WO2016194584A1 - Dc circuit, dc power supply device, moving body, and power supply system - Google Patents

Dc circuit, dc power supply device, moving body, and power supply system Download PDF

Info

Publication number
WO2016194584A1
WO2016194584A1 PCT/JP2016/064358 JP2016064358W WO2016194584A1 WO 2016194584 A1 WO2016194584 A1 WO 2016194584A1 JP 2016064358 W JP2016064358 W JP 2016064358W WO 2016194584 A1 WO2016194584 A1 WO 2016194584A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
current path
relay
direct current
Prior art date
Application number
PCT/JP2016/064358
Other languages
French (fr)
Japanese (ja)
Inventor
直 森田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017521773A priority Critical patent/JP6677250B2/en
Publication of WO2016194584A1 publication Critical patent/WO2016194584A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the present disclosure relates to a DC circuit, a DC power supply device, a moving body, and a power supply system.
  • the generation of arc discharge is suppressed with a small-scale configuration when the DC power is cut off without reducing the power efficiency when supplying DC power, and the semiconductor switch is used when the semiconductor switch is used to suppress arc discharge.
  • a new and improved DC circuit, DC power supply device, moving body, and power supply system that can ensure safety even when a short circuit occurs due to deterioration of the switch are proposed.
  • a first current path and a second current path provided in parallel in a path through which a direct current flows and a semiconductor switch provided on the first current path are used in the second current path.
  • the fuse is provided with a DC circuit having a rating that does not melt at the rated energization time and rated energization current of the circuit.
  • a DC power source that supplies DC power, a first current path and a second current path that are provided in parallel in a path through which the DC flows, and a semiconductor switch that is provided on the first current path And a circuit that suppresses the generation of an arc when a direct current is interrupted in the second current path using at least a fuse on the first current path, and the second current when the fuse is blown
  • a direct current power supply device is provided in which the supply of direct current through a path is stopped and the fuse has a rating that does not blow at the rated energization time and rated energization current of the circuit.
  • Patent Documents 1 and 2 In the case of direct current power supply, there are other Patent Documents 1 and 2 as other techniques for suppressing the occurrence of arc discharge when power is cut off.
  • Patent Document 1 discloses a technique for suppressing the occurrence of arc discharge by providing a switching element on a path through which a current flows during DC power supply and turning off the switching element when the plug is removed from the plug receptacle. Yes.
  • Patent Document 2 also suppresses the occurrence of arc discharge by providing an arc absorption circuit including a switching element on a path through which a current flows during DC power supply, and turning off the switching element when the plug is removed from the plug receptacle.
  • the technology is disclosed.
  • the present disclosure has intensively studied a technology that can suppress the occurrence of arc discharge with a small-scale configuration when cutting off DC power without reducing the power efficiency when supplying DC power. went.
  • the present disclosure provides two contacts on the positive electrode, and suppresses the voltage generated between the electrodes when the DC power is cut off when switching the contact with the power receiving electrode.
  • the inventors have devised a technique that can suppress the occurrence of arc discharge with a small-scale configuration when the DC power is cut without reducing the power efficiency when supplying DC power.
  • the present disclosure has intensively studied a technology capable of ensuring safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used for suppressing arc discharge.
  • the present disclosure has devised a technique that can ensure safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used to suppress arc discharge. It was.
  • FIG. 1 is an explanatory diagram illustrating a configuration example of a DC power supply device including a DC circuit according to an embodiment of the present disclosure.
  • FIG. 1 shows a configuration example of a DC power supply apparatus for supplying DC power supplied from a DC power source to a load.
  • a configuration example of a DC power supply device according to an embodiment of the present disclosure will be described with reference to FIG.
  • the DC power supply apparatus shown in FIG. 1 supplies DC power supplied from a DC power supply 200 to the load 10.
  • the DC power source 200 outputs DC power having a predetermined voltage Vs.
  • the DC power supply apparatus shown in FIG. 1 includes a DC circuit 100 between the positive electrode side of the DC power supply 200 and the load 10.
  • the DC circuit 100 has a configuration that suppresses the occurrence of arc discharge when the DC current from the DC power supply 200 is interrupted.
  • the DC circuit 100 includes a MOSFET T1, a capacitor C1, a resistor R1, a diode D1, a switch SW1, and an alarm fuse 110.
  • the DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows.
  • a system in which the switch SW1 is provided is a main system, and a system in which the MOSFET T1 is provided is a sub system.
  • the MOSFET T1 uses an n-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in the present embodiment.
  • the capacitor C1 is provided between the drain terminal and the gate terminal of the MOSFET T1.
  • the resistor R1 is provided between the gate terminal and the source terminal of the MOSFET T1.
  • the capacitor C1 and the resistor R1 are connected in series.
  • the circuit composed of the MOSFET T1, the capacitor C1, the resistor R1, and the diode D1 is a circuit provided for suppressing the current flowing from the DC power supply 200 to the load 10 when the switch SW1 is switched from the on state to the off state.
  • the MOSFET T1 When the switch SW1 is in the OFF state, the MOSFET T1 is also in the OFF state, so that no current flows from the DC power supply 200 to the load 10. After that, when the switch SW1 is operated and the switch SW1 is turned on, a current flows from the DC power source 200 to the load 10. In this state, the MOSFET T1 is continuously turned off. Current does not flow.
  • the MOSFET T1 is turned on, and a current flows in the direction of decreasing the voltage across the switch SW1 from the DC power supply 200 toward the load 10, whereby the voltage across the switch SW1 is reduced. By reducing the voltage across the switch SW1, the switch SW1 does not cause arc discharge even when the switch SW1 is turned off.
  • the voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage.
  • the switch SW1 is turned off and the capacitor C1 is charged by the voltage generated at both ends of the switch SW1
  • the gate voltage of the MOSFET T1 is lowered, and the MOSFET T1 is turned off so that a current flows through the MOSFET T1. Disappear.
  • the diode D1 connected in parallel with the resistor R1 of the DC circuit 100 is used for discharging the charge accumulated in the capacitor C1 in a short time without going through the resistor R1 when the switch SW1 shifts from the off state to the on state. Provided.
  • the diode D1 is provided in parallel with the resistor R1, so that the voltage integration function of the DC circuit 100 can be restored in a short time even if the connection of the switch SW1 causes chattering or the like.
  • the resistor R1 supplies a voltage to the gate terminal of the MOSFET T1, and the voltage supply time is determined by the product relationship between the capacitance of the capacitor C1 and the resistance value of the resistor R1.
  • the alarm fuse 110 is provided with a mechanism for preventing re-energization in the main system provided with the switch SW1 while the fuse portion is blown when an excessive current flows in the sub system provided with the MOSFET T1. It is a fuse. Although a specific configuration example of the alarm fuse 110 will be described later, the alarm fuse 110 includes a mechanism that prevents re-energization in the main system using, for example, elastic force when the fuse is blown.
  • the rated energization time of the alarm fuse 110 (the time until it blows) after the switch SW1 is switched from the on state to the off state and the MOSFET T1 is turned on. ) If the MOSFET T1 is turned off in a shorter time, the alarm fuse 110 will not be blown.
  • FIG. 2 is an explanatory diagram showing a state where the alarm fuse 110 in the DC circuit 100 is blown.
  • the switch portion of the alarm fuse 110 When the alarm fuse 110 is blown, the switch portion of the alarm fuse 110 is turned off in the main system provided with the switch SW1. When the switch portion of the alarm fuse 110 is turned off, DC power is not supplied from the DC power supply 200 to the load even if the switch SW1 is turned on. Therefore, when an abnormal state occurs, the DC circuit 100 according to an embodiment of the present disclosure can prevent re-energization due to the operation of the switch SW1 and can fail in a safe direction.
  • FIG. 3 is an explanatory diagram showing the time change of the current flowing through the alarm fuse 110 in a graph.
  • FIG. 3 shows a time change of the current I1 flowing through the alarm fuse 110 when the DC circuit 100 is normal, and a time change of the current I2 flowing through the alarm fuse 110 when the DC circuit 100 is abnormal. ing.
  • the current I1 decreases in a time shorter than the rated energization time (time until fusing) of the alarm fuse 110. Therefore, the alarm fuse 110 is not blown when the DC circuit 100 is normal. However, when the DC circuit 100 is in an abnormal state, the MOSFET T1 is not turned off and the current continues to flow. When a current exceeding the rated current exceeds the rated current, the alarm fuse 110 is finally blown. The current I2 decreases.
  • the DC circuit 100 uses the fact that the alarm fuse 110 is not blown if the current exceeds the rated current even if a current exceeding the rated current flows, so that the switch SW1 is switched even if the switch SW1 is switched from the on state to the off state. The occurrence of arc discharge can be suppressed. Further, the DC circuit 100 suppresses re-energization in the main system and the sub system from the DC power supply 200 by melting the alarm fuse 110 fuse portion when the MOSFET T1 is not in a normal state due to failure or the like. Can do.
  • FIG. 4 is an explanatory diagram illustrating another configuration example of the DC power supply device according to the embodiment of the present disclosure.
  • FIG. 4 shows a configuration example of a DC power supply device for supplying DC power to a device having a plug inserted in a plug receptacle.
  • the DC power supply apparatus shown in FIG. 4 is an apparatus including a DC circuit 100 that suppresses the occurrence of arc discharge between the plug receiver 20 and the plug 11 when the plug is removed from the plug receiver.
  • a DC power supply for supplying DC power may be provided as in FIGS.
  • the voltage generated between the contact 20a and the contact 20b induces the gate voltage of the MOSFET T1 through the capacitor C1, and turns on the MOSFET T1.
  • a current flows in a direction to decrease the voltage between the contact 20a and the contact 20b.
  • the MOSFET T1 is turned on, and a current flows in a direction to decrease the voltage between the contact 20a and the contact 20b, whereby the potential difference between the positive terminal 11a and the contact 20a is reduced.
  • the voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage.
  • the capacitor C1 is charged by the voltage generated between the contact 20a and the contact 20b after the positive terminal 11a is separated from the contact 20a, the gate voltage of the MOSFET T1 decreases and the MOSFET T1 is turned off. The current stops flowing through the MOSFET T1.
  • the diode D1 connected in parallel to the resistor R1 of the DC circuit 100 has the positive-side terminal 11a in contact with both the contact 20a and the contact 20b, and the contact 20a and the contact 20b are short-circuited. It is provided to discharge the charge accumulated in the capacitor C1 without passing through the resistor R1 in a short time.
  • the diode D1 is provided in parallel with the resistor R1, for example, even if the connection between the contact 20a and the contact 20b causes chattering, the voltage integration function of the DC circuit 100 can be achieved in a short time. I am trying to return.
  • the resistor R1 supplies a voltage to the gate terminal of the MOSFET T1, and the voltage supply time is determined by the product relationship between the capacitance of the capacitor C1 and the resistance value of the resistor R1.
  • FIG. 5 is an explanatory diagram illustrating another configuration example of the DC power supply device according to an embodiment of the present disclosure.
  • FIG. 5 shows an example of the configuration of a DC power supply device intended to supply DC power supplied from a DC power source to a load.
  • the DC power supply device shown in FIG. 5 uses a relay 30 for switching between supply and interruption of DC power.
  • the relay 30 switches a switch according to an electromagnetic force generated by a current from a power source (not shown).
  • a DC power supply for supplying DC power may be provided as in FIGS.
  • the DC power supply device is provided with the DC circuit 100 and an abnormal state occurs.
  • FIG. 6 is an explanatory diagram showing an example of the fusing characteristics of the fuse in a graph.
  • the fuse does not melt even when a larger amount of current flows than the rated current when it is energized for a short time.
  • a 10A fuse blows when a current of 12A or more continues to flow in normal use, but as shown in FIG.
  • FIG. 7 is an explanatory view showing a structural example of the alarm fuse 110.
  • the alarm fuse 110 includes a fuse 111, a holding wire 112, an obstruction mechanism 113, an alarm contact 114, and a spring 115.
  • FIG. 7 shows a state where the fuse 111 is not blown.
  • E1 and E2 shown in FIG. 7 are conductors that flow current to the main system in the DC circuit 100, and F1 and F2 are conductors that flow current to the sub-system in the DC circuit 100.
  • the alarm fuse 110 can pass a current through the main system.
  • FIG. 8 is an explanatory view showing a state where the fuse 111 of the alarm fuse 110 shown in FIG. 7 is blown.
  • the tension of the holding wire 112 is lost, the alarm contact 114 is dissociated from the conductor E2 by the force of the spring 115, and the conductors E1 and E2 are not connected. Therefore, in the state where the fuse 111 is blown, the alarm fuse 110 can be prevented from flowing current to the main system.
  • the obstruction mechanism 113 pops out from the alarm fuse 110 as shown in FIG.
  • the obstruction mechanism 113 obstructs the lowering of the slide bar 121 associated with the switch SW1. Therefore, when the fuse 111 is blown, the alarm fuse 110 can not only prevent the current from flowing through the main system, but can also lock the switch SW1 in the off state.
  • the DC circuit 100 shown so far has a configuration in which a MOSFET and a capacitor are combined in order to suppress the occurrence of arc discharge.
  • the configuration for suppressing the occurrence of arc discharge is not limited to such an example.
  • an alarm fuse is provided in a DC circuit having a configuration in which a mechanical relay is connected in parallel to a solid state relay (SSR, semiconductor relay) in order to suppress the occurrence of arc discharge.
  • SSR solid state relay
  • FIG. 9 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure.
  • FIG. 9 shows a DC circuit 100 for combining a solid state relay (SSR, semiconductor relay) with a mechanical relay and switching between supply and interruption of DC power by turning on and off the mechanical relay. This is an example of the configuration.
  • SSR solid state relay
  • the DC circuit 100 shown in FIG. 9 includes an SSR 130, a mechanical relay RY1, diodes D11, D12, and D13, capacitors C11 and C12, and a resistor R11.
  • the DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows.
  • a system in which the SSR 130 is provided is a main system, and a system in which the mechanical relay RY1 is provided is a sub system.
  • the mechanical relay RY1 operates so as to switch contacts using an electromagnetic force generated by a current flowing from the terminal V + to the terminal V ⁇ .
  • the mechanical relay RY1 is connected to the contact 1b when no current flows from the terminal V + to the terminal V-, and is connected to the contact 1a using electromagnetic force when the current flows from the terminal V + to the terminal V-.
  • a DC power supply for supplying DC power to the terminal V + may be provided as in FIGS.
  • the SSR 130 is provided on the power supply path from the terminal A to the terminal B.
  • the SSR 130 is configured to be turned on when a high voltage is applied to the control terminal, and to be turned off when a low voltage is applied to the control terminal.
  • the mechanical relay RY1 gradually generates an electromagnetic force.
  • the electromagnetic force generated by the mechanical relay RY1 reaches a certain level, the mechanical relay RY1 releases the connection with the contact 1b.
  • the mechanical relay RY1 When the electromagnetic force further increases, the mechanical relay RY1 is connected to the contact 1a, but chattering occurs when connecting to the contact 1a.
  • a voltage is applied to the terminal V +, the voltage is applied to the control terminal of the SSR 130, and the SSR 130 is turned on.
  • a current flows from the terminal V + to the terminal V ⁇ , charge is accumulated in the capacitor C1 through the diode D1.
  • the mechanical relay RY1 gradually reduces the electromagnetic force.
  • the mechanical relay RY1 releases the connection with the contact 1a.
  • the mechanical relay RY1 is connected to the contact 1b, but chattering occurs at the time of connection with the contact 1b.
  • the capacitor C11 can store enough power to turn on the SSR 130 until the mechanical relay RY1 is connected to the contact 1b. At this time, the diode D12 is released from the reverse bias and becomes conductive, and the capacitor C12 operates through the coil of the mechanical relay RY1.
  • the capacitor C12 absorbs chattering when the mechanical relay RY1 is connected to the contact 1b.
  • the capacitor C12 forms a discharge circuit for the capacitor C11 through the diode D13 and absorbs the surge of the mechanical relay RY1.
  • the DC circuit 100 shown in FIG. 9 no current flows from the terminal V + to the terminal V ⁇ , and even if the mechanical relay RY1 is disconnected from the contact 1a, the generation of arc can be suppressed and the surge can be absorbed. I can do it.
  • the DC circuit 100 shown in FIG. 9 has four terminals and can be connected in the same manner as a general relay, so that it can be used in place of an existing relay.
  • the 9 includes an alarm fuse 110.
  • the DC circuit 100 shown in FIG. When the semiconductor switch of the SSR 130 breaks down and does not normally shift to the off state, the alarm fuse 110 is eventually blown by the current flowing from the terminal A. When the alarm fuse 110 blows, the switch of the alarm fuse 110 on the path on the contact 1a side of the mechanical relay RY1 is turned off.
  • the DC circuit 100 shown in FIG. 9 can suppress re-energization by the mechanical relay RY1 even if the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state.
  • FIG. 10 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure.
  • FIG. 10 shows an example of the configuration of a DC circuit 100 for combining the SSR with a mechanical relay and switching the supply and interruption of DC power by turning the mechanical relay on and off.
  • a DC power supply for supplying DC power to the terminal V + may be provided as in FIGS.
  • the DC circuit 100 shown in FIG. 10 includes an alarm fuse 110 similar to the DC circuit 100 shown in FIG. 9, but the alarm fuse 110 in FIG. 10 is normally turned off due to a failure of the semiconductor switch of the SSR 130. When it does not shift to, the switch provided on the path from the terminal V + to the terminal V ⁇ is turned off. Therefore, the DC circuit 100 shown in FIG. 10 can suppress re-energization by the mechanical relay RY1 even if the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state.
  • the mechanical relay RY1 does not operate.
  • the DC circuit 100 shown in FIG. 10 can be expected to have an effect of making it easier to find a failure because the mechanical relay RY1 does not operate when an abnormality occurs.
  • FIG. 11 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure.
  • FIG. 11 shows an example of the configuration of a DC circuit 100 for combining the SSR with a mechanical relay and switching the supply and interruption of DC power by turning the mechanical relay on and off.
  • a DC power supply for supplying DC power to the terminal A may be provided as in FIGS.
  • FIG. 11 shows a DC circuit 100 having a configuration in which a fuse 110 ′ is disposed between the terminal A and the SSR 130, and a power source for driving the mechanical relay RY1 is supplied from between the fuse 110 ′ and the SSR 130. is there.
  • the DC circuit 100 shown in FIG. 11 when the semiconductor switch of the SSR 130 breaks down and does not normally shift to the OFF state, the fuse 110 'is blown out due to the current flowing from the terminal A. When the fuse 110 'is blown, no current flows to the mechanical relay RY1, and the mechanical relay RY1 does not operate.
  • the DC circuit 100 shown in FIG. 11 can be expected to have an effect of making it easier to find a failure because the mechanical relay RY1 does not operate when an abnormality occurs.
  • FIG. 12 is an explanatory diagram showing an example of the time change of the current flowing through the fuse in the DC circuit 100 shown in FIGS.
  • FIG. 12 shows the time change of the current I3 flowing through the fuse when the DC circuit 100 is normal and the time change of the current I4 flowing through the fuse 110 when the DC circuit 100 is abnormal.
  • FIG. 13 is an explanatory diagram illustrating a functional configuration example of the moving body 40 including the DC circuit 100.
  • the moving body 40 may be, for example, a moving body that uses gasoline as a power source, such as a gasoline car, and uses a chargeable / dischargeable battery as a main power source, such as an electric vehicle, a hybrid vehicle, and an electric motorcycle. It may be a body.
  • FIG. 13 shows an example in which the moving body 40 includes a battery 210 and a driving unit 220 that is driven by electric power supplied from the battery.
  • the drive unit 220 may include, for example, equipment provided in the vehicle such as a wiper, a power window, a light, a car navigation system, and an air conditioner, and a device that drives the moving body 40 such as a motor.
  • the moving body 40 shown in FIG. 13 is provided with the DC circuit 100 on a path through which DC power is supplied from the battery 210 to the drive unit 220, so that, for example, arc discharge occurs when the battery 210 is temporarily attached or detached. Can be suppressed.
  • FIG. 13 shows an example of the moving body 40 provided with only one DC circuit 100, but the present disclosure is not limited to such an example. That is, a plurality of DC circuits 100 may be provided in the middle of a path through which DC power is supplied. Further, the DC circuit 100 may be provided not only in the middle of a path in which DC power is supplied from the battery 210 to the drive unit 220 but also in another place, for example, in the middle of a path when charging the battery 210 with DC power. . The moving body 40 can safely charge the battery 210 with DC power by providing the DC circuit 100 in the middle of the path when charging the battery 210 with DC power.
  • the DC circuit 100 uses a semiconductor switch to suppress the occurrence of arc discharge when the DC power is cut off, but blows when the semiconductor switch fails and does not operate normally.
  • a fuse having a mechanism for suppressing re-energization is provided.
  • the DC circuit 100 according to the embodiment of the present disclosure and the DC power supply device including the DC circuit 100 can be used when the semiconductor switch is deteriorated when the semiconductor switch is used to suppress arc discharge. It is possible to ensure safety even if a short circuit occurs due to.
  • the first current path includes at least a fuse, When the fuse is blown, the supply of direct current through the second current path is stopped,
  • the fuse is a DC circuit having a rating that is not blown by a rated energization time and a rated energization current of the circuit.
  • the DC circuit according to (1) On the second current path, a mechanical switch that switches between supply and cut-off of direct current through the second current path, The DC circuit according to (1), further including a suppression mechanism that suppresses supply of DC power by the mechanical switch when the fuse is blown. (3) The DC circuit according to (1) or (2), wherein the circuit is a circuit that suppresses an amount of direct current flowing through the first current path.
  • the circuit is A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side; Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path; A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
  • the DC circuit according to (3) comprising: (5)
  • the circuit is A semiconductor relay which is provided on the first current path and which switches between supply and interruption of a direct current from a direct current power supply; A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of a direct current from the direct current power source; With The DC output circuit according to (1), which is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
  • the circuit further includes a capacitor connected in parallel with the mechanical relay and connected at one end to a control terminal of the semiconductor relay,
  • the semiconductor relay is turned on when a high voltage is applied to the control terminal before the mechanical relay is switched from the off state to the on state, and the mechanical relay is switched from the on state to the off state. After that, the low voltage is applied to the control terminal to turn off,
  • the capacitor stores electricity while the mechanical relay is in an on state, and outputs a current for maintaining the semiconductor relay in an on state after the mechanical relay is switched off. ) DC circuit.
  • a DC power supply for supplying DC power; A first current path and a second current path provided in parallel in a path through which direct current flows; A circuit that suppresses the occurrence of an arc when a direct current is interrupted in the second current path using a semiconductor switch provided on the first current path; With The first current path includes at least a fuse, When the fuse is blown, the supply of direct current through the second current path is stopped, The fuse is a direct-current power supply device having a rating that does not melt at a rated energization time and a rated energization current of the circuit.
  • the DC power supply device On the second current path, a mechanical switch that switches between supply and cut-off of direct current through the second current path, The DC power supply device according to (7), including a suppression mechanism that suppresses supply of DC power by the mechanical switch when the fuse is blown. (9) The DC power supply device according to (7) or (8), wherein the circuit is a circuit that suppresses an amount of direct current flowing through the first current path.
  • the circuit is A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side; Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path; A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
  • the direct-current power supply device comprising: (11)
  • the circuit is A semiconductor relay which is provided on the first current path and which switches between supply and interruption of DC power; A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch power supply and interruption from the power source; With The DC power supply device according to (7), wherein the DC relay is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
  • the circuit further includes a capacitor connected in parallel with the mechanical relay and connected at one end to a control terminal of the semiconductor relay,
  • the semiconductor relay is turned on when a high voltage is applied to the control terminal before the mechanical relay is switched from the off state to the on state, and the mechanical relay is switched from the on state to the off state. After that, the low voltage is applied to the control terminal to turn off,
  • the capacitor stores power while the mechanical relay is in an ON state, and outputs electric power for maintaining the semiconductor relay in an ON state after the mechanical relay is switched to an OFF state.
  • DC power supply device (13) A moving body comprising the DC circuit according to any one of (1) to (6).
  • a power supply system comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Fuses (AREA)
  • Keying Circuit Devices (AREA)
  • Relay Circuits (AREA)

Abstract

[Problem] To provide a DC circuit capable of ensuring safety even if a short circuit should occur due to the deterioration time of a semiconductor switch when using said semiconductor switch to suppress arcing. [Solution] Provided is a DC circuit comprising: a first current pathway and a second current pathway, which are provided in parallel on a path along which a direct current flows; and a circuit that uses a semiconductor switch to suppress the occurrence of arcs when the direct current in the second current pathway is interrupted. The first current pathway is provided with at least a fuse thereon. If the fuse melts, the supply of direct current via the second current pathway is stopped. The fuse is rated so as not to melt under the rated conduction time and rated conduction current of the circuit.

Description

直流回路、直流電力供給装置、移動体及び電力供給システムDC circuit, DC power supply device, moving body, and power supply system
 本開示は、直流回路、直流電力供給装置、移動体及び電力供給システム
に関する。
The present disclosure relates to a DC circuit, a DC power supply device, a moving body, and a power supply system.
 直流給電でも交流給電でも、電力の切断時にはアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。しかし直流給電では、ゼロ電圧となる瞬間がないため、アーク放電は自然には止まらない。 ア ー ク Arc discharge occurs when power is cut off in both DC and AC power supplies. In the case of AC, since there is a moment when the voltage becomes zero every predetermined time (for example, every 10 milliseconds), arc discharge naturally stops at least within the predetermined time (for example, within 10 milliseconds). However, with DC power supply, arc discharge does not stop naturally because there is no moment of zero voltage.
 そのため、直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術が開示されている(特許文献1,2等参照)。 For this reason, techniques for suppressing the occurrence of arc discharge when power is cut off in the case of direct current power supply have been disclosed (see Patent Documents 1 and 2, etc.).
特開2003-203721号公報JP 2003-203721 A 特表2014-522088号公報Special Table 2014-520208 Publication
 直流給電の場合に電力の切断時にアーク放電の発生を抑えることはもちろんであるが、アーク放電の発生を抑えるための構成が大規模なものになるのは好ましくなく、またアーク放電の発生を抑えるための構成を加えることで直流給電の最中に電力供給効率を低下させるのも好ましくない。従って、直流電力供給時の電力効率を低下させずに、直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが望ましい。 In the case of DC power supply, it is of course possible to suppress the occurrence of arc discharge when power is cut off, but it is not preferable that the construction for suppressing the occurrence of arc discharge becomes large, and the occurrence of arc discharge is suppressed. It is also not preferable to reduce the power supply efficiency during the DC power supply by adding the configuration for this. Therefore, it is desirable to suppress the occurrence of arc discharge with a small-scale configuration when cutting off DC power without reducing power efficiency when supplying DC power.
 そこで本開示では、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制するとともに、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能な、新規かつ改良された直流回路、直流電力供給装置、移動体及び電力供給システムを提案する。 Therefore, in the present disclosure, the generation of arc discharge is suppressed with a small-scale configuration when the DC power is cut off without reducing the power efficiency when supplying DC power, and the semiconductor switch is used when the semiconductor switch is used to suppress arc discharge. A new and improved DC circuit, DC power supply device, moving body, and power supply system that can ensure safety even when a short circuit occurs due to deterioration of the switch are proposed.
 本開示によれば、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、を備え、前記第1の電流経路上には少なくともヒューズを備え、前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流回路が提供される。 According to the present disclosure, a first current path and a second current path provided in parallel in a path through which a direct current flows and a semiconductor switch provided on the first current path are used in the second current path. A circuit that suppresses the generation of an arc when the direct current is interrupted, and includes at least a fuse on the first current path, and when the fuse blows, the supply of direct current through the second current path is stopped, The fuse is provided with a DC circuit having a rating that does not melt at the rated energization time and rated energization current of the circuit.
 また本開示によれば、直流電力を供給する直流電源と、直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、を備え、前記第1の電流経路上には少なくともヒューズを備え、前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流電力供給装置が提供される。 According to the present disclosure, a DC power source that supplies DC power, a first current path and a second current path that are provided in parallel in a path through which the DC flows, and a semiconductor switch that is provided on the first current path And a circuit that suppresses the generation of an arc when a direct current is interrupted in the second current path using at least a fuse on the first current path, and the second current when the fuse is blown A direct current power supply device is provided in which the supply of direct current through a path is stopped and the fuse has a rating that does not blow at the rated energization time and rated energization current of the circuit.
 以上説明したように本開示によれば、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制するとともに、アーク放電の抑制に半導体を用いた際に当該半導体の劣化時による短絡が発生しても安全を確保することが可能な、新規かつ改良された直流回路、直流電力供給装置、移動体及び電力供給システムを提供することが出来る。 As described above, according to the present disclosure, generation of arc discharge is suppressed with a small-scale configuration when DC power is cut without reducing power efficiency when supplying DC power, and a semiconductor is used to suppress arc discharge. Thus, it is possible to provide a new and improved DC circuit, DC power supply device, moving body, and power supply system that can ensure safety even if a short circuit occurs due to deterioration of the semiconductor.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る直流回路を備えた直流電力供給装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC power supply apparatus provided with the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路を備えた直流電力供給装置の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC power supply apparatus provided with the DC circuit which concerns on one Embodiment of this indication. 電流の時間変化をグラフで示す説明図である。It is explanatory drawing which shows the time change of an electric current with a graph. 本開示の一実施形態に係る直流回路の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC circuit which concerns on one Embodiment of this indication. ヒューズの溶断特性の例をグラフで示す説明図である。It is explanatory drawing which shows the example of the fusing characteristic of a fuse with a graph. 警報ヒューズの構造例を示す説明図である。It is explanatory drawing which shows the structural example of an alarm fuse. 警報ヒューズの構造例を示す説明図である。It is explanatory drawing which shows the structural example of an alarm fuse. 本開示の一実施形態に係る直流回路の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC circuit which concerns on one Embodiment of this indication. 本開示の一実施形態に係る直流回路の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the DC circuit which concerns on one Embodiment of this indication. 電流の時間変化をグラフで示す説明図である。It is explanatory drawing which shows the time change of an electric current with a graph. 本開示の一実施形態に係る直流回路が備えられた電動駆動体の機能構成例を示す説明図である。It is explanatory drawing which shows the function structural example of the electric drive body provided with the DC circuit which concerns on one Embodiment of this indication.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.本開示の一実施形態
  1.1.背景
  1.2.構成例
 2.まとめ
The description will be made in the following order.
1. One Embodiment of the Present Disclosure 1.1. Background 1.2. Configuration example 2. Summary
 <1.本開示の一実施形態>
 [1.1.背景]
 本開示の一実施形態について詳細に説明する前に、まず本開示の一実施形態の背景について説明する。
<1. One Embodiment of the Present Disclosure>
[1.1. background]
Before describing an embodiment of the present disclosure in detail, first, the background of the embodiment of the present disclosure will be described.
 直流給電でも交流給電でも、電力の切断時には、電圧と電流がある所定の値以上になると、電極間の電位差によるスパークやアーク放電が発生する。交流の場合、所定の時間毎(例えば10ミリ秒毎)に電圧がゼロとなる瞬間があるので、アーク放電は少なくとも上記所定の時間内(例えば10ミリ秒以内)に自然に止まる。 In both DC power supply and AC power supply, when the power is cut off, if the voltage and current exceed a certain value, a spark or arc discharge occurs due to the potential difference between the electrodes. In the case of AC, since there is a moment when the voltage becomes zero every predetermined time (for example, every 10 milliseconds), arc discharge naturally stops at least within the predetermined time (for example, within 10 milliseconds).
 しかし直流給電では、交流給電と違って電圧がゼロとなる瞬間がないため、アーク放電は自然には止まらない。アーク放電は、金属の溶断、溶着といった接点の劣化を発生させ、電力給電の信頼性が低下するおそれがある。 However, in the case of DC power supply, unlike AC power supply, there is no moment when the voltage becomes zero, so arc discharge does not stop naturally. Arc discharge may cause contact deterioration such as fusing and welding of metal, which may reduce the reliability of power supply.
 そのため、直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術が開示されている。例えば、コンデンサと抵抗とを用いたスナバ回路を揺動接触子の間に接続して回避する技術が従来から提案されている。 For this reason, a technique aimed at suppressing the occurrence of arc discharge when the power is cut off in the case of direct current power supply is disclosed. For example, a technique for avoiding by connecting a snubber circuit using a capacitor and a resistor between swinging contacts has been proposed.
 しかし、直流給電の場合にスナバ回路を用いてアーク放電を防ぐためには、容量の大きなコンデンサと小さな抵抗を用いなければ十分な効果が得られず、十分な効果を得ようとするとスナバ回路が大型化してしまう。また、スナバ回路を用いてアーク放電を防ぐ場合、直流電力の切断後に直流電源に再度接続しようとすると、容量の大きなコンデンサにチャージされた電荷によるショート電流が大きくなり、接点が溶着してしまう。 However, in order to prevent arc discharge using a snubber circuit in the case of direct current power supply, a sufficient effect cannot be obtained unless a capacitor with a large capacity and a small resistance are used. It will become. Further, when arc discharge is prevented by using a snubber circuit, if an attempt is made to reconnect to a DC power supply after the DC power is cut off, a short current due to a charge charged in a capacitor having a large capacity increases and the contact is welded.
 また差込プラグをプラグ受けに抜き差しすることによって直流給電を行う場合において、アーク放電の発生を防ぐために差込プラグに機械的スイッチを設け、差込プラグをプラグ受けから抜去する際にその機械的スイッチを操作することでアーク放電の発生を防ぐ技術もある。しかし、この技術では差込プラグの抜去時に機械的スイッチの操作という煩雑な操作を利用者に強いる必要が生じる。 In addition, when DC power is supplied by inserting / removing the plug into / from the plug receptacle, a mechanical switch is provided on the plug to prevent arc discharge, and the mechanical plug is removed when the plug is removed from the plug receptacle. There is also a technique for preventing arc discharge by operating a switch. However, in this technique, it is necessary to force the user to perform a complicated operation of operating a mechanical switch when the plug is removed.
 機械的にアーク放電を除去する方法もある。しかし機械的にアーク放電を除去するためには、接点の引き剥がし速度を上げたり、磁気回路によってアークを引き剥がしたりするなどの構造が必要となり、アーク放電を除去するための回路が大型化してしまう。 There is also a method of mechanically removing arc discharge. However, in order to remove arc discharge mechanically, it is necessary to increase the contact peeling speed or to peel off the arc with a magnetic circuit, which increases the size of the circuit for removing arc discharge. End up.
 直流給電の場合に電力の切断時にアーク放電の発生を抑えることを目的とした技術として、他に上記特許文献1,2等がある。 In the case of direct current power supply, there are other Patent Documents 1 and 2 as other techniques for suppressing the occurrence of arc discharge when power is cut off.
 上記特許文献1は、直流給電時に電流が流れる経路上にスイッチング素子を設け、プラグ受けからの差込プラグの抜去時にスイッチング素子をオフにすることで、アーク放電の発生を抑える技術を開示している。 Patent Document 1 discloses a technique for suppressing the occurrence of arc discharge by providing a switching element on a path through which a current flows during DC power supply and turning off the switching element when the plug is removed from the plug receptacle. Yes.
 しかし、特許文献1に開示されている技術では、直流給電時に電流がスイッチング素子を流れるために、直流給電時にスイッチング素子において電力が消費されるとともに、直流給電時にスイッチング素子が発熱する。 However, in the technique disclosed in Patent Document 1, since current flows through the switching element during DC power supply, power is consumed in the switching element during DC power supply, and the switching element generates heat during DC power supply.
 上記特許文献2も、直流給電時に電流が流れる経路上にスイッチング素子を備えるアーク吸収回路を設け、プラグ受けからの差込プラグの抜去時にスイッチング素子をオフにすることで、アーク放電の発生を抑える技術を開示している。 The above Patent Document 2 also suppresses the occurrence of arc discharge by providing an arc absorption circuit including a switching element on a path through which a current flows during DC power supply, and turning off the switching element when the plug is removed from the plug receptacle. The technology is disclosed.
 しかし、特許文献2で開示されている技術では、アーク吸収回路として2つのスイッチング素子や、スイッチング素子をオフにするためのタイマを設けており、アーク電力を一時的に蓄えて、その蓄えた電力を放出するための回路が必要になり、回路が大型化する。 However, in the technique disclosed in Patent Document 2, two switching elements as an arc absorption circuit and a timer for turning off the switching elements are provided, arc power is temporarily stored, and the stored power A circuit for discharging the battery becomes necessary, and the circuit becomes larger.
 そこで本件開示者は、上述した背景に鑑み、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、正極側の電極に2つの接点を設け、受電側の電極との接点の切り替え時に直流電力の切断時に電極間で生じる電圧を抑制することで、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な技術を考案するに至った。 Therefore, in view of the above-described background, the present disclosure has intensively studied a technology that can suppress the occurrence of arc discharge with a small-scale configuration when cutting off DC power without reducing the power efficiency when supplying DC power. went. As a result, as described below, the present disclosure provides two contacts on the positive electrode, and suppresses the voltage generated between the electrodes when the DC power is cut off when switching the contact with the power receiving electrode. Thus, the inventors have devised a technique that can suppress the occurrence of arc discharge with a small-scale configuration when the DC power is cut without reducing the power efficiency when supplying DC power.
 さらに、本件開示者は、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能な技術について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保できる技術を考案するに至った。 Furthermore, the present disclosure has intensively studied a technology capable of ensuring safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used for suppressing arc discharge. As a result, as described below, the present disclosure has devised a technique that can ensure safety even when a short circuit occurs due to deterioration of the semiconductor switch when the semiconductor switch is used to suppress arc discharge. It was.
 以上、本開示の一実施形態の背景について説明した。続いて、本開示の実施の形態について詳細に説明する。 The background of the embodiment of the present disclosure has been described above. Subsequently, an embodiment of the present disclosure will be described in detail.
 [1.2.構成例]
 図1は、本開示の一実施形態に係る直流回路を備えた直流電力供給装置の構成例を示す説明図である。図1に示したのは、直流電源から供給される直流電力を負荷に供給することを目的とした直流電力供給装置の構成例である。以下、図1を用いて本開示の一実施形態に係る直流電力供給装置の構成例について説明する。
[1.2. Configuration example]
FIG. 1 is an explanatory diagram illustrating a configuration example of a DC power supply device including a DC circuit according to an embodiment of the present disclosure. FIG. 1 shows a configuration example of a DC power supply apparatus for supplying DC power supplied from a DC power source to a load. Hereinafter, a configuration example of a DC power supply device according to an embodiment of the present disclosure will be described with reference to FIG.
 図1に示した直流電力供給装置は、直流電源200から供給される直流電力を負荷10に供給している。直流電源200は所定の電圧Vsの直流電力を出力する。そして図1に示した直流電力供給装置は、直流電源200の正極側と負荷10との間に、直流回路100を備える。直流回路100は、直流電源200からの直流電流を遮断する際にアーク放電の発生を抑制する構成を有している。 The DC power supply apparatus shown in FIG. 1 supplies DC power supplied from a DC power supply 200 to the load 10. The DC power source 200 outputs DC power having a predetermined voltage Vs. The DC power supply apparatus shown in FIG. 1 includes a DC circuit 100 between the positive electrode side of the DC power supply 200 and the load 10. The DC circuit 100 has a configuration that suppresses the occurrence of arc discharge when the DC current from the DC power supply 200 is interrupted.
 直流回路100は、MOSFET T1と、コンデンサC1と、抵抗R1と、ダイオードD1と、スイッチSW1と、警報ヒューズ110と、を含んで構成される。直流回路100は、直流が流れる経路において並列である主系統と副系統とで電流を流す。スイッチSW1が設けられている系統を主系統とし、MOSFET T1が設けられている系統を副系統とする。 The DC circuit 100 includes a MOSFET T1, a capacitor C1, a resistor R1, a diode D1, a switch SW1, and an alarm fuse 110. The DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows. A system in which the switch SW1 is provided is a main system, and a system in which the MOSFET T1 is provided is a sub system.
 MOSFET T1は、本実施形態ではn型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor) を用いている。コンデンサC1は、MOSFET T1のドレイン端子とゲート端子との間に設けられる。また抵抗R1は、MOSFET T1のゲート端子とソース端子との間に設けられる。そしてコンデンサC1と抵抗R1とは直列に接続されている。MOSFET T1、コンデンサC1、抵抗R1、及びダイオードD1からなる回路は、スイッチSW1がオン状態からオフ状態へ切り替わる際に、直流電源200から負荷10へ流れる電流を抑制するために設けられる回路である。 The MOSFET T1 uses an n-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) in the present embodiment. The capacitor C1 is provided between the drain terminal and the gate terminal of the MOSFET T1. The resistor R1 is provided between the gate terminal and the source terminal of the MOSFET T1. The capacitor C1 and the resistor R1 are connected in series. The circuit composed of the MOSFET T1, the capacitor C1, the resistor R1, and the diode D1 is a circuit provided for suppressing the current flowing from the DC power supply 200 to the load 10 when the switch SW1 is switched from the on state to the off state.
 直流回路100の動作について説明する。スイッチSW1の状態がオフ状態になっている場合にMOSFET T1もオフ状態であり、従って直流電源200から負荷10に電流は流れない。その後、スイッチSW1が操作されて、スイッチSW1の状態がオン状態に以降すると、直流電源200から負荷10に電流が流れるが、この状態ではMOSFET T1は引き続きオフ状態になっており、MOSFET T1には電流が流れない。 The operation of the DC circuit 100 will be described. When the switch SW1 is in the OFF state, the MOSFET T1 is also in the OFF state, so that no current flows from the DC power supply 200 to the load 10. After that, when the switch SW1 is operated and the switch SW1 is turned on, a current flows from the DC power source 200 to the load 10. In this state, the MOSFET T1 is continuously turned off. Current does not flow.
 さらにその後、スイッチSW1が操作されて、スイッチSW1の状態がオフ状態になると、直流電源200から負荷10に電流が流れなくなる。この際にスイッチSW1がオフ状態になったことによって(スイッチSW1の両端が切り離されたことによって)生じるスイッチSW1の両端の電圧は、コンデンサC1を介してMOSFET T1のゲート電圧を誘起させて、MOSFET T1をオン状態にする。MOSFET T1がオン状態になると、直流電源200から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れる。 Thereafter, when the switch SW1 is operated and the switch SW1 is turned off, no current flows from the DC power supply 200 to the load 10. At this time, the voltage at both ends of the switch SW1 generated when the switch SW1 is turned off (by disconnecting both ends of the switch SW1) induces the gate voltage of the MOSFET T1 through the capacitor C1, and the MOSFET Turn T1 on. When the MOSFET T1 is turned on, a current flows from the DC power source 200 toward the load 10 in a direction that reduces the voltage across the switch SW1.
 MOSFET T1がオン状態になり、直流電源200から負荷10へ向けて、スイッチSW1の両端の電圧を低下させる方向に電流が流れることにより、スイッチSW1の両端の電圧が低減される。スイッチSW1の両端の電圧が低減されることによって、スイッチSW1がオフ状態になっても、スイッチSW1はアーク放電の発生に至ることはない。 The MOSFET T1 is turned on, and a current flows in the direction of decreasing the voltage across the switch SW1 from the DC power supply 200 toward the load 10, whereby the voltage across the switch SW1 is reduced. By reducing the voltage across the switch SW1, the switch SW1 does not cause arc discharge even when the switch SW1 is turned off.
 MOSFET T1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。スイッチSW1がオフ状態になり、スイッチSW1の両端に発生した電圧によってコンデンサC1の充電が進むと、MOSFET T1のゲート電圧が低下し、MOSFET T1はオフ状態に移行することでMOSFET T1に電流が流れなくなる。 The voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage. When the switch SW1 is turned off and the capacitor C1 is charged by the voltage generated at both ends of the switch SW1, the gate voltage of the MOSFET T1 is lowered, and the MOSFET T1 is turned off so that a current flows through the MOSFET T1. Disappear.
 直流回路100の抵抗R1に並列に接続されたダイオードD1は、スイッチSW1がオフ状態からオン状態に移行した場合に、抵抗R1を介さずコンデンサC1に蓄積された電荷を短時間に放電するために設けられる。 The diode D1 connected in parallel with the resistor R1 of the DC circuit 100 is used for discharging the charge accumulated in the capacitor C1 in a short time without going through the resistor R1 when the switch SW1 shifts from the off state to the on state. Provided.
 直流回路100において、ダイオードD1が抵抗R1と並列に設けられることで、例えばスイッチSW1の接続がチャタリングなどの現象を起こしても、直流回路100の電圧積分機能が短時間で復帰できるようにしている。抵抗R1は、MOSFET T1のゲート端子に電圧を供給するが、電圧の供給時間はコンデンサC1の容量と抵抗R1の抵抗値との積の関係で決まる。 In the DC circuit 100, the diode D1 is provided in parallel with the resistor R1, so that the voltage integration function of the DC circuit 100 can be restored in a short time even if the connection of the switch SW1 causes chattering or the like. . The resistor R1 supplies a voltage to the gate terminal of the MOSFET T1, and the voltage supply time is determined by the product relationship between the capacitance of the capacitor C1 and the resistance value of the resistor R1.
 警報ヒューズ110は、MOSFET T1が設けられている副系統で過大な電流が流れるとヒューズ部が溶断するとともに、スイッチSW1が設けられている主系統での再通電を防止する機構が設けられているヒューズである。警報ヒューズ110の具体的な構成例は後述するが、警報ヒューズ110は、例えばヒューズが溶断すると、弾性力などを用いて、上記主系統での再通電を防止する機構を備えている。 The alarm fuse 110 is provided with a mechanism for preventing re-energization in the main system provided with the switch SW1 while the fuse portion is blown when an excessive current flows in the sub system provided with the MOSFET T1. It is a fuse. Although a specific configuration example of the alarm fuse 110 will be described later, the alarm fuse 110 includes a mechanism that prevents re-energization in the main system using, for example, elastic force when the fuse is blown.
 図1に示した直流回路100において、正常な状態、すなわち、スイッチSW1がオン状態からオフ状態に切り替わり、MOSFET T1がオン状態となってから、警報ヒューズ110の定格通電時間(溶断するまでの時間)より短い時間でMOSFET T1がオフ状態になれば、警報ヒューズ110は溶断することはない。 In the DC circuit 100 shown in FIG. 1, the rated energization time of the alarm fuse 110 (the time until it blows) after the switch SW1 is switched from the on state to the off state and the MOSFET T1 is turned on. ) If the MOSFET T1 is turned off in a shorter time, the alarm fuse 110 will not be blown.
 しかし、異常な状態、すなわちMOSFET T1が故障するなどして、スイッチSW1がオン状態からオフ状態に切り替わり、MOSFET T1がオン状態となってから、警報ヒューズ110の溶断時間より短い時間でMOSFET T1がオフ状態にならなければ、警報ヒューズ110のヒューズ部に電流が流れ続け、警報ヒューズ110が溶断する。図2は、直流回路100における警報ヒューズ110が溶断している状態を示す説明図である。 However, since the switch SW1 is switched from the on state to the off state due to an abnormal state, that is, the MOSFET T1 is broken, and the MOSFET T1 is turned on, the MOSFET T1 is turned on in a time shorter than the fusing time of the alarm fuse 110. If not turned off, current continues to flow through the fuse portion of the alarm fuse 110 and the alarm fuse 110 is blown. FIG. 2 is an explanatory diagram showing a state where the alarm fuse 110 in the DC circuit 100 is blown.
 そして警報ヒューズ110が溶断すると、スイッチSW1が設けられている主系統において警報ヒューズ110のスイッチ部がオフ状態となる。警報ヒューズ110のスイッチ部がオフ状態となると、仮にスイッチSW1がオン状態となっても、直流電源200から直流電力が負荷に供給されることがなくなる。従って、本開示の一実施形態に係る直流回路100は、異常な状態が発生した場合に、スイッチSW1の操作による再通電を防ぎ、安全な方向へ故障することが可能となる。 When the alarm fuse 110 is blown, the switch portion of the alarm fuse 110 is turned off in the main system provided with the switch SW1. When the switch portion of the alarm fuse 110 is turned off, DC power is not supplied from the DC power supply 200 to the load even if the switch SW1 is turned on. Therefore, when an abnormal state occurs, the DC circuit 100 according to an embodiment of the present disclosure can prevent re-energization due to the operation of the switch SW1 and can fail in a safe direction.
 図3は、警報ヒューズ110に流れる電流の時間変化をグラフで示す説明図である。図3には、直流回路100が正常な状態における、警報ヒューズ110に流れる電流I1の時間変化と、直流回路100が異常な状態における、警報ヒューズ110に流れる電流I2の時間変化と、が示されている。 FIG. 3 is an explanatory diagram showing the time change of the current flowing through the alarm fuse 110 in a graph. FIG. 3 shows a time change of the current I1 flowing through the alarm fuse 110 when the DC circuit 100 is normal, and a time change of the current I2 flowing through the alarm fuse 110 when the DC circuit 100 is abnormal. ing.
 直流回路100が正常な状態では、定格電流を上回る電流が流れても、警報ヒューズ110の定格通電時間(溶断するまでの時間)より短い時間で電流I1が低下する。従って直流回路100が正常な状態では警報ヒューズ110は溶断しない。しかし、直流回路100が異常な状態では、MOSFET T1がオフ状態にならず電流が流れ続け、定格通電時間を超えて定格電流を上回る電流が流れると、最終的に警報ヒューズ110が溶断してようやく電流I2が低下する。 In the normal state of the DC circuit 100, even if a current exceeding the rated current flows, the current I1 decreases in a time shorter than the rated energization time (time until fusing) of the alarm fuse 110. Therefore, the alarm fuse 110 is not blown when the DC circuit 100 is normal. However, when the DC circuit 100 is in an abnormal state, the MOSFET T1 is not turned off and the current continues to flow. When a current exceeding the rated current exceeds the rated current, the alarm fuse 110 is finally blown. The current I2 decreases.
 すなわち直流回路100は、定格電流を上回る電流が流れても定格通電時間より短い時間であれば警報ヒューズ110は溶断しないことを利用して、スイッチSW1がオン状態からオフ状態に切り替わってもスイッチSW1のアーク放電の発生を抑えることができる。また、直流回路100は、MOSFET T1が故障するなどして正常な状態では無くなった場合に、警報ヒューズ110ヒューズ部の溶断によって直流電源200からの主系統及び副系統での再通電を抑止することができる。 That is, the DC circuit 100 uses the fact that the alarm fuse 110 is not blown if the current exceeds the rated current even if a current exceeding the rated current flows, so that the switch SW1 is switched even if the switch SW1 is switched from the on state to the off state. The occurrence of arc discharge can be suppressed. Further, the DC circuit 100 suppresses re-energization in the main system and the sub system from the DC power supply 200 by melting the alarm fuse 110 fuse portion when the MOSFET T1 is not in a normal state due to failure or the like. Can do.
 以上、本開示の一実施形態に係る直流電力供給装置の構成例について説明した。続いて本開示の一実施形態に係る直流電力供給装置の別の構成例について説明する。 The configuration example of the DC power supply device according to the embodiment of the present disclosure has been described above. Next, another configuration example of the DC power supply device according to an embodiment of the present disclosure will be described.
 図4は、本開示の一実施形態に係る直流電力供給装置の別の構成例を示す説明図である。図4に示したのは、プラグ受けにプラグが挿入された機器へ直流電力を供給することを目的とした直流電力供給装置の構成例である。 FIG. 4 is an explanatory diagram illustrating another configuration example of the DC power supply device according to the embodiment of the present disclosure. FIG. 4 shows a configuration example of a DC power supply device for supplying DC power to a device having a plug inserted in a plug receptacle.
 図4に示した直流電力供給装置は、プラグ受けからプラグが抜去される際にプラグ受け20とプラグ11との間でアーク放電の発生を抑制する直流回路100を備えた装置である。なお図4には図示していないが、図1、図2と同様に、直流電力を供給する直流電源が設けられていても良い。 The DC power supply apparatus shown in FIG. 4 is an apparatus including a DC circuit 100 that suppresses the occurrence of arc discharge between the plug receiver 20 and the plug 11 when the plug is removed from the plug receiver. Although not shown in FIG. 4, a DC power supply for supplying DC power may be provided as in FIGS.
 プラグ11がプラグ受け20に完全に挿入され、正極側端子11aが接触子20aと接触子20bとの両方に接触して接触子20aと接触子20bとがショートされた状態では、MOSFET T1に電流が流れない。プラグ11がプラグ受け20から抜去され始めると、MOSFET T1の両端は正極側端子11aによりショートされているため、MOSFET T1もオフ状態にある。 When the plug 11 is completely inserted into the plug receptacle 20, the positive terminal 11a is in contact with both the contact 20a and the contact 20b, and the contact 20a and the contact 20b are short-circuited, a current is supplied to the MOSFET T1. Does not flow. When the plug 11 starts to be removed from the plug receptacle 20, both ends of the MOSFET T1 are short-circuited by the positive terminal 11a, so that the MOSFET T1 is also in the off state.
 その後、さらにプラグ11がプラグ受け20から抜去され続け、正極側端子11aが接触子20aに接触しなくなり、接触子20bだけに接触するようになると、正極側端子11aと接触子20aとの接触点の一部に電流集中が発生し、その電流集中による電圧が接触子20aと接触子20bとの間に発生する。 Thereafter, when the plug 11 continues to be removed from the plug receptacle 20 and the positive electrode side terminal 11a does not come into contact with the contact 20a and only comes into contact with the contact 20b, the contact point between the positive electrode side terminal 11a and the contact 20a A current concentration occurs in a part of the current, and a voltage due to the current concentration is generated between the contact 20a and the contact 20b.
 接触子20aと接触子20bとの間に発生した電圧はコンデンサC1を介してMOSFET T1のゲート電圧を誘起させて、MOSFET T1をオン状態にする。MOSFET T1がオン状態になると、接触子20aと接触子20bとの間の電圧を低下させる方向に電流が流れる。 The voltage generated between the contact 20a and the contact 20b induces the gate voltage of the MOSFET T1 through the capacitor C1, and turns on the MOSFET T1. When the MOSFET T1 is turned on, a current flows in a direction to decrease the voltage between the contact 20a and the contact 20b.
 MOSFET T1がオン状態になり、接触子20aと接触子20bとの間の電圧を低下させる方向に電流が流れることにより、正極側端子11aと接触子20aとの電位差が低減される。正極側端子11aと接触子20aとの電位差が低減されることによって、正極側端子11aが接触子20aから離れてもアーク放電の発生に至ることはない。 The MOSFET T1 is turned on, and a current flows in a direction to decrease the voltage between the contact 20a and the contact 20b, whereby the potential difference between the positive terminal 11a and the contact 20a is reduced. By reducing the potential difference between the positive terminal 11a and the contact 20a, even if the positive terminal 11a is separated from the contact 20a, no arc discharge occurs.
 MOSFET T1のドレイン端子とソース端子との間の電圧は、FETのゲート電圧による伝達関数に沿った電圧に収まる。正極側端子11aが接触子20aから離れてから、接触子20aと接触子20bとの間で発生した電圧によってコンデンサC1の充電が進むと、MOSFET T1のゲート電圧が低下し、MOSFET T1はオフ状態に移行することでMOSFET T1に電流が流れなくなる。 The voltage between the drain terminal and the source terminal of MOSFET T1 falls within the voltage along the transfer function of the FET gate voltage. When the capacitor C1 is charged by the voltage generated between the contact 20a and the contact 20b after the positive terminal 11a is separated from the contact 20a, the gate voltage of the MOSFET T1 decreases and the MOSFET T1 is turned off. The current stops flowing through the MOSFET T1.
 図4に示した直流回路100は、MOSFET T1がオフ状態に移行した後に正極側端子11aが接触子20bから離れても、MOSFET T1に電流が流れていないので、アーク放電の発生に至ることはない。 In the DC circuit 100 shown in FIG. 4, even if the positive electrode side terminal 11a is separated from the contact 20b after the MOSFET T1 is turned off, the current does not flow through the MOSFET T1. Absent.
 直流回路100の抵抗R1に並列に接続されたダイオードD1は、正極側端子11aが接触子20aと接触子20bとの両方に接触して接触子20aと接触子20bとがショートされた場合に、抵抗R1を介さずコンデンサC1に蓄積された電荷を短時間に放電するために設けられる。 The diode D1 connected in parallel to the resistor R1 of the DC circuit 100 has the positive-side terminal 11a in contact with both the contact 20a and the contact 20b, and the contact 20a and the contact 20b are short-circuited. It is provided to discharge the charge accumulated in the capacitor C1 without passing through the resistor R1 in a short time.
 直流回路100において、ダイオードD1が抵抗R1と並列に設けられることで、例えば接触子20aと接触子20bとの接続がチャタリングなどの現象を起こしても、直流回路100の電圧積分機能が短時間で復帰できるようにしている。抵抗R1は、MOSFET T1のゲート端子に電圧を供給するが、電圧の供給時間はコンデンサC1の容量と抵抗R1の抵抗値との積の関係で決まる。 In the DC circuit 100, since the diode D1 is provided in parallel with the resistor R1, for example, even if the connection between the contact 20a and the contact 20b causes chattering, the voltage integration function of the DC circuit 100 can be achieved in a short time. I am trying to return. The resistor R1 supplies a voltage to the gate terminal of the MOSFET T1, and the voltage supply time is determined by the product relationship between the capacitance of the capacitor C1 and the resistance value of the resistor R1.
 図5は、本開示の一実施形態に係る直流電力供給装置の別の構成例を示す説明図である。図5に示したのは、直流電源から供給される直流電力を負荷に供給することを目的とした直流電力供給装置の構成例である。 FIG. 5 is an explanatory diagram illustrating another configuration example of the DC power supply device according to an embodiment of the present disclosure. FIG. 5 shows an example of the configuration of a DC power supply device intended to supply DC power supplied from a DC power source to a load.
 図5に示した直流電力供給装置は、直流電力の供給と遮断との切り替えにリレー30を用いたものである。リレー30は、図示しない電源からの電流により発生させた電磁力に応じてスイッチの切り替えを行う。リレー30がスイッチを切り替えることで図5に示した直流電力供給装置は直流電力の供給と遮断とが切り替えられる。なお図5には図示していないが、図1、図2と同様に、直流電力を供給する直流電源が設けられていても良い。 The DC power supply device shown in FIG. 5 uses a relay 30 for switching between supply and interruption of DC power. The relay 30 switches a switch according to an electromagnetic force generated by a current from a power source (not shown). When the relay 30 switches the switch, the DC power supply device shown in FIG. 5 is switched between supply and interruption of DC power. Although not shown in FIG. 5, a DC power supply for supplying DC power may be provided as in FIGS.
 図5に示したように、直流電力の供給と遮断との切り替えにリレー30を用いた場合であっても、直流電力供給装置は、直流回路100を設けることによって、異常な状態が発生した場合に、スイッチSW1の操作による再通電を防ぎ、安全な方向へ故障することができる。 As shown in FIG. 5, even when the relay 30 is used for switching between supply and cut-off of DC power, the DC power supply device is provided with the DC circuit 100 and an abnormal state occurs. In addition, it is possible to prevent re-energization due to the operation of the switch SW1 and to break down in a safe direction.
 図6は、ヒューズの溶断特性の例をグラフで示す説明図である。図6に示したように、ヒューズは短時間の通電では、定格より多くの電流が流れても溶断しない。例えば、10Aヒューズは通常の使用では12A以上の電流が流れ続けると溶断するが、図6に示したように、0.1秒以下であれば35A流れても溶断しない。 FIG. 6 is an explanatory diagram showing an example of the fusing characteristics of the fuse in a graph. As shown in FIG. 6, the fuse does not melt even when a larger amount of current flows than the rated current when it is energized for a short time. For example, a 10A fuse blows when a current of 12A or more continues to flow in normal use, but as shown in FIG.
 図7は、警報ヒューズ110の構造例を示す説明図である。図7に示したように、警報ヒューズ110は、ヒューズ111と、保持線112と、妨害機構113と、警報接点114と、バネ115と、を含んで構成される。図7に示したのは、ヒューズ111が溶断していない状態を示したものである。図7に示したE1、E2は、直流回路100における主系統に電流を流す導体であり、F1、F2は、直流回路100における副系統に電流を流す導体である。 FIG. 7 is an explanatory view showing a structural example of the alarm fuse 110. As shown in FIG. 7, the alarm fuse 110 includes a fuse 111, a holding wire 112, an obstruction mechanism 113, an alarm contact 114, and a spring 115. FIG. 7 shows a state where the fuse 111 is not blown. E1 and E2 shown in FIG. 7 are conductors that flow current to the main system in the DC circuit 100, and F1 and F2 are conductors that flow current to the sub-system in the DC circuit 100.
 図7に示したように、導体F1、F2に流れる電流によってヒューズ111が溶断していない状態では、図7に示した導体E1、E2が保持線112の張力により警報接点114によって接続されている。従って、ヒューズ111が溶断していない状態では、警報ヒューズ110は主系統に電流を流すことができる。 As shown in FIG. 7, when the fuse 111 is not blown by the current flowing through the conductors F1 and F2, the conductors E1 and E2 shown in FIG. . Therefore, in a state where the fuse 111 is not blown, the alarm fuse 110 can pass a current through the main system.
 図8は、図7に示した警報ヒューズ110のヒューズ111が溶断した状態を示す説明図である。図8に示したように、ヒューズ111が溶断すると保持線112の張力が失われ、バネ115の力により警報接点114が導体E2から解離し、導体E1、E2の接続が無くなる。従って、ヒューズ111が溶断した状態では、警報ヒューズ110は主系統に電流を流さないようにすることができる。 FIG. 8 is an explanatory view showing a state where the fuse 111 of the alarm fuse 110 shown in FIG. 7 is blown. As shown in FIG. 8, when the fuse 111 is blown, the tension of the holding wire 112 is lost, the alarm contact 114 is dissociated from the conductor E2 by the force of the spring 115, and the conductors E1 and E2 are not connected. Therefore, in the state where the fuse 111 is blown, the alarm fuse 110 can be prevented from flowing current to the main system.
 またヒューズ111が溶断すると、図8に示したように、妨害機構113が警報ヒューズ110から飛び出す。この妨害機構113は、スイッチSW1と連携したスライドバー121の下降を妨害する。従って、ヒューズ111が溶断した状態では、警報ヒューズ110は主系統に電流を流さないようにするだけでなく、スイッチSW1をオフ状態のままロックさせることができる。 When the fuse 111 is blown, the obstruction mechanism 113 pops out from the alarm fuse 110 as shown in FIG. The obstruction mechanism 113 obstructs the lowering of the slide bar 121 associated with the switch SW1. Therefore, when the fuse 111 is blown, the alarm fuse 110 can not only prevent the current from flowing through the main system, but can also lock the switch SW1 in the off state.
 ここまで示してきた直流回路100は、アーク放電の発生を抑制するために、MOSFETとコンデンサとを組み合わせた構成を有していた。アーク放電の発生を抑制する構成は係る例に限定されるものではない。以下の説明では、アーク放電の発生を抑制するために、ソリッドステートリレー(SSR、半導体リレー)に機械式リレーを並列に接続した構成を有する直流回路に警報ヒューズを設けた場合について説明する。 The DC circuit 100 shown so far has a configuration in which a MOSFET and a capacitor are combined in order to suppress the occurrence of arc discharge. The configuration for suppressing the occurrence of arc discharge is not limited to such an example. In the following description, a case will be described in which an alarm fuse is provided in a DC circuit having a configuration in which a mechanical relay is connected in parallel to a solid state relay (SSR, semiconductor relay) in order to suppress the occurrence of arc discharge.
 図9は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図9に示したのは、ソリッドステートリレー(SSR、半導体リレー)に機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。 FIG. 9 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure. FIG. 9 shows a DC circuit 100 for combining a solid state relay (SSR, semiconductor relay) with a mechanical relay and switching between supply and interruption of DC power by turning on and off the mechanical relay. This is an example of the configuration.
 図9に示した直流回路100は、SSR130と、機械式リレーRY1と、ダイオードD11、D12、D13と、コンデンサC11、C12と、抵抗R11と、を備える。直流回路100は、直流が流れる経路において並列である主系統と副系統とで電流を流す。SSR130が設けられている系統を主系統とし、機械式リレーRY1が設けられている系統を副系統とする。 The DC circuit 100 shown in FIG. 9 includes an SSR 130, a mechanical relay RY1, diodes D11, D12, and D13, capacitors C11 and C12, and a resistor R11. The DC circuit 100 allows a current to flow through the main system and the sub system that are parallel in the path through which the DC flows. A system in which the SSR 130 is provided is a main system, and a system in which the mechanical relay RY1 is provided is a sub system.
 機械式リレーRY1は、端子V+から端子V-へ流れる電流によって発生する電磁力を用いて接点を切り替えるよう動作する。機械式リレーRY1は、端子V+から端子V-へ電流が流れていない場合は接点1bと接続し、端子V+から端子V-へ電流が流れている場合は電磁力を用いて接点1aと接続する。なお図9には図示していないが、図1、図2と同様に、端子V+へ直流電力を供給する直流電源が設けられていても良い。 The mechanical relay RY1 operates so as to switch contacts using an electromagnetic force generated by a current flowing from the terminal V + to the terminal V−. The mechanical relay RY1 is connected to the contact 1b when no current flows from the terminal V + to the terminal V-, and is connected to the contact 1a using electromagnetic force when the current flows from the terminal V + to the terminal V-. . Although not shown in FIG. 9, a DC power supply for supplying DC power to the terminal V + may be provided as in FIGS.
 SSR130は、端子Aから端子Bへの電力供給経路上に設けられている。本実施形態では、SSR130は、制御端子にハイ状態の電圧が印加されるとオン状態になり、制御端子にロー状態の電圧が印加されるとオフ状態となるように構成されている。 The SSR 130 is provided on the power supply path from the terminal A to the terminal B. In the present embodiment, the SSR 130 is configured to be turned on when a high voltage is applied to the control terminal, and to be turned off when a low voltage is applied to the control terminal.
 端子V+から端子V-へ電流が流れていない場合は、機械式リレーRY1に電流が流れていないので、機械式リレーRY1は接点1bと接続している。従って機械式リレーRY1の接点1bはクローズ状態であり、接点1aはオープン状態である。 When no current flows from the terminal V + to the terminal V−, no current flows through the mechanical relay RY1, and therefore the mechanical relay RY1 is connected to the contact 1b. Therefore, the contact 1b of the mechanical relay RY1 is in the closed state, and the contact 1a is in the open state.
 その後、端子V+に電圧が印加されて端子V+から端子V-へ電流が流れると、機械式リレーRY1は徐々に電磁力を発生させる。機械式リレーRY1が発生させた電磁力がある程度まで達すると、機械式リレーRY1は接点1bとの接続を解除する。 Thereafter, when a voltage is applied to the terminal V + and a current flows from the terminal V + to the terminal V−, the mechanical relay RY1 gradually generates an electromagnetic force. When the electromagnetic force generated by the mechanical relay RY1 reaches a certain level, the mechanical relay RY1 releases the connection with the contact 1b.
 さらに電磁力が上昇すると、機械式リレーRY1は接点1aと接続するが、その接点1aとの接続の際にはチャタリングが生じる。また端子V+に電圧が印加されると、その電圧がSSR130の制御端子に印加される、SSR130はオン状態になる。そして端子V+から端子V-へ電流が流れると、ダイオードD1を通じてコンデンサC1に電荷が蓄積される。 When the electromagnetic force further increases, the mechanical relay RY1 is connected to the contact 1a, but chattering occurs when connecting to the contact 1a. When a voltage is applied to the terminal V +, the voltage is applied to the control terminal of the SSR 130, and the SSR 130 is turned on. When a current flows from the terminal V + to the terminal V−, charge is accumulated in the capacitor C1 through the diode D1.
 さらにその後、端子V+に電圧が印加されなくなり、端子V+から端子V-へ電流が流れなくなると、機械式リレーRY1は徐々に電磁力を減少させる。機械式リレーRY1が発生させた電磁力が減少を始めると、機械式リレーRY1は接点1aとの接続を解除する。さらに電磁力が減少すると、機械式リレーRY1は接点1bと接続するが、その接点1bとの接続の際にはチャタリングが生じる。 After that, when no voltage is applied to the terminal V + and no current flows from the terminal V + to the terminal V−, the mechanical relay RY1 gradually reduces the electromagnetic force. When the electromagnetic force generated by the mechanical relay RY1 starts to decrease, the mechanical relay RY1 releases the connection with the contact 1a. When the electromagnetic force further decreases, the mechanical relay RY1 is connected to the contact 1b, but chattering occurs at the time of connection with the contact 1b.
 この際、コンデンサC11は、機械式リレーRY1は接点1bと接続するまでの間、SSR130をオン状態とさせるだけの電力を蓄積できることが望ましい。またこの際、ダイオードD12が逆バイアスから解放されて導通し、コンデンサC12が機械式リレーRY1のコイルを通して動作する。 At this time, it is desirable that the capacitor C11 can store enough power to turn on the SSR 130 until the mechanical relay RY1 is connected to the contact 1b. At this time, the diode D12 is released from the reverse bias and becomes conductive, and the capacitor C12 operates through the coil of the mechanical relay RY1.
 すなわち、コンデンサC12は、機械式リレーRY1が接点1bと接続する際のチャタリングを吸収する。またコンデンサC12は、ダイオードD13を通してコンデンサC11の放電回路も形成するとともに機械式リレーRY1のサージを吸収させている。 That is, the capacitor C12 absorbs chattering when the mechanical relay RY1 is connected to the contact 1b. The capacitor C12 forms a discharge circuit for the capacitor C11 through the diode D13 and absorbs the surge of the mechanical relay RY1.
 従って図9に示した直流回路100は、端子V+から端子V-へ電流が流れなくなり、機械式リレーRY1が接点1aとの接続を解除してもアークの発生を抑え、サージを吸収することが出来る。また図9に示した直流回路100は、端子の数を4つにして、一般的なリレーと同じような接続を可能にしたことで、既存のリレーから置き換えて使用することができる。 Therefore, in the DC circuit 100 shown in FIG. 9, no current flows from the terminal V + to the terminal V−, and even if the mechanical relay RY1 is disconnected from the contact 1a, the generation of arc can be suppressed and the surge can be absorbed. I can do it. In addition, the DC circuit 100 shown in FIG. 9 has four terminals and can be connected in the same manner as a general relay, so that it can be used in place of an existing relay.
 図9に示した直流回路100は、警報ヒューズ110を備えている。SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子Aから流れる電流によっていずれ警報ヒューズ110が溶断する。警報ヒューズ110が溶断すると、機械式リレーRY1の接点1a側の経路上の、警報ヒューズ110のスイッチがオフ状態となる。 9 includes an alarm fuse 110. The DC circuit 100 shown in FIG. When the semiconductor switch of the SSR 130 breaks down and does not normally shift to the off state, the alarm fuse 110 is eventually blown by the current flowing from the terminal A. When the alarm fuse 110 blows, the switch of the alarm fuse 110 on the path on the contact 1a side of the mechanical relay RY1 is turned off.
 機械式リレーRY1の接点1a側の経路上の、警報ヒューズ110のスイッチがオフ状態となると、機械式リレーRY1が接点1a側に接続したとしても電流は端子Aから端子Bへ流れることはなくなる。従って、図9に示した直流回路100は、SSR130の半導体スイッチが故障するなどして正常にオフ状態に移行しなくなったとしても、機械式リレーRY1による再通電を抑止することができる。 When the switch of the alarm fuse 110 on the path on the contact 1a side of the mechanical relay RY1 is turned off, no current flows from the terminal A to the terminal B even if the mechanical relay RY1 is connected to the contact 1a side. Therefore, the DC circuit 100 shown in FIG. 9 can suppress re-energization by the mechanical relay RY1 even if the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state.
 図10は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図10に示したのは、SSRに機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。なお図10には図示していないが、図1、図2と同様に、端子V+へ直流電力を供給する直流電源が設けられていても良い。 FIG. 10 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure. FIG. 10 shows an example of the configuration of a DC circuit 100 for combining the SSR with a mechanical relay and switching the supply and interruption of DC power by turning the mechanical relay on and off. Although not shown in FIG. 10, a DC power supply for supplying DC power to the terminal V + may be provided as in FIGS.
 図10に示した直流回路100は、図9に示した直流回路100と同様に警報ヒューズ110を備えているが、図10の警報ヒューズ110は、SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子V+から端子V-への経路上に設けられるスイッチがオフ状態となる。従って、図10に示した直流回路100は、SSR130の半導体スイッチが故障するなどして正常にオフ状態に移行しなくなったとしても、機械式リレーRY1による再通電を抑止することができる。 The DC circuit 100 shown in FIG. 10 includes an alarm fuse 110 similar to the DC circuit 100 shown in FIG. 9, but the alarm fuse 110 in FIG. 10 is normally turned off due to a failure of the semiconductor switch of the SSR 130. When it does not shift to, the switch provided on the path from the terminal V + to the terminal V− is turned off. Therefore, the DC circuit 100 shown in FIG. 10 can suppress re-energization by the mechanical relay RY1 even if the semiconductor switch of the SSR 130 fails and does not normally shift to the OFF state.
 図10に示した直流回路100は、警報ヒューズ110が溶断すると機械式リレーRY1が動作しなくなる。図10に示した直流回路100は、異常発生時には機械式リレーRY1が動作しなくなることで、故障の発見をより容易にさせる効果が期待できる。 In the DC circuit 100 shown in FIG. 10, when the alarm fuse 110 is blown, the mechanical relay RY1 does not operate. The DC circuit 100 shown in FIG. 10 can be expected to have an effect of making it easier to find a failure because the mechanical relay RY1 does not operate when an abnormality occurs.
 図11は、本開示の一実施形態に係る直流回路の別の構成例を示す説明図である。図11に示したのは、SSRに機械式リレーを組み合わせて、機械式リレーのオン、オフによって直流電力の供給と遮断とを切り替えることを目的とした直流回路100の構成例である。なお図11には図示していないが、図1、図2と同様に、端子Aへ直流電力を供給する直流電源が設けられていても良い。 FIG. 11 is an explanatory diagram illustrating another configuration example of the DC circuit according to an embodiment of the present disclosure. FIG. 11 shows an example of the configuration of a DC circuit 100 for combining the SSR with a mechanical relay and switching the supply and interruption of DC power by turning the mechanical relay on and off. Although not shown in FIG. 11, a DC power supply for supplying DC power to the terminal A may be provided as in FIGS.
 図11は、端子AとSSR130との間にヒューズ110’を配置し、ヒューズ110’とSSR130との間から機械式リレーRY1を駆動させる電源を供給する構成を有する直流回路100を示したものである。 FIG. 11 shows a DC circuit 100 having a configuration in which a fuse 110 ′ is disposed between the terminal A and the SSR 130, and a power source for driving the mechanical relay RY1 is supplied from between the fuse 110 ′ and the SSR 130. is there.
 図11に示した直流回路100は、SSR130の半導体スイッチが故障して正常にオフ状態に移行しなくなると、端子Aから流れる電流によっていずれヒューズ110’が溶断する。ヒューズ110’が溶断すると、機械式リレーRY1へ電流が流れなくなり、機械式リレーRY1が動作しなくなる。図11に示した直流回路100は、異常発生時には機械式リレーRY1が動作しなくなることで、故障の発見をより容易にさせる効果が期待できる。 In the DC circuit 100 shown in FIG. 11, when the semiconductor switch of the SSR 130 breaks down and does not normally shift to the OFF state, the fuse 110 'is blown out due to the current flowing from the terminal A. When the fuse 110 'is blown, no current flows to the mechanical relay RY1, and the mechanical relay RY1 does not operate. The DC circuit 100 shown in FIG. 11 can be expected to have an effect of making it easier to find a failure because the mechanical relay RY1 does not operate when an abnormality occurs.
 図12は、図9~図11に示した直流回路100において、ヒューズに流れる電流の時間変化の例を示す説明図である。図12には、直流回路100が正常な状態におけるヒューズに流れる電流I3の時間変化と、直流回路100が異常な状態における、ヒューズ110に流れる電流I4の時間変化と、が示されている。 FIG. 12 is an explanatory diagram showing an example of the time change of the current flowing through the fuse in the DC circuit 100 shown in FIGS. FIG. 12 shows the time change of the current I3 flowing through the fuse when the DC circuit 100 is normal and the time change of the current I4 flowing through the fuse 110 when the DC circuit 100 is abnormal.
 SSR130の半導体スイッチが正常に動作している場合は、図12に示したように、パルス状の電流I3がヒューズに流れる。しかし、SSR130の半導体スイッチが故障等の理由によって正常に動作しなくなった場合は、図12に示したような電流I4が流れ、最終的に110が溶断して電流I4が低下する。 When the semiconductor switch of the SSR 130 is operating normally, a pulsed current I3 flows through the fuse as shown in FIG. However, when the semiconductor switch of the SSR 130 does not operate normally due to a failure or the like, the current I4 as shown in FIG. 12 flows, and finally 110 melts and the current I4 decreases.
 図13は、直流回路100を備えた移動体40の機能構成例を示す説明図である。移動体40は、例えば、ガソリン車のようにガソリンを動力源とする移動体であってもよく、電気自動車、ハイブリッド車、電気オートバイ等の、充放電可能なバッテリを主な動力源とする移動体であってもよい。図13には、移動体40に、バッテリ210と、バッテリから供給される電力により駆動する駆動部220と、が備えられた場合の例が示されている。駆動部220には、例えばワイパー、パワーウィンドウ、ライト、カーナビゲーションシステム、エアーコンディショナのような車両に備えられる装備品や、モーター等の移動体40を駆動させる装置などが含まれうる。 FIG. 13 is an explanatory diagram illustrating a functional configuration example of the moving body 40 including the DC circuit 100. The moving body 40 may be, for example, a moving body that uses gasoline as a power source, such as a gasoline car, and uses a chargeable / dischargeable battery as a main power source, such as an electric vehicle, a hybrid vehicle, and an electric motorcycle. It may be a body. FIG. 13 shows an example in which the moving body 40 includes a battery 210 and a driving unit 220 that is driven by electric power supplied from the battery. The drive unit 220 may include, for example, equipment provided in the vehicle such as a wiper, a power window, a light, a car navigation system, and an air conditioner, and a device that drives the moving body 40 such as a motor.
 そして図13に示した移動体40には、バッテリ210から駆動部220へ直流電力が供給される経路の途中に、直流回路100が設けられている。図13に示した移動体40は、バッテリ210から駆動部220へ直流電力が供給される経路上に、直流回路100が設けられることで、例えばバッテリ210を一時着脱させる際等にアーク放電の発生を抑えることが出来る。 13 is provided with a DC circuit 100 in the middle of a path through which DC power is supplied from the battery 210 to the drive unit 220. The moving body 40 shown in FIG. 13 is provided with the DC circuit 100 on a path through which DC power is supplied from the battery 210 to the drive unit 220, so that, for example, arc discharge occurs when the battery 210 is temporarily attached or detached. Can be suppressed.
 なお図13には、直流回路100が1つだけ備えられている移動体40の例を示したが、本開示は係る例に限定されるものではない。すなわち、直流回路100は直流電力が供給される経路の途中に複数設けられても良い。また直流回路100は、バッテリ210から駆動部220へ直流電力が供給される経路の途中だけでなく、他の場所、例えばバッテリ210を直流電力で充電する際の経路の途中に設けられても良い。移動体40は、バッテリ210を直流電力で充電する際の経路の途中に直流回路100を設けることで、安全にバッテリ210を直流電力で充電することができる。 FIG. 13 shows an example of the moving body 40 provided with only one DC circuit 100, but the present disclosure is not limited to such an example. That is, a plurality of DC circuits 100 may be provided in the middle of a path through which DC power is supplied. Further, the DC circuit 100 may be provided not only in the middle of a path in which DC power is supplied from the battery 210 to the drive unit 220 but also in another place, for example, in the middle of a path when charging the battery 210 with DC power. . The moving body 40 can safely charge the battery 210 with DC power by providing the DC circuit 100 in the middle of the path when charging the battery 210 with DC power.
 <2.まとめ>
 以上説明したように本開示の実施の形態によれば、直流電力の切断時に電極間で生じる電圧を抑制することで、直流電力供給時の電力効率を低下させずに直流電力の切断時にアーク放電の発生を小規模の構成で抑制することが可能な直流回路100が提供される。
<2. Summary>
As described above, according to the embodiment of the present disclosure, by suppressing the voltage generated between the electrodes when the DC power is cut, the arc discharge is performed when the DC power is cut without reducing the power efficiency when the DC power is supplied. There is provided a DC circuit 100 capable of suppressing the occurrence of the occurrence of the problem with a small-scale configuration.
 本開示の実施の形態に係る直流回路100は、半導体スイッチを用いて直流電力の遮断時にアーク放電の発生を抑制するが、半導体スイッチが故障するなどして正常に動作しなくなった場合に溶断するとともに、再通電を抑止する機構を備えたヒューズを設けている。上述したような構成により、本開示の実施の形態に係る直流回路100や、直流回路100を備えた直流電力供給装置は、アーク放電の抑制に半導体スイッチを用いた際に当該半導体スイッチの劣化時による短絡が発生しても安全を確保することが可能となる。 The DC circuit 100 according to the embodiment of the present disclosure uses a semiconductor switch to suppress the occurrence of arc discharge when the DC power is cut off, but blows when the semiconductor switch fails and does not operate normally. In addition, a fuse having a mechanism for suppressing re-energization is provided. With the configuration as described above, the DC circuit 100 according to the embodiment of the present disclosure and the DC power supply device including the DC circuit 100 can be used when the semiconductor switch is deteriorated when the semiconductor switch is used to suppress arc discharge. It is possible to ensure safety even if a short circuit occurs due to.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
 前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
を備え、
 前記第1の電流経路上には少なくともヒューズを備え、
 前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
 前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流回路。
(2)
 前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
 前記ヒューズが溶断すると前記機械的スイッチによる直流電力の供給を抑止する抑止機構を含む、前記(1)に記載の直流回路。
(3)
 前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、前記(1)または(2)に記載の直流回路。
(4)
 前記回路は、
 前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
 前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
 前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
を備える、前記(3)に記載の直流回路。
(5)
 前記回路は、
 前記第1の電流経路上に設けられ、直流電源からの直流電流の供給及び遮断を切り替える半導体リレーと、
 前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流電流の供給及び遮断を切り替える機械式リレーと、
 を備え、
 前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、前記(1)に記載の直流出力回路。
(6)
 前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
 前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
 前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電流を出力する、前記(5)に記載の直流回路。
(7)
 直流電力を供給する直流電源と、
 直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
 前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
を備え、
 前記第1の電流経路上には少なくともヒューズを備え、
 前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
 前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流電力供給装置。
(8)
 前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
 前記ヒューズが溶断すると前記機械的スイッチによる直流電力の供給を抑止する抑止機構を含む、前記(7)に記載の直流電力供給装置。
(9)
 前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、前記(7)または(8)に記載の直流電力供給装置。
(10)
 前記回路は、
 前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
 前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
 前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
を備える、前記(9)に記載の直流電力供給装置。
(11)
 前記回路は、
 前記第1の電流経路上に設けられ、直流電力の供給及び遮断を切り替える半導体リレーと、
 前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記電源からの電力の供給及び遮断を切り替える機械式リレーと、
 を備え、
 前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、前記(7)に記載の直流電力供給装置。
(12)
 前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
 前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
 前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電力を出力する、前記(11)に記載の直流電力供給装置。
(13)
 前記(1)~(6)のいずれかに記載の直流回路を備える、移動体。
(14)
 直流電力を供給するバッテリと、
 前記バッテリから供給される直流電力による駆動する駆動部と、
 前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、前記(1)~(6)のいずれかに記載の直流回路と、
を備える、電力供給システム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A first current path and a second current path provided in parallel in a path through which direct current flows;
A circuit that suppresses the occurrence of an arc when a direct current is interrupted in the second current path using a semiconductor switch provided on the first current path;
With
The first current path includes at least a fuse,
When the fuse is blown, the supply of direct current through the second current path is stopped,
The fuse is a DC circuit having a rating that is not blown by a rated energization time and a rated energization current of the circuit.
(2)
On the second current path, a mechanical switch that switches between supply and cut-off of direct current through the second current path,
The DC circuit according to (1), further including a suppression mechanism that suppresses supply of DC power by the mechanical switch when the fuse is blown.
(3)
The DC circuit according to (1) or (2), wherein the circuit is a circuit that suppresses an amount of direct current flowing through the first current path.
(4)
The circuit is
A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
The DC circuit according to (3), comprising:
(5)
The circuit is
A semiconductor relay which is provided on the first current path and which switches between supply and interruption of a direct current from a direct current power supply;
A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of a direct current from the direct current power source;
With
The DC output circuit according to (1), which is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
(6)
The circuit further includes a capacitor connected in parallel with the mechanical relay and connected at one end to a control terminal of the semiconductor relay,
The semiconductor relay is turned on when a high voltage is applied to the control terminal before the mechanical relay is switched from the off state to the on state, and the mechanical relay is switched from the on state to the off state. After that, the low voltage is applied to the control terminal to turn off,
The capacitor stores electricity while the mechanical relay is in an on state, and outputs a current for maintaining the semiconductor relay in an on state after the mechanical relay is switched off. ) DC circuit.
(7)
A DC power supply for supplying DC power;
A first current path and a second current path provided in parallel in a path through which direct current flows;
A circuit that suppresses the occurrence of an arc when a direct current is interrupted in the second current path using a semiconductor switch provided on the first current path;
With
The first current path includes at least a fuse,
When the fuse is blown, the supply of direct current through the second current path is stopped,
The fuse is a direct-current power supply device having a rating that does not melt at a rated energization time and a rated energization current of the circuit.
(8)
On the second current path, a mechanical switch that switches between supply and cut-off of direct current through the second current path,
The DC power supply device according to (7), including a suppression mechanism that suppresses supply of DC power by the mechanical switch when the fuse is blown.
(9)
The DC power supply device according to (7) or (8), wherein the circuit is a circuit that suppresses an amount of direct current flowing through the first current path.
(10)
The circuit is
A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
The direct-current power supply device according to (9), comprising:
(11)
The circuit is
A semiconductor relay which is provided on the first current path and which switches between supply and interruption of DC power;
A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch power supply and interruption from the power source;
With
The DC power supply device according to (7), wherein the DC relay is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
(12)
The circuit further includes a capacitor connected in parallel with the mechanical relay and connected at one end to a control terminal of the semiconductor relay,
The semiconductor relay is turned on when a high voltage is applied to the control terminal before the mechanical relay is switched from the off state to the on state, and the mechanical relay is switched from the on state to the off state. After that, the low voltage is applied to the control terminal to turn off,
The capacitor stores power while the mechanical relay is in an ON state, and outputs electric power for maintaining the semiconductor relay in an ON state after the mechanical relay is switched to an OFF state. ) DC power supply device.
(13)
A moving body comprising the DC circuit according to any one of (1) to (6).
(14)
A battery for supplying DC power;
A drive unit driven by DC power supplied from the battery;
At least one DC circuit according to any one of (1) to (6) provided between the battery and the drive unit;
A power supply system comprising:
1a   :接点
1b   :接点
10   :負荷
11   :プラグ
11a  :正極側端子
11b  :負極側端子
20   :プラグ受け
20a  :接触子
20b  :接触子
30   :リレー
100  :直流回路
110  :警報ヒューズ
110'  :ヒューズ
111  :ヒューズ
112  :保持線
113  :妨害機構
114  :警報接点
115  :バネ
121  :スライドバー
C1   :コンデンサ
C11  :コンデンサ
C12  :コンデンサ
D1   :ダイオード
D11  :ダイオード
D12  :ダイオード
D13  :ダイオード
D2   :ダイオード
E1   :導体
E2   :導体
F1   :導体
F2   :導体
R1   :抵抗
R11  :抵抗
RY1  :機械式リレー
SW1  :スイッチ
 
1a: contact 1b: contact 10: load 11: plug 11a: positive terminal 11b: negative terminal 20b: plug receptacle 20a: contact 20b: contact 30: relay 100: DC circuit 110: alarm fuse 110 ': fuse 111 : Fuse 112: holding wire 113: obstruction mechanism 114: alarm contact 115: spring 121: slide bar C1: capacitor C11: capacitor C12: capacitor D1: diode D11: diode D12: diode D13: diode D2: diode E1: conductor E2: Conductor F1: Conductor F2: Conductor R1: Resistance R11: Resistance RY1: Mechanical relay SW1: Switch

Claims (14)

  1.  直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
     前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
    を備え、
     前記第1の電流経路上には少なくともヒューズを備え、
     前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
     前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流回路。
    A first current path and a second current path provided in parallel in a path through which direct current flows;
    A circuit that suppresses the occurrence of an arc when a direct current is interrupted in the second current path using a semiconductor switch provided on the first current path;
    With
    The first current path includes at least a fuse,
    When the fuse is blown, the supply of direct current through the second current path is stopped,
    The fuse is a DC circuit having a rating that is not blown by a rated energization time and a rated energization current of the circuit.
  2.  前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
     前記ヒューズが溶断すると前記機械的スイッチによる直流電力の供給を抑止する抑止機構を含む、請求項1に記載の直流回路。
    On the second current path, a mechanical switch that switches between supply and cut-off of direct current through the second current path,
    The DC circuit according to claim 1, further comprising a suppression mechanism that suppresses supply of DC power by the mechanical switch when the fuse is blown.
  3.  前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項1に記載の直流回路。 2. The DC circuit according to claim 1, wherein the circuit is a circuit that suppresses the amount of DC flowing through the first current path.
  4.  前記回路は、
     前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
     前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
     前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
    を備える、請求項3に記載の直流回路。
    The circuit is
    A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
    Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
    A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
    The DC circuit according to claim 3, comprising:
  5.  前記回路は、
     前記第1の電流経路上に設けられ、直流電源からの直流電流の供給及び遮断を切り替える半導体リレーと、
     前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流電流の供給及び遮断を切り替える機械式リレーと、
     を備え、
     前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、請求項1に記載の直流回路。
    The circuit is
    A semiconductor relay which is provided on the first current path and which switches between supply and interruption of a direct current from a direct current power supply;
    A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of a direct current from the direct current power source;
    With
    The direct current circuit according to claim 1, wherein the direct current circuit is a circuit that suppresses chattering of the mechanical relay when the direct current is interrupted by the mechanical relay.
  6.  前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
     前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
     前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電流を出力する、請求項5に記載の直流回路。
    The circuit further includes a capacitor connected in parallel with the mechanical relay and connected at one end to a control terminal of the semiconductor relay,
    The semiconductor relay is turned on when a high voltage is applied to the control terminal before the mechanical relay is switched from the off state to the on state, and the mechanical relay is switched from the on state to the off state. After that, the low voltage is applied to the control terminal to turn off,
    6. The capacitor stores electricity while the mechanical relay is in an on state, and outputs a current for maintaining the semiconductor relay in an on state after the mechanical relay is switched to an off state. DC circuit as described in 1.
  7.  直流による電力を供給する直流電源と、
     直流が流れる経路において並列に設けられる第1の電流経路及び第2の電流経路と、
     前記第1の電流経路上に設けられる半導体スイッチを用いて前記第2の電流経路における直流の遮断時にアークの発生を抑制する回路と、
    を備え、
     前記第1の電流経路上には少なくともヒューズを備え、
     前記ヒューズが溶断すると前記第2の電流経路による直流の供給を停止し、
     前記ヒューズは、前記回路の定格通電時間及び定格通電電流では溶断しない定格を有する、直流電力供給装置。
    A DC power supply for supplying DC power,
    A first current path and a second current path provided in parallel in a path through which direct current flows;
    A circuit that suppresses the occurrence of an arc when a direct current is interrupted in the second current path using a semiconductor switch provided on the first current path;
    With
    The first current path includes at least a fuse,
    When the fuse is blown, the supply of direct current through the second current path is stopped,
    The fuse is a direct-current power supply device having a rating that does not melt at a rated energization time and a rated energization current of the circuit.
  8.  前記第2の電流経路上に、該第2の電流経路による直流の供給と遮断とを切り替える機械的スイッチを備え、
     前記ヒューズが溶断すると前記機械的スイッチによる直流の供給を抑止する抑止機構を含む、請求項7に記載の直流電力供給装置。
    On the second current path, a mechanical switch that switches between supply and cut-off of direct current through the second current path,
    The DC power supply apparatus according to claim 7, further comprising a suppression mechanism that suppresses the supply of DC by the mechanical switch when the fuse is blown.
  9.  前記回路は、前記第1の電流経路を流れる直流の量を抑制する回路である、請求項7に記載の直流電力供給装置。 The DC power supply apparatus according to claim 7, wherein the circuit is a circuit that suppresses the amount of direct current flowing through the first current path.
  10.  前記回路は、
     前記第1の電流経路上に設けられ、前記第2の電流経路で直流が供給されなくなった時点でオン状態になってソース側へ流れる電流を減少させるスイッチング素子と、
     前記第1の電流経路で直流が供給されなくなった時点で充電が開始され、前記第2の電流経路で直流が供給されなくなった後に前記スイッチング素子のゲート電圧を上昇させる容量素子と、
     前記スイッチング素子のゲート端子に電圧を印加する時間を、前記容量素子と共に設定する抵抗素子と、
    を備える、請求項9に記載の直流電力供給装置。
    The circuit is
    A switching element that is provided on the first current path and that is turned on when direct current is no longer supplied in the second current path and reduces a current flowing to the source side;
    Capacitance element that starts charging when DC is no longer supplied through the first current path and increases the gate voltage of the switching element after DC is no longer supplied through the second current path;
    A resistive element for setting a time for applying a voltage to the gate terminal of the switching element together with the capacitive element;
    The DC power supply device according to claim 9, comprising:
  11.  前記回路は、
     前記第1の電流経路上に設けられ、前記直流電源からの直流の供給及び遮断を切り替える半導体リレーと、
     前記第2の電流経路上に設けられ、前記半導体リレーと並列に接続されて前記直流電源からの直流の供給及び遮断を切り替える機械式リレーと、
     を備え、
     前記機械式リレーによる直流の遮断時に該機械式リレーのチャタリングを抑制する回路である、請求項7に記載の直流電力供給装置。
    The circuit is
    A semiconductor relay that is provided on the first current path and switches between supply and interruption of direct current from the direct current power source;
    A mechanical relay provided on the second current path and connected in parallel with the semiconductor relay to switch supply and interruption of direct current from the direct current power source;
    With
    The DC power supply device according to claim 7, wherein the DC relay is a circuit that suppresses chattering of the mechanical relay when DC is cut off by the mechanical relay.
  12.  前記回路は、前記機械式リレーと並列に接続されるとともに前記半導体リレーの制御端子に一端が接続されるコンデンサをさらに備え、
     前記半導体リレーは、前記機械式リレーがオフ状態からオン状態に切り替わる前に前記制御端子にハイ状態の電圧が印加されることでオン状態になり、前記機械式リレーがオン状態からオフ状態に切り替わった後で前記制御端子にロー状態の電圧が印加されることでオフ状態となり、
     前記コンデンサは、前記機械式リレーがオン状態になっている間に蓄電し、前記機械式リレーがオフ状態に切り替わった後に前記半導体リレーをオン状態に維持するための電力を出力する、請求項11に記載の直流電力供給装置。
    The circuit further includes a capacitor connected in parallel with the mechanical relay and connected at one end to a control terminal of the semiconductor relay,
    The semiconductor relay is turned on when a high voltage is applied to the control terminal before the mechanical relay is switched from the off state to the on state, and the mechanical relay is switched from the on state to the off state. After that, the low voltage is applied to the control terminal to turn off,
    The capacitor stores power while the mechanical relay is in an ON state, and outputs electric power for maintaining the semiconductor relay in an ON state after the mechanical relay is switched to an OFF state. The direct-current power supply device described in 1.
  13.  請求項1に記載の直流回路を備える、移動体。 A moving body comprising the DC circuit according to claim 1.
  14.  直流電力を供給するバッテリと、
     前記バッテリから供給される直流電力による駆動する駆動部と、
     前記バッテリと前記駆動部との間に設けられる、少なくとも1つの、請求項1に記載の直流回路と、
    を備える、電力供給システム。
    A battery for supplying DC power;
    A drive unit driven by DC power supplied from the battery;
    At least one DC circuit according to claim 1 provided between the battery and the drive unit;
    A power supply system comprising:
PCT/JP2016/064358 2015-06-04 2016-05-13 Dc circuit, dc power supply device, moving body, and power supply system WO2016194584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017521773A JP6677250B2 (en) 2015-06-04 2016-05-13 DC circuit, DC power supply, moving object and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015113746 2015-06-04
JP2015-113746 2015-06-04

Publications (1)

Publication Number Publication Date
WO2016194584A1 true WO2016194584A1 (en) 2016-12-08

Family

ID=57442025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064358 WO2016194584A1 (en) 2015-06-04 2016-05-13 Dc circuit, dc power supply device, moving body, and power supply system

Country Status (3)

Country Link
JP (1) JP6677250B2 (en)
TW (1) TWI689963B (en)
WO (1) WO2016194584A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018146942A1 (en) * 2017-02-13 2018-08-16 ソニー株式会社 Arc-suppressing device
WO2018198538A1 (en) * 2017-04-26 2018-11-01 ソニー株式会社 Arc-suppressing device, moving body and power supply system
TWI646747B (en) * 2017-04-20 2019-01-01 碩天科技股份有限公司 Power output control module applied to the power distributor
WO2020032592A1 (en) * 2018-08-08 2020-02-13 주식회사 엘지화학 Fusing device
US10606291B2 (en) 2017-07-06 2020-03-31 Cyber Power Systems Inc. Power output control module for a power distributor
CN111937111A (en) * 2018-06-08 2020-11-13 菲尼克斯电气公司 Circuit breaker with monitoring device and method thereof
WO2021014871A1 (en) * 2019-07-24 2021-01-28 株式会社Gsユアサ Power storage element management device, power storage device, and relay
KR20220030122A (en) * 2020-09-02 2022-03-10 주식회사 액트로 Control device and control method of cleaning apparatus using CO2

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102578585B1 (en) 2019-03-19 2023-09-15 주식회사 엘지에너지솔루션 Apparatus and method for checking battery safety

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch
JP2012028193A (en) * 2010-07-23 2012-02-09 Matsuo Hirofumi Dc switch

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228274A (en) * 2010-03-30 2011-11-10 Yamatake Corp Relay drive circuit
DE102011053524B4 (en) * 2011-09-12 2015-05-28 Sma Solar Technology Ag Safety device for a photovoltaic system and method for operating a safety device for a photovoltaic system
US20140091808A1 (en) * 2012-09-28 2014-04-03 Arc Suppression Technologies Contact separation detector and methods therefor
US9865410B2 (en) * 2013-09-25 2018-01-09 Abb Schweiz Ag Methods, systems, and computer readable media for topology control and switching loads or sources between phases of a multi-phase power distribution system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034140A1 (en) * 2009-09-16 2011-03-24 株式会社ワイ・ワイ・エル Switch
JP2012028193A (en) * 2010-07-23 2012-02-09 Matsuo Hirofumi Dc switch

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301025B (en) * 2017-02-13 2021-12-10 索尼公司 Arc extinguishing device
CN110301025A (en) * 2017-02-13 2019-10-01 索尼公司 Arc-extinction device
JP7010245B2 (en) 2017-02-13 2022-01-26 ソニーグループ株式会社 Arc suppression device
WO2018146942A1 (en) * 2017-02-13 2018-08-16 ソニー株式会社 Arc-suppressing device
JPWO2018146942A1 (en) * 2017-02-13 2019-12-12 ソニー株式会社 Arc suppression device
TWI646747B (en) * 2017-04-20 2019-01-01 碩天科技股份有限公司 Power output control module applied to the power distributor
JPWO2018198538A1 (en) * 2017-04-26 2020-05-21 ソニー株式会社 Arc suppression device, moving body and power supply system
JP7226307B2 (en) 2017-04-26 2023-02-21 ソニーグループ株式会社 Arc suppressor, moving body and power supply system
WO2018198538A1 (en) * 2017-04-26 2018-11-01 ソニー株式会社 Arc-suppressing device, moving body and power supply system
US11189438B2 (en) 2017-04-26 2021-11-30 Sony Corporation Arc suppression device, mobile body, and power supply system
US10606291B2 (en) 2017-07-06 2020-03-31 Cyber Power Systems Inc. Power output control module for a power distributor
CN111937111A (en) * 2018-06-08 2020-11-13 菲尼克斯电气公司 Circuit breaker with monitoring device and method thereof
WO2020032592A1 (en) * 2018-08-08 2020-02-13 주식회사 엘지화학 Fusing device
US11552378B2 (en) 2018-08-08 2023-01-10 Lg Energy Solution, Ltd. Fusing apparatus
JP2021022955A (en) * 2019-07-24 2021-02-18 株式会社Gsユアサ Management device for power storage element and power storage device
WO2021014871A1 (en) * 2019-07-24 2021-01-28 株式会社Gsユアサ Power storage element management device, power storage device, and relay
KR20220030122A (en) * 2020-09-02 2022-03-10 주식회사 액트로 Control device and control method of cleaning apparatus using CO2
KR102480829B1 (en) * 2020-09-02 2022-12-23 주식회사 액트로 Control device and control method of cleaning apparatus using CO2

Also Published As

Publication number Publication date
TWI689963B (en) 2020-04-01
TW201712719A (en) 2017-04-01
JPWO2016194584A1 (en) 2018-03-22
JP6677250B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
WO2016194584A1 (en) Dc circuit, dc power supply device, moving body, and power supply system
JP6178519B2 (en) A battery for powering the high voltage network and the error current flowing through the battery and the high voltage terminal of the battery is limited and / or applied by the battery to the high voltage network via the high voltage terminal of the battery Battery system with at least one switching unit for limiting error voltage
US8063506B2 (en) Car power source apparatus
JP4884089B2 (en) Power supply for vehicle
US10464426B2 (en) High-voltage vehicle electrical system having a pyrotechnic disconnecting device, and method for operating the high-voltage vehicle electrical system
JP6641862B2 (en) Current limiting circuit, DC power supply connector and DC power supply
JP6973391B2 (en) Switching equipment, mobiles and power supply systems
JP2017114373A (en) Junction box
WO2017018147A1 (en) Switching device, electrical moving body, and power supply system
JP6708136B2 (en) DC switch arc erasing device
WO2018131307A1 (en) Arc-suppressing device
JP6124630B2 (en) Vehicle power shut-off device
US11322319B2 (en) Disconnecting device for interrupting a direct current of a current path, and on-board electrical system of a motor vehicle
WO2018131249A1 (en) Arc-quenching device for direct current switch
JP2002517968A (en) Apparatus for isolating electrical loads with high inductance from a DC voltage source
WO2017221561A1 (en) Direct current circuit, moving body and power supply system
JP7010245B2 (en) Arc suppression device
CN215580357U (en) Power supply circuit and battery system
JP2011016391A (en) Circuit breaker
WO2021054338A1 (en) Current interruption device and current interruption method
JP2006260925A (en) Direct current high speed vacuum circuit breaker
WO2022064850A1 (en) Dc circuit switchgear
JP6662308B2 (en) DC power supply connector and DC power supply
JP2017126467A (en) Dc switch for wall
JP2023548835A (en) Arc-extinguishing precharge circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16803020

Country of ref document: EP

Kind code of ref document: A1