type regions 112p1112p2 (hole storage layer) (a pnp stacked structure). Have). A part of the n-type photoelectric conversion layer 112n is bent and extended so as to reach the interface with the surface S2. The n-type photoelectric conversion layer 112n is connected to the FD 114 (n-type region) of the red transfer transistor Tr3. A p-type region 113p (hole accumulation layer) is formed at least near the interface between the end of the n-type photoelectric conversion layer 111n on the surface S2 side and the surface S2.
 図4は、緑用蓄電層110Gの詳細構成例を表したものである。なお、ここでは、有機光電変換部11Gによって生じる電子および正孔の対のうち、電子を信号電荷として、下部電極15a側から読み出す場合について説明を行う。また、図4には、画素トランジスタのうち、転送トランジスタTr1のゲート電極TG1についても示している。 FIG. 4 shows a detailed configuration example of the green electricity storage layer 110G. Here, a description will be given of a case where electrons out of the pair of electrons and holes generated by the organic photoelectric conversion unit 11G are read from the lower electrode 15a side as signal charges. FIG. 4 also shows the gate electrode TG1 of the transfer transistor Tr1 among the pixel transistors.
 緑用蓄電層110Gは、電子蓄積層となるn型領域115nを含んで構成されている。n型領域115nの一部は、導電性プラグ120a1に接続されており、下部電極15a側から導電性プラグ120a1を介して伝送される電子を蓄積するようになっている。このn型領域115nは、また、緑色用の転送トランジスタTr1のFD116(n型領域)に接続されている。なお、n型領域115nと面S2との界面近傍には、p型領域115p(正孔蓄積層)が形成されている。 The green power storage layer 110G includes an n-type region 115n that serves as an electron storage layer. A part of the n-type region 115n is connected to the conductive plug 120a1, and accumulates electrons transmitted from the lower electrode 15a side through the conductive plug 120a1. The n-type region 115n is also connected to the FD 116 (n-type region) of the green transfer transistor Tr1. A p-type region 115p (hole accumulation layer) is formed in the vicinity of the interface between the n-type region 115n and the surface S2.
 導電性プラグ120a1,120b1は、後述の導電性プラグ120a2,120b2と共に、有機光電変換部11Gと半導体基板11とのコネクタとして機能すると共に、有機光電変換部11Gにおいて生じた電子または正孔の伝送経路となるものである。本実施の形態では、導電性プラグ120a1は、有機光電変換部11Gの下部電極15aと導通しており、緑用蓄電層110Gと接続されている。導電性プラグ120b1は、有機光電変換部11Gの上部電極18と導通しており、正孔を排出するための配線となっている。 The conductive plugs 120a1 and 120b1, together with conductive plugs 120a2 and 120b2 described later, function as a connector between the organic photoelectric conversion unit 11G and the semiconductor substrate 11, and a transmission path for electrons or holes generated in the organic photoelectric conversion unit 11G. It will be. In the present embodiment, the conductive plug 120a1 is electrically connected to the lower electrode 15a of the organic photoelectric conversion unit 11G and is connected to the green power storage layer 110G. The conductive plug 120b1 is electrically connected to the upper electrode 18 of the organic photoelectric conversion unit 11G, and serves as a wiring for discharging holes.
 これらの導電性プラグ120a1,120b1はそれぞれ、例えば、導電型の半導体層により構成され、半導体基板11に埋め込み形成されたものである。この場合、導電性プラグ120a1はn型とし(電子の伝送経路となるため)、導電性プラグ120b1は、p型とする(正孔の伝送経路となるため)とよい。あるいは、導電性プラグ120a1,120b1は、例えば、貫通ビアにタングステン等の導電膜材料が埋設されたものであってもよい。この場合、例えば、シリコンとの短絡を抑制するために、酸化シリコン(SiO2)または窒化シリコン(SiN)等の絶縁膜でビア側面が覆われていることが望まし
い。
Each of these conductive plugs 120a1 and 120b1 is made of, for example, a conductive semiconductor layer and is embedded in the semiconductor substrate 11. In this case, the conductive plug 120a1 may be n-type (because it becomes an electron transmission path), and the conductive plug 120b1 may be p-type (because it becomes a hole transmission path). Alternatively, the conductive plugs 120a1 and 120b1 may be, for example, those in which a conductive film material such as tungsten is embedded in the through via. In this case, for example, in order to suppress a short circuit with silicon, it is desirable that the via side surface be covered with an insulating film such as silicon oxide (SiO 2 ) or silicon nitride (SiN).
 半導体基板11の面S2上には、多層配線層51が形成されている。多層配線層51では、複数の配線51aが層間絶縁膜52を介して配設されている。このように、光電変換素子10では、多層配線層51が受光面とは反対側に形成されており、いわゆる裏面照射型の固体撮像装置を実現可能となっている。この多層配線層51には、例えば、シリコンよりなる支持基板53が貼り合わせられている。 A multilayer wiring layer 51 is formed on the surface S2 of the semiconductor substrate 11. In the multilayer wiring layer 51, a plurality of wirings 51 a are arranged via an interlayer insulating film 52. Thus, in the photoelectric conversion element 10, the multilayer wiring layer 51 is formed on the side opposite to the light receiving surface, and a so-called back-illuminated solid-state imaging device can be realized. For example, a support substrate 53 made of silicon is bonded to the multilayer wiring layer 51.
(1-2.製造方法)
 光電変換素子10は、例えば、次のようにして製造することができる。図5A~図7Cは、光電変換素子10の製造方法を工程順に表したものである。なお、図7A~図7Cでは、光電変換素子10の要部構成のみを示している。
(1-2. Manufacturing method)
The photoelectric conversion element 10 can be manufactured as follows, for example. 5A to 7C show a method for manufacturing the photoelectric conversion element 10 in the order of steps. 7A to 7C show only the main configuration of the photoelectric conversion element 10. FIG.
 まず、半導体基板11を形成する。具体的には、シリコン基体1111上にシリコン酸化膜1112を介して、シリコン層110が形成された、いわゆるSOI基板を用意する。なお、シリコン層110のシリコン酸化膜1112側の面が半導体基板11の裏面(面S1)となる。図5A,図5Bでは、図1に示した構造と上下を逆転させた状態で図示している。続いて、図5Aに示したように、シリコン層110に、導電性プラグ120a1,120b1を形成する。この際、導電性プラグ120a1,120b1は、例えば、シリコン層110に貫通ビアを形成した後、この貫通ビア内に、上述したような窒化シリコン等のバリアメタルと、タングステンを埋め込むことにより形成することができる。あるいは、例えば、シリコン層110へのイオン注入により導電型不純物半導体層を形成してもよい。この場合、導電性プラグ120a1をn型半導体層、導電性プラグ120b1をp型半導体層として形成する。この後、シリコン層110内の深さの異なる領域に(互いに重畳するように)、例えば、図3Aに示したようなp型領域およびn型領域をそれぞれ有する無機光電変換部11B,11Rを、イオン注入により形成する。また、導電性プラグ120a1に隣接する領域には、緑用蓄積層111Gをイオン注入により形成する。このようにして、半導体基板11が形成される。 First, the semiconductor substrate 11 is formed. Specifically, a so-called SOI substrate in which a silicon layer 110 is formed on a silicon substrate 1111 via a silicon oxide film 1112 is prepared. The surface of the silicon layer 110 on the silicon oxide film 1112 side is the back surface (surface S1) of the semiconductor substrate 11. 5A and 5B, the structure shown in FIG. 1 is shown upside down. Subsequently, as shown in FIG. 5A, conductive plugs 120 a 1 and 120 b 1 are formed in the silicon layer 110. At this time, the conductive plugs 120a1 and 120b1 are formed by, for example, forming a through via in the silicon layer 110 and then burying the barrier metal such as silicon nitride and tungsten as described above in the through via. Can do. Alternatively, for example, a conductive impurity semiconductor layer may be formed by ion implantation into the silicon layer 110. In this case, the conductive plug 120a1 is formed as an n-type semiconductor layer, and the conductive plug 120b1 is formed as a p-type semiconductor layer. Thereafter, inorganic photoelectric conversion units 11B and 11R each having a p-type region and an n-type region as shown in FIG. 3A, for example, in regions with different depths in the silicon layer 110 (so as to overlap each other) It is formed by ion implantation. Further, a green storage layer 111G is formed by ion implantation in a region adjacent to the conductive plug 120a1. In this way, the semiconductor substrate 11 is formed.
 次いで、半導体基板11の面S2側に、転送トランジスタTr1~Tr3を含む画素トランジスタと、ロジック回路等の周辺回路を形成したのち、図5Bに示したように、半導体基板11の面S2上に、層間絶縁膜52を介して複数層の配線51aを形成することにより、多層配線層51を形成する。続いて、多層配線層51上に、シリコンよりなる支持基板53を貼り付けたのち、半導体基板11の面S1側から、シリコン基体1111およびシリコン酸化膜1112を剥離し、半導体基板11の面S1を露出させる。 Next, after forming pixel transistors including transfer transistors Tr1 to Tr3 and peripheral circuits such as logic circuits on the surface S2 side of the semiconductor substrate 11, as shown in FIG. 5B, on the surface S2 of the semiconductor substrate 11, A multilayer wiring layer 51 is formed by forming a plurality of layers of wirings 51 a via the interlayer insulating film 52. Subsequently, after a support substrate 53 made of silicon is pasted on the multilayer wiring layer 51, the silicon substrate 1111 and the silicon oxide film 1112 are peeled off from the surface S1 side of the semiconductor substrate 11, and the surface S1 of the semiconductor substrate 11 is removed. Expose.
 次に、半導体基板11の面S1上に、有機光電変換部11Gを形成する。具体的には、まず、図6Aに示したように、半導体基板11の面S1上に、上述したような酸化ハフニウム膜と酸化シリコン膜との積層膜よりなる層間絶縁膜12を形成する。例えば、ALD(原子層堆積)法により酸化ハフニウム膜を成膜した後、例えば、プラズマCVD(Chemical Vapor Deposition:化学気相成長)法により酸化シリコン膜を成膜する。この後、層間絶縁膜12の導電性プラグ120a1,120b1に対向する位置に、コンタクトホールH1a,H1bを形成し、これらのコンタクトホールH1a,H1bをそれぞれ埋め込むように、上述した材料よりなる導電性プラグ120a2,120b2を形成する。この際、導電性プラグ120a2,120b2を、遮光したい領域まで張り出して(遮光したい領域を覆うように)形成してもよいし、導電性プラグ120a2,120b2とは分離した領域に遮光層を形成してもよい。 Next, the organic photoelectric conversion unit 11G is formed on the surface S1 of the semiconductor substrate 11. Specifically, first, as shown in FIG. 6A, on the surface S1 of the semiconductor substrate 11, the interlayer insulating film 12 made of the laminated film of the hafnium oxide film and the silicon oxide film as described above is formed. For example, after forming a hafnium oxide film by an ALD (atomic layer deposition) method, a silicon oxide film is formed by, for example, a plasma CVD (Chemical Vapor Deposition) method. After that, contact holes H1a and H1b are formed at positions facing the conductive plugs 120a1 and 120b1 of the interlayer insulating film 12, and the conductive plugs made of the above-described materials so as to embed these contact holes H1a and H1b, respectively. 120a2 and 120b2 are formed. At this time, the conductive plugs 120a2 and 120b2 may be formed so as to extend to a region where light shielding is desired (so as to cover the region where light shielding is desired), or a light shielding layer may be formed in a region separated from the conductive plugs 120a2 and 120b2. May be.
 続いて、図6Bに示したように、上述した材料よりなる層間絶縁膜14を、例えば、プラズマCVD法により成膜する。なお、成膜後、例えば、CMP(Chemical Mechanical Polishing:化学機械研磨)法により、層間絶縁膜14の表面を平坦化することが望ましい。次いで、層間絶縁膜14の導電性プラグ120a2,120b2に対向する位置に、コンタクトホールをそれぞれ開口し、上述した材料を埋め込むことにより、配線層13a,13bを形成する。なお、この後、例えば、CMP法等を用いて、層間絶縁膜14上の余剰の配線層材料(タングステン等)を除去することが望ましい。次いで、層間絶縁膜14上に下部電極15aを形成する。具体的には、まず、層間絶縁膜14上の全面にわたって、例えば、スパッタ法により、上述した透明導電膜を成膜する。この後、フォトリソグラフィ法を用いて(フォトレジスト膜の露光、現像、ポストベーク等を行い)、例えば、ドライエッチングまたはウェットエッチングを用いて、選択的な部分を除去することにより、下部電極15aを形成する。この際、下部電極15aを、配線層13aに対向する領域に形成する。また、透明導電膜の加工の際には、配線層13bに対向する領域にも透明導電膜を残存させることにより、正孔の伝送経路の一部を構成する配線層15bを、下部電極15aと共に形成する。 Subsequently, as shown in FIG. 6B, the interlayer insulating film 14 made of the above-described material is formed by, for example, a plasma CVD method. Note that, after the film formation, it is desirable to planarize the surface of the interlayer insulating film 14 by, for example, a CMP (Chemical Mechanical Polishing) method. Subsequently, contact holes are respectively opened at positions of the interlayer insulating film 14 facing the conductive plugs 120a2 and 120b2, and the wiring layers 13a and 13b are formed by embedding the above-described materials. After that, it is desirable to remove excess wiring layer material (tungsten or the like) on the interlayer insulating film 14 by using, for example, a CMP method. Next, a lower electrode 15 a is formed on the interlayer insulating film 14. Specifically, first, the above-described transparent conductive film is formed over the entire surface of the interlayer insulating film 14 by, eg, sputtering. Thereafter, the lower electrode 15a is removed by removing a selective portion using, for example, dry etching or wet etching using a photolithography method (exposure, development, post-bake, etc. of the photoresist film). Form. At this time, the lower electrode 15a is formed in a region facing the wiring layer 13a. Further, when the transparent conductive film is processed, the transparent conductive film is also left in the region facing the wiring layer 13b, so that the wiring layer 15b constituting a part of the hole transmission path is formed together with the lower electrode 15a. Form.
 続いて、絶縁膜16を形成する。この際、まず半導体基板11上の全面にわたって、層間絶縁膜14、下部電極15aおよび配線層15bを覆うように、上述した材料よりなる絶縁膜16を、例えば、プラズマCVD法により成膜する。この後、図7Aに示したように、成膜した絶縁膜16を、例えば、CMP法により研磨することにより、下部電極15aおよび配線層15bを絶縁膜16から露出させると共に、下部電極15aおよび絶縁膜16間の段差を緩和する(望ましくは、平坦化する)。 Subsequently, an insulating film 16 is formed. At this time, first, the insulating film 16 made of the above-described material is formed by, for example, a plasma CVD method so as to cover the entire surface of the semiconductor substrate 11 so as to cover the interlayer insulating film 14, the lower electrode 15a, and the wiring layer 15b. Thereafter, as shown in FIG. 7A, the formed insulating film 16 is polished by, for example, a CMP method so that the lower electrode 15a and the wiring layer 15b are exposed from the insulating film 16, and the lower electrode 15a and the insulating film 16 are insulated. Steps between the films 16 are alleviated (preferably planarized).
 次に、図7Bに示したように、下部電極15a上に有機光電変換層17を形成する。この際、上述した材料よりなる光電変換材料を、例えば、メタルマスクを用いた真空蒸着法によりパターン形成する。なお、上述のように、有機光電変換層17の上層または下層に、他の有機層(バッファ層17A,17B等)を形成する際には、各層を同一のメタルマスクを用いて、真空工程において連続的に(真空一貫プロセスで)形成することが望ましい。また、有機光電変換層17の成膜方法としては、必ずしも上記のようなメタルマスクを用いた手法に限られず、他の手法、例えば、プリント技術等を用いても構わない。 Next, as shown in FIG. 7B, the organic photoelectric conversion layer 17 is formed on the lower electrode 15a. At this time, the photoelectric conversion material made of the above-described material is patterned by, for example, a vacuum deposition method using a metal mask. As described above, when other organic layers (buffer layers 17A, 17B, etc.) are formed on the upper layer or the lower layer of the organic photoelectric conversion layer 17, each layer is used in the vacuum process using the same metal mask. It is desirable to form continuously (in a vacuum consistent process). Further, the method for forming the organic photoelectric conversion layer 17 is not necessarily limited to the method using the metal mask as described above, and other methods such as a printing technique may be used.
 なお、上述したように、有機光電変換層17内に形成される結晶粒界はできるだけ小さいことが好ましい。結晶粒界を小さく形成する方法としては湿式法が挙げられる。例えば、有機半導体材料(2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene(C8-BTBT))を湿式法によって成膜した有機半導体膜において30cm2/Vsを超える高い移動度が得られた報告がある(H. Minemawari1, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 475, 364 (2011))。上記移動度は、1×1015-1以上の電荷移動率に相当する。湿式法では、溶媒の種類、濃度および乾燥条件等を制御することで結晶粒界の小さな膜を成膜でき、高い移動度を得ることができる。C8-BTBTはキナクリドンと同様に低分子の電子共役系半導体であるため、キナクリドン膜の移動度も湿式法によって向上できると推察される。湿式法としては、ディップコート法、スピンコート法、インクジェット法等が挙げられる。ディップコート法は、基板を一定の角度で溶液に浸漬して一定速度で引き上げ、基板付着の塗膜を乾燥させて成膜する方法である。スピンコート法は、高速回転する基板に塗布液を垂らし、遠心力で塗布液を基板全体に広げて均一な膜を形成する方法であり、積層膜の成膜も可能である。インクジェット法は、文字や写真を印刷するインクジェット技術を応用してデバイスなどを製造するプロセス技術で、インクの微小な液滴を細かいノズルから吐出して基板に直接に吹き付ける方法で、マスクを用いないで成膜することできる。 As described above, the grain boundary formed in the organic photoelectric conversion layer 17 is preferably as small as possible. As a method for forming a crystal grain boundary small, a wet method can be mentioned. For example, an organic semiconductor film in which an organic semiconductor material (2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene (C 8 -BTBT)) is formed by a wet method exceeds 30 cm 2 / Vs. High mobility has been reported (H. Minemawari1, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, T. Hasegawa, Nature 475, 364 (2011) ). The mobility corresponds to a charge mobility of 1 × 10 15 s −1 or more. In the wet method, a film having a small grain boundary can be formed by controlling the type, concentration, and drying conditions of the solvent, and high mobility can be obtained. Since C 8 -BTBT is a low-molecular electron conjugated semiconductor like quinacridone, it is presumed that the mobility of the quinacridone film can also be improved by a wet method. Examples of the wet method include a dip coating method, a spin coating method, and an ink jet method. The dip coating method is a method in which a substrate is immersed in a solution at a certain angle, pulled up at a constant speed, and a coating film adhered to the substrate is dried to form a film. The spin coating method is a method in which a coating solution is dropped on a substrate that rotates at high speed, and the coating solution is spread over the entire substrate by centrifugal force to form a uniform film, and a laminated film can also be formed. The inkjet method is a process technology that manufactures devices by applying inkjet technology that prints characters and photos. It is a method that ejects minute ink droplets from a fine nozzle and sprays them directly onto the substrate, without using a mask. Can be formed.
 続いて、図7Cに示したように、上部電極18および保護膜19を形成する。まず、上述した透明導電膜よりなる上部電極18を基板全面にわたって、例えば、真空蒸着法またはスパッタ法により、有機光電変換層17の上面および側面を覆うように成膜する。なお、有機光電変換層17は、水分、酸素、水素等の影響を受けて特性が変動し易いため、上部電極18は、有機光電変換層17と真空一貫プロセスにより成膜することが望ましい。この後(上部電極18をパターニングする前に)、上部電極18の上面を覆うように、上述した材料よりなる保護膜19を、例えば、プラズマCVD法により成膜する。次いで、上部電極18上に保護膜19を形成した後、上部電極18を加工する。 Subsequently, as shown in FIG. 7C, the upper electrode 18 and the protective film 19 are formed. First, the upper electrode 18 made of the above-described transparent conductive film is formed over the entire surface of the substrate so as to cover the upper surface and side surfaces of the organic photoelectric conversion layer 17 by, for example, vacuum deposition or sputtering. Note that the characteristics of the organic photoelectric conversion layer 17 are likely to fluctuate due to the influence of moisture, oxygen, hydrogen, etc., and therefore it is desirable that the upper electrode 18 be formed with the organic photoelectric conversion layer 17 by a consistent vacuum process. After this (before the upper electrode 18 is patterned), the protective film 19 made of the above-described material is formed by, for example, a plasma CVD method so as to cover the upper surface of the upper electrode 18. Next, after forming a protective film 19 on the upper electrode 18, the upper electrode 18 is processed.
 この後、フォトリソグラフィ法を用いたエッチングにより、上部電極18および保護膜19の選択的な部分を一括除去する。続いて、保護膜19に、コンタクトホールHを、例えば、フォトリソグラフィ法を用いたエッチングにより形成する。この際、コンタクトホールHは、有機光電変換層17と非対向の領域に形成することが望ましい。このコンタクトホールHの形成後においても、上記と同様、フォトレジストを剥離して、薬液を用いた洗浄を行うため、コンタクトホールHに対向する領域では、上部電極18が保護膜19から露出することになる。このため、上述したようなピン正孔の発生を考慮すると、有機光電変換層17の形成領域を避けて、コンタクトホールHが設けられることが望ましい。続いて、上述した材料よりなるコンタクトメタル層20を、例えば、スパッタ法等を用いて形成する。この際、コンタクトメタル層20は、保護膜19上に、コンタクトホールHを埋め込み、かつ配線層15bの上面まで延在するように形成する。最後に、半導体基板11上の全面にわたって、平坦化膜21を形成した後、この平坦化膜21上にオンチップレンズ22を形成することにより、図1に示した光電変換素子10が完成する。 Thereafter, selective portions of the upper electrode 18 and the protective film 19 are collectively removed by etching using a photolithography method. Subsequently, a contact hole H is formed in the protective film 19 by etching using, for example, a photolithography method. At this time, the contact hole H is desirably formed in a region not facing the organic photoelectric conversion layer 17. Even after the contact hole H is formed, the upper electrode 18 is exposed from the protective film 19 in a region facing the contact hole H in order to remove the photoresist and perform cleaning using a chemical solution as described above. become. For this reason, in consideration of the generation of pin holes as described above, it is desirable to provide the contact hole H while avoiding the formation region of the organic photoelectric conversion layer 17. Subsequently, the contact metal layer 20 made of the above-described material is formed using, for example, a sputtering method. At this time, the contact metal layer 20 is formed on the protective film 19 so as to bury the contact hole H and extend to the upper surface of the wiring layer 15b. Finally, after the planarization film 21 is formed over the entire surface of the semiconductor substrate 11, the on-chip lens 22 is formed on the planarization film 21, thereby completing the photoelectric conversion element 10 shown in FIG.
 上記のような光電変換素子10では、例えば、固体撮像装置の画素として、次のようにして信号電荷が取得される。即ち、図8に示したように、光電変換素子10に、オンチップレンズ22(図8には図示せず)を介して光Lが入射すると、光Lは、有機光電変換部11G、無機光電変換部11B,11Rの順に通過し、その通過過程において赤、緑、青の色光毎に光電変換される。図9に、入射光に基づく信号電荷(電子)取得の流れを模式的に示す。以下、各光電変換部における具体的な信号取得動作について説明する。 In the photoelectric conversion element 10 as described above, for example, signal charges are acquired as pixels of a solid-state imaging device as follows. That is, as shown in FIG. 8, when the light L is incident on the photoelectric conversion element 10 via the on-chip lens 22 (not shown in FIG. 8), the light L is converted into the organic photoelectric conversion unit 11G and the inorganic photoelectric conversion element. The conversion units 11B and 11R pass in order, and photoelectric conversion is performed for each of the red, green, and blue color lights in the passing process. FIG. 9 schematically shows the flow of signal charge (electron) acquisition based on incident light. Hereinafter, a specific signal acquisition operation in each photoelectric conversion unit will be described.
(有機光電変換部11Gによる緑色信号の取得)
 光電変換素子10へ入射した光Lのうち、まず、緑色光Lgが、有機光電変換部11Gにおいて選択的に検出(吸収)され、光電変換される。これにより、発生した電子-正孔対のうちの電子Egが下部電極15a側から取り出された後、伝送経路A(配線層13aおよび導電性プラグ120a1,120a2)を介して緑用蓄電層110Gへ蓄積される。蓄積された電子Egは、読み出し動作の際にFD116へ転送される。なお、正孔Hgは、上部電極18側から伝送経路B(コンタクトメタル層20、配線層13b,15bおよび導電性プラグ120b1,120b2)を介して排出される。
(Acquisition of green signal by organic photoelectric conversion unit 11G)
Of the light L incident on the photoelectric conversion element 10, first, the green light Lg is selectively detected (absorbed) by the organic photoelectric conversion unit 11G and subjected to photoelectric conversion. As a result, electrons Eg out of the generated electron-hole pairs are taken out from the lower electrode 15a side, and then transferred to the green power storage layer 110G via the transmission path A (the wiring layer 13a and the conductive plugs 120a1 and 120a2). Accumulated. The accumulated electron Eg is transferred to the FD 116 during a read operation. The holes Hg are discharged from the upper electrode 18 side through the transmission path B (contact metal layer 20, wiring layers 13b and 15b, and conductive plugs 120b1 and 120b2).
 具体的には、次のようにして信号電荷を蓄積する。即ち、本実施の形態では、下部電極15aに、例えば、所定の負の電位VL(<0V)が印加され、上部電極18には、電位VLよりも低い電位VU(<VL)が印加される。なお、電位VLは、例えば、多層配線層51内の配線51aから、伝送経路Aを通じて、下部電極15aへ与えられる。電位VLは、例えば、多層配線層51内の配線51aから、伝送経路Bを通じて、上部電極18へ与えられる。これにより、電荷蓄積状態(図示しないリセットトランジスタおよび転送トランジスタTr1のオフ状態)では、有機光電変換層17で発生した電子-正孔対のうち、電子が、相対的に高電位となっている下部電極15a側へ導かれる(正孔は上部電極18側へ導かれる)。このようにして、下部電極15aから電子Egが取り出され、伝送経路Aを介して緑用蓄電層110G(詳細には、n型領域115n)に蓄積される。また、この電子Egの蓄積により、緑用蓄電層110Gと導通する下部電極15aの電位VLも変動する。この電位VLの変化量が信号電位(ここでは、緑色信号の電位)に相当する。 Specifically, signal charges are accumulated as follows. That is, in the present embodiment, for example, a predetermined negative potential VL (<0 V) is applied to the lower electrode 15a, and a potential VU (<VL) lower than the potential VL is applied to the upper electrode 18. . The potential VL is applied to the lower electrode 15a from the wiring 51a in the multilayer wiring layer 51 through the transmission path A, for example. The potential VL is applied to the upper electrode 18 from the wiring 51a in the multilayer wiring layer 51 through the transmission path B, for example. Thereby, in the charge accumulation state (the unillustrated reset transistor and transfer transistor Tr1 are in the off state), the electrons out of the electron-hole pairs generated in the organic photoelectric conversion layer 17 have a relatively high potential. It is led to the electrode 15a side (holes are led to the upper electrode 18 side). In this way, the electrons Eg are extracted from the lower electrode 15a and accumulated in the green power storage layer 110G (specifically, the n-type region 115n) via the transmission path A. Further, due to the accumulation of the electrons Eg, the potential VL of the lower electrode 15a connected to the green power storage layer 110G also varies. The amount of change in the potential VL corresponds to the signal potential (here, the potential of the green signal).
 そして、読み出し動作の際には、転送トランジスタTr1がオン状態となり、緑用蓄電層110Gに蓄積された電子Egが、FD116に転送される。これにより、緑色光Lgの受光量に基づく緑色信号が、図示しない他の画素トランジスタを通じて後述の垂直信号線Lsigに読み出される。この後、図示しないリセットトランジスタおよび転送トランジスタTr1がオン状態となり、n型領域であるFD116と、緑用蓄電層110Gの蓄電領域(n型領域115n)とが、例えば、電源電圧VDDにリセットされる。 In the read operation, the transfer transistor Tr1 is turned on, and the electron Eg stored in the green power storage layer 110G is transferred to the FD. As a result, a green signal based on the amount of received light of the green light Lg is read out to a vertical signal line Lsig described later through another pixel transistor (not shown). Thereafter, the reset transistor and transfer transistor Tr1 (not shown) are turned on, and the FD 116, which is the n-type region, and the power storage region (n-type region 115n) of the green power storage layer 110G are reset to the power supply voltage VDD, for example. .
(無機光電変換部11B,Rによる青色信号,赤色信号の取得)
 続いて、有機光電変換部11Gを透過した光のうち、青色光は無機光電変換部11B、赤色光は無機光電変換部11Rにおいて、それぞれ順に吸収され、光電変換される。無機光電変換部11Bでは、入射した青色光に対応した電子Ebがn型領域(n型光電変換層111n)に蓄積され、蓄積された電子Edは、読み出し動作の際にFD113へと転送される。なお、正孔は、図示しないp型領域に蓄積される。同様に、無機光電変換部11Rでは、入射した赤色光に対応した電子Erがn型領域(n型光電変換層112n)に蓄積され、蓄積された電子Erは、読み出し動作の際にFD114へと転送される。なお、正孔は、図示しないp型領域に蓄積される。
(Acquisition of blue signal and red signal by the inorganic photoelectric conversion units 11B, R)
Subsequently, among the light transmitted through the organic photoelectric conversion unit 11G, blue light is absorbed and photoelectrically converted in order by the inorganic photoelectric conversion unit 11B and red light by the inorganic photoelectric conversion unit 11R. In the inorganic photoelectric conversion unit 11B, the electrons Eb corresponding to the incident blue light are accumulated in the n-type region (n-type photoelectric conversion layer 111n), and the accumulated electrons Ed are transferred to the FD 113 during the read operation. . Holes are accumulated in a p-type region (not shown). Similarly, in the inorganic photoelectric conversion unit 11R, electrons Er corresponding to the incident red light are accumulated in the n-type region (n-type photoelectric conversion layer 112n), and the accumulated electrons Er are transferred to the FD 114 during the read operation. Transferred. Holes are accumulated in a p-type region (not shown).
 電荷蓄積状態では、上述のように、有機光電変換部11Gの下部電極15aに負の電位VLが印加されることから、無機光電変換部11Bの正孔蓄積層であるp型領域(図2のp型領域111p)の正孔濃度が増える傾向になる。このため、p型領域111pと層間絶縁膜12との界面における暗電流の発生を抑制することができる。 In the charge accumulation state, as described above, the negative potential VL is applied to the lower electrode 15a of the organic photoelectric conversion unit 11G. Therefore, the p-type region (in FIG. 2) that is the hole accumulation layer of the inorganic photoelectric conversion unit 11B. The hole concentration of the p-type region 111p) tends to increase. For this reason, generation of dark current at the interface between the p-type region 111p and the interlayer insulating film 12 can be suppressed.
 読み出し動作の際には、上記有機光電変換部11Gと同様、転送トランジスタTr2,Tr3がオン状態となり、n型光電変換層111n,112nにそれぞれ蓄積された電子Eb,Erが、FD113,114に転送される。これにより、青色光Lbの受光量に基づく青色信号と、赤色光Lrの受光量に基づく赤色信号とがそれぞれ、図示しない他の画素トランジスタを通じて後述の垂直信号線Lsigに読み出される。この後、図示しないリセットトランジスタおよび転送トランジスタTr2,3がオン状態となり、n型領域であるFD113,114が、例えば、電源電圧VDDにリセットされる。 In the read operation, similarly to the organic photoelectric conversion unit 11G, the transfer transistors Tr2 and Tr3 are turned on, and the electrons Eb and Er accumulated in the n-type photoelectric conversion layers 111n and 112n are transferred to the FDs 113 and 114, respectively. Is done. As a result, a blue signal based on the amount of received light of the blue light Lb and a red signal based on the amount of received light of the red light Lr are read out to a vertical signal line Lsig described later through another pixel transistor (not shown). Thereafter, the reset transistor and transfer transistors Tr2, 3 (not shown) are turned on, and the FDs 113, 114, which are n-type regions, are reset to the power supply voltage VDD, for example.
 このように、縦方向に有機光電変換部11Gを、無機光電変換部11B,11Rを積層することにより、カラーフィルタを設けることなく、赤、緑、青の色光を分離して検出すし、各色の信号電荷を得ることができる。これにより、カラーフィルタの色光吸収に起因する光損失(感度低下)や、画素補間処理に伴う偽色の発生を抑制することができる。 Thus, by stacking the organic photoelectric conversion unit 11G in the vertical direction and the inorganic photoelectric conversion units 11B and 11R, the red, green and blue color lights are separated and detected without providing a color filter. A signal charge can be obtained. Thereby, it is possible to suppress light loss (sensitivity reduction) due to color light absorption of the color filter and generation of false color associated with pixel interpolation processing.
(1-3.作用・効果)
 有機化合物を用いた光電変換素子においては光電変換層の光応答性が重要である。特に、デジタルカメラ等に用いられる光電変換素子(固体撮像素子)では、光電変換層の応答性が低い場合、動被写体の撮像時や動画の撮影時に残像を引き起こす虞がある。
(1-3. Action and effect)
In a photoelectric conversion element using an organic compound, the photoresponsiveness of the photoelectric conversion layer is important. In particular, in a photoelectric conversion element (solid-state imaging element) used for a digital camera or the like, when the response of the photoelectric conversion layer is low, there is a possibility that an afterimage may be caused when a moving subject is captured or a moving image is captured.
 図10は、バルクヘテロ構造を有する光電変換層213を備えた有機光電変換部200の断面構成を表したものである。この有機光電変換部200では、光電変換層213はp型半導体材料とn型半導体材料とから構成されており、光電変換層213中には、p型半導体層213aおよびn型半導体層213bが混在している。外部から入射した光Lは、このp型半導体層213aおよびn型半導体層213bの境界、即ち、P/N界面で電荷に変換され、発生した電荷は、正孔はp型有機半導体材料によって、電子はn型有機半導体材料によって対向配置された電極(例えば、正孔は下部電極211に、電子は上部電極215)にそれぞれ輸送される。このため、図10に示したようなバルクヘテロ構造を有する有機光電変換部200において高い応答性を得るためには、p型有機半導体材料およびn型有機半導体材料の両方が高い電荷輸送特性を有することが求められる。 FIG. 10 illustrates a cross-sectional configuration of the organic photoelectric conversion unit 200 including the photoelectric conversion layer 213 having a bulk heterostructure. In the organic photoelectric conversion unit 200, the photoelectric conversion layer 213 is composed of a p-type semiconductor material and an n-type semiconductor material, and the p-type semiconductor layer 213a and the n-type semiconductor layer 213b are mixed in the photoelectric conversion layer 213. is doing. The light L incident from the outside is converted into a charge at the boundary between the p-type semiconductor layer 213a and the n-type semiconductor layer 213b, that is, the P / N interface. Electrons are transported to electrodes (for example, holes are transferred to the lower electrode 211 and electrons are transferred to the upper electrode 215) that are opposed to each other by an n-type organic semiconductor material. For this reason, in order to obtain high responsiveness in the organic photoelectric conversion unit 200 having the bulk heterostructure as shown in FIG. 10, both the p-type organic semiconductor material and the n-type organic semiconductor material have high charge transport characteristics. Is required.
 一般的にp型有機半導体材料としては、分光特性に優れたキナクリドン(QD)が広く用いられている。キナクリドンには、前述したように、少なくとも5種類の結晶構造(α-QD結晶相,β1-QD結晶相,β2-QD結晶相,β3-QD結晶相,γ-QD結晶相,)が実験的に確認されている。これら結晶構造の存在確率は、密度汎関数法を用いて格子エネルギーを計算することで見積もることができる。格子エネルギーとは、結晶構造中のキナクリドン1分子の全エネルギーから孤立したキナクリドン分子の全エネルギーを差し引いたものである。計算にはPBE汎関数を使用し、波動関数のカットオフエネルギーは40Ry.とした。表1は、各結晶構造における格子エネルギーをまとめたものである。表1から、β2-QD結晶相が最も格子エネルギーが小さく安定であることがわかる。従って、5種類の結晶構造の中でβ2-QD結晶相の存在確率が最も高いと推察される。 In general, quinacridone (QD) having excellent spectral characteristics is widely used as a p-type organic semiconductor material. As described above, quinacridone has at least five kinds of crystal structures (α-QD crystal phase, β 1 -QD crystal phase, β 2 -QD crystal phase, β 3 -QD crystal phase, γ-QD crystal phase). Has been confirmed experimentally. The existence probability of these crystal structures can be estimated by calculating the lattice energy using the density functional method. The lattice energy is obtained by subtracting the total energy of isolated quinacridone molecules from the total energy of one quinacridone molecule in the crystal structure. The PBE functional was used for the calculation, and the cutoff energy of the wave function was 40 Ry. Table 1 summarizes the lattice energy in each crystal structure. From Table 1, it can be seen that the β 2 -QD crystal phase has the smallest lattice energy and is stable. Therefore, it is presumed that the existence probability of the β 2 -QD crystal phase is the highest among the five types of crystal structures.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、キナクリドンは、表1からわかるように、いずれの結晶構造も約80kcal/molの大きな格子エネルギーを有するため、成膜工程中に結晶化しやすい。このため、キナクリドンを用いた光電変換層中には、図11に示したように、多数の結晶粒1231が生じると共に、各結晶粒1231の間には、不連続な境界面、即ち、結晶粒界1232が形成される。結晶粒界1232は、電荷分離界面を増やして光電変換効率を向上させる反面、電荷移動度を低下させる。 Further, as can be seen from Table 1, quinacridone has a large lattice energy of about 80 kcal / mol, and thus is easily crystallized during the film forming process. Therefore, in the photoelectric conversion layer using quinacridone, as shown in FIG. 11, a large number of crystal grains 1231 are generated, and a discontinuous boundary surface, that is, a crystal grain, is formed between the crystal grains 1231. A field 1232 is formed. The crystal grain boundary 1232 increases the charge separation interface to improve the photoelectric conversion efficiency, but reduces the charge mobility.
 そこで、本実施の形態では、対向配置された下部電極15aと、上部電極18との間に、各々が(001)面、(010)面、(100)面を有する結晶面を含むα結晶相、β2結晶相またはγ結晶相からなる複数の結晶粒を形成するキナクリドンまたはキナクリドン誘導体を含む光電変換層を設け、隣接する同じ結晶相からなる結晶粒同士では、互いに対向する各面の距離が所定の値以下となるようにした。 Therefore, in the present embodiment, an α crystal phase including crystal planes each having a (001) plane, a (010) plane, and a (100) plane between the lower electrode 15a and the upper electrode 18 arranged to face each other. Providing a photoelectric conversion layer containing quinacridone or a quinacridone derivative that forms a plurality of crystal grains composed of β 2 crystal phase or γ crystal phase, and in the adjacent crystal grains composed of the same crystal phase, the distances between the faces facing each other are It was made to become below a predetermined value.
 図12は、本実施の形態における有機光電変換層17中の多数のキナクリドンの結晶粒間に形成される結晶粒界の構造の一例を表したものである。具体的には、α-QD結晶相の(001)面と(010)面とが対向した際の構造を表したものである。なお、2つの結晶粒の結晶面は互いに平行で、この結晶面に存在する原子(最表面の原子)間の距離を結晶粒界の距離dとする。キナクリドンあるいはキナクリドン誘導体を含む有機光電変換層17には、α-QD結晶相からなる結晶粒同士の境界面として、図12に示したように、α-QD結晶相の(001)面と(010)面とが対向した結晶粒界のほか、α-QD結晶相の(001)面と(001)面、(001)面と(100)面、(010)面と(010)面、(010)面と(100)面、(100)面と(100)面とが向かい合って形成される6通りの結晶粒界が形成される。また、これら6通りの結晶粒界は、β2-QD結晶相からなる結晶粒同士およびγ-QD結晶相からなる結晶粒同士でも形成される。 FIG. 12 illustrates an example of a structure of a crystal grain boundary formed between a large number of crystal grains of quinacridone in the organic photoelectric conversion layer 17 in the present embodiment. Specifically, it shows the structure when the (001) plane and the (010) plane of the α-QD crystal phase face each other. The crystal planes of the two crystal grains are parallel to each other, and the distance between the atoms (outermost surface atoms) existing on the crystal plane is defined as the distance d of the crystal grain boundary. As shown in FIG. 12, the organic photoelectric conversion layer 17 containing quinacridone or a quinacridone derivative has (001) and (010) planes of the α-QD crystal phase as the interface between crystal grains consisting of the α-QD crystal phase. ) Plane, (001) plane and (001) plane, (001) plane and (100) plane, (010) plane and (010) plane, (010) ) Plane and (100) plane, and (100) plane and (100) plane face each other, and six kinds of crystal grain boundaries are formed. These six crystal grain boundaries are also formed between crystal grains composed of β 2 -QD crystal phases and crystal grains composed of γ-QD crystal phases.
 これら結晶粒界間における電荷移動率は、密度汎関数法によって算出される(H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. Kudo, D. Hobara, Y. Tokita, and M. Itabashi, J. Chem. Phys. 139, 014707 (2013))。まず、図13に示したように、対向する2つの結晶粒のそれぞれの最表面に存在する分子を1つずつ選択する。この2つの分子のうち、図14に示したように一方の分子(分子A)を基準とし、この分子Aに対する他方の分子(分子B)の位置関係を系統的に変えてトランスファー積分を計算したのち、マーカス理論に基づいて電荷移動率を求める。計算には、B3LYP汎関数を使用し、基底関数は3-21+G(d)を用いた。d(結晶粒界の距離)については10点の計算を行った。具体的には、結晶面に平行なy-z面内の相対位置については図14中の黒丸で示した25点、結晶面に垂直な軸の周りの回転角φについては4点(0°,90°,180°,270°)の計算を行い、1つの結晶粒界の距離(d)に対して100点の電荷移動率を算出して平均を求めた。 The charge transfer rate between these grain boundaries is calculated by the density functional method (H. Kobayashi, N. Kobayashi, S. Hosoi, N. Koshitani, D. Murakami, R. Shirasawa, Y. Kudo, D. Hobara, Y. Tokita, and M. Itabashi, J. Chem. Phys. 139, 014707 (2013)). First, as shown in FIG. 13, one molecule is selected from each outermost surface of two opposing crystal grains. Of these two molecules, as shown in FIG. 14, the transfer integral was calculated by systematically changing the positional relationship of the other molecule (molecule B) with respect to the molecule A with one molecule (molecule A) as a reference. After that, the charge transfer rate is obtained based on Marcus theory. For the calculation, a B3LYP functional was used, and 3-21 + G (d) was used as the basis function. For d (distance between crystal grain boundaries), 10 points were calculated. Specifically, the relative position in the yz plane parallel to the crystal plane is 25 points indicated by black circles in FIG. 14, and the rotation angle φ around the axis perpendicular to the crystal plane is 4 points (0 °). , 90 [deg.], 180 [deg.], 270 [deg.]), And calculating the average of charge transfer rates at 100 points with respect to the distance (d) of one crystal grain boundary.
 図15A,図15Bは、α-QD結晶相の各対向面における結晶粒界の距離(d)と電荷移動率との関係を表したものである。図15Aは、最高占有分子軌道(HOMO)間、図15Bは最低非占有分子軌道(LUMO)間の電荷移動率を表したものであり、それぞれ、正孔移動率(図15A)および電子移動率(図15B)を表している。およびは、図15A,図15Bと同様にそれぞれβ2結晶相(図16A,図16B)およびγ結晶相(図17A,図17B)の各対向面における結晶粒界の距離(d)と電荷移動率との関係を表したものである。イメージセンサ等の撮像装置では、一般的に、1×1010-1以上の正孔移動率および電子移動率が求められている。表2は、この条件を満たすα結晶相、β2結晶相およびγ結晶相における結晶粒界の距離(d)の範囲をまとめたものである。 FIG. 15A and FIG. 15B show the relationship between the distance (d) of the grain boundary in each facing surface of the α-QD crystal phase and the charge transfer rate. FIG. 15A shows the charge transfer rate between the highest occupied molecular orbitals (HOMO), and FIG. 15B shows the charge transfer rate between the lowest unoccupied molecular orbitals (LUMO), and the hole transfer rate (FIG. 15A) and the electron transfer rate, respectively. (FIG. 15B) is shown. And FIG. 15A and FIG. 15B, respectively, the distance (d) of the grain boundary and the charge transfer at the opposing faces of the β 2 crystal phase (FIGS. 16A and 16B) and the γ crystal phase (FIGS. 17A and 17B), respectively. It represents the relationship with the rate. In an imaging apparatus such as an image sensor, a hole mobility and an electron mobility of 1 × 10 10 s −1 or more are generally required. Table 2 summarizes the range of the grain boundary distance (d) in the α crystal phase, β 2 crystal phase, and γ crystal phase that satisfy this condition.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から、α-QD結晶相の(001)面を含む結晶粒界において1×1010-1以上の電荷移動率は、結晶粒界の距離(d)が2.8×10-10m以下で得られることがわかる。同様に(010)面を含む結晶粒界では結晶粒界の距離(d)が2.8×10-10m以下、(100)面を含む結晶粒界では結晶粒界の距離(d)が3.1×10-10m以下であることがわかる。β2-QD結晶相の(001)面を含む結晶粒界において1×1010-1以上の電荷移動率は、結晶粒界の距離(d)が2.3×10-10m以下で、(010)面を含む結晶粒界では結晶粒界の距離(d)が2.9×10-10m以下で、(100)面を含む結晶粒界では結晶粒界の距離(d)が3.3×10-10m以下で得られることがわかる。γ-QD結晶相の(001)面を含む結晶粒界において1×1010-1以上の電荷移動率は、結晶粒界の距離(d)が1.7×10-10m以下で、(010)面を含む結晶粒界では結晶粒界の距離(d)が2.7×10-10m以下で、(100)面を含む結晶粒界では結晶粒界の距離(d)が2.1×10-10m以下であることがわかる。 From Table 2, the charge transfer rate of 1 × 10 10 s −1 or more at the grain boundary including the (001) plane of the α-QD crystal phase is 2.8 × 10 −10 when the distance (d) of the grain boundary is It can be seen that it can be obtained at m or less. Similarly, the crystal grain boundary distance (d) is 2.8 × 10 −10 m or less at the crystal grain boundary including the (010) plane, and the crystal grain boundary distance (d) is at the crystal grain boundary including the (100) plane. It can be seen that it is 3.1 × 10 −10 m or less. In the grain boundary including the (001) plane of the β 2 -QD crystal phase, the charge transfer rate of 1 × 10 10 s −1 or more has a crystal grain boundary distance (d) of 2.3 × 10 −10 m or less. , The grain boundary distance (d) is 2.9 × 10 −10 m or less at the crystal grain boundary including the (010) plane, and the crystal grain boundary distance (d) is at the crystal grain boundary including the (100) plane. It can be seen that it can be obtained at 3.3 × 10 −10 m or less. The charge transfer rate of 1 × 10 10 s −1 or more at a grain boundary including the (001) plane of the γ-QD crystal phase is such that the distance (d) of the crystal grain boundary is 1.7 × 10 −10 m or less. The crystal grain boundary distance (d) is 2.7 × 10 −10 m or less at the crystal grain boundary including the (010) plane, and the crystal grain boundary distance (d) is 2 at the crystal grain boundary including the (100) plane. It can be seen that it is 1 × 10 −10 m or less.
 以上のことから、α結晶相からなる複数の結晶粒の互いに対向する各面の距離は、互いに対向する(001)面と(001)面では2.8×10-10m以下、互いに対向する(001)面と(010)面では2.8×10-10m以下、互いに対向する(001)面と(100)面では3.1×10-10m以下、互いに対向する(010)面と(010)面では4.1×10-10m以下、互いに対向する(010)面と(100)面では3.6×10-10m以下あるいは、互いに対向する(100)面と(100)面では3.2×10-10m以下のうちの少なくとも1つの条件を満たすことが好ましい。β2結晶相からなる複数の結晶粒の互いに対向する各面の距離は、互いに対向する(001)面と(001)面では2.3×10-10m以下、互いに対向する(001)面と(010)面では2.9×10-10m以下、互いに対向する(001)面と(100)面では3.3×10-10m以下、互いに対向する(010)面と(010)面では3.2×10-10m以下、互いに対向する(010)面と(100)面では3.7×10-10m以下あるいは、互いに対向する(100)面と(100)面では4.1×10-10m以下のうちの少なくとも1つの条件を満たすことが好ましい。γ結晶相からなる複数の結晶粒の互いに対向する各面の距離は、互いに対向する(001)面と(001)面では1.7×10-10m以下、互いに対向する(001)面と(010)面では2.7×10-10m以下、互いに対向する(001)面と(100)面では2.1×10-10m以下、互いに対向する(010)面と(010)面では3.9×10-10m以下、互いに対向する(010)面と(100)面では3.2×10-10m以下あるいは、互いに対向する(100)面と(100)面では2.7×10-10m以下のうちの少なくとも1つの条件を満たすことが好ましいといえる。各結晶相における複数の結晶粒のうち隣接する結晶粒同士の互いに対向する各面の距離(結晶粒界の距離)が上記範囲内にすることで、各結晶相の結晶粒界における電荷移動度の低下が抑制される。 From the above, the distance between the mutually facing surfaces of the plurality of crystal grains composed of the α crystal phase is 2.8 × 10 −10 m or less in the (001) plane and the (001) plane facing each other. The (001) plane and the (010) plane are 2.8 × 10 −10 m or less, and the (001) plane and the (100) plane are 3.1 × 10 −10 m or less and the (010) plane facing each other. And (010) plane is 4.1 × 10 −10 m or less, and the (010) plane and (100) plane facing each other are 3.6 × 10 −10 m or less, or the (100) plane and (100 ) Surface, it is preferable that at least one condition of 3.2 × 10 −10 m or less is satisfied. The distance between the mutually facing faces of the plurality of crystal grains composed of β 2 crystal phase is 2.3 × 10 −10 m or less between the (001) face and the (001) face facing each other, and the (001) faces facing each other. And (010) plane is 2.9 × 10 −10 m or less, and (001) plane and (100) plane facing each other are 3.3 × 10 −10 m or less and (010) plane and (010) facing each other 3.2 × 10 −10 m or less for the surface, 3.7 × 10 −10 m or less for the (010) plane and (100) plane facing each other, or 4 for the (100) plane and (100) plane facing each other. It is preferable that at least one condition of 1 × 10 −10 m or less is satisfied. The distances between the mutually opposing faces of the plurality of crystal grains composed of the γ crystal phase are 1.7 × 10 −10 m or less for the (001) face and the (001) face facing each other, and the (001) face facing each other. The (010) plane is 2.7 × 10 −10 m or less, and the (001) plane and (100) plane facing each other are 2.1 × 10 −10 m or less and the (010) plane and (010) plane facing each other. Is 3.9 × 10 −10 m or less, and the (010) plane and (100) plane facing each other are 3.2 × 10 −10 m or less, or the (100) plane and (100) plane facing each other are 2. It can be said that it is preferable to satisfy at least one condition of 7 × 10 −10 m or less. The charge mobility at the crystal grain boundary of each crystal phase is achieved by setting the distance between the mutually opposing faces of the crystal grains in each crystal phase (distance of the crystal grain boundary) within the above range. Is suppressed.
 以上、本実施の形態では、有機光電変換層17を、各々が(001)面、(010)面、(100)面を有する結晶面を含むα結晶相、β2結晶相またはγ結晶相からなる複数の結晶粒を形成するキナクリドンまたはキナクリドン誘導体を用いて形成し、このキナクリドンまたはキナクリドン誘導体を含む有機光電変換層17は、各結晶相における複数の結晶粒のうち隣接する結晶粒同士では、互いに対向する各面の距離が上記の範囲内の値を有する構造を含むようにした。これにより、結晶粒界における電荷移動度の低下が抑制され、残像特性が向上、即ち、残像の発生を抑制することが可能な光電変換素子を提供することが可能となる。 As described above, in the present embodiment, the organic photoelectric conversion layer 17 is formed from an α crystal phase, a β 2 crystal phase, or a γ crystal phase including crystal planes each having a (001) plane, a (010) plane, and a (100) plane. Formed by using quinacridone or a quinacridone derivative that forms a plurality of crystal grains, and the organic photoelectric conversion layer 17 containing the quinacridone or quinacridone derivative is adjacent to each other among the plurality of crystal grains in each crystal phase. A structure in which the distance between the opposing surfaces has a value within the above range is included. Accordingly, it is possible to provide a photoelectric conversion element in which a decrease in charge mobility at a crystal grain boundary is suppressed and an afterimage characteristic is improved, that is, generation of an afterimage can be suppressed.
 次に、本開示の第2の実施の形態および変形例について説明する。なお、上記第1の実施の形態と同様の構成要素については同一の符号を付し、その説明を省略する。 Next, a second embodiment and a modified example of the present disclosure will be described. In addition, the same code | symbol is attached | subjected about the component similar to the said 1st Embodiment, and the description is abbreviate | omitted.
<2.第2の実施の形態>
 図18は、本開示の第2の実施の形態の光電変換素子(光電変換素子60)の断面構成を表したものである。光電変換素子60は、上記第1の実施の形態における光電変換素子10と同様に、例えば、CCDイメージセンサまたはCMOSイメージセンサ等の固体撮像装置において1つの画素を構成するものである。光電変換素子60は、半導体基板11の表面(受光面とは反対側の面S2;第2面)側に、画素トランジスタ(後述の転送トランジスタTr1~3を含む)が形成されると共に、多層配線層(多層配線層51)を有するものである。
<2. Second Embodiment>
FIG. 18 illustrates a cross-sectional configuration of a photoelectric conversion element (photoelectric conversion element 60) according to the second embodiment of the present disclosure. The photoelectric conversion element 60 constitutes one pixel in a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, for example, in the same manner as the photoelectric conversion element 10 in the first embodiment. In the photoelectric conversion element 60, pixel transistors (including transfer transistors Tr1 to 3 described later) are formed on the surface (surface S2 opposite to the light receiving surface; second surface) side of the semiconductor substrate 11, and multilayer wiring It has a layer (multilayer wiring layer 51).
 本実施の形態の光電変換素子60は、それぞれ異なる波長域の光を選択的に検出して光電変換を行う1つの有機光電変換部61Gと、2つの無機光電変換部11B,11Rとが縦方向に積層された構造を有し、有機光電変換部61Gは、有機半導体材料を用いて形成された有機光電変換層67を有する。有機光電変換層67を構成する有機半導体材料は、有機光電変換層67内において、複数の結晶粒を形成し、その結晶粒は、結晶粒内の電荷移動に関する異方性係数(η)が0.3以上1以下のものである。なお、本実施の形態の有機光電変換層67が、本開示における「光電変換層」の一具体例である。 In the photoelectric conversion element 60 of the present embodiment, one organic photoelectric conversion unit 61G that selectively detects light in different wavelength ranges and performs photoelectric conversion, and two inorganic photoelectric conversion units 11B and 11R are in the vertical direction. The organic photoelectric conversion unit 61G includes an organic photoelectric conversion layer 67 formed using an organic semiconductor material. The organic semiconductor material constituting the organic photoelectric conversion layer 67 forms a plurality of crystal grains in the organic photoelectric conversion layer 67, and the crystal grains have an anisotropy coefficient (η) relating to charge transfer in the crystal grains of 0. .3 or more and 1 or less. The organic photoelectric conversion layer 67 of the present embodiment is a specific example of “photoelectric conversion layer” in the present disclosure.
(2-1.有機光電変換層の構成)
 光電変換素子60は、上記光電変換素子10と同様の構成を有し、上記のように、1つの有機光電変換部61Gと、2つの無機光電変換部11B,11Rとの積層構造を有している。これにより、光電変換素子60は、1つの素子で赤(R),緑(G),青(B)の各色信号を取得するようになっている。
(2-1. Configuration of organic photoelectric conversion layer)
The photoelectric conversion element 60 has the same configuration as that of the photoelectric conversion element 10, and has a stacked structure of one organic photoelectric conversion unit 61G and two inorganic photoelectric conversion units 11B and 11R as described above. Yes. Thereby, the photoelectric conversion element 60 acquires each color signal of red (R), green (G), and blue (B) with one element.
 有機光電変換層67は、選択的な波長域の光を光電変換する一方、他の波長域の光を透過させる有機半導体材料を用いて構成されている。この有機半導体材料が、有機光電変換層67内において、電荷移動に関する異方性係数(η)が0.3以上1以下の複数の結晶粒を形成している。 The organic photoelectric conversion layer 67 is configured using an organic semiconductor material that photoelectrically converts light in a selective wavelength range while transmitting light in other wavelength ranges. This organic semiconductor material forms a plurality of crystal grains having an anisotropy coefficient (η) relating to charge transfer of 0.3 or more and 1 or less in the organic photoelectric conversion layer 67.
 本実施の形態の有機光電変換層67を構成する有機半導体材料としては、α結晶相またはγ結晶相を形成するキナクリドンおよびキナクリドン誘導体、塩素化ホウ素サブフタロシアニンおよび塩素化ホウ素サブフタロシアニン誘導体、ペンタセンおよびペンタセン誘導体、ベンゾチエノベンゾチオフェンおよびベンゾチエノベンゾチオフェン誘導体、フラーレンおよびフラーレン誘導体が挙げられる。有機光電変換層67は、上記有機半導体材料を1種または2種以上含んで構成されている。これら有機半導体材料が、有機光電変換層67内においてp型半導体またはn型半導体として作用する。なお、有機光電変換層67は、有機p型半導体および有機n型半導体のうちの一方または両方を含んで構成されることが望ましい。また、上記有機半導体材料は、一緒に用いられる有機半導体材料との組み合わせによって、p型半導体またはn型半導体として作用する。各材料の組み合わせと、その場合の役割は、上記第1の実施の形態と同様である。 Organic semiconductor materials constituting the organic photoelectric conversion layer 67 of the present embodiment include quinacridone and quinacridone derivatives, chlorinated boron subphthalocyanine and chlorinated boron subphthalocyanine derivatives, pentacene and pentacene that form an α crystal phase or a γ crystal phase. Derivatives, benzothienobenzothiophene and benzothienobenzothiophene derivatives, fullerenes and fullerene derivatives. The organic photoelectric conversion layer 67 includes one or more of the above organic semiconductor materials. These organic semiconductor materials act as a p-type semiconductor or an n-type semiconductor in the organic photoelectric conversion layer 67. The organic photoelectric conversion layer 67 is preferably configured to include one or both of an organic p-type semiconductor and an organic n-type semiconductor. The organic semiconductor material acts as a p-type semiconductor or an n-type semiconductor depending on the combination with the organic semiconductor material used together. The combination of each material and the role in that case are the same as in the first embodiment.
 有機光電変換層67は、上記有機半導体材料の他に、例えば、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン、ペリレンおよびフルオランテンあるいはこれらの誘導体を含んでいてもよい。あるいは、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、アセチレン、ジアセチレン等の重合体やその誘導体が用いられていてもよい。加えて、金属錯体色素、シアニン系色素、メロシアニン系色素、フェニルキサンテン系色素、トリフェニルメタン系色素、ロダシアニン系色素、キサンテン系色素、大環状アザアヌレン系色素、アズレン系色素、ナフトキノン、アントラキノン系色素、アントラセンおよびピレン等の縮合多環芳香族および芳香環ないし複素環化合物が縮合した鎖状化合物、または、スクアリリウム基およびクロコニツクメチン基を結合鎖として持つキノリン、ベンゾチアゾール、ベンゾオキサゾール等の二つの含窒素複素環、または、スクアリリウム基およびクロコニツクメチン基により結合したシアニン系類似の色素等を好ましく用いることができる。なお、上記金属錯体色素としては、ジチオール金属錯体系色素、金属フタロシアニン色素、金属ポルフィリン色素、またはルテニウム錯体色素が好ましいが、これに限定されるものではない。本実施の形態では、この有機光電変換層67が、例えば、495nm~570nmの波長域の一部または全部の波長域に対応する緑色光を光電変換可能となっている。このような有機光電変換層67の厚みは、例えば、50nm~500nmである。 The organic photoelectric conversion layer 67 may contain, for example, naphthalene, anthracene, phenanthrene, tetracene, pyrene, perylene, fluoranthene, or derivatives thereof in addition to the organic semiconductor material. Alternatively, a polymer such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, acetylene, diacetylene, or a derivative thereof may be used. In addition, metal complex dyes, cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rhodacyanine dyes, xanthene dyes, macrocyclic azaannulene dyes, azulene dyes, naphthoquinone, anthraquinone dyes, Condensed polycyclic aromatic compounds such as anthracene and pyrene and chain compounds condensed with aromatic or heterocyclic compounds, or two compounds such as quinoline, benzothiazole and benzoxazole having a squarylium group and a croconic methine group as a linking chain. A cyanine-like dye or the like bonded by a nitrogen heterocycle or a squarylium group and a croconite methine group can be preferably used. The metal complex dye is preferably a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye, but is not limited thereto. In this embodiment, the organic photoelectric conversion layer 67 can photoelectrically convert green light corresponding to a part or all of the wavelength range of 495 nm to 570 nm, for example. The thickness of such an organic photoelectric conversion layer 67 is, for example, 50 nm to 500 nm.
(2-2.作用・効果)
 前述したように、結晶粒界は、電荷分離界面を増やして光電変換効率を向上させる反面、電荷移動度を低下させるという報告がなされている。この電荷移動度の低下は、前述の非特許文献10において結晶粒界のギャップ(空隙)によると報告されている。このため、各結晶粒(例えば、図11における結晶粒1231)は、図19に示したように互いに隙間なく繋がっていることが望ましく、これによって矢印で示した電荷伝導ネットワークが形成されて電荷移動度が担保される。しかしながら、各結晶粒が隙間なく繋がるだけでは効率的な電荷伝導ネットワークが形成されるとは限らない。
(2-2. Action and effect)
As described above, it has been reported that the crystal grain boundary increases the charge separation interface to improve the photoelectric conversion efficiency, but reduces the charge mobility. This reduction in charge mobility is reported to be due to a crystal grain boundary gap in the above-mentioned Non-Patent Document 10. Therefore, it is desirable that the crystal grains (for example, the crystal grains 1231 in FIG. 11) are connected to each other without any gap as shown in FIG. The degree is secured. However, an efficient charge conduction network is not always formed simply by connecting the crystal grains without gaps.
 特に、有機半導体材料の結晶粒では、分子間の電荷移動率は電荷の移動方向によって異なる。図20(A)~(C)は、有機半導体材料の結晶粒の3種類の伝導性を表したものである。図20(A)に示した結晶粒は、1次元方向にのみ電荷を拡散可能な1次元伝導結晶(電荷拡散係数D1)であり、図20(B)に示した結晶粒は、2次元方向に電荷を拡散可能な2次元伝導結晶(電荷拡散係数D1,D2)である。図20(C)に示した結晶粒は、3次元方向に電荷を拡散可能な3次元伝導結晶(電荷拡散係数D1,D2,D3)である。図20(A)における結晶粒では、電荷拡散係数D2,D3はD2=D3=0である。図20(B)における結晶粒では、電荷拡散係数D1,D2はD1=D2であり、電荷拡散係数D3=0である。図20(C)における結晶粒では、電荷拡散係数D1,D2,D3はD1=D2=D3である。このように、有機半導体材料の各結晶粒は、互いに電荷拡散係数に異方性を有することが多い。各結晶粒における電荷拡散係数の異方性の度合いは、有機半導体材料の分子構造と結晶構造に大きく依存する。電荷拡散係数に異方性を有する結晶粒同士が凝集して多結晶構造を形成した場合、結晶粒界にギャップが存在していなくても、電荷伝導ネットワーク全体の移動度(以下、単にネットワーク移動度とする。)が低下する。 In particular, in the crystal grains of the organic semiconductor material, the charge transfer rate between molecules varies depending on the charge transfer direction. 20A to 20C show three types of conductivity of crystal grains of the organic semiconductor material. The crystal grain shown in FIG. 20A is a one-dimensional conduction crystal (charge diffusion coefficient D 1 ) capable of diffusing charges only in a one-dimensional direction, and the crystal grain shown in FIG. It is a two-dimensional conductive crystal (charge diffusion coefficients D 1 and D 2 ) capable of diffusing charges in the direction. The crystal grains shown in FIG. 20C are three-dimensional conductive crystals (charge diffusion coefficients D 1 , D 2 , D 3 ) capable of diffusing charges in a three-dimensional direction. In the crystal grains in FIG. 20A, the charge diffusion coefficients D 2 and D 3 are D 2 = D 3 = 0. In the crystal grains in FIG. 20B, the charge diffusion coefficients D 1 and D 2 are D 1 = D 2 and the charge diffusion coefficient D 3 = 0. In the crystal grains in FIG. 20C, the charge diffusion coefficients D 1 , D 2 , and D 3 are D 1 = D 2 = D 3 . Thus, each crystal grain of the organic semiconductor material often has anisotropy in the charge diffusion coefficient. The degree of anisotropy of the charge diffusion coefficient in each crystal grain greatly depends on the molecular structure and crystal structure of the organic semiconductor material. When crystal grains having anisotropy in the charge diffusion coefficient aggregate to form a polycrystalline structure, the mobility of the entire charge conduction network (hereinafter simply referred to as network movement) even if there is no gap at the grain boundary Degree).
 図21は、図20(B)に示した2次元伝導結晶のみで構成される電荷伝導ネットワークの伝導性を模式的に表わしたものである。図21(A)に示したように、隣接する結晶粒間において、拡散できる結晶方位が繋がった経路ができれば、矢印で示したように電荷伝導ネットワークが形成されて大きなネットワーク移動度が得られる(パーコレーション的)。これに対して、図21(B)の矢印で示したように、隣接する結晶粒間において、拡散できる結晶方位が途中で途切れて袋小路ができると、電荷伝導ネットワークは途中で途切れてしまい、ネットワーク移動度は低下する(非パーコレーション的)。電荷伝導ネットワークがパーコレーション的になるか、非パーコレーション的になるかは電荷移動の異方性が大きく関係する。ネットワーク移動度が低下すると、電荷分離界面で発生した電荷の電極への到達に要する時間が長くなる。即ち、結晶粒界にギャップが存在していなくても、電荷拡散係数の異方性を有する結晶粒同士が凝集している場合には、電荷移動度が低下し、残像特性が低下するという問題があった。 FIG. 21 schematically shows the conductivity of the charge conduction network including only the two-dimensional conduction crystal shown in FIG. 20 (B). As shown in FIG. 21A, if a path in which the diffusible crystal orientation is connected between adjacent crystal grains is formed, a charge conduction network is formed as indicated by an arrow, and a large network mobility is obtained ( Percolation). On the other hand, as shown by the arrow in FIG. 21B, when the crystal orientation that can be diffused is interrupted between adjacent crystal grains and a narrow path is formed, the charge conduction network is interrupted and the network is interrupted. Mobility decreases (non-percolation-like). Whether the charge conduction network is percolated or non-percolated is largely related to the anisotropy of charge transfer. When the network mobility decreases, the time required for the charge generated at the charge separation interface to reach the electrode becomes longer. That is, even if there is no gap at the crystal grain boundary, when crystal grains having anisotropy of the charge diffusion coefficient are aggregated, the charge mobility is lowered and the afterimage characteristic is lowered. was there.
 図22は、本実施の形態における有機光電変換層67に含まれる結晶粒1231の構造を模式的に表わしたものである。また、結晶粒内の電荷移動に関する異方性係数(η)は、電荷拡散係数D1,D2,D3を用いて以下の式(1)で定義される。なお、電荷拡散係数D1,D2,D3は、それぞれ直交するX軸、Y軸、Z軸方向の拡散係数Dx,Dy,Dzを大きい順に定義したものである。X軸は結晶のa軸、Y軸はXY面が結晶のab面と一致するように定義する。ηは0から1までの値を取り、1に近いほど図20(C)に示したように3次元伝導的で、0に近いほど図20(A)に示したように1次元伝導的であることを示す。 FIG. 22 schematically shows the structure of the crystal grains 1231 included in the organic photoelectric conversion layer 67 in the present embodiment. Further, the anisotropy coefficient (η) relating to the charge transfer in the crystal grains is defined by the following formula (1) using the charge diffusion coefficients D 1 , D 2 , and D 3 . The charge diffusion coefficients D 1 , D 2 , and D 3 are defined by the diffusion coefficients Dx, Dy, and Dz in the X-axis, Y-axis, and Z-axis directions orthogonal to each other in descending order. The X axis is defined as the a axis of the crystal, and the Y axis is defined so that the XY plane coincides with the ab plane of the crystal. η takes a value from 0 to 1, and as it approaches 1, it is three-dimensionally conductive as shown in FIG. 20C, and as it is close to 0, it is one-dimensionally conductive as shown in FIG. Indicates that there is.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 表3は、α結晶相のキナクリドン(α-QD)、β2結晶相のキナクリドン(β2-QD)、γ結晶相のキナクリドン(γ-QD)、塩素化ホウ素サブフタロシアニン(SubPc-Cl)、フラーレン(C60)、ペンタセン(pentacene)、ルブレン(rubrene)、ジオクチルベンゾチエノベンゾチオフェン(C8-BTBT)の各結晶粒内における拡散係数D1,D2,D3およびηをまとめたものである。上記有機半導体材料の拡散係数D1,D2,D3はマーカス理論から求めたものであり、異方性係数(η)は、これを上記式(1)に当てはめて算出したものである。 Table 3 shows quinacridone in the α crystal phase (α-QD), quinacridone in the β 2 crystal phase (β 2 -QD), quinacridone in the γ crystal phase (γ-QD), chlorinated boron subphthalocyanine (SubPc-Cl), A summary of diffusion coefficients D 1 , D 2 , D 3 and η in each crystal grain of fullerene (C 60 ), pentacene, rubrene and dioctylbenzothienobenzothiophene (C 8 -BTBT). is there. The diffusion coefficients D 1 , D 2 and D 3 of the organic semiconductor material are obtained from Marcus theory, and the anisotropy coefficient (η) is calculated by applying this to the above equation (1).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 ネットワーク移動度は、例えば以下の方法を用いて算出することができる。なお、以下に説明する計算手法は、ネットワーク移動度を算出するために開発したものであり、粗視化kinetic Monte Carlo(kMC)法と称す。 The network mobility can be calculated using the following method, for example. The calculation method described below was developed to calculate network mobility and is referred to as a coarse-grained kinetic-Monte-Carlo (kMC) method.
 まず、図23に示した2つの結晶粒(結晶粒i,結晶粒j)を考える。結晶粒iおよび結晶粒jは、それぞれ1辺aの立方体とし、電荷は結晶粒の中心にのみ存在するとする。このとき、2つの結晶粒間の電荷移動率は以下の式(2)で表される。ここで、Diは結晶粒iにおける結晶粒j方向の電荷拡散係数、Djは結晶粒jにおける結晶粒i方向の電荷拡散係数である。 First, consider the two crystal grains (crystal grain i, crystal grain j) shown in FIG. Each of the crystal grain i and the crystal grain j is a cube having one side a, and the charge is present only at the center of the crystal grain. At this time, the charge transfer rate between the two crystal grains is expressed by the following formula (2). Here, Di is the charge diffusion coefficient of crystal grain i in the direction of crystal grain j, and Dj is the charge diffusion coefficient of crystal grain j in the direction of crystal grain i.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 続いて、図24に示したように、矢印で示した隣り合う6つの結晶粒(Wx+1,Wy+1,Wz+1,Wx-1,Wy-1,Wz-1)への電荷移動率を求め、これらに比例するように乱数を発生させて確率的に電荷を移動させる。移動させたら、系の時刻に移動時間(電荷移動率の逆数)を加算する。これを繰り返すことで、図25に示したように電荷の拡散の様子をシミュレートすることができる。粗視化kMC法を実行すると電荷の軌跡が得られるため、以下の式(3)から自己拡散係数Dを求めることができる。ここでr(t)は時刻tにおける電荷位置である。 Subsequently, as shown in FIG. 24, six adjacent crystal grains (W x + 1 , W y + 1 , W z + 1 , W x−1 , W y−1 , W z−) indicated by arrows. 1 ) The charge transfer rate to 1 ) is obtained, random numbers are generated in proportion to these, and the charge is transferred stochastically. Once moved, the moving time (reciprocal of charge transfer rate) is added to the system time. By repeating this, it is possible to simulate the state of charge diffusion as shown in FIG. When the coarse-grained kMC method is executed, a charge trajectory is obtained, so that the self-diffusion coefficient D can be obtained from the following equation (3). Here, r (t) is the charge position at time t.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 更に、自己拡散係数Dを用いて、以下のアインシュタインの関係式(4)から電荷移動度μを求めることができる。 Furthermore, by using the self-diffusion coefficient D, the charge mobility μ can be obtained from the following Einstein relational expression (4).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図26は、結晶粒の結晶方位が揃った状態(単結晶;図26(A))と、結晶方位がランダムな場合(多結晶;図26(B))を表わしたものである。表4は、上記有機半導体材料の単結晶状態におけるネットワーク移動度(μs)、多結晶状態におけるネットワーク移動度(μp)および電荷伝導ネットワーク効率(ε)をまとめたものである。各結晶状態のネットワーク移動度(μs,μp)は粗視化kMC法を用いて算出した。電荷伝導ネットワーク効率(ε)を以下の式(5)で定義した。 FIG. 26 shows a state in which crystal orientations of crystal grains are aligned (single crystal; FIG. 26A) and a case where crystal orientations are random (polycrystal; FIG. 26B). Table 4 summarizes the network mobility (μ s ) in the single crystal state, the network mobility (μ p ) and the charge conduction network efficiency (ε) in the polycrystalline state of the organic semiconductor material. The network mobility (μ s , μ p ) of each crystal state was calculated using the coarse-grained kMC method. The charge conduction network efficiency (ε) was defined by the following equation (5).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 図27は、異方性係数(η)と電荷伝導ネットワーク効率(ε)との関係を表したものである。図27から、両者の間には以下の式(6)が成り立つことがわかる。即ち、電荷伝導ネットワーク効率(ε)は、結晶粒の異方性係数(η)から予測することができることがわかる。 FIG. 27 shows the relationship between the anisotropy coefficient (η) and the charge conduction network efficiency (ε). From FIG. 27, it can be seen that the following equation (6) holds between the two. That is, it can be seen that the charge conduction network efficiency (ε) can be predicted from the anisotropy coefficient (η) of the crystal grains.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 例えば、上述したように、図11に示したような結晶粒1231および結晶粒界1232を有する構造では、電荷移動率は、結晶粒界1232のギャップと、結晶粒1231内の電荷移動率の異方性という2つの要因によって低下する。即ち、これら2つの低下要因を共に小さくすることで、相乗効果によって電荷移動率を大きくすることができ、単結晶の電荷移動率に近づけることができる。一般に、電荷移動率は以下の式(7)によって表される。ここで、ωは全体の電荷移動率、ωscは単結晶の電荷移動率、ζは結晶粒界での電荷移動率の低下率である。なお、ωの全体の電荷移動率とは、ここでは有機光電変換層67の電荷移動率である。 For example, as described above, in the structure having the crystal grain 1231 and the crystal grain boundary 1232 as shown in FIG. 11, the charge mobility is different between the gap of the crystal grain boundary 1232 and the charge mobility in the crystal grain 1231. Decreased by two factors, the directionality. That is, by reducing both of these two factors of reduction, the charge transfer rate can be increased by a synergistic effect, and the charge transfer rate of the single crystal can be approached. In general, the charge transfer rate is expressed by the following equation (7). Here, ω is the overall charge transfer rate, ω sc is the charge transfer rate of the single crystal, and ζ is the rate of decrease of the charge transfer rate at the grain boundaries. Note that the overall charge transfer rate of ω is the charge transfer rate of the organic photoelectric conversion layer 67 here.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 代表的な有機単結晶の電荷移動率(ωsc)は1×1013~1×1014-1である。結晶粒界での電荷移動率の低下率(ζ)は成膜プロセス条件(成膜温度や成長レートおよびアニール条件等)によって変化するが、最適なプロセス条件で作製された緻密な構造では結晶粒界のギャップは狭くなる。例えば、非特許文献10から結晶粒界での電荷移動率の低下率(ζ)は0.01程度になることが知られている。しかし、プロセス条件が最適値から変動すると結晶粒界が広がるため、結晶粒界での電荷移動率の低下率(ζ)は一般に、0.003程度に低下する。上記第1の実施の形態で述べたように、イメージセンサ等の撮像装置において良好な残像特性を得るには、光電変換素子の電荷移動率は、1×1010-1以上であることが望ましい。有機単結晶の電荷移動率(ωsc)が1×1013-1、結晶粒界での電荷移動率の低下率(ζ)が0.003のときにω>1×1010-1を実現するには、ε>0.3である必要があることがわかる。ここで、ε?ηであることから、異方性係数(η)が0.3以上である結晶粒を用いることで1×1010-1以上の電荷移動率が得られることを示している。以上のことから、有機光電変換層67は、電荷移動に関する異方性係数が0.3以上の結晶粒を用いて構成することが好ましいといえる。これにより、本実施の形態の有機光電変換層67では、結晶粒間において、1×1010-1以上の高い電荷移動率を有する電荷伝導ネットワークが形成される。なお、本実施の形態における電荷移動に関する異方性係数の上限の1は、有機光電変換層67を構成する有機半導体材料が単結晶である場合の値である。 The charge transfer rate (ω sc ) of a typical organic single crystal is 1 × 10 13 to 1 × 10 14 s −1 . The rate of decrease in charge transfer rate at the grain boundary (ζ) varies depending on the film formation process conditions (film formation temperature, growth rate, annealing conditions, etc.), but in a dense structure fabricated under optimum process conditions, the crystal grains The gap in the field is narrowed. For example, it is known from Non-Patent Document 10 that the rate of decrease in the charge transfer rate (ζ) at the grain boundary is about 0.01. However, when the process condition varies from the optimum value, the crystal grain boundary widens, and thus the rate of decrease in charge transfer rate (ζ) at the crystal grain boundary generally decreases to about 0.003. As described in the first embodiment, in order to obtain good afterimage characteristics in an imaging apparatus such as an image sensor, the charge transfer rate of the photoelectric conversion element is 1 × 10 10 s −1 or more. desirable. When the charge transfer rate (ω sc ) of the organic single crystal is 1 × 10 13 s −1 and the rate of decrease of the charge transfer rate (ζ) at the grain boundary is 0.003, ω> 1 × 10 10 s −1 It can be seen that ε> 0.3 is necessary to realize. Where ε? Since it is η, it is shown that a charge transfer rate of 1 × 10 10 s −1 or more can be obtained by using crystal grains having an anisotropy coefficient (η) of 0.3 or more. From the above, it can be said that the organic photoelectric conversion layer 67 is preferably formed using crystal grains having an anisotropy coefficient of charge transfer of 0.3 or more. Thereby, in the organic photoelectric conversion layer 67 of the present embodiment, a charge conduction network having a high charge transfer rate of 1 × 10 10 s −1 or more is formed between crystal grains. The upper limit of the anisotropy coefficient regarding charge transfer in the present embodiment is a value when the organic semiconductor material constituting the organic photoelectric conversion layer 67 is a single crystal.
 以上、本実施の形態では、有機光電変換層67を、電荷移動に関する異方性係数が0.3以上の結晶粒を用いて形成するようにした。これにより、結晶粒間において、例えば1×1010-1以上の高い電荷移動率を有する電荷伝導ネットワークが形成されるようになる。即ち、残像特性が向上した光電変換素子60を提供することが可能となる。 As described above, in the present embodiment, the organic photoelectric conversion layer 67 is formed using crystal grains having an anisotropy coefficient of charge transfer of 0.3 or more. As a result, a charge conduction network having a high charge transfer rate of, for example, 1 × 10 10 s −1 or more is formed between crystal grains. That is, it is possible to provide the photoelectric conversion element 60 with improved afterimage characteristics.
<3.変形例>
 なお、本開示の光電変換素子は、上記第1の実施の形態における光電変換素子10と、上記第2の実施の形態における光電変換素子60とを組み合わせた構成としてもよい。例えば、有機光電変換部を構成する有機光電変換層を、各々が(001)面、(010)面、(100)面を有する結晶面を含むα結晶相またはγ結晶相からなる複数の結晶粒を形成するキナクリドンまたはキナクリドン誘導体を用いて形成する。このキナクリドンまたはキナクリドン誘導体を含む有機光電変換層は、各結晶相における複数の結晶粒のうち隣接する結晶粒同士では、互いに対向する各面の距離が第1の実施の形態で記載した範囲内の値を有する構造を含み、さらに、結晶粒内の電荷移動に関する異方性係数は0.3以上1以下となるようにする。
<3. Modification>
In addition, the photoelectric conversion element of this indication is good also as a structure which combined the photoelectric conversion element 10 in the said 1st Embodiment, and the photoelectric conversion element 60 in the said 2nd Embodiment. For example, the organic photoelectric conversion layer constituting the organic photoelectric conversion unit is formed of a plurality of crystal grains composed of an α crystal phase or a γ crystal phase each including a crystal plane having a (001) plane, a (010) plane, and a (100) plane. It is formed using quinacridone or a quinacridone derivative that forms In the organic photoelectric conversion layer containing the quinacridone or the quinacridone derivative, the adjacent crystal grains among the plurality of crystal grains in each crystal phase have a distance between the faces facing each other within the range described in the first embodiment. In addition, the anisotropy coefficient relating to the charge transfer in the crystal grains is 0.3 to 1 inclusive.
 前述したように、電荷移動度の低下は、有機光電変換層に含まれる結晶粒界のギャップと、電荷拡散係数に異方性を有する結晶粒同士が凝集して多結晶構造を形成することによって生じる。 As described above, the decrease in charge mobility is caused by the fact that crystal grain boundaries included in the organic photoelectric conversion layer and crystals having anisotropy in the charge diffusion coefficient aggregate to form a polycrystalline structure. Arise.
 このことから、各結晶相の結晶粒界における電荷移動度の低下を抑制する第1の実施の形態における技術と、各結晶相を形成する結晶粒間における電荷移動度の低下を抑制する第2の実施の形態における技術とを組み合わせることにより、さらに高い電荷移動率を有する有機光電変換層を形成することが可能となる。即ち、より残像特性が向上した光電変換素子を提供することが可能となる。 From this, the technique in the first embodiment that suppresses the decrease in charge mobility at the crystal grain boundary of each crystal phase and the second that suppresses the decrease in charge mobility between crystal grains forming each crystal phase. By combining with the technique in the embodiment, an organic photoelectric conversion layer having a higher charge transfer rate can be formed. That is, it is possible to provide a photoelectric conversion element with improved afterimage characteristics.
<4.適用例>
(適用例1)
 図28は、上記実施の形態において説明した光電変換素子10を各画素に用いた固体撮像装置(固体撮像装置1)の全体構成を表したものである。この固体撮像装置1は、CMOSイメージセンサであり、半導体基板11上に、撮像エリアとしての画素部1aを有すると共に、この画素部1aの周辺領域に、例えば、行走査部131、水平選択部133、列走査部134およびシステム制御部132からなる周辺回路部130を有している。
<4. Application example>
(Application example 1)
FIG. 28 illustrates an overall configuration of a solid-state imaging device (solid-state imaging device 1) using the photoelectric conversion element 10 described in the above embodiment for each pixel. The solid-state imaging device 1 is a CMOS image sensor, and has a pixel unit 1a as an imaging area on a semiconductor substrate 11, and, for example, a row scanning unit 131 and a horizontal selection unit 133 in a peripheral region of the pixel unit 1a. The peripheral circuit unit 130 includes a column scanning unit 134 and a system control unit 132.
 画素部1aは、例えば、行列状に2次元配置された複数の単位画素P(光電変換素子10に相当)を有している。この単位画素Pには、例えば、画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送するものである。画素駆動線Lreadの一端は、行走査部131の各行に対応した出力端に接続されている。 The pixel unit 1a has, for example, a plurality of unit pixels P (corresponding to the photoelectric conversion element 10) arranged two-dimensionally in a matrix. In the unit pixel P, for example, a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column. The pixel drive line Lread transmits a drive signal for reading a signal from the pixel. One end of the pixel drive line Lread is connected to an output end corresponding to each row of the row scanning unit 131.
 行走査部131は、シフトレジスタやアドレスデコーダ等によって構成され、画素部1aの各単位画素Pを、例えば、行単位で駆動する画素駆動部である。行走査部131によって選択走査された画素行の各単位画素Pから出力される信号は、垂直信号線Lsigの各々を通して水平選択部133に供給される。水平選択部133は、垂直信号線Lsigごとに設けられたアンプや水平選択スイッチ等によって構成されている。 The row scanning unit 131 is configured by a shift register, an address decoder, or the like, and is a pixel driving unit that drives each unit pixel P of the pixel unit 1a, for example, in units of rows. A signal output from each unit pixel P of the pixel row that is selectively scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig. The horizontal selection unit 133 is configured by an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
 列走査部134は、シフトレジスタやアドレスデコーダ等によって構成され、水平選択部133の各水平選択スイッチを走査しつつ順番に駆動するものである。この列走査部134による選択走査により、垂直信号線Lsigの各々を通して伝送される各画素の信号が順番に水平信号線135に出力され、当該水平信号線135を通して半導体基板11の外部へ伝送される。 The column scanning unit 134 includes a shift register, an address decoder, and the like, and drives the horizontal selection switches in the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signal of each pixel transmitted through each of the vertical signal lines Lsig is sequentially output to the horizontal signal line 135 and transmitted to the outside of the semiconductor substrate 11 through the horizontal signal line 135. .
 行走査部131、水平選択部133、列走査部134および水平信号線135からなる回路部分は、半導体基板11上に直に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。 The circuit portion including the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the horizontal signal line 135 may be formed directly on the semiconductor substrate 11, or provided in the external control IC. It may be. In addition, these circuit portions may be formed on another substrate connected by a cable or the like.
 システム制御部132は、半導体基板11の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、固体撮像装置1の内部情報等のデータを出力するものである。システム制御部132はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に行走査部131、水平選択部133および列走査部134等の周辺回路の駆動制御を行う。 The system control unit 132 receives a clock given from the outside of the semiconductor substrate 11, data for instructing an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1. The system control unit 132 further includes a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Peripheral circuit drive control.
(適用例2)
 上述の固体撮像装置1は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話等、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図29に、その一例として、電子機器2(カメラ)の概略構成を示す。この電子機器2は、例えば、静止画または動画を撮影可能なビデオカメラであり、固体撮像装置1と、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像装置1およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。
(Application example 2)
The above-described solid-state imaging device 1 can be applied to any type of electronic apparatus having an imaging function, such as a camera system such as a digital still camera or a video camera, or a mobile phone having an imaging function. FIG. 29 shows a schematic configuration of the electronic apparatus 2 (camera) as an example. The electronic device 2 is, for example, a video camera capable of taking a still image or a moving image, and includes a solid-state imaging device 1, an optical system (optical lens) 310, a shutter device 311, the solid-state imaging device 1 and the shutter device 311. A driving unit 313 for driving and a signal processing unit 312 are included.
 光学系310は、被写体からの像光(入射光)を固体撮像装置1の画素部1aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置1への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置1の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置1から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリ等の記憶媒体に記憶されるか、あるいは、モニタ等に出力される。 The optical system 310 guides image light (incident light) from a subject to the pixel unit 1 a of the solid-state imaging device 1. The optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls the light irradiation period and the light shielding period for the solid-state imaging device 1. The drive unit 313 controls the transfer operation of the solid-state imaging device 1 and the shutter operation of the shutter device 311. The signal processing unit 312 performs various types of signal processing on the signal output from the solid-state imaging device 1. The video signal Dout after the signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
 以上、第1,第2の実施の形態および変形例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記第1の実施の形態では、光電変換素子(固体撮像装置)として、緑色光を検出する有機光電変換部11Gと、青色光,赤色光をそれぞれ検出する無機光電変換部11B,11Rとを積層させた構成としたが、本開示内容はこのような構造に限定されるものではない。即ち、有機光電変換部において赤色光あるいは青色光を検出するようにしてもよいし、無機光電変換部において緑色光を検出するようにしてもよい。 The first and second embodiments and modifications have been described above, but the present disclosure is not limited to the above-described embodiments and the like, and various modifications can be made. For example, in the first embodiment, as a photoelectric conversion element (solid-state imaging device), an organic photoelectric conversion unit 11G that detects green light, and inorganic photoelectric conversion units 11B and 11R that detect blue light and red light, respectively. However, the present disclosure is not limited to such a structure. That is, red light or blue light may be detected in the organic photoelectric conversion unit, or green light may be detected in the inorganic photoelectric conversion unit.
 また、これらの有機光電変換部および無機光電変換部の数やその比率も限定されるものではなく、2以上の有機光電変換部を設けてもよいし、有機光電変換部だけで複数色の色信号が得られるようにしてもよい。更に、有機光電変換部および無機光電変換部を縦方向に積層させる構造に限らず、基板面に沿って並列させてもよい。 Further, the number and ratio of these organic photoelectric conversion units and inorganic photoelectric conversion units are not limited, and two or more organic photoelectric conversion units may be provided. A signal may be obtained. Furthermore, the organic photoelectric conversion part and the inorganic photoelectric conversion part are not limited to the structure in which the organic photoelectric conversion part and the inorganic photoelectric conversion part are stacked in the vertical direction, but may be arranged in parallel along the substrate surface.
 更にまた、上記第1,第2の実施の形態では、裏面照射型の固体撮像装置の構成を例示したが、本開示内容は表面照射型の固体撮像装置にも適用可能である。また、本開示の固体撮像装置(光電変換素子)では、上記第1の実施の形態で説明した各構成要素を全て備えている必要はなく、また逆に他の層を備えていてもよい。 Furthermore, in the first and second embodiments, the configuration of the back-illuminated solid-state imaging device has been exemplified. However, the present disclosure can also be applied to a front-illuminated solid-state imaging device. In addition, the solid-state imaging device (photoelectric conversion element) of the present disclosure does not have to include all the components described in the first embodiment, and may include other layers.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 In addition, the effect described in this specification is an illustration to the last, and is not limited, Moreover, there may exist another effect.
 なお、本開示は、以下のような構成であってもよい。
(1)
 対向配置された第1電極および第2電極と、
 前記第1電極と前記第2電極との間に設けられると共に、電荷移動に関する異方性係数が0.3以上1以下である結晶粒を含む光電変換層と
 を備えた光電変換素子。
(2)
 前記光電変換層はキナクリドンまたはキナクリドン誘導体を含み、
 前記結晶粒は、α結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている、前記(1)に記載の光電変換素子。
(3)
 前記光電変換層はキナクリドンまたはキナクリドン誘導体を含み、
 前記結晶粒は、γ結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている、前記(1)または(2)に記載の光電変換素子。
(4)
 前記光電変換層は塩素化ホウ素サブフタロシアニンまたは塩素化ホウ素サブフタロシアニン誘導体を含み、
 前記結晶粒は、前記塩素化ホウ素サブフタロシアニンまたは前記塩素化ホウ素サブフタロシアニン誘導体によって構成されている、前記(1)乃至(3)のうちのいずれかに記載の光電変換素子。
(5)
 前記光電変換層はペンタセンまたはペンタセン誘導体を含み、
 前記結晶粒は、前記ペンタセンまたは前記ペンタセン誘導体によって構成されている、前記(1)乃至(4)のうちのいずれかに記載の光電変換素子。
(6)
 前記光電変換層はベンゾチエノベンゾチオフェンまたはベンゾチエノベンゾチオフェン誘導体を含み、
 前記結晶粒は、前記ベンゾチエノベンゾチオフェンまたは前記ベンゾチエノベンゾチオフェン誘導体によって構成されている、前記(1)乃至(5)のうちのいずれかに記載の光電変換素子。
(7)
 前記光電変換層はフラーレンまたはフラーレン誘導体を含み、
 前記結晶粒は、前記フラーレンまたは前記フラーレン誘導体によって構成されている、前記(1)乃至(6)のうちのいずれかに記載の光電変換素子。
(8)
 前記光電変換層における電荷移動率は、1×1010-1以上である、前記(1)乃至(7)のうちのいずれかに記載の光電変換素子。
(9)
 前記光電変換層は、p型有機半導体材料およびn型有機半導体材料を含む、前記(1)乃至(8)のうちのいずれかに記載の光電変換素子。
(10)
 前記光電変換層は、キナクリドン、キナクリドン誘導体、塩素化ホウ素サブフタロシアニン、塩素化ホウ素サブフタロシアニン誘導体、ペンタセン、ペンタセン誘導体、ベンゾチエノベンゾチオフェン、ベンゾチエノベンゾチオフェン誘導体、フラーレンおよびフラーレン誘導体のうちの2種以上含む、前記(7)乃至(9)のうちのいずれかに記載の光電変換素子。
(11)
 各画素では、1または複数の前記光電変換層を有する有機光電変換部と、前記有機光電変換部とは異なる波長域の光電変換を行う1または複数の無機光電変換部とが積層されている、前記(1)乃至(10)のうちのいずれかに記載の光電変換素子。
(12)
 前記無機光電変換部は、半導体基板内に埋め込み形成され、
 前記有機光電変換部は、前記半導体基板の第1面側に形成されている、前記(11)に記載の光電変換素子。
(13)
 前記半導体基板の第2面側に多層配線層が形成されている、前記(12)に記載の光電変換素子。
(14)
 前記有機光電変換部が緑色光の光電変換を行い、
 前記半導体基板内に、青色光の光電変換を行う無機光電変換部と、赤色光の光電変換を行う無機光電変換部とが積層されている、前記(12)または(13)に記載の光電変換素子。
(15)
 前記光電変換層は、β2結晶相のキナクリドン誘導体またはキナクリドン誘導体によって構成されている複数の前記結晶粒を含み、
 前記β2結晶相の前記キナクリドンまたは前記キナクリドン誘導体は、各々が(001)面、(010)面、(100)面を有する結晶面を含み、
 前記複数の結晶粒のうち隣接する結晶粒同士では、
 互いに対向する(001)面と(001)面との距離が2.3×10-10m以下、
 互いに対向する(001)面と(010)面との距離が2.9×10-10m以下、
 互いに対向する(001)面と(100)面との距離が3.3×10-10m以下、
 互いに対向する(010)面と(010)面との距離が3.2×10-10m以下、
 互いに対向する(010)面と(100)面との距離が3.7×10-10m以下および
 互いに対向する(100)面と(100)面との距離が4.1×10-10m以下のうちの少なくとも1つの条件を満たす、前記(1)乃至(14)のうちのいずれかに記載の光電変換素子。
(16)
 前記α結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている複数の前記結晶粒は、各々が(001)面、(010)面、(100)面を有する結晶面を含み、
 前記複数の前記結晶粒のうち隣接する結晶粒同士では、
 互いに対向する(001)面と(001)面との距離が2.8×10-10m以下、
 互いに対向する(001)面と(010)面との距離が2.8×10-10m以下、
 互いに対向する(001)面と(100)面との距離が3.1×10-10m以下、
 互いに対向する(010)面と(010)面との距離が4.1×10-10m以下、
 互いに対向する(010)面と(100)面との距離が3.6×10-10m以下および
 互いに対向する(100)面と(100)面との距離が3.2×10-10m以下のうちの少なくとも1つの条件を満たす、前記(2)乃至(15)のうちのいずれかに記載の光電変換素子。
(17)
 前記γ結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている複数の前記結晶粒は、各々が(001)面、(010)面、(100)面を有する結晶面を含み、
 前記複数の前記結晶粒のうち隣接する結晶粒同士では、
 互いに対向する(001)面と(001)面との距離が1.7×10-10mm以下、
 互いに対向する(001)面と(010)面との距離が2.7×10-10mm以下、
 互いに対向する(001)面と(100)面との距離が2.1×10-10mm以下、
 互いに対向する(010)面と(010)面との距離が3.9×10-10m以下、
 互いに対向する(010)面と(100)面との距離が3.2×10-10m以下および
 互いに対向する(100)面と(100)面との距離が2.7×10-10m以下のうちの少なくとも1つの条件を満たす、前記(3)乃至(16)のうちのいずれかに記載の光電変換素子。
(18)
 対向配置された第1電極および第2電極と、
 前記第1電極と前記第2電極との間に設けられると共に、キナクリドンまたはキナクリドン誘導体を含む光電変換層とを備え、
 前記キナクリドンまたは前記キナクリドン誘導体は、各々が(001)面、(010)面、(100)面を有する結晶面を含むβ2結晶相からなる複数の結晶粒を形成し、
 前記複数の結晶粒のうち隣接する結晶粒同士では、
 互いに対向する(001)面と(001)面との距離が2.3×10-10m以下、
 互いに対向する(001)面と(010)面との距離が2.9×10-10m以下、
 互いに対向する(001)面と(100)面との距離が3.3×10-10m以下、
 互いに対向する(010)面と(010)面との距離が3.2×10-10m以下、
 互いに対向する(010)面と(100)面との距離が3.7×10-10m以下および
 互いに対向する(100)面と(100)面との距離が4.1×10-10m以下のうちの少なくとも1つの条件を満たす光電変換素子。
(19)
 対向配置された第1電極および第2電極と、前記第1電極と前記第2電極との間に設けられると共に、キナクリドンまたはキナクリドン誘導体を含む光電変換層とを備え、
 前記キナクリドンまたは前記キナクリドン誘導体は、各々が(001)面、(010)面、(100)面を有する結晶面を含むα結晶相からなる複数の結晶粒を形成し、
 前記複数の結晶粒のうち隣接する結晶粒同士では、
 互いに対向する(001)面と(001)面との距離が2.8×10-10m以下、
 互いに対向する(001)面と(010)面との距離が2.8×10-10m以下、
 互いに対向する(001)面と(100)面との距離が3.1×10-10m以下、
 互いに対向する(010)面と(010)面との距離が4.1×10-10m以下、
 互いに対向する(010)面と(100)面との距離が3.6×10-10m以下および
 互いに対向する(100)面と(100)面との距離が3.2×10-10m以下のうちの少なくとも1つの条件を満たす光電変換素子。
(20)
 対向配置された第1電極および第2電極と、
 前記第1電極と前記第2電極との間に設けられると共に、キナクリドンまたはキナクリドン誘導体を含む光電変換層とを備え、
 前記キナクリドンまたは前記キナクリドン誘導体は、各々が(001)面、(010)面、(100)面を有する結晶面を含むγ結晶相からなる複数の結晶粒を形成し、
 前記複数の結晶粒のうち隣接する結晶粒同士では、
 互いに対向する(001)面と(001)面との距離が1.7×10-10mm以下、
 互いに対向する(001)面と(010)面との距離が2.7×10-10mm以下、
 互いに対向する(001)面と(100)面との距離が2.1×10-10mm以下、
 互いに対向する(010)面と(010)面との距離が3.9×10-10m以下、
 互いに対向する(010)面と(100)面との距離が3.2×10-10m以下および
 互いに対向する(100)面と(100)面との距離が2.7×10-10m以下のうちの少なくとも1つの条件を満たす光電変換素子。
The present disclosure may be configured as follows.
(1)
A first electrode and a second electrode disposed opposite to each other;
A photoelectric conversion element comprising: a photoelectric conversion layer that is provided between the first electrode and the second electrode and includes crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less.
(2)
The photoelectric conversion layer contains quinacridone or a quinacridone derivative,
The said crystal grain is a photoelectric conversion element as described in said (1) comprised by the said quinacridone of the (alpha) crystal phase, or the said quinacridone derivative.
(3)
The photoelectric conversion layer contains quinacridone or a quinacridone derivative,
The photoelectric conversion element according to (1) or (2), wherein the crystal grains are constituted by the quinacridone or the quinacridone derivative having a γ crystal phase.
(4)
The photoelectric conversion layer includes a chlorinated boron subphthalocyanine or a chlorinated boron subphthalocyanine derivative,
The photoelectric conversion element according to any one of (1) to (3), wherein the crystal grains are configured by the chlorinated boron subphthalocyanine or the chlorinated boron subphthalocyanine derivative.
(5)
The photoelectric conversion layer contains pentacene or a pentacene derivative,
The photoelectric conversion element according to any one of (1) to (4), wherein the crystal grain is configured by the pentacene or the pentacene derivative.
(6)
The photoelectric conversion layer includes benzothienobenzothiophene or a benzothienobenzothiophene derivative,
The photoelectric conversion element according to any one of (1) to (5), wherein the crystal grain is configured by the benzothienobenzothiophene or the benzothienobenzothiophene derivative.
(7)
The photoelectric conversion layer contains fullerene or a fullerene derivative,
The photoelectric conversion element according to any one of (1) to (6), wherein the crystal grains are configured by the fullerene or the fullerene derivative.
(8)
The photoelectric conversion element according to any one of (1) to (7), wherein a charge transfer rate in the photoelectric conversion layer is 1 × 10 10 s −1 or more.
(9)
The photoelectric conversion layer according to any one of (1) to (8), wherein the photoelectric conversion layer includes a p-type organic semiconductor material and an n-type organic semiconductor material.
(10)
The photoelectric conversion layer includes two or more of quinacridone, a quinacridone derivative, a chlorinated boron subphthalocyanine, a chlorinated boron subphthalocyanine derivative, a pentacene, a pentacene derivative, a benzothienobenzothiophene, a benzothienobenzothiophene derivative, a fullerene, and a fullerene derivative. The photoelectric conversion element according to any one of (7) to (9).
(11)
In each pixel, an organic photoelectric conversion unit having one or more of the photoelectric conversion layers and one or more inorganic photoelectric conversion units that perform photoelectric conversion in a wavelength region different from the organic photoelectric conversion unit are stacked. The photoelectric conversion element according to any one of (1) to (10).
(12)
The inorganic photoelectric conversion part is embedded in a semiconductor substrate,
The said organic photoelectric conversion part is a photoelectric conversion element as described in said (11) currently formed in the 1st surface side of the said semiconductor substrate.
(13)
The photoelectric conversion element according to (12), wherein a multilayer wiring layer is formed on the second surface side of the semiconductor substrate.
(14)
The organic photoelectric conversion unit performs green light photoelectric conversion,
The photoelectric conversion according to (12) or (13), wherein an inorganic photoelectric conversion unit that performs photoelectric conversion of blue light and an inorganic photoelectric conversion unit that performs photoelectric conversion of red light are stacked in the semiconductor substrate. element.
(15)
The photoelectric conversion layer includes a plurality of the crystal grains composed of a quinacridone derivative or a quinacridone derivative having a β 2 crystal phase,
The quinacridone or the quinacridone derivative of the β 2 crystal phase includes crystal planes each having a (001) plane, a (010) plane, and a (100) plane,
Among adjacent crystal grains among the plurality of crystal grains,
The distance between the (001) plane and the (001) plane facing each other is 2.3 × 10 −10 m or less,
The distance between the (001) plane and the (010) plane facing each other is 2.9 × 10 −10 m or less,
The distance between the (001) plane and the (100) plane facing each other is 3.3 × 10 −10 m or less,
The distance between the (010) plane and the (010) plane facing each other is 3.2 × 10 −10 m or less,
The distance between the (010) plane and the (100) plane facing each other is 3.7 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 4.1 × 10 −10 m The photoelectric conversion element according to any one of (1) to (14), wherein at least one of the following conditions is satisfied.
(16)
The plurality of crystal grains constituted by the quinacridone or the quinacridone derivative in the α crystal phase each include a crystal plane having a (001) plane, a (010) plane, and a (100) plane,
Among adjacent crystal grains among the plurality of crystal grains,
The distance between the (001) plane and the (001) plane facing each other is 2.8 × 10 −10 m or less,
The distance between the (001) plane and the (010) plane facing each other is 2.8 × 10 −10 m or less,
The distance between the (001) plane and the (100) plane facing each other is 3.1 × 10 −10 m or less,
The distance between the (010) plane and the (010) plane facing each other is 4.1 × 10 −10 m or less,
The distance between the (010) plane and the (100) plane facing each other is 3.6 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 3.2 × 10 −10 m The photoelectric conversion element according to any one of (2) to (15), wherein at least one of the following conditions is satisfied.
(17)
The plurality of crystal grains constituted by the quinacridone or the quinacridone derivative of the γ crystal phase include crystal planes each having a (001) plane, a (010) plane, and a (100) plane,
Among adjacent crystal grains among the plurality of crystal grains,
The distance between the (001) plane and the (001) plane facing each other is 1.7 × 10 −10 mm or less,
The distance between the (001) plane and the (010) plane facing each other is 2.7 × 10 −10 mm or less,
The distance between the (001) plane and the (100) plane facing each other is 2.1 × 10 −10 mm or less,
The distance between the (010) plane and the (010) plane facing each other is 3.9 × 10 −10 m or less,
The distance between the (010) plane and the (100) plane facing each other is 3.2 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 2.7 × 10 −10 m The photoelectric conversion element according to any one of (3) to (16), which satisfies at least one of the following conditions.
(18)
A first electrode and a second electrode disposed opposite to each other;
A photoelectric conversion layer provided between the first electrode and the second electrode and including quinacridone or a quinacridone derivative;
The quinacridone or the quinacridone derivative forms a plurality of crystal grains composed of β 2 crystal phase each including a crystal plane having a (001) plane, a (010) plane, and a (100) plane,
Among adjacent crystal grains among the plurality of crystal grains,
The distance between the (001) plane and the (001) plane facing each other is 2.3 × 10 −10 m or less,
The distance between the (001) plane and the (010) plane facing each other is 2.9 × 10 −10 m or less,
The distance between the (001) plane and the (100) plane facing each other is 3.3 × 10 −10 m or less,
The distance between the (010) plane and the (010) plane facing each other is 3.2 × 10 −10 m or less,
The distance between the (010) plane and the (100) plane facing each other is 3.7 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 4.1 × 10 −10 m A photoelectric conversion element that satisfies at least one of the following conditions.
(19)
A first electrode and a second electrode arranged opposite to each other; a photoelectric conversion layer provided between the first electrode and the second electrode and containing quinacridone or a quinacridone derivative;
The quinacridone or the quinacridone derivative forms a plurality of crystal grains composed of an α crystal phase each including a crystal plane having a (001) plane, a (010) plane, and a (100) plane,
Among adjacent crystal grains among the plurality of crystal grains,
The distance between the (001) plane and the (001) plane facing each other is 2.8 × 10 −10 m or less,
The distance between the (001) plane and the (010) plane facing each other is 2.8 × 10 −10 m or less,
The distance between the (001) plane and the (100) plane facing each other is 3.1 × 10 −10 m or less,
The distance between the (010) plane and the (010) plane facing each other is 4.1 × 10 −10 m or less,
The distance between the (010) plane and the (100) plane facing each other is 3.6 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 3.2 × 10 −10 m A photoelectric conversion element that satisfies at least one of the following conditions.
(20)
A first electrode and a second electrode disposed opposite to each other;
A photoelectric conversion layer provided between the first electrode and the second electrode and including quinacridone or a quinacridone derivative;
The quinacridone or the quinacridone derivative forms a plurality of crystal grains each composed of a γ crystal phase including a crystal plane having a (001) plane, a (010) plane, and a (100) plane,
Among adjacent crystal grains among the plurality of crystal grains,
The distance between the (001) plane and the (001) plane facing each other is 1.7 × 10 −10 mm or less,
The distance between the (001) plane and the (010) plane facing each other is 2.7 × 10 −10 mm or less,
The distance between the (001) plane and the (100) plane facing each other is 2.1 × 10 −10 mm or less,
The distance between the (010) plane and the (010) plane facing each other is 3.9 × 10 −10 m or less,
The distance between the (010) plane and the (100) plane facing each other is 3.2 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 2.7 × 10 −10 m A photoelectric conversion element that satisfies at least one of the following conditions.
 本出願は、日本国特許庁において2015年6月17日に出願された日本特許出願番号2015-122437号および2016年1月20日に出願された日本特許出願番号2016-008435号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application takes priority on the basis of Japanese Patent Application No. 2015-122437 filed on June 17, 2015 and Japanese Patent Application No. 2016-008435 filed on January 20, 2016 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (17)

  1.  対向配置された第1電極および第2電極と、
     前記第1電極と前記第2電極との間に設けられると共に、電荷移動に関する異方性係数が0.3以上1以下である結晶粒を含む光電変換層と
     を備えた光電変換素子。
    A first electrode and a second electrode disposed opposite to each other;
    A photoelectric conversion element comprising: a photoelectric conversion layer that is provided between the first electrode and the second electrode and includes crystal grains having an anisotropy coefficient related to charge transfer of 0.3 or more and 1 or less.
  2.  前記光電変換層はキナクリドンまたはキナクリドン誘導体を含み、
     前記結晶粒は、α結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer contains quinacridone or a quinacridone derivative,
    The photoelectric conversion element according to claim 1, wherein the crystal grains are constituted by the quinacridone or the quinacridone derivative having an α crystal phase.
  3.  前記光電変換層はキナクリドンまたはキナクリドン誘導体を含み、
     前記結晶粒は、γ結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer contains quinacridone or a quinacridone derivative,
    The photoelectric conversion element according to claim 1, wherein the crystal grains are constituted by the quinacridone or the quinacridone derivative having a γ crystal phase.
  4.  前記光電変換層は塩素化ホウ素サブフタロシアニンまたは塩素化ホウ素サブフタロシアニン誘導体を含み、
     前記結晶粒は、前記塩素化ホウ素サブフタロシアニンまたは前記塩素化ホウ素サブフタロシアニン誘導体によって構成されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer includes a chlorinated boron subphthalocyanine or a chlorinated boron subphthalocyanine derivative,
    The photoelectric conversion element according to claim 1, wherein the crystal grains are constituted by the chlorinated boron subphthalocyanine or the chlorinated boron subphthalocyanine derivative.
  5.  前記光電変換層はペンタセンまたはペンタセン誘導体を含み、
     前記結晶粒は、前記ペンタセンまたは前記ペンタセン誘導体によって構成されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer contains pentacene or a pentacene derivative,
    The photoelectric conversion element according to claim 1, wherein the crystal grains are constituted by the pentacene or the pentacene derivative.
  6.  前記光電変換層はベンゾチエノベンゾチオフェンまたはベンゾチエノベンゾチオフェン誘導体を含み、
     前記結晶粒は、前記ベンゾチエノベンゾチオフェンまたは前記ベンゾチエノベンゾチオフェン誘導体によって構成されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer includes benzothienobenzothiophene or a benzothienobenzothiophene derivative,
    The photoelectric conversion element according to claim 1, wherein the crystal grains are constituted by the benzothienobenzothiophene or the benzothienobenzothiophene derivative.
  7.  前記光電変換層はフラーレンまたはフラーレン誘導体を含み、
     前記結晶粒は、前記フラーレンまたは前記フラーレン誘導体によって構成されている、請求項1に記載の光電変換素子。
    The photoelectric conversion layer contains fullerene or a fullerene derivative,
    The photoelectric conversion element according to claim 1, wherein the crystal grains are constituted by the fullerene or the fullerene derivative.
  8.  前記光電変換層における電荷移動率は、1×1010-1以上である、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein a charge transfer rate in the photoelectric conversion layer is 1 × 10 10 s −1 or more.
  9.  前記光電変換層は、p型有機半導体材料およびn型有機半導体材料を含む、請求項1に記載の光電変換素子。 The photoelectric conversion element according to claim 1, wherein the photoelectric conversion layer includes a p-type organic semiconductor material and an n-type organic semiconductor material.
  10.  前記光電変換層は、キナクリドン、キナクリドン誘導体、塩素化ホウ素サブフタロシアニン、塩素化ホウ素サブフタロシアニン誘導体、ペンタセン、ペンタセン誘導体、ベンゾチエノベンゾチオフェン、ベンゾチエノベンゾチオフェン誘導体、フラーレンおよびフラーレン誘導体のうちの2種以上含む、請求項7に記載の光電変換素子。 The photoelectric conversion layer includes two or more of quinacridone, a quinacridone derivative, a chlorinated boron subphthalocyanine, a chlorinated boron subphthalocyanine derivative, a pentacene, a pentacene derivative, a benzothienobenzothiophene, a benzothienobenzothiophene derivative, a fullerene, and a fullerene derivative. The photoelectric conversion element of Claim 7 containing.
  11.  各画素では、1または複数の前記光電変換層を有する有機光電変換部と、前記有機光電変換部とは異なる波長域の光電変換を行う1または複数の無機光電変換部とが積層されている、請求項1に記載の光電変換素子。 In each pixel, an organic photoelectric conversion unit having one or more of the photoelectric conversion layers and one or more inorganic photoelectric conversion units that perform photoelectric conversion in a wavelength region different from the organic photoelectric conversion unit are stacked. The photoelectric conversion element according to claim 1.
  12.  前記無機光電変換部は、半導体基板内に埋め込み形成され、
     前記有機光電変換部は、前記半導体基板の第1面側に形成されている、請求項11に記載の光電変換素子。
    The inorganic photoelectric conversion part is embedded in a semiconductor substrate,
    The photoelectric conversion element according to claim 11, wherein the organic photoelectric conversion unit is formed on a first surface side of the semiconductor substrate.
  13.  前記半導体基板の第2面側に多層配線層が形成されている、請求項12に記載の光電変換素子。 The photoelectric conversion element according to claim 12, wherein a multilayer wiring layer is formed on the second surface side of the semiconductor substrate.
  14.  前記有機光電変換部が緑色光の光電変換を行い、
     前記半導体基板内に、青色光の光電変換を行う無機光電変換部と、赤色光の光電変換を行う無機光電変換部とが積層されている、請求項12に記載の光電変換素子。
    The organic photoelectric conversion unit performs green light photoelectric conversion,
    The photoelectric conversion element according to claim 12, wherein an inorganic photoelectric conversion unit that performs photoelectric conversion of blue light and an inorganic photoelectric conversion unit that performs photoelectric conversion of red light are stacked in the semiconductor substrate.
  15.  前記光電変換層は、β2結晶相のキナクリドンまたはキナクリドン誘導体によって構成されている複数の前記結晶粒を含み、
     前記β2結晶相の前記キナクリドンまたは前記キナクリドン誘導体は、各々が(001)面、(010)面、(100)面を有する結晶面を含み、
     前記複数の結晶粒のうち隣接する結晶粒同士では、
     互いに対向する(001)面と(001)面との距離が2.3×10-10m以下、
     互いに対向する(001)面と(010)面との距離が2.9×10-10m以下、
     互いに対向する(001)面と(100)面との距離が3.3×10-10m以下、
     互いに対向する(010)面と(010)面との距離が3.2×10-10m以下、
     互いに対向する(010)面と(100)面との距離が3.7×10-10m以下および
     互いに対向する(100)面と(100)面との距離が4.1×10-10m以下のうちの少なくとも1つの条件を満たす、請求項1に記載の光電変換素子。
    The photoelectric conversion layer includes a plurality of the crystal grains composed of quinacridone or a quinacridone derivative having a β 2 crystal phase,
    The quinacridone or the quinacridone derivative of the β 2 crystal phase includes crystal planes each having a (001) plane, a (010) plane, and a (100) plane,
    Among adjacent crystal grains among the plurality of crystal grains,
    The distance between the (001) plane and the (001) plane facing each other is 2.3 × 10 −10 m or less,
    The distance between the (001) plane and the (010) plane facing each other is 2.9 × 10 −10 m or less,
    The distance between the (001) plane and the (100) plane facing each other is 3.3 × 10 −10 m or less,
    The distance between the (010) plane and the (010) plane facing each other is 3.2 × 10 −10 m or less,
    The distance between the (010) plane and the (100) plane facing each other is 3.7 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 4.1 × 10 −10 m The photoelectric conversion element according to claim 1, wherein at least one of the following conditions is satisfied.
  16.  前記α結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている複数の前記結晶粒は、各々が(001)面、(010)面、(100)面を有する結晶面を含み、
     前記複数の前記結晶粒のうち隣接する結晶粒同士では、
     互いに対向する(001)面と(001)面との距離が2.8×10-10m以下、
     互いに対向する(001)面と(010)面との距離が2.8×10-10m以下、
     互いに対向する(001)面と(100)面との距離が3.1×10-10m以下、
     互いに対向する(010)面と(010)面との距離が4.1×10-10m以下、
     互いに対向する(010)面と(100)面との距離が3.6×10-10m以下および
     互いに対向する(100)面と(100)面との距離が3.2×10-10m以下のうちの少なくとも1つの条件を満たす、請求項2に記載の光電変換素子。
    The plurality of crystal grains constituted by the quinacridone or the quinacridone derivative in the α crystal phase each include a crystal plane having a (001) plane, a (010) plane, and a (100) plane,
    Among adjacent crystal grains among the plurality of crystal grains,
    The distance between the (001) plane and the (001) plane facing each other is 2.8 × 10 −10 m or less,
    The distance between the (001) plane and the (010) plane facing each other is 2.8 × 10 −10 m or less,
    The distance between the (001) plane and the (100) plane facing each other is 3.1 × 10 −10 m or less,
    The distance between the (010) plane and the (010) plane facing each other is 4.1 × 10 −10 m or less,
    The distance between the (010) plane and the (100) plane facing each other is 3.6 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 3.2 × 10 −10 m The photoelectric conversion element according to claim 2, wherein at least one of the following conditions is satisfied.
  17.  前記γ結晶相の前記キナクリドンまたは前記キナクリドン誘導体によって構成されている複数の前記結晶粒は、各々が(001)面、(010)面、(100)面を有する結晶面を含み、
     前記複数の前記結晶粒のうち隣接する結晶粒同士では、
     互いに対向する(001)面と(001)面との距離が1.7×10-10mm以下、
     互いに対向する(001)面と(010)面との距離が2.7×10-10mm以下、
     互いに対向する(001)面と(100)面との距離が2.1×10-10mm以下、
     互いに対向する(010)面と(010)面との距離が3.9×10-10m以下、
     互いに対向する(010)面と(100)面との距離が3.2×10-10m以下および
     互いに対向する(100)面と(100)面との距離が2.7×10-10m以下のうちの少なくとも1つの条件を満たす、請求項3に記載の光電変換素子。
    The plurality of crystal grains constituted by the quinacridone or the quinacridone derivative of the γ crystal phase include crystal planes each having a (001) plane, a (010) plane, and a (100) plane,
    Among adjacent crystal grains among the plurality of crystal grains,
    The distance between the (001) plane and the (001) plane facing each other is 1.7 × 10 −10 mm or less,
    The distance between the (001) plane and the (010) plane facing each other is 2.7 × 10 −10 mm or less,
    The distance between the (001) plane and the (100) plane facing each other is 2.1 × 10 −10 mm or less,
    The distance between the (010) plane and the (010) plane facing each other is 3.9 × 10 −10 m or less,
    The distance between the (010) plane and the (100) plane facing each other is 3.2 × 10 −10 m or less, and the distance between the (100) plane and the (100) plane facing each other is 2.7 × 10 −10 m The photoelectric conversion element according to claim 3, wherein at least one of the following conditions is satisfied.
PCT/JP2016/065605 2015-06-17 2016-05-26 Photoelectric conversion element WO2016203925A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015122437 2015-06-17
JP2015-122437 2015-06-17
JP2016-008435 2016-01-20
JP2016008435 2016-01-20

Publications (1)

Publication Number Publication Date
WO2016203925A1 true WO2016203925A1 (en) 2016-12-22

Family

ID=57545508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065605 WO2016203925A1 (en) 2015-06-17 2016-05-26 Photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2016203925A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054125A1 (en) * 2017-09-15 2019-03-21 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
JP2019054228A (en) * 2017-09-15 2019-04-04 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
WO2019098315A1 (en) * 2017-11-20 2019-05-23 ソニー株式会社 Photoelectric conversion element and solid-state imaging apparatus
WO2019098003A1 (en) * 2017-11-17 2019-05-23 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
WO2020012842A1 (en) * 2018-07-09 2020-01-16 ソニー株式会社 Photoelectric conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053497A (en) * 2011-03-10 2015-03-19 国立大学法人東京工業大学 Organic semiconductor material
JP2016009722A (en) * 2014-06-23 2016-01-18 ソニー株式会社 Photoelectric conversion film, solid state imaging element and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053497A (en) * 2011-03-10 2015-03-19 国立大学法人東京工業大学 Organic semiconductor material
JP2016009722A (en) * 2014-06-23 2016-01-18 ソニー株式会社 Photoelectric conversion film, solid state imaging element and electronic apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109240B2 (en) 2017-09-15 2022-07-29 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
JP2019054228A (en) * 2017-09-15 2019-04-04 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
US11690293B2 (en) 2017-09-15 2023-06-27 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging device
WO2019054125A1 (en) * 2017-09-15 2019-03-21 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
WO2019098003A1 (en) * 2017-11-17 2019-05-23 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
US11322703B2 (en) 2017-11-17 2022-05-03 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging apparatus
US11968846B2 (en) 2017-11-17 2024-04-23 Sony Semiconductor Solutions Corporation Photoelectric conversion element and solid-state imaging apparatus
JPWO2019098315A1 (en) * 2017-11-20 2020-12-03 ソニー株式会社 Photoelectric conversion element and solid-state image sensor
US11322547B2 (en) 2017-11-20 2022-05-03 Sony Corporation Photoelectric conversion element and solid-state imaging device
US20220165800A1 (en) * 2017-11-20 2022-05-26 Sony Group Corporation Photoelectric conversion element and solid-state imaging device
WO2019098315A1 (en) * 2017-11-20 2019-05-23 ソニー株式会社 Photoelectric conversion element and solid-state imaging apparatus
WO2020012842A1 (en) * 2018-07-09 2020-01-16 ソニー株式会社 Photoelectric conversion element
TWI810326B (en) * 2018-07-09 2023-08-01 日商索尼股份有限公司 Photoelectric conversion element

Similar Documents

Publication Publication Date Title
TWI774035B (en) Photoelectric conversion element and solid-state imaging device
US11107849B2 (en) Photoelectric conversion element, imaging device, and electronic apparatus to improve photoresponse while maintaining superior wavelenght selectivity of a subphthalocyanine and a subphthalocyanine derivative
JP6136663B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
WO2014007132A1 (en) Solid-state imaging device, method for manufacturing same, and electronic device
WO2016203925A1 (en) Photoelectric conversion element
WO2017033736A1 (en) Photoelectric conversion element, imaging element and electronic device
WO2016190217A1 (en) Photoelectric conversion element, solid-state imaging device and electronic device
JP6772171B2 (en) Photoelectric conversion element and solid-state image sensor
JP2017157801A (en) Photoelectric conversion element, method for manufacturing the same, and solid-state imaging apparatus
WO2017047266A1 (en) Solid-state image pickup element and method for manufacturing solid-state image pickup element
WO2017086115A1 (en) Photoelectric conversion element and solid-state image capture device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP