WO2016194409A1 - 作業機械の油圧駆動装置 - Google Patents

作業機械の油圧駆動装置 Download PDF

Info

Publication number
WO2016194409A1
WO2016194409A1 PCT/JP2016/055123 JP2016055123W WO2016194409A1 WO 2016194409 A1 WO2016194409 A1 WO 2016194409A1 JP 2016055123 W JP2016055123 W JP 2016055123W WO 2016194409 A1 WO2016194409 A1 WO 2016194409A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
hydraulic
electric motor
driven
actuators
Prior art date
Application number
PCT/JP2016/055123
Other languages
English (en)
French (fr)
Inventor
裕昭 天野
石川 広二
井村 進也
秀一 森木
亮平 山下
聖二 土方
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US15/554,882 priority Critical patent/US10364550B2/en
Priority to KR1020177021668A priority patent/KR101973306B1/ko
Priority to EP16802848.8A priority patent/EP3306110B1/en
Priority to CN201680009019.XA priority patent/CN107250562B/zh
Publication of WO2016194409A1 publication Critical patent/WO2016194409A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20523Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/275Control of the prime mover, e.g. hydraulic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31529Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31535Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31547Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/351Flow control by regulating means in feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic drive device mounted on a work machine such as a hydraulic excavator or a crane.
  • a hydraulic pump is driven to rotate by an engine, and a hydraulic actuator such as a hydraulic cylinder is operated by pressure oil discharged from the hydraulic pump.
  • a hydraulic drive device mounted on such a working machine for example, there are those described in Patent Documents 1 and 2.
  • the hydraulic drive device described in Patent Document 1 enables combined operation by diverting pressure oil discharged from one hydraulic pump and supplying it to a plurality of actuators.
  • the hydraulic drive device described in Patent Document 2 includes two engine-driven hydraulic pumps and one electric hydraulic pump, and each actuator is driven by a separate hydraulic pump so that the operation in the combined operation is independent. Realize the sex.
  • JP-A-8-105078 Japanese Patent No. 4509877
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a hydraulic drive device that can improve the fuel efficiency of a work machine by reducing the pressure loss and drag loss of a hydraulic pump. .
  • the present invention provides an engine, first and second hydraulic pumps driven by the engine, and first and second hydraulic pumps supplied with discharge oil, respectively.
  • a plurality of first and second pump oil passages at least one first actuator driven by pressure oil supplied from the first pump oil passage, and a plurality driven by pressure oil supplied from the second pump oil passage.
  • a second directional control valve provided in the first pump oil passage for controlling a flow rate of pressure oil supplied to the first actuator, and provided in the second pump oil passage, A plurality of second directional control valves that respectively control the flow rate of the pressure oil supplied to the second actuator, and the first directional control valve and the plurality of second directional control valves.
  • An oil passage and a third pump oil passage, and the third hydraulic pressure is switched by a specific operation device among the plurality of operation devices operating a specific actuator of the plurality of second actuators.
  • a third direction control valve that controls the flow rate of the pressure oil supplied from the pump to the specific actuator, and a control device that drives and controls the electric motor according to the operation of the plurality of second actuators are provided.
  • the specific actuator can be selectively driven by the second hydraulic pump driven by the engine and the third hydraulic pump driven by the electric motor. 3 Drag loss of the hydraulic pump can be suppressed and the fuel efficiency of the work machine can be improved.
  • the apparatus further includes a plurality of operation amount detection devices that detect operation amounts of the plurality of operation devices, respectively, and the control device includes the plurality of operation amount detection devices.
  • the third hydraulic pump is driven by the electric motor.
  • the specific actuator is driven by the third hydraulic pump, and pressure oil is not supplied from the second hydraulic pump to the specific actuator.
  • the pressure loss of the second hydraulic pump can be suppressed.
  • the control device uses the plurality of operation amount detection devices to detect the plurality of second actuators.
  • the specific actuator is an arm cylinder.
  • a specific actuator capable of selectively driving an arm cylinder that requires a high flow rate and a high flow rate during light load work with a second hydraulic pump driven by an engine and a third hydraulic pump driven by an electric motor.
  • the battery further includes a battery that stores electric power for driving the electric motor, and a charge rate detection device that detects a charge rate of the battery, and the control device includes the charge rate.
  • the battery charging rate detected by the detection device is lower than the predetermined charging rate, the third hydraulic pump is not driven by the electric motor.
  • the operability equivalent to the conventional one can be maintained by driving the actuator with the characteristic by the engine-driven second hydraulic pump.
  • the fuel consumption of the work machine can be improved by reducing the pressure loss or drag loss of the hydraulic pump.
  • FIG. 1 is a side view of a hydraulic excavator provided with a hydraulic drive device according to an embodiment of the present invention. It is a lineblock diagram of the hydraulic drive concerning an embodiment of the invention. It is a flowchart which shows the control by the main controller in embodiment of this invention. It is a figure which shows the relationship between the engine speed in Embodiment of this invention, and the reference power of a 1st and 2nd pump. It is a figure which shows the relationship between battery SOC and the reference motive power of a 3rd pump in embodiment of this invention. It is a calculation flow figure of the pump standard flow in an embodiment of the invention.
  • FIG. 1 is a diagram showing an external appearance of a hydraulic excavator according to the present embodiment.
  • the hydraulic excavator includes a lower traveling body 1, an upper swing body 2, and a front work device 3.
  • the lower traveling body 1 includes left and right crawler belts 11a and 11b (only the left side is illustrated) and left and right traveling hydraulic motors 12a and 12b (only the left side is illustrated). It drives by driving each.
  • the upper swing body 2 has a swing frame 2a as a support mechanism. On the swing frame 2a, an engine 13 as a prime mover, an electric motor M (not shown), and a generator motor GM (not shown) connected to the engine 13 are shown. 1), hydraulic pumps P 1 and P 2 driven by the engine 13, hydraulic pump P 3 (not shown) driven by an electric motor, and turning that drives the upper swing body 2 (swing frame 2 a) to rotate relative to the lower traveling body 1.
  • the hydraulic motor 10 and a control valve 15 that distributes and supplies the oil discharged from the hydraulic pumps P1 to P3 to the actuators 7 to 10, 12a, and 12b are mounted.
  • the front working device 3 includes a boom 4 that is pivotably attached to the upper swing body 2, an arm 5 that is pivotally attached to the tip of the boom 4, and a pivot that can be pivoted to the tip of the arm 5. And attached bucket 6.
  • the boom 4 is rotated in the vertical direction by the expansion and contraction of the boom cylinder 7, the arm 5 is rotated in the vertical and longitudinal directions by the expansion and contraction of the arm cylinder 8, and the bucket 6 is rotated in the vertical and longitudinal directions by the expansion and contraction of the bucket cylinder 9. To do.
  • FIG. 2 is a configuration diagram of the hydraulic drive device according to the embodiment of the present invention.
  • the hydraulic drive unit includes an engine 13, a generator motor GM, an electric motor M, three hydraulic pumps (hereinafter referred to as first to third pumps as appropriate) P1 to P3, a control valve 15, and a plurality of actuators 8 to 10. And a plurality of operation devices 19 to 21 for operating the actuators 8 to 10 respectively, and a main controller (hereinafter referred to as a controller) 18 as a control device.
  • a controller hereinafter referred to as a controller
  • the boom cylinder 7 and the left and right traveling hydraulic motors 12a and 12b shown in FIG. 1 are driven by one of the first and second pumps P1 and P2.
  • the operation of the actuators 7, 12a and 12b is discussed below. In FIG. 2, portions relating to driving of the actuators 7, 12a and 12b are omitted.
  • the generator motor GM is connected to the output shaft of the engine 13, and the first and second pumps P1, P2 are connected to the output shaft of the generator motor GM.
  • the generator motor GM is operated by one or both of the driving force of the engine 13 and the electric energy stored in the battery 14, and drives the first and second pumps P1, P2.
  • the generator motor GM is connected to the battery 14 and the second inverter INV2 via the first inverter INV1, and serves as a generator that converts the power of the engine 13 into electric energy and outputs the electric energy to the battery 14 or the second inverter INV2. And a function as an electric motor that assists and drives the first and second pumps P1 and P2 by the electric energy of the battery 14 supplied via the first inverter INV1.
  • the third pump P3 is connected to the output shaft of the electric motor M.
  • the electric motor M is connected to the battery 14 and the first inverter INV1 via the second inverter INV2, and is operated by one or both of the electric energy stored in the battery 14 and the electric energy generated by the generator motor GM. Then, the third pump P3 is driven.
  • the first and second pumps P1 and P2 are variable displacement hydraulic pumps, and the discharge flow rate is controlled by adjusting the pump displacement (displacement volume) via the first and second pump regulators R1 and R2, respectively.
  • the third pump P3 is a fixed displacement hydraulic pump, and the discharge flow rate is controlled by adjusting the rotational speed of the electric motor M via the second inverter INV2.
  • the control valve 15 is disposed between the first to third pumps P1 to P3 and the plurality of actuators 8 to 10, and distributes oil discharged from the first to third pumps P1 to P3 to the actuators 8 to 10. Supply.
  • a plurality of pump oil passages (hereinafter referred to as first to third pump oil passages as appropriate) L1 to L3 are formed inside the control valve 15, and supplied to the bucket cylinder 9 in the first pump oil passage L1.
  • a direction control valve V2 for controlling the direction and flow rate of the pressure oil is disposed, and a direction control valve V1 for controlling the direction and flow rate of the pressure oil supplied to the arm cylinder 8 and the swing hydraulic motor 10 are disposed in the second pump oil passage L2.
  • a direction control valve V3 for controlling the direction and flow rate of the pressure oil to be supplied is disposed, and a direction control valve V4 for controlling the direction and flow rate of the pressure oil to be supplied to the arm cylinder 8 is disposed in the third pump oil passage L3. ing.
  • the oil discharged from the first to third hydraulic pumps P1 to P3 is guided to the first to third pump oil passages L1 to L3, respectively, and is supplied to the actuators 8 to 10 via the direction control valves V1 to V4. .
  • Pump pressure sensors S1 to S3 for detecting discharge pressures of the first to third pumps P1 to P3 are attached to the first to third pump oil passages L1 to L3, respectively, and the arm cylinder 8 and the direction control valve V1. , V4, load pressure sensors S4 and S5 for detecting the load pressure of the arm cylinder 8 are attached to the head side oil passage L5 and the rod side oil passage L6, respectively. Detection signals from the pump pressure sensors S1 to S3 and the load pressure sensors S4 and S5 are input to the controller 18.
  • the operating device (hereinafter referred to as an arm operating device as appropriate) 19 includes a pilot valve 19a and an operating lever (hereinafter referred to as an arm operating lever as appropriate) 19b connected to the pilot valve 19a.
  • the pilot valve 19a is connected to a pilot hydraulic power source 17 configured by a pilot pump, a pilot relief valve, and the like, and receives a pilot primary pressure input from the pilot hydraulic power source 17 in accordance with the operating direction and operating amount of the operating lever 19b. The pressure is reduced and output as pilot pressures PL1 and PL2.
  • pilot pressures PL1 and PL2 are respectively guided to the left and right pilot pressure receiving portions of the directional control valves V1 and V4, and the directional control valves V1 and V4 for operating the arm are switched in either the right or left direction.
  • Pilot pressure sensors S6 and S7 for detecting pilot pressures PL1 and PL2 are respectively attached to the two pilot oil passages connected to the pilot valve 19a. The detection signals of the pilot pressure sensors S6 and S7 are sent to the controller 18. Entered.
  • the operating device 20 (hereinafter referred to as a bucket operating device as appropriate) includes a pilot valve 20a and an operating lever (hereinafter referred to as a bucket operating lever as appropriate) 20b connected to the pilot valve 20a.
  • the pilot valve 20a is connected to the pilot hydraulic power source 17, and reduces the pilot primary pressure input from the pilot hydraulic power source 17 in accordance with the operation direction and the operation amount of the operation lever 20b, and outputs it as pilot pressures PL3 and PL4. .
  • the pilot pressures PL3 and PL4 are respectively guided to the left and right pilot pressure receiving portions of the bucket operation direction control valve V2, and the direction control valve V2 is switched in either the right or left direction.
  • Pilot pressure sensors S8 and S9 for detecting pilot pressures PL3 and PL4 are respectively attached to the two pilot oil passages connected to the pilot valve 20a. The detection signals of the pilot pressure sensors S8 and S9 are sent to the controller 18. Entered.
  • the operating device 21 (hereinafter appropriately referred to as a turning operation device) includes a pilot valve 21a and an operation lever (hereinafter referred to as a turning operation lever) 21b connected to the pilot valve 21a.
  • the pilot valve 21a is connected to the pilot hydraulic source 17 and reduces the pilot primary pressure input from the pilot hydraulic source 17 in accordance with the operation direction and operation amount of the operation lever 21b, and outputs the pilot pressure as pilot pressures PL5 and PL6. .
  • the pilot pressures PL5 and PL6 are respectively guided to the left and right pilot pressure receiving portions of the directional control valve V3 for turning operation, and the directional control valve V3 is switched in either the right or left direction.
  • Pilot pressure sensors S10 and S11 for detecting pilot pressures PL5 and PL6 are respectively attached to the two pilot oil passages connected to the pilot valve 21a. The detection signals of the pilot pressure sensors S10 and S11 are sent to the controller 18. Entered.
  • the controller 18 monitors the detected values (discharge pressures of the first to third pumps P1 to P3) of the pump pressure sensors S1 to S3 so that the first to third pumps P1 to P3 do not exceed the limit value, and the pumps Detection values of the pressure sensors S1 to S3 (discharge pressures of the first to third pumps P1 to P3), detection values of the load pressure sensors S4 and S5 (arm load pressure), and detection values of the pilot pressure sensors S6 to S11 (pilot pressure)
  • the target flow rates of the first to third pumps P1 to P3 are set according to P1 to P6), and the first and third pumps P1 to P3 are set so that the discharge flow rates coincide with the respective target flow rates.
  • the capacity (displacement volume) of the pumps P1 and P2 and the rotational speed of the electric motor M are controlled.
  • the pump capacities (displacement volumes) of the first and second pumps P1 and P2 are controlled by the controller 18 sending tilt control signals to the first and second pump regulators R1 and R2, and the rotational speed of the motor M is The controller 18 is controlled by transmitting a rotation speed control signal to the second inverter INV2.
  • FIG. 3 is a flowchart showing the control by the controller 18. Each step constituting the control flow of FIG. 3 will be described below in order.
  • step S101 the first and second pump reference power Pow12 is determined based on the current engine speed or the engine speed target value with reference to a preset table (an example is shown in FIG. 4A).
  • the table is set so that the first and second pump reference power Pow12 does not exceed the engine maximum output HP1.
  • step S102 the third pump reference power Pow3 is determined from the battery charge (S0C) with reference to a preset table (an example is shown in FIG. 4B).
  • the table shows that the third pump reference power becomes zero when the third pump reference power Pow3 does not exceed the maximum output HP2 of the electric motor M and falls below a predetermined remaining battery level (SOC2). Is set to
  • step S103 it is determined whether or not the electric system abnormality flag is off. If the electric system abnormality flag is off, the process proceeds to step S105. If the electric system abnormality flag is ON, the process proceeds to step S104, the third pump reference power Pow3 is set to zero, and the process proceeds to step S105.
  • step S105 various operation signals, first to third pump discharge pressures (detected values of pump pressure sensors S1 to S3) Sv1 to Sv3, pump reference powers Pow12 and Pow3, based on the calculation flow shown in FIG. From these, the reference flow rates Q1c, Q2c, Q3c of each pump are determined.
  • the flow rate Q1a is determined from the maximum value PLm1 of the operating pilot pressure of the actuator connected to the first pump P1.
  • the flow rate Q2a is determined from the maximum value PLm2 of the operation pilot pressure of the actuator connected to the second pump P2.
  • the flow rate Q12b is calculated from the first and second pump discharge pressures Sv1, Sv2 and the first and second pump reference power Pow12 according to the following formula (flow rate calculation C1).
  • the flow rate Q3a is determined from the maximum value PLm3 of the operating pilot pressure of the actuator connected to the third pump P3.
  • the flow rate Q3b is calculated from the third pump discharge pressure Sv3 and the third pump reference power Pow3 according to the following formula (flow rate calculation C2).
  • Q3b Pow3b / Sv2 ⁇ 60
  • the minimum value of Q3a and Q3b is set to the third pump reference flow rate Q3c.
  • the third pump reference power Pow3 becomes zero in steps S102 and S104
  • the third pump reference flow rate Q3c becomes zero.
  • step S106 it is determined from the operation pilot pressure sensor value whether the arm operation and the turning operation are performed simultaneously. If they are performed simultaneously, the process proceeds to step S108. If not, the process proceeds to step S107, and the third pump reference flow rate Q3c is set to zero.
  • step S108 with reference to a preset table (an example is shown in FIG. 6), the correction gain G is determined from the detection values Sv4 and Sv5 of the load pressure sensors S4 and S5, and the third pump reference flow rate is calculated by the following equation. to correct.
  • a preset table an example is shown in FIG. 6
  • Q3c ′ Q3c ⁇ G
  • G takes a value from 0 to 1, and is 0 when the actuator load pressure is a certain value (Pam2 in FIG. 6).
  • step S109 the corrected third pump reference flow rate Q3c 'is subtracted from the second pump reference flow rate to calculate the corrected second pump reference flow rate Q2c'.
  • step S110 the first to third pump target flow rates Q1d, Q2d, Q3d are determined.
  • the first pump target flow rate Q1d is Q1c
  • the second pump target flow rate Q2d is the corrected second pump reference flow rate Q2c ′
  • the third pump target flow rate Q3d is the corrected third pump reference flow rate Q3c ′.
  • step S111 the first and second pump target displacements are calculated from the first and second pump target flow rates Q1d and Q2d and the current engine speed or engine target speed, and the first and second pump regulators R1 and R2 are calculated. Send tilt command.
  • step S112 the motor target rotational speed is calculated from the third pump target flow rate Q3d and the third pump displacement, the motor rotational speed command is transmitted to the second inverter INV2, the motor rotational speed is controlled, and the flow ends.
  • FIG. 7 is a block diagram showing a data flow from the electric system 30 to the main controller 18.
  • the electric system 30 is composed of devices related to driving of the third pump P3 such as the battery 14, the generator motor GM, the motor M, the first inverter INV1, and the second inverter INV2.
  • the battery controller 22 mounted on the battery 14 calculates the battery charge rate based on the battery temperature, the battery voltage, and the battery current value, and transmits the battery charge rate to the main controller 18. Further, the battery controller 22 sets the battery abnormality flag to OFF or ON based on the battery temperature, and transmits it to the main controller 18.
  • the battery abnormality flag is set to off when the battery temperature is in a normal temperature range, and is set to on when the battery temperature is out of the normal temperature range.
  • the first inverter controller 23 mounted on the first inverter INV1 turns the generator motor abnormality flag off or on based on the inverter temperature and the generator motor temperature received from the generator motor thermistor 25 attached to the generator motor GM. It is set and transmitted to the main controller 18.
  • the generator motor abnormality flag is set to OFF when the inverter temperature and the generator motor temperature are within the normal temperature range, and is ON when either the inverter temperature or the generator motor temperature is out of the normal temperature range.
  • the second inverter controller 24 mounted on the second inverter INV2 sets the motor abnormality flag to OFF or ON based on the inverter temperature and the motor temperature received from the motor thermistor 26 attached to the motor M. Transmit to the controller 18.
  • the motor abnormality flag is set to OFF when the inverter temperature and the motor temperature are in the normal temperature range, and set to ON when either the inverter temperature or the motor temperature is out of the normal temperature range.
  • FIG. 8 is a flowchart showing the setting process of the electric system abnormality flag by the main controller 18. Each step constituting the flow of FIG. 8 will be described in the following order.
  • the main controller 18 first determines whether or not the battery abnormality flag received from the battery controller 22 is off (step S201).
  • step S201 If it is determined as YES (battery abnormality flag is off) in step S201, it is determined whether or not the generator motor abnormality flag received from the first inverter controller 23 is off (step S202).
  • step S202 If it is determined as YES (battery abnormality flag is off) in step S202, it is determined whether or not the motor abnormality flag received from the second inverter controller 24 is off (step S203).
  • step S203 If it is determined as YES (the motor abnormality flag is off) in step S203, the electric apparatus abnormality flag is set to off (step S204), and the flow ends.
  • step S205 when it is determined NO in any of steps S201 to S203, the electric system abnormality flag is set to ON (step S205), and the flow ends.
  • the electric system abnormality flag is set to OFF, and when any of the devices constituting the electric system 30 is abnormal, the electric system Abnormal flag is set to ON.
  • pilot pressures PL1 and PL2 and pilot pressures PL3 and PL4 are output from the pilot valves 19a and 20a, respectively, according to the operation direction and operation amount of each lever.
  • the controller 18 sets the target flow rates of the first and second pumps P1 and P2 according to the discharge pressures of the first and second pumps P1 and P2 (detected values of the pump pressure sensors S1 and S2).
  • the tilt angles of the first and second pumps P1 and P2 are controlled so that the discharge flow rates of the two pumps P1 and P2 match the respective target flow rates. Further, since it is not a combined swivel / arm operation, the target flow rate of the third pump P3 is set to zero and the electric motor M is not operated.
  • the arm pilot pressures PL1 and PL2 output from the arm operating device 19 switch the direction control valves V1 and V4 in either the left or right direction.
  • Bucket pilot pressures PL3 and PL4 output from bucket operating device 20 switch directional control valve V2 in either the left or right direction.
  • pressure oil is supplied from the second pump oil passage L2 to the arm cylinder 8 in accordance with the operation of the arm operation lever 19b, and from the first pump oil passage L1 to the bucket cylinder 9 in accordance with the operation of the bucket operation lever 20b. Pressure oil is supplied to the arm and bucket combined operation is realized. At this time, since the electric motor M does not operate, no pressure oil is supplied from the third hydraulic pump P3 to the arm cylinder 8.
  • pilot pressures PL1, PL2, pilot pressures PL3, PL4, and pilot pressures PL5, PL6 are selected according to the operating direction and operating amount of each lever. Are output from the pilot valves 19a to 21a, respectively.
  • the controller 18 controls the discharge flow rates of the first to third pumps P1 to P3 based on the control flow of FIG. First, Pow12 is determined from the engine speed, and Pow3 is determined from the battery charge amount. When the battery charge amount falls below a predetermined value (SOC2 in FIG. 4B), Pow3 becomes zero, and the third pump target flow rate calculated later becomes zero. Therefore, when the battery charge amount falls below the predetermined value, the third pump The electric motor M that drives P3 does not operate.
  • Qa1 is determined from the maximum operating pressure PLm1 (in this case, bucket operating pilot pressure) of the actuator connected to the first pump P1. Further, referring to the table T2, Qa2 is determined from the maximum operating pressure PLm2 (in this case, the maximum value of the arm operation pilot pressure and the turning operation pilot pressure) of the actuator connected to the second pump P2.
  • Q12b is determined from the first and second pump discharge pressures Sv1 and Sv2 and the first and second pump reference power Pow12 by the flow rate calculation C1, and the minimum value of Q1a and Q12b is set as the first pump reference flow rate Q1c, and Q2a, The minimum value of Q12b is set as the second pump reference flow rate Q2c.
  • the reference flow rate Qa3 is determined from the maximum operating pressure PLm3 (in this case, the arm operating pilot pressure) of the actuator connected to the third pump P3.
  • the flow rate calculation C2 determines the reference flow rate Q3b from the third pump discharge pressure Sv3 and the third pump reference power Pow3, and sets the minimum value of the reference flow rates Q3a and Q3b as the third pump reference flow rate Q3c.
  • the third pump target flow rate Q3d becomes Q3c
  • the second pump target flow rate Q2d becomes the second pump.
  • Q3c is subtracted from the reference flow rate Q2c.
  • the tilt angles of the first and second pumps P1 and P2 and the rotation speed of the electric motor M that drives the third pump P3 are controlled.
  • the pilot pressures PL1 and PL2 output from the arm operating device 19 are respectively guided to the left and right pilot pressure receiving portions of the directional control valves V1 and V4 to switch the directional control valves V1 and V4 in either the left or right direction.
  • the pilot pressures PL3 and PL4 output from the bucket operating device 20 are respectively guided to the left and right pilot pressure receiving portions of the directional control valve V2, and switch the directional control valve V2 in either the left or right direction.
  • the pilot pressures PL5 and PL6 output from the turning operation device 21 are respectively guided to the left and right pilot pressure receiving portions of the direction control valve V3 to switch the direction control valve V3 in either the left or right direction.
  • pressure oil is supplied from the third pump P3 to the arm cylinder 8 according to the operation of the arm operation lever 19b, and pressure oil is supplied from the first pump P1 to the bucket cylinder 9 according to the operation of the bucket operation lever 20b.
  • pressure oil is supplied from the second pump P2 to the turning hydraulic motor 10, and a combined operation of arm, bucket and turning in a light load operation is realized.
  • the second pump oil passage L2 communicates with both the arm cylinder 8 and the swing hydraulic motor 10 via the direction control valves V1 and V2, but the direction control valve V1 is tandem with respect to the direction control valve V3.
  • pilot pressures PL1 to PL6 are output from the pilot valves 19a to 21a in accordance with the operation of each operation lever.
  • the controller 18 controls the discharge flow rates of the first to third pumps P1 to P3 based on the control flow of FIG.
  • the third pump correction gain G becomes zero
  • the corrected third pump reference flow rate becomes zero.
  • the third pump target flow rate becomes zero
  • the second pump target flow rate coincides with the second pump reference flow rate.
  • the pilot pressures PL1 and PL2 output from the arm operation device 19 are respectively guided to the left and right pilot pressure receiving portions of the direction control valves V1 and V4, and the direction control valves V1 and V4 are switched and operated in either the left or right direction.
  • the pilot pressures PL3 and PL4 output from the bucket operating device 20 are respectively guided to the left and right pilot pressure receiving portions of the directional control valve V2, and the directional control valve V2 is switched to either the left or right direction.
  • the pilot pressures PL5 and PL6 output from the turning operation device 21 are respectively guided to the left and right pilot pressure receiving portions of the direction control valve V3, and the direction control valve V3 is switched in either the left or right direction.
  • the oil discharged from the second pump P2 is divided and supplied to the arm cylinder 8 and the swing hydraulic motor 10 in accordance with the operation of the arm operation lever 19b and the swing operation lever 21b, and the first in response to the operation of the bucket operation lever 20b.
  • Discharged oil from one pump P1 is supplied to the bucket cylinder 9, and a combined operation of arm, bucket and swivel in heavy load work is realized.
  • pressure oil is not supplied from the third pump P3 to the arm cylinder 8.
  • FIG. 9 shows a combination of arm load pressure (light load / heavy load), arm operation (single / composite), and arm drive source (second pump P2 / third pump P3) in the hydraulic drive device according to the present embodiment.
  • FIG. 6 is a diagram showing a relationship between drive modes M1 to M8 determined by the above and energy loss (drag loss, pressure loss, and power loss) generated in each drive mode.
  • the controller 18 executes the control flow shown in FIG. 3 so that the drive mode has a small energy loss (good fuel consumption) according to the arm operation, the turning operation, and the arm load pressure.
  • One of M1, M4, M5 and M7 is selected.
  • the arm cylinder 8 is selectively driven by the engine-driven second pump P2 and the motor-driven third pump P3 in accordance with the arm operation and the turning operation, and the pressure loss due to the diversion and the third pump P3
  • the fuel consumption of the work machine can be improved by suppressing drag loss associated with driving.
  • the arm cylinder 8 that is frequently operated in a light load operation and requires a large flow rate is a specific actuator that can be selectively driven by the second pump P2 and the third pump P3. The effect of suppressing pressure loss and drag loss can be enhanced as compared with the case where the actuator is a specific actuator.
  • the motor M in heavy load work (the load pressure of the arm cylinder 8 is Pam2 or more), the motor M is not operated, and the arm cylinder 8 is driven by the second pump P2. Further, it is possible to prevent the power consumption of the electric motor M from rising excessively and to prevent an increase in power loss accompanying the operation of the electric motor M.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

油圧ポンプの圧力損失及び引きずり損失を低減することにより、作業機械の燃費を改善できる油圧駆動装置を提供する。電動機(M)と、前記電動機(M)によって駆動される第3ポンプ(P3)と、前記第3ポンプ(P3)の吐出油が供給される第3ポンプ油路(L3)と、前記第3ポンプ油路(L3)に設けられ、アーム操作装置(19)によって切換操作され、前記第3油圧ポンプ(P3)からアームシリンダ(8)に供給される圧油の流量を制御する第3方向制御弁(V4)と、前記電動機(M)を駆動制御するコントローラ(18)とを備え、前記コントローラ(18)は、パイロット圧センサ(S6,S7,S10,S11)によって旋回・アーム複合操作が検出されたときに、前記電動機(M)で前記第3ポンプ(P3)を駆動する。

Description

作業機械の油圧駆動装置
 本発明は、油圧ショベルやクレーン等の作業機械に搭載される油圧駆動装置に関する。
 油圧ショベルなどの油圧式作業機械では、エンジンで油圧ポンプを回転駆動し、油圧ポンプから吐出された圧油により、油圧シリンダなどの油圧アクチュエータを操作するものが一般的である。このような作業機械に搭載される油圧駆動装置として、例えば特許文献1及び2に記載のものがある。
 特許文献1に記載の油圧駆動装置は、1台の油圧ポンプから吐出される圧油を分流して複数のアクチュエータに供給することにより複合動作を可能としている。
 一方、特許文献2に記載の油圧駆動装置は、エンジン駆動の油圧ポンプ2台と電動式油圧ポンプ1台とを備え、各アクチュエータを別々の油圧ポンプで駆動することにより、複合動作における操作の独立性を実現している。
特開平8-105078 特許第4509877号公報
 特許文献1に記載の油圧駆動装置では、1台の油圧ポンプで複数のアクチュエータを駆動するため、油圧ポンプを回転駆動する際に生じる引きずり損失が小さい。しかし、複数のアクチュエータを駆動する複合動作時に、油圧ポンプの吐出油を分流する制御絞りにおいて圧力損失が生じる。
 一方、特許文献2に記載の油圧駆動装置では、各アクチュエータが別々の油圧ポンプで駆動されるため、複合動作時も分流に伴う圧力損失は生じない。しかし、電動式油圧ポンプで駆動するように構成されたバケットのみを操作する単独動作時に、エンジン駆動の油圧ポンプと合わせて3台の油圧ポンプが駆動されることとなり、引きずり損失が大きくなる。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、油圧ポンプの圧力損失及び引きずり損失を低減することにより、作業機械の燃費を改善できる油圧駆動装置を提供することである。
 (1)上記課題を解決するために、本発明は、エンジンと、前記エンジンによって駆動される第1及び第2油圧ポンプと、前記第1及び第2油圧ポンプの吐出油がそれぞれ供給される第1及び第2ポンプ油路と、前記第1ポンプ油路から供給される圧油によって駆動される少なくとも1つの第1アクチュエータと、前記第2ポンプ油路から供給される圧油によって駆動される複数の第2アクチュエータと、前記第1ポンプ油路に設けられ、前記第1アクチュエータに供給される圧油の流量を制御する第1方向制御弁と、前記第2ポンプ油路に設けられ、前記複数の第2アクチュエータに供給される圧油の流量をそれぞれ制御する複数の第2方向制御弁と、前記第1方向制御弁及び前記複数の第2方向制御弁をそれぞれ切換操作することにより前記第1アクチュエータ及び前記複数の第2アクチュエータを操作する複数の操作装置と、電動機と、前記電動機によって駆動される第3油圧ポンプと、前記第3油圧ポンプの吐出油が供給される第3ポンプ油路と、前記第3ポンプ油路に設けられ、前記複数の第2アクチュエータのうちの特定のアクチュエータを操作する前記複数の操作装置のうちの特定の操作装置によって切換操作され、前記第3油圧ポンプから前記特定のアクチュエータに供給される圧油の流量を制御する第3方向制御弁と、前記複数の第2アクチュエータの操作に応じて前記電動機を駆動制御する制御装置とを備えるものとする。
 このように構成した本発明においては、特定のアクチュエータをエンジン駆動の第2油圧ポンプと電動機駆動の第3油圧ポンプとで選択的に駆動可能としたことにより、第2油圧ポンプの圧力損失及び第3油圧ポンプの引きずり損失が抑えられ、作業機械の燃費を改善できる。
 (2)上記(1)において、好ましくは、前記複数の操作装置の操作量をそれぞれ検出する複数の操作量検出装置を更に備え、前記制御装置は、前記複数の操作量検出装置によって前記複数の第2アクチュエータのうち前記特定のアクチュエータを含む2つ以上の第2アクチュエータの複合操作が検出されたときに、前記電動機で前記第3油圧ポンプを駆動する。
 このように、特定のアクチュエータを含む2つ以上の第2アクチュエータの複合動作時は、第3油圧ポンプによって特定のアクチュエータが駆動され、第2油圧ポンプから特定のアクチュエータに圧油が供給されないため、第2油圧ポンプの圧力損失が抑えられる。
 (3)上記(2)において、好ましくは、前記特定のアクチュエータの負荷圧を検出する負荷圧検出装置を更に備え、前記制御装置は、前記複数の操作量検出装置によって前記複数の第2アクチュエータのうち前記特定のアクチュエータを含む2つ以上の第2アクチュエータの複合操作が検出され、かつ前記負荷圧検出装置によって検出された前記特定のアクチュエータの負荷圧が所定の負荷圧より高いときは、前記電動機で前記第3油圧ポンプを駆動しない。
 このように、特定のアクチュエータを含む2つ以上の第2アクチュエータの複合動作時でかつ重負荷作業時は、エンジン駆動の第2油圧ポンプで特定のアクチュエータを駆動することにより、電動機の電力損失を抑えるとともに、従来と同等の操作性を維持することができる。
 (4)上記(1)において、好ましくは、前記第特定のアクチュエータがアームシリンダである。
 このように、軽負荷作業時に複合操作される頻度が高くかつ大流量を要するアームシリンダを、エンジン駆動の第2油圧ポンプと電動機駆動の第3油圧ポンプとで選択的に駆動可能な特定のアクチュエータとすることで、第2油圧ポンプの圧力損失及び第3油圧ポンプの引きずり損失の低減効果を向上できる。
 (5)上記(1)において、好ましくは、前記電動機を含む電動系統の異常を検出する異常検出装置を更に備え、前記制御装置は、前記異常検出装置によって前記電動系統の異常が検出されたときは、前記電動機で前記第3油圧ポンプを駆動しない。
 このように、電動機を含む電動系統に異常が生じた場合は、エンジン駆動の第2油圧ポンプで特定のアクチュエータを駆動することにより、電動系統に関わる重大な故障を防ぐとともに、従来と同等の操作性を維持することができる。
 (6)上記(1)において、好ましくは、前記電動機を駆動するための電力を蓄えるバッテリと、前記バッテリの充電率を検出する充電率検出装置とを更に備え、前記制御装置は、前記充電率検出装置によって検出されたバッテリ充電率が所定の充電率よりも低いときは、前記電動機で第3油圧ポンプを駆動しない。
 このように、バッテリの残量が不足している場合は、エンジン駆動の第2油圧ポンプで特性のアクチュエータを駆動することにより、従来と同等の操作性を維持することができる。
 本発明によれば、油圧ポンプの圧力損失または引きずり損失を低減することにより、作業機械の燃費を改善することができる。
本発明の実施の形態に係る油圧駆動装置を備えた油圧ショベルの側面図である。 本発明の実施の形態に係る油圧駆動装置の構成図である。 本発明の実施の形態におけるメインコントローラによる制御を示すフロー図である。 本発明の実施の形態におけるエンジン回転数と第1及び第2ポンプの基準動力との関係を示す図である。 本発明の実施の形態におけるバッテリSOCと第3ポンプの基準動力との関係を示す図である。 本発明の実施の形態におけるポンプ基準流量の演算フロー図である。 本発明の実施の形態におけるアーム負荷圧と第3ポンプの基準流量の補正ゲインとの関係を示す図である。 本発明の実施の形態における電動系統からメインコントローラへのデータフローを示すブロック図である。 本発明の実施の形態におけるメインコントローラによる電動系統異常フラグの設定処理を示すフロー図である。 アームシリンダの駆動モードとエネルギー損失との関係を示す図である。
 以下、本発明の実施の形態として、本発明を油圧ショベルの油圧駆動装置に適用した場合を例に説明する。
 ~構成~
 図1は、本実施の形態に係る油圧ショベルの外観を示す図である。油圧ショベルは、下部走行体1と、上部旋回体2と、フロント作業装置3とを備えている。
 下部走行体1は、左右の履帯11a,11b(左側のみ図示)と左右の走行油圧モータ12a,12b(左側のみ図示)とを備え、左右の走行油圧モータ12a,12bで左右の履帯11a,11bをそれぞれ駆動することにより走行する。
 上部旋回体2は、支持機構としての旋回フレーム2aを有し、旋回フレーム2a上には、原動機としてのエンジン13、電動機M(図示せず)、エンジン13に連結された発電電動機GM(図示せず)、エンジン13により駆動される油圧ポンプP1,P2、電動機により駆動される油圧ポンプP3(図示せず)、下部走行体1に対して上部旋回体2(旋回フレーム2a)を旋回駆動する旋回油圧モータ10、油圧ポンプP1~P3の吐出油を各アクチュエータ7~10,12a,12bに分配して供給するコントロールバルブ15等が搭載されている。
 フロント作業装置3は、上部旋回体2に上下方向に回動可能に取り付けられたブーム4と、ブーム4の先端に回動可能に取り付けられたアーム5と、アーム5の先端に回動可能に取り付けられたバケット6とを有している。ブーム4はブームシリンダ7の伸縮により上下方向に回動し、アーム5はアームシリンダ8の伸縮により上下・前後方向に回動し、バケット6はバケットシリンダ9の伸縮により上下・前後方向に回動する。
 図2は、本発明の実施の形態に係る油圧駆動装置の構成図である。油圧駆動装置は、エンジン13と、発電電動機GMと、電動機Mと、3つの油圧ポンプ(以下、適宜第1~第3ポンプという)P1~P3と、コントロールバルブ15と、複数のアクチュエータ8~10と、各アクチュエータ8~10をそれぞれ操作する複数の操作装置19~21と、制御装置としてのメインコントローラ(以下、適宜コントローラという)18とを備えている。
 なお、図1に示したブームシリンダ7及び左右の走行油圧モータ12a,12bは第1、第2ポンプP1,P2のいずれかで駆動されるが、アクチュエータ7,12a,12bの動作は以下の議論に影響しないため、図2ではアクチュエータ7,12a,12bの駆動に関わる部分は省略している。
 エンジン13の出力軸には発電電動機GMが連結されており、発電電動機GMの出力軸には第1、第2ポンプP1,P2が連結されている。発電電動機GMは、エンジン13の駆動力及びバッテリ14に蓄えられた電気エネルギーのいずれか一方又は双方によって作動し、第1、第2ポンプP1,P2を駆動する。発電電動機GMは、第1インバータINV1を介してバッテリ14及び第2インバータINV2に接続されており、エンジン13の動力を電気エネルギーに変換してバッテリ14又は第2インバータINV2に出力する発電機としての機能と、第1インバータINV1を介して供給されるバッテリ14の電気エネルギーによって第1、第2ポンプP1,P2をアシスト駆動する電動機としての機能とを有する。
 電動機Mの出力軸には、第3ポンプP3が連結されている。電動機Mは、第2インバータINV2を介してバッテリ14及び第1インバータINV1に接続されており、バッテリ14に蓄えられた電気エネルギー及び発電電動機GMで発電した電気エネルギーのいずれか一方又は双方によって作動し、第3ポンプP3を駆動する。
 第1、第2ポンプP1,P2は、可変容量型の油圧ポンプであり、それぞれ第1、第2ポンプレギュレータR1,R2を介してポンプ容量(押しのけ容積)を調整することにより吐出流量が制御される。第3ポンプP3は、固定容量型の油圧ポンプであり、第2インバータINV2を介して電動機Mの回転数を調整することにより吐出流量が制御される。
 コントロールバルブ15は、第1~第3ポンプP1~P3と複数のアクチュエータ8~10との間に配置され、第1~第3ポンプP1~P3の吐出油を各アクチュエータ8~10に分配して供給する。コントロールバルブ15の内部には、複数のポンプ油路(以下、適宜第1~第3ポンプ油路という)L1~L3が形成されており、第1ポンプ油路L1にはバケットシリンダ9に供給する圧油の方向及び流量を制御する方向制御弁V2が配置され、第2ポンプ油路L2にはアームシリンダ8に供給する圧油の方向及び流量を制御する方向制御弁V1と旋回油圧モータ10の供給する圧油の方向及び流量を制御する方向制御弁V3とが配置され、第3ポンプ油路L3にはアームシリンダ8に供給する圧油の方向及び流量を制御する方向制御弁V4が配置されている。第1~第3油圧ポンプP1~P3の吐出油は、第1~第3ポンプ油路L1~L3にそれぞれ導かれ、各方向制御弁V1~V4を介して各アクチュエータ8~10に供給される。
 第1~第3ポンプ油路L1~L3には、第1~第3ポンプP1~P3の吐出圧を検出するポンプ圧センサS1~S3がそれぞれ取り付けられており、アームシリンダ8と方向制御弁V1,V4とを接続するヘッド側油路L5及びロッド側油路L6には、アームシリンダ8の負荷圧を検出する負荷圧センサS4,S5がそれぞれ取り付けられている。ポンプ圧センサS1~S3及び負荷圧センサS4,S5の検出信号は、コントローラ18に入力される。
 操作装置(以下、適宜アーム操作装置という)19は、パイロットバルブ19aと、パイロットバルブ19aに連結された操作レバー(以下、適宜アーム操作レバーという)19bとを備えている。パイロットバルブ19aは、パイロットポンプ及びパイロットリリーフ弁等で構成されるパイロット油圧源17に接続されており、操作レバー19bの操作方向及び操作量に応じてパイロット油圧源17から入力されるパイロット一次圧を減圧し、パイロット圧PL1,PL2として出力する。パイロット圧PL1,PL2は、方向制御弁V1,V4の左右のパイロット受圧部にそれぞれ導かれ、アーム操作用の方向制御弁V1,V4を右左いずれかの方向に切換操作する。パイロットバルブ19aに接続された2つのパイロット油路には、パイロット圧PL1,PL2を検出するパイロット圧センサS6,S7がそれぞれ取り付けられており、パイロット圧センサS6,S7の検出信号は、コントローラ18に入力される。
 操作装置20(以下、適宜バケット操作装置という)は、パイロットバルブ20aと、パイロットバルブ20aに連結された操作レバー(以下、適宜バケット操作レバーという)20bとを備えている。パイロットバルブ20aは、パイロット油圧源17に接続されており、操作レバー20bの操作方向及び操作量に応じてパイロット油圧源17から入力されるパイロット一次圧を減圧し、パイロット圧PL3,PL4として出力する。パイロット圧PL3,PL4は、バケット操作用の方向制御弁V2の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V2を右左いずれかの方向に切換操作する。パイロットバルブ20aに接続された2つのパイロット油路には、パイロット圧PL3,PL4を検出するパイロット圧センサS8,S9がそれぞれ取り付けられており、パイロット圧センサS8,S9の検出信号は、コントローラ18に入力される。
 操作装置21(以下、適宜旋回操作装置という)は、パイロットバルブ21aと、パイロットバルブ21aに連結された操作レバー(以下、適宜旋回操作レバーという)21bとを備えている。パイロットバルブ21aは、パイロット油圧源17に接続されており、操作レバー21bの操作方向及び操作量に応じてパイロット油圧源17から入力されるパイロット一次圧を減圧し、パイロット圧PL5,PL6として出力する。パイロット圧PL5,PL6は、旋回操作用の方向制御弁V3の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V3を右左いずれかの方向に切換操作する。パイロットバルブ21aに接続された2つのパイロット油路には、パイロット圧PL5,PL6を検出するパイロット圧センサS10,S11がそれぞれ取り付けられており、パイロット圧センサS10,S11の検出信号は、コントローラ18に入力される。
 コントローラ18は、第1~第3ポンプP1~P3が制限値を超えないようにポンプ圧センサS1~S3の検出値(第1~第3ポンプP1~P3の吐出圧)を監視するとともに、ポンプ圧センサS1~S3の検出値(第1~第3ポンプP1~P3の吐出圧)、負荷圧センサS4,S5の検出値(アーム負荷圧)及びパイロット圧センサS6~S11の検出値(パイロット圧P1~P6)に応じて第1~第3ポンプP1~P3の目標流量を設定し、第1~第3ポンプP1~P3の吐出流量がそれぞれの目標流量と一致するように、第1、第2ポンプP1,P2の容量(押しのけ容積)及び電動機Mの回転数を制御する。第1、第2ポンプP1,P2のポンプ容量(押しのけ容積)は、コントローラ18が第1、第2ポンプレギュレータR1,R2に傾転制御信号を送信することで制御され、電動機Mの回転数は、コントローラ18が第2インバータINV2に回転数制御信号を送信することで制御される。
 ~制御~
 本実施の形態に係る油圧駆動装置の制御方法を、図3を用いて説明する。
 図3は、コントローラ18による制御を示すフロー図である。図3の制御フローを構成する各ステップについて、以下順に説明する。
 ステップS101では、予め設定したテーブル(一例を図4Aに示す)を参照して、エンジン現在回転数またはエンジン回転数目標値から第1・第2ポンプ基準動力Pow12を決定する。ここで、前記テーブルは、第1・第2ポンプ基準動力Pow12がエンジン最大出力HP1を超えないように設定されている。
 ステップS102では、予め設定したテーブル(一例を図4Bに示す)を参照して、バッテリ充電量(S0C)から第3ポンプ基準動力Pow3を決定する。ここで、前記テーブルは、第3ポンプ基準動力Pow3が電動機Mの最大出力HP2を超えないように、かつ、所定のバッテリ残量(SOC2)を下回ると、第3ポンプ基準動力がゼロとなるように設定されている。
 ステップS103では、電動系統異常フラグがオフか否かを判定し、電動系統異常フラグがオフの場合はステップS105へ進む。電動系統異常フラグがオンの場合はステップS104へ進み、第3ポンプ基準動力Pow3をゼロに設定してステップS105に進む。
 ステップS105では、図5に示す演算フローに基づいて、各種操作信号と、第1~第3ポンプ吐出圧(ポンプ圧センサS1~S3の検出値)Sv1~Sv3と、ポンプ基準動力Pow12,Pow3とから、各ポンプの基準流量Q1c,Q2c,Q3cを決定する。
 図5の演算フローにおいて、まず、第1、第2ポンプP1,P2の基準流量を演算するフローを説明する。
 初めに、テーブルT1を参照し、第1ポンプP1に接続されたアクチュエータの操作パイロット圧の最大値PLm1から流量Q1aを決定する。同様にテーブルT2を参照し、第2ポンプP2に接続されたアクチュエータの操作パイロット圧の最大値PLm2から流量Q2aを決定する。
 次に、第1、第2ポンプ吐出圧Sv1,Sv2と第1・第2ポンプ基準動力Pow12とから、以下の式に従って流量Q12bを計算する(流量演算C1)。
  P12 = (Sv1+Sv2)/2
  Q12b = Pow12b/P12×60
 最後に、Q1a,Q12bの最小値を第1ポンプ基準流量Q1cに設定し、Q2a,Q12bの最小値を第2ポンプ基準流量Q2cに設定する。
 次に、図5の演算フローにおいて,第3ポンプP3の基準流量を演算するフローを説明する。
 初めに、テーブルT3を参照し、第3ポンプP3に接続されたアクチュエータの操作パイロット圧の最大値PLm3から流量Q3aを決定する。
 次に、第3ポンプ吐出圧Sv3と第3ポンプ基準動力Pow3とから、以下の式に従って流量Q3bを計算する(流量演算C2)。
  Q3b = Pow3b/Sv2×60
 最後に、Q3a,Q3bの最小値を第3ポンプ基準流量Q3cに設定する。ここで、特にステップS102およびS104で第3ポンプ基準動力Pow3がゼロになった場合は、第3ポンプ基準流量Q3cがゼロとなる。
 ステップS106では、操作パイロット圧センサ値から、アーム操作と旋回操作とが同時に行われているかを判定し、同時に行われている場合はステップS108へ進む。同時に行われていない場合はステップS107へ進み、第3ポンプ基準流量Q3cをゼロに設定する。
 ステップS108では、予め設定したテーブル(一例を図6に示す)を参照し、負荷圧センサS4,S5の検出値Sv4,Sv5から補正ゲインGを決定し、以下の式で第3ポンプ基準流量を補正する。
  Q3c’= Q3c×G
ここで、Gは0から1の値をとり、アクチュエータ負荷圧がある一定以上の値(図6におけるPam2)では0となる。
 ステップS109では、第2ポンプ基準流量から補正後の第3ポンプ基準流量Q3c’を減算し、補正後第2ポンプ基準流量Q2c’を演算する。
  Q2c’= Q2c-Q3c’
 ステップS110では、第1~第3ポンプ目標流量Q1d,Q2d,Q3dを決定する。ここで、第1ポンプ目標流量Q1dはQ1c、第2ポンプ目標流量Q2dは補正後第2ポンプ基準流量Q2c’とし、第3ポンプ目標流量Q3dは補正後第3ポンプ基準流量Q3c’とする。
 ステップS111では、第1、第2ポンプ目標流量Q1d,Q2dとエンジン現在回転数またはエンジン目標回転数から第1及び第2ポンプ目標押しのけ容積を演算し、第1、第2ポンプレギュレータR1,R2に傾転指令を送信する。
 ステップS112では、第3ポンプ目標流量Q3dと第3ポンプ押しのけ容積から電動機目標回転数を演算し、第2インバータINV2に電動機回転数指令を送信して電動機回転数を制御し、フローを終了する。
 次に、メインコントローラ18によるバッテリ充電率の取得方法および電動系統異常フラグの設定方法について、図7および図8を用いて説明する。
 図7は、電動系統30からメインコントローラ18へのデータフローを示すブロック図である。電動系統30は、バッテリ14、発電電動機GM、電動機M、第1インバータINV1、第2インバータINV2等の第3ポンプP3の駆動に関わる装置で構成されている。バッテリ14に搭載されたバッテリコントローラ22は、バッテリ温度、バッテリ電圧及びバッテリ電流値に基づいてバッテリ充電率を計算し、メインコントローラ18に送信する。また、バッテリコントローラ22は、バッテリ温度に基づいてバッテリ異常フラグをオフまたはオンに設定し、メインコントローラ18に送信する。ここで、バッテリ異常フラグは、バッテリ温度が正常な温度範囲にある場合はオフに設定され、バッテリ温度が正常な温度範囲から外れた場合はオンに設定される。
 第1インバータINV1に搭載された第1インバータ用コントローラ23は、インバータ温度と発電電動機GMに取り付けられた発電電動機用サーミスタ25から受信した発電電動機温度とに基づいて発電電動機異常フラグをオフまたはオンに設定し、メインコントローラ18に送信する。ここで、発電電動機異常フラグは、インバータ温度および発電電動機温度がそれぞれ正常な温度範囲にある場合はオフに設定され、インバータ温度または発電電動機温度のいずれかが正常な温度範囲から外れた場合はオンに設定される。
 第2インバータINV2に搭載された第2インバータ用コントローラ24は、インバータ温度と電動機Mに取り付けられた電動機用サーミスタ26から受信した電動機温度とに基づいて電動機異常フラグをオフまたはオンに設定し、メインコントローラ18に送信する。ここで、電動機異常フラグは、インバータ温度および電動機温度がそれぞれ正常な温度範囲にある場合はオフに設定され、インバータ温度または電動機温度のいずれかが正常な温度範囲から外れた場合はオンに設定される。
 図8は、メインコントローラ18による電動系統異常フラグの設定処理を示すフロー図である。図8のフローを構成する各ステップについて、以下順に説明する。
 メインコントローラ18は、まず、バッテリコントローラ22から受信したバッテリ異常フラグがオフか否かを判定する(ステップS201)。
 ステップS201でYES(バッテリ異常フラグがオフ)と判定された場合は、第1インバータ用コントローラ23から受信した発電電動機異常フラグがオフか否かを判定する(ステップS202)。
 ステップS202でYES(バッテリ異常フラグがオフ)と判定された場合は、第2インバータ用コントローラ24から受信した電動機異常フラグがオフか否かを判定する(ステップS203)。
 ステップS203でYES(電動機異常フラグがオフ)と判定された場合は、電動機器異常フラグをオフに設定し(ステップS204)、フローを終了する。
 一方、ステップS201~S203のいずれかでNOと判定された場合は、電動系統異常フラグをオンに設定し(ステップS205)、フローを終了する。
 以上のフローにより、電動系統30を構成する機器の全てが正常な場合は、電動系統異常フラグはオフに設定され、電動系統30を構成する機器のいずれかに異常が生じた場合は、電動系統異常フラグがオンに設定される。
 ~動作~
 上述したコントローラ18の制御フローによって実現される油圧駆動装置の動作を、図2を用いて説明する。
 (アーム・バケット複合動作)
 アーム操作レバー19b及びバケット操作レバー20bが同時に操作されると、各レバーの操作方向及び操作量に応じてパイロット圧PL1,PL2及びパイロット圧PL3,PL4がパイロットバルブ19a,20aからそれぞれ出力される。
 コントローラ18は、第1、第2ポンプP1,P2の吐出圧(ポンプ圧センサS1,S2の検出値)に応じて第1、第2ポンプP1,P2の目標流量を設定し、第1、第2ポンプP1,P2の吐出流量がそれぞれの目標流量と一致するように、第1、第2ポンプP1,P2の傾転角を制御する。また、旋回・アーム複合操作ではないため、第3ポンプP3の目標流量をゼロに設定し、電動機Mを作動させない。
 アーム操作装置19から出力されたアームパイロット圧PL1,PL2は、方向制御弁V1,V4を左右いずれかの方向に切換操作する。バケット操作装置20から出力されたバケットパイロット圧PL3,PL4は、方向制御弁V2を左右いずれかの方向に切換操作する。
 これにより、アーム操作レバー19bの操作に応じて第2ポンプ油路L2からアームシリンダ8に圧油が供給されるとともに、バケット操作レバー20bの操作に応じて第1ポンプ油路L1からバケットシリンダ9に圧油が供給され、アーム・バケット複合操作が実現される。このとき、電動機Mは作動しないため、第3油圧ポンプP3からアームシリンダ8に圧油が供給されることはない。
 (アーム・バケット・旋回複合動作(軽負荷))
 アーム操作レバー19b、バケット操作レバー20b及び旋回操作レバー21bが同時に操作されると、各レバーの操作方向及び操作量に応じてパイロット圧PL1,PL2、パイロット圧PL3,PL4、及びパイロット圧PL5,PL6がパイロットバルブ19a~21aからそれぞれ出力される。
 コントローラ18は、図3の制御フローに基づいて第1~第3ポンプP1~P3の吐出流量を制御する。まず、エンジン回転数からPow12を決定し、バッテリ充電量からPow3を決定する。バッテリ充電量が所定の値(図4BのSOC2)を下回るとPow3はゼロとなり、後に演算される第3ポンプ目標流量がゼロとなることから、バッテリ充電量が所定の値以下になると第3ポンプP3を駆動する電動機Mは作動しない。
 図5における各ポンプの基準流量の演算について説明する。テーブルT1を参照し、第1ポンプP1に接続されたアクチュエータの最大操作圧PLm1(この場合は、バケット操作パイロット圧)からQa1を決定する。また、テーブルT2を参照し、第2ポンプP2に接続されたアクチュエータの最大操作圧PLm2(この場合は、アーム操作パイロット圧、旋回操作パイロット圧の最大値)からQa2を決定する。流量演算C1により、第1、第2ポンプ吐出圧Sv1,Sv2と第1・第2ポンプ基準動力Pow12とからQ12bを決定し、Q1a,Q12bの最小値を第1ポンプ基準流量Q1cとし、Q2a,Q12bの最小値を第2ポンプ基準流量Q2cとする。
 また、テーブルT3を参照し、第3ポンプP3に接続されたアクチュエータの最大操作圧PLm3(この場合は、アーム操作パイロット圧)から基準流量Qa3を決定する。流量演算C2により、第3ポンプ吐出圧Sv3と第3ポンプ基準動力Pow3とから基準流量Q3bを決定し、基準流量Q3a,Q3bの最小値を第3ポンプ基準流量Q3cとする。ここで、旋回・アーム複合操作がなされており、かつアーム負荷圧が軽負荷(図6におけるPam1以下)とすると、第3ポンプ目標流量Q3dはQ3cとなり、第2ポンプ目標流量Q2dは第2ポンプ基準流量Q2cからQ3cを減算したものとなる。第1ポンプ目標流量は補正されず、Q1d=Q1cとなる。
 以上のように計算した各ポンプ目標流量に基づいて、第1、第2ポンプP1,P2の傾転角および第3ポンプP3を駆動する電動機Mの回転数を制御する。
 アーム操作装置19から出力されるパイロット圧PL1,PL2は、方向制御弁V1,V4の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V1,V4を左右いずれかの方向に切換操作する。バケット操作装置20から出力されるパイロット圧PL3,PL4は、方向制御弁V2の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V2を左右いずれかの方向に切換操作する。旋回操作装置21から出力されるパイロット圧PL5,PL6は、方向制御弁V3の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V3を左右いずれかの方向に切換操作する。
 これにより、アーム操作レバー19bの操作に応じて第3ポンプP3からアームシリンダ8に圧油が供給され、バケット操作レバー20bの操作に応じて第1ポンプP1からバケットシリンダ9に圧油が供給され、旋回操作レバー21bの操作に応じて第2ポンプP2から旋回油圧モータ10に圧油が供給され、軽負荷作業におけるアーム・バケット・旋回の複合動作が実現される。このとき、第2ポンプ油路L2が方向制御弁V1,V2を介してアームシリンダ8及び旋回油圧モータ10の双方と連通することとなるが、方向制御弁V1は方向制御弁V3に対してタンデム接続の下流側に設けられており、かつパラレル油路L4に絞りが設けられているため、第2ポンプP2の吐出油はアームシリンダ8にほとんど供給されない。従って、第2ポンプP2の吐出油をアームシリンダ8に分流する制御絞りにおいて圧力損失はほとんど生じない。
 (アーム・バケット・旋回複合動作(重負荷))
 アーム操作レバー19b、バケット操作レバー20b及び旋回操作レバー21bが同時に操作されると、各操作レバーの操作に応じてパイロット圧PL1~PL6がパイロットバルブ19a~21aから出力される。
 コントローラ18は、図3の制御フローに基づいて、第1~第3ポンプP1~P3の吐出流量を制御する。ここで、アーム負荷圧が所定の値以上(図6におけるPam2以上)となると、第3ポンプ補正ゲインGがゼロとなり、補正後第3ポンプ基準流量がゼロとなる。これにより、第3ポンプ目標流量はゼロとなり、第2ポンプ目標流量は第2ポンプ基準流量に一致する。
 アーム操作装置19から出力されたパイロット圧PL1,PL2は、方向制御弁V1,V4の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V1,V4を左右いずれかの方向に切換操作する。バケット操作装置20から出力されたパイロット圧PL3,PL4は、方向制御弁V2の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V2を左右いずれかの方向に切換操作する。旋回操作装置21から出力されたパイロット圧PL5,PL6は、方向制御弁V3の左右のパイロット受圧部にそれぞれ導かれ、方向制御弁V3を左右いずれかの方向に切換操作する。
 これにより、アーム操作レバー19b及び旋回操作レバー21bの操作に応じて第2ポンプP2の吐出油がアームシリンダ8及び旋回油圧モータ10に分流して供給され、バケット操作レバー20bの操作に応じて第1ポンプP1の吐出油がバケットシリンダ9に供給され、重負荷作業におけるアーム・バケット・旋回の複合動作が実現される。このとき、電動機Mは作動しないため、第3ポンプP3からアームシリンダ8に圧油が供給されることはない。
 図9は、本実施の形態に係る油圧駆動装置において、アーム負荷圧(軽負荷/重負荷)、アーム操作(単独/複合)及びアーム駆動源(第2ポンプP2/第3ポンプP3)に組合せによって定まる駆動モードM1~M8と各駆動モードにおいて生じるエネルギー損失(引きずり損失、圧力損失及び電力損失)との関係を示す図である。
 (駆動モードM1,M2)
 アーム単独の軽負荷作業において、アームシリンダ8をエンジン駆動の第2ポンプP2で駆動した場合(駆動モードM1)、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失は生じない。また、第2ポンプP2の吐出油はアームシリンダ8にのみ供給されるため、分流に伴う圧力損失は生じない。一方、アームシリンダ8を電動機駆動の第3ポンプP3で駆動した場合(駆動モードM2)、駆動モードM1と同じく分流に伴う圧力損失は生じないものの、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失が生じる。従って、アーム単独の軽負荷作業においては、エンジン駆動の第2ポンプP2でアームシリンダ8を駆動(駆動モードM5を選択)した方が、エネルギー損失が小さい(燃費が良い)。
 (駆動モードM3,M4)
 旋回・アーム複合の軽負荷作業において、アームシリンダ8と旋回油圧モータ10とをエンジン駆動の第2ポンプP2で駆動した場合(駆動モードM3)、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失は生じない。しかし、第2ポンプP2がアームシリンダ8と旋回油圧モータ10とに連通するとともに、第2ポンプP2から負荷圧の小さいアームシリンダ8に多量の圧油が分流して供給されるため、大きな圧力損失が生じる。一方、旋回油圧モータ10を第2ポンプP2で駆動し、アームシリンダ8を第3ポンプP3で駆動した場合(駆動モードM4)、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失が生じるものの、アーム負荷圧が低く電動機Mの消費電力が小さいため、電力損失は小さい。また、第2ポンプP2の吐出油は旋回油圧モータ10にのみ供給されるため、分流に伴う圧力損失は生じない。従って、旋回・アーム複合の軽負荷作業においては、電動機駆動の第3ポンプP3でアームシリンダ8を駆動(駆動モードM4を選択)した方が、エネルギー損失が小さい(燃費が良い)。
 (駆動モードM5,M6)
 アーム単独の重負荷作業において、アームシリンダ8をエンジン駆動の第2ポンプP2で駆動した場合(駆動モードM5)、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失は生じない。また、第2ポンプP2の吐出油はアームシリンダ8にのみ供給されるため、分流に伴う圧力損失は生じない。一方、アームシリンダ8を電動機駆動の第3ポンプP3で駆動した場合(駆動モードM6)、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失が生じるものの、アームシリンダ8の負荷圧が低く電動機Mの消費電力が小さいため、電力損失は小さい。従って、アーム単独の重負荷作業においては、エンジン駆動の第2ポンプP2でアームシリンダ8を駆動(駆動モードM5を選択)した方が、エネルギー損失は小さい(燃費が良い)。
 (駆動モードM7,M8)
 旋回・アーム複合の重負荷作業において、アームシリンダ8と旋回油圧モータ10をエンジン駆動の第2ポンプP2で同時に駆動した場合(駆動モードM7)、第3ポンプP3の駆動に伴う引きずり損失及び電動機Mの作動に伴う電力損失は生じない。また、第2ポンプP2はアームシリンダ8と旋回油圧モータ10とに連通することとなるが、アーム負荷圧が高く第2ポンプP2からアームシリンダ8に分流して供給される圧油が少量であるため、大きな圧力損失は生じない。一方、旋回油圧モータ10を第2ポンプP2で駆動し、アームシリンダ8を第3ポンプP3で駆動した場合(駆動モードM8)、第2ポンプP2の吐出油は旋回油圧モータ10にのみ供給されるため、分流に伴う圧力損失は生じない。しかし、第3ポンプP3の駆動に伴う引きずり損失が生じるとともに、負荷圧の高いアームシリンダ8を電動機駆動の第3ポンプP3で駆動することにより、電動機Mの消費電力が増大し、大きな電力損失が生じる。従って、旋回・アーム複合の重負荷作業においては、エンジン駆動の第2ポンプP2でアームシリンダ8を駆動(駆動モードM7を選択)した方が、エネルギー損失が小さい(燃費が良い)。
 本実施の形態に係る油圧駆動装置では、コントローラ18が図3で示した制御フローを実行することにより、アーム操作、旋回操作及びアーム負荷圧に応じてエネルギー損失の小さい(燃費の良い)駆動モードM1,M4,M5,M7のいずれかが選択される。
 ~効果~
 上述した本発明の実施の形態によれば、第2ポンプ油路L2に接続された複数のアクチュエータ8,10のうちアームシリンダ8のみが操作される単独動作時は、電動機Mを作動させず、第2ポンプP2でアームシリンダ8を駆動することにより、第3油圧ポンプP3の駆動に伴う引きずり損失の発生を抑えることができる。一方、第2ポンプ油路L2に接続されたアームシリンダ8を含む複数のアクチュエータ8,10が同時に操作される複合動作時は、電動機Mを作動させ、第3ポンプP3でアームシリンダ8を駆動することにより、第2ポンプP2の吐出油を分流してアームシリンダ8に供給した場合に発生する圧力損失を抑えることできる。このように、アーム操作及び旋回操作に応じてアームシリンダ8をエンジン駆動の第2ポンプP2と電動機駆動の第3ポンプP3とで選択的に駆動し、分流に伴う圧力損失及び第3ポンプP3の駆動に伴う引きずり損失を抑えることにより、作業機械の燃費を改善することができる。なお、軽負荷作業において複合操作される頻度が高くかつ大流量を要するアームシリンダ8を、第2ポンプP2と第3ポンプP3とで選択的に駆動可能な特定のアクチュエータとすることで、その他のアクチュエータを特定のアクチュエータとした場合よりも圧力損失及び引きずり損失の抑制効果を高めることができる。
 また、上述した本発明の実施の形態によれば、重負荷作業(アームシリンダ8の負荷圧がPam2以上)において、電動機Mを作動させず、第2ポンプP2でアームシリンダ8を駆動することにより、電動機Mの消費電力が過度に上昇することを防ぎ、電動機Mの作動に伴う電力損失の増大を防ぐことができる。
 さらに、上述した本発明の実施の形態によれば、第3ポンプP3の駆動に関わる電動系統に異常が生じた場合は、電動機Mを作動させず、エンジン駆動の第2ポンプP2の吐出油をアームシリンダ8と旋回油圧モータ10とに分流して供給することにより、電動系統に関わる重大な故障を防ぐとともに、従来と同等の操作性を維持することができる。また、バッテリ14の残量が不十分な場合も同様に、電動機Mを作動させず、エンジン駆動の第2ポンプP2の吐出油をアームシリンダ8と旋回油圧モータ10とに分流して供給することにより、従来と同等の操作性を維持することができる。
1:下部走行体
2:上部旋回体
2a:旋回フレーム
3:フロント作業装置
4:ブーム
5:アーム
6:バケット
7:ブームシリンダ
8:アームシリンダ(第2アクチュエータ/特定のアクチュエータ)
9:バケットシリンダ(第1アクチュエータ)
10:旋回油圧モータ(第2アクチュエータ)
11a,11b:履帯
12a,12b:走行油圧モータ
13:エンジン
14:バッテリ
15:コントロールバルブ
17:パイロット油圧源
18:メインコントロ一ラ(制御装置)
19:アーム操作装置
20:バケット操作装置
21:旋回操作装置
19a~21a:パイロットバルブ
19b:アーム操作レバー
20b:バケット操作レバー
21b:旋回操作レバー
22:バッテリコントローラ(充電率検出装置)
23:第1インバータ用コントローラ
24:第2インバータ用コントローラ
25:発電電動機用サーミスタ
26:電動機用サーミスタ
30:電動系統
GM:発電電動機
INV1:第1インバータ
INV2:第2インバータ
L1:第1ポンプ油路
L2:第2ポンプ油路
L3:第3ポンプ油路
L4:パラレル油路
L5:ヘッド側油路
L6:ロッド側油路
M:電動機
M1~M8:駆動モード
P1:第1ポンプ
P2:第2ポンプ
P3:第3ポンプ
PL1~PL6:パイロット圧
R1:第1ポンプレギュレータ
R2:第2ポンプレギュレータ
S1~S3:ポンプ圧センサ
S4,S5:負荷圧センサ(負荷圧検出装置)
S6~S11:パイロット圧センサ(操作量検出装置)
T1,T2:変換テーブル
V1:方向制御弁(第2方向制御弁)
V2:方向制御弁(第1方向制御弁)
V3:方向制御弁(第2方向制御弁)
V4:方向制御弁(第3方向制御弁)

Claims (6)

  1.  エンジンと、
     前記エンジンによって駆動される第1及び第2油圧ポンプと、
     前記第1及び第2油圧ポンプの吐出油がそれぞれ供給される第1及び第2ポンプ油路と、
     前記第1ポンプ油路から供給される圧油によって駆動される少なくとも1つの第1アクチュエータと、
     前記第2ポンプ油路から供給される圧油によって駆動される複数の第2アクチュエータと、
     前記第1ポンプ油路に設けられ、前記第1アクチュエータに供給される圧油の流量を制御する第1方向制御弁と、
     前記第2ポンプ油路に設けられ、前記複数の第2アクチュエータに供給される圧油の流量をそれぞれ制御する複数の第2方向制御弁と、
     前記第1方向制御弁及び前記複数の第2方向制御弁をそれぞれ切換操作することにより前記第1アクチュエータ及び前記複数の第2アクチュエータを操作する複数の操作装置と、
     電動機と、
     前記電動機によって駆動される第3油圧ポンプと、
     前記第3油圧ポンプの吐出油が供給される第3ポンプ油路と、
     前記第3ポンプ油路に設けられ、前記複数の第2アクチュエータのうちの特定のアクチュエータを操作する前記複数の操作装置のうちの特定の操作装置によって切換操作され、前記第3油圧ポンプから前記特定のアクチュエータに供給される圧油の流量を制御する第3方向制御弁と、
     前記複数の第2アクチュエータの操作に応じて前記電動機を駆動制御する制御装置と
     を備えたことを特徴とする作業機械の油圧駆動装置。
  2.  請求項1記載の作業機械の油圧駆動装置において、
     前記複数の操作装置の操作量をそれぞれ検出する複数の操作量検出装置を更に備え、
     前記制御装置は、前記複数の操作量検出装置によって前記複数の第2アクチュエータのうち前記特定のアクチュエータを含む2つ以上の第2アクチュエータの複合操作が検出されたときに、前記電動機で前記第3油圧ポンプを駆動することを特徴とする作業機械の油圧駆動装置。
  3.  請求項2記載の作業機械の油圧駆動装置において、
     前記特定のアクチュエータの負荷圧を検出する負荷圧検出装置を更に備え、
     前記制御装置は、前記複数の操作量検出装置によって前記複数の第2アクチュエータのうち前記特定のアクチュエータを含む2つ以上の第2アクチュエータの複合操作が検出され、かつ前記負荷圧検出装置によって検出された前記特定のアクチュエータの負荷圧が所定の負荷圧より高いときは、前記電動機で前記第3油圧ポンプを駆動しないことを特徴とする作業機械の油圧駆動装置。
  4.  請求項1記載の油圧駆動装置において、
     前記特定のアクチュエータがアームシリンダであることを特徴とする作業機械の油圧駆動装置。
  5.  請求項1記載の作業機械の油圧駆動装置において、
     前記電動機を含む電動系統の異常を検出する異常検出装置を更に備え、
     前記制御装置は、前記異常検出装置によって前記電動系統の異常が検出されたときは、前記電動機で前記第3油圧ポンプを駆動しないことを特徴とする作業機械の油圧駆動装置。
  6.  請求項1記載の作業機械の油圧駆動装置において、
     前記電動機を駆動するための電力を蓄えるバッテリと、
     前記バッテリの充電率を検出する充電率検出装置とを更に備え、
     前記制御装置は、前記充電率検出装置によって検出されたバッテリ充電率が所定の充電率よりも低いときは、前記電動機で第3油圧ポンプを駆動しないことを特徴とする作業機械の油圧駆動装置。
PCT/JP2016/055123 2015-06-02 2016-02-22 作業機械の油圧駆動装置 WO2016194409A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/554,882 US10364550B2 (en) 2015-06-02 2016-02-22 Hydraulic drive system of work machine
KR1020177021668A KR101973306B1 (ko) 2015-06-02 2016-02-22 작업 기계의 유압 구동 장치
EP16802848.8A EP3306110B1 (en) 2015-06-02 2016-02-22 Hydraulic drive device for working machine
CN201680009019.XA CN107250562B (zh) 2015-06-02 2016-02-22 作业机械的液压驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112556 2015-06-02
JP2015112556A JP6356634B2 (ja) 2015-06-02 2015-06-02 作業機械の油圧駆動装置

Publications (1)

Publication Number Publication Date
WO2016194409A1 true WO2016194409A1 (ja) 2016-12-08

Family

ID=57441104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055123 WO2016194409A1 (ja) 2015-06-02 2016-02-22 作業機械の油圧駆動装置

Country Status (6)

Country Link
US (1) US10364550B2 (ja)
EP (1) EP3306110B1 (ja)
JP (1) JP6356634B2 (ja)
KR (1) KR101973306B1 (ja)
CN (1) CN107250562B (ja)
WO (1) WO2016194409A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510396B2 (ja) * 2015-12-28 2019-05-08 日立建機株式会社 作業機械
CN110462225B (zh) * 2018-03-08 2020-09-22 日立建机株式会社 作业机械
JP6860519B2 (ja) * 2018-03-26 2021-04-14 株式会社日立建機ティエラ 建設機械
JP7165016B2 (ja) * 2018-10-02 2022-11-02 川崎重工業株式会社 油圧ショベル駆動システム
EP3696327B1 (de) * 2019-02-15 2021-02-24 ABI Anlagentechnik-Baumaschinen-Industriebedarf Maschinenfabrik und Vertriebsgesellschaft mbH Tiefbaugerät
JP7370725B2 (ja) * 2019-04-05 2023-10-30 株式会社竹内製作所 作業用車両の作動制御装置
CN110185671B (zh) * 2019-04-25 2022-06-24 中国北方车辆研究所 一种双泵源并联供油的四足机器人液压动力***
IT202000011782A1 (it) * 2020-05-20 2021-11-20 Cnh Ind Italia Spa Disposizione idraulica ibrida per veicolo da lavoro
EP3929141A1 (en) 2020-06-24 2021-12-29 Hiab AB Working equipment with electrically powered hydraulically operated arm arrangement
EP4253802A4 (en) * 2020-12-30 2024-01-10 Huawei Digital Power Technologies Co., Ltd. CONTROL METHOD AND DEVICE
WO2022201676A1 (ja) * 2021-03-26 2022-09-29 日立建機株式会社 作業機械
CN113153844B (zh) * 2021-05-31 2023-07-25 上海三一重机股份有限公司 液压***及其控制方法、以及作业机械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033897A (ja) * 1989-05-31 1991-01-09 Toyota Autom Loom Works Ltd バッテリ式産業車両における油圧装置
JP2007327526A (ja) * 2006-06-06 2007-12-20 Kayaba Ind Co Ltd 建設機械の動力装置
JP2013028962A (ja) * 2011-07-28 2013-02-07 Sumitomo (Shi) Construction Machinery Co Ltd ハイブリッド型ショベル
JP2014001793A (ja) * 2012-06-18 2014-01-09 Sumitomo Heavy Ind Ltd 油圧ショベル

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100226281B1 (ko) 1994-09-30 1999-10-15 토니헬샴 가변우선장치
JP3687639B2 (ja) * 2002-09-03 2005-08-24 日産自動車株式会社 電動モータ駆動車輪の回転方向判別装置
JP4509877B2 (ja) 2005-06-29 2010-07-21 キャタピラージャパン株式会社 作業機械のハイブリッドシステム
JP2008045575A (ja) 2006-08-10 2008-02-28 Hitachi Constr Mach Co Ltd 油圧ショベルの油圧駆動装置
KR101652112B1 (ko) 2009-12-23 2016-08-29 두산인프라코어 주식회사 하이브리드 굴삭기 붐 구동시스템 및 그 제어방법
US8521374B2 (en) * 2010-01-28 2013-08-27 Hitachi Construction Machinery Co., Ltd. Hydraulic work machine
KR101928597B1 (ko) * 2011-06-15 2018-12-12 히다찌 겐끼 가부시키가이샤 작업 기계의 동력 회생 장치
JP6022461B2 (ja) * 2011-09-09 2016-11-09 住友重機械工業株式会社 ショベル及びショベルの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033897A (ja) * 1989-05-31 1991-01-09 Toyota Autom Loom Works Ltd バッテリ式産業車両における油圧装置
JP2007327526A (ja) * 2006-06-06 2007-12-20 Kayaba Ind Co Ltd 建設機械の動力装置
JP2013028962A (ja) * 2011-07-28 2013-02-07 Sumitomo (Shi) Construction Machinery Co Ltd ハイブリッド型ショベル
JP2014001793A (ja) * 2012-06-18 2014-01-09 Sumitomo Heavy Ind Ltd 油圧ショベル

Also Published As

Publication number Publication date
EP3306110A4 (en) 2019-02-20
JP6356634B2 (ja) 2018-07-11
US10364550B2 (en) 2019-07-30
JP2016223593A (ja) 2016-12-28
EP3306110B1 (en) 2020-05-20
EP3306110A1 (en) 2018-04-11
CN107250562B (zh) 2018-12-11
CN107250562A (zh) 2017-10-13
KR101973306B1 (ko) 2019-04-26
KR20170102331A (ko) 2017-09-08
US20180038079A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6356634B2 (ja) 作業機械の油圧駆動装置
JP5356436B2 (ja) 建設機械の制御装置
US10280593B2 (en) Hydraulic fluid energy regeneration device for work machine
JP5916763B2 (ja) 建設機械の制御装置
US20130152573A1 (en) Hybrid system for construction machine
US10668802B2 (en) Hybrid construction machine
KR20130129261A (ko) 쇼벨 및 쇼벨의 제어방법
JPWO2008123368A1 (ja) ハイブリッド建設機械の制御方法およびハイブリッド建設機械
US9732770B2 (en) Drive control system of operating machine, operating machine including drive control system, and drive control method of operating machine
WO2017056200A1 (ja) 作業機械の圧油エネルギ回生装置
JP4942699B2 (ja) ハイブリッド建設機械の制御装置
WO2016084421A1 (ja) ハイブリッド建設機械の制御システム
WO2016088573A1 (ja) ハイブリッド建設機械の制御システム
US9593464B2 (en) Construction machine
US10167613B2 (en) Hydraulic drive system of construction machine
US11668074B2 (en) Electrically driven hydraulic construction machine
JP2014083908A (ja) 建設機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16802848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177021668

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15554882

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016802848

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE