WO2016201758A1 - 无源复合强电离放电等离子拒雷装置 - Google Patents

无源复合强电离放电等离子拒雷装置 Download PDF

Info

Publication number
WO2016201758A1
WO2016201758A1 PCT/CN2015/084226 CN2015084226W WO2016201758A1 WO 2016201758 A1 WO2016201758 A1 WO 2016201758A1 CN 2015084226 W CN2015084226 W CN 2015084226W WO 2016201758 A1 WO2016201758 A1 WO 2016201758A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thundercloud
lightning protection
lightning
discharge
Prior art date
Application number
PCT/CN2015/084226
Other languages
English (en)
French (fr)
Inventor
王昆生
Original Assignee
王昆生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王昆生 filed Critical 王昆生
Priority to MYPI2017704869A priority Critical patent/MY185920A/en
Priority to US15/737,570 priority patent/US20180226782A1/en
Priority to EP15895331.5A priority patent/EP3312955B1/en
Priority to AU2015398764A priority patent/AU2015398764A1/en
Publication of WO2016201758A1 publication Critical patent/WO2016201758A1/zh
Priority to AU2020200901A priority patent/AU2020200901B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure
    • H02G13/80Discharge by conduction or dissipation, e.g. rods, arresters, spark gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Definitions

  • the invention relates to the technical field of lightning protection arrays in lightning protection technology, in particular to a passive composite strong ionization discharge plasma lightning protection device capable of effectively collecting clouds and ground charges under the lightning cloud electric field and effectively avoiding direct lightning strikes.
  • typical lightning protection devices in the field of direct lightning protection technology include: lightning rods, lightning protection arrays and integrated active and passive plasma lightning protection devices.
  • the lightning rod is commonly known as the “lightning rod”.
  • Lightning Rod According to the latest national standard "Building Lightning Protection Design Code”, “Lightning Rod” has been renamed as “Lighting Rod”, its English is Lightning Rod, abbreviated as LR.
  • the pre-discharge lightning rod is an improved type of lightning rod, the English is Early Streamer Emission, abbreviated as ESE.
  • Lightning Elimination Array is commonly known as Lightning Eliminating Array, which is abbreviated as LEA.
  • Integrated active and passive plasma lightning protection device the English is Device of Compound Plasma for Lightning Rejection, abbreviated as CPLR.
  • the lightning protection mechanism of LR that was invented and used by Franklin 250 years ago is to use the tip effect of the LR tip to intensify the electric field and stimulate the uplink to lead the lightning down pilot to break it down, and to discharge the lightning current into the ground through the grounding conductor.
  • the lightning protection target is prevented from being protected within the range in which the LR protection radius is its installation height.
  • the leakage of lightning current into the ground produces counter-attacks, strong electromagnetic radiation, induced overvoltage, personnel striding and contact voltage and other negative hazards, which are particularly harmful to electronic equipment and systems in today's information age.
  • LR also has the problem that the tip-excited up-lead ion is insufficient, the small-current lightning strike is unstable, and the lightning strikes the protected target.
  • ESEs represented by France are derived, usually configured to generate charged ions.
  • Auxiliary electrodes, discharge gaps, energy storage inductors, capacitors, and other components locally send charged ions or pulsed high voltage to the main lead of the lightning guide, so that the needle end advances and accurately triggers the upstream pilot lightning strike downstream leader.
  • the insulating material is wrapped around the lightning-leading needle to prevent the charged ions from divulging into the surrounding space and only to be concentratedly emitted above the needle tip, so as to achieve earlier and more accurate lightning.
  • LEA abandoned the negative effect of LR to attract the ground and absorbed the advantage of LR, that is, it generated high field strength lightning by its own cutting-edge effect, so that the protected target was at a relatively low field strength without lightning. Therefore, it has high field strength to attract the thunder cloud electric field charge, and has high efficiency consumption to attract the electric charge without itself being thundered, so that the protected target is at a low field strength without being struck by lightning, which is a direct lightning protection.
  • the development direction of the device, LEA is constructed based on this development direction.
  • LEA was used in NASA's NASA Apollo moon landing space launcher lightning protection in 1971 to solve the problem of lightning electromagnetic pulse (LEMP) generated by traditional LR "lightning into the ground” in a “non-lighting” manner. Inductive lightning damage caused by the system.
  • LEA's lightning protection mechanism is called “charge transfer method” by NASA, which is also known as the “charge neutralization method” in China.
  • the structure of LEA usually adopts American short-needle (a hemispherical radiation array consisting of hundreds or thousands of short metal needles with a length of about 300 mm) and China's 1979 model of Peng Yao et al. Needle (a hemispherical radiation array consisting of a dozen metal long needles of several meters long and a few short auxiliary needles at the needle end).
  • FIG. 1 is a block diagram of a prior art low-long-needle lightning-splitting array comprising a pedestal and an array of fewer long needles mounted in an array on the pedestal.
  • the tip corona discharge generates plasma.
  • the heteropolar ions in the plasma are separated and drift to the opposite polarity electric field respectively. And diffuse into the low ion concentration region of space.
  • most of the charged ions are neutralized with clouds and ground charges near the array needle end and the grounding body and the steel tower due to the LEA array needle concentrating the Thundercloud electric field charge and the grounding body and the steel tower converge on the ground induced electric field charge.
  • the structure and purpose of the LEA is to maximize the breakdown voltage withstand level.
  • the construction and purpose of the improved ECE for LR is to minimize the breakdown voltage tolerance level.
  • LEA forces the homogenization of the space electric field, it also weakens the electric field strength of its own needle end, thus correspondingly reducing the ability to generate charged ions, showing the self-shielding effect of ionization discharge, even increasing the number of array needle bars. It cannot be improved. Because the factor determining the LEA's lightning-reducing ability is the ion-diffused current, and the self-shielding effect limits the further increase of the ion-diffused current, the existing LEA's lightning-reduction capability is limited.
  • the LEA's ion divergence current during lightning activity is also less than 2 mA, under dynamic meteorological and environmental conditions (eg, at low ionization) At altitudes, the divergence current will be smaller and not enough to stabilize the lightning, resulting in a higher probability of lightning strikes on the LEA body or its protected range, making most people in the lightning protection field controversial about LEA or Negative attitude, ion divergence current is too small to become a fatal problem for LEA.
  • a composite active and passive plasma lightning protection method and apparatus is disclosed in Chinese Patent No. 200410022185.2, filed on March 29, 2004, which is incorporated herein by reference.
  • the alarm signal unit (1) issues a start command to the active plasma generator unit (2) and the airflow source unit (3), and the airflow source unit (3) operates to draw air into the atmosphere, or other applicable gas is delivered to the active plasma.
  • the generator unit (2) is ionized, and the high concentration plasma generated by ionizing air or other applicable gas is delivered to the tube of the lightning rod (4). Discharged from the top.
  • the high concentration plasma generated by the LEA in the lightning cloud electric field induced by the ionization discharge at the needle end of the array and the active strong ionization discharge is compounded at the end of the hollow needle tube to compensate for the deficiency of the LEA divergence current.
  • the advantage is that the CPLR active high-concentration plasma can be activated early when the favorable thundercloud electric field is still weak (that is, when the thundercloud activity center is about 15 min and 5 km away from the protected target).
  • PCPLR Device of Passive Compound Strong Ionization Discharge Plasma for Lightning Rejection
  • the object of the present invention is to provide a passive composite strong ionization discharge plasma lightning protection device, which can generate and disperse charged ions under the excitation of a thundercloud electric field, and efficiently collect clouds and ground charges to achieve wide protection. Avoid direct lightning strikes within range.
  • a passive composite strong ionization discharge plasma lightning protection device comprising a thundercloud charge recumbent unit, a strong ionization discharge unit and a ground conductor, wherein the discharge electrode of the strong ionization discharge unit comprises two electrodes, wherein the electrode A and the thunder
  • the cloud charge recombination unit is integrated into one body, and the electrode B is connected with the ground conductor, and the discharge gap is separated and fixed by the insulating support between the two electrodes;
  • the Thundercloud charge recombination unit is a lightning elimination array.
  • the electrode A of the discharge electrode of the strong ionization discharge unit is a curved surface electrode, a plate electrode, a thin wire electrode or a ring electrode
  • the electrode B is a curved surface electrode, a plate electrode, a thin wire electrode or a ring electrode
  • the plate electrode The edge is a circular arc shape that eliminates the effect of the edge electric field.
  • the ring electrode A is an annular plate electrode, a circular arc surface electrode or a ring-shaped thin wire electrode
  • the electrode B is an annular plate electrode, a circular arc surface electrode or a ring-shaped thin wire electrode; the ring electrode A and the ring electrode B are concentric rings.
  • the edge of the annular plate electrode is a circular arc shape that eliminates the effect of the edge electric field excitation.
  • the electrode A and the electrode B are thin wire electrodes, and the thin wire electrode is a ring-shaped single ring or a plurality of thin wires, and the circular arc R of the single-turn thin wire electrode is about 0.1 mm to 10 mm.
  • the electrode A and the electrode B are thin wire electrodes, and the thin wire electrodes are linear protrusions provided on the plate planes of the plate electrodes and the curved electrodes, and the linear protrusions are thin round lines, semicircular lines, and tooth tips.
  • the line of the line, the section of the thin plate or the corner of the thick plate, the line arc of the linear protrusion R is about 0.1 mm to 10 mm, which can produce a fine line effect during ionization discharge;
  • the thin wire electrode is axis It is perpendicular to the plate electrode and is perpendicular to the tip electrode with the axis perpendicular to the plate electrode.
  • the electrode A is a multi-fine wire electrode
  • the electrode B is a plate electrode or a curved plate electrode, and an axis of the thin wire of the thin wire electrode is perpendicular to the plate electrode or a normal line perpendicular to the arc plate electrode; the plate electrode or The edge of the arc plate electrode is a circular arc shape that eliminates the effect of the edge electric field.
  • An insulating dielectric layer may be additionally added between the electrode A and the electrode B of the strong ionization discharge unit, and the insulating dielectric layer further increases the gap breakdown voltage.
  • the lightning protection array comprises a circular arc-shaped base and ten to hundreds of array pins; the array needle is mounted on the outer wall of the base, and the array needle bar may be a metal solid rod or a metal hollow tube.
  • the base is a metal hollow cover, and the discharge electrode of the strong ionization discharge unit is installed in the cover, the inner wall of the base is a pole of the discharge electrode of the strong ionization discharge unit; the base is fixed on the insulation support The insulating support is fixed on the other pole of the discharge electrode of the strong ionization discharge unit, and the discharge electrode is fixed on the lightning arresting tower in a seat structure, the air inlet is opened below the base, and the atmospheric rising airflow enters the base along the air inlet. Inside the seat, it flows through the discharge electrode and is discharged to the space through the outlet ports of each array of needle bar tubes.
  • the beneficial effects are: the Thundercloud charge recombination unit composed of the existing LEA passive plasma generation technology and the adoption of the new "multi-fine line effect" passive strong ionization discharge plasma generation technology
  • the composed strong ionization discharge unit is compounded and connected with the grounding conductor, excited by the Thundercloud electric field, and the composite strong ionization discharge generates a discharge charge of 10mC/s (ie, 10mA dissipated current), and the high-efficiency neutralization thundercloud charge recumbent unit and grounding
  • Objects with a wide angle greater than 84° that is, a protection radius of 10 times the PCPLR mounting height
  • the PCPLR body are protected from lightning field discharge breakdown.
  • the PCPLR of the present invention integrates the advantages of the LR, LEA and CPLR technologies into one, and solves the main problems of each of them, and becomes a new type of direct lightning protection device.
  • the PCPLR upgraded the LEA to further improve the breakdown voltage withstand level.
  • the breakdown voltage of the PCPLR is 4.7 times higher than that of the LR without being destroyed by lightning.
  • the invention is suitable for direct lightning protection of various fixed and moving objects.
  • FIG. 1 is a structural diagram of a lightning arresting array of a prior art LEA
  • FIG. 2 is a structural block diagram of a prior art CPLR
  • FIG. 3 is a block diagram showing the structure of the present invention.
  • Figure 4 is a schematic view showing the mounting structure of the present invention.
  • FIG. 5 is a schematic view showing a first embodiment of a strong ionization discharge unit of the present invention, showing a concentric double annular curved section electrode of a strong ionization discharge unit;
  • 6A is a second embodiment of the strong ionization discharge unit of the present invention, showing a schematic diagram of both electrodes of the discharge electrode of the strong ionization discharge unit being strip electrodes for eliminating the effect of edge electric field excitation;
  • FIG. 6B is a schematic view showing the interlayer electrode gap of the discharge cell of FIG. 6A provided with an insulating dielectric layer;
  • FIG. 7A is a third embodiment of the strong ionization discharge unit of the present invention, showing that the ring-shaped thin wire electrode of the strong ionization discharge unit is connected to the Thundercloud charge polymerization unit, and the other electrode is a ring plate electrode concentric with the ring-shaped thin wire electrode, and a schematic diagram of connection to a ground conductor;
  • FIG. 7B is a schematic diagram of the strong ionization discharge unit of FIG. 7A, showing a ring-shaped thin wire electrode of the discharge cell electrically connected to the ground conductor, and the other electrode being a ring plate electrode and connected to the Thundercloud charge accumulation unit;
  • FIG. 8A is a fourth embodiment of the strong ionization discharge unit of the present invention, showing a schematic diagram of a vertical cylindrical multi-wire electrode connected to a Thundercloud charge recombination unit and the other electrode being a circular plate electrode connected to the ground conductor;
  • FIG. 8B is a schematic diagram of a strong ionization discharge unit similar to that of FIG. 8A, showing a vertical cylindrical multi-wire electrode connected to a ground conductor, and another electrode being a circular plate electrode connected to a Thundercloud charge accumulation unit;
  • Thundercloud electric field 2. Thundercloud charge recombination unit; 3. Strong ionization discharge unit; 4. Grounding conductor.
  • a passive composite strong ionization discharge plasma lightning protection device includes a Thundercloud charge accumulation unit 2, a strong ionization discharge unit 3, and a ground conductor 4, and the strong ionization
  • the discharge electrode of the discharge unit 3 comprises an electrode A and an electrode B, wherein the electrode A is integrated with the base of the thundercloud charge accumulation unit 2, and the electrode B is fixed on the lightning protection tower in a seat structure and connected to the ground conductor 4.
  • the insulation gap is isolated and fixed between the two electrodes by an insulating support.
  • the ground conductor 4 is connected to an equivalent reference ground formed by the ground or a floating metal plate.
  • Thundercloud electric field 1 Excited by the Thundercloud electric field 1 : the external components of the Thundercloud unit 2 are induced by the Thundercloud electric field, and a reverse polarity electric field is generated at the needle end of the array to form an ionization discharge plasma between the positive and negative polarity electric fields;
  • the inner wall of the eliminating unit 2 and the discharge electrode A of the strong ionizing discharge unit 3 combined therewith are induced by the thundercloud electric field to generate an electric field of opposite polarity to the external member, that is, an electric field having the same polarity as the thundercloud electric field.
  • the grounding conductor 4 and the ground are induced by the lightning cloud electric field to generate a reverse polarity electric field, and the electric field of the electrode B of the strong ionization discharge unit 3 connected to the grounding body 4 is opposite to the polarity of the thundercloud electric field, that is, the two electrodes
  • the electric field polarity is opposite to generate a gap discharge, and a strong electric field strong ionization discharge plasma between the electrodes is formed due to optimization of the electrode structure and the gap size. Since the strong ionization discharge unit 3 is connected in series between the thundercloud concentrating unit 2 and the ground conductor unit 4, the level of the strong electric field strong ionization discharge plasma generated by the thundercloud concentrating unit 2 is also increased.
  • the plasma generated by the composite strong ionization discharge of the device is diverged around the array needle end and the strong ionization discharge electrode, and the positive and negative charged ions of the plasma are attracted by the thunder cloud electric field and the heteropolar electric field induced on the ground object. Separating and diversifying the direction of the opposite-polar electric field and diffusing into the low-concentration ion region, neutralizing the heteropolar thundercloud charge and the charge induced on the ground object, that is, the composite strong ionization generates a 10 mA divergence under the excitation of the thundercloud electric field.
  • Figure 4 is a schematic view of the installation structure of the present invention: in the figure, the PCPLR is installed on the top of the tower where the ground is raised to the highest point within the protected range, and can also be installed on the top of the tower at the top of the highest building within the protected area or The top position of the steel tower of the transmission line; in the figure, the Thundercloud unit 2 is combined with the strong ionization discharge unit 3 and fixed on the top of the elevated tower via the strong ionization discharge unit 3, and the ground electrode of the strong ionization discharge unit 3 is The wire is connected to the ground conductor 4.
  • FIG. 5 is a schematic view showing a first embodiment of the strong ionization discharge unit of the present invention, showing a concentric double-ring arc-shaped cross-section electrode of the strong ionization discharge unit;
  • the concentric double-ring arc-shaped cross-section electrode includes an electrode A compounded with the base of the thundercloud charge-collecting unit 2, the outer peripheral surface of the electrode A is an outer annular curved surface 31; and the other electrode electrically connected to the ground conductor 4 B.
  • the inner peripheral surface of the electrode B is an inner annular curved surface 32.
  • the inner annular curved surface 32 is disposed outside the outer annular curved surface 31, the outer annular curved surface 31 and the inner annular curved surface 32 are concentric, and the outer annular curved surface 31 and the inner annular curved surface 32 are separated by an insulating support and the discharge gap is fixed.
  • an insulating dielectric layer may be disposed between the outer annular curved surface 31 and the inner annular curved surface 32 as needed.
  • the strong ionization discharge unit 3 can be provided according to actual needs.
  • the outer annular curved surface 31 electrode is electrically connected to the ground conductor 4, and the inner annular curved surface 32 electrode is combined with the base of the thundercloud charge collecting unit 2.
  • 6A is a second embodiment of the strong ionization discharge unit of the present invention, showing the two poles of the discharge electrode of the strong ionization discharge unit are schematic diagrams of the plate electrode for eliminating the edge electric field excitation effect; as shown in the figure, one of the plate electrodes A35 and the thundercloud The charge accumulation unit 2 is electrically connected, and the other plate electrode B36 is electrically connected to the ground conductor 4.
  • the periphery of the discharge surface of the plate electrodes A and B35, 36 is respectively configured into a circular arc-shaped bead.
  • the plate electrode A35 and the Thundercloud electric field are the same polarity electric field
  • the other plate electrode B36 and the ground induced electric field are the same polarity electric field
  • the plate electrode A35 and the plate electrode B36 are opposite to each other due to the electric field.
  • FIG. 6B is a schematic view showing the interlayer dielectric gap of the discharge cell of FIG. 6A provided with an insulating dielectric layer; in order to further increase the voltage breakdown level between the electrodes, an insulating medium may be disposed between the gap between the plate electrode A35 and the plate electrode B36 as needed. Layer 5.
  • the discharge gap is separated and fixed by the insulating support between the discharge electrodes, and the strong ionization discharge unit is fixed on the top of the tower through the ground electrode holder, which is the same for the following embodiments and will not be described again.
  • FIG. 7A is a third embodiment of a strong ionization discharge unit according to the present invention, showing a schematic diagram of electrical connection between a ring-shaped thin wire electrode of a strong ionization discharge unit and a Thundercloud charge dissipation unit; as shown in the figure, an electrode of the strong ionization discharge unit B is an annular plate 37 electrically connected to the ground conductor 4; the other electrode A is an annular thin wire electrode 38 concentric with the annular plate 37, and the annular thin wire electrode is electrically connected to the Thundercloud charge collecting unit 2 .
  • FIG. 7B is a schematic diagram showing the strong ionization discharge unit of FIG. 7A, showing the electrical connection between the annular thin wire electrode of the strong ionization discharge unit and the ground conductor; as shown, the electrode A of the strong ionization discharge unit is an annular plate 37, The annular plate 37 is electrically connected to the Thundercloud charge accumulation unit 2; the other electrode B is an annular thin wire electrode 38 concentric with the annular plate 37, and the annular thin wire electrode is electrically connected to the ground conductor 4.
  • the fine line cross section arc R of the thin wire electrode 38 is about 0.1 mm to 10 mm.
  • the thin line of the thin wire electrode 38 broadly includes: a convex thin round line, a semicircular line, a tooth tip line provided on the plate plane of the plate electrode and the curved electrode, a section line of the thin plate, and a corner line of the thick plate
  • a line having an arc of equal section R of about 0.1 mm to 10 mm can produce a fine line effect during ionization discharge.
  • an insulating dielectric layer may be provided in the gap between the ring electrodes 37 and 38 as needed.
  • FIG. 8A is a fourth embodiment of a strong ionization discharge unit according to the present invention, showing a schematic view of a cylindrical thin wire electrode disposed perpendicular to a plate electrode and electrically connected to a Thundercloud charge polymerization unit; as shown, the strong ionization discharge unit
  • the electrode B is a plate electrode 39, and the plate electrode 39 and the ground conductor 4
  • the other electrode A is a cylindrical thin wire electrode 30 perpendicular to the plate electrode 39, and the thin wire electrode is electrically connected to the Thundercloud charge concentrating unit 2.
  • the plate electrode 39 is maintained with a proper ionization discharge gap between the cylindrical thin wire electrodes 30 perpendicular thereto.
  • Fig. 8B is similar to the strong ionization discharge unit of Fig. 8A, showing a schematic view in which a cylindrical thin wire electrode is disposed perpendicular to the plate electrode and electrically connected to the ground conductor 4; as shown, the electrode of the strong ionization discharge unit A is a plate electrode 39 electrically connected to the Thundercloud charge collecting unit 2; the other electrode B is a cylindrical thin wire electrode 30 perpendicular to the plate electrode 39, and the thin wire electrode is electrically connected to the ground conductor 4. .
  • the plate electrode 39 is maintained with a proper ionization discharge gap between the cylindrical thin wire electrodes 30 perpendicular thereto.
  • the strong ionization discharge unit of the present invention may also be a spherical electrode; one of the spherical electrodes is electrically connected to the Thundercloud electric field sensing unit, and the other spherical electrode is electrically connected to the grounding conductor 4.
  • the Thundercloud charge recombination unit is a lightning protection array.
  • the lightning protection array can be a US short needle type LEA or a Chinese long needle type LEA.
  • the lightning protection array comprises a circular arc-shaped base and ten to hundreds of array pins; the array needle is mounted on the outer wall of the base, and the array needle bar may be a metal solid rod or a metal hollow tube.
  • the lightning protection array includes a base and a plurality of array pins; the array of needle arrays is mounted on the outer wall of the base, the array needle is a hollow metal tube; and a discharge space is formed in the base,
  • the electrode A of the strong ionization discharge unit is integrated with the lightning protection array needle bar base, and the other electrode B connected to the ground conductor is installed in the discharge space; the base is fixed to the electrode seat of the electrode B through the insulating support.
  • the electrode holder is fixed on the lightning protection tower, and the lower part of the base is an open air inlet.
  • the atmospheric rising airflow enters the base along the air inlet, flows through the discharge electrode and is discharged through the air outlets of the array needle rod tubes.
  • the air flow passage between the air inlet, the strong ionization discharge space and the hollow tube of each array needle communicates with each other, and the air flow passage is adapted to accelerate inhalation of more ascending air current for ionization, and output the ionized gas to the metal needle end of the array needle Ionize and divergence again, producing more divergent charge.
  • the passive composite strong ionization discharge air plasma lightning protection device of the present invention neutralizes the Thundercloud electric field charge by strong ionization discharge unit 3 through the strong ionization discharge unit 3; meanwhile, the strong ionization discharge unit 3 is surrounded by the discharge process during the discharge process.
  • the air ionization generates plasma, and the process of ionizing the air does not require an artificial power source, but uses the Thundercloud electric field to provide energy to strongly ionize the air in the atmosphere, and efficiently produce
  • the high concentration of plasma is much better than that of today's active plasma lightning protection devices in terms of ion concentration, ionization and instantaneous ion generation rate.
  • the key indicator is that the divergent current is about active plasma.
  • the lightning protection device ensures reliable passive lightning protection.
  • the test prototype of the device was detected by lightning early warning device and lightning counter, and the lightning protection was successfully rejected for thousands of times within a wide protection range with a protection angle greater than 84°.
  • the present invention has undergone various simulation tests.
  • the tests when a strong electric field is applied to the simulated thundercloud electrode plate, when the conventional lightning rod LR having an electric field strength increased by more than 1000 times is subjected to a severe brush discharge, the rejection is rejected.
  • the lightning device sample is moved into any position under the thundercloud electrode plate, and the conventional lightning rod stops discharging immediately, and there is no discharge between the device and the thundercloud plate. It shows that the device can protect against the lightning strike of the object of the lightning rod type including the extreme excitation electric field and the body of the device under the entire thundercloud plate.
  • the device has a strong ionization discharge and a thundercloud charge rate of up to 30mC/s (ie, a divergence current of 30mA), that is, it can neutralize the lower charge of the 10C thundercloud in 5.6 minutes, effectively suppressing the intensification of the thundercloud electric field and the formation of the lightning pilot. And development, in order to alleviate the lower charge of the thundercloud to achieve non-lightning into the ground-type lightning.
  • the passive composite strong ionization discharge air plasma lightning protection device of the invention can simply modify the existing lightning protection tower, install a lightning protection device on the lightning protection tower, and easily transform the lightning protection device into a lightning protection device. It has a wide range of use space in the market.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

一种无源复合强电离放电等离子拒雷装置,涉及消雷阵列技术领域,包括雷云电荷聚消单元(2)、强电离放电单元(3)和接地导体(4),其特征在于,该雷云电荷聚消单元(2)为消雷阵列,该强电离放电单元(3)的放电电极包含两极,其中电极A与雷云电荷聚消单元(2)复合为一体,电极B与接地导体(4)连接,两极之间保持有放电间隙。本装置由雷云电场(1)激励,复合强电离放电产生数10mC/s消散电荷(即数10mA消散电流),高效中和雷云电荷聚消单元(2)及接地导体(4)引聚的云、地电荷±Q,有效抑制云-地间等效电容C的电压V=Q/C增高而不被雷云充电至对地面放电击穿的水平,即雷云电场下保护角大于84°宽范围内的物体及本装置均免遭雷云电场放电击穿。本发明适用于各类固定和移动物体的直击雷防护。

Description

无源复合强电离放电等离子拒雷装置 技术领域:
本发明涉及避雷技术中消雷阵列的技术领域,特别是涉及一种在雷云电场下高效聚消云、地电荷而有效避免直击雷的无源复合强电离放电等离子拒雷装置。
背景技术:
目前,直击雷防护技术领域典型的避雷装置有:接闪杆、消雷阵列和综合有源及无源等离子拒雷装置。其中,接闪杆即俗称的“避雷针”,根据最新国家标准《建筑物防雷设计规范》,“避雷针”已正名为“接闪杆”,其英文为Lightning Rod,简写为LR。提前放电接闪杆为改进型接闪杆,其英文为Early Streamer Emission,简写为ESE。消雷阵列俗称消雷器,其英文为Lightning Eliminating Array,简写为LEA。综合有源及无源等离子拒雷装置,其英文为Device of Compound Plasma for LightningRejection,简写为CPLR。
富兰克林250年前发明并沿用至今的LR的避雷机理是,利用LR针尖的尖端效应激化电场和激发上行先导引接雷电下行先导对其击穿,并经接地导体将雷电流泄放入地,从而在LR保护半径为其安装高度的范围内避免雷击被保护目标。但其泄放雷电流入地产生反击、强电磁辐射、感应过电压、人员跨步及接触电压等负面危害,对当今信息时代的电子设备及***的危害尤重。此外,LR还存在尖端激发上行先导的离子量不足而对小电流雷击吸引不稳而雷电绕击被保护目标等问题,为此派生出以法国为代表的多种ESE,通常配置产生带电离子的辅助电极、放电间隙、蓄能电感、电容、等部件,向引雷主针端局部发送带电离子或脉冲高压,以使针端提前和准确激发上行先导引接雷击下行先导。为防止带电离子扩散,还采用在引雷针***包裹绝缘材料防止带电离子向周围空间发散而仅向针尖上方集中发射等方式,实现更早、更准地引雷。
LEA摒弃了LR引雷入地的负面作用而吸取了LR的优点,即以自身的尖端效应产生高场强引雷,使被保护目标处于相对低场强而不引雷。因此既具有高场强引聚雷云电场电荷,又具有高效率消耗引聚电荷而自身不被雷电击穿、从而也使被保护目标处于低场强而不被雷电击穿,是直击雷防护装置的发展方向,LEA正是基于这一发展方向而构造的。
LEA于1971年实用于美国宇航局NASA的阿波罗登月飞船发射架防雷,以“非引雷入地”方式解决采用传统LR“引雷入地”产生的雷电电磁脉冲(LEMP)对电子***造成的感应雷损害。LEA的防雷机理被NASA称为“电荷转移法”,也即我国俗称的“电荷中和法”。LEA的结构通常采用美国式多短针(以成百至上千根约300mm长的金属短针组成的半球辐射型阵列)和我国1979年由云南电力中心试验所彭耀等构造的中国式少长针(以十数根数米长且针端有数根短辅针的金属少长针组成的半球辐射型阵列)结构。
图1所示为现有技术的少长针消雷阵列的结构图,消雷阵列包括基座和以阵列形式安装在基座上的少长针阵列。在雷云电场感应下阵列尖端电晕放电产生等离子体,在雷云电场及其在地面感应的异极性电场的吸引下,等离子体中的异极性离子分离并分别向异极性电场漂移和向空间低离子浓度区扩散。实际上,由于LEA阵列针引聚雷云电场电荷和接地体、钢塔引聚地面感应电场电荷,多数带电离子在阵列针端和接地体、钢塔附近已与云、地电荷中和。均匀和减弱雷云电场在地面感应的电场而形成强迫均匀场,使雷云电场对地面物体及LEA本体的感应电场均达不到电压击穿的水平。
可见,LEA的构造和目的在于尽量提高击穿电压耐受水平,与此相反,对LR进行改进的ESE的构造和目的则在于尽量降低击穿电压耐受水平。
然而,LEA在对空间电场进行强迫均匀化的同时,也减弱了其自身针端的电场强度,因而相应减少了产生带电离子的能力,呈现出电离放电的自屏蔽效应,即便是增加阵列针杆数量也不能改善,因决定LEA消雷能力的因素是离子发散电流,而自屏蔽效应限制了离子发散电流的进一步增长,因此现有的LEA的消雷能力受到了限制。在最好的构造和运行环境条件下(如在容易电离的高海拔地区),LEA在雷电活动期间的离子发散电流也小于2mA,而在动态气象和环境条件下(如在不容易电离的低海拔地区),发散电流还会更小而不足以稳定消雷,导致LEA本体或其保护范围内的被保护目标遭受雷电击穿的概率较高,使防雷领域的多数人士对LEA持争议或否定态度,离子发散电流过小成为LEA实用的致命问题。
本发明人于2004年3月29日申请的中国专利200410022185.2公开了一种综合有源及无源等离子避雷方法及装置(CPLR),图2为该现有技术的结构方框图,该产品由雷云警报信号单元(1)向有源等离子发生器单元(2)及气流源单元(3)发出启动指令,气流源单元(3)运转抽入大气中的空气,或其他适用气体输送至有源等离子发生器单元(2)进行电离,电离空气或其他适用气体生成的高浓度等离子体输送至避雷针(4)的管内 由顶端排出。采用LEA在雷云电场感应下在阵列针端电离放电产生的等离子体与有源强电离放电发生的高浓度等离子体在空心针管端部复合发散,以弥补LEA发散电流的不足。其优点是能够在雷云电场尚较弱的有利时机提早(也即雷云活动中心距被保护目标约15min、5km时)启动CPLR有源发生高浓度等离子体。
但该技术存在有源等离子体发生器技术复杂、在一些场合供电困难,尤其在雷电活动期间断电时需配置UPS不间断电源供电、体积相对较大且总体费用较高而适用范围受限、高频高压电力电子及电控***需要运行维护、有源等离子体发生单元所发出的发散电流较小等问题。针对CPLR有源化方面带来的上述问题,为了能够以无源方式实现强电离高效聚消雷云电场电荷,本发明人经过多次实验室模拟试验及多雷地区运行试验和研究,构造了解决现有技术问题的完全依靠雷云电场激励的无源复合强电离放电等离子拒雷装置,其英文为Device of Passive Compound Strong Ionization Discharge Plasma for Lightning Rejection,简写为PCPLR。
技术方案:
本发明的目的是提供一种无源复合强电离放电等离子拒雷装置,从而能够在雷云电场激励下,复合强电离放电产生和发散带电离子,高效聚消云、地电荷,实现在宽保护范围内避免直接雷击。
本发明是以如下技术方案来实现本发明目的的:
一种无源复合强电离放电等离子拒雷装置,包括雷云电荷聚消单元、强电离放电单元和接地导体,其特征在于:该强电离放电单元的放电电极包含两电极,其中电极A与雷云电荷聚消单元复合为一体,电极B与接地导体连接,两电极之间以绝缘支座隔开和固定放电间隙;该雷云电荷聚消单元为消雷阵列。
所述强电离放电单元的放电电极的电极A为弧形面电极、平板电极、细线电极或环形电极,电极B为弧形面电极、平板电极、细线电极或环形电极,该平板电极的边缘为消除边缘电场激化效应的圆弧形。
所述的环形电极A为环形板电极、环形弧面电极或环形细线电极,电极B为环形板电极、环形弧面电极或环形细线电极;该环形电极A与环形电极B为同心环,该环形板电极的边缘为消除边缘电场激化效应的圆弧形。
所述电极A和电极B为细线电极,该细线电极为环型单圈或多圈细线,单圈细线电极的截面圆弧R约为0.1mm~10mm。
所述电极A和电极B为细线电极,该细线电极为在平板电极和弧形电极的板平面上设置的线状凸起,该线状凸起为细圆线、半圆线、齿尖状线、薄板的截面线或厚板的边角线,其线状凸起的截面圆弧R约为0.1mm~10mm的线条,在电离放电时能产生细线效应;该细线电极以轴线垂直于板电极,与尖电极以轴线垂直于板电极等效。
所述电极A为多细线电极,电极B为平板电极或弧形板电极,该多细线电极细线的轴线垂直于该平板电极或垂直于弧形板电极的法线;该平板电极或弧板电极的边缘为消除边缘电场激化效应的圆弧形。
所述的强电离放电单元的电极A和电极B之间可以另外附加绝缘介质层,该绝缘介质层进一步提高间隙击穿电压。
该消雷阵列包含有一圆弧罩形基座和十数至数百根阵列针;该阵列针安装在该基座外壁上,该阵列针杆可以是金属实心杆,也可以是金属空心管。
该基座为一金属空心罩,所述的强电离放电单元的放电电极安装在该罩内,该基座内壁为强电离放电单元的放电电极的一极;该基座固定在绝缘支座上,绝缘支座固定在强电离放电单元放电电极的另一极上,该放电电极以座式结构固定在拒雷塔架上,该基座的下方开设进风口,大气上升气流沿进风口进入基座内,流经放电电极并经各阵列针杆管出风口排出至空间。
根据本发明的技术方案,产生的有益效果是:将现有LEA无源等离子体产生技术构成的雷云电荷聚消单元与采用新的“多细线效应”无源强电离放电等离子体产生技术构成的强电离放电单元复合,并与接地导体连接,由雷云电场激励,复合强电离放电产生数10mC/s消散电荷(即数10mA消散电流),高效中和雷云电荷聚消单元及接地导体引聚的云、地电荷±Q,有效抑制云-地间等效电容C的电压V=Q/C增高而不被雷云充电至对地面放电击穿的水平,即雷云电场下保护角大于84°(也即保护半径为PCPLR安装高度的10倍)宽范围内的物体及PCPLR本体均免遭雷云电场放电击穿。
本发明PCPLR集LR、LEA和CPLR技术的优点为一体,并解决了其各自存在的主要问题而成为新型的直击雷防护装置。
PCPLR对LEA的更新改造更进一步提高了击穿电压耐受水平,PCPLR的击穿电压耐受水平为LR的4.7倍以上而不会被雷电击穿。
本发明适用于各类固定和移动物体的直击雷防护。
为了更好地理解和说明本发明的构思、工作原理和实施效果,下面结合附图,通过具体实施例,对本发明进行详细说明:
附图说明:
图1为现有技术LEA的消雷阵列的结构图;
图2为现有技术CPLR的结构方框图;
图3为本发明的结构方框图;
图4为本发明的安装结构示意图;
图5为本发明的强电离放电单元第一实施例,显示强电离放电单元的同心双环形弧形截面电极的示意图;
图6A为本发明的强电离放电单元第二实施例,显示强电离放电单元的放电电极的两电极均为消除边缘电场激化效应的平板电极的示意图;
图6B为图6A放电单元的平板电极间隙设有绝缘介质层的示意图;
图7A为本发明的强电离放电单元第三实施例,显示强电离放电单元的环形细线电极与雷云电荷聚消单元连接、另一电极为与环形细线电极同心的环形平板电极,并与接地导体相连接的示意图;
图7B为类似图7A的强电离放电单元,显示放电单元的环形细线电极与接地导体电连接、另一电极为环形平板电极并与雷云电荷聚消单元连接的示意图;
图8A为本发明的强电离放电单元第四实施例,显示垂直圆柱形多细线电极与雷云电荷聚消单元连接、另一电极为与接地导体相连接的圆形平板电极的示意图;
图8B为类似图8A的强电离放电单元,显示垂直圆柱形多细线电极与接地导体相连接、另一电极为圆形平板电极与雷云电荷聚消单元连接的示意图;
附图中:1、雷云电场;2、雷云电荷聚消单元;3、强电离放电单元;4、接地导体。
具体实施例
图3为本发明的结构方框图,如图3所示,一种无源复合强电离放电等离子拒雷装置,包括雷云电荷聚消单元2、强电离放电单元3和接地导体4,该强电离放电单元3的放电电极包含电极A和电极B,其中电极A与雷云电荷聚消单元2的基座复合为一体,电极B以座式结构固定在拒雷塔架上并与接地导体4连接,两电极之间以绝缘支座隔离和固定放电间隙。
该接地导体4连接到地面或浮空金属板构成的等效参考地面。
在雷云电场1激励下:雷云聚消单元2的外部构件受雷云电场感应,在阵列针端产生反极性电场而在正、反极性电场间形成电离放电等离子体;雷云聚消单元2的内壁及与其复合的强电离放电单元3的放电电极A,受雷云电场的感应而产生与外部构件相反极性的电场,即与雷云电场极性相同的电场。与此同时,接地导体4及地面受雷云电场感应产生反极性电场,则与接地体4相连的强电离放电单元3的电极B的电场与雷云电场极性相反,也即两电极的电场极性相反而产生间隙放电,并由于电极结构和间隙尺寸的优化而形成电极间的强电场强电离放电等离子体。由于强电离放电单元3串联于雷云聚消单元2与接地导体单元4之间,同时也就提高了雷云聚消单元2的强电场强电离放电等离子体产生的水平。本装置复合强电离放电产生的等离子体在阵列针端和强电离放电电极周围发散,在雷云电场及其在地面物体上感应的异极性电场的吸引下,等离子体的正、负带电离子分离并各向异极性电场方向漂移和向低浓度离子区扩散,中和异极性雷云电荷及其在地面物体上感应的电荷,即在雷云电场激励下复合强电离产生数10mA发散电流中和、耗散云、地电荷±Q,抑制云地间等效电容的电压V=Q/C增长,而不至被雷云充电至击穿放电的水平。即在雷云电场下本拒雷装置实现保护角大于84°(即保护半径为PCPLR安装高度的10倍)宽范围内的物体免遭雷击。
图4为本发明的安装结构示意图:图中,该PCPLR安装在地面升高至被保护范围内最高点的塔架的顶部,也可安装在被保护范围内最高建筑物顶的塔架顶部或输电线路钢塔的顶部等位置;图中,雷云聚消单元2与强电离放电单元3复合并经强电离放电单元3固定在升高塔架的顶部,强电离放电单元3的接地电极经导线与接地导体4连接。
本发明的强电离放电单元3可以有多种形式的结构,图5为本发明的强电离放电单元第一实施例,显示强电离放电单元的同心双环弧形截面电极的示意图;如图5所示,该同心双环弧形截面电极包括与该雷云电荷聚消单元2基座复合的一个电极A,该电极A的外周面为外环形曲面31;和与接地导体4电连接的另一电极B,该电极B的内周面为内环形曲面32。内环形曲面32置于外环形曲面31外,外环形曲面31和内环形曲面32同心,外环形曲面31和内环形曲面32之间以绝缘支座隔开和固定放电间隙。为了进一步提高两电极间的电压击穿水平,根据需要,可在外环形曲面31和内环形曲面32之间设置绝缘介质层。
图5中所示的第一实施例,根据实际需要,可以将强电离放电单元3 的外环形曲面31电极与接地导体4电连接,将内环形曲面32电极与雷云电荷聚消单元2的基座复合。
图6A为本发明的强电离放电单元第二实施例,显示强电离放电单元的放电电极的两极均为消除边缘电场激化效应平板电极的示意图;如图所示,其中一平板电极A35与雷云电荷聚消单元2电连接,另一平板电极B36与接地导体4电连接。其中,为避免边缘电场激化效应放电击穿,分别将平板电极A和B35、36的放电面的周边构造成圆弧形卷边。在雷云电场存在的情况下,平板电极A35与雷云电场为同极性电场,另一平板电极B36与地面感应电场为同极性电场,平板电极A35和平板电极B36之间由于电场反极性而产生电离放电。
图6B为图6A放电单元的平板电极间隙设有绝缘介质层的示意图;为了进一步提高两电极间的电压击穿水平,根据需要,可在平板电极A35与平板电极B36的间隙中间,设置绝缘介质层5。放电电极之间以绝缘支座隔开和固定放电间隙,强电离放电单元通过接地电极座固定在塔架顶部,对于以下各实施例均相同而不再赘述。
图7A为本发明的强电离放电单元第三实施例,显示强电离放电单元的环形细线电极与雷云电荷聚消单元电连接的示意图;如图所示,所述强电离放电单元的电极B为环形板37,该环形板B37与接地导体4电连接;另一电极A为与该环形板37同心的环形细线电极38,该环形细线电极与雷云电荷聚消单元2电连接。
图7B为类似图7A的强电离放电单元,显示强电离放电单元的环形细线电极与接地导体电连接的示意图;如图所示,所述强电离放电单元的电极A为环形板37,该环形板37与雷云电荷聚消单元2电连接;另一电极B为与该环形板37同心的环形细线电极38,该环形细线电极与接地导体4电连接。
该细线电极38的细线截面圆弧R约为0.1mm~10mm。
该细线电极38的细线广义地包括:在平板电极和弧形电极的板平面上设置的凸起细圆线、半圆线、齿尖状线,薄板的截面线、厚板的边角线等截面圆弧R约为0.1mm~10mm的线条,在电离放电时能产生细线效应。
在图7A和7B所示的实施例中,为了进一步提高两电极间的电压击穿水平,根据需要,可在环形电极37与38的间隙中,设置绝缘介质层。
图8A为本发明的强电离放电单元第四实施例,显示圆柱形细线电极垂直于平板电极设置并与雷云电荷聚消单元电连接的示意图;如图所示,所述强电离放电单元的电极B为平板电极39,该平板电极39与接地导体4 电连接;另一电极A为与该平板电极39垂直的圆柱形细线电极30,该细线电极与雷云电荷引聚单元2电连接。该平板电极39与与其垂直的圆柱形细线电极30之间保持有适当的电离放电间隙。
图8B的实施例与图8A的强电离放电单元相类似,显示圆柱形细线电极垂直于平板电极设置并与接地导体4电连接的示意图;如图所示,所述强电离放电单元的电极A为平板电极39,该平板电极39与雷云电荷聚消单元2电连接;另一电极B为与该平板电极39垂直的圆柱形细线电极30,该细线电极与接地导体4电连接。该平板电极39与与其垂直的圆柱形细线电极30之间保持有适当的电离放电间隙。
在图8A和8B所示的实施例中,为了进一步提高两电极间的电压击穿水平,根据需要,可在平板电极39和与其垂直的圆柱形细线电极30之间的电离放电间隙中设置绝缘介质层。
本发明的强电离放电单元还可以为球形电极;其中一球形电极与雷云电场感应单元电连接,另一球形电极与接地导体4电连接。
为了提高电离放电的效果,在一些实施例中,该雷云电荷聚消单元为消雷阵列。该消雷阵列可为美国多短针式LEA,也可以是中国少长针式LEA。
该消雷阵列包含有一圆弧罩形基座和十数至数百根阵列针;该阵列针安装在该基座外壁上,该阵列针杆可以是金属实心杆,也可以是金属空心管。
图4为本发明的雷云电荷聚消单元与强电离放电单元安装结构示意图。如图所示,该消雷阵列包含有一基座,若干阵列针;该阵列针阵列安装在该基座外壁上,该阵列针为空心金属管;该基座内形成一放电空间,所述的强电离放电单元的其中电极A与消雷阵列针杆基座复合为一体,与接地导体连接的另一电极B安装在该放电空间内;该基座经过绝缘支座固定于电极B的电极座上,再由该电极座固定在避雷塔架上,该基座的下方为敞开的进风口,大气上升气流沿进风口进入基座内,流经放电电极并经各阵列针杆管出风口排出至空间。在进风口、强电离放电空间和各阵列针的空心管之间的气流通道相互连通,该气流通道适于加速吸入更多的上升气流进行电离,并将电离气体输出至阵列针的金属针端再次电离和发散,产生更多的发散电荷。
本发明的无源复合强电离放电空气等离子体拒雷装置,通过强电离放电单元3,以强电离放电的方式中和雷云电场电荷;同时,强电离放电单元3在放电过程中对其周围的空气电离产生等离子体,对空气电离的过程无需人工电源,而是利用雷云电场提供能源强电离大气中的空气,高效产 生高浓度的等离子体,在离子浓度、电离度和离子瞬时产生率等指标方面都大大优于当今的有源等离子避雷装置所达到的指标,例如,关键指标--发散电流约为有源等离子避雷装置的600倍,使无源化等离子拒雷有了可靠保障。本装置试验样机在多雷地区试运行中,经采用雷电预警器和雷击计数器检测,在保护角大于84°的宽保护范围内成功拒雷数千次无失效。
本发明已经过多种模拟试验,在其中一项试验中,在模拟雷云电极板施加强电场时,对电场强度增大1000倍以上的常规接闪杆LR剧烈刷状放电时,将本拒雷装置试样移入雷云电极板下的任何位置,常规接闪杆随即停止放电,本装置与雷云极板间也无放电。表明本装置对整个雷云极板下的包括极端激化电场的接闪杆类的物体及本装置本体均能够实现免遭雷击的保护。本装置强电离放电中和雷云电荷率可达30mC/s(即发散电流达30mA),也即在5.6分钟可中和10C雷云下部电荷,有效抑制雷云电场的激化和雷电先导的形成和发展,以缓消雷云下部电荷的方式实现了非引雷入地式拒雷。
以上说明是依据本发明的构思和工作原理并实施该发明构思和工作原理的典型实施例。上述实施例不应理解为对本发明构思和工作原理的限定,依照本发明构思的其他实施例和实现方式,以及实施例和实现方式的组合均属于本发明的保护范围。
工业实用性
本发明的无源复合强电离放电空气等离子体拒雷装置可已对已有的避雷塔进行简单的改造,在避雷塔上安装拒雷装置,很容易将避雷装置改造成拒雷装置。在市场上具有广泛的使用空间。

Claims (10)

  1. 一种无源复合强电离放电等离子拒雷装置,包括雷云电荷聚消单元、强电离放电单元和接地导体,其特征在于:该强电离放电单元的放电电极包含两电极,其中电极A与雷云电荷聚消单元复合为一体,电极B与接地导体连接,两电极之间以绝缘支座隔开和固定放电间隙;该雷云电荷聚消单元为消雷阵列。
  2. 根据权利要求1所述的拒雷装置,其特征在于:所述强电离放电单元的放电电极的电极A为弧形面电极、平板电极、细线电极或环形电极,电极B为弧形面电极、平板电极、细线电极或环形电极,该平板电极的边缘为消除边缘电场激化效应的圆弧形。
  3. 根据权利要求2所述的拒雷装置,其特征在于:所述的环形电极A为环形板电极、环形弧面电极或环形细线电极,电极B为环形板电极、环形弧面电极或环形细线电极;该环形电极A与环形电极B为同心环,该环形板电极的边缘为消除边缘电场激化效应的圆弧形。
  4. 根据权利要求2所述的拒雷装置,其特征在于:所述电极A和电极B为细线电极,该细线电极为环型单圈或多圈细线,单圈细线电极的截面圆弧R约为0.1mm~10mm。
  5. 根据权利要求2所述的拒雷装置,其特征在于:所述电极A和电极B为细线电极,该细线电极为在平板电极和弧形电极的板平面上设置的线状凸起,该线状凸起为细圆线、半圆线、齿尖状线、薄板的截面线或厚板的边角线,其线状凸起的截面圆弧R约为0.1mm~10mm的线条,在电离放电时能产生细线效应;该细线电极以轴线垂直于板电极,与尖电极以轴线垂直于板电极等效。
  6. 根据权利要求2所述的拒雷装置,其特征在于:所述电极A为多细线电极,电极B为平板电极或弧形板电极,该多细线电极细线的轴线垂直于该平板电极或垂直于弧形板电极的法线;该平板电极或弧板电极的边缘为消除边缘电场激化效应的圆弧形。
  7. 根据权利要求1、2、3、4、5或6所述的拒雷装置,其特征在于:所述的强电离放电单元的电极A和电极B之间可以另外附加绝缘介质层,该绝缘介质层进一步提高间隙击穿电压。
  8. 根据权利要求1、2、3、4、5或6所述的拒雷装置,其特征在于:该消雷阵列包含有一圆弧罩形基座和十数至数百根阵列针;该阵列针安装在该基座外壁上,该阵列针杆可以是金属实心杆,也可以是金属空心管。
  9. 根据权利要求7所述的拒雷装置,其特征在于:该消雷阵列包含有一圆弧罩形基座和十数至数百根阵列针;该阵列针安装在该基座外壁上,该阵列针杆可以是金属实心杆,也可以是金属空心管。
  10. 根据权利要求8所述的拒雷装置,其特征在于:该基座为一空心圆弧形金属罩,所述的强电离放电单元的放电电极安装在该罩内,该基座内壁为强电离放电单元的放电电极的一极;该基座通过绝缘支座固定在强电离放电单元放电电极接地的另一极上,该放电电极以座式结构固定在拒雷塔架上,该基座的下方开设进风口,大气上升气流沿进风口进入基座内,流经放电电极并经各阵列针杆管出风口排出至空间。
PCT/CN2015/084226 2015-06-18 2015-07-16 无源复合强电离放电等离子拒雷装置 WO2016201758A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MYPI2017704869A MY185920A (en) 2015-06-18 2015-07-16 Passive compound strong-ionization discharging plasma lightning rejection device
US15/737,570 US20180226782A1 (en) 2015-06-18 2015-07-16 Passive compound strong-ionization discharging plasma lightning rejection device
EP15895331.5A EP3312955B1 (en) 2015-06-18 2015-07-16 Passive compound strong-ionization discharging plasma lightning rejection device
AU2015398764A AU2015398764A1 (en) 2015-06-18 2015-07-16 Passive compound strong-ionization discharging plasma lightning rejection device
AU2020200901A AU2020200901B2 (en) 2015-06-18 2020-02-07 Passive compound strong-ionization discharging plasma lightning rejection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510340702.9 2015-06-18
CN201510340702.9A CN106329317B (zh) 2015-06-18 2015-06-18 无源复合强电离放电等离子拒雷装置

Publications (1)

Publication Number Publication Date
WO2016201758A1 true WO2016201758A1 (zh) 2016-12-22

Family

ID=55408454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084226 WO2016201758A1 (zh) 2015-06-18 2015-07-16 无源复合强电离放电等离子拒雷装置

Country Status (7)

Country Link
US (1) US20180226782A1 (zh)
EP (1) EP3312955B1 (zh)
CN (1) CN106329317B (zh)
AU (2) AU2015398764A1 (zh)
MY (1) MY185920A (zh)
TW (1) TWM513445U (zh)
WO (1) WO2016201758A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113011098A (zh) * 2021-03-26 2021-06-22 云南电网有限责任公司电力科学研究院 一种输电走廊区域雷电活动规律分析显示模型及***
CN114228503A (zh) * 2022-01-21 2022-03-25 中车青岛四方机车车辆股份有限公司 磁浮列车的导向结构及磁浮列车

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10118712B2 (en) * 2011-08-17 2018-11-06 The Boeing Company Electrical conductor pathway system and method of making the same
CN106848848A (zh) * 2017-03-22 2017-06-13 宁夏顺和电工有限公司 一种综合有源和无源一体等离子驱雷装置
CN106848845A (zh) * 2017-03-22 2017-06-13 宁夏顺和电工有限公司 一种无源等离子驱雷器
CN106762470A (zh) * 2017-03-22 2017-05-31 方圆电气股份有限公司 一种风力发电机驱雷防护装置
CN106848846A (zh) * 2017-03-22 2017-06-13 山东中玻管业有限公司 一种车载式驱雷***
CN106848844A (zh) * 2017-03-22 2017-06-13 方圆电气股份有限公司 一种微波塔驱雷装置
CN106848843A (zh) * 2017-03-22 2017-06-13 方圆电气股份有限公司 一种高铁用驱雷装置
CN106848847A (zh) * 2017-03-22 2017-06-13 山东中玻管业有限公司 一种变电站用驱雷装置
CN106848842A (zh) * 2017-03-22 2017-06-13 方圆电气股份有限公司 一种发电场与输变电线路驱雷装置
CN106809093A (zh) * 2017-03-22 2017-06-09 山东中玻管业有限公司 一种驱雷抢险指挥车
CN108988129A (zh) * 2017-06-01 2018-12-11 王昆生 架空输电线路无源等离子拒雷***
CN109473870A (zh) * 2017-09-08 2019-03-15 王昆生 无源高低压气体复合强电离放电等离子拒雷装置
CN109659814B (zh) * 2017-10-11 2020-12-08 吕承彰 避雷装置及其传输模块
CN109167259B (zh) * 2018-07-27 2023-08-25 北京先研科技有限责任公司 一种组装型的接闪器
CN109975602B (zh) * 2019-04-24 2024-05-14 何平 一种用于预放电式避雷针的无线远程计数器
CN111740315A (zh) * 2020-07-25 2020-10-02 山东中呈防雷科技有限公司 一种微波塔无源电晕场驱雷装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751661A (zh) * 2012-07-04 2012-10-24 株洲普天中普防雷科技有限公司 基于双电极的避雷方法和避雷针
CN103956655A (zh) * 2014-04-16 2014-07-30 宁海县雁苍山电力设备厂 避雷接闪器及其制造工艺

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728016A (en) * 1953-03-16 1955-12-20 Gen Electric Multiple concentric electrode gap construction
US2896104A (en) * 1954-06-11 1959-07-21 Sedlacek Franz Lightning arrester
GR73444B (zh) * 1984-02-01 1984-02-28 Kokkinos Dimitrios
FR2575871B1 (fr) * 1985-01-09 1987-03-20 Centre Nat Rech Scient Paratonnerre a decharge couronne impulsionnelle intermittente
US5932838A (en) * 1996-10-25 1999-08-03 Lightning Eliminators & Consultants Inc. Ionization cluster tree having tiers of spline ball ionizers
DE20020771U1 (de) * 2000-02-22 2001-02-15 Dehn & Soehne Druckfest gekapselte Funkenstreckenanordnung zum Ableiten von schädlichen Störgrößen durch Überspannung
PL204398B1 (pl) * 2004-02-26 2010-01-29 Eugeniusz Smycz Piorunochron z przyspieszoną jonizacją powietrza
CN1279670C (zh) * 2004-03-29 2006-10-11 王昆生 综合有源及无源等离子避雷方法及装置
KR100787576B1 (ko) * 2007-01-12 2007-12-21 정용기 피뢰장치
CN201191708Y (zh) * 2008-01-04 2009-02-04 昆明天象科技有限公司 先导式避雷针
CN203707564U (zh) * 2013-08-13 2014-07-09 广州市意普孚电子科技有限公司 间隙型电涌放电装置
CN204651679U (zh) * 2015-06-18 2015-09-16 王昆生 无源复合强电离放电等离子拒雷装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751661A (zh) * 2012-07-04 2012-10-24 株洲普天中普防雷科技有限公司 基于双电极的避雷方法和避雷针
CN103956655A (zh) * 2014-04-16 2014-07-30 宁海县雁苍山电力设备厂 避雷接闪器及其制造工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3312955A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113011098A (zh) * 2021-03-26 2021-06-22 云南电网有限责任公司电力科学研究院 一种输电走廊区域雷电活动规律分析显示模型及***
CN113011098B (zh) * 2021-03-26 2023-09-01 云南电网有限责任公司电力科学研究院 一种输电走廊区域雷电活动规律分析显示模型及***
CN114228503A (zh) * 2022-01-21 2022-03-25 中车青岛四方机车车辆股份有限公司 磁浮列车的导向结构及磁浮列车
CN114228503B (zh) * 2022-01-21 2023-08-15 中车青岛四方机车车辆股份有限公司 磁浮列车的导向结构及磁浮列车

Also Published As

Publication number Publication date
EP3312955B1 (en) 2021-06-09
AU2020200901A1 (en) 2020-02-27
TWM513445U (zh) 2015-12-01
CN106329317B (zh) 2018-06-29
US20180226782A1 (en) 2018-08-09
AU2020200901B2 (en) 2021-09-16
AU2015398764A1 (en) 2018-02-01
EP3312955A4 (en) 2019-03-06
EP3312955A1 (en) 2018-04-25
MY185920A (en) 2021-06-14
CN106329317A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2016201758A1 (zh) 无源复合强电离放电等离子拒雷装置
CN204651679U (zh) 无源复合强电离放电等离子拒雷装置
WO2019085670A1 (zh) 一种等效离子阻雷单元及综合防雷***
US4760213A (en) Lightning conductor
WO2015179709A4 (en) Instruments for measuring ion size distribution and concentration
CN106961777B (zh) 一种无机械装置离子风机
KR101491414B1 (ko) 능동형 낙뢰 수뢰장치
EP0228984B1 (en) Lightning conductor
US4565900A (en) Lightning rod construction
EP3438855A1 (en) Ion air supply module needle net layout method and ion air supply module
CN112319865A (zh) 一种用于卫星结构电位控制的防护装置与方法
CN110768107A (zh) 一种非引雷入地的避雷装置及方法
CN106848843A (zh) 一种高铁用驱雷装置
CN106848844A (zh) 一种微波塔驱雷装置
CN207868610U (zh) 一种防直击雷和防雷击电脉冲的提前放电避雷器
CN106848848A (zh) 一种综合有源和无源一体等离子驱雷装置
KR102532262B1 (ko) 이온풍 발생 장치
RU169660U1 (ru) Гибридный молниеотвод
JPS5956399A (ja) コロナ作用でイオン化する避雷針
KR100998316B1 (ko) 전기 쌍극자 방식과 방전 유도 기능을 이용한 정전분산 공간전하의 다량의 스트리머 방출 피뢰침
CN111786309A (zh) 一种基于x射线的绝缘子表面电荷快速消散方法和装置
CN111720282A (zh) 一种基于针-环-网结构的离子风推力装置
OA19123A (en) Passive Compound Strong-Ionization Discharging Plasma Lightning Rejection Device.
CN206628708U (zh) 一种高铁用驱雷装置
CN106848842A (zh) 一种发电场与输变电线路驱雷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015895331

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015398764

Country of ref document: AU

Date of ref document: 20150716

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15737570

Country of ref document: US