WO2016192231A1 - 合金材料的制备方法和烙铁头的制备方法以及电烙铁 - Google Patents

合金材料的制备方法和烙铁头的制备方法以及电烙铁 Download PDF

Info

Publication number
WO2016192231A1
WO2016192231A1 PCT/CN2015/089094 CN2015089094W WO2016192231A1 WO 2016192231 A1 WO2016192231 A1 WO 2016192231A1 CN 2015089094 W CN2015089094 W CN 2015089094W WO 2016192231 A1 WO2016192231 A1 WO 2016192231A1
Authority
WO
WIPO (PCT)
Prior art keywords
soldering iron
tip
alloy material
copper
iron tip
Prior art date
Application number
PCT/CN2015/089094
Other languages
English (en)
French (fr)
Inventor
平口稔
野村宽夫
森本幸一
高东晓
朴在锋
Original Assignee
苏州晓锋知识产权运营管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54157882&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016192231(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 苏州晓锋知识产权运营管理有限公司 filed Critical 苏州晓锋知识产权运营管理有限公司
Publication of WO2016192231A1 publication Critical patent/WO2016192231A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/025Bits or tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/02Soldering irons; Bits
    • B23K3/03Soldering irons; Bits electrically heated

Definitions

  • the invention relates to a method for preparing an alloy material, and to a method for preparing a soldering iron head.
  • the invention also relates to an electric soldering iron, belonging to the field of metal processing.
  • solder In order to replace the eutectic (lead-containing solder), a lead-free solder material containing tin (Sn) as a main component is widely used.
  • the content of tin in the solder tends to gradually increase as the lead soldering advances, and the wear of the tip is more severe in order to dissolve the metal in the tip as the tin content increases.
  • the melting point of the lead-free solder is higher than that of the conventional eutectic solder, so the set temperature of the soldering iron is higher than ever.
  • the setting temperature of the tip is high, the oxidation phenomenon of the tip is also more serious, so that the solvent is more likely to form carbides on the surface of the tip. Therefore, the fusion of solder is relatively low.
  • soldering iron tips suitable for use in lead-free soldering conditions which have corrosion resistance and superior fusion properties, are widely expected in the market.
  • the commonly used soldering iron tips are made of copper as a substrate, then chrome-plated as a whole, and then iron-plated at the tip.
  • the above material is used as the material of the tip, although the corrosion resistance of the tip is improved, at the same time its thermal conductivity is lowered, only 1/5 of that of copper. This makes the temperature rise of the tip very time consuming, and it takes a lot of time to heat up when the heat load of the welding operation changes. Long time. Therefore, the soldering iron using the above iron tip needs to wait for the solder to melt during the welding operation, which affects the efficiency of the welding operation.
  • the invention provides a preparation method of an alloy material suitable for a soldering iron tip, which comprises the following steps:
  • Step 1 Take copper with a purity of 99.3% or more and iron with a purity of 99.5% or more, dissolve 50 parts of copper and iron in parts by mass, mix, cast, and then heat-cold and stretch to obtain a rod-shaped alloy. material;
  • Step 2 next, adding a predetermined amount of copper in the rod-shaped alloy material, and performing dissolution and casting again, so that the quality of the copper reaches 50% to 80% of the total mass of the alloy;
  • heating and cold rolling are performed to obtain an alloy material suitable for the tip.
  • the dehydrogenation operation is performed, and dehydrogenation is performed using oxygen.
  • the partial pressure of oxygen is in the range of 1.5 atm to 3 atm.
  • the temperature was adjusted to 50 ° C to 100 ° C above the melting point of copper.
  • a deoxidation operation is performed, and for example, one or more of Ca, Si, Mn, P, Al, Ti, and Li may be used as the deoxidizer.
  • a deoxidizing agent when used, a dross removing agent auxiliary agent is used, and the dross removing agent is a low melting point compound of Ca or Mg type.
  • the present invention also provides a method for preparing a soldering iron tip, which comprises the steps of the method for preparing an alloy material, and the fourth step, the alloy material is processed into a rod shape, and the tip is cut into a cone shape to form a soldering iron tip.
  • the present invention further provides an electric soldering iron, comprising: the soldering iron head according to claim 2, and a handle for the user to hold; the protective tube is sleeved at the rear end of the soldering iron; the connecting sleeve is protected The tube and the handle are connected; and the nut, the fixed protective tube and the connecting sleeve.
  • the tip prepared by using the preparation method of the present invention has excellent thermal conductivity, good fusion, corrosion resistance and heat resistance.
  • This tip does not consume the tip as the temperature rises, thus reducing the frequency of solder replacement.
  • the tip of the present invention is also excellent in thermal conductivity of 150 W/(m ⁇ K) or more. Thanks to this, the thermal conductivity of the soldering iron tip produced by the method of the present invention can be tangibly superior. The temperature rise of this tip is very fast, which can shorten the melting time of the solder and solve the problem of delay in the welding operation.
  • the method for manufacturing the soldering iron tip of the present invention does not require chrome plating and iron plating treatment, so the manufacturing process is very simple, and the manufacturing time and the manufacturing cost are effectively saved.
  • Figure 1 is a schematic view showing the structure of electrochromic iron
  • Figure 2 is an exploded view of the electric ferrochrome
  • Figure 3 is a schematic view showing the internal structure of the front end of the electric ferrochrome
  • Figure 4 is a schematic view showing the connection relationship between the tip and the bracket
  • Figure 5 is a view showing a case where the contact angle is 60 degrees or more and 120 degrees or less;
  • Figure 6 is a view showing when the contact angle exceeds 120 degrees
  • Fig. 7 is a schematic view showing the corrosion resistance test of the soldering iron tip.
  • the soldering iron 100 includes a handle 10; a soldering iron head 21; a protective tube 30 which is sleeved on the soldering iron head 21; a connecting sleeve 40 for fixing the protective tube 30 and the handle 10; a nut 50, a fixed protective tube 30 and The sleeve 40 is connected.
  • the tip 21 protrudes from the top end of the protective tube 30 toward the front side (i.e., the left side in the state shown in Fig. 1).
  • the interior of the connecting sleeve 40 is hollow.
  • the tip 21 is fixed to the top end of the hollow cylindrical holder 22.
  • Fig. 1 and Fig. 2 show the state in which the soldering iron tip is mounted on the soldering iron.
  • the heater 13 is inserted into the cavity formed by the inside of the connecting sleeve 40 and the cavity of the bracket 22 from the front end of the handle 10.
  • the protective tube 30 is surrounded by the bracket 22 and the connecting sleeve 40.
  • the rear end of the handle 10 is a cable line 11.
  • the terminal of the cable 11 is the connector 12.
  • Fig. 4 shows that the tip end of the tip 21 is slightly tapered at the tip end.
  • a bracket 22 mounted at the base end of the tip 21 is a bracket 22 made of a metal such as copper. The heat of the heater 13 is conducted to the tip 21 through the bracket 22.
  • the tip 21 is made of a copper-iron alloy.
  • the tip 21 contains 50 to 80 parts of copper and 20 to 50 parts of iron in parts by mass.
  • the ratio of the embodiment 1-5 is shown in Table 1.
  • the iron content in the tip 21 is above 20% and thus has good fusion. Here's the fusion
  • the evaluation of the properties was evaluated by the contact angle between the soldering iron tip and the molten solder when the solder was melted. Further, the iron content in the soldering iron tip was 50% or less, so that the disadvantage of low thermal conductivity was also optimized.
  • the tip end 21 has a thermal conductivity ( ⁇ ) of 120 W/(m ⁇ K) or more.
  • the thermal conductivity ( ⁇ ) of the tip 21 is 150 W/(m ⁇ K) or more, the thermal conductivity of the tip 21 can be ensured. The faster the temperature of the soldering iron 21 rises, the more practical it is.
  • the contact angle of the molten solder to the member is preferably 60 degrees or more and 120 degrees or less. Further, the above contact angle is more excellent in the effect of 60 degrees or more and 100 degrees or less, and is more excellent if it is 60 degrees or more and 80 degrees or less.
  • the contact angle refers to the angle indicated below.
  • FIG. 5 and 6 show the case where the molten solder is dropped onto the plate-like member 70 having the same composition as the tip 21, and the molten solder 81, 82 is bonded to the spherical solder on the surface of the plate member 70 by its own surface tension. Sleek.
  • the contact angle is an angle ⁇ 1 and ⁇ 2 formed by connecting the intersection of the circular molten solder and the surface of the plate-like member, and is an angle formed by the connection between the wire and the plate-like member and the molten solder.
  • Fig. 5 shows a case where the contact angle ⁇ 1 is 60 degrees or more and 120 degrees or less. It can be seen that the solder is excellently fitted to the plate-like member 70, and the fusion property is quite excellent.
  • the tip of the present invention is a tip mounted on the tip of a soldering iron or the tip of a welding robot.
  • the foregoing soldering iron tip contains aluminum nitride and iron, and the mass range of copper as in the foregoing is 50% to 80%; the mass range of iron is 20% to 50% or less. The total mass of copper and iron is 100%.
  • the alloy material of the soldering iron head and the manufacturing method of the soldering iron head is the alloy material of the soldering iron head and the manufacturing method of the soldering iron head:
  • Copper having a purity of 99.3% or more and pure iron having a purity of 99.5% or more are dissolved in a raw material having a mass ratio of 50%, respectively, with respect to a total of 100% by mass, and then mixed.
  • a dehydrogenation operation is performed, and dehydrogenation is performed using oxygen.
  • the partial pressure of oxygen is in the range of 1.5 atm to 3 atm.
  • the temperature is adjusted to 50 ° C ⁇ 100 ° C above the melting point of copper, so that the oxygen element on the molten copper is increased, and the hydrogen is separated by a phase, thereby performing a dehydrogenation process.
  • the phase law here refers to the phase (equilibrium) law, and English is the phase rule. Specifically, once the oxygen content is increased, the hydrogen content is automatically reduced.
  • a deoxidation operation is performed, and a monomer or a composite such as Ca, Si, Mn, P, Al, Ti, or Li can be used as the deoxidizer, in order to prevent the hydrogen and oxygen from returning to the original state, in the noodle soup Inject a large amount of inert gas.
  • a deoxidizer is used, a dross-removing aid is used to collect the oxide-forming dross and separate it from the soup.
  • Ca and Mg low melting point compounds are used.
  • the oil content of the impurities in the metal to be produced and the content of the impurity element should be analyzed in advance. Less furnace material.
  • a predetermined amount of copper is added to dissolve the cast copper and iron in 50% of the articles, respectively, to dissolve and cast. Then, heating and cold rolling are carried out to obtain an article having a rod shape (a circular or square cross-sectional shape).
  • the sample is processed into a shape that can be mounted on the soldering iron in the processing process, and the tip is cut into a conical shape that can be used.
  • the alloy material was prepared according to the above method, and the obtained alloy material had a Cu content of 50% and an iron content of 50%.
  • the alloy material is processed into a tip.
  • An alloy material was prepared according to the above method, and the content of Cu was 60% and the content of iron was 40%. The alloy material is processed into a tip.
  • An alloy material was prepared according to the above method, and the content of Cu was 70% and the content of iron was 30%. The alloy material is processed into a tip.
  • An alloy material was prepared according to the above method, and the content of Cu was 80% and the content of iron was 20%. The alloy material is processed into a tip.
  • the alloy material was prepared according to the above method, and the content of Cu was 90% and the content of iron was 10%.
  • the alloy material is processed into a tip.
  • Example 1 to Example 5 The alloy materials prepared in Example 1 to Example 5, as well as the existing copper-prepared ferrochrome and the existing electroplated ferrochrome were subjected to the following experiments.
  • the "Testing Method for Soldering Irons for Lead-Free Solders” formulated by the Japan Welding Association in 2012 was adopted.
  • the detecting device is controlled as shown in FIG. 7 to control a certain amount of solder 34 within a certain temperature range for a certain period of time, and the soldering iron head 21 is performed by the solder supply device 32.
  • the solder 34 is melted in contact with the soldering iron tip 21, and the compressed air is discharged by the air gun 33 for a certain period of time to remove the molten solder.
  • the compressed air is supplied from the air compressor 31. This operation is repeatedly performed to cause the tip to be damaged.
  • the evaluation of this experiment is to confirm whether there is a damage state by repeating the previous operation 10,000 times or 5000 times.
  • the specific parameters in this evaluation method are described in the aforementioned "Test Method for Soldering Irons for Lead-Free Solders". Specifically, the solder used was a soldered solder with a diameter of 0.8 mm; the soldering supply speed was 15 mm/s; and the supply interval was 5 s.
  • the thermal conductivity was measured by the previously obtained sample (a rod shape having a circular cross section).
  • the molten solder was dropped onto the surface of the sample, and the cross section of the sample herein was a square rod-shaped alloy material. The contact angle of the molten solder with the sample was measured immediately after the dropping.
  • solder use The same lead-free solder as the above test related to heat resistance and corrosion resistance.
  • the sample is cut into a conical shape in which a soldering iron can be mounted and can be welded.
  • This sample was used for the tip of the present invention.
  • the temperature of the tip (the tip end of the soldering iron) is set at 360 ° C.
  • the soldering iron tip is cleaned, then the soldering iron tip is brought into contact with the solder, the contact angle is measured, and the soldering iron is placed in a baking state. Repeatedly implementing this series of projects, the test is over after 20 hours. Then, the fusion durability was evaluated by the change in the contact angle with time.
  • the soldering iron of this test is an article having the same configuration as the soldering iron (Fig. 1) of the first embodiment.
  • the solder is required to be the same as the lead-free solder of the same test using the above-mentioned corrosion resistance test.
  • Table 1 shows the experimental conditions and the results of Examples 1 to 5 and Comparative Examples 1 and 2 which were carried out by the above methods.
  • the meaning of the symbol of the experimental result in Table 1 is as follows:
  • The contact angle increased in the time-lapse test of the contact angle, and the contact angle was changed as compared with the original contact angle. However, the initial contact angle and the contact angle after the change over time are all below 120 degrees.
  • X indicates a case where the contact angle of the original contact angle changes over time and changes over 120 degrees, and the fusion property is rather low.
  • sample whose comprehensive evaluation is " ⁇ " and " ⁇ " is a material suitable for the tip.
  • Table 1 shows that the samples of Examples 1 to 4 and Comparative Example 2 were not eroded in the corrosion resistance test. From the test results, we can know that the sample having a mass ratio of iron of 20% or more of the present invention is superior to the corrosion resistance of lead-free solder containing tin.
  • the samples of Examples 1 to 5 and Comparative Example 2 had a contact angle of 60° or more and 120° or less, and had good fusion properties. This shows that the sample contains rich iron components. On the other hand, in Comparative Example 1, the sample contained no iron and did not have good fusion properties.
  • the tip of the above embodiment may be subjected to metal plating treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

一种适用于烙铁头的合金材料的制备方法,包括如下步骤:步骤一、取纯度99.3%以上的铜以及纯度99.5%以上的铁,将以质量份计,分别为50份的铜和铁分别溶解,混合,浇铸后再进行加热冷轧拉伸,得到棒状合金材;步骤二、在棒状合金材内加入预定量的铜,再次进行溶解以及铸造,使铜的质量达到占合金总质量的50%~80%;步骤三、再进行加热、冷轧拉伸而得到适用于烙铁头的合金材料。还公开了一种上述合金制备的烙铁头,以及一种具有上述烙铁头的电烙铁。该方法制得的合金材料,热传导性能优越、融合性好、耐腐蚀性以及耐热性能优越。

Description

合金材料的制备方法和烙铁头的制备方法以及电烙铁 技术领域
本发明涉及一种合金材料的制备方法,本发明还涉及一种烙铁头的制备方法,本发明还涉及一种电烙铁,属于金属加工领域。
背景技术
铅的有害性是一直存在的问题,为了替代共晶(含有铅的焊料)以锡(Sn)为主要成分的无铅焊接料被广泛应用。焊料中的锡的含有量随着铅焊接化的推进有渐渐增加的倾向,为了溶解烙铁头内的金属随着锡含有量的增加烙铁头的磨耗也更加严重。
另外,无铅焊锡的熔点比以往的共晶焊料高,所以烙铁头的设定温度也就比以往高。锡和烙铁头里的金属的反应随着温度的上升也会变得越快(比例关系:反应速度=温度*2),所以使用无铅焊锡的话非常容易消耗烙铁头中的金属。另外,因为烙铁头的设定温度高,烙铁头的氧化现象也会更加严重,使得助溶剂在烙铁头的表面也会更加容易形成碳化物。因此,焊料的融合性也就相对低下。
因此,适用于无铅焊锡条件下使用的,具有耐蚀性以及优越的融合性的烙铁头被市场所广泛期待。然而,现在普遍使用的烙铁头都是以铜为基材,之后整体镀铬,然后再在尖端镀铁而制成的。用上述的材料作为烙铁头的材料使用的话,虽然烙铁头的耐蚀性提高了,但是与此同时它的热传导率下降了,只有铜的1/5。这使得烙铁头的温度上升非常的消耗时间,焊接作业的热负荷变动时再升温也需要消耗很 长时间。因此使用上述烙铁头的烙铁在进行焊接作业时需要等待焊料熔融,这影响了焊接作业的效率。因此在进行焊接作业时就产生了焊接作业时间的延长以及热负荷的增大所产生的电力浪费等问题,并且对焊料的熔融性也会带来不好的影响(容易产生焊接粒),对焊接作业的品质带来了不好的影响。另外,在铜基材上进行镀铬以及镀铁处理也加大了制造的成本。
发明内容
本发明的目的在于提供一种热传导性能优越、融合性好、耐蚀性以及耐热性能都非常优越的烙铁头。
本发明提供一种适用于烙铁头的合金材料的制备方法,其特征在于,包括如下步骤:
步骤一、取纯度99.3%以上的铜以及纯度99.5%以上的铁,将以质量份计,分别为50份的铜和铁分别溶解,混合,浇铸后再进行加热冷轧拉伸,得到棒状合金材;
步骤二、接下来,在棒状合金材内加入预定量的铜,再次进行溶解以及铸造,使铜的质量达到占合金总质量的50%~80%;
步骤三、再进行加热、冷轧拉伸而得到适用于烙铁头的合金材料。
优选的,本发明的合金材料的制备方法,在步骤一中,铜溶解的过程中,进行脱氢操作,使用氧气进行脱氢,脱氢时,氧气分压的范围:1.5atm~3atm,同时保持温度调整到铜的熔点以上50℃~100℃。
优选的,本发明的合金材料的制备方法,在脱氢结束后,进行脱氧操作,脱氧剂可使用例如:Ca、Si、Mn、P、Al、Ti、Li的一种或几种。
优选的,本发明的合金材料的制备方法,当使用脱氧剂的时候,使用除渣滓助剂,除渣滓助剂采用Ca、Mg系的低熔点化合物。
另外,本发明还提供一种制备烙铁头的方法,其特征在于:包括合金材料的制备方法中的步骤,以及步骤四,将合金材料加工成棒状,尖端切削成圆锥状,制成烙铁头。
另外,本发明还提供一种电烙铁,其特征在于,包括:如权利要求2的烙铁头,以及手柄,供使用者握持;保护管,套在烙铁头后端;连接套管,将保护管和手柄连接起来;以及螺母,固定保护管和连接套管。
发明的有益效果
使用本发明的制备方法制备合金材料所制成的烙铁头,其热传导性能优越、融合性好、耐蚀性以及耐热性能都非常优越。
此烙铁头随着温度的上升而并不会消耗烙铁头因此减少了更换焊料的频率。
另外,本发明的烙铁头其热传导度为150W/(m·K)以上这一点也是相当卓越的。得益于这一点本发明的方法制得的烙铁头的热传导性可以得到切实的优越保证。此烙铁头的温度上升非常快可以缩短焊料的熔融时间从而解决焊接作业时间拖延的问题。
本发明的烙铁头的制作方法不需要镀铬以及镀铁处理,因此制造过程非常简单,有效的节省了制造时间和制造成本。
附图说明
图1是电铬铁的结构示意图;
图2是电铬铁的***图;
图3是电铬铁前端的内部结构示意图;
图4是烙铁头和托座的连接关系示意图;
图5是表示接触角在60度以上120度以下的情况;
图6是表示接触角超过了120度的时候;
图7是对烙铁头进行耐蚀性测试的示意图。
具体实施方式
以下结合附图来说明本发明的具体实施方式。
如图1所示,烙铁100包括手柄10;烙铁头21;保护管30,套在烙铁头21上;连接套管40,将保护管30和手柄10固定起来;螺母50,固定保护管30和连接套管40。烙铁头21是从保护管30的顶端往前方(即图1所示状态下的左侧)突出的。连接套管40的内部是中空的。
如图2和图3所示,烙铁头21固定在中空圆筒状的托座22的顶端。图1以及图2表示的是烙铁头装在烙铁上的状态。加热器13是从手柄10的前端***连接套管40内部形成的空腔以及托座22的空腔中。保护管30被托座22和连接套管40包围。手柄10的后端是电缆线11。电缆线11的终端是连接器12。
图4表示的是烙铁头21的顶端是尖端细的略呈圆锥状的。烙铁头21的基端部安装的是托座22,是由铜等金属构成的。加热器13的热量通过托座22传导到烙铁头21上。
烙铁头21是由铜铁合金构成的。烙铁头21,以质量份计的合金中,含有铜50至80份,铁20至50份。实施方式1-5的配比见表1。烙铁头21中铁的含有量在20%以上因此具有很好的融合性。此处的“融合 性”的评价是通过熔融焊料时的烙铁头和熔融后的焊料的接触角来评价的。另外,烙铁头中的铁的含有量在50%以下因此其热传导性低下的弊端也得到了优化。
另外,烙铁头21的热传导度(λ)为120W/(m·K)以上。烙铁头21的热传导度(λ)若是达到150W/(m·K)以上,可以确保烙铁头21的热传导性。烙铁头21的温度上升的越快就越其实用性就越高。
具体来说,用安装了烙铁头21的烙铁100实施焊接作业的时候,焊料与基板比较容易配合,其作业性也会得到很大的提高。特别是向与烙铁头21相同材料的板状部材上滴下熔融的无铅焊锡时,熔融焊料与该部材的接触角为60度以上120度以下时其效果非常优异。另外,上述的接触角若是在60度以上100度以下效果就更优异;若是在60度以上80度以下效果就会更加优异。接触角是指以下所表示的角度。图5和图6显示了向与烙铁头21相同成分的板状部材70上滴下熔融焊料的情况,熔融焊料81、82通过其自有的表面张力将板状部材70表面的球状焊料结合得更加圆滑。接触角是指将圆状的熔融焊料与板状部材表面的交点连线形成的角度θ1、θ2,并且是连线与板状部材与熔融焊料相夹而形成的角度。图5表示的是接触角θ1在60度以上120度以下的情况,可以看出焊料与板状部材70配合的非常好,其融合性相当优越。一方面,图6表示的是板状部材71与熔融焊料的接触角θ2超过了120度的时候,焊料与板状部材71配合的就不理想其融合性也不理想。所以,当使用与板状部材71同样成分的烙铁头进行焊料熔融的时候,焊料就没有达到预期的效果从而导致焊接作业实施的品质不良。具体来说烙铁头 21中铁的含有量若是在10%以下的话,那么就如图6所示其融合性就达不到理想效果。一方面,当铁的含有量超过50%的情况下就如图5所示就有可能实现接触角在120度以下。
本发明的烙铁头是安装在烙铁尖端或者焊接机器人的尖端的烙铁头。前文的烙铁头含有氮化铝以及铁,并且如前文铜的质量范围是50%~80%;铁的质量范围是20%~50%以下。铜和铁的合计的质量为100%。
烙铁头的合金材料以及烙铁头的制作方法:
纯度99.3%以上的铜以及纯度99.5%以上的纯铁相对于100%质量的总和将质量比分别50%的原材料分别溶解,然后混合。
在溶解铜的过程中,进行脱氢操作,使用氧气进行脱氢。脱氢时,氧气分压的范围:1.5atm~3atm。同时保持温度调整到铜的熔点以上50℃~100℃,使溶融铜上的氧气元素增加,相律的分离氢气,以此进行脱氢工艺。此处的相律指相(平衡)律,英语为phase rule。在此处具体来说就是一旦氧气的含量增加的话氢气的含有量会自动减少。
脱氢结束后,进行脱氧操作,脱氧剂可使用例如:Ca、Si、Mn、P、Al、Ti、Li等单体或复合体,为防止为了防止氢气和氧气返回原有状态,在炉汤面灌入大量的惰性气体。当使用脱氧剂的时候,使用除渣滓助剂,来集合发生氧化物的渣滓,并从汤中分离。除渣滓助剂采用Ca、Mg系的低熔点化合物。
高质量铜溶解时,为了防止因炉材元素混入造成熔点变动或者出现混合变化,应事先分析制造金属的不纯物含油量及选择杂质元素含有量 少的炉材。
铁溶解时也需要进行脱氧和除渣操作。
然后,当铜和铁都融化成液体后,将50%的铜和50%的铁浇铸再进行加热冷轧拉伸而得到棒状(断面形状是圆形或者正方形)的物品。
接下来在溶解铸造的铜和铁分别50%的物品内加入预定质量的铜再次进行溶解以及铸造。然后再进行加热、冷轧拉伸而得到棒状(断面形状是圆形或者正方形)的物品。
然后,在加工工序中将试料加工成可以安装到烙铁上的形状,同时将尖端切削成可以使用的圆锥状。
实施实例一
按照上述方法制备合金材料,制得的合金材料中,Cu的含量为50%,铁的含量为50%。将合金材料加工成烙铁头。
实施实例二
按照上述方法制备合金材料,合金材料中,Cu的含量为60%,铁的含量为40%。将合金材料加工成烙铁头。
实施实例三
按照上述方法制备合金材料,合金材料中,Cu的含量为70%,铁的含量为30%。将合金材料加工成烙铁头。
实施实例四
按照上述方法制备合金材料,合金材料中,Cu的含量为80%,铁的含量为20%。将合金材料加工成烙铁头。
实施实例五
按照上述方法制备合金材料,合金材料中,Cu的含量为90%,铁的含量为10%。将合金材料加工成烙铁头。
取实施实例一至实施实例五所制得的合金材料以及现有的铜制备的铬铁头和经过现有的经过电镀处理的铬铁头进行下列实验。
<耐蚀性的相关实验>
为了对耐蚀性做出评价,采用日本焊接协会在2012年制定的《对应无铅焊锡的烙铁试验方法》。以《对应无铅焊锡的烙铁试验方法》为基准,检测装置如图7所示,是在一定时间内将一定量的焊料34控制在一定温度范围内,由焊锡供给装置32对烙铁头21进行加压供给,焊料34接触烙铁头21熔融后,在一定时间内通过***33喷出压缩空气除去熔融焊料。压缩空气由空压机31提供。将此作业反复实施,使烙铁头受到损伤负荷。这个实验的评价是通过将前文作业重复操作1万次或者5000次然后来确认是否有损伤状态。此评价方法中的具体参数记载于前述的《对应无铅焊锡的烙铁试验方法》中。具体而言,所用焊锡为带脂锡焊,直径0.8mm;锡焊供给速度:15mm/S;供给间隔:5S。
<热传导度的相关试验>
通过之前得到的试料(断面形状是圆状的棒状)来进行热传导度的测定。
<接触角(融合性)的相关试验>
向试料的表面滴加熔融焊料,这里的试料的断面是正方形的棒状合金材料。滴加以后立即测量熔融焊料与试料的接触角。另外,焊料使用 与上述耐热性以及耐蚀性相关试验相同的无铅焊锡。
<融合耐久性的相关试验>
将试料切削加工成可安装烙铁且可进行焊接加工的圆锥形状。将此试料用于本发明的烙铁头。将烙铁头(烙铁的尖端部)的温度设定在360℃,经过所定的时间以后将烙铁头进行清洗,接着使烙铁头接触焊料,测量接触角,再将烙铁设置在烘烤状态。反复实施此一连串的工程,经过20个小时后即试验结束。然后,通过接触角随着时间的变化而产生的变化对融合耐久性进行评价。另外,本试验的烙铁要采用与第1实施形态的烙铁(图1)相同构成的物品。另外,焊料要与使用上述耐蚀性的相关试验同样成分的无铅焊锡。
表1表示的是通过以上的方法实施的实施实例1~5以及比较例子1和2的实验条件以及其结果。另外,表1中的实验结果的记号的意思请参照以下说明:
·耐蚀性:「○」:经过3万次以上的试验几乎未发现侵蚀现象。
「×」:经过3万次以下的试验发生了侵蚀现象,作为烙铁的烙铁头使用的话会发生问题。
·融合耐久性:「○」:在接触角的经时变化试验中接触角几乎未发生变化。
「△」:在接触角的经时变化试验中接触角增加,与当初的接触角相比发生了变化。但是,当初的接触角以及经时变化后的接触角都在120度以下。
另,「○」以及「△」表示的是烙铁头的实用可能性。
「×」表示的是当初的接触角经过经时变化后接触角发生变化且超过120度的情况,其融合性相当低下。
·综合评价:「◎」:耐蚀性、烧结的状态、融合耐久性以及耐热性的各方面的结果都是「○」。
「○」:耐蚀性、烧结的状态、融合耐久性以及耐热性的各方面的评价结果是「○」以及「△」。
另,综合评价是「◎」以及「○」的试料是适用于烙铁头的材料。
「×」:耐蚀性、融合耐久性以及耐热性各方面得到的结果都是「×」。
表1各材料性质比较表
Figure PCTCN2015089094-appb-000001
<结果>
表1表示的是在耐蚀性试验中实施实例1~4以及比较例子2的试料没有发生溶蚀现象。通过试验结果我们可以得知,本发明的铁质量比在20%以上的试料比含有锡的无铅焊锡的耐蚀性能更加优越。
在通过接触角确认融合性的试验中,实施实例1~5以及比较例子2的试料的接触角在60°以上120°以下的范围内,具有良好的融合性。这说明试料中含有丰富的铁的成分。另一方面,在比较例子1中试料内没有含有铁则没有得到很好的融合性。
从以上的试验结果中我们可以得知,实施实例1~4的试料具有良好的热传导性、融合性、耐蚀性以及耐热性。另外,实施实例3的试料具有良好的热传导性、融合性耐蚀性以及融合耐久性。
以上是对本发明的适宜的实施形态的说明,但是本发明并不是只限制于上述的实施形态,只要是在专利申请的范围内被记载过的内容都具有很多可变化的可能性。
另,上述的实施形态的烙铁头也可以进行金属电镀处理。

Claims (6)

  1. 一种适用于烙铁头的合金材料的制备方法,其特征在于,包括如下步骤:
    步骤一、取纯度99.3%以上的铜以及纯度99.5%以上的铁,将以质量份计,分别为50份的所述铜和所述铁分别溶解,混合,浇铸后再进行加热冷轧拉伸,得到棒状合金材;
    步骤二、接下来,在所述棒状合金材内加入预定量的铜,再次进行溶解以及铸造,使铜的质量达到占合金总质量的50%~80%;
    步骤三、再进行加热、冷轧拉伸而得到适用于烙铁头的合金材料。
  2. 如权利要求1所述的适用于烙铁头的合金材料的制备方法,其特征在于:
    其中,在步骤一中,铜溶解的过程中,进行脱氢操作,使用氧气进行脱氢,脱氢时,氧气分压的范围:1.5atm~3atm,同时保持温度调整到铜的熔点以上50℃~100℃。
  3. 如权利要求2所述的适用于烙铁头的合金材料的制备方法,其特征在于:
    其中,在脱氢结束后,进行脱氧操作,脱氧剂可使用例如:Ca、Si、Mn、P、Al、Ti、Li的一种或几种。
  4. 如权利要求3所述的适用于烙铁头的合金材料的制备方法,其特征在于:
    当使用脱氧剂的时候,同时使用除渣滓助剂,所述除渣滓助剂采用Ca、Mg系的低熔点化合物。
  5. 一种烙铁头的制备方法,其特征在于:
    包括如权利要求1所述的步骤,以及
    步骤四,将所述合金材料加工成棒状,尖端切削成圆锥状,制成烙铁头。
  6. 一种电烙铁,其特征在于,包括:
    如权利要求5所述的烙铁头,以及
    手柄,供使用者握持;
    保护管,套在所述烙铁头后端;
    连接套管,将所述保护管和所述手柄连接起来;以及
    螺母,固定所述保护管和所述连接套管。
PCT/CN2015/089094 2015-06-02 2015-09-07 合金材料的制备方法和烙铁头的制备方法以及电烙铁 WO2016192231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510296156.3A CN104942539A (zh) 2015-06-02 2015-06-02 合金材料的制备方法和烙铁头的制备方法以及电烙铁
CN201510296156.3 2015-06-02

Publications (1)

Publication Number Publication Date
WO2016192231A1 true WO2016192231A1 (zh) 2016-12-08

Family

ID=54157882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089094 WO2016192231A1 (zh) 2015-06-02 2015-09-07 合金材料的制备方法和烙铁头的制备方法以及电烙铁

Country Status (2)

Country Link
CN (1) CN104942539A (zh)
WO (1) WO2016192231A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161510B (zh) * 2022-07-01 2023-07-14 海目星激光科技集团股份有限公司 一种FeCuAl合金、及其制备方法及烙铁头
CN115125456B (zh) * 2022-07-01 2023-07-14 海目星激光科技集团股份有限公司 一种FeCrAlNiCu合金及其制备方法及烙铁头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB862584A (en) * 1956-06-05 1961-03-15 Hans Eckstaedt Improvements in and relating to soldering tools
GB1284994A (en) * 1970-01-14 1972-08-09 Gen Electric Co Ltd Improvements in or relating to soldering irons
JPH0681057A (ja) * 1992-08-31 1994-03-22 Nippon Steel Corp 耐溶融金属浸食性と高温強度に優れた溶接電極および半田ごてチップ用Cu−Fe合金およびその製造方法
US5553767A (en) * 1994-08-17 1996-09-10 Donald Fegley Soldering iron tip made from a copper/iron alloy composite
JP2005254259A (ja) * 2004-03-09 2005-09-22 Dotetsu Gokin Kk ハンダ鏝
CN1973576A (zh) * 2004-05-25 2007-05-30 白光株式会社 具有可更换烙铁头的烙铁
JP2011245552A (ja) * 2010-04-30 2011-12-08 Alpha Giken:Kk はんだこて用チップ及びはんだこて用チップの製造方法
JP3191800U (ja) * 2014-04-28 2014-07-10 タカヤマジャパン株式会社 半田コテ先チップ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6786386B2 (en) * 2002-02-01 2004-09-07 Hakko Corporation Soldering iron with heat pipe
JP4429879B2 (ja) * 2004-11-25 2010-03-10 太洋電機産業株式会社 半田ごて及び半田ごての製造方法
CN101372743A (zh) * 2007-08-20 2009-02-25 曾云发 超长寿命电烙铁焊嘴制造技术
CN102069358B (zh) * 2010-12-31 2014-01-01 东莞市卡萨帝电子科技有限公司 一种智能烙铁头的制作方法
JP2014000577A (ja) * 2012-06-15 2014-01-09 D.N.A.メタル株式会社 半田こてチップの再生方法及び再生半田こてチップ
CN103556069B (zh) * 2013-11-04 2016-02-17 洛阳双瑞特种装备有限公司 一种高压气瓶用大直径无缝钢管及其制造方法
CN104152739A (zh) * 2014-08-07 2014-11-19 深圳市格润电子有限公司 用于生产烙铁头的铜铁合金及其生产工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB862584A (en) * 1956-06-05 1961-03-15 Hans Eckstaedt Improvements in and relating to soldering tools
GB1284994A (en) * 1970-01-14 1972-08-09 Gen Electric Co Ltd Improvements in or relating to soldering irons
JPH0681057A (ja) * 1992-08-31 1994-03-22 Nippon Steel Corp 耐溶融金属浸食性と高温強度に優れた溶接電極および半田ごてチップ用Cu−Fe合金およびその製造方法
US5553767A (en) * 1994-08-17 1996-09-10 Donald Fegley Soldering iron tip made from a copper/iron alloy composite
JP2005254259A (ja) * 2004-03-09 2005-09-22 Dotetsu Gokin Kk ハンダ鏝
CN1973576A (zh) * 2004-05-25 2007-05-30 白光株式会社 具有可更换烙铁头的烙铁
JP2011245552A (ja) * 2010-04-30 2011-12-08 Alpha Giken:Kk はんだこて用チップ及びはんだこて用チップの製造方法
JP3191800U (ja) * 2014-04-28 2014-07-10 タカヤマジャパン株式会社 半田コテ先チップ

Also Published As

Publication number Publication date
CN104942539A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
US11413709B2 (en) High reliability lead-free solder alloys for harsh environment electronics applications
Feng et al. Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals
CN103949802A (zh) 一种Ti-Zr-Cu-Ni-Co-Mo非晶钎料及其制备方法
CN103862147B (zh) 钼铜合金与镍基高温合金的填丝脉冲钨极氩弧焊工艺
US8603390B2 (en) Copper-phosphorus-strontium brazing alloy
CN104772578A (zh) 一种包括钛-锆-铜-镍的钎料
Jing et al. Influence of rapid solidification on microstructure, thermodynamic characteristic and the mechanical properties of solder/Cu joints of Sn–9Zn alloy
Hao et al. Microstructure evolution of SnAgCuEr lead-free solders under high temperature aging
CN105364335A (zh) Al-Ag-Cu-Mg铝基合金态钎料及其制备方法
EP3291942B1 (en) High reliability lead-free solder alloys for harsh environment electronics applications
WO2016192231A1 (zh) 合金材料的制备方法和烙铁头的制备方法以及电烙铁
CN105965176B (zh) 用于钎焊钨铜合金与不锈钢的Ni基急冷钎料及钎焊工艺
LI et al. Dissolution behavior of Cu in Cu-Ag and Cu-P brazing alloys using weld brazing
CN102814595A (zh) 用于铝铜软钎焊的Sn-Zn基近共晶无铅钎料合金及其制备方法
KR100946936B1 (ko) 브레이징 합금
CN112621020B (zh) 一种镍基药芯钎料、制备方法及应用
RU204342U1 (ru) Электрод для плазменно-дуговой горелки
CN105834613B (zh) 一种专用于四通阀高频钎焊的钎料
CN111299901B (zh) 钎料合金、钎料及其制备方法和应用以及制得的钎焊产品
CN103302419A (zh) 一种cvd金刚石钎焊用镍基合金钎料片及其制备方法
CN106624282A (zh) 基于钨极氩弧焊的镁合金焊接工艺
CN102554508B (zh) 一种适用于无铅易切削铜合金钎焊的银钎料
CN106077867B (zh) 一种钎焊钨基粉末合金用多元铜银镍铌锆钎料
JP2011245552A (ja) はんだこて用チップ及びはんだこて用チップの製造方法
CN1325680C (zh) Sn-Ag-Cu-Cr合金无铅焊料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893887

Country of ref document: EP

Kind code of ref document: A1