WO2016199984A1 - 파장 다중화 광수신 모듈 - Google Patents

파장 다중화 광수신 모듈 Download PDF

Info

Publication number
WO2016199984A1
WO2016199984A1 PCT/KR2015/011471 KR2015011471W WO2016199984A1 WO 2016199984 A1 WO2016199984 A1 WO 2016199984A1 KR 2015011471 W KR2015011471 W KR 2015011471W WO 2016199984 A1 WO2016199984 A1 WO 2016199984A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
optical
lens
light
receptacle
Prior art date
Application number
PCT/KR2015/011471
Other languages
English (en)
French (fr)
Inventor
박기성
이길동
김석태
박준희
박호산
Original Assignee
주식회사 지피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지피 filed Critical 주식회사 지피
Priority to JP2016571274A priority Critical patent/JP6345809B2/ja
Publication of WO2016199984A1 publication Critical patent/WO2016199984A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations

Definitions

  • the present invention relates to a wavelength multiplexed light receiving module, and more particularly, to a wavelength multiplexed light receiving module using a thin film filter.
  • optical communication system having a transmission capacity of 10 Gbps or more using a single wavelength optical signal has already been commercialized and used.
  • a transmission capacity of 40 Gbps or 100 Gbps is required for one strand of optical fiber, and multiplexed optical signals of four different wavelengths having a transmission rate of 10 Gbps or 25 Gbps in one optical fiber are used to multiplex 40 Gbps or 100 Gbps.
  • Optical communication using a wavelength division multiplexing (WDM) method for transmitting data is used.
  • WDM wavelength division multiplexing
  • an optical transmission module for wavelength division multiplexing the laser light of four wavelengths and an optical signal transmitted through the optical path are demultiplexed into respective wavelengths and detected by the optical detection element as an electrical signal.
  • the “wavelength division multiplexed optical reception module”, which amplifies the detected electrical signals, constitutes the most essential component of the optical communication system.
  • the wavelength multiplexing optical reception module is a demultiplexing device for demultiplexing optical signals having different wavelengths by demultiplexing receptacles, optical coupling lenses, and optical signals received at optical fiber connectors located at the end of the optical path. And a photodetecting device for converting light separated at each wavelength into an electrical signal (photocurrent), and an amplifying device of a transfer impedance type for amplifying these electrical signals.
  • the wavelength multiplexing optical reception module is divided into two types according to the type of demultiplexing device as follows.
  • the first type of wavelength division multiplexed photoreceiving module is a demultiplexing element as shown in FIG. 1, and uses an arrayed waveguide grating (AWG) element 14 to separate the multiplexed light into respective wavelengths.
  • the optical signals according to the separated wavelengths are converted into electrical signals using the photodetector element 16 and the preamplifier element 18, and then amplified and output.
  • AMG arrayed waveguide grating
  • the wavelength multiplexed light receiving module using the array waveguide grating element 14 (hereinafter, abbreviated as 'light receiving module'), a part of the receptacle 11 into which the ferrule 12 is inserted is fastened with an optical fiber connector (not shown).
  • the multiplexed optical signal enters into the optical reception module, light is combined into the optical waveguide of the array waveguide grating element 14 using the aspherical lens 13, and the optical signal is generated in the array waveguide grating element 14. Separated by their respective wavelengths, they are emitted through their respective output ports.
  • Each wavelength output and emitted from the optical waveguide of the array waveguide grating element 14 is converged by the lens 15 into the light receiving region of the light detecting element 16 that is responsible for detecting each optical signal. 16) amplifies and outputs each signal from a plurality of preamplifiers 18 of a transfer impedance type connected by wire bonding (not shown) by placing the detected electrical signals according to the converged wavelengths.
  • the biggest disadvantage is that a large optical loss occurs in the optical path until the optical signal input to the receptacle 11 is finally input to the photodetector 16.
  • the optical loss occurs not only when the input light is input into the optical waveguide of the array waveguide grating element 14 using the aspherical lens 13 but also largely occurs inside the array waveguide grating element 14.
  • the warpage of the optical waveguide from the common port of the input end of the array waveguide grating element 14 to the port of each wavelength of the output end should be minimized.
  • the size of the array waveguide grating element 14 is increased, which causes a problem of increasing the size of the entire optical receiving module.
  • the total optical insertion loss is large, usually 2 dB or more.
  • the demultiplexing element including the thin film filters 25-1 to 25-4 is commonly referred to as a zigzag filter in the industry, and the zigzag filter is a glass block processed to have a predetermined angle as shown in FIG. 2A.
  • the glass block 24 corresponding to the thin film filters 25-1 to 25-4 and the thin film filters 25-1 to 25-4 are formed on the side of the glass block 24 at predetermined intervals. It is composed of another reflective block 24-1 coated with a reflective film that is attached to the other side of the light, the light signals of each wavelength is reflected inside the zigzag filter, only the light of the corresponding wavelength thin film filter (25-1 ⁇ 25- It is a principle to get out through 4).
  • the optical signal input through the ferrule 22 in the receptacle 21 is spread by the refractive index difference with the air,
  • the optical signal is made into parallel light L by the aspherical lens 23.
  • the parallel light L passes through the zigzag filter, it is separated into the optical signals of the respective wavelengths, and the optical signals of the respective wavelengths diverge and diverge into the focus light while passing through the array lens 26.
  • the optical signal is reflected by the reflecting mirror 27 attached obliquely at 45 degrees and input to the light detecting element 28 horizontally attached on the metal optical bench 32.
  • the photodetector 28 is a plurality of preamplifiers 29 of a transfer impedance type connected by wire bonding (not shown) by placing electrical signals detected according to optical signals of respective wavelengths inputted at the rear ends thereof. It will be amplified and output.
  • Conventional optical receiving module 20 using the zigzag filter has an advantage that can significantly reduce the insertion loss of the optical signal compared to the optical receiving module 10 using the array waveguide grating element 14, the demultiplexing element itself Size also has the advantage of being smaller.
  • the characteristics of the insertion loss and the band pass wavelength of the zigzag filter are greatly increased in the incident angle of the optical signal incident on the thin film filter as shown in FIG. 3.
  • the insertion loss of about 2dB occurs when there is a change in the incident angle of +/- 0.1 degrees in the thin film filter having an angle of incidence of light (AOI) of 10 degrees.
  • the photodetector 28 has a disadvantage in that the deviation of the electrical signal measured according to the input accuracy of the focus light is severe.
  • the convex lens type injects divergent light into the zigzag filter as parallel light so as to minimize the change of the incident angle.
  • Position and angle alignment of the array lens 26 to accurately enter the aspherical lens 23 and the parallel light separated by the respective wavelengths through the zigzag filter into the light receiving region of the photodetector 28 were very important. .
  • the present invention is to solve the above-mentioned problems, in the implementation of the wavelength multiplexed light receiving module using a thin film filter, aspherical lens and array lens alignment on the metal optical bench can be made easily,
  • An object of the present invention is to provide a wavelength multiplexing light receiving module capable of reducing the number, size, manufacturing process, and manufacturing cost of modules.
  • a wavelength multiplexing optical reception module for optical communication using a wavelength division multiplexing (WDM) method, comprising: a receptacle coupled to an optical fiber connector formed at an end of a light path, and positioned in an inner space of the receptacle; A parallel light receptacle unit configured to form a hill-type refractive index lens GRIN LENS configured to convert the input light into parallel light; A glass block having a parallelogram shape, a coating part formed on one side of the glass block, and a thin film filter formed on the other side of the glass block on which the coating part is formed are formed, and thus a zigzag filter for separating an optical signal for each wavelength.
  • WDM wavelength division multiplexing
  • An array lens disposed at a rear end of the zigzag filter unit for converting an optical signal in the form of parallel light separated from the zigzag filter unit into an optical signal in the form of a focus light, and in the rear end of the array lens;
  • An array photodetector for detecting an electrical signal corresponding to an optical signal for each wavelength emitted from the array lens and disposed horizontally with an optical signal, and a reflection mirror for converting a direction of focus light emitted from the array lens toward the array photodetector side
  • an optical package part including a zigzag filter part, an array lens, a reflecting mirror, and a metal optical bench mounted on the upper surface to align and mount the photodetecting device.
  • a preamplifying device unit comprising an array preamplifying device of a transfer impedance type for amplifying and outputting an electric signal detected by the photodetecting device, an array preamplifying device sub-mount on which the array preamplifying device is mounted, and a module housing;
  • a wavelength multiplexed light receiving module may be provided.
  • a wavelength multiplexing optical reception module for optical division of the wavelength division multiplexing (WDM) method, comprising: a receptacle coupled to an optical fiber connector formed at an end of a light path, and an internal space of the receptacle; A parallel light receptacle unit positioned to form a hill-shaped refractive index lens (GRIN LENS) for converting input light into parallel light; A glass block having a parallelogram shape, a coating part formed on one side of the glass block, and a thin film filter formed on the other side of the glass block on which the coating part is formed are formed, and thus a zigzag filter for separating an optical signal for each wavelength.
  • WDM wavelength division multiplexing
  • An array lens disposed at a rear end of the zigzag filter unit for converting an optical signal in the form of parallel light separated from the zigzag filter unit into an optical signal in the form of a focus light, and in the rear end of the array lens;
  • An array photodetector for detecting an electrical signal according to the focus light emitted from the array lens and disposed perpendicular to the optical signal, an array photodetector submount to which the array photodetector is vertically attached, and the zigzag on an upper surface
  • An optical package unit configured of a filter unit, a metal optical bench on which the array lens, the array photodetector element, and the array photodetector submount are mounted and aligned;
  • a preamplifier element comprising an array preamplifier of a transfer impedance type for amplifying and outputting an electric signal detected by the photodetector, and an array preamplifier submount and module housing on which the array preamplifier is mounted.
  • a wavelength multiplexing optical reception module for optical communication using a wavelength division multiplexing (WDM) method includes: a receptacle coupled to an optical fiber connector formed at an end of a light path and an inside of the receptacle; A parallel light receptacle unit positioned in a space and configured to have a hill-shaped refractive index lens GRIN LENS configured to convert input light into parallel light; A glass block having a parallelogram shape, a coating part formed on one side of the glass block, and a thin film filter formed on the other side of the glass block on which the coating part is formed are formed, and thus a zigzag filter for separating an optical signal for each wavelength.
  • WDM wavelength division multiplexing
  • a reflection mirror for vertically refracting the optical signal in the form of parallel light separated from the zigzag filter unit in a downward direction; and parallel light reflected by the reflection mirror in parallel with the reflection mirror under the reflection mirror.
  • An array lens for converting an optical signal in the form of a focus light into an optical signal in the form of a focus light, and an electrical signal according to the optical signal in the form of a focus light emitted from the array lens in parallel with the array lens below the array lens.
  • An array optical detection element for detecting, and the zigzag filter unit is mounted on the upper surface and aligned, and the reflective mirror, the array lens, the array optical detection element to be placed and aligned in parallel with each other at a predetermined interval to the metal optical bench
  • An optical package unit configured;
  • a preamplifying device unit comprising an array preamplifying device of a transfer impedance type for amplifying and outputting an electric signal detected by the photodetecting device, an array preamplifying device sub-mount on which the array preamplifying device is mounted, and a module housing;
  • a wavelength multiplexed light receiving module may be provided.
  • the wavelength multiplexed light receiving module can minimize the active alignment process of manufacturing the light receiving module, and as the light receiving module is manufactured by assembling and forming a plurality of individual assembly types individually
  • the overall module productivity can be improved.
  • optical receiver modules with excellent characteristics at a low price while improving manufacturing yield, and to reduce the price of optical transceivers that use optical receiver modules as important components, thereby ultimately activating the optical receiver module market and wavelength multiplexing.
  • Technology can greatly contribute to increasing data transmission capacity of optical communication.
  • FIG. 1 is a plan view illustrating a wavelength division multiplexing optical reception module using a conventional arrayed waveguide grating (AWG) device.
  • AWG arrayed waveguide grating
  • FIG. 2 is a plan view and a cross-sectional view showing a wavelength division multiplexed light receiving module using a conventional thin film filter.
  • FIG. 3 is a graph showing an insertion loss curve according to an incident angle of light of a band pass filter of the wavelength division multiplexed light receiving module using the thin film filter of FIG. 2.
  • FIG. 4 is a plan view and a cross-sectional view showing a wavelength division multiplexed light receiving module according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a state in which a silicon V-groove reflection mirror is applied to the optical package of FIG. 4.
  • FIG. 6 is an assembly explanatory diagram for explaining an assembly process of the wavelength division multiplexed light receiving module of FIG. 1.
  • FIG. 7 is a cross-sectional view illustrating a wavelength division multiplexing light receiving module according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a lens integrated photodetector applied to the optical package unit of FIG. 7.
  • FIG. 9 is a plan view and a cross-sectional view illustrating a parallel light receptacle unit and an optical package unit of a wavelength division multiplexed light receiving module according to another embodiment of the present invention.
  • FIG. 4 is a plan view and a cross-sectional view showing a wavelength division multiplexed light receiving module according to an embodiment of the present invention.
  • 5 is a cross-sectional view illustrating a state in which a silicon V-groove reflection mirror is applied to the optical package of FIG. 4.
  • the wavelength multiplexed light receiving module (hereinafter, abbreviated as “light receiving module”) according to an embodiment of the present invention includes a parallel light receptacle unit 110, a zigzag filter unit 120, The optical package 130 and the preamplifier device 140 are configured.
  • the parallel light receptacle unit 110 is a configuration for connecting an optical connector (not shown) positioned at an end of a light path and a light receiving module, and includes a cylindrical receptacle 111, a ferrule 112 located inside the receptacle, and a receptacle ( 111 and a cylindrical sleeve 113 positioned between the ferrule 112 and a hill-shaped refractive index lens (GRIN Lens) 114 located inside the rear end receptacle 111 of the ferrule 112.
  • GRIN Lens hill-shaped refractive index lens
  • the parallel light receptacle unit 110 is characterized in that the insertion of the hill-type refractive index lens 114 in addition to the conventional receptacle portion consisting of only the ferrule and the sleeve, wherein, the ferrule 112 and the hill-type refractive index lens ( 114 may be machined on one surface facing each other.
  • the hill-shaped refractive index lens 114 converts the diffused light emitted through the ferrule 112 into parallel light.
  • the hilly refractive index lens 114 is designed according to the desired refractive index lens 114 because the position of the focal length for making perfect parallel light is determined by the length of the hilly refractive index lens 114. And ease of manufacture can be increased.
  • the hill-type refractive index lens 114 has a structure that is inserted into the receptacle 111 without a separate alignment process with the ferrule 122 of the same cylindrical structure inside the receptacle 111 having a cylindrical structure, so that only mechanical precision Only the process of fixing in the correct position is required, which makes it possible to produce relatively perfect parallel light without separate active alignment.
  • the parallel light receptacle unit 110 includes an aspherical convex lens configured to make parallel light in a conventional light receiving module, and an aspherical surface while measuring the photocurrent of the photodetecting device to position the aspherical convex lens at an accurate focal length.
  • the zig-zag filter unit 120 is a demultiplexing element for separating optical signals for each wavelength, and is formed at a constant interval on one side of the glass block 123 having a parallelogram shape and at one side of the glass block 123. It may be configured to include a thin film filter (124-x: 124-1 ⁇ 124-4) for passing the optical signal. In this case, the coating parts 121 and 122 may be formed on the other side of the glass block 123 on which the thin film filters 124-x 124-1 to 124-4 are formed.
  • the coating parts 121 and 122 are formed in the remaining areas except for the anti-reflective coating 121 formed in a predetermined area corresponding to the area where the optical signal is incident through the hill-type refractive index lens 114 and the non-reflective coating.
  • the reflective film 122 may be formed to be divided.
  • the anti-reflective coating 121 formed on one side of the glass block 123 serves to minimize the loss due to the reflection of the optical signal incident through the hill-shaped refractive index lens 114 to the glass block 123
  • the reflective coating 122 serves to cause the optical signal returned from the thin film filter 124-1 formed on the opposite side to be reflected again and then incident to the thin film filters 124-2 to 124-4.
  • the zigzag filter unit 120 is first coated with a non-film coating 121 on a portion of one side of the glass plate having a predetermined refractive index and thickness, and then the reflecting film coating 122 on another area of the same surface and cut out to have a predetermined size.
  • the cut glass block is polished at a precise angle so that its cross section is in the form of a parallelogram, and then the prefabricated thin film filters 124-x: 124-1 to 124-4 are formed with a coating of the glass block 123. It may be produced through a process of attaching sequentially to a predetermined position on the other side corresponding to the side.
  • the zigzag filter unit 120 reduces the number of parts required and also simplifies the assembly process compared to the conventional structure having a form of attaching to the side of the glass block by manufacturing a separate reflective film, thereby simplifying the zigzag filter unit. The manufacturing cost can be lowered.
  • the optical package unit 130 may include an array lens 131, a reflective mirror 132, an array photodetector 133, and a metal optical bench 134.
  • the array lens 131 is an integrated lens for converting divergent light into a focus light
  • the array photodetecting device 133 is an integrated photodetector in one component, its role is conventional May be similar to
  • the reflective mirror 132 is configured to refract the focus light emitted by the array lens 131 to the array photodetecting element 133 by being positioned on the upper side of the array photodetecting element 133. It consists of a coated rod-shaped mirror and can be positioned at an angle (about 45 degrees).
  • the metal optical bench 134 is a component in which the zigzag filter unit 120, the array lens 131, the reflection mirror 132, and the array photodetector 133 are seated and fixed, and each component is seated and aligned.
  • the alignment groove 135 and the seating portion 135a may be formed to be fixed.
  • an alignment groove of a shape corresponding to the glass block 123, the array lens 131, and the array photodetecting element 133 of the zigzag filter unit 120 may be formed on the upper side of the metal optical bench 134.
  • a mounting portion 135a may be formed to protrude from the upper side of the array photodetector 133 so that the reflective mirror 132 may be inclined at a predetermined angle.
  • the metal optical bench 134 in which the alignment groove 135 and the mounting portion 135a are machined for the alignment and seating of the respective components is adapted to the conventional active alignment in the case of the respective components, especially the array lens 131. It is possible to align the position of each component with only mechanical precision without the need to perform, and in the case of the reflective mirror 132, there is no need to provide a separate component for angle adjustment, mounting, thereby reducing the manufacturing process time and cost By reducing the production efficiency can be improved. In addition, as the components are aligned and seated in the alignment groove 135 and the seating portion 135a of the metal optical bench 134, damage of the components due to external force and deformation of the alignment state are prevented, thereby improving mechanical durability of the optical package portion. Can be.
  • the preamplification element unit 140 includes an array preamplification element 141 and an array preamplification element 141 in which the optical reception module housing 141 and the transfer impedance type preamplification (TIA) elements are integrated into one configuration. And an array preamplifier element submount 143 to be seated.
  • TIA transfer impedance type preamplification
  • FIG. 5 is a cross-sectional view illustrating a state in which a V-groove-etched silicon semiconductor is applied to the optical package of FIG. 4.
  • the silicon V instead of the flat reflective mirror 136 for refracting the focus light emitted by the array lens 131 to the optical package portion is located below the array photodetecting element 133.
  • Groove reflection mirror 136 may be configured.
  • the silicon V-groove reflecting mirror 136 is a V-groove on the silicon semiconductor and the reflective film is coated on the etched inclined surface, the silicon V-groove reflecting mirror 136 is a conventional flat reflection mirror 132 Compared to using the reflective mirror 136, the cost of the optical package unit 130 can be reduced more effectively.
  • the reflection angle is about 45 degrees, which is the angle of the inclined surface that appears during wet etching of silicon.
  • the light incident on the array photodetector 133 is incident to about 80.3 degrees instead of 90 degrees, this can be adjusted according to the position of the reflecting mirror, thus having a large influence (or change) on the output photocurrent value ( A) none.
  • the parallel light receptacle unit 110, the zigzag filter unit 120, the optical package unit 130, and the preamplification element unit 140 constituting the light receiving module according to an embodiment of the present invention are manufactured in separate assemblies, respectively. And assembling is possible, these assembling process will be described with reference to FIG.
  • FIG. 6 is an assembly explanatory diagram for explaining an assembly process of the wavelength division multiplexed light receiving module of FIG. 1.
  • the assembling step-1 process of attaching the zigzag filter unit 120 to a predetermined position of the optical package unit 130 is performed.
  • the distance between the zigzag filter unit 120 and the array lens 131 does not affect the characteristics of the module, but the twisted degree of the zigzag filter unit 120 greatly affects the optical loss and wavelength characteristics. Will be affected.
  • the metal optical bench 134 according to the present invention as the alignment groove 315 is formed, the zigzag filter unit 120 just by mounting the zigzag filter unit 120 in the alignment groove 315 The assembly can be made in a state where the twist of the minimization is minimized.
  • the assembling step-2 process of attaching the optical package unit 130 in which the zigzag filter unit 120 is assembled to a predetermined position in the preamplifier element unit 140 is performed.
  • the accuracy of this assembly process does not affect the optical properties of the light-receiving module, so precise positioning accuracy is not required.
  • the array photodetector element of the optical package unit 130 assembled in the preamplifier element 140 is connected to the array preamplifier 142 of the preamplifier element 140 by wire bonding. Phase omitted).
  • the parallel light receptacle is read at a position where the maximum electric signal value can be obtained while reading the output electric signal (photocurrent) value of the corresponding array photodetecting device. It must be assembled in an active alignment manner to fix the portion (110).
  • the electrical signal values of at least two array photodetectors must be actively aligned so that the values exceed a predetermined reference value.
  • the light path of the parallel light L has the shortest photodetector and the longest photodetector (ex: 124-). It may be effective to align while measuring the electrical signal values of 1, 124-4.
  • FIG. 7 is a cross-sectional view illustrating a wavelength division multiplexing light receiving module according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a lens integrated photodetector applied to the optical package unit of FIG. 7.
  • the array photodetecting device 133 which is one of the components constituting the optical package unit 130, is formed of metal optics in contrast to an embodiment of the present invention. It is characterized in that it is attached to the array photodetector submount 237 perpendicular to the top of the bench 234, rather than attached to the upper surface of the bench 234. According to this structure, it is not necessary to refract the direction of the light incident on the array photodetector 233, such as the reflective mirror 132 or the silicon V-groove reflective mirror 136, which is configured in the optical package part of the embodiment. Components may be eliminated, allowing for the manufacture of more compact light receiving modules.
  • Lens integrated photodetector 238 is a lens integrally modularized on the back of the light-receiving area of the light-detecting device, if the light is input to the light-receiving area through the front of the existing photodetecting device, the lens integrated photodetecting device is The light input through the lens is input to the light receiving area through the back of the photodetecting device.
  • FIG. 9 is a plan view and a cross-sectional view illustrating a parallel light receptacle unit 320 and an optical package unit 330 of a wavelength division multiplexed light receiving module according to another embodiment of the present invention.
  • the optical receiving module according to another embodiment of the present invention has a difference in the optical package unit compared to the optical receiving module according to the exemplary embodiment described above, and thus, regarding the optical package unit 330. I will explain only.
  • the optical package unit 330 includes an array lens 331 positioned between the zigzag filter unit 320 and the reflective mirror 333, and the reflective mirror 332 and the array photodetector device ( 333) is moved to position between them. At this time, the array lens 331 is placed in parallel with the array photodetector element 333 in the same line in the vertical direction.
  • the distance between the array lens 331 and the array photodetection element 333 is located at a predetermined position on both edges of the metal optical bench 334 such that the array photodetection element 333 is positioned at the focal length of the array lens 331.
  • the jaws are made to align the array lens 331. This may correspond to the seating portion described in the embodiment.
  • the optical reception module according to various embodiments of the present invention as described above can minimize the active alignment process of manufacturing the optical reception module, and the optical reception module is formed by separately manufacturing and assembling a plurality of individual assembly configurations. This can improve overall module productivity (manufacturing yield).
  • the module can be miniaturized, and the components can be reduced, thereby reducing the manufacturing process and manufacturing cost, thereby reducing the price of the optical transceiver using the optical receiving module as an important component.
  • Using wavelength multiplexing technology can greatly contribute to increasing data transmission capacity of optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Abstract

본 발명은 다양한 형태의 파장 다중화 광수신 모듈을 개시한다. 본 발명은 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서, 광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부; 평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부; 상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주기 위해 상기 지그재그 필터부 후단에 배치되는 어레이 렌즈와, 상기 어레이 렌즈의 후단에 상기 평행광 형태의 광신호와 수평으로 배치되어 상기 어레이 렌즈로부터 발산되는 각 파장별 광신호에 따른 전기신호를 검출하는 어레이 광검출 소자, 상기 어레이 렌즈로부터 발산되는 초점광의 방향을 상기 어레이 광검출 소자 측으로 변환시키는 반사거울 및 상부면에 상기 지그재그 필터부, 상기 어레이 렌즈, 반사거울, 어레이 광검출 소자가 안착되어 정렬되도록 하는 금속 광학 벤치로 구성되는 광 패키지부; 및 상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함한다.

Description

파장 다중화 광수신 모듈
본 발명은 파장 다중화 광수신 모듈에 관한 것으로, 보다 상세하게는 박막 필터를 이용한 파장 다중화 광수신 모듈에 관한 것이다.
데이터의 수요가 점차 증가함에 따라 광통신의 속도와 용량 또한 가파르게 증가하는 추세에 있으며, 이미 단일 파장의 광신호를 사용하여 10Gbps 이상의 전송 용량을 갖는 광통신 시스템이 상용화되어 사용되고 있다. 그러나 최근 메트로 및 기간 전송 망에서는 광섬유 한 가닥에 40Gbps 또는 100Gbps의 전송 용량이 요구되어 있어, 하나의 광섬유에 10Gbps 또는 25Gbps의 전송 속도를 갖는 서로 다른 4개의 파장의 광신호를 다중화시켜 40Gbps 또는 100Gbps의 데이터를 전송하는 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신이 사용되고 있다.
이러한 파장 분할 다중화 방식의 광통신에서는 4개의 파장의 레이저 광을 파장 분할 다중화시키는 광송신 모듈과 광선로를 통하여 전송되어 온 광신호를 각각의 파장으로 역다중화시키고 이를 광검출 소자에서 전기신호로 검출하고, 검출된 전기신호를 증폭시키는 “파장 분할 다중화 광수신 모듈”이 광통신 시스템의 가장 핵심적인 부품으로써 구성된다. 이러한 파장 다중화 광수신 모듈은 광선로의 종단에 위치한 광섬유 커넥터와 광수신 모듈을 결합하는 리셉터클, 광결합 렌즈, 수신된 서로 다른 파장의 광신호를 역다중화시켜 각각의 파장으로 분리해 내기 위한 역다중화 소자, 각각의 파장으로 분리된 빛들을 전기신호(광전류)로 변환시키기 위한 광검출 소자, 및 이들 전기 신호를 증폭시키기 위한 전달 임피던스 타입의 증폭 소자로 구성되어 있다.
이러한 파장 다중화 광수신 모듈은 역다중화 소자의 종류에 따라 다음과 같이 크게 두가지 타입으로 나뉘어진다. 첫번째 타입의 파장 분할 다중화 광수신 모듈은 도 1에 도시한 바와 같이 역다중화 소자로 어레이 도파로 격자 (AWG; Arrayed Waveguide Grating) 소자(14)를 사용하여 다중화된 빛을 각각의 파장으로 각각 분리해 내고 각각 분리된 파장에 따른 광신호를 광검출 소자(16)와 전치 증폭 소자(18)을 사용하여 전기신호로 변환한 후 증폭하여 출력하는 형태이다.
구체적으로, 어레이 도파로 격자 소자(14)를 이용한 파장 다중화 광수신 모듈(이하 ‘광수신 모듈’로 약칭함)은 페룰(12)이 삽입된 리셉터클(11) 부분이 광섬유 커넥터(미도시)와 체결되어 다중화된 광신호가 광수신 모듈 내부로 들어오면 비구면 렌즈(13)를 사용하여 빛을 어레이 도파로 격자 소자(14)의 광도파로로 결합시켜 집어넣게 되며, 어레이 도파로 격자 소자(14) 내에서 광신호가 각각의 파장으로 분리되어 각각의 다른 출력 포트를 통해 발산되게 된다.
어레이 도파로 격자 소자(14)의 광도파로에서 출력되어 발산되는 각각의 파장은 렌즈(15)에 의해 각각의 광신호 검출을 담당하는 광검출 소자(16)의 수광영역으로 수렴되며, 광검출 소자(16)는 수렴된 파장에 따라 검출된 전기신호를 뒤단에 위치하여 와이어 본딩(미도시)으로 연결된 전달 임피던스 타입의 다수의 전치 증폭 소자(18)에서 각각의 신호를 증폭하여 출력시키게 된다.
이러한 첫 번째 형태의 종래의 광수신 모듈의 경우, 리셉터클(11)로 입력된 광신호가 최종적으로 광검출 소자(16)로 입력되기까지의 광경로에서 많은 광손실이 발생하는 것이 가장 큰 단점이다. 광손실은 비구면 렌즈(13)을 사용하여 입력광을 어레이 도파로 격자 소자(14)의 광도파로로 집어넣을 때에 발생할 뿐 아니라 어레이 도파로 격자 소자(14) 내부에서도 크게 발생한다.
이에, 어레이 도파로 격자 소자(14) 내부에서 발생하는 광손실을 줄이기 위해서는 어레이 도파로 격자 소자(14) 입력단의 공통 포트로부터 출력단의 각각의 파장의 포트에 이르는 광도파로의 휘어짐이 최소화되도록 설계하여야 하나 이렇게 할 경우 어레이 도파로 격자 소자(14)의 크기가 커지게 되어 전체 광수신 모듈의 크기가 커지는 문제점이 발생한다. 통상적으로, 이러한 어레이 도파로 격자 소자(14)를 사용한 광수신 모듈의 경우 전체 광 삽입 손실이 2dB 이상으로 큰 경우가 대부분이다.
한편, 다른 형태 광수신 모듈로는 도 2로 도시한 바와 같이 다중화된 빛의 파장을 4개의 파장으로 분리해 내기 위한 역다중화 소자로 각각의 파장만을 통과시키는 박막 필터(25-1 ~ 25-4)를 이용한 광수신 모듈이 있다.
이때, 박막 필터(25-1~25-4)를 포함하여 구성되는 역다중화 소자는 통상적으로 업계에서 ‘지그재그 필터’라고 부르며, 지그재그 필터는 도 2a에 나타난 바와 같이 정해진 각도를 갖도록 가공된 유리블록(24)과, 유리블록(24)의 일측에 정해진 간격으로 부착 형성되는 박막 필터(25-1 ~ 25-4), 박막 필터(25-1 ~ 25-4)와 대응되는 유리블럭(24)의 타측면에 부착 형성되는 반사막 코팅된 또 다른 반사블록(24-1)으로 구성되며, 각각의 파장의 광신호들이 지그재그필터 내부에서 반사되면서 해당되는 파장의 빛만 박막 필터(25-1 ~ 25-4)를 통과하여 빠져나가도록 하는 원리이다.
이러한 지그재그 필터를 이용한 종래의 광수신 모듈(20)의 동작 원리를 간략히 설명하면, 리셉터클(21) 내의 페룰(22)을 통과하여 입력된 광신호는 공기와의 굴절율 차이에 의해 퍼지게 되며, 이렇게 퍼지는 광신호는 비구면 렌즈(23)에 의해 평행광(L)으로 만들어진다.
이 평행광(L)이 지그재그 필터를 통과하게 되면 각각의 파장의 광신호로 분리되어 나오게 되고, 각각의 파장의 광신호들은 어레이 렌즈(26)를 통과하면서 초점광으로 바뀌어 발산되며, 발산된 각 광신호는 45도로 경사지게 부착된 반사거울(27)에 의해 반사되어 금속 광학 벤치(32) 위에 수평으로 부착된 광검출 소자(28)로 입력된다.
광검출 소자(28)는 입력된 각 파장의 광신호에 따라 검출된 전기신호를 뒤단에 위치하여 와이어 본딩(미도시)으로 연결된 전달 임피던스 타입의 다수의 전치 증폭 소자(29)에서 각각의 신호를 증폭하여 출력시키게 된다.
이러한 지그재그 필터를 사용한 종래의 광수신 모듈(20)은 어레이 도파로 격자 소자(14) 사용하는 광수신 모듈(10)에 비해 광신호의 삽입 손실을 대폭 줄일 수 있는 장점이 있으며, 역다중화 소자 자체의 크기 역시 더 작게 줄일 수 있는 장점이 있다.
그러나 이러한 박막 필터(25-1 ~ 25-4)를 사용한 광수신 모듈(20)은 도 3과 같이 지그재그 필터의 삽입 손실 및 대역 통과 파장의 특성이 박막 필터에 입사되는 광신호의 입사 각도에 크게 좌우되는 단점이 있었으며(도 3을 참고하면, 빛의 입사 각도(AOI; Angle of Incidence)가 10도로 설계된 박막 필터에서 +/- 0.1도의 입사각도 변화가 있는 경우 2dB 정도의 삽입 손실이 발생), 광검출 소자(28)로 초점광의 입력 정확도에 따라 측정되는 전기신호의 편차가 심한 단점이 있었다.
이에, 박막 필터로의 입사각도 변화에 따른 삽입손실과, 광검출 소자로부터 측정되는 전기신호의 편차를 최소화하기 위해서는 발산광을 지그재그 필터에 입사각도 변화가 최소화되도록 평행광으로 입사시켜 주는 볼록 렌즈 형태의 비구면 렌즈(23)와, 지그재그 필터를 통과하여 각각의 파장으로 분리된 평행광들을 광검출 소자(28)의 수광영역에 정확하게 입사시키기 위한 어레이 렌즈(26)의 위치와 각도 정렬이 매우 중요하였다.
그러나, 지금까지의 비구면 렌즈(23)와, 어레이 렌즈(26)의 위치와 각도의 정렬은 각각 수작업으로 광검출 소자(28)로부터 검출되는 전기신호를 측정하면서 정렬(능동정렬)시킴에 따라, 시간적, 투입 인력적으로 매우 비 효율적이였으며, 이에 따른 제조 단가가 상승됨과 동시에 생산성이 크게 저하되는 문제점이 있었다.
따라서, 상기와 같은 문제점을 해결함과 동시에 성능 및 생산성을 향상시킬 수 있으며, 제조 단가와 크기를 최소와 시킬 수 있는 새로운 구조의 광수신 모듈이 요구되는 실정이다.
본 발명은 상기에서 안출된 문제점을 해결하기 위한 것으로, 박막 필터를 사용한 파장 다중화 광수신 모듈을 구현하는 데 있어, 금속 광학 벤치 상에 비구면 렌즈와 어레이 렌즈 정렬이 용이하게 이루어질 수 있음과 동시에, 전반적인 모듈의 구성 수, 크기, 제조공정 및 제조단가를 감소시킬 수 있는 파장 다중화 광수신 모듈을 제공하고자 한다.
본 발명의 일측면에 따르면 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서, 광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부; 평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부; 상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주기 위해 상기 지그재그 필터부 후단에 배치되는 어레이 렌즈와, 상기 어레이 렌즈의 후단에 상기 평행광 형태의 광신호와 수평으로 배치되어 상기 어레이 렌즈로부터 발산되는 각 파장별 광신호에 따른 전기신호를 검출하는 어레이 광검출 소자, 상기 어레이 렌즈로부터 발산되는 초점광의 방향을 상기 어레이 광검출 소자 측으로 변환시키는 반사거울 및 상부면에 상기 지그재그 필터부, 상기 어레이 렌즈, 반사거울, 어레이 광검출 소자가 안착되어 정렬되도록 하는 금속 광학 벤치로 구성되는 광 패키지부; 및 상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함하는 파장 다중화 광수신 모듈이 제공될 수 있다.
본 발명의 다른 측면에 따르면, 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서, 광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부; 평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부; 상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주기 위해 상기 지그재그 필터부 후단에 배치되는 어레이 렌즈와, 상기 어레이 렌즈의 후단에 상기 평행광 형태의 광신호에 대해 수직으로 배치되어 상기 어레이 렌즈로부터 발산되는 초점광에 따른 전기신호를 검출하는 어레이 광검출 소자, 상기 어레이 광검출 소자가 수직으로 부착되는 어레이 광검출 소자 서브 마운트 및 상부면에 상기 지그재그 필터부, 상기 어레이 렌즈, 어레이 광검출 소자 및 어레이 광검출 소자 서브 마운트가 안착되어 정렬되도록 하는 금속 광학 벤치로 구성되는 광 패키지부; 및 상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함하는 파장 다중화 광수신 모듈이 제공될 수 있다.
본 발명의 또 다른 실시예에 따르면, 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서, 광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부; 평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부; 상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 하방향으로 수직하게 굴절시키는 반사거울과, 상기 반사거울의 하측으로 상기 반사거울과 평행하게 배치되어 상기 반사거울에 의해 반사된 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주는 어레이 렌즈와, 상기 어레이 렌즈의 하측으로 상기 어레이 렌즈와 평행하게 배치되어 상기 어레이 렌즈로부터 발산되는 초점광 형태의 광신호에 따른 전기신호를 검출하는 어레이 광검출 소자, 및 상부면에 상기 지그재그 필터부가 안착되어 정렬되고, 상기 반사거울, 상기 어레이 렌즈, 상기 어레이 광검출 소자가 일정간격을 두고 상호 평행하게 안착되어 정렬되도록 하는 금속광학 벤치로 구성되는 광 패키지부; 및 상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함하는 파장 다중화 광수신 모듈이 제공될 수 있다.
본 발명의 다양한 실시예에 따른 파장 다중화 광수신 모듈은 광수신 모듈을 제조함에 따른 능동 정렬 공정을 최소화시킬 수 있고, 광수신 모듈이 다수의 개별 어셈블리 형태의 구성들이 개별 제조 및 조립되어 형성됨에 따라 전반적인 모듈의 생산성(제조수율)을 향상시킬 수 있다.
또한, 제조수율 향상과 동시에 우수한 특성의 광수신 모듈을 낮은 가격으로 대량 생산할 수 있으며, 광수신 모듈을 중요한 부품으로 사용하는 광트랜시버의 가격 또한 감소시킬 수 있어 궁극적으로 광수신 모듈 시장 활성화와 파장 다중화 기술을 이용하여 광통신의 데이터 전송 용량을 늘리는 데 크게 기여할 수 있다.
도 1은 종래의 어레이 도파로 격자(AWG; Arrayed Waveguide Grating) 소자를 이용한 파장 분할 다중화 광수신 모듈을 보여주는 평면도이다.
도 2는 종래의 박막 필터를 이용한 파장 분할 다중화 광수신 모듈을 보여주는 평면도 및 단면도이다.
도 3은 도 2의 박막 필터를 이용한 파장 분할 다중화 광수신 모듈의 대역 통과 박막 필터 (Band Pass Filter)의 빛의 입사 각도에 따른 삽입 손실 곡선을 보여주는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 파장 분할 다중화 광수신 모듈을 보여주는 평면도 및 단면도이다
도 5는 도 4의 광 패키지부에 실리콘 V-홈 반사거울이 적용된 상태를 보여주는 단면도이다.
도 6은 도 1의 파장 분할 다중화 광수신 모듈의 조립 공정을 설명하기 위한 조립 설명도이다.
도 7은 본 발명의 다른 실시예에 따른 파장 분할 다중화 광수신 모듈을 보여주는 단면도이다.
도 8은 도 7의 광 패키지부에 렌즈 집적식 광검출 소자가 적용된 상태를 보여주는 단면도이다.
도 9는 본 발명의 또 다른 실시 예에 따른 파장 분할 다중화 광수신 모듈의 평행광 리셉터클부 및 광 패키지부를 보여주는 평면도 및 단면도이다.
이하, 본 발명의의 바람직한 실시예들을 첨부된 도면들에 의거하여 상세하게 설명한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 아울러, 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낼 수 있다.
도 4는 본 발명의 일 실시예에 따른 파장 분할 다중화 광수신 모듈을 보여주는 평면도 및 단면도이다. 도 5는 도 4의 광 패키지부에 실리콘 V-홈 반사거울이 적용된 상태를 보여주는 단면도이다.
먼저, 도 4를 참고하면, 본 발명의 일 실시예에 따른 파장 다중화 광수신 모듈(이하 ‘광수신 모듈’로 약칭함)은 평행광 리셉터클부(110)와, 지그재그 필터부(120)와, 광 패키지부(130) 및 전치 증폭 소자부(140)를 포함하여 구성된다.
평행광 리셉터클부(110)는 광선로 종단에 위치한 광커넥터(미도시)와 광수신 모듈을 연결하기 위한 구성으로, 원통형의 리셉터클(111), 리셉터클의 내부에 위치되는 페룰(112), 리셉터클(111)과 페룰(112) 사이에 위치되는 원통형의 슬리브(113) 및 페룰(112) 후단측 리셉터클(111) 내부에 위치되는 언덕형 굴절률 렌즈(GRIN Lens: 114)를 포함한다. 이때, 상기 페룰(112), 슬리브(113) 및 언덕형 굴절률 렌즈(114)는 리셉터클(111)의 내부에서 상호 동일한 중심축을 갖는다.
이러한 평행광 리셉터클부(110)는 페룰과 슬리브만으로 구성된 종래의 리셉터클부와 대비하여 언덕형 굴절률 렌즈(114)를 추가로 삽입한 것을 특징으로 하며, 이때, 페룰(112)과 언덕형 굴절률 렌즈(114)는 상호 마주보는 일면이 가공될 수 있다. 이러한 언덕형 굴절률 렌즈(114)는 페룰(112)을 통해 발산되는 분산광을 평행광으로 변환하는 기능을 한다. 이러한, 언덕형 굴절률 렌즈(114)는 완벽한 평행광을 만들기 위한 초점 거리의 위치가 언덕형 굴절률 렌즈(114)의 길이에 의해 결정되므로 원하는 규격의 언덕형 굴절률 렌즈(114)를 이용하면 됨에 따라 설계 및 제작의 용이성이 상승될 수 있다. 또한, 언덕형 굴절률 렌즈(114)는 원통형 구조를 갖는 리셉터클(111) 내부에 동일한 원통형 구조의 페룰(122)과 별도의 정렬 공정 없이 리셉터클(111)에 삽입 장착되는 구조를 취함으로써 기계적인 정밀도만으로도 정확한 위치에 고정시키는 공정만이 요구됨에 따라 별도의 능동 정렬 없이 비교적 완벽한 평행광을 만들 수 있다.
이와 같은, 평행광 리셉터클부(110)는 종래의 광수신 모듈에서 평행광을 만들기 위해서는 구성되는 비구면 볼록 렌즈와, 상기 비구면 볼록렌즈를 정확한 초점 거리에 위치시키기 위하여 광검출 소자의 광전류를 측정하면서 비구면 볼록렌즈의 위치를 찾아 고정시키는 능동 정렬 방식을 사용함에 따른 조립 공정의 복잡성 증가와 제조 수율 저하의 문제점들이 해소될 수 있는 장점을 갖게 된다.
지그재그 필터부(120)는 각 파장별로 광신호를 분리해 내기 위한 역다중화 소자로 평행사변형 형태의 유리블록(123)과, 유리블록(123)의 일측면에 일정한 간격으로 형성되어 해당되는 대역의 광신호를 통과시키는 박막 필터(124-x: 124-1~124-4)를 포함하여 구성될 수 있다. 이때, 박막 필터(124-x: 124-1~124-4)가 형성된 유리블록(123)의 타측면에는 코팅부(121, 122)가 형성될 수 있다.
코팅부(121, 122)는 언덕형 굴절률 렌즈(114)를 통해 광신호가 입사되는 영역과 대응되는 일정 영역에는 형성되는 무반사막 코팅(121)과, 무반사막 코팅이 형성된 영역을 제외한 나머지 영역에 형성되는 반사막 코팅(122)으로 구분 형성될 수 있다.
이때, 유리블록(123)의 일측에 형성되는 무반사막 코팅(121)은 언덕형 굴절률 렌즈(114)를 통해 입사되는 광신호가 유리블록(123)에 반사됨에 따른 손실을 최소화시켜주는 역할을 하며, 반사막 코팅(122)은 반대측에 형성된 박막 필터(124-1)로부터 반사되어 되돌아 온 광신호가 다시 반사되어 그 다음 박막 필터(124-2 ~ 124-4)로 입사되도록 하는 역할을 한다.
이러한 지그재그 필터부(120)는 먼저 정해진 굴절율과 두께를 갖는 유리판 일측면의 일부 영역에 무박사막 코팅(121)을 하고 같은 면의 또 다른 영역에는 반사막 코팅(122)을 한 후 정해진 크기를 갖도록 잘라낸 다음 잘라낸 유리블록을 그 단면이 평행 사변형의 형태가 되도록 정밀한 각도로 연마한 후, 미리 제작된 박막 필터(124-x: 124-1~124-4)들을 유리 블록(123)의 코팅부가 형성된 일측면과 대응되는 타측면에 정해진 위치에 순차적으로 부착하는 공정을 통해 제작될 수 있다.
이러한 형태의 구조 및 제작 과정에 따른 지그재그 필터부(120)는 별도의 반사막을 제작하여 유리블록 측면에 부착하는 형태를 갖는 종래의 구조에 비해 소요되는 부품 수량을 줄이고 조립 공정 또한 단순화하여 지그재그 필터부의 제조 원가를 낮출 수 있다.
광 패키지부(130)는, 어레이 렌즈(131)와, 반사거울(132)과, 어레이 광검출 소자(133) 및 금속 광학 벤치(134)를 포함하여 구성될 수 있다.
이때, 어레이 렌즈(131)는 발산광을 초점광으로 변환시키는 렌즈를 하나의 부품으로 집적화한 것이며, 어레이 광검출 소자(133)는 광검출 소자를 하나의 부품으로 집적화한 것으로 그 역할은 종래의 것과 유사할 수 있다.
반사거울(132)은 어레이 광검출 소자(133)의 상부측에 위치되어 어레이 렌즈(131)에 의해 발산되는 초점광을 어레이 광검출 소자(133)로 굴절시키기 위한 구성으로, 한쪽 면에 반사막이 코팅된 막대 형태의 거울로 이루어져 일정각도(약 45도)로 기울어지게 위치될 수 있다.
금속 광학 벤치(134)는 지그재그 필터부(120), 어레이 렌즈(131), 반사거울(132) 및 어레이 광검출 소자(133)가 안착되어 고정되는 구성요소로, 각 구성들이 각각 안착되어 정렬 및 고정될 수 있도록 정렬홈부(135)와 안착부(135a)가 가공 형성될 수 있다. 구체적으로, 금속 광학 벤치(134)의 상부측에는 지그재그 필터부(120)의 유리블록(123), 어레이 렌즈(131) 및 어레이 광검출 소자(133)와 대응되는 형태의 정렬홈이 가공 형성될 수 있다. 또한, 어레이 광검출 소자(133)의 상부측에 반사거울(132)이 일정한 각도로 기울어져 안착되도록 하기 위한 안착부(135a)가 돌출 형성될 수 있다.
이러한, 각각의 구성품들의 정렬 및 안착을 위한 정렬홈부(135)와 안착부(135a)가 가공된 금속 광학 벤치(134)는 각 구성품들, 특히 어레이 렌즈(131)의 경우, 종래의 능동 정렬을 수행할 필요 없이 기계적인 정밀도만으로 각 구성요소들의 위치 정렬이 가능하며, 반사거울(132)의 경우, 각도 조절, 안착을 위한 별도의 구성요소를 마련할 필요성이 없게 됨으로써, 제조공정 시간 및 비용을 감소시켜 생산 효율성이 향상될 수 있다. 또한, 금속 광학 벤치(134)의 정렬홈부(135) 및 안착부(135a)에 각 구성품들이 정렬 및 안착됨에 따라 외력에 의한 구성품들의 손상 및 정렬 상태 변형 등이 방지됨으로써 광 패키지부의 기계적 내구성 또한 향상될 수 있다.
전치 증폭 소자부(140)는 광수신 모듈 하우징(141)과, 전달 임피던스 타입의 전치 증폭(TIA)소자들이 하나의 구성으로 집적화된 어레이 전치 증폭 소자(141) 및 어레이 전치 증폭 소자(141)가 안착되는 어레이 전치 증폭 소자 서브 마운트(143)를 포함하여 구성될 수 있다.
도 5는 도 4의 광 패키지부에 V-홈 에칭된 실리콘 반도체가 적용된 상태를 보여주는 단면도이다.
한편, 도 5로 도시한 바와 같이 광 패키지부에 어레이 렌즈(131)에 의해 발산되는 초점광을 어레이 광검출 소자(133)가 위치한 아래쪽으로 굴절시키기 위한 평판형의 반사거울(136) 대신 실리콘 V-홈 반사거울(136)이 구성될 수 있다. 이러한, 실리콘 V-홈 반사거울(136)은 실리콘 반도체 위에 V-홈으로 식각하여 그 식각된 경사면에 반사막 코팅을 한 것으로, 실리콘 V-홈 반사거울(136)은 통상의 평판형 반사거울(132)에 비해 낮은 단가로 대량 생산이 가능한 장점이 있어, 반사거울(136)을 이용하는 것과 비교하여 광 패키지부(130)의 가격을 절감시키는 측면에서 보다 효율적으로 작용될 수 있다.
다만, 실리콘 V-홈 반사거울(136)을 사용하여 광을 어레이 광검출 소자(133) 측으로 꺾어 줄 경우에는 반사각도가 45도가 아닌 실리콘의 습식 식각 시 나타나는 경사면의 각도인 약 54.7도를 갖게 된다. 이럴 경우 어레이 광검출 소자(133)로 입사되는 빛이 90도가 아닌 약 80.3도로 입사되는 특징이 있으나, 이는 반사거울의 위치에 따른 조정이 가능함에 따라 출력 광전류 값에는 큰 영향(또는 변화)이(가) 없다.
본 발명의 일 실시예에 따른 광수신 모듈을 구성하는 평행광 리셉터클 부(110), 지그재그 필터부(120), 광 패키지 부(130) 및 전치 증폭 소자부(140)는 각각 별도의 어셈블리로 제작 및 조립이 가능하며, 이들의 조립공정을 도 6을 참고하여 설명하기로 한다.
도 6은 도 1의 파장 분할 다중화 광수신 모듈의 조립 공정을 설명하기 위한 조립 설명도이다.
우선, 지그재그 필터부(120)를 광 패키지부(130)의 정해진 위치에 부착하는 조립단계-1 공정이 수행된다. 이때, 조립단계-1 공정 수행 시, 지그재그 필터부(120)와 어레이 렌즈(131) 사이의 거리는 모듈의 특성에 영향을 주지 않으나 지그재그 필터부(120)의 틀어진 정도는 광손실 및 파장 특성에 크게 영향을 미치게 된다. 반면, 본 발명에 따른 금속 광학 벤치(134)는 정렬홈(315)이 형성되어 있음에 따라, 정렬홈(315)에 지그재그 필터부(120)를 안착시켜주는 것만으로도 지그재그 필터부(120)의 틀어짐이 최소화된 상태로 조립이 이루어질 수 있다.
조립단계-1에 의해 지그재그 필터부(120)가 조립된 광 패키지부(130)를 전치 증폭 소자부(140) 내부의 정해진 위치에 부착시키는 조립단계-2 공정이 수행된다. 이 조립 공정의 정밀도는 광수신 모듈의 광학적 특성에 영향을 주지 않으므로 정확한 위치 정밀도가 요구되지는 않는다. 또한, 전치 증폭 소자부(140) 내부에 조립된 광 패키지부(130)의 어레이 광 검출기 소자는 전치 증폭 소자부(140)의 어레이 전치 증폭 소자(142)와 와이어 본딩에 의해 연결한다.(도면상 생략).
마지막으로, 상기 조립단계-2에 의해 완성된 지그재그 필터부(120), 광 패키지부(130) 및 전치 증폭 소자부(140)이 조립된 조립품에 평행광 리셉터클부(110)를 조립하는 조립단계-3 공정이 수행된다. 이 조립 공정에서는 평행광 리셉터클부(110)의 리셉터클을 통하여 광을 입력시키면서 해당되는 어레이 광검출 소자의 출력 전기신호(광전류) 값을 읽으면서 최대의 전기신호 값을 얻을 수 있는 위치에 평행광 리셉터클부(110)을 고정시키는 능동 정렬 방식으로 조립하여야 한다. 이때 최소 두 곳 이상의 어레이 광검출 소자의 전기신호 값이 정해진 기준 이상의 값이 나오도록 능동 정렬하여야 하며 평행광(L)의 광경로가 가장 짧은 광검출 소자와 가장 긴 광검출 소자(ex: 124-1, 124-4)의 전기신호 값을 측정하면서 정렬하는 것이 효과적일 수 있다.
이하에서는 본 발명의 다른 실시예에 따른 파장 분할 다중화 광수신 모듈에 대해 설명하기로 한다.
도 7은 본 발명의 다른 실시예에 따른 파장 분할 다중화 광수신 모듈을 보여주는 단면도이다. 도 8은 도 7의 광 패키지부에 렌즈 집적식 광검출 소자가 적용된 상태를 보여주는 단면도이다.
도 7을 참고하면, 본 발명의 다른 실시예에 따른 광수신 모듈은 본 발명의 일 실시예와 대비하여 광 패키지부(130)을 구성하는 부품 중 하나인 어레이 광검출 소자(133)가 금속광학 벤치(234)의 상면에 부착된 형태가 아닌 어레이 광검출 소자 서브 마운트(237)에 수직으로 부착되어 있는 형태를 특징으로 한다. 이러한 구조에 따르면 어레이 광검출 소자(233)로 입사되는 광의 방향을 굴절시켜줄 필요가 없음에 따라 일 실시예의 광 패키지부에 구성되었던 반사거울(132) 또는 실리콘 V-홈 반사거울(136)과 같은 구성요소가 필요 없게 되어 보다 컴팩트한 광수신 모듈의 제조가 가능할 수 있다.
한편, 도 8에 도시된 본 발명의 다른 실시예에 따른 광수신 모듈의 어레이 광검출 소자(233) 렌즈 집적식 광검출 소자(238)를 사용하는 것을 특징으로 한다. 렌즈 집적식 광검출 소자(238)는 광검출 소자의 수광 영역의 뒷면에 렌즈가 일체형으로 모듈화된 것으로, 기존 광검출 소자의 전면을 통해 수광영역으로 광이 입력되었다면, 렌즈 집적식 광검출 소자는 렌즈를 통해 입력되는 광을 광검출 소자의 뒷면을 통해 수광영역에 광을 입력시키는 구조이다.
이와 같이 렌즈 집적식 광검출 소자(238)를 사용하는 광 패키지부(230)에서는 지그재그 필터부(220)를 통과한 평행광(L)을 초점광으로 바꿔주기 위한 어레이 렌즈의 별도로 필요 없기 때문에 제작 공정의 단순화와 제작 모듈의 크기를 감소시킬 수 있다.
이하에서는 본 발명의 또 다른 실시예에 따른 파장 분할 다중화 광수신 모듈에 대해 설명하기로 한다.
도 9는 본 발명의 또 다른 실시 예에 따른 파장 분할 다중화 광수신 모듈의 평행광 리셉터클부(320) 및 광 패키지부(330)를 보여주는 평면도 및 단면도이다.
도 9를 참고하면, 본 발명의 또 다른 실시예에 따른 광수신 모듈은 앞서 설명한 일 실시예에 따른 광수신 모듈과 비교하여 광 패키지부에서 차이가 있음에 따라, 광 패키지부(330)에 관해서만 설명하기로 한다.
본 발명의 또 다른 실시예에 따른 광 패키지부(330)은 그 지그재그 필터부(320)과 반사거울(333) 사이에 위치되었던 어레이 렌즈(331)를 반사거울(332)과 어레이 광검출 소자(333) 사이에 놓이도록 그 위치를 옮긴 것을 특징으로 한다. 이때 어레이 렌즈(331)는 어레이 광검출 소자(333)와 수직 방향의 동일선상으로 평행하게 놓이게 된다.
아울러, 어레이 렌즈(331)와 어레이 광검출 소자(333) 사이의 거리는 어레이 렌즈(331)의 초점 거리에 어레이 광검출 소자(333)이 위치하도록 금속광학 벤치(334)의 양쪽 가장자리의 정해진 위치에 턱을 만들어 어레이 렌즈(331)를 정렬될 수 있도록 한다. 이는 일 실시예에서 설명한 안착부와 대응될 수 있다.
이상 설명한 바와 같은 본 발명의 다양한 실시예에 따른 광수신 모듈은 광수신 모듈을 제조함에 따른 능동 정렬 공정을 최소화시킬 수 있고, 광수신 모듈이 다수의 개별 어셈블리 형태의 구성들이 개별 제조 및 조립되어 형성됨에 따라 전반적인 모듈의 생산성(제조수율)을 향상시킬 수 있다.
또한, 모듈의 소형화가 가능하고, 구성요소를 감소시킴으로써 제조 공정 및 제조 단가를 절감할 수 있어 광수신 모듈을 중요한 부품으로 사용하는 광트랜시버의 가격 또한 감소시킬 수 있어 궁극적으로 광수신 모듈 시장 활성화와 파장 다중화 기술을 이용하여 광통신의 데이터 전송 용량을 늘리는 데 크게 기여할 수 있다.
*이상에서 설명한 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시 예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.

Claims (11)

  1. 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서,
    광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부;
    평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부;
    상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주기 위해 상기 지그재그 필터부 후단에 배치되는 어레이 렌즈와, 상기 어레이 렌즈의 후단에 상기 평행광 형태의 광신호와 수평으로 배치되어 상기 어레이 렌즈로부터 발산되는 각 파장별 광신호에 따른 전기신호를 검출하는 어레이 광검출 소자, 상기 어레이 렌즈로부터 발산되는 초점광의 방향을 상기 어레이 광검출 소자 측으로 변환시키는 반사거울 및 상부면에 상기 지그재그 필터부, 상기 어레이 렌즈, 반사거울, 어레이 광검출 소자가 안착되어 정렬되도록 하는 금속 광학 벤치로 구성되는 광 패키지부; 및
    상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함하는 파장 다중화 광수신 모듈.
  2. 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서,
    광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부;
    평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부;
    상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주기 위해 상기 지그재그 필터부 후단에 배치되는 어레이 렌즈와, 상기 어레이 렌즈의 후단에 상기 평행광 형태의 광신호에 대해 수직으로 배치되어 상기 어레이 렌즈로부터 발산되는 초점광에 따른 전기신호를 검출하는 어레이 광검출 소자, 상기 어레이 광검출 소자가 수직으로 부착되는 어레이 광검출 소자 서브 마운트 및 상부면에 상기 지그재그 필터부, 상기 어레이 렌즈, 어레이 광검출 소자 및 어레이 광검출 소자 서브 마운트가 안착되어 정렬되도록 하는 금속 광학 벤치로 구성되는 광 패키지부; 및
    상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함하는 파장 다중화 광수신 모듈.
  3. 파장 분할 다중화(WDM; Wavelength Division Multiplexing) 방식의 광통신을 위한 파장 다중화 광수신 모듈에 있어서,
    광선로 종단에 형성된 광섬유 커넥터와 결합되는 리셉터클과, 상기 리셉터클의 내부공간에 위치되어 입력광을 평행광으로 변환시키는 언덕형 굴절률 렌즈(GRIN LENS)가 구성되는 평행광 리셉터클부;
    평행사변형 형태의 유리블록과, 상기 유리블록의 일 측면에 형성되는 코팅부와, 상기 코팅부가 형성된 유리블록의 타 측면에 형성되는 박막 필터가 형성되어 각 파장별로 광신호를 분리해 내기 위한 지그재그 필터부;
    상기 지그재그 필터부로부터 분리되어 발산되는 평행광 형태의 광신호를 하방향으로 수직하게 굴절시키는 반사거울과, 상기 반사거울의 하측으로 상기 반사거울과 평행하게 배치되어 상기 반사거울에 의해 반사된 평행광 형태의 광신호를 초점광 형태의 광신호로 변환시켜주는 어레이 렌즈와, 상기 어레이 렌즈의 하측으로 상기 어레이 렌즈와 평행하게 배치되어 상기 어레이 렌즈로부터 발산되는 초점광 형태의 광신호에 따른 전기신호를 검출하는 어레이 광검출 소자, 및 상부면에 상기 지그재그 필터부가 안착되어 정렬되고, 상기 반사거울, 상기 어레이 렌즈, 상기 어레이 광검출 소자가 일정간격을 두고 상호 평행하게 안착되어 정렬되도록 하는 금속광학 벤치로 구성되는 광 패키지부; 및
    상기 광검출 소자에서 검출된 전기신호를 증폭하여 출력시키는 전달 임피던스 타입의 어레이 전치 증폭 소자와, 상기 어레이 전치 증폭 소자가 안착되는 어레이 전치 증폭 소자 서브 마운트 및 모듈 하우징으로 구성되는 전치 증폭 소자부;를 포함하는 파장 다중화 광수신 모듈.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 평행광 리셉터클부는 상기 언덕형 굴절률 렌즈의 전방측의 상기 리셉터클 내부공간에 위치되는 폐룰과, 상기 폐룰과 리셉터클 사이에 배치되는 원통형의 슬리브를 더 포함하며, 상기 리셉터클의 내부 공간, 언덕형 굴절률 렌즈, 폐룰 및 슬리브는 모두 동일한 중심축을 갖도록 위치되는 파장 다중화 광수신 모듈.
  5. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 코팅부는 상기 언덕형 굴절률 렌즈 후단부에 위치되는 상기 유리블록의 일 측면에 형성되되, 상기 언덕형 굴절률 렌즈로부터 광이 입력되는 소정 영역에 형성되는 무반사막 코팅과, 상기 무반사막 코팅이 형성된 영역을 제외한 나머지 영역에 형성되는 반사막 코팅으로 구분되어 형성되는 파장 다중화 광수신 모듈.
  6. 청구항 1에 있어서,
    상기 반사거울은 일면에 반사막이 코팅된 평면 형태의 반사거울 또는 실리콘 반도체 위에 V-홈으로 식각하여 그 식각된 경사면에 반사막 코팅을 한 실리콘 V-홈 반사거울 중 어느 하나로 형성되는 파장 다중화 광수신 모듈.
  7. 청구항 2에 있어서,
    상기 어레이 광검출 소자는 평행광 형태의 광신호를 초점광 형태의 광신호로 전환시키는 렌즈가 광검출 소자에 일체로 형성되어 제작되는 렌즈 집적식 광검출 소자로 형성되는 파장 다중화 광수신 모듈.
  8. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 금속 광학 벤치에는 상기 지그재그 필터부, 상기 어레이 렌즈, 어레이 광검출 소자, 반사거울들이 각각 부분적으로 삽입되어 정렬되도록 하기 위한 정렬홈부 또는 돌출 경사면이나 다층의 턱으로 형성된 안착부가 선택적 또는 조합되어 형성되는 파장 다중화 광수신 모듈.
  9. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 평행광 리셉터클부, 상기 지그재그 필터부, 상기 광 패키지부 및 상기 전치 증폭 소자부는 각각 별도 제작되고 이들을 상호 조립함으로써 형성되는 파장 다중화 광수신 모듈.
  10. 청구항 9항에 있어서,
    상기 평행광 리셉터클부는 상기 전치 증폭 소자부의 모듈 하우징의 일면의 중심으로부터 벗어난 외측에 치우쳐 조립(형성)되는 파장 다중화 광수신 모듈.
  11. 청구항 10항에 있어서,
    상기 평행광 리셉터클부가 상기 전치 증폭 소자부의 모듈 하우징 일면에 조립 시, 평행광 리셉터클부를 통해 입력되는 광에 따른 어레이 광검출기 소자의 출력 전기신호 값을 읽으면서 최대의 전기신호 값을 얻을 수 있는 위치에 평행광 리셉터클부을 고정시키는 능동 정렬 방식을 통해 조립되는 파장 다중화 광수신 모듈.
PCT/KR2015/011471 2015-06-11 2015-10-29 파장 다중화 광수신 모듈 WO2016199984A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571274A JP6345809B2 (ja) 2015-06-11 2015-10-29 波長多重化光受信モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0082377 2015-06-11
KR1020150082377A KR20160145956A (ko) 2015-06-11 2015-06-11 파장 다중화 광수신 모듈

Publications (1)

Publication Number Publication Date
WO2016199984A1 true WO2016199984A1 (ko) 2016-12-15

Family

ID=57503698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011471 WO2016199984A1 (ko) 2015-06-11 2015-10-29 파장 다중화 광수신 모듈

Country Status (3)

Country Link
JP (1) JP6345809B2 (ko)
KR (1) KR20160145956A (ko)
WO (1) WO2016199984A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839700A (zh) * 2017-11-29 2019-06-04 中兴通讯股份有限公司 光收发器件
US10447405B2 (en) 2017-09-29 2019-10-15 Electronics And Telecommunications Research Institute Optical receiver with optical demultiplexer
CN111066263A (zh) * 2017-07-21 2020-04-24 加州理工学院 超薄平面无透镜相机
CN115104053A (zh) * 2020-02-21 2022-09-23 三菱电机株式会社 集成光模块
US11882371B2 (en) 2017-08-11 2024-01-23 California Institute Of Technology Lensless 3-dimensional imaging using directional sensing elements

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102127700B1 (ko) * 2017-09-29 2020-06-29 한국전자통신연구원 광역다중화기를 포함하는 광 수신기
US11360266B2 (en) 2018-02-09 2022-06-14 Mitsubishi Electric Corporation Method for manufacturing optical multiplexer/demultiplexer
CN108957612A (zh) * 2018-07-26 2018-12-07 北极光电(深圳)有限公司 一种薄膜滤波器组件及其制作方法
JP2021533672A (ja) * 2018-08-27 2021-12-02 華為技術有限公司Huawei Technologies Co., Ltd. 受信器の光サブアセンブリ、コンボ・トランシーバサブアセンブリ、コンボ光モジュール、通信機器、及びponシステム
CN110389414A (zh) * 2019-07-19 2019-10-29 杭州耀芯科技有限公司 一种单纤双向多模波分复用光电转换装置及制备方法
US20220365283A1 (en) * 2019-10-31 2022-11-17 Commscope Technologies Llc Devices and optical fiber routing arrangements for wave divison multiplexing equipment
KR102450810B1 (ko) 2020-03-19 2022-10-05 한국전자통신연구원 양방향 광송수신 모듈
CN111404609B (zh) * 2020-03-31 2021-05-11 武汉光迅科技股份有限公司 多通道光接收模块
CN113687472A (zh) * 2020-05-19 2021-11-23 福州高意通讯有限公司 一种小型自由空间波分复用器
CN113985509A (zh) * 2021-10-18 2022-01-28 深圳市比洋光通信科技股份有限公司 一种高精度Z block滤光片胶合工艺技术

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066255A (ja) * 2001-06-23 2003-03-05 Samsung Electronics Co Ltd 平面導波路形光回路を利用した波長分割多重化逆多重化器
KR20100124112A (ko) * 2009-05-18 2010-11-26 한국전자통신연구원 다채널 광 송신장치, 및 수신장치의 능동 정렬방법
US20120087623A1 (en) * 2010-10-07 2012-04-12 Alcatel-Lucent Usa Inc. Optical assembly for a wdm receiver or transmitter
US20130168537A1 (en) * 2010-09-20 2013-07-04 Opticis Co., Ltd. Apparatus for wavelength-division multiplexing and demultiplexing
US20140169389A1 (en) * 2012-12-14 2014-06-19 Electronics And Telecommunications Research Institute Optical receiver module using wavelength division multiplexing type

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646670B2 (ja) * 2005-03-30 2011-03-09 京セラ株式会社 光レセプタクル及びそれを用いた光モジュール
JP2009198958A (ja) * 2008-02-25 2009-09-03 Hitachi Cable Ltd 波長多重光受信モジュール
JP2010122439A (ja) * 2008-11-19 2010-06-03 Furukawa Electric Co Ltd:The 光合分波モジュールおよびこれに用いるプリズム
US8488244B1 (en) * 2010-07-12 2013-07-16 Alliance Fiber Optic Products, Inc. Ultra compact optical multiplexer or demultiplexer
JP5910057B2 (ja) * 2011-12-13 2016-04-27 住友電気工業株式会社 光受信モジュール
JP2013171161A (ja) * 2012-02-21 2013-09-02 Sumitomo Electric Ind Ltd 光受信モジュール
JP2014137475A (ja) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd 光受信モジュールとその製造方法
JP2014137476A (ja) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd 光受信モジュールとその製造方法
JP6244721B2 (ja) * 2013-08-01 2017-12-13 三菱電機株式会社 波長多重伝送装置の製造方法
JP2015096878A (ja) * 2013-11-15 2015-05-21 日本オクラロ株式会社 光受信モジュール及び光送信モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066255A (ja) * 2001-06-23 2003-03-05 Samsung Electronics Co Ltd 平面導波路形光回路を利用した波長分割多重化逆多重化器
KR20100124112A (ko) * 2009-05-18 2010-11-26 한국전자통신연구원 다채널 광 송신장치, 및 수신장치의 능동 정렬방법
US20130168537A1 (en) * 2010-09-20 2013-07-04 Opticis Co., Ltd. Apparatus for wavelength-division multiplexing and demultiplexing
US20120087623A1 (en) * 2010-10-07 2012-04-12 Alcatel-Lucent Usa Inc. Optical assembly for a wdm receiver or transmitter
US20140169389A1 (en) * 2012-12-14 2014-06-19 Electronics And Telecommunications Research Institute Optical receiver module using wavelength division multiplexing type

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066263A (zh) * 2017-07-21 2020-04-24 加州理工学院 超薄平面无透镜相机
CN111066263B (zh) * 2017-07-21 2023-10-03 加州理工学院 超薄平面无透镜相机
US11882371B2 (en) 2017-08-11 2024-01-23 California Institute Of Technology Lensless 3-dimensional imaging using directional sensing elements
US10447405B2 (en) 2017-09-29 2019-10-15 Electronics And Telecommunications Research Institute Optical receiver with optical demultiplexer
CN109839700A (zh) * 2017-11-29 2019-06-04 中兴通讯股份有限公司 光收发器件
CN115104053A (zh) * 2020-02-21 2022-09-23 三菱电机株式会社 集成光模块
CN115104053B (zh) * 2020-02-21 2023-10-20 三菱电机株式会社 集成光模块

Also Published As

Publication number Publication date
KR20160145956A (ko) 2016-12-21
JP6345809B2 (ja) 2018-06-20
JP2017529552A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016199984A1 (ko) 파장 다중화 광수신 모듈
USRE48029E1 (en) WDM multiplexing/de-multiplexing system and the manufacturing method thereof
JP5714229B2 (ja) 二重レンズの単一光受信器アセンブリ
US10090934B2 (en) Optical receiver module that receives wavelength-multiplexed signal
US7991290B2 (en) Optical prism and optical transceiver module for optical communications
CN109597169B (zh) 组装光接收器模块的方法
WO2021115129A1 (zh) 一种光模块
KR20140079540A (ko) 파장 분할 다중화 방식을 이용한 광수신 모듈
WO2016199985A1 (ko) 다채널 광수신 모듈 및 다채널 광수신 모듈의 광정렬 방법
WO2018074705A1 (ko) 파장 다중화 광수신 모듈
JP2001154066A (ja) 光トランシーバ用光学系ユニット
WO2012067366A1 (ko) 광통신 모듈
WO2011007909A1 (ko) 광 모듈 및 그 제조방법
CN105866904A (zh) 多通道并行的光接收器件
CN109254365A (zh) 光接收模组及其制作方法、光接收器件
US10859775B1 (en) Optical turning mirror with angled output interface to increase coupling efficiency and a multi-channel optical subassembly using same
CN109884753B (zh) 一种光接收组件以及组装方法
CN209102958U (zh) 光接收模组及光接收器件
TWI498619B (zh) 雙向光傳輸次組件
CN112114401A (zh) 一种小型化波分解复用光接收组件及其装配方法
CN206649186U (zh) 一种多通道光接收器件及接收模块
CN211905786U (zh) 一种新型多通道并行接收光器件
CN210605101U (zh) 一种基于光波导的多路波分解复用光接收组件
CN113495323A (zh) 一种多波长波分复用解复用光组件
CN111736267A (zh) 一种超小紧凑型多通道波分复用模块

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016571274

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15895052

Country of ref document: EP

Kind code of ref document: A1