WO2016197359A1 - CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA - Google Patents

CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA Download PDF

Info

Publication number
WO2016197359A1
WO2016197359A1 PCT/CN2015/081231 CN2015081231W WO2016197359A1 WO 2016197359 A1 WO2016197359 A1 WO 2016197359A1 CN 2015081231 W CN2015081231 W CN 2015081231W WO 2016197359 A1 WO2016197359 A1 WO 2016197359A1
Authority
WO
WIPO (PCT)
Prior art keywords
sla
gene
sequence
sgrna
target sequence
Prior art date
Application number
PCT/CN2015/081231
Other languages
English (en)
French (fr)
Inventor
蔡志明
牟丽莎
陈鹏飞
谢崇伟
张军方
高汉超
陆赢
刘璐
Original Assignee
深圳市第二人民医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市第二人民医院 filed Critical 深圳市第二人民医院
Priority to CN201580000476.8A priority Critical patent/CN105593367A/zh
Priority to PCT/CN2015/081231 priority patent/WO2016197359A1/zh
Publication of WO2016197359A1 publication Critical patent/WO2016197359A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Definitions

  • the invention relates to the field of genetic engineering technology, in particular to the field of gene knockout technology, and particularly relates to a method for specifically knocking out the pig SLA-1 gene by CRISPR-Cas9 and an sgRNA for specifically targeting the SLA-1 gene.
  • Organ transplantation is the most effective treatment for organ failure diseases. To date, nearly one million patients worldwide have survived through organ transplantation. With the aging of the population and advances in medical technology, more and more patients need organ transplant surgery, but the shortage of donor organs severely restricts the development of organ transplant surgery. Taking kidney transplantation as an example, there are as many as 300,000 patients who need kidney transplantation every year in China, and no more than 10,000 donated kidneys for transplantation. Most of the patients die from kidney failure. Relying on post-mortem organ donation can no longer meet the needs of organ transplantation. Genetic engineering of other species to provide organs suitable for human transplantation has become the main way to address the shortage of human donor organs.
  • Primate T cells recognize pig-derived antigens and cause immune rejection against xenogeneic.
  • the primate T cell receptor recognizes the SLA/peptide complex on the surface of the porcine cell and directly activates the primate T cell.
  • there are two main types of donor-derived cell types that activate primate T cells one is a migratory antigen-presenting cell such as a dendritic cell; the other is a vascular endothelial cell that highly expresses SLA. .
  • MHC Class I molecules expressed on the surface of pig donor cells recognize and activate CD8T+ cells.
  • MHC class I molecules are glycoproteins composed of two peptide chains joined by non-covalent bonds; one of them is called a heavy chain or an alpha chain, and the other is a light chain or called ⁇ 2 microglobulin ( ⁇ 2m).
  • the molecular weight of the ⁇ chain is 44 kd, and the structure is polymorphic.
  • the extracellular domain peptide of the ⁇ chain is folded to form three functional regions, which are called ⁇ 1, ⁇ 2, and ⁇ 3 regions; each functional region contains about 90 amino acid residues, and its structure is similar to immunoglobulin (Ig); ⁇ 1
  • the amino acid sequence of the ⁇ 2 region varies greatly, which determines the polymorphism of the class I molecule.
  • 22m is not a MHC gene encoding, but a product encoded by a single gene on chromosome 15, with a molecular weight of 12kd. Its structure has greater homology with the ig constant region (ch3), belonging to Ig A member of the super family, without a homotypic determinant, but of species specificity.
  • the important physiological function of class I molecules is to limit the antigen recognition function of CD8+ T cells, that is, to participate in the process of presenting antigens to CD8+ T cells.
  • CD8+ T cells can only recognize antigens that bind to the same class I molecule (mostly endogenous cellular antigens, such as virus-infected cells and tumor cells, etc.), a phenomenon known as MHC restriction.
  • NK cells In addition to CD8+ T cells, NK cells also require the involvement of MHC class I molecules when they recognize that target cells exert a killing function. Therefore, if knockout MHC class I molecules will be able to control the cell killing effect of NK cells and CD8+ T cells, it will make an important contribution to xenotransplantation. The best way to achieve this strategy is to construct genetically modified pigs with missing MHC class I molecules.
  • common gene knockout techniques include homologous recombination (HR) technology, Transcription Activator-Like Effector Nuclease (TALEN) technology, Zinc-Finger Nuclease (ZFN) Technology and the recently developed Law Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technique.
  • HR homologous recombination
  • TALEN Transcription Activator-Like Effector Nuclease
  • ZFN Zinc-Finger Nuclease
  • CRISPR Law Clustered Regularly Interspaced Short Palindromic Repeat Due to the inefficient recombination of HR technology (efficiency is only about 10 -6 ), the screening of mutants is very time consuming and inefficient, and has gradually been replaced.
  • the cutting efficiency of TALEN technology and ZFN technology can generally reach 20%, but all need to build protein modules that can recognize specific sequences, and the preliminary work is cumbersome and time consuming.
  • the module design of ZFN technology is complex and has a high off
  • CRISPR is an acquired immune system derived from prokaryotes that performs a function of interfering functions consisting of protein Cas and CRISPR-RNA (crRNA).
  • Cas9 targeted cleavage of DNA is achieved by the principle of complementary recognition of two small RNAs, cryRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA), to target sequences.
  • CRISPR RNA cryRNA
  • tracrRNA trans-activating crRNA
  • the two small RNAs have now been fused into an RNA strand, abbreviated as sgRNA (single guide RNA), which recognizes specific gene sequences and directs Cas9 protein for cleavage.
  • sgRNA single guide RNA
  • the CRISPR technology is simple in operation, high in screening efficiency, and capable of achieving accurate targeted cutting. Therefore, knocking out the SLA-1 gene by CRISPR technology can greatly improve the screening efficiency of SLA-1 deletion cells and genetically engineered pigs.
  • the key technical challenge of this path is to design and prepare precisely targeted sgRNAs, because the targeting accuracy of genes is highly dependent on sgRNA target sequences, and the successful design of precisely targeted sgRNAs becomes a key technical issue for knocking out target genes.
  • the present invention is intended to solve this technical problem and thereby provide a solid basis for knocking out the SLA-1 gene.
  • the object of the present invention is to provide a method for CRISPR-Cas9 specific knockdown of the porcine SLA-1 gene and an sgRNA for specifically targeting the SLA-1 gene.
  • the present invention provides an sgRNA for specifically targeting an SLA-1 gene in a CRISPR-Cas9 specific knockout porcine SLA-1 gene, the sgRNA having the following characteristics:
  • the target sequence of the sgRNA on the SLA-1 gene conforms to the sequence arrangement rule of 5'-N(20)NGG-3', wherein N(20) represents 20 consecutive bases, wherein each N represents A Or T or C or G, a rule-compliant target sequence may be located in the sense strand or the antisense strand;
  • the target sequence of the sgRNA on the SLA-1 gene is located in the four exon coding regions at the N-terminus of the SLA-1 gene, or the major portion of the sequence is located in the four exons of the N-terminus of the SLA-1 gene, and the rest Partially crossing the boundary with adjacent introns, located adjacent to the intron;
  • the target sequence of the sgRNA on the SLA-1 gene is unique.
  • the above target sequence is the sequence shown by any one of SEQ ID NOS: 1 to 162 in the Sequence Listing.
  • the above target sequence is the sequence shown by SEQ ID NO: 1 or 2 in the Sequence Listing.
  • the present invention provides a method for CRISPR-Cas9 specific knockout of a porcine SLA-1 gene, the method comprising the steps of:
  • the 5'-end of the target sequence of the sgRNA described in the first aspect is added to the sequence for forming the cohesive end, and the forward oligonucleotide sequence is synthesized; the target sequence of the sgRNA described in the first aspect
  • the opposite ends of the corresponding complementary sequences are added with appropriate sequences for forming sticky ends, and the reverse oligonucleotide sequence is synthesized; the synthesized forward oligonucleotide sequence is annealed to the reverse oligonucleotide sequence, To form a double-stranded oligonucleotide having a sticky end;
  • the above expression vector is a vector of the sequence shown by SEQ ID NO: 163 in the Sequence Listing.
  • the above method comprises the following steps:
  • a forward oligonucleotide sequence is synthesized by adding a CACCG sequence to the 5'-end of the target sequence of the sgRNA of the first aspect; the target sequence corresponding to the target sequence of the sgRNA of the first aspect is The 5'-end plus the AAAC sequence and the 3'-end plus C, the reverse oligonucleotide sequence is synthesized; the synthesized forward oligonucleotide sequence is annealed and renatured with the reverse oligonucleotide sequence, Forming a double-stranded oligonucleotide having a cohesive terminus;
  • the above double-stranded oligonucleotide is ligated into a linearized vector obtained by digesting the expression vector lentiCRISPR v2 of the sequence shown by SEQ ID NO: 163 in the sequence listing by BsmB I restriction endonuclease to obtain a sgRNA.
  • the recombinant expression vector lentiCRISPR v2-SLA-1 of the oligonucleotide was transformed into competent bacteria, and the correct positive clone was screened, and the positive clone was shaken and the plasmid was extracted;
  • the above packaging plasmid is plasmid pLP1, plasmid pLP2 and plasmid pLP/VSVG; and the above packaging cell line is HEK293T cells.
  • the above target cells are porcine PIEC cells.
  • the gene fragment comprising the target sequence is amplified by using the genomic DNA as a template, and the knockdown of the SLA-1 gene is determined by denaturation, renaturation and enzymatic cleavage, specifically:
  • the invention provides a CRISPR-Cas9 specific knockout pig SLA-1
  • the target sequence is preferably the target sequence shown by SEQ ID NO: 1 or 2 in the Sequence Listing.
  • the present invention provides a method for specifically knocking out a porcine SLA-1 gene by using the sgRNA according to the first aspect or the recombinant expression vector lentiCRISPR v2-SLA-1 of the third aspect in CRISPR-Cas9 Use in.
  • the present invention specifically knocks out the porcine SLA-1 gene for CRISPR-Cas9, successfully finds sgRNA that specifically targets the SLA-1 gene, and uses the sgRNA of the present invention for the CRISPR-Cas9 specific knockout porcine SLA-1 gene
  • the pig SLA-1 gene can be knocked out quickly, accurately, efficiently and specifically, and the technical problem of constructing the SLA-1 gene knockout pig with long cycle and high cost is effectively solved.
  • Figure 1 is a plasmid map of the vector plasmid lentiCRISPR v2 used in the examples of the present invention
  • Figure 2 is a plasmid map of the packaging plasmid pLP1 used in the embodiment of the present invention
  • Figure 3 is a plasmid map of the packaging plasmid pLP2 used in the examples of the present invention.
  • Figure 4 is a plasmid map of the packaging plasmid pLP/VSVG used in the examples of the present invention.
  • FIG. 5 is a diagram showing the results of electrophoresis detection of the gene knockout effect of the target sequence of the enzyme digestion in the embodiment of the present invention, wherein M represents DNA Marker, and Ctrl represents a targeted cutting effect of a control sequence which cannot effectively target the SLA-1 gene, 1 And 2 indicate the targeted cleavage effect of the No. 1 and No. 2 target sequences in Table 1 on the SLA-1 gene, respectively, and the arrow indicates a small fragment obtained by cutting with a Cruiser enzyme.
  • test materials and reagents involved in the following examples lentiCRISPR v2 plasmid was purchased from Addgene, packaging plasmids pLP1, pLP2 and pLP/VSVG were purchased from Invitrogen, and packaging cell line HEK293T cells were purchased from the American Model Culture Collection (ATCC).
  • PIEC cells were purchased from the Chinese Academy of Sciences cell bank, DMEM medium, Opti-MEM medium and fetal bovine serum FBS were purchased from Gibco, and Lipofectamine 2000 was purchased from Invitrogen.
  • a suitable 20 bp oligonucleotide sequence was searched for as a target sequence in the exon region of the SLA-1 gene.
  • the above target sequence and complementary sequence are separately added to the linker to form a forward oligonucleotide sequence and a reverse oligonucleotide sequence.
  • the above double-stranded DNA fragment was constructed into a vector of interest (e.g., lenti CRISPR V2, the plasmid map of which is shown in Figure 1) to form a lentiviral CRISPR vector such as lenti CRISPR SP2-SLA-1.
  • a vector of interest e.g., lenti CRISPR V2, the plasmid map of which is shown in Figure 1
  • lentiviral CRISPR vector such as lenti CRISPR SP2-SLA-1.
  • a CRISPR pseudotyped lentivirus expressing SLA-1sgRNA was produced using a packaging plasmid, a packaging cell line, and a lentiviral CRISPR vector.
  • a pseudotype lentivirus such as lenti CRISPR SP2-SLA-1 is added to the cell culture medium of interest for infection and further culture.
  • the target cells are collected, and the gene fragment containing the target sequence is amplified by using genomic DNA as a template, and the knockdown of the SLA-1 gene is determined by denaturation, renaturation and restriction enzyme digestion.
  • a number of single cell derived cell lines are isolated by dilution and monoclonal culture.
  • the target sequence determines the targeting specificity of the sgRNA and the efficiency of the Cas9-cleaving gene of interest. Therefore, efficient and specific target sequence selection and design are prerequisites for the construction of sgRNA expression vectors.
  • N(20) represents 20 contiguous bases, wherein each N represents A Or T or C or G, a rule-compliant target sequence may be located in the sense strand or the antisense strand;
  • the forward oligonucleotide sequence and the reverse oligonucleotide sequence can be complementary to form a double-stranded DNA fragment having a sticky end:
  • Example 2 sgRNA expression vector for constructing SLA-1 gene
  • Oligonucleotide sequences can be specifically synthesized by commercial companies (such as Invitrogen) according to the sequences provided. This example and the following examples investigate the knockdown effect of the target sequence shown by the sequences No. 1 and No. 2 listed in Table 1 on the SLA-1 gene.
  • the forward oligonucleotide sequence and the reverse oligonucleotide sequence corresponding to the No. 1 target sequence are as follows:
  • AAACGGCGGGTCCCCACTCCCTGAC (SEQ ID NO: 165).
  • the forward oligonucleotide sequence and the reverse oligonucleotide sequence corresponding to the target sequence No. 2 are as follows:
  • AAACAGGCGGGTCCCCACTCCCTGC (SEQ ID NO: 167).
  • the corresponding forward and reverse oligonucleotide sequences are annealed and renatured to form a double-stranded DNA fragment having sticky ends.
  • the reaction system (20 ⁇ L) is as follows:
  • the above reaction system was placed in a PCR machine, and the reaction was carried out in accordance with the following procedure.
  • the target vector lentiCRISPR v2 plasmid (the sequence of which is shown in SEQ ID NO: 163 in the Sequence Listing) was digested with BsmB I restriction endonuclease.
  • the digestion reaction system was placed at 37 ° C for 4 h.
  • the digestion mixture was separated by agarose gel electrophoresis, and the vector fragment (about 12 kb) was selected for cleavage and recovered by a DNA gel recovery column.
  • the double-stranded DNA fragment obtained by renaturation is linked with the recovered vector fragment, and is prepared according to the following reaction system:
  • Double-stranded DNA fragment 200ng
  • the ligation mixture was reacted at 25 ° C for 2 h.
  • the ligation mixture was transformed into E. coli DH5 ⁇ strain: 100 ⁇ L of E. coli DH5 ⁇ competent cells were added to the ligation mixture, and incubated on ice for 30 min; the mixture was placed in a 42 ° C water bath, heat shocked for 90 s, and then placed on ice to cool; 100 ⁇ L of LB medium was added and incubated at 37 ° C for 20 min on a shaker; the mixture was coated with Amp LB plates and incubated at 37 ° C for 14 h.
  • Example 3 obtaining a pseudotype lentivirus expressing SLA-1sgRNA
  • Amplify and extract the packaging plasmids pLP1, pLP2 and pLP/VSVG (purchased from Invitrogen, the maps are shown in Figure 2, Figure 3 and Figure 4, respectively); amplify and extract the vector plasmid lentiCRISPR v2-SLA-1; culture Packaging cell line HEK293T cells (purchased from ATCC); DMEM medium, Opti-MEM medium and fetal bovine serum FBS (purchased from Gibco); Lipofectamine 2000 (purchased from Invitrogen); HEK293T cells cultured at 37 ° C with 5% CO 2 In the culture environment, the medium was DMEM medium containing 10% FBS.
  • Formulation of Mixture 1 comprising:
  • Opti-MEM 500 ⁇ L.
  • Formulation of Mixture 2 comprising:
  • Opti-MEM 500 ⁇ L.
  • mixture 1 and mixture 2 were mixed to form a transfection mixture and allowed to stand for 20 min.
  • the HEK293T medium was changed to serum-free DMEM medium, and the transfection mixture was added. After incubation at 37 ° C for 8 hours, the cells were replaced with 20% FBS DMEM medium, and the culture was continued.
  • Example 4 infecting the target cell and detecting the knockout effect of the target sequence
  • PIEC porcine hip arterial endothelial cells
  • DMEM medium and fetal bovine serum FBS purchased from Gibco
  • lentiCRISPR v2-SLA- of different target sequences sequence 1 and sequence 2 1 pseudotype lentivirus
  • PIEC cells were cultured in a 37 ° C culture environment containing 5% CO 2 in DMEM medium containing 10% FBS.
  • Day 1 Passage cells of interest to 6-well plates at approximately 20% fusion density. Each virus requires a 6-well and requires an efficiency of 6 wells.
  • Uninfected efficacious control cells should all be apoptotic (>95%) under the action of puromycin.
  • the infection efficiency of cells can be determined, and the infection efficiency of 90% or more can be achieved (apoptosis rate ⁇ 10%). If necessary, the virus supernatant can be concentrated or diluted to be infected to achieve appropriate infection efficiency.
  • GCGCCACTGCGGTTCCCGGTTAT (SEQ ID NO: 168);
  • GAGGGTGAGACACGACCCTC (SEQ ID NO: 169).
  • the amplified fragment of interest consists of a sgRNA target sequence with a size of 450 bp.
  • the position of the target sequence to both ends of the fragment is not less than 100 bp.
  • the amplification reaction system (20 ⁇ L) was as follows:
  • the above reaction system was prepared, placed in a PCR machine, and reacted according to the following procedure.
  • the second to fourth steps are repeated for 35 cycles.
  • the purified DNA fragments are separately denatured and renatured to form hybrid DNA molecules (including mutant samples and wild-type samples).
  • the reaction system is as follows:
  • Genomic PCR fragment 200ng
  • reaction buffer 2 ⁇ L
  • the reaction system has a total of 9 ⁇ L
  • the above reaction system was prepared, placed in a PCR machine, and reacted according to the following procedure.
  • the digested DNA fragment was subjected to electrophoresis on a 2% agarose gel, 100 V, 25 min.
  • the cutting condition of the target fragment is determined, and the gene knocking effect of the target sequence is judged.
  • mutant DNA The cleavage recognition of mutant DNA is based on the principle that infected cells express sgRNA and Cas9. Genomic DNA, if sgRNA-mediated Cas9 protein-targeted cleavage, is introduced to introduce mutations near the cleavage site (wild-type becomes mutant). Since the wild type and the mutant sequence do not match at this position, the hybrid molecule in which the wild type DNA amplified by the template and the mutant DNA undergoes renaturation will generate a local loop structure. The latter can be recognized and cleaved by the Cruiser enzyme, resulting in the hybrid DNA molecule being cleaved into small fragments.
  • the partially infected cell population was passaged, and 100 single cells were transferred to a 10 cm dish for culture.
  • the annealed hybrid DNA was cleaved with a Cruiser enzyme and incubated at 45 ° C for 20 min.
  • 18 monoclonal clones were able to detect small fragments, indicating that knockout occurred, and the knockout efficiency was over 90%, indicating that the target sequence shown in Sequence 1 has a high targeted knockout SLA- The role of 1 gene.
  • the lentiCRISPR v2-SLA-1 pseudotyped lentivirus infection target cell based on the target sequence shown in SEQ ID NO: 2, 20 randomly selected from 100 single cells were detected by Cruiser enzyme electrophoresis, and 17 of them were monoclonal. It can detect small fragments, indicating that gene knockout occurs, and the knockout efficiency can reach more than 85%, indicating that the target sequence shown in sequence 2 has a high target for knocking out the SLA-1 gene.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Saccharide Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种运用CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA。该sgRNA在SLA-1基因上的靶序列符合5'-N(20)NGG-3'的序列排列规则,其中N(20)表示20个连续的碱基,其中每个N表示A或T或C或G;在SLA-1基因上的靶序列位于SLA-1基因的N端的4个外显子编码区或与相邻内含子的交界处;在SLA-1基因上的靶序列是唯一的。

Description

CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA 技术领域
本发明涉及基因工程技术领域,尤其涉及基因敲除技术领域,具体涉及CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA。
背景技术
器官移植是治疗器官衰竭疾病最有效的治疗手段。迄今为止,全球已有近百万的患者通过器官移植而延续生命。随着人口老龄化及医疗技术的进步,需要进行器官移植手术的病人越来越多,但供体器官的短缺严重制约了器官移植手术的开展。以肾脏移植为例,我国每年需要进行肾移植的患者多达30万,而可用于移植的捐献肾脏不超过1万例,大部分患者死于肾衰竭。依靠死后器官捐献已不能满足器官移植的需要。通过基因工程改造其他物种,以提供合适于人体移植的器官,成为解决人类供体器官短缺问题的主要途径。
目前,根据生物安全性、生理功能指标、经济性及稀有物种保护等多方面评价,猪成为了最为理想的异种器官来源。但猪和人之间存在巨大的差异,直接将猪的器官移植到人会产生强烈的免疫排斥反应。因此,通过基因工程对猪进行改造,以产生适合于人体移植的器官,成为异种移植的终极目标。
灵长类T细胞能识别猪源的抗原从而引起抗异种的免疫排斥反应。灵长类T细胞受体与猪细胞表面的白细胞抗原/多肽复合体(SLA/peptide complex)相互识别,能够直接激活灵长类动物T细胞。在异种移植实验中,激活灵长类T细胞的主要有两类供体来源的细胞类型:一种是迁移性抗原递呈细胞如树突状细胞;另一种是高表达SLA的血管内皮细胞。表达于猪供体细胞表面的MHC ClassⅠ分子能识别并激活CD8T+细胞。MHC-I类分子是由非共价键连接的两条肽链组成的糖蛋白;其中一条称为重链或α链,另一条为轻链或称为β2微球蛋白(β2m)。α链的分子量为44kd,结构呈多态性。α链的膜外区肽段折叠形成三个功能区,分别称为α1、α2、和α3区;每个功能区约含90个氨基酸残基,其结构与免疫球蛋白(Ig)相似;α1和α2区的氨基酸顺序变化较大,决定着I类分子的多态性。β2m不是MHC基因编码,而是第15号染色体上单个基因编码的产物,分子量12kd。其结构与ig恒定区(ch3)有较大同源性,属于Ig 超族成员,没有同种异型决定簇,但具有种属特异性。I类分子的重要生理功能是对CD8+T细胞的抗原识别功能起限制性作用,也就是参与向CD8+T细胞递呈抗原的过程。CD8+T细胞只能识别与相同I类分子结合的抗原(多为内源性的细胞抗原,如病毒感染的细胞和肿瘤细胞等),这种现象称为MHC限制性。除了CD8+T细胞以外,NK细胞识别靶细胞发挥杀伤功能时也需要MHC-I类分子的参与。所以如果敲除MHC-I类分子将能很好的控制NK细胞和CD8+T细胞的细胞杀伤作用,将对异种移植作出重要贡献。实现此策略最好的途径就是构建MHC-I类分子缺失的基因修饰猪。
目前,常见的基因敲除技术包括同源重组(Homologus Recombination,HR)技术、类转录激活效应子核酸酶(Transcription Activator-Like Effector Nuclease,TALEN)技术、锌指核酸酶(Zinc-Finger Nuclease,ZFN)技术以及最近发展的规律成簇间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeat,CRISPR)技术。HR技术由于重组效率低下(效率大约只有10-6),对突变体的筛选工作非常耗时和低效,已逐渐被取代。TALEN技术和ZFN技术的切割效率一般能达到20%,但都需要构建可以识别特定序列的蛋白质模块,前期工作繁琐费时。ZFN技术的模块设计较为复杂且有较高的脱靶率,其应用有限。
CRISPR是一种源于原核生物的后天免疫***,该***执行干扰功能的复合物由蛋白质Cas和CRISPR-RNA(crRNA)组成。目前该***已发现有三种类型,其中第二类Cas9***组成简单,已被积极应用于基因工程领域。Cas9靶向切割DNA是通过两种小RNA——crRNA(CRISPR RNA)和tracrRNA(trans-activating crRNA)与靶序列互补识别的原理实现的。现在已经将两种小RNA融合成一条RNA链,简称sgRNA(single guide RNA),能够识别特定的基因序列,引导Cas9蛋白进行切割。在真核生物中,DNA被切断后发生非同源重组末端连接,造成移码突变,最终导致基因功能性敲除。
相比于上述3种技术,CRISPR技术操作简单、筛选效率高,能够实现精确的靶向切割。因此,通过CRISPR技术敲除SLA-1基因能够极大地提高SLA-1缺失细胞及基因工程猪的筛选效率。但是该路径的关键技术难题是设计并制备精确靶向的sgRNA,因为基因的靶向精确度高度依赖于sgRNA靶序列,能否成功设计出精确靶向的sgRNA成为敲除目的基因的关键技术问题,本发明意在解决该技术问题从而为敲除SLA-1基因提供坚实的基础。
发明内容
本发明的目的在于提供CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA。
根据本发明的第一方面,本发明提供在CRISPR-Cas9特异性敲除猪SLA-1基因中用于特异性靶向SLA-1基因的sgRNA,该sgRNA具有以下特点:
(1)该sgRNA在SLA-1基因上的靶序列符合5’-N(20)NGG-3’的序列排列规则,其中N(20)表示20个连续的碱基,其中每个N表示A或T或C或G,符合规则的靶序列可以位于正义链或反义链;
(2)该sgRNA在SLA-1基因上的靶序列位于SLA-1基因的N端的4个外显子编码区,或序列的主要部分位于SLA-1基因的N端的4个外显子,其余部分跨越与相邻内含子的交界,位于相邻内含子;
(3)该sgRNA在SLA-1基因上的靶序列是唯一的。
作为本发明的优选方案,上述靶序列为序列表中SEQ ID NO:1~162中任一条序列所示的序列。
作为本发明的优选方案,上述靶序列为序列表中SEQ ID NO:1或2所示的序列。
根据本发明的第二方面,本发明提供CRISPR-Cas9特异性敲除猪SLA-1基因的方法,该方法包括如下步骤:
(1)在第一方面所述的sgRNA的靶序列的5’-端加上用于形成粘性末端的序列,合成得到正向寡核苷酸序列;在第一方面所述的sgRNA的靶序列对应的互补序列的两端加上合适的用于形成粘性末端的序列,合成得到反向寡核苷酸序列;将合成的正向寡核苷酸序列与反向寡核苷酸序列退火、复性,形成具有粘性末端的双链寡聚核苷酸;
(2)将上述双链寡聚核苷酸连入线性化的携带Cas9基因的表达载体,得到携带含相应靶序列的sgRNA寡聚核苷酸和Cas9基因的表达载体,转化感受态细菌,筛选鉴定出正确的阳性克隆,并对阳性克隆摇菌、提取质粒;
(3)用上述携带有sgRNA寡聚核苷酸和Cas9基因的表达载体、包装质粒和包装细胞系包装出同时携带靶向SLA-1基因的sgRNA和Cas9的假型慢病毒;
(4)使用上述假型慢病毒感染目的细胞,并进一步培养;然后收集被感染的目的细胞,以其基因组DNA为模板扩增包含上述靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况。
作为本发明的优选方案,上述表达载体为序列表中SEQ ID NO:163所示序列的载体。
作为本发明的优选方案,上述方法包括如下步骤:
(1)在第一方面所述的sgRNA的靶序列的5’-端加上CACCG序列,合成得到正向寡核苷酸序列;在第一方面所述的sgRNA的靶序列对应的互补序列的5’-端加上AAAC序列、3’-端加上C,合成得到反向寡核苷酸序列;将合成的正向寡核苷酸序列与反向寡核苷酸序列退火、复性,形成具有粘性末端的双链寡聚核苷酸;
(2)将上述双链寡聚核苷酸连入如序列表中SEQ ID NO:163所示序列的表达载体lentiCRISPR v2经BsmB I限制性内切酶酶切得到的线性化载体,得到携带sgRNA寡聚核苷酸的重组表达载体lentiCRISPR v2-SLA-1,转化感受态细菌,筛选鉴定出正确的阳性克隆,并对阳性克隆摇菌、提取质粒;
(3)用上述表达载体lentiCRISPR v2-SLA-1、包装质粒和包装细胞系包装出同时携带靶向SLA-1基因的sgRNA和Cas9的假型慢病毒;
(4)使用上述CRISPR假型慢病毒感染目的细胞,并进一步培养;然后收集被感染的目的细胞,以其基因组DNA为模板扩增包含上述靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况。
作为本发明的优选方案,上述包装质粒为质粒pLP1、质粒pLP2和质粒pLP/VSVG;上述包装细胞系为HEK293T细胞。
作为本发明的优选方案,上述目的细胞为猪PIEC细胞。
作为本发明的优选方案,上述以其基因组DNA为模板扩增包含上述靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况,具体为:
(a)以感染病毒的目的细胞的基因组DNA为模板,用SLA-1基因的上下游引物扩增包含上述sgRNA的靶序列的SLA-1基因片段,同时用相同引物扩增未感染病毒的野生型细胞的基因组DNA;
(b)纯化上述扩增到的SLA-1基因片段,然后将来自感染病毒的目的细胞的SLA-1基因片段与来自野生型细胞的SLA-1基因片段等量混合,加热变性、复性,形成杂交DNA分子;
(c)用Cruiser酶切割复性后的杂交DNA分子;
(d)电泳检测酶切产物,检测靶序列介导的SLA-1基因敲除效果。
根据本发明的第三方面,本发明提供在CRISPR-Cas9特异性敲除猪SLA-1 基因的方法中用到的重组表达载体lentiCRISPR v2-SLA-1,该重组表达载体的骨架载体的序列如序列表中SEQ ID NO:163所示;所携带的靶序列如第一方面的sgRNA的靶序列,优选序列表中SEQ ID NO:1或2所示的靶序列。
根据本发明的第四方面,本发明提供如第一方面所述的sgRNA或第三方面所述的重组表达载体lentiCRISPR v2-SLA-1在CRISPR-Cas9特异性敲除猪SLA-1基因的方法中的用途。
本发明的针对CRISPR-Cas9特异性敲除猪SLA-1基因,成功地找到特异性靶向SLA-1基因的sgRNA,将本发明的sgRNA用于CRISPR-Cas9特异性敲除猪SLA-1基因的方法中,能够快速、精确、高效、特异性地敲除猪SLA-1基因,有效地解决构建SLA-1基因敲除猪周期长和成本高的技术问题。
附图说明
图1为本发明实施例中使用的载体质粒lentiCRISPR v2的质粒图谱;
图2为本发明实施例中使用的包装质粒pLP1的质粒图谱;
图3为本发明实施例中使用的包装质粒pLP2的质粒图谱;
图4为本发明实施例中使用的包装质粒pLP/VSVG的质粒图谱;
图5为本发明实施例中酶切验证靶序列的基因敲除效果的电泳检测结果图,其中M表示DNA Marker,Ctrl表示不能有效靶向SLA-1基因的对照序列的靶向切割效果,1和2分别表示表1中第1号和第2号靶序列对SLA-1基因的靶向切割效果,箭头处表示经Cruiser酶切割得到的小片段。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案做进一步说明。这些附图和具体实施例不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
以下实施例中涉及的试验材料和试剂:lentiCRISPR v2质粒购自Addgene公司,包装质粒pLP1、pLP2和pLP/VSVG购自Invitrogen公司,包装细胞系HEK293T细胞购自美国模式培养物集存库(ATCC),PIEC细胞购自中国科学院细胞库,DMEM培养基、Opti-MEM培养基和胎牛血清FBS购自Gibco公司,Lipofectamine 2000购自Invitrogen公司。
以下实施例中未作具体说明的分子生物学实验方法,均参照《分子克隆实验指南》(第三版)J.萨姆布鲁克一书中描述的具体方法进行,或者按照试剂盒和产品说明书进行。
本发明的概括性的技术方案包括以下五个部分:
一、Sus scrofa(猪)SLA-1基因sgRNA靶序列的选择和设计
1.SLA-1基因的sgRNA靶序列选择:
在SLA-1基因外显子区寻找合适的20bp寡核苷酸序列作为靶序列。
2.SLA-1基因的sgRNA靶序列设计:
将上述靶序列及互补序列分别添加接头,形成正向寡核苷酸序列和反向寡核苷酸序列。
二、构建SLA-1基因的CRISPR载体
1.合成上述正向寡核苷酸序列和反向寡核苷酸序列,复性形成具有粘性末端的双链DNA片段(即双链靶序列寡聚核苷酸)。
2.构建CRISPR-sgRNA表达载体:
将上述双链DNA片段构建至目标载体(如lentiCRISPR v2,其质粒图谱如图1所示),形成如lentiCRISPR v2-SLA-1的慢病毒CRISPR载体。
三、获得表达SLA-1sgRNA的假型慢病毒
利用包装质粒、包装细胞系与慢病毒CRISPR载体生产表达SLA-1sgRNA的CRISPR假型慢病毒。
四、感染目的细胞并检测SLA-1基因敲除效果
1.慢病毒感染目的细胞:
将如lentiCRISPR v2-SLA-1的假型慢病毒加入目的细胞培养基进行感染并进一步培养。
2.检测SLA-1基因敲除效果:
收集目的细胞,以基因组DNA为模板扩增包含靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况。
五、SLA-1基因敲除单克隆的挑选和鉴定
1.对于有确定敲除效果的目的细胞群,通过稀释和单克隆培养,分离出若干单细胞来源的细胞株。
2.鉴定单克隆的SLA-1敲除情况。
以下通过实施例详细说明本发明的技术方案及其有益效果。
实施例一、Sus scrofa(猪)SLA-1基因sgRNA靶序列的选择和设计
靶序列决定了sgRNA的靶向特异性和诱导Cas9切割目的基因的效率。因此,高效特异的靶序列选择和设计是构建sgRNA表达载体的前提。
1.SLA-1基因的sgRNA靶序列选择
针对SLA-1基因,在靶序列选择上应该遵循下列原则:
(1)在SLA-1基因外显子编码区寻找符合5’-N(20)NGG-3’规则的靶序列,其中N(20)表示20个连续的碱基,其中每个N表示A或T或C或G,符合规则的靶序列可以位于正义链或反义链;
(2)选择靠近N端的4个外显子编码区序列,这样的编码区序列的切割会造成SLA-1基因的功能敲除,残留截短的序列不会形成有功能的蛋白;
(3)如果存在多种剪切体,则在共有外显子编码区进行选择,针对SLA-1基因选择靠近N端的4个外显子编码区序列即可满足该条件;
(4)利用在线序列分析工具(http://crispr.mit.edu/)分析以上靶序列在猪基因组中的同源情况,舍弃存在显著同源序列的靶序列,根据评分进一步挑选,所挑选的靶序列在SLA-1基因上是唯一的。
基于以上原则,选择出表1所示的靶序列集合。
表1靶序列集合
Figure PCTCN2015081231-appb-000001
Figure PCTCN2015081231-appb-000002
Figure PCTCN2015081231-appb-000003
Figure PCTCN2015081231-appb-000004
Figure PCTCN2015081231-appb-000005
Figure PCTCN2015081231-appb-000006
Figure PCTCN2015081231-appb-000007
2.SLA-1基因的sgRNA靶序列设计:
(1)以lentiCRISPR v2质粒作为表达载体,根据lentiCRISPR v2质粒的特 点,在上述N(20)靶序列的5’-端添加CACCG序列,形成正向寡核苷酸序列:
5’-CACCGNNNNNNNNNNNNNNNNNNNN-3’;
(2)在上述N(20)靶序列的反向互补序列的两端添加序列,形成反向寡核苷酸序列:
5’-AAACNNNNNNNNNNNNNNNNNNNNC-3’;
正向寡核苷酸序列和反向寡核苷酸序列可以互补形成具有粘性末端的双链DNA片段:
5’-CACCGNNNNNNNNNNNNNNNNNNNN-3’
3’-CNNNNNNNNNNNNNNNNNNNNCAAA-5’。
实施例二、构建SLA-1基因的sgRNA表达载体
1.合成DNA***片段
(1)合成上述设计的正向和反向寡核苷酸序列
寡核苷酸序列可以由商业化的公司(如Invitrogen公司)根据提供的序列具体合成。本实施例及以下实施例研究了表1中所列的第1号和第2号序列所示的靶序列对SLA-1基因的敲除效果。
第1号靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列如下:
CACCG TCAGGGAGTGGGGACCCGCC(SEQ ID NO:164);
AAACGGCGGGTCCCCACTCCCTGAC(SEQ ID NO:165)。
第2号靶序列对应的正向寡核苷酸序列和反向寡核苷酸序列如下:
CACCG CAGGGAGTGGGGACCCGCCT(SEQ ID NO:166);
AAACAGGCGGGTCCCCACTCCCTGC(SEQ ID NO:167)。
将对应的正向和反向寡核苷酸序列退火、复性,形成具有粘性末端的双链DNA片段。
反应体系(20μL)如下所示:
正向寡核苷酸(10μM):1μL
反向寡核苷酸(10μM):1μL
10×PCR buffer:2μL
ddH2O:16μL
将上述反应体系放入PCR仪,并按以下程序进行反应。
反应程序:
95℃,5min;
80℃,5min;
70℃,5min;
60℃,5min;
50℃,5min;
自然降至室温。
2.构建sgRNA表达载体
(1)利用BsmB I限制性内切酶酶切目标载体lentiCRISPR v2质粒(其序列如序列表中SEQ ID NO:163所示)。
按照以下反应体系进行配制:
LentiCRISPR v2质粒:1μg
10×酶切buffer:2μL
BsmB I限制性内切酶:2μL
补充ddH2O至总体积20μL
将酶切反应体系置于37℃反应4h。
(2)电泳分离并纯化载体片段
酶切结束后,将酶切混合物通过琼脂糖凝胶电泳进行分离,选择载体片段(约12kb)进行切割,并通过DNA凝胶回收柱进行回收。
(3)将合成的双链DNA片段与载体主片段进行连接并转化大肠杆菌
将复性得到的双链DNA片段与回收得到的载体片段进行连接反应,按照以下反应体系进行配制:
LentiCRISPR v2载体片段:100ng
双链DNA片段:200ng
T4连接酶:1μL
T4连接反应buffer:1μL
补充ddH2O至总体积10μL
将连接混合物置于25℃反应2h。
反应结束后将连接混合物转化大肠杆菌DH5α菌株:向连接混合物中加入100μL大肠杆菌DH5α感受态细胞,冰上孵育30min;将混合物放入42℃水浴,热激90s后放入冰上冷却;向混合物加入100μL LB培养基,37℃摇床培养20min;将混合物涂Amp LB平板,37℃培养14h。
(4)鉴定正确的转化克隆
从Amp LB平板上挑选若干菌落进行扩大培养,提取质粒进行酶切鉴定。挑选可能正确的克隆进行测序,验证***序列是否正确。对于正确的lentiCRISPR v2-SLA-1载体克隆进行保种。
实施例三、获得表达SLA-1sgRNA的假型慢病毒
1.材料准备
扩增并抽提包装质粒pLP1、pLP2和pLP/VSVG(购自Invitrogen,其图谱分别如图2、图3和图4所示);扩增并抽提载体质粒lentiCRISPR v2-SLA-1;培养包装细胞系HEK293T细胞(购自ATCC);DMEM培养基、Opti-MEM培养基和胎牛血清FBS(购自Gibco);Lipofectamine2000(购自Invitrogen);HEK293T细胞培养于含5%CO2的37℃培养环境中,培养基为含10%FBS的DMEM培养基。
2.转染和病毒包装
第一天:将包装细胞系HEK293T传代至10cm dish,约30%融合度;
第二天:在HEK293T达到80%融合度时按照下列配方进行转染:
配制混合物1,包含:
lentiCRISPR v2-SLA-1:6μg
pLP1:6μg
pLP2:6μg
pLP/VSVG:3μg
Opti-MEM:500μL。
配制混合物2,包含:
Lipofectamine 2000:30μL
Opti-MEM:500μL。
静置5min后,将混合物1和混合物2混匀成转染混合物,静置20min。
将HEK293T培养基换为无血清DMEM培养基,加入转染混合物,37℃培养8h后换为20%FBS的DMEM培养基,继续培养。
3.病毒收集与保存
第三天:转染48h后收集含病毒的HEK293T培养基上清,用0.45μm滤头过滤后,分装,放置-80℃保存。
实施例四、感染目的细胞并检测靶序列的敲除效果
1.材料准备
培养目的细胞系猪髋动脉血管内皮细胞PIEC(购自中国科学院细胞库);DMEM培养基和胎牛血清FBS(购自Gibco);不同靶序列(序列1和序列2)的lentiCRISPR v2-SLA-1假型慢病毒;PIEC细胞培养于含5%CO2的37℃培养环境中,培养基为含10%FBS的DMEM培养基。
2.慢病毒感染目的细胞
第一天:将目的细胞传代至6孔板,约20%融合密度。每一种病毒需要一个6孔,同时需要效率对照一个6孔。
第二天:待目的细胞约40%融合密度时加入1mL lentiCRISPR v2-SLA-1假型慢病毒上清及1mL DMEM培养基。效率对照不需要添加慢病毒。
第三天:感染24h后去除含病毒培养基,换成正常培养基,加入嘌呤霉素至终浓度2μg/mL,没有感染病毒的效率对照样品也同时加入嘌呤霉素作为对照,培养48h。
3.细胞感染效率检测和培养
第五天:未感染的效率对照细胞在嘌呤霉素的作用下应该全部凋亡(>95%)。根据感染慢病毒细胞的凋亡情况判断细胞的感染效率,通常可以达到90%以上的感染效率(凋亡率<10%)。必要时可以将病毒上清进行浓缩或梯度稀释后进行感染以达到合适的感染效率。
经过嘌呤霉素筛选后,未感染的细胞发生凋亡。将目的细胞重新传代并换为普通培养基培养48h。
4.检测SLA-1基因敲除效果
(1)设计上下游引物以扩增SLA-1基因片段,其中上下游引物序列如下所示:
GCGCCACTGCGGTTCCCGGTTAT(SEQ ID NO:168);
GAGGGTGAGACACGACCCTC(SEQ ID NO:169)。
目的扩增片段包含sgRNA靶序列,大小为450bp。靶序列至片段两端的位置不少于100bp。
(2)收集部分目的细胞,使用promega基因组DNA试剂盒抽提基因组DNA。同时抽提野生型目的细胞的基因组DNA。
(3)以基因组DNA为模板扩增包含靶序列的SLA-1基因片段(包括感染的突变样品和野生型样品)。
扩增反应体系(20μL)如下:
上游引物(10μM):1μL
下游引物(10μM):1μL
2×PCR Mix:10μL
基因组DNA:100ng
以上述反应体系进行配制,放入PCR仪,并按下列程序进行反应。
反应程序:
95℃,3min
95℃,30s
58℃,20s
72℃,20s
72℃,3min;
其中第二步至第四步重复35个循环。
(4)电泳检测PCR产物并回收纯化
(5)将纯化后的DNA片段分别加热变性、复性,形成杂交DNA分子(包括突变样品和野生型样品)。
反应体系如下所示:
基因组PCR片段:200ng
5×反应buffer:2μL
反应体系共9μL
以上述反应体系进行配制,放入PCR仪,并按下列程序进行反应。
反应程序:
95℃,5min;
80℃,5min;
70℃,5min;
60℃,5min;
50℃,5min;
自然降至室温。
(6)用Cruiser酶切割复性后的杂交DNA(包括突变样品和野生型样品)
向经过变性、复性的反应混合物加入1μL Cruiser酶,45℃孵育20min。
(7)电泳检测酶切产物,检测靶序列介导的SLA-1基因敲除效果。
将经过酶切的DNA片段用2%的琼脂糖凝胶进行电泳分析,100V,25min。 确定目的片段的切割情况,判断靶序列的基因敲除效果。
对突变DNA的切割识别基于以下原理:经过感染的细胞会表达sgRNA和Cas9。基因组DNA如果被sgRNA介导的Cas9蛋白靶向切割,经过修复后会在切割位点附近引入突变(野生型变为突变型)。由于野生型和突变型序列在该位置不匹配,以此为模板扩增出的野生型DNA与突变型DNA经过变复性形成的杂交分子会就产生局部的环形(loop)结构。而后者可以被Cruiser酶识别并切断,导致杂交DNA分子被切割成小片段。
结果如图5所示,对照序列不能有效靶向SLA-1基因产生切割,因此未检测到小片段;序列1和序列2能够有效靶向SLA-1基因产生切割,因此检测到小片段的存在,表明序列1和序列2能够作为CRISPR-Cas9特异性敲除猪SLA-1基因的靶序列。
实施例五、SLA-1基因敲除单克隆的挑选和鉴定
单克隆的挑选(基于序列1和序列2的靶序列)
(1)将部分感染的目的细胞群进行传代,取100个单细胞转移至10cm dish培养。
(2)培养约10天后,有相当数量的单克隆生长到肉眼可见的水平。
(3)用移液器头刮取独立的克隆,将细胞转移至24孔板中培养,每个孔对应一个克隆。
(4)再经过约一周的培养后,有部分克隆长至足够的数量,准备做进一步的鉴定。
2.鉴定单克隆的SLA-1敲除情况
(1)收集待检的单克隆及野生型细胞,分别抽提基因组DNA。
(2)按照前述方法,分别扩增单克隆及野生型细胞的SLA-1基因片段,所扩增的基因片段包含sgRNA靶序列。
(3)将等量的单克隆PCR片段与野生型PCR片段混合,加热变性、复性,形成杂交DNA分子。
(4)用Cruiser酶切割退火后的杂交DNA,45℃孵育20min。
(5)电泳检测酶切产物,根据是否有切割片段确定单克隆是否发生有效突变。
结果显示,基于序列1所示的靶序列的lentiCRISPR v2-SLA-1假型慢病毒感染目的细胞,从100个单细胞中随机挑选的20个单克隆经Cruiser酶酶切电 泳检测,其中有18个单克隆能检测到切割小片段,表明基因敲除发生,基因敲除效率能够达到90%以上,说明序列1所示的靶序列具有很高的靶向敲除SLA-1基因的作用。基于序列2所示的靶序列的lentiCRISPR v2-SLA-1假型慢病毒感染目的细胞,从100个单细胞中随机挑选的20个单克隆经Cruiser酶酶切电泳检测,其中有17个单克隆能检测到切割小片段,表明基因敲除发生,基因敲除效率能够达到85%以上,说明序列2所示的靶序列具有很高的靶向敲除SLA-1基因的作用。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 在CRISPR-Cas9特异性敲除猪SLA-1基因中用于特异性靶向SLA-1基因的sgRNA,其特征在于:
    (1)所述sgRNA在SLA-1基因上的靶序列符合5’-N(20)NGG-3’的序列排列规则,其中N(20)表示20个连续的碱基,其中每个N表示A或T或C或G,符合规则的靶序列可以位于正义链或反义链;
    (2)所述sgRNA在SLA-1基因上的靶序列位于SLA-1基因的N端的4个外显子编码区,或序列的主要部分位于SLA-1基因的N端的4个外显子,其余部分跨越与相邻内含子的交界,位于相邻内含子;
    (3)所述sgRNA在SLA-1基因上的靶序列是唯一的。
  2. 根据权利要求1所述的用于特异性靶向SLA-1基因的sgRNA,其特征在于,所述靶序列为序列表中SEQ ID NO:1~162中任一条序列所示的序列。
  3. 根据权利要求1所述的用于特异性靶向SLA-1基因的sgRNA,其特征在于,所述靶序列为序列表中SEQ ID NO:1或2所示的序列。
  4. CRISPR-Cas9特异性敲除猪SLA-1基因的方法,其特征在于,所述方法包括如下步骤:
    (1)在权利要求1-3任一项所述的sgRNA的靶序列的5’-端加上用于形成粘性末端的序列,合成得到正向寡核苷酸序列;在权利要求1-3任一项所述的sgRNA的靶序列对应的互补序列的两端加上合适的用于形成粘性末端的序列,合成得到反向寡核苷酸序列;将合成的所述正向寡核苷酸序列与反向寡核苷酸序列退火、复性,形成具有粘性末端的双链寡聚核苷酸;
    (2)将所述双链寡聚核苷酸连入线性化的携带Cas9基因的表达载体,得到携带含相应靶序列的sgRNA寡聚核苷酸和Cas9基因的表达载体,转化感受态细菌,筛选鉴定出正确的阳性克隆,并对所述阳性克隆摇菌、提取质粒;
    (3)用所述携带有sgRNA寡聚核苷酸和Cas9基因的表达载体、包装质粒和包装细胞系包装出同时携带靶向SLA-1基因的sgRNA和Cas9的假型慢病毒;
    (4)使用所述假型慢病毒感染目的细胞,并进一步培养;然后收集被感染的目的细胞,以其基因组DNA为模板扩增包含所述靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况。
  5. 根据权利要求4所述的CRISPR-Cas9特异性敲除猪SLA-1基因的方法,其特征在于,所述表达载体为序列表中SEQ ID NO:163所示序列的载体。
  6. 根据权利要求4或5所述的CRISPR-Cas9特异性敲除猪SLA-1基因的方 法,其特征在于,所述方法包括如下步骤:
    (1)在权利要求1-3任一项所述的sgRNA的靶序列的5’-端加上CACCG序列,合成得到正向寡核苷酸序列;在权利要求1-3任一项所述的sgRNA的靶序列对应的互补序列的5’-端加上AAAC序列、3’-端加上C,合成得到反向寡核苷酸序列;将合成的所述正向寡核苷酸序列与反向寡核苷酸序列退火、复性,形成具有粘性末端的双链寡聚核苷酸;
    (2)将所述双链寡聚核苷酸连入如序列表中SEQ ID NO:163所示序列的表达载体lentiCRISPR v2经BsmB I限制性内切酶酶切得到的线性化载体,得到携带sgRNA寡聚核苷酸的重组表达载体lentiCRISPR v2-SLA-1,转化感受态细菌,筛选鉴定出正确的阳性克隆,并对所述阳性克隆摇菌、提取质粒;
    (3)用所述表达载体lentiCRISPR v2-SLA-1、包装质粒和包装细胞系包装出同时携带靶向SLA-1基因的sgRNA和Cas9的假型慢病毒;
    (4)使用所述假型慢病毒感染目的细胞,并进一步培养;然后收集被感染的目的细胞,以其基因组DNA为模板扩增包含所述靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况。
  7. 根据权利要求6所述的CRISPR-Cas9特异性敲除猪SLA-1基因的方法,其特征在于,所述包装质粒为质粒pLP1、质粒pLP2和质粒pLP/VSVG;所述包装细胞系为HEK293T细胞。
  8. 根据权利要求6所述的CRISPR-Cas9特异性敲除猪SLA-1基因的方法,其特征在于,所述目的细胞为猪PIEC细胞;
    所述以其基因组DNA为模板扩增包含所述靶序列的基因片段,经过变性、复性及酶切,确定SLA-1基因的敲除情况,具体为:
    (a)以感染病毒的目的细胞的基因组DNA为模板,用SLA-1基因的上下游引物扩增包含所述sgRNA的靶序列的SLA-1基因片段,同时用相同引物扩增未感染病毒的野生型细胞的基因组DNA;
    (b)纯化上述扩增到的SLA-1基因片段,然后将来自感染病毒的目的细胞的SLA-1基因片段与来自野生型细胞的SLA-1基因片段等量混合、加热变性、复性,形成杂交DNA分子;
    (c)用Cruiser酶切割复性后的杂交DNA分子;
    (d)电泳检测酶切产物,检测靶序列介导的SLA-1基因敲除效果。
  9. 在CRISPR-Cas9特异性敲除猪SLA-1基因的方法中用到的重组表达载体 lentiCRISPR v2-SLA-1,其特征在于,所述重组表达载体的骨架载体的序列如序列表中SEQ ID NO:163所示;所携带的靶序列如权利要求1-3任一项所述的sgRNA的靶序列,优选序列表中SEQ ID NO:1或2所示的靶序列。
  10. 如权利要求1-3任一项所述的sgRNA或权利要求9所述的重组表达载体lentiCRISPR v2-SLA-1在CRISPR-Cas9特异性敲除猪SLA-1基因的方法中的用途。
PCT/CN2015/081231 2015-06-11 2015-06-11 CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA WO2016197359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580000476.8A CN105593367A (zh) 2015-06-11 2015-06-11 CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA
PCT/CN2015/081231 WO2016197359A1 (zh) 2015-06-11 2015-06-11 CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/081231 WO2016197359A1 (zh) 2015-06-11 2015-06-11 CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA

Publications (1)

Publication Number Publication Date
WO2016197359A1 true WO2016197359A1 (zh) 2016-12-15

Family

ID=55931773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081231 WO2016197359A1 (zh) 2015-06-11 2015-06-11 CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA

Country Status (2)

Country Link
CN (1) CN105593367A (zh)
WO (1) WO2016197359A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105925579B (zh) * 2016-06-03 2018-06-26 中国农业科学院北京畜牧兽医研究所 一对特异性识别猪IGF2基因内含子的sgRNA及其编码DNA与应用
CN105950625B (zh) * 2016-06-03 2018-07-24 中国农业科学院北京畜牧兽医研究所 一对特异性识别猪MSTN基因启动子的sgRNA及其编码DNA与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263754A (zh) * 2014-08-29 2015-01-07 中国科学院广州生物医药与健康研究院 白化病模型猪的重构卵及其构建方法和模型猪的构建方法
WO2015048577A2 (en) * 2013-09-27 2015-04-02 Editas Medicine, Inc. Crispr-related methods and compositions
CN104651399A (zh) * 2014-12-31 2015-05-27 广西大学 一种利用CRISPR/Cas***在猪胚胎细胞中实现基因敲除的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014324654A1 (en) * 2013-09-27 2016-04-21 Mvpindex Inc. System and apparatus for assessing reach, engagement, conversation or other social metrics based on domain tailored evaluation of social media exposure
CN104498493B (zh) * 2014-12-30 2017-12-26 武汉大学 CRISPR/Cas9特异性敲除乙型肝炎病毒的方法以及用于特异性靶向HBV DNA的gRNA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015048577A2 (en) * 2013-09-27 2015-04-02 Editas Medicine, Inc. Crispr-related methods and compositions
CN104263754A (zh) * 2014-08-29 2015-01-07 中国科学院广州生物医药与健康研究院 白化病模型猪的重构卵及其构建方法和模型猪的构建方法
CN104651399A (zh) * 2014-12-31 2015-05-27 广西大学 一种利用CRISPR/Cas***在猪胚胎细胞中实现基因敲除的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SANJANA, N.E.;: "Improved Vectors and Genome-Wide Libraries for CRISPR Screening", NATURE METHODS., vol. 11, no. 8, 31 August 2014 (2014-08-31), pages 783 - 784, XP055294718 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
CN105593367A (zh) 2016-05-18
CN105593367A8 (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2016197359A1 (zh) CRISPR-Cas9特异性敲除猪SLA-1基因的方法及用于特异性靶向SLA-1基因的sgRNA
WO2016197357A1 (zh) CRISPR-Cas9特异性敲除猪SLA-3基因的方法及用于特异性靶向SLA-3基因的sgRNA
WO2016197356A1 (zh) CRISPR-Cas9特异性敲除猪SLA-2基因的方法及用于特异性靶向SLA-2基因的sgRNA
WO2016197361A1 (zh) CRISPR-Cas9特异性敲除猪GGTA1基因的方法及用于特异性靶向GGTA1基因的sgRNA
WO2016197362A1 (zh) CRISPR-Cas9特异性敲除猪vWF基因的方法及用于特异性靶向vWF基因的sgRNA
WO2016187904A1 (zh) CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
WO2016197358A1 (zh) CRISPR-Cas9特异性敲除猪FGL2基因的方法及用于特异性靶向FGL2基因的sgRNA
WO2016197355A1 (zh) CRISPR-Cas9特异性敲除猪SALL1基因的方法及用于特异性靶向SALL1基因的sgRNA
WO2016197354A1 (zh) CRISPR-Cas9特异性敲除猪PDX1基因的方法及用于特异性靶向PDX1基因的sgRNA
WO2016197360A1 (zh) CRISPR-Cas9特异性敲除猪GFRA1基因的方法及用于特异性靶向GFRA1基因的sgRNA
CN105518135B (zh) CRISPR-Cas9特异性敲除猪CMAH基因的方法及用于特异性靶向CMAH基因的sgRNA
KR102553518B1 (ko) Hiv 감염의 rna-가이드된 치료를 위한 방법 및 조성물
Wang et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection
US10988777B2 (en) Method for inducing CCR5Δ32 deletion by using CRISPR-Cas9 genome editing technique
US20170327795A1 (en) Immune-compatible cells created by nuclease-mediated editing of genes encoding HLA
US20220220188A1 (en) Compositions and methods of chimeric alloantigen receptor t cells
CN104480144A (zh) 用于艾滋病基因治疗的CRISPR/Cas9重组慢病毒载体及其慢病毒
EP4388105A1 (en) Persistent allogeneic modified immune cells and methods of use thereof
EP4146813A2 (en) Selection by essential-gene knock-in
JP2023547887A (ja) セーフハーバー遺伝子座
EP4359541A2 (en) Engineered cells for therapy
WO2021222451A2 (en) Tagged gene editing technology for clinical cell sorting and enrichment
KR20240011184A (ko) Ciita 표적화 아연 핑거 뉴클레아제
WO2023220206A2 (en) Genome editing of b cells
Nguyen Targeted modification of major histocompatibility complex class 1 molecules via CRISPR-CAS9

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15894629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15894629

Country of ref document: EP

Kind code of ref document: A1