WO2016194967A1 - Metal layer formation method - Google Patents

Metal layer formation method Download PDF

Info

Publication number
WO2016194967A1
WO2016194967A1 PCT/JP2016/066245 JP2016066245W WO2016194967A1 WO 2016194967 A1 WO2016194967 A1 WO 2016194967A1 JP 2016066245 W JP2016066245 W JP 2016066245W WO 2016194967 A1 WO2016194967 A1 WO 2016194967A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
plating
ceramic substrate
metal layer
region
Prior art date
Application number
PCT/JP2016/066245
Other languages
French (fr)
Japanese (ja)
Inventor
国司 多通夫
吉田 育史
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016194967A1 publication Critical patent/WO2016194967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a method for forming a metal layer, and more particularly to a method for forming a metal layer on a ceramic.
  • Ceramic materials and metal materials are widely used as constituent materials for electronic components, and metal materials are used particularly for electrodes, terminals, circuit wiring, and the like.
  • a metal member such as an electrode, a terminal, or a circuit wiring is generally formed by applying a metal paste, which is a mixture of a metal material and a small amount of glass material, onto a ceramic body and firing it (patent) Reference 1). At this time, the adhesion between the electrodes, terminals, circuit wiring, etc. and the ceramic body is secured by the anchor effect due to the irregularities on the surface of the ceramic body.
  • an ion exchange reaction is known as a method for introducing metal (metal nanocolloid particles) into the surface layer of glass (hereinafter also referred to as “stain method”).
  • stain method a method for introducing metal (metal nanocolloid particles) into the surface layer of glass
  • the glass surface is coated with a stain solution containing an inorganic salt of silver or copper, and then heat-treated, whereby the Ag ions or Cu ions in the stain solution are exchanged with cations in the glass (ion exchange). Reaction). Thereafter, the metal ions introduced to the glass surface are reduced and changed into the form of metal particles.
  • This ion exchange reaction is said to be applicable to a glass substrate in which ion movement occurs relatively easily, and use in a ceramic substrate in which ion movement is difficult to occur is not known.
  • An object of the present invention is to provide a method for forming a metal member (metal layer) on a ceramic substrate with high adhesion.
  • the present inventors can perform ion exchange in the same manner as in a glass substrate, the metal particles on the ceramic substrate with high adhesion can be obtained by utilizing metal particles introduced by ion exchange. It was thought that a layer could be formed.
  • the present inventors applied a stain solution containing a metal inorganic salt and heat-treated even with a ceramic substrate, so that an ion exchange reaction similar to that of a glass material occurred. It has been found that fine particles can be formed on the surface of a ceramic substrate. Further, it has been found that a metal layer can be formed on a ceramic substrate by causing a plating reaction through the metal particles.
  • a method for forming a metal region on a ceramic substrate by an ion exchange reaction wherein the ion exchange reaction is performed by using a stain solution containing an inorganic metal salt on the ceramic substrate.
  • a method is provided that includes applying and then heating.
  • a method of forming a metal layer on a ceramic substrate By the above method, a metal region is formed on the ceramic substrate, Then, a method is provided that includes forming a metal layer on the metal region by plating.
  • an electronic component manufacturing method including forming a metal layer by the metal layer forming method.
  • a metal layer having sufficient adhesion can be formed without forming irregularities on the surface of the ceramic substrate. Further, according to the method of the present invention, it is not necessary to form irregularities on the surface of the ceramic substrate, so that the irregularity forming process (for example, etching process) can be omitted, and the risk of quality deterioration due to this process is eliminated. can do. Such an effect becomes more prominent in a small component, a thin component, or a component requiring high reliability, which is difficult to perform the unevenness forming process.
  • the irregularity forming process for example, etching process
  • FIG. 1 is a perspective view schematically showing an electronic component 1 manufactured by the manufacturing method of the present invention in one embodiment.
  • FIG. 2 is a perspective view schematically showing a state in which the stain liquid 6 is applied on the element body 2 in the manufacturing method of the present invention in one embodiment.
  • FIG. 3A shows the arrangement of dot-shaped metal areas when there are four adjacent metal areas
  • FIG. 3B shows the arrangement of dot-shaped metal areas when there are six adjacent metal areas. Show.
  • the metal region may be a metal atom derived from the metal salt of the stain liquid introduced into the ceramic or an aggregate of metal atoms.
  • the metal atom at this time may be in a cation state.
  • a stain solution and a ceramic substrate are prepared.
  • the stain liquid means a melt of a metal salt or a liquid or gel-like mixture containing a metal salt, and may include a solvent, a resin, a viscosity adjuster, a pH adjuster and the like as other components.
  • Metal ions derived from the metal salt in the stain liquid are ion-exchanged with cations in the ceramic substrate.
  • the solvent may be, for example, water or an organic solvent such as alcohol.
  • the inorganic salt containing Cu ion, Zn ion, Pd ion, or Ag ion is mentioned. These metal salts may be used alone or in combination of two or more. By using Cu, Zn, Pd, or Ag as the metal of the metal salt, a metal layer having high bonding strength can be efficiently formed in the subsequent plating process.
  • the metal salt is not particularly limited, and may be, for example, nitrate, sulfate, perchlorate, oxide, sulfide, selenide, telluride, chloride, bromide, iodide, and the like.
  • the concentration of the metal salt in the stain liquid is not particularly limited. For example, it is preferably about 1 wt% or more, more preferably about 1 wt% or more and 50 wt% or less, and further preferably about 2 wt% with respect to the whole stain liquid. % To 10 wt%.
  • the ceramic substrate used in the present invention does not have a glass transition point.
  • the ceramic substrate is not particularly limited as long as it contains a metal to be subjected to an ion exchange reaction, but preferably an alkali metal (for example, Li, Na, K, etc.) and / or an alkaline earth metal (Be, Mg, Ca etc.).
  • the metal in the ceramic substrate is preferably present as ions, but may be present in other forms as long as it can be ionized when subjected to an ion exchange reaction.
  • the metal to be ion-exchanged in the ceramic substrate may be present in the surface of the ceramic material, particularly where the metal region is formed.
  • the total amount of alkali metal and alkaline earth metal may be 1 wt% or more and 40 wt% or less, and preferably 5 wt% or more and 35 wt% or less with respect to the ceramic constituting the ceramic substrate.
  • the ceramic base material containing the alkali metal or alkaline earth metal examples include a ceramic material containing an alkali metal or an alkaline earth metal, and specifically, CaO—Al 2 O 3 —SiO 2 —B 2.
  • Low-temperature sintered ceramics such as O 3 , BaO—Al 2 O 3 —SiO 2, and barium titanate as a main raw material, may contain SiO 2 , and may be a dielectric containing MgO and / or CaO. .
  • the ceramic substrate containing the alkali metal or alkaline earth metal is obtained by treating a ceramic substrate containing no alkali metal or alkaline earth metal and introducing the alkali metal or alkaline earth metal into the ceramic substrate. May be. Moreover, you may have a surface layer containing an alkali metal and an alkaline-earth metal on the surface of the main body which does not contain an alkali metal or an alkaline-earth metal.
  • a stain solution is applied to the surface of the ceramic substrate and heated.
  • the method of application is not particularly limited, and can be, for example, spraying, dipping, brushing, screen printing or ink jet printing. Moreover, you may heat a ceramic base material, being immersed in a stain liquid.
  • the heating temperature is not particularly limited, but may be, for example, 300 ° C or higher and 800 ° C or lower, preferably 320 ° C or higher and 500 ° C or lower, more preferably 330 ° C or higher and 400 ° C or lower.
  • the heating time can be appropriately changed according to the concentration of metal ions in the stain solution, but is, for example, 1 hour to 24 hours, preferably 1 minute to 120 minutes, more preferably 10 minutes to 80 minutes. More preferably 15 minutes or more and 60 minutes or less.
  • the size of the metal region is not particularly limited, and the size of the metal region is not particularly limited, and may be one metal atom size or about the size of an aggregate of a plurality of metal atoms.
  • the distance between adjacent metal regions depends on the underlying glass, and may be, for example, 0.1 ⁇ m or more, typically 20 ⁇ m.
  • the metal region on the surface of the ceramic substrate is arranged in a dot shape. It is preferable that the metal area
  • a plating layer (that is, a metal layer) is formed around the metal region on the surface of the ceramic substrate on which the metal region is formed by the method of the present invention. Therefore, a metal layer having high adhesion to the substrate can be formed on the ceramic substrate on which the metal region is formed.
  • the present invention also provides a method for forming a metal layer on a ceramic substrate.
  • the method for forming a metal layer on the ceramic substrate of the present invention includes forming a metal region on the ceramic substrate by the method described above, and then forming a metal layer on the metal region by plating. .
  • the metal layer is formed on the metal region (and its periphery), the metal region is formed at a place where the metal layer is formed on the ceramic substrate.
  • the application of the stain solution for forming the metal region is not particularly limited, and examples thereof include brushing, screen printing, and ink jet printing so that the metal region can be applied to a predetermined portion, and ink jet printing is particularly preferable. By using inkjet printing, finer application can be performed more easily.
  • the metal region formed on the ceramic substrate may be formed continuously or discontinuously on the surface of the ceramic substrate. That is, a plurality of metal regions may be formed on the ceramic substrate surface.
  • the continuous metal region is advantageous in that a metal layer having higher bonding strength can be obtained in a subsequent plating process.
  • the discontinuous metal region is advantageous in that the amount of stain liquid used can be reduced.
  • a metal layer can be formed so as to connect discontinuous metal regions. Therefore, the metal region does not need to be formed in the entire place where the metal layer is disposed, and may be formed only in a part thereof, for example, in a dot shape, a broken line shape, or a barcode shape.
  • the plating treatment may be either an electrolytic plating treatment or an electroless plating treatment. Since the metal region is conductive, the electroplating process is possible, and if the metal forming the metal region has catalytic activity, the electroless plating process is possible. When the metal forming the metal region does not have catalytic activity, electroless plating can be performed by applying a palladium catalyst or the like having catalytic activity to the metal region.
  • the metal constituting the metal layer is not particularly limited as long as it is a metal that can be plated, and examples thereof include Ni, Cu, Ag, Sn, and Au.
  • the plating process may be performed in multiple stages.
  • the metal layer is composed of a plurality of layers.
  • the plurality of layers may be made of the same metal or different metals.
  • strike plating (base plating) treatment can be performed, and then main plating treatment can be performed. Moreover, you may perform this plating process in multiple times.
  • plating is first formed on the metal region, but the plating deposits formed on the adjacent metal region are beyond the metal region. It also grows in the lateral direction (i.e., along the glass surface) and can be brought into contact with each other to form a single metal layer.
  • the lateral growth of the plating deposit can be achieved by adjusting the composition of the plating solution, the time of the plating treatment, and the like.
  • the metal layer may be formed by performing strike plating, thereby connecting discontinuous metal regions, and then growing the plating in the thickness direction by main plating.
  • the strike plating and the main plating may be copper plating.
  • the strike plating bath for strike plating preferably contains 10 g / L or more and 30 g / L or less of copper pyrophosphate, 80 g / L or more and 250 g / L or less of pyrophosphoric acid, and 5 g / L or more and 20 g / L or less of potassium oxalate.
  • the pH may be 7.5 or more and 10.0 or less.
  • the bath temperature may be 15 ° C. or more and 50 ° C. or less, and the current density may be 0.05 A / dm 2 or more and 0.30 A / dm 2 or less.
  • the metal layer can be grown to a desired thickness by the main plating.
  • This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available copper plating solution.
  • the strike plating and the main plating may be nickel plating.
  • the strike plating bath for strike plating preferably contains 300 g / L or more and 450 g / L or less nickel sulfate, 35 g / L or more and 55 g / L or less boric acid, and 0.5 g / L or more and 2 g / L or less nickel chloride.
  • the pH may be 3.5 or more and 5.0 or less.
  • the bath temperature may be 40 ° C. or more and 75 ° C. or less, and the current density may be 0.05 A / dm 2 or more and 0.30 A / dm 2 or less.
  • the connection between the discontinuous metal regions can be performed better.
  • the metal layer can be grown to a desired thickness by the main plating.
  • This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available nickel plating solution.
  • Sn or Au or the like preferably Sn, may be plated on the nickel layer formed by the main plating. By forming such a further plating layer, solder processing or the like when connecting to another electronic component becomes easier.
  • copper plating or nickel plating may be formed on the metal region by electroless plating.
  • This electroless plating treatment is usually autocatalytic plating, and when the metal forming the metal region does not have catalytic activity, it is preferable to apply an appropriate catalyst (for example, Pd catalyst) to the place to be plated.
  • the electroless copper plating treatment can be performed by appropriately selecting conditions using a commercially available electroless copper plating solution or electroless nickel plating solution.
  • a commercially available electroless copper plating solution for example, OPC Copper T manufactured by Okuno Seiyaku Kogyo Co., Ltd.
  • electroless nickel plating When electroless nickel plating is performed, a commercially available electroless nickel plating solution (for example, IPC Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd.) is used, and the pH is 3.5 to 5.0 and the bath temperature is 60 to 90 ° C. It can be carried out at a temperature below °C Furthermore, after performing copper plating or nickel plating (preferably nickel plating), gold or tin (preferably gold plating) may be further plated. This gold or tin plating layer may be formed by electroless plating, for example, by autocatalytic plating or displacement plating.
  • electroless nickel plating solution for example, IPC Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd.
  • the metal layer forming method of the present invention is used in the manufacture of electronic components, particularly in the manufacture of electrodes, wirings or terminals of electronic components.
  • the present invention also provides a method for manufacturing an electronic component including forming a metal layer by the above-described method of the present invention.
  • FIG. 1 shows an electronic component 1 manufactured in this mode.
  • the electronic component 1 has an element body 2 and electrodes (terminals) 4 at both ends of the element body 2.
  • the electrode 4 is formed on the element body 2 by plating.
  • an element body (hereinafter also referred to as a ceramic element body) 2 is prepared.
  • the ceramic element body is not particularly limited as long as the surface layer contains an ion-exchangeable metal (or metal ion).
  • the ion-exchangeable metal ion is an alkali metal ion.
  • the ceramic body does not need to be made of a single ceramic material, and may be, for example, a structure including a core and a surface layer or a structure in which two or more ceramic blocks are combined. In this case, it is only necessary that at least a portion where the electrode 4 is formed is an ion-exchangeable material. That is, the ceramic substrate may be composed of a main body and a surface layer covering the main body. In that case, the main body is not particularly limited, and the surface layer may be a ceramic containing an alkali metal and / or an alkaline earth metal.
  • the ceramic substrate may be a substrate made of ceramic or an element body of an electronic component.
  • a ceramic substrate that functions as an element body of an electronic component includes external electrodes on the surface.
  • a ceramic base material that functions as an element body of an electronic component includes an internal conductor that is electrically connected to an external electrode.
  • the internal conductor may be a coil or an internal electrode.
  • a metal region is formed at a location corresponding to the electrode 4 on the ceramic body 2.
  • the formation of the metal region is performed using the above-described ion exchange reaction.
  • the stain liquid 6 is applied on the ceramic body 2 corresponding to the position where the electrode 4 is formed and heated.
  • the metal salt contained in the stain solution is preferably an inorganic salt of copper, zinc, palladium, or silver.
  • the stain liquid does not need to be applied to the entire portion corresponding to the position where the electrode 4 is formed, and may be applied leaving a gap that can be connected by a subsequent plating process.
  • the stain liquid is applied in a broken line shape, but is not limited to this aspect, and may be applied to the whole or may be applied in a dot shape.
  • metal ions are introduced onto the ceramic body 2 and reduced to form metal particles, whereby a metal region is formed on the ceramic body 2 where the stain solution is applied.
  • the surface of the ceramic body 2 subjected to the above-described treatment is subjected to a plating treatment, whereby the electrode 4 is formed and the electronic component 1 of the present embodiment can be obtained.
  • the plating process may be an electrolytic plating process or an electroless plating process. Moreover, you may perform a metal-plating process in multiple times. In the case of performing plating a plurality of times, for example, twice, the first plating layer is preferably a copper plating layer, a silver plating layer or a nickel plating layer, and the last plating layer is preferably a tin plating layer or a gold plating layer .
  • the electronic component 1 manufactured in this way has a metal region on the surface layer of the ceramic body 2, the metal layer formed by the plating process is held with high adhesion on the ceramic body, and peels off. Hard to wake up. Further, according to the method of the present invention, since it is not necessary to form irregularities for holding the electrodes on the surface of the ceramic body 2, the obtained electronic component 1 retains the original function of the ceramic body 2. And reliable.
  • An ion exchange paste containing 10 wt% copper nitrate was uniformly applied to a ceramic plate CaO—Al 2 O 3 —SiO 2 —B 2 O 3 having a thickness of 2 mm by screen printing, and heated at 400 ° C. for 90 minutes.
  • a copper-based and silver-based single-component paste manufactured by Okuno Pharmaceutical Co., Ltd. was used alone, and a two-component paste prepared by mixing both in the same ratio was used. Thereafter, the ceramic plate treated in this manner was subjected to a plating treatment under the following conditions. As described above, a Cu plating film having a thickness of about 3 ⁇ m as a metal layer could be formed on the ceramic plate. And the electronic component was formed by forming the electrode which conduct
  • Plating solution composition copper pyrophosphate plating bath (copper pyrophosphate 20 g / L, potassium pyrophosphate 200 g / L, potassium oxalate 10 g / L)
  • Plating solution pH 8.5
  • Current density 0.2
  • Plating time 40 minutes
  • Plating temperature 45 ° C
  • the method of the present invention enables a plating process on a ceramic, it can be suitably used in the production of electronic components, particularly for the formation of wirings, electrodes, terminals and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention relates to a method for forming a metal layer on a ceramic base material, said method including applying, to the ceramic base material, a stain liquid including an inorganic salt of a metal, heating said stain liquid to form a metal area on the ceramic base material, and subsequently using plating to form the metal layer on the metal area.

Description

金属層の形成方法Method for forming metal layer
 本発明は、金属層の形成方法、特にセラミック上に金属層を形成する方法に関する。 The present invention relates to a method for forming a metal layer, and more particularly to a method for forming a metal layer on a ceramic.
 電子部品の構成材料として、セラミック材料や金属材料が広く用いられており、金属材料は、特に電極、端子または回路配線等に用いられている。電極、端子または回路配線等の金属部材は、一般的には、金属材料と少量のガラス材料とを混ぜ合わせた金属ペーストを、セラミック素体上に塗布し、焼成することにより形成される(特許文献1)。この際、電極、端子または回路配線等とセラミック素体間の密着力は、セラミック素体表面の凹凸によるアンカー効果により確保されている。 Ceramic materials and metal materials are widely used as constituent materials for electronic components, and metal materials are used particularly for electrodes, terminals, circuit wiring, and the like. A metal member such as an electrode, a terminal, or a circuit wiring is generally formed by applying a metal paste, which is a mixture of a metal material and a small amount of glass material, onto a ceramic body and firing it (patent) Reference 1). At this time, the adhesion between the electrodes, terminals, circuit wiring, etc. and the ceramic body is secured by the anchor effect due to the irregularities on the surface of the ceramic body.
 一方、ガラスの表層に金属(金属ナノコロイド粒子)を導入する方法として、イオン交換反応が知られている(以下、「ステイン法」ともいう)。このイオン交換反応は、ガラス表面に、銀または銅の無機塩を含むステイン液を塗布し、次いで熱処理することによって、ステイン液中のAgイオンまたはCuイオンが、ガラス中のカチオンと交換(イオン交換反応)する形で行われる。その後、ガラス表面に導入された金属イオンは還元され、金属粒子の形態に変わる。このイオン交換反応は、イオンの移動が比較的容易に起こるガラス基材において用いることができるとされており、イオンの移動が生じにくいセラミック基材においての使用は知られていない。 On the other hand, an ion exchange reaction is known as a method for introducing metal (metal nanocolloid particles) into the surface layer of glass (hereinafter also referred to as “stain method”). In this ion exchange reaction, the glass surface is coated with a stain solution containing an inorganic salt of silver or copper, and then heat-treated, whereby the Ag ions or Cu ions in the stain solution are exchanged with cations in the glass (ion exchange). Reaction). Thereafter, the metal ions introduced to the glass surface are reduced and changed into the form of metal particles. This ion exchange reaction is said to be applicable to a glass substrate in which ion movement occurs relatively easily, and use in a ceramic substrate in which ion movement is difficult to occur is not known.
特開平06-64988号公報Japanese Patent Application Laid-Open No. 06-64988
 近年、電子部品が置かれる環境がより苛酷になってきており、激しい温度サイクルの環境下においては、従来問題となっていなかった「金属-セラミック間剥離」が大きな問題となる場合が増えてきた。 In recent years, the environment in which electronic components are placed has become more severe, and there has been an increasing number of cases where “metal-ceramic delamination”, which has not been a problem in the past, has become a major problem in an environment of intense temperature cycling. .
 上記したようにセラミック素体表面の凹凸によるアンカー効果を利用して、金属部材とセラミック素体間の密着性を確保する場合、セラミック素体表面の凹凸が小さい場合には、密着力が十分ではなく、剥離等の不具合が生じ易い。セラミック素体表面に十分な凹凸を形成すれば、密着性を十分に確保することができるが、セラミック素体表面に大きな凹凸を形成すると、セラミックが持つ本来の機能が損なわれる可能性がある。また、電子部品の小型化により、このような処理自体が困難になってきている。 As described above, using the anchor effect due to the irregularities on the surface of the ceramic body to secure the adhesion between the metal member and the ceramic body, if the irregularities on the surface of the ceramic body are small, the adhesion is not sufficient. And problems such as peeling are likely to occur. If sufficient irregularities are formed on the surface of the ceramic body, sufficient adhesion can be ensured, but if large irregularities are formed on the surface of the ceramic body, the original function of the ceramic may be impaired. In addition, such processing itself has become difficult due to downsizing of electronic components.
 従って、セラミック素体と金属部材間の密着力を、より十分に確保することができる方法が待ち望まれている。 Therefore, there is a demand for a method that can ensure sufficient adhesion between the ceramic body and the metal member.
 本発明は、セラミック基材上に、高い密着力で、金属部材(金属層)を形成する方法を提供することを目的とする。 An object of the present invention is to provide a method for forming a metal member (metal layer) on a ceramic substrate with high adhesion.
 本発明者らは、セラミック基材においても、ガラス基材と同様にイオン交換を行うことができれば、イオン交換により導入された金属粒子を利用することにより、高い密着力でセラミック基材上に金属層を形成できると考えた。さらに鋭意検討した結果、本発明者らは、セラミック基材であっても、金属の無機塩を含むステイン液を塗布し、熱処理することで、ガラス素材と同様のイオン交換反応が生じ、金属の微粒子をセラミック基材の表面に形成できることを見出した。さらに、この金属粒子を介してめっき反応を起こさせることにより、セラミック基材上に、金属層を形成することができることを見出した。 If the present inventors can perform ion exchange in the same manner as in a glass substrate, the metal particles on the ceramic substrate with high adhesion can be obtained by utilizing metal particles introduced by ion exchange. It was thought that a layer could be formed. As a result of further intensive investigations, the present inventors applied a stain solution containing a metal inorganic salt and heat-treated even with a ceramic substrate, so that an ion exchange reaction similar to that of a glass material occurred. It has been found that fine particles can be formed on the surface of a ceramic substrate. Further, it has been found that a metal layer can be formed on a ceramic substrate by causing a plating reaction through the metal particles.
 本発明の第1の要旨によれば、イオン交換反応により、セラミック基材上に金属領域を形成する方法であって、イオン交換反応を、セラミック基材上に金属の無機塩を含むステイン液を塗布し、次いで加熱することにより行うことを含む方法が提供される。 According to a first aspect of the present invention, there is provided a method for forming a metal region on a ceramic substrate by an ion exchange reaction, wherein the ion exchange reaction is performed by using a stain solution containing an inorganic metal salt on the ceramic substrate. A method is provided that includes applying and then heating.
 本発明の第2の要旨によれば、セラミック基材上に金属層を形成する方法であって、
 上記の方法により、セラミック基材上に、金属領域を形成し、
 次いで、めっき処理により、上記金属領域上に金属層を形成すること
を含む方法が提供される。
According to a second aspect of the present invention, there is provided a method of forming a metal layer on a ceramic substrate,
By the above method, a metal region is formed on the ceramic substrate,
Then, a method is provided that includes forming a metal layer on the metal region by plating.
 本発明の第3の要旨によれば、上記の金属層の形成方法により、金属層を形成することを含む電子部品の製造方法が提供される。 According to a third aspect of the present invention, there is provided an electronic component manufacturing method including forming a metal layer by the metal layer forming method.
 本発明の方法によれば、セラミック基材の表面に凹凸を形成することなく、十分な密着力を有する金属層を形成することができる。また、本発明の方法によれば、セラミック基材の表面に凹凸を形成する必要がないので、凹凸形成処理(例えば、エッチング処理)を省略することができ、この処理による品質劣化のリスクを排除することができる。このような効果は、凹凸形成処理を施しにくい、小型部品、薄型部品、または高い信頼性が求められる部品においてより顕著になる。 According to the method of the present invention, a metal layer having sufficient adhesion can be formed without forming irregularities on the surface of the ceramic substrate. Further, according to the method of the present invention, it is not necessary to form irregularities on the surface of the ceramic substrate, so that the irregularity forming process (for example, etching process) can be omitted, and the risk of quality deterioration due to this process is eliminated. can do. Such an effect becomes more prominent in a small component, a thin component, or a component requiring high reliability, which is difficult to perform the unevenness forming process.
図1は、一の態様における本発明の製造方法により製造される電子部品1を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an electronic component 1 manufactured by the manufacturing method of the present invention in one embodiment. 図2は、一の態様における本発明の製造方法において、素体2上にステイン液6が塗布された状態を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a state in which the stain liquid 6 is applied on the element body 2 in the manufacturing method of the present invention in one embodiment. 図3(a)は、隣接する金属領域が4つの場合のドット状の金属領域の配置を示し、図3(b)は、隣接する金属領域が6つの場合のドット状の金属領域の配置を示す。FIG. 3A shows the arrangement of dot-shaped metal areas when there are four adjacent metal areas, and FIG. 3B shows the arrangement of dot-shaped metal areas when there are six adjacent metal areas. Show.
 以下、セラミック基材に金属領域を形成する本発明の方法を説明する。なお、金属領域とは、セラミックに導入されたステイン液の金属塩由来の金属原子あるいは金属原子の集合体であってよい。このときの金属原子は、カチオンの状態であってもよい。 Hereinafter, the method of the present invention for forming a metal region on a ceramic substrate will be described. The metal region may be a metal atom derived from the metal salt of the stain liquid introduced into the ceramic or an aggregate of metal atoms. The metal atom at this time may be in a cation state.
 まず、ステイン液およびセラミック基材を準備する。 First, a stain solution and a ceramic substrate are prepared.
 ステイン液は、金属塩の溶融液、または金属塩を含む液状またはゲル状の混合物を意味し、他の成分として、溶媒、樹脂、粘度調整剤、pH調整剤などを含み得る。ステイン液中の金属塩に由来する金属イオンがセラミック基材中のカチオンとイオン交換される。溶媒は、たとえば、水、またはアルコール等の有機溶媒であってよい。 The stain liquid means a melt of a metal salt or a liquid or gel-like mixture containing a metal salt, and may include a solvent, a resin, a viscosity adjuster, a pH adjuster and the like as other components. Metal ions derived from the metal salt in the stain liquid are ion-exchanged with cations in the ceramic substrate. The solvent may be, for example, water or an organic solvent such as alcohol.
 ステイン液に含まれる金属塩としては、特に限定されないが、Cuイオン、Znイオン、Pdイオン、またはAgイオンを含む無機塩が挙げられる。これらの金属塩は、単独で用いても、または2種以上を混合して用いてもよい。金属塩の金属として、Cu、Zn、Pd、またはAgを用いることにより、後のめっき処理において、効率よく、高い接合強度の金属層を形成することができる。 Although it does not specifically limit as a metal salt contained in a stain liquid, The inorganic salt containing Cu ion, Zn ion, Pd ion, or Ag ion is mentioned. These metal salts may be used alone or in combination of two or more. By using Cu, Zn, Pd, or Ag as the metal of the metal salt, a metal layer having high bonding strength can be efficiently formed in the subsequent plating process.
 金属塩は、特に限定されないが、例えば硝酸塩、硫酸塩、過塩素酸塩、酸化塩、硫化塩、セレン化塩、テルル化塩、塩化塩、臭化塩、ヨウ化塩等であり得る。 The metal salt is not particularly limited, and may be, for example, nitrate, sulfate, perchlorate, oxide, sulfide, selenide, telluride, chloride, bromide, iodide, and the like.
 ステイン液中の金属塩の濃度は、特に限定されないが、例えばステイン液全体に対して約1wt%以上であることが好ましく、より好ましくは約1wt%以上50wt%以下であり、さらに好ましくは約2wt%以上10wt%以下である。 The concentration of the metal salt in the stain liquid is not particularly limited. For example, it is preferably about 1 wt% or more, more preferably about 1 wt% or more and 50 wt% or less, and further preferably about 2 wt% with respect to the whole stain liquid. % To 10 wt%.
 本発明において用いられるセラミック基材は、ガラス転移点を有さない。 The ceramic substrate used in the present invention does not have a glass transition point.
 セラミック基材は、イオン交換反応の対象となる金属を含むものであれば特に限定されないが、好ましくはアルカリ金属(例えば、Li、Na、K等)および/またはアルカリ土類金属(Be、Mg、Ca等)を含む。セラミック基材の中の金属は、イオンとして存在することが好ましいが、イオン交換反応に付す際にイオン化できるものであれば、他の形態で存在してもよい。セラミック基材中のイオン交換される金属は、セラミック材料の表層、特に金属領域を形成する場所に存在すればよい。アルカリ金属およびアルカリ土類金属の合計量は、セラミック基材を構成するセラミックに対し、1wt%以上40wt%以下であってよく、好ましくは5wt%以上35wt%以下であってよい。 The ceramic substrate is not particularly limited as long as it contains a metal to be subjected to an ion exchange reaction, but preferably an alkali metal (for example, Li, Na, K, etc.) and / or an alkaline earth metal (Be, Mg, Ca etc.). The metal in the ceramic substrate is preferably present as ions, but may be present in other forms as long as it can be ionized when subjected to an ion exchange reaction. The metal to be ion-exchanged in the ceramic substrate may be present in the surface of the ceramic material, particularly where the metal region is formed. The total amount of alkali metal and alkaline earth metal may be 1 wt% or more and 40 wt% or less, and preferably 5 wt% or more and 35 wt% or less with respect to the ceramic constituting the ceramic substrate.
 上記アルカリ金属またはアルカリ土類金属を含むセラミック基材は、例えば、アルカリ金属やアルカリ土類金属を含んだセラミック材料が挙げられ、具体的には、CaO-Al-SiO-B、BaO-Al-SiOなどの低温焼結セラミックスや、チタン酸バリウムを主原料とし、SiOを含んでいてもよく、MgOおよび/またはCaOを含んだ誘電体であり得る。 Examples of the ceramic base material containing the alkali metal or alkaline earth metal include a ceramic material containing an alkali metal or an alkaline earth metal, and specifically, CaO—Al 2 O 3 —SiO 2 —B 2. Low-temperature sintered ceramics such as O 3 , BaO—Al 2 O 3 —SiO 2, and barium titanate as a main raw material, may contain SiO 2 , and may be a dielectric containing MgO and / or CaO. .
 上記アルカリ金属またはアルカリ土類金属を含むセラミック基材は、アルカリ金属またはアルカリ土類金属を含まないセラミック基材を処理して、セラミック基材にアルカリ金属またはアルカリ土類金属を導入したものであってもよい。また、アルカリ金属またはアルカリ土類金属を含まない本体の表面にアルカリ金属およびアルカリ土類金属を含む表面層を有するものであってもよい。 The ceramic substrate containing the alkali metal or alkaline earth metal is obtained by treating a ceramic substrate containing no alkali metal or alkaline earth metal and introducing the alkali metal or alkaline earth metal into the ceramic substrate. May be. Moreover, you may have a surface layer containing an alkali metal and an alkaline-earth metal on the surface of the main body which does not contain an alkali metal or an alkaline-earth metal.
 次いで、上記のセラミック基材の表面に、ステイン液を塗布し、加熱する。塗布の方法は、特に限定されず、例えばスプレー、浸漬、はけ塗り、スクリーン印刷またはインクジェット印刷等であり得る。また、セラミック基材をステイン液に浸漬させたまま加熱してもよい。 Next, a stain solution is applied to the surface of the ceramic substrate and heated. The method of application is not particularly limited, and can be, for example, spraying, dipping, brushing, screen printing or ink jet printing. Moreover, you may heat a ceramic base material, being immersed in a stain liquid.
 加熱温度は、特に限定されないが、例えば300℃以上800℃以下であってよく、好ましくは320℃以上500℃以下、より好ましくは330℃以上400℃以下であり得る。 The heating temperature is not particularly limited, but may be, for example, 300 ° C or higher and 800 ° C or lower, preferably 320 ° C or higher and 500 ° C or lower, more preferably 330 ° C or higher and 400 ° C or lower.
 加熱時間は、ステイン液中の金属イオン濃度等に応じて適宜変更し得るが、例えば1時間以上24時間以下、好ましくは1分以上120分以下であり、より好ましくは10分以上80分以下であり、さらに好ましくは15分以上60分以下であり得る。 The heating time can be appropriately changed according to the concentration of metal ions in the stain solution, but is, for example, 1 hour to 24 hours, preferably 1 minute to 120 minutes, more preferably 10 minutes to 80 minutes. More preferably 15 minutes or more and 60 minutes or less.
 上記の処理により、セラミック基材中のカチオン(例えば、Na、K、Li等)とステイン液中の金属イオンが交換される。イオン交換の進行は、電子顕微鏡により交換した金属イオンの分布を測定することにより確認することができる。通常、このイオン交換反応はガラスの表層において行われる。 By the above treatment, cations (for example, Na + , K + , Li + etc.) in the ceramic substrate and metal ions in the stain liquid are exchanged. The progress of ion exchange can be confirmed by measuring the distribution of exchanged metal ions with an electron microscope. Usually, this ion exchange reaction is carried out on the surface of the glass.
 金属領域の大きさは特に限定されず、金属領域の大きさは特に限定されず、金属原子1つの大きさでもよく、金属原子が複数集まった集合体程度の大きさであってよい。 The size of the metal region is not particularly limited, and the size of the metal region is not particularly limited, and may be one metal atom size or about the size of an aggregate of a plurality of metal atoms.
 金属領域が不連続に形成される場合、隣接する金属領域間の距離は、下地のガラスに依存し、たとえば、0.1μm以上であってよく、代表的には20μmであってよい。 When the metal regions are formed discontinuously, the distance between adjacent metal regions depends on the underlying glass, and may be, for example, 0.1 μm or more, typically 20 μm.
 一の態様において、セラミック基材の表面の金属領域は、ドット状に配置されている。ドット状に配置された金属領域は、均一に存在することが好ましい。図3に示されるように、隣接する、即ち最も近い距離にある金属領域8の数は、特に限定されないが、例えば4つ(図3(a))または6つ(図3(b))が好ましく、6つがより好ましい。 In one embodiment, the metal region on the surface of the ceramic substrate is arranged in a dot shape. It is preferable that the metal area | region arrange | positioned at dot shape exists uniformly. As shown in FIG. 3, the number of adjacent metal regions 8 at the nearest distance is not particularly limited. For example, four (FIG. 3A) or six (FIG. 3B) Preferably, 6 is more preferable.
 本発明の方法により金属領域が形成されたセラミック基材の表面には、金属領域を中心にめっき層(すなわち、金属層)が形成される。従って、金属領域が形成されたセラミック基材上には、基材との高い密着力を有する金属層を形成することができる。 A plating layer (that is, a metal layer) is formed around the metal region on the surface of the ceramic substrate on which the metal region is formed by the method of the present invention. Therefore, a metal layer having high adhesion to the substrate can be formed on the ceramic substrate on which the metal region is formed.
 従って、本発明は、セラミック基材上に金属層を形成する方法をも提供する。 Therefore, the present invention also provides a method for forming a metal layer on a ceramic substrate.
 本発明のセラミック基材上に金属層を形成する方法は、上記した方法によりセラミック基材上に金属領域を形成し、次いで、めっき処理により、上記金属領域上に金属層を形成することを含む。 The method for forming a metal layer on the ceramic substrate of the present invention includes forming a metal region on the ceramic substrate by the method described above, and then forming a metal layer on the metal region by plating. .
 本発明において、金属領域上(およびその周辺)に金属層が形成されるので、金属領域は、セラミック基材上の金属層を形成する箇所に形成される。 In the present invention, since the metal layer is formed on the metal region (and its periphery), the metal region is formed at a place where the metal layer is formed on the ceramic substrate.
 上記金属領域を形成するためのステイン液の塗布は、特に限定されないが、所定の箇所に塗布できるように、はけ塗り、スクリーン印刷またはインクジェット印刷等が挙げられ、特にインクジェット印刷が好ましい。インクジェット印刷を用いることにより、より容易により微細な塗布を行うことができる。 The application of the stain solution for forming the metal region is not particularly limited, and examples thereof include brushing, screen printing, and ink jet printing so that the metal region can be applied to a predetermined portion, and ink jet printing is particularly preferable. By using inkjet printing, finer application can be performed more easily.
 セラミック基材上に形成される金属領域は、セラミック基材表面上に連続的に形成されても、不連続に形成されていてもよい。つまり、セラミック基材表面上に複数の金属領域が形成されていてもよい。連続的な金属領域は、後のめっき処理においてより高い接合強度を有する金属層を得ることができる点で有利である。一方、不連続な金属領域は、使用するステイン液の量を少なくすることができる点で有利である。 The metal region formed on the ceramic substrate may be formed continuously or discontinuously on the surface of the ceramic substrate. That is, a plurality of metal regions may be formed on the ceramic substrate surface. The continuous metal region is advantageous in that a metal layer having higher bonding strength can be obtained in a subsequent plating process. On the other hand, the discontinuous metal region is advantageous in that the amount of stain liquid used can be reduced.
 下記するように本発明のめっき処理においては、不連続な金属領域同士を連結するように金属層を形成することができる。従って、金属領域は、金属層を配置する場所全体に形成される必要はなく、その一部にのみ、例えばドット状、破線状またはバーコード状に形成されていてもよい。 As described below, in the plating treatment of the present invention, a metal layer can be formed so as to connect discontinuous metal regions. Therefore, the metal region does not need to be formed in the entire place where the metal layer is disposed, and may be formed only in a part thereof, for example, in a dot shape, a broken line shape, or a barcode shape.
 めっき処理は、電解めっき処理または無電解めっき処理のいずれであってもよい。金属領域が導電性であることから電解めっき処理が可能であり、金属領域を形成する金属が触媒活性を有していれば無電解めっき処理が可能である。金属領域を形成する金属が触媒活性を有していない場合、触媒活性を有するパラジウム触媒等を金属領域に付与することにより、無電解めっきが可能になる。 The plating treatment may be either an electrolytic plating treatment or an electroless plating treatment. Since the metal region is conductive, the electroplating process is possible, and if the metal forming the metal region has catalytic activity, the electroless plating process is possible. When the metal forming the metal region does not have catalytic activity, electroless plating can be performed by applying a palladium catalyst or the like having catalytic activity to the metal region.
 金属層を構成する金属としては、めっき可能な金属であれば特に限定されないが、例えばNi、Cu、Ag、Sn、Au等が挙げられる。 The metal constituting the metal layer is not particularly limited as long as it is a metal that can be plated, and examples thereof include Ni, Cu, Ag, Sn, and Au.
 一の態様において、めっき処理は、多段階で行ってもよい。 In one embodiment, the plating process may be performed in multiple stages.
 上記のように多段階のめっき処理を行う場合、金属層は、複数の層から構成される。これら複数の層は、同じ金属から構成されていても、異なる金属から構成されていてもよい。 When performing multi-stage plating as described above, the metal layer is composed of a plurality of layers. The plurality of layers may be made of the same metal or different metals.
 例えば、まず、ストライクめっき(下地めっき)処理を行い、次いで、本めっき処理を行うことができる。また、本めっき処理を複数回行ってもよい。 For example, first, strike plating (base plating) treatment can be performed, and then main plating treatment can be performed. Moreover, you may perform this plating process in multiple times.
 上記金属領域が不連続(例えば、ドット状)に形成されている場合、最初に金属領域上においてめっき形成されるが、隣接する金属領域上に形成しためっき析出物同士は、金属領域を越えて横方向(即ち、ガラス表面に沿った方向)にも成長し、互いに接触して一体となり、一の金属層を形成することができる。めっき析出物の横方向への成長は、めっき液の組成、めっき処理の時間等を調整することにより達成することができる。 When the metal region is formed discontinuously (for example, in the form of dots), plating is first formed on the metal region, but the plating deposits formed on the adjacent metal region are beyond the metal region. It also grows in the lateral direction (i.e., along the glass surface) and can be brought into contact with each other to form a single metal layer. The lateral growth of the plating deposit can be achieved by adjusting the composition of the plating solution, the time of the plating treatment, and the like.
 例えば、ストライクめっきを施し、これにより不連続な金属領域間を連結させ、次いで、本めっきにより厚み方向にめっきを成長させることにより、金属層を形成してもよい。 For example, the metal layer may be formed by performing strike plating, thereby connecting discontinuous metal regions, and then growing the plating in the thickness direction by main plating.
 一の態様において、上記ストライクめっきおよび本めっきは、銅によるめっきであり得る。ストライクめっき用のストライクめっき浴は、好ましくは、10g/L以上30g/L以下のピロリン酸銅、80g/L以上250g/L以下のピロリン酸および5g/L以上20g/L以下のシュウ酸カリウムを含み、pHは7.5以上10.0以下であり得る。ストライクめっき条件として、好ましくは、浴温は15℃以上50℃以下であり、電流密度は0.05A/dm以上0.30A/dm以下であり得る。このようなストライクめっき浴および条件を用いることにより、横方向へのめっき成長を促し、不連続な金属領域間の連結をより良好に行うことができる。次いで、本めっきにより金属層を所望の厚みまで成長させることができる。本めっきは、当業者によく知られた方法により行うことができ、例えば市販の銅めっき液を用いて行うことができる。 In one embodiment, the strike plating and the main plating may be copper plating. The strike plating bath for strike plating preferably contains 10 g / L or more and 30 g / L or less of copper pyrophosphate, 80 g / L or more and 250 g / L or less of pyrophosphoric acid, and 5 g / L or more and 20 g / L or less of potassium oxalate. The pH may be 7.5 or more and 10.0 or less. As the strike plating conditions, preferably, the bath temperature may be 15 ° C. or more and 50 ° C. or less, and the current density may be 0.05 A / dm 2 or more and 0.30 A / dm 2 or less. By using such a strike plating bath and conditions, lateral plating growth can be promoted, and the connection between discontinuous metal regions can be performed better. Next, the metal layer can be grown to a desired thickness by the main plating. This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available copper plating solution.
 別の態様において、上記ストライクめっきおよび本めっきは、ニッケルによるめっきであり得る。ストライクめっき用のストライクめっき浴は、好ましくは、300g/L以上450g/L以下の硫酸ニッケル、35g/L以上55g/L以下のホウ酸および0.5g/L以上2g/L以下の塩化ニッケルを含み、pHは3.5以上5.0以下であり得る。ストライクめっき条件として、好ましくは、浴温は40℃以上75℃以下であり、電流密度は0.05A/dm以上0.30A/dm以下であり得る。このようなストライクめっき浴および条件を用いることにより、不連続な金属領域間の連結をより良好に行うことができる。次いで、本めっきにより金属層を所望の厚みまで成長させることができる。本めっきは、当業者によく知られた方法により行うことができ、例えば市販のニッケルめっき液を用いて行うことができる。さらに、本めっきにより形成されたニッケル層上に、SnまたはAu等、好ましくはSnをめっきしてもよい。このようなさらなるめっき層を形成することにより、他の電子部品に接続する際のはんだ処理等がより容易になる。 In another aspect, the strike plating and the main plating may be nickel plating. The strike plating bath for strike plating preferably contains 300 g / L or more and 450 g / L or less nickel sulfate, 35 g / L or more and 55 g / L or less boric acid, and 0.5 g / L or more and 2 g / L or less nickel chloride. Including, the pH may be 3.5 or more and 5.0 or less. As the strike plating conditions, preferably, the bath temperature may be 40 ° C. or more and 75 ° C. or less, and the current density may be 0.05 A / dm 2 or more and 0.30 A / dm 2 or less. By using such a strike plating bath and conditions, the connection between the discontinuous metal regions can be performed better. Next, the metal layer can be grown to a desired thickness by the main plating. This plating can be performed by a method well known to those skilled in the art, for example, using a commercially available nickel plating solution. Furthermore, Sn or Au or the like, preferably Sn, may be plated on the nickel layer formed by the main plating. By forming such a further plating layer, solder processing or the like when connecting to another electronic component becomes easier.
 別の態様において、無電解めっき処理により、金属領域上に銅めっきまたはニッケルめっきを形成してもよい。この無電解めっき処理は、通常自己触媒めっきであり、金属領域を形成する金属が触媒活性を有しない場合、めっきを施す箇所に適当な触媒(例えば、Pd触媒)を付与することが好ましい。無電解銅めっき処理は、市販の無電解銅めっき液または無電解ニッケルめっき液を用いて、適宜条件を選択して行うことができる。例えば、無電解銅めっきを行う場合、市販の無電解銅めっき液(例えば、奥野製薬工業株式会社製OPCカッパーT)を用いて、pH11以上pH13以下、浴温30℃以上50℃以下で行うことができる。また、無電解ニッケルめっきを行う場合、市販の無電解ニッケルめっき液(例えば、奥野製薬工業株式会社製IPC二コロンGM)を用いて、pH3.5以上pH5.0以下、浴温60℃以上90℃以下で行うことができる。さらに、銅めっきまたはニッケルめっき(好ましくはニッケルめっき)を行った後、さらに金またはスズ(好ましくは金めっき)をめっきしてもよい。この金またはスズめっき層は、無電解めっきで形成してもよく、例えば自己触媒めっきまたは置換めっきにより形成することができる。 In another embodiment, copper plating or nickel plating may be formed on the metal region by electroless plating. This electroless plating treatment is usually autocatalytic plating, and when the metal forming the metal region does not have catalytic activity, it is preferable to apply an appropriate catalyst (for example, Pd catalyst) to the place to be plated. The electroless copper plating treatment can be performed by appropriately selecting conditions using a commercially available electroless copper plating solution or electroless nickel plating solution. For example, when performing electroless copper plating, using a commercially available electroless copper plating solution (for example, OPC Copper T manufactured by Okuno Seiyaku Kogyo Co., Ltd.), pH 11 to pH 13 and bath temperature 30 to 50 ° C. Can do. When electroless nickel plating is performed, a commercially available electroless nickel plating solution (for example, IPC Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd.) is used, and the pH is 3.5 to 5.0 and the bath temperature is 60 to 90 ° C. It can be carried out at a temperature below ℃ Furthermore, after performing copper plating or nickel plating (preferably nickel plating), gold or tin (preferably gold plating) may be further plated. This gold or tin plating layer may be formed by electroless plating, for example, by autocatalytic plating or displacement plating.
 一の態様において、本発明の金属層の形成方法は、電子部品の製造、特に電子部品の電極、配線または端子の製造において用いられる。 In one aspect, the metal layer forming method of the present invention is used in the manufacture of electronic components, particularly in the manufacture of electrodes, wirings or terminals of electronic components.
 従って、本発明は、上記した本発明の方法により金属層を形成することを含む、電子部品の製造方法をも提供する。 Therefore, the present invention also provides a method for manufacturing an electronic component including forming a metal layer by the above-described method of the present invention.
 以下、本発明の電子部品の製造方法について説明する。 Hereinafter, a method for manufacturing an electronic component of the present invention will be described.
 この態様において製造される電子部品1を、図1に示す。電子部品1は、素体2と、素体2の両端に電極(端子)4を有する。電極4は、素体2上にめっき処理により形成される。 FIG. 1 shows an electronic component 1 manufactured in this mode. The electronic component 1 has an element body 2 and electrodes (terminals) 4 at both ends of the element body 2. The electrode 4 is formed on the element body 2 by plating.
 まず、素体(以下、セラミック素体ともいう)2を準備する。このセラミック素体は、表層にイオン交換可能な金属(または金属イオン)を含んでいれば特に限定されない。好ましくは、イオン交換可能な金属イオンは、アルカリ金属イオンである。セラミック素体は、一のセラミック材料から構成されている必要はなく、例えば、コアと表層を含んだ構造、あるいは2つまたはそれ以上のセラミックブロックを結合させた構造であってもよい。この場合、少なくとも電極4を形成する箇所が、イオン交換可能な材料であればよい。つまり、セラミック基材は、本体と、本体を覆う表層で構成されていてもよい。その場合は、本体は特に限定されず、表層が、アルカリ金属及び/又はアルカリ土類金属を含むセラミックであればよい。 First, an element body (hereinafter also referred to as a ceramic element body) 2 is prepared. The ceramic element body is not particularly limited as long as the surface layer contains an ion-exchangeable metal (or metal ion). Preferably, the ion-exchangeable metal ion is an alkali metal ion. The ceramic body does not need to be made of a single ceramic material, and may be, for example, a structure including a core and a surface layer or a structure in which two or more ceramic blocks are combined. In this case, it is only necessary that at least a portion where the electrode 4 is formed is an ion-exchangeable material. That is, the ceramic substrate may be composed of a main body and a surface layer covering the main body. In that case, the main body is not particularly limited, and the surface layer may be a ceramic containing an alkali metal and / or an alkaline earth metal.
 セラミック基材は、セラミックで形成された基板であってもよく、電子部品の素体であってもよい。電子部品の素体として機能するセラミック基材は、表面に外部電極を備える。電子部品の素体として機能するセラミック基材は、内部に外部電極と導通する内部導体を備える。内部導体は、コイルであってもよく、内部電極であってもよい。 The ceramic substrate may be a substrate made of ceramic or an element body of an electronic component. A ceramic substrate that functions as an element body of an electronic component includes external electrodes on the surface. A ceramic base material that functions as an element body of an electronic component includes an internal conductor that is electrically connected to an external electrode. The internal conductor may be a coil or an internal electrode.
 次に、セラミック素体2上の電極4に対応する箇所に金属領域を形成する。この金属領域の形成は、上記したイオン交換反応を利用して行われる。 Next, a metal region is formed at a location corresponding to the electrode 4 on the ceramic body 2. The formation of the metal region is performed using the above-described ion exchange reaction.
 まず、図2に示すように、電極4を形成する位置に対応するセラミック素体2上にステイン液6を塗布し、加熱する。ステイン液に含まれる金属塩は、銅、亜鉛、パラジウム、または銀の無機塩が好ましい。図2に示されるように、ステイン液は、電極4を形成する位置に対応する箇所全体に塗布する必要はなく、後のめっき処理により連結できる程度の隙間を残して塗布してもよい。本実施形態においては、破線状にステイン液を塗布しているが、この態様に限定されず、全体に塗布してもよいし、またはドット状に塗布してもよい。このイオン交換反応により、セラミック素体2上に金属イオンが導入され、これが還元して金属粒子となることにより、セラミック素体2上のステイン液を塗布した箇所に金属領域が形成される。 First, as shown in FIG. 2, the stain liquid 6 is applied on the ceramic body 2 corresponding to the position where the electrode 4 is formed and heated. The metal salt contained in the stain solution is preferably an inorganic salt of copper, zinc, palladium, or silver. As shown in FIG. 2, the stain liquid does not need to be applied to the entire portion corresponding to the position where the electrode 4 is formed, and may be applied leaving a gap that can be connected by a subsequent plating process. In the present embodiment, the stain liquid is applied in a broken line shape, but is not limited to this aspect, and may be applied to the whole or may be applied in a dot shape. As a result of this ion exchange reaction, metal ions are introduced onto the ceramic body 2 and reduced to form metal particles, whereby a metal region is formed on the ceramic body 2 where the stain solution is applied.
 次いで、上記の処理を施したセラミック素体2の表面をめっき処理に付すことにより、電極4を形成し、本実施形態の電子部品1を得ることができる。 Next, the surface of the ceramic body 2 subjected to the above-described treatment is subjected to a plating treatment, whereby the electrode 4 is formed and the electronic component 1 of the present embodiment can be obtained.
 めっき処理は、電解めっき処理であっても、無電解めっき処理であってもよい。また、めっき処理は複数回行ってもよい。複数回、例えば2回めっきを行う場合、最初のめっき層は、好ましくは銅めっき層、銀めっき層またはニッケルめっき層であり、最後のめっき層は、好ましくはスズめっき層または金めっき層である。 The plating process may be an electrolytic plating process or an electroless plating process. Moreover, you may perform a metal-plating process in multiple times. In the case of performing plating a plurality of times, for example, twice, the first plating layer is preferably a copper plating layer, a silver plating layer or a nickel plating layer, and the last plating layer is preferably a tin plating layer or a gold plating layer .
 このようにして製造された電子部品1は、セラミック素体2の表層に金属領域を有するので、めっき処理により形成された金属層は、セラミック素体上に高い密着力で保持され、剥離などを起こしにくい。また、本発明の方法によれば、セラミック素体2の表面に電極を保持するための凹凸を形成する必要がないので、得られた電子部品1は、セラミック素体2本来の機能を保持しており、信頼性が高い。 Since the electronic component 1 manufactured in this way has a metal region on the surface layer of the ceramic body 2, the metal layer formed by the plating process is held with high adhesion on the ceramic body, and peels off. Hard to wake up. Further, according to the method of the present invention, since it is not necessary to form irregularities for holding the electrodes on the surface of the ceramic body 2, the obtained electronic component 1 retains the original function of the ceramic body 2. And reliable.
 尚、本発明の方法は、上記の実施態様に限定されるものではなく、種々の改変が可能である。 Note that the method of the present invention is not limited to the above-described embodiment, and various modifications are possible.
 厚さ2mmのセラミック板CaO-Al-SiO-Bに、スクリーン印刷法で硝酸銅を10wt%含むイオン交換用ペーストを均一に塗布し、400℃で90分間加熱した。イオン交換用ペーストとして、奥野製薬工業株式会社製の銅系および銀系の単成分系ペーストをそれぞれ単独で、および両者を同比で混合調製した2成分系ペーストを用いた。
 その後、このようにして処理されたセラミック板に以下に示す条件で、めっき処理を行った。以上にて、セラミック板に金属層である約3μmの厚みのCuめっき膜を形成することができた。そして、金属層に導通する電極を形成することで、電子部品を形成した。
An ion exchange paste containing 10 wt% copper nitrate was uniformly applied to a ceramic plate CaO—Al 2 O 3 —SiO 2 —B 2 O 3 having a thickness of 2 mm by screen printing, and heated at 400 ° C. for 90 minutes. As the ion exchange paste, a copper-based and silver-based single-component paste manufactured by Okuno Pharmaceutical Co., Ltd. was used alone, and a two-component paste prepared by mixing both in the same ratio was used.
Thereafter, the ceramic plate treated in this manner was subjected to a plating treatment under the following conditions. As described above, a Cu plating film having a thickness of about 3 μm as a metal layer could be formed on the ceramic plate. And the electronic component was formed by forming the electrode which conduct | electrically_connects to a metal layer.
<めっき処理の条件>
 めっき液組成:ピロリン酸銅めっき浴(ピロリン酸銅 20g/L、ピロリン酸カリウム200g/L、シュウ酸カリウム10g/L)
 めっき液のpH:8.5
 電流密度:0.2A/dm
 めっき時間:40分
 めっき温度:45℃
<Plating conditions>
Plating solution composition: copper pyrophosphate plating bath (copper pyrophosphate 20 g / L, potassium pyrophosphate 200 g / L, potassium oxalate 10 g / L)
Plating solution pH: 8.5
Current density: 0.2 A / dm 2
Plating time: 40 minutes Plating temperature: 45 ° C
 本発明の方法は、セラミック上へのめっき処理を可能にするので、電子部品の製造において、特に配線、電極、端子等の形成に好適に用いることができる。 Since the method of the present invention enables a plating process on a ceramic, it can be suitably used in the production of electronic components, particularly for the formation of wirings, electrodes, terminals and the like.
  1…電子部品
  2…セラミック素体
  4…電極
  6…ステイン液
  8…金属領域
DESCRIPTION OF SYMBOLS 1 ... Electronic component 2 ... Ceramic body 4 ... Electrode 6 ... Stain liquid 8 ... Metal region

Claims (12)

  1.  イオン交換反応により、セラミック基材上に金属領域を形成する方法であって、イオン交換反応を、セラミック基材上に金属の無機塩を含むステイン液を塗布し、次いで加熱することにより行うことを含む方法。 A method of forming a metal region on a ceramic substrate by an ion exchange reaction, wherein the ion exchange reaction is performed by applying a stain solution containing a metal inorganic salt on the ceramic substrate and then heating. Including methods.
  2.  セラミック基材が、アルカリ金属またはアルカリ土類金属を含むことを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the ceramic substrate contains an alkali metal or an alkaline earth metal.
  3.  金属領域を構成する金属が、Cu、Zn、Pd、またはAg、あるいはこれらの組み合わせであることを特徴とする請求項1または2に記載の方法。 3. The method according to claim 1, wherein the metal constituting the metal region is Cu, Zn, Pd, Ag, or a combination thereof.
  4.  ステイン液の塗布が、インクジェット印刷により行われることを特徴とする請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the stain liquid is applied by ink jet printing.
  5.  セラミック基材上に金属層を形成する方法であって、
     請求項1~4のいずれかに記載の方法により、セラミック基材上に、金属領域を形成し、
     次いで、めっき処理により、上記金属領域上に金属層を形成すること
    を含む方法。
    A method of forming a metal layer on a ceramic substrate,
    A metal region is formed on the ceramic substrate by the method according to any one of claims 1 to 4,
    Next, a method including forming a metal layer on the metal region by plating.
  6.  セラミック基材が、アルカリ金属またはアルカリ土類金属を含むことを特徴とする、請求項5に記載の方法。 The method according to claim 5, wherein the ceramic substrate contains an alkali metal or an alkaline earth metal.
  7.  金属領域が、Cu、Zn、Pd、またはAg、あるいはこれらの組み合わせにより形成されていることを特徴とする、請求項5または6に記載の方法。 The method according to claim 5 or 6, wherein the metal region is formed of Cu, Zn, Pd, Ag, or a combination thereof.
  8.  金属領域がドット状に形成され、隣接するドット間の距離が30μm以下であることを特徴とする、請求項5~7のいずれかに記載の方法。 The method according to any one of claims 5 to 7, wherein the metal region is formed in a dot shape, and the distance between adjacent dots is 30 µm or less.
  9.  金属領域が不連続に形成され、めっき処理により形成される金属層が、金属領域を越えてセラミック基材上まで成長し、互いに隣接する金属領域上の金属層と一体となるように形成されることを特徴とする、請求項5~8のいずれかに記載の方法。 The metal region is formed discontinuously, and the metal layer formed by the plating process is formed so as to grow on the ceramic substrate beyond the metal region and to be integrated with the metal layer on the metal region adjacent to each other. The method according to any one of claims 5 to 8, characterized in that:
  10.  金属層が、Ni、Cu、Ag、SnまたはAuであることを特徴とする、請求項5~9のいずれかに記載の方法。 10. The method according to claim 5, wherein the metal layer is Ni, Cu, Ag, Sn, or Au.
  11.  金属層が、電極、配線または端子であることを特徴とする、請求項5~10のいずれかに記載の方法。 The method according to any one of claims 5 to 10, wherein the metal layer is an electrode, a wiring, or a terminal.
  12.  請求項5~11のいずれかに記載の方法により、金属層を形成することを含む電子部品の製造方法。 A method for manufacturing an electronic component, comprising forming a metal layer by the method according to any one of claims 5 to 11.
PCT/JP2016/066245 2015-06-02 2016-06-01 Metal layer formation method WO2016194967A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015112546 2015-06-02
JP2015-112546 2015-06-02

Publications (1)

Publication Number Publication Date
WO2016194967A1 true WO2016194967A1 (en) 2016-12-08

Family

ID=57442035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066245 WO2016194967A1 (en) 2015-06-02 2016-06-01 Metal layer formation method

Country Status (1)

Country Link
WO (1) WO2016194967A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713163A (en) * 1980-06-28 1982-01-23 Matsushita Electric Ind Co Ltd Paste of underlayer activating metallic material for electroless plating and plating method using the same
JP2011176238A (en) * 2010-02-25 2011-09-08 Tdk Corp Chip-type electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713163A (en) * 1980-06-28 1982-01-23 Matsushita Electric Ind Co Ltd Paste of underlayer activating metallic material for electroless plating and plating method using the same
JP2011176238A (en) * 2010-02-25 2011-09-08 Tdk Corp Chip-type electronic component

Similar Documents

Publication Publication Date Title
US9017563B2 (en) Plating method of circuit substrate, production method of plated circuit substrate, and silver etching liquid
JPS6133077B2 (en)
US20120161576A1 (en) Laminate type electronic component and manufacturing method therefor
DE2159612A1 (en) Method for electroless metal plating of non-conductive bodies
EP0083458B1 (en) Method of partially metallising electrically conductive non-metallic patterns
WO2016194967A1 (en) Metal layer formation method
JP5947401B2 (en) Copper metallized wiring ceramic substrate and manufacturing method thereof
JP5278685B2 (en) Manufacturing method of electronic parts
JP3623864B2 (en) Metal film resistor and manufacturing method thereof
WO2016194966A1 (en) Metal layer formation method
JPH03203341A (en) Substrate possessing microelectrode and it production
US6358390B1 (en) Method for forming electrode
JP4207394B2 (en) Method for forming copper electrode of ceramic electronic component
JP3388298B2 (en) Etching solution for pretreatment in plating on glass surface, plating method and method for manufacturing glass substrate
JP4787462B2 (en) Process for producing a conductive coating on an insulating substrate and such a coated substrate
JPS60245781A (en) Plating method onto transparent conductive film pattern
JP5302140B2 (en) Removal method of displacement plating layer
JP2003268561A (en) Electroless plating solution, method of producing ceramic electronic parts, and ceramic electronic parts
JP3879118B2 (en) Electronic component plating method
JP2017110278A (en) Method of forming metal layer
JPH0878801A (en) Circuit substrate and manufacture thereof
JP2005179747A (en) Catalyst solution for electroless plating
JPH07183657A (en) Manufacture of surface mount board
WO2016194968A1 (en) Metal layer formation method
JP2011052258A (en) Method of stripping displacement plating layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP