WO2016190321A1 - 電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法 - Google Patents

電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法 Download PDF

Info

Publication number
WO2016190321A1
WO2016190321A1 PCT/JP2016/065358 JP2016065358W WO2016190321A1 WO 2016190321 A1 WO2016190321 A1 WO 2016190321A1 JP 2016065358 W JP2016065358 W JP 2016065358W WO 2016190321 A1 WO2016190321 A1 WO 2016190321A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrophoresis
gel
transfer film
buffer
anode
Prior art date
Application number
PCT/JP2016/065358
Other languages
English (en)
French (fr)
Inventor
英樹 木下
公彦 矢部
貴輝 松永
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016190321A1 publication Critical patent/WO2016190321A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to an electrophoresis gel, an electrophoresis kit, an electrophoresis apparatus, and an electrophoresis method.
  • proteins one of the biopolymers, are directly involved in the functions of living cells, organs, and organs, and are largely due to differences in amino acid sequence and three-dimensional structure, chemical modifications such as sugar chains and phosphorylation. It is beginning to become clear that it can cause various diseases.
  • proteome analyzes are being conducted.
  • the proteome means a specific cell, organ, and the whole protein produced by translation in the organ. Examples of the analysis include protein profiling and functional analysis.
  • proteins synthesized in vivo after protein translation are controlled by post-translational modifications such as phosphorylation, and information on chemical modification of proteins will be available in the future. It can be one of the important items in proteome analysis. Therefore, a method for separating and detecting a sample containing a plurality of proteins with high accuracy is regarded as important, and development of an apparatus for that purpose is being promoted.
  • Patent Document 1 discloses a system for gel electrophoresis including an electrophoresis gel having two ends, wherein the gel is a polyacrylamide gel including a neutral gel buffer, and one end of the gel is an anode. The other end is in contact with the cathode buffer solution, the gel buffer solution contains bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), and the cathode buffer comprises 3 Describes a system comprising-(N-morpholino) propanesulfonic acid (MOP) or 2- (N-morpholino) ethanesulfonic acid (MES), and wherein the electrophoresis gel is precast and suitable for storage Has been.
  • MOP 2- (N-morpholino) ethanesulfonic acid
  • MES 2- (N-morpholino) ethanesulfonic acid
  • JP 2007-263976 A (published on Oct. 11, 2007)
  • the present invention has been made in view of the above problems, and has as its main object to provide a novel technique for improving the moving speed of a sample in an electrophoresis gel.
  • the electrophoresis gel according to one embodiment of the present invention is composed of a polyacrylamide gel having a pH greater than 7.0 and less than or equal to 8.0.
  • the electrophoresis method includes a separation step of separating a sample by electrophoresis using a polyacrylamide gel having a pH greater than 7.0 and less than or equal to 8.0.
  • the moving speed of the sample in the electrophoresis gel can be improved.
  • Electrophoresis gel In one embodiment, the present invention provides an electrophoresis gel.
  • electrophoresis gel refers to a gel used in gel electrophoresis.
  • the electrophoresis gel according to the present invention comprises a polyacrylamide gel
  • the pH of the polyacrylamide gel may be, for example, 6.0 or more and 8.8 or less, but is greater than 7.0 and 8. It is more preferably 0 or less, more preferably greater than 7.0 and 7.7 or less, and particularly preferably greater than 7.0 and 7.5 or less. Alternatively, it may be greater than 7.2 and not greater than 8.0, greater than 7.2 and not greater than 7.7, and greater than 7.2 and not greater than 7.5.
  • the pH of the electrophoresis gel or polyacrylamide gel can be the pH of the gel buffer contained in the electrophoresis gel. When the pH of the polyacrylamide gel satisfies the above conditions, the moving speed of the sample in the electrophoresis gel can be improved.
  • the% T of the polyacrylamide gel can be, for example, 5.0% T or more and 20.0% T or less, and more preferably 6.5% T or more and 12.5% T or less.
  • “% T” indicates the content (g / mL) of acrylamide contained in the polyacrylamide gel.
  • the electrophoresis gel may have a structure comprising a separation gel for separating a sample and a concentration gel for concentrating the sample. In this case,% T of the concentration gel is% of the separation gel. It is preferable to make it smaller than T.
  • The% C of the polyacrylamide gel can be, for example, 2.6% C or less, but is preferably less than 2.4% C, less than 2.2% C, and less than 2.0% C. 1.5% C or less, 1.0% C or less, or 0.5% C or less is particularly preferable. Moreover, the lower limit of% C of the polyacrylamide gel is not particularly limited, but may be, for example, 0.1% C or 0.2% C.
  • the moving speed of the sample in the electrophoresis gel can be further improved. As will be described later, this becomes remarkable when the cathode buffer contains a leading ion selected from the group consisting of tris and bicine as the leading ion.
  • % C indicates the content (g / g) of the acrylamide crosslinking agent in the acrylamide contained in the polyacrylamide gel. That is, it can be said that a polyacrylamide gel of less than 2.4% C contains an acrylamide crosslinking agent of less than 2.4% by weight of the acrylamide contained in the polyacrylamide gel.
  • such an electrophoresis gel is prepared by adding a acrylamide monomer and an acrylamide cross-linking agent to a pH adjusted gel buffer to prepare a gel solution, and injecting the gel solution into a gel preparation container.
  • a acrylamide monomer and an acrylamide cross-linking agent can be prepared by polymerizing an acrylamide monomer and an acrylamide cross-linking agent.
  • a polymerization accelerator may be appropriately added to the gel solution.
  • the gel buffer is not particularly limited as long as it is an electrolytic solution containing a buffering agent.
  • a buffering agent for example, Bis-Tris (bis (2-hydroxyethyl) -amino-tris (hydroxymethyl) methane), MOPS (3 (N-morpholino) It preferably contains a known buffer used for electrophoresis gels such as propanesulfonic acid) and HEPES (4- (2-hydroxyethyl) -1-piperazineethanesulfonic acid), and contains Bis-Tris. It is particularly preferable.
  • the buffer region can suitably have a buffer region in the range of 7.0 to 8.0.
  • the pH of the gel buffer can be adjusted to a desired range using an appropriate acid such as hydrochloric acid, sulfuric acid, acetic acid, boric acid, phosphoric acid, and glycolic acid.
  • An acrylamide cross-linking agent is a molecule that reacts with an acrylamide monomer to form a cross-link in the process of polymerization of the acrylamide monomer.
  • the acrylamide cross-linking agent may be any known acrylamide cross-linking agent, such as N, N′-methylene-bis-acrylamide (bisacrylamide), ethylene diacrylate (ED), diallyl-tartaric acid diamide (DATD), and Examples thereof include dihydroxyethylene-bisacrylamide (DHEBA), and bisacrylamide is more preferable.
  • Bisacrylamide N, N′-methylene-bis-acrylamide
  • ED ethylene diacrylate
  • DATD diallyl-tartaric acid diamide
  • DHEBA dihydroxyethylene-bisacrylamide
  • bisacrylamide is more preferable.
  • what is necessary is just to adjust the quantity of the acrylamide monomer and acrylamide crosslinking agent which are added to a gel buffer so that it may match% T and% C mentioned above.
  • polymerization accelerator examples include, but are not limited to, ammonium persulfate (APS), N, N′-tetramethylenediamine (TEMED), riboflavin, and ⁇ -dimethylaminopropionitrile.
  • APS ammonium persulfate
  • TEMED N, N′-tetramethylenediamine
  • riboflavin riboflavin
  • ⁇ -dimethylaminopropionitrile preferably used.
  • the polymerization accelerator is preferably added to the gel solution immediately before use of the electrophoresis gel.
  • additional reagents or additives may be added to the gel solution.
  • a container for gel preparation For example, the insulating plates 11 * 12 overlapped through the spacer as shown in FIG. 1 can be used. A comb for forming a well for loading a sample may also be used.
  • the size of the container one having a size corresponding to the type, amount, etc. of the sample to be separated can be appropriately used.
  • a sample is loaded at a specific position (for example, one end) of the electrophoresis gel, and a voltage is applied across the electrophoresis gel.
  • a voltage is applied across the electrophoresis gel.
  • the sample to be separated is not particularly limited.
  • a preparation from a biological material for example, an individual organism, a body fluid, a cell line, a tissue culture, or a tissue fragment
  • a commercially available reagent containing a biomolecule can be used.
  • it may contain proteins or nucleic acids.
  • the method for applying a voltage to the electrophoresis gel is not particularly limited.
  • an electrophoresis buffer a cathode buffer and an anode buffer
  • one end of the electrophoresis gel is brought into contact with the cathode buffer, and the other of the electrophoresis gel is applied.
  • the voltage can be applied to the electrophoresis gel by bringing the end into contact with the anode buffer and applying a voltage between the cathode disposed in the cathode buffer and the anode disposed in the anode buffer.
  • the electrophoresis buffer may be an electrolyte solution containing a buffer, and may have the same or different composition between the cathode buffer and the anode buffer.
  • buffers that can be included in the electrophoresis buffer include Bis-Tris, MOPS, MES (2 (N-morpholino) ethanesulfonic acid), HEPES, Tris / glycine, acetic acid, sodium carbonate, CAPS, Tris / boric acid /
  • Known buffering agents used for electrophoresis gels such as EDTA, Tris / acetic acid / EDTA, MOPS, phosphoric acid, Tris / Tricine, and the like are mentioned, and Bis-Tris is particularly preferable.
  • the electrophoresis buffer may contain a surfactant such as SDS.
  • the electrophoresis buffer can further contain leading ions and trailing ions.
  • Leading ions are substances that move the fastest in an electrophoresis gel during electrophoresis. When this moving speed is slow, it is difficult to separate low molecules.
  • Trailing ions are substances that flow behind the sample during electrophoresis. The leading ions and trailing ions function by being electrophoresed together with the sample during electrophoresis, and need only be contained in the cathode buffer, and may not be contained in the anode buffer.
  • leading ion for example, a known leading ion such as HCl may be used, but preferably the pH of the polyacrylamide gel is 7.0 by using a leading ion selected from the group consisting of tris and bicine. When it is larger and is 8.0 or less, a low molecular weight sample can be suitably separated.
  • trailing ions for example, known trailing ions such as MOPS, MES, and glycine can be used, but it is more preferable to use trailing ions selected from the group consisting of MOPS and MES.
  • the present invention provides an electrophoresis kit for electrophoresis.
  • the electrophoresis kit can include an electrophoresis gel, a cathode buffer, and an anode buffer.
  • the electrophoresis kit may further include other instruments and reagents used for electrophoresis, a document such as instructions, or a recording medium containing the document.
  • an electrophoresis kit can be integrated in the electrophoresis apparatus demonstrated below.
  • an electrophoresis apparatus includes the above-described electrophoresis kit, a cathode buffer tank in which a cathode buffer is stored and a cathode is disposed, an anode buffer tank in which an anode buffer is stored and an anode is disposed.
  • the electrophoretic device may be provided with a gel holding unit that holds the electrophoresis gel so that one end thereof is in contact with the cathode buffer and the other end is in contact with the anode buffer.
  • FIG. 1 is a side sectional view showing an example of a schematic configuration of an electrophoresis apparatus according to an embodiment of the present invention.
  • the electrophoresis apparatus 10 includes an electrophoresis gel 5, insulating plates (gel holding units) 11 and 12, a cathode buffer tank 13 and an anode buffer tank 14, an anode 15 and a cathode 16.
  • the cathode buffer tank 13 stores a cathode buffer, and a cathode 16 is disposed therein.
  • the anode buffer tank 14 stores an anode buffer, and an anode 15 is disposed therein.
  • the insulating plates 11 and 12 have an upper end opened in the cathode buffer tank 13 and a lower end opened in the anode buffer tank 14 so that the electrophoresis gel 5 is in contact with the cathode buffer at one end, One end is held in contact with the anode buffer.
  • the anode 15 and the cathode 16 are made of a conductive material such as metal.
  • a material for forming the anode 15 and the cathode 16 for example, platinum is preferable from the viewpoint of suppressing ionization of the electrode.
  • the sample can be separated by electrophoresis by loading (introducing) the sample into the electrophoresis gel 5 from the upper end of the electrophoresis gel 5 and passing a current between the anode 15 and the cathode 16.
  • a visible molecular weight marker for confirming the progress of electrophoresis to the sample.
  • the value of the current flowing between the anode 15 and the cathode 16 is not particularly limited, but is preferably 50 mA or less, and more preferably 20 mA or more and 30 mA or less.
  • the current value may be controlled to be constant, the voltage may be controlled to be constant, or the current / voltage may be controlled in other manners.
  • the electrophoresis gel 5 from which the sample has been separated is removed from the electrophoresis apparatus 10 and subjected to subsequent processing for analyzing biomolecules (for example, transfer to a transfer membrane and staining or immune reaction, or gel It can be used for excision and recovery of the target protein.
  • biomolecules for example, transfer to a transfer membrane and staining or immune reaction, or gel It can be used for excision and recovery of the target protein.
  • the present invention is not limited to the configuration in which electrophoresis is performed in the manner described in the first embodiment, and can be applied to various configurations as long as gel electrophoresis is performed.
  • the present invention separates a sample by electrophoresis, discharges the separated sample from the discharge part in the anode buffer tank, and moves the transfer film in contact with the discharge part to move the sample.
  • the present invention can be applied to electrophoresis in which a sample is transferred to the transfer film (hereinafter referred to as “discharge transfer type electrophoresis”).
  • the discharge transfer type electrophoresis is separated in the electrophoresis gel by moving the transfer film while facing the end in the anode buffer tank of the electrophoresis gel. It can be carried out by using an electrophoresis apparatus provided with a transfer part for transferring the sample discharged from the end part in the tank to the transfer film.
  • Such a transfer part is not limited to this, but, for example, a transfer film holding part that holds the transfer film facing the end in the anode buffer tank of the electrophoresis gel, and the transfer film holding This can be realized by a drive mechanism that moves the part.
  • the transfer film may be realized by a roller-type paper feed mechanism that moves while facing the end of the electrophoresis gel in the anode buffer tank.
  • the electrophoresis speed of the polymer in the discharge transfer type electrophoresis is very important to improve the electrophoresis speed of the polymer in the discharge transfer type electrophoresis.
  • the electrophoresis speed of the polymer can be improved, it can be suitably applied to the discharge transfer type electrophoresis.
  • FIG. 2 is a side sectional view showing another example of the schematic configuration of the electrophoresis apparatus according to the embodiment of the present invention.
  • the electrophoresis apparatus 100 separates the sample by electrophoresis, discharges the separated sample from the discharge portion, and moves the transfer film in contact with the discharge portion to move the sample.
  • An electrophoretic apparatus for performing transfer-type electrophoresis that transfers a sample to the transfer film including a clamp (transfer unit, transfer film holding unit) 20, a clamp (transfer unit, transfer film holding unit) 21, and a clamp frame (transfer) Part, transfer film holding part) 22, carrier (transfer part, driving mechanism) 23, anode buffer tank 30, table 31, cathode buffer tank 40, gel holding part 50, motor (transfer part, driving mechanism) 62, ball screw (transfer) Part, drive mechanism) 63, guide shaft (transfer part, drive mechanism) 64, shaft holder (transfer part, drive mechanism) 65, guide pole (transfer part, drive mechanism) 66, Control portion (transfer portion, the drive mechanism) and a 68.
  • a lid that covers the whole during operation is further provided.
  • the gel holding unit 50 houses the electrophoresis gel 52 and has a first opening (discharge unit) 50 a that opens into the anode buffer tank 30 and a second opening 50 b that opens into the cathode buffer tank 40. is doing. Further, the transfer film 1 is disposed in the anode buffer tank 30 so as to face the first opening 50a. An anode 32 is disposed in the anode buffer tank 30, and a cathode 41 is disposed in the cathode buffer tank 40.
  • the cathode buffer tank 40 is filled with the cathode buffer
  • the anode buffer tank 30 is filled with the anode buffer, whereby the cathode 41 in the cathode buffer tank 40 and the anode 32 in the anode buffer tank 30 are formed.
  • the two tanks are electrically connected via the electrophoresis buffer, the electrophoresis gel 52, and the transfer film 1. That is, the electrophoresis apparatus 100 separates the sample introduced from the second opening 50b by the electrophoresis gel 52 by applying a voltage between the cathode 41 and the anode 32, and separates the separated components into the first.
  • the anode 32 is disposed in the anode buffer tank 30, and the cathode 41 is disposed in the cathode buffer tank 40.
  • the anode 32 is arranged in the anode buffer tank 30 and the cathode 41 is not particularly limited as long as it is arranged in the cathode buffer tank 40.
  • the cathode 41, the first opening 50a and the anode 32 may be arranged on a substantially straight line. If the transfer film 1 is arranged in such an arrangement as shown in FIG. 2, the lines of electric force passing through the first opening 50a become substantially perpendicular to the transfer film 1, thereby improving the accuracy of sample adsorption. obtain.
  • the anode 32 is preferably arranged away from the transfer film 1. Thereby, it is possible to suppress the bubbles generated from the anode 32 from adversely affecting the adsorption of the separation component to the transfer film 1.
  • the anode 32 and the cathode 41 may be used by being connected to the control unit 68 or may be used by being connected to an external power supply (DC power supply device), for example.
  • an external power supply DC power supply device
  • the electrophoretic device 100 can be started by operating the control unit 68 simultaneously with the operation of the power supply. That's fine.
  • the anode buffer tank 30 and the cathode buffer tank 40 are insulating containers that retain the electrophoresis buffer.
  • the cathode buffer tank 40 is provided above the anode buffer tank 30.
  • the anode buffer tank 30 is fixed on the table 31, and the cathode buffer tank 40 is fixed to the anode buffer tank 30, but the present invention is not limited to this configuration.
  • guides 33 and 34 for supporting the transfer film 1 from the back surface of the transfer film 1 are provided in the movement path of the transfer film 1 at the bottom of the anode buffer tank 30.
  • the gel holding unit 50 houses an electrophoresis gel 52 therein.
  • the gel holding unit 50 stands up in a substantially vertical direction, the lower part thereof is arranged in the anode buffer tank 30, and the upper part thereof is arranged so that one side thereof is in contact with the cathode buffer tank 40.
  • the electrophoresis gel 52 is water-cooled by at least one of the anode buffer in the anode buffer tank 30 and the cathode buffer in the cathode buffer tank 40, and can be sufficiently cooled.
  • the gel holding unit 50 has a first opening 50 a that opens into the anode buffer tank 30 and a second opening 50 b that opens into the cathode buffer tank 40.
  • the electrophoresis gel 52 faces the anode buffer tank 30 through the first opening 50a and faces the cathode buffer tank 40 through the second opening 50b.
  • the gel holding unit 50 is fixed to the cathode buffer tank 40 by a lock 42 provided in the cathode buffer tank 40, but the present invention is not limited to this configuration.
  • the gel holding part 50 may be composed of two insulating plates 51 and 53 formed of an insulator such as glass or acrylic. In one embodiment, the gel holding part 50 exposes the electrophoresis gel 52 by lacking a part of the insulating plate 53 in the second opening 50 b, thereby making it easy to sample the electrophoresis gel 52. Can be introduced.
  • the first opening 50a of the gel holding unit 50 is formed of a conductive porous material (for example, a hydrophilic PVDF (Polyvinylidene difluoride) film, a hydrophilic PTFE (Polytetrafluoroethylene) film, etc.) including the periphery thereof. It may be covered with a covering portion. Accordingly, when the transfer film 1 is in contact with or pressed against the first opening 50a (when no distance is provided between the first opening 50a and the transfer film 1), the transfer film 1 is transferred when the transfer film 1 is conveyed. The frictional resistance and damage received from the gel holder 50 and the electrophoresis gel 52 can be reduced.
  • a conductive porous material for example, a hydrophilic PVDF (Polyvinylidene difluoride) film, a hydrophilic PTFE (Polytetrafluoroethylene) film, etc.
  • the sample introduction amount can be increased compared with the structure in which the gel holding
  • the transfer film 1 is preferably a sample adsorbing / holding body that allows the sample separated by the electrophoresis gel 52 to be stably stored for a long period of time and further facilitates subsequent analysis.
  • the material of the transfer film 1 is preferably a material having high strength and high sample binding ability (weight that can be adsorbed per unit area).
  • a PVDF film or a nitrocellulose film is suitable when the sample is a protein.
  • the PVDF membrane is preferably hydrophilized in advance using methanol or the like.
  • membranes conventionally used for protein, DNA and nucleic acid adsorption such as nitrocellulose membrane or nylon membrane can also be used.
  • the sample that can be separated and adsorbed in the electrophoresis apparatus 100 is not limited to these, but a preparation from a biological material (for example, a biological individual, a body fluid, a cell line, a tissue culture, or a tissue fragment), or A commercially available reagent etc. are mentioned.
  • a biological material for example, a biological individual, a body fluid, a cell line, a tissue culture, or a tissue fragment
  • a commercially available reagent etc. are mentioned.
  • a polypeptide or polynucleotide is mentioned.
  • the transfer film 1 is used in a state immersed in the anode buffer in the anode buffer tank 30.
  • the transfer film 1 has a length that is used for one electrophoresis / transfer, in other words, a distance that moves in the anode buffer tank 30 in one electrophoresis / transfer. If you do.
  • the transfer film 1 By configuring the transfer film 1 in this way, the operation of cutting the transfer film 1 is not required for each electrophoresis / transfer, and the usability of the electrophoresis apparatus 100 can be improved.
  • the lateral width of the transfer film 1 may be a length corresponding to the lateral width of the electrophoresis gel 52.
  • the transfer film 1 is used in a state of being held by an adjuster (transfer film holding unit) 2 so as to face the end of the electrophoresis gel 52 in the anode buffer tank 30.
  • the adjuster 2 includes clamps 20 and 21 and a clamp frame 22, and is disposed inside the side wall of the anode buffer tank 30.
  • the clamp 20 includes an elastic body 20a and a pressing member 20b.
  • the elastic body 20a is brought into contact with the back surface of the transfer film 1 (the surface opposite to the surface that is in contact with the first opening 50a), and is pressed by the pressing member 20b.
  • the transfer film 1 is fixed by pressing the transfer film 1 against the elastic body 20 a from the surface side of the transfer film 1.
  • the pressing member 20b is preferably configured to push the transfer film 1 into the elastic body 20a.
  • the clamp 21 includes an elastic body 21a and a pressing member 21b.
  • the elastic body 21a is in contact with the back surface of the transfer film 1 (the surface opposite to the surface in contact with the first opening 50a) and pressed.
  • the transfer film 1 is fixed by pressing the transfer film 1 against the elastic body 20a from the surface side of the transfer film 1 by the member 21b.
  • the pressing member 21b is preferably configured to press the transfer film 1 into the elastic body 21a.
  • the adjuster 2 is a structure that holds the transfer film 1, and is preferably configured to maintain a state where the tension of the transfer film 1 is as high as possible. This is because if the tension of the transfer film 1 is low (the transfer film is loosened), the transfer film 1 can be brought into close contact with the first opening 50a even if the transfer film 1 is brought into contact with the first opening 50a of the gel holding unit 50. Because it is difficult. As will be described below, the adjuster 2 according to the present embodiment suitably maintains the tension of the transfer film 1, and can easily bring the transfer film 1 into close contact with the first opening 50a.
  • the transfer film 1 When the transfer film 1 is held by the adjuster 2, that is, when the transfer film 1 is fixed by the clamps 20 and 21, when the transfer film 1 contacts the first opening 50a of the gel holding unit 50, the transfer is performed.
  • the film 1 is pushed down by the first opening 50a, and the elastic bodies 20a and 21a are pushed down by the pushed-down transfer film 1 inside the fixed positions of the clamps 20 and 21.
  • the tension of the transfer film 1 can be maintained. Thereby, the transfer film 1 can be suitably adhered to the first opening 50a.
  • the material of the elastic bodies 20a and 21a has a softness that allows the pressing members 20b and 21b and the transfer film 1 to be fitted therein, and the transfer film 1 can be fixed in pairs with the pressing members 20b and 21b.
  • it will not specifically limit if it is an elastic body which can be used,
  • elastomers such as silicon sponge, urethane rubber, chloroprene rubber, and fluororubber, can be used conveniently.
  • the clamp frame 22 is a shaft member that connects the clamps 20 and 21, and connects the clamps 20 and 21 with a predetermined distance therebetween.
  • the clamp frame 22 is disposed at a position sandwiching the transfer film 1 from the side in the movement direction, and thereby, the front surface (surface facing the first opening 50a) and the back surface (opposite to the first opening 50a) of the transfer film 1. It can be avoided that the clamp frame 22 overlaps the side surface. Accordingly, it is possible to prevent the clamp frame 22 from inhibiting the transfer from the electrophoresis gel 52 to the transfer film 1 and the contact of other members to the back surface of the transfer film 1 (details will be described later). Further, fixing of the transfer film 1 by the clamps 20 and 21 is not inhibited.
  • the clamp frame 22 and the clamps 20 and 21 are not limited to this, but may be made of a synthetic resin such as Teflon (registered trademark), acrylic resin, or PEEK resin.
  • the adjuster 2 is incorporated in the arm portion.
  • the arm portion moves the transfer film 1 and brings it into contact with the first opening 50a.
  • the arm portion includes the adjuster 2, the carrier 23, and the guide pole 66 that are a series of connected members.
  • the guide pole 66 is a shaft member that is connected to a drive unit (shaft holder 65), which will be described later, and is disposed so as to pass outside the side wall of the anode buffer tank 30.
  • the carrier 23 is a member that is connected to the guide pole 66, goes around the upper end of the side wall of the anode buffer tank 30, and is connected to the clamp 20.
  • the arm portion is connected to the inside of the side wall through the outside of the side wall of the anode buffer tank 30 from the position where it is connected to the driving unit, and around the upper end of the side wall.
  • the guide pole 66 extends outside the side wall of the anode buffer tank 30 to a position aligned with the upper end of the side wall.
  • the carrier 23 is fitted to the guide pole 66 and extends inside the side wall across the upper end of the side wall of the anode buffer tank 30.
  • the guide pole 66 is disposed outside the side wall of the anode buffer tank 30 and does not interfere with various operations such as removal of the anode buffer tank 30 and electrode setting, which are performed as necessary. Therefore, various operations can be successfully performed by appropriately removing the carrier 23.
  • the drive unit drives the arm unit in a substantially horizontal direction, and in the present embodiment, is constituted by a motor 62, a ball screw 63, a guide shaft 64, and a shaft holder 65.
  • the motor 62 rotates the ball screw 63.
  • a motor whose speed can be changed may be used, or a motor having a fixed speed may be used in combination with a gear.
  • the ball screw 63 penetrates the shaft holder 65 and is screwed into the shaft holder 65.
  • the guide shaft 64 passes through the shaft holder 65, and the shaft holder 65 is configured to be movable along the guide shaft 64. Then, when the motor 62 rotates the ball screw 63, the shaft holder 65 is driven in the X direction (substantially horizontal direction) in the figure.
  • the shaft holder 65 is connected to the arm portion (guide pole 66), and thus, the drive portion can drive the arm portion in the X direction (substantially horizontal direction) in the drawing. Since the arm portion holds the transfer film 1, the transfer film 1 moves in the X direction (substantially horizontal direction) in the figure.
  • the present invention is not limited to this, and the driving unit may be configured by another driving mechanism (for example, a belt, a gear, or the like) as long as the arm unit can be driven in a substantially horizontal direction. Good.
  • another driving mechanism for example, a belt, a gear, or the like
  • the drive unit is provided under the anode buffer tank 30. Accordingly, it is possible to prevent the buffer solution scattered from the anode buffer tank 30 from deteriorating the durability of the driving unit and the driving unit from interfering with various operations on the electrophoretic device 100.
  • the control unit 68 is a control panel that performs various controls of the electrophoresis apparatus 100 (control of the position of the arm unit, control of current and voltage applied to the anode 32 and the cathode 41, etc.).
  • the control unit 68 may include a button and a switch for receiving an input from the user, a lamp for notifying the user of an operation state, a display unit, and the like.
  • sample electrophoresis and transcription Next, the flow of sample electrophoresis and transfer in the electrophoresis apparatus 100 will be described with reference to FIG.
  • the transfer film 1 is held by the adjuster 2 in a state of being disposed at a position in contact with the first opening 50a.
  • the transfer film 1 is supported from the back surface of the transfer film 1 (the side opposite to the gel holding unit 50) by guides 33 and 34 provided at the bottom of the anode buffer tank 30.
  • the guides 33 and 34 are provided at the bottom of the anode buffer tank 30 so as to support the transfer film in the moving path along which the transfer film 1 moves.
  • the longitudinal directions of the guides 33 and 34 are orthogonal to the moving direction (X direction) of the transfer film 1 and are parallel to the longitudinal direction of the first opening 50a.
  • the gel holding unit 50 (on the first opening 50a side) abuts on the surface of the transfer film 1 (the gel holding unit 50 side), whereby the transfer film 1 is convex on the side opposite to the gel holding unit 50. It is bent like this. In this way, the transfer film 1 is supported by the guides 33 and 34, and the gel holding part 50 is pressed down and bent so as to protrude downward (opposite to the gel holding part 50). As a result, tension is applied to the transfer film 1, and the transfer film 1 can be brought into close contact with the first opening 50a. Thereby, transfer from the electrophoresis gel 52 to the transfer film 1 can be performed more suitably.
  • the guides 33 and 34 are formed on the bottom of the anode buffer tank 30 at positions facing the first opening 50a in pairs, so that the guides disposed on both sides of the gel holding unit 50 are formed.
  • the transfer film 1 is supported by 33 and 34, and the gel holding part 50 is pressed down and bent so as to protrude downward (to the side opposite to the separation part).
  • a uniform tension is applied to the transfer film 1, and the transfer film 1 can be evenly adhered to the first opening 50a.
  • transfer from the electrophoresis gel 52 to the transfer film 1 can be performed more suitably.
  • the clamp frame 22 is disposed at a position sandwiching the transfer film 1 from the side in the movement direction, so that the guides 33 and 34 do not prevent the transfer film 1 from being supported from the back surface.
  • the control unit 68 controls the motor 62 to set the position of the transfer film 1 as a start position, and allows current to flow between the anode 32 and the cathode 41 to start electrophoresis.
  • the value of the current that flows between the anode 32 and the cathode 41 is not particularly limited, but is preferably 50 mA or less, and more preferably 20 mA or more and 30 mA or less.
  • the current value may be controlled to be constant, the voltage may be controlled to be constant, or the current / voltage may be controlled in other manners.
  • the transfer film 1 is gradually moved in the X direction (substantially horizontal direction) by driving the arm unit (adjuster) by the driving unit in accordance with the progress of electrophoresis in the gel holding unit 50.
  • the X direction is a direction orthogonal to the longitudinal direction of the first opening 50a.
  • the moving speed of the transfer film 1 is not particularly limited, but can be a pace that moves 5 to 10 cm in 60 to 120 minutes, for example.
  • the position of the sample discharged by electrophoresis (separated in the electrophoresis gel 52) from the first opening 50a according to the discharge timing in the transfer film 1 (the first opening at the discharge timing). Adsorbed at the position facing 50a). As a result, the separated sample is transferred to the transfer film 1.
  • the transfer membrane 1 can be collected and used for staining or immune reaction (blocking and antigen-antibody reaction in Western blotting). Thereafter, a separation pattern of components transferred to the transfer film 1 is detected by a fluorescence detector or the like.
  • a fluorescence detector may be incorporated in the electrophoretic device 100, which can automate all the steps of electrophoresis, transfer, and detection.
  • the electrophoresis gel (5, 52) according to Embodiment 1 of the present invention is a polyacrylamide gel having a pH greater than 7.0 and not greater than 8.0.
  • the moving speed of the sample in the electrophoresis gel can be improved.
  • the electrophoresis gel according to aspect 2 of the present invention is the above-described aspect 1, wherein the polyacrylamide gel may contain an acrylamide cross-linking agent that is less than 2.4% by weight of acrylamide contained in the polyacrylamide gel. .
  • the electrophoresis gel which concerns on aspect 3 of this invention consists of polyacrylamide gel, Even if the said polyacrylamide gel contains the acrylamide crosslinking agent of less than 2.4 weight% of the acrylamide contained in the said polyacrylamide gel. Good.
  • the moving speed of the sample in the electrophoresis gel can be further improved.
  • This effect is particularly remarkable when the cathode buffer used for electrophoresis contains a leading ion selected from the group consisting of tris and bicine.
  • the polyacrylamide gel may contain bis (2-hydroxyethyl) -amino-tris (hydroxymethyl) methane.
  • electrophoresis can be suitably performed.
  • the electrophoresis kit according to aspect 5 of the present invention includes the electrophoresis gel according to aspects 1 to 4, a cathode buffer, and an anode buffer.
  • electrophoresis can be suitably performed.
  • the cathode buffer may contain a leading ion selected from the group consisting of tris and bicine.
  • low molecules contained in the sample can also be suitably separated.
  • the electrophoresis kit according to aspect 7 of the present invention is the above-described aspect 5 or 6, wherein the cathode buffer includes bis (2-hydroxyethyl) -amino-tris (hydroxymethyl) methane and 3 (N-morpholino) propanesulfone. And a trailing ion selected from the group consisting of an acid and 2 (N-morpholino) ethanesulfonic acid.
  • electrophoresis can be suitably performed.
  • the electrophoresis apparatus (10, 100) according to Aspect 8 of the present invention includes the electrophoresis kit according to Aspects 5 to 7, and the cathode buffer tank (13, 41) in which the cathode buffer is stored and the cathode (16, 41) is disposed. 40), the anode buffer tank (14, 30) in which the anode buffer is stored and the anodes (15, 32) are arranged, and the electrophoresis gel, one end of which contacts the cathode buffer, And a gel holding part for holding the one end so as to be in contact with the anode buffer.
  • electrophoresis can be suitably performed.
  • the electrophoresis device according to Aspect 9 of the present invention is separated in the electrophoresis gel in Aspect 8 by moving the transfer film (1) while facing the other end of the electrophoresis gel.
  • the transfer part (adjuster 2 (clamps 20 and 21 and clamp frame 22), the carrier 23, the motor 62, the ball screw 63, the guide shaft 64, and the shaft holder that transfers the sample discharged from the other end to the transfer film. 65, a guide pole 66, and a control unit 68).
  • the discharge transfer type electrophoresis it is possible to perform discharge transfer type electrophoresis by providing a transfer portion.
  • the discharge transfer type electrophoresis since it is necessary to perform electrophoresis to the tip of the electrophoresis gel, it is very important to improve the electrophoresis speed of the polymer.
  • the discharge transfer type electrophoresis since the electrophoresis speed of the polymer can be improved, the discharge transfer type electrophoresis can be suitably performed.
  • the electrophoresis method according to aspect 10 of the present invention includes a separation step of separating a sample by electrophoresis using a polyacrylamide gel having a pH greater than 7.0 and less than or equal to 8.0.
  • the moving speed of the sample in the electrophoresis gel can be improved.
  • Test 1 A plurality of 1% C polyacrylamide gels having a pH changed in the range of 6.0 to 8.0 were prepared, and electrophoresis was performed under the same conditions. The effect of gel pH differences on electrophoresis was tested.
  • the polyacrylamide gel was prepared in a mini gel size of 70 mm in length and 1 mm in thickness.
  • Bis-Tris buffer was used as the gel buffer. The final concentration of Bis-Tris was 375 mM.
  • As the polymerization accelerator ammonium persulfate (APS) and N, N′-tetramethylenediamine (TEMED) were used.
  • APS ammonium persulfate
  • TEMED N, N′-tetramethylenediamine
  • Bisacrylamide was used as the acrylamide cross-linking agent.
  • the separation gel had an acrylamide concentration of 10% T, and the concentrated gel had an acrylamide concentration of 4-5% T.
  • anode buffer and a cathode buffer 50 mM Bis-Tris ⁇ HCl, 50 mM MOPS, 0.15% SDS aqueous solution was used. Electrophoresis was performed at a constant current of 40 mA for 30 minutes. As a sample, a commercially available colored molecular weight marker (Precision Protein 2 color standard, manufactured by Biorad Laboratories) was used.
  • the polyacrylamide gel becomes high resistance and generates heat, so the resolution of the band generated by loading the sample is deteriorated, but the moving speed of the sample is fast. It was confirmed.
  • a plurality of types of polyacrylamide gels were prepared and subjected to electrophoresis under the same conditions except for the composition of the electrophoresis buffer, and the results were compared.
  • the composition of the running buffer is 50 mM Bis-Tris ⁇ HCl, 50 mM MOPS, 50 mM Tris, 50 mM bicine, 0.15% SDS running buffer A, or 50 mM Bis-Tris ⁇ HCl, 50 mM MOPS, 0.15% SDS.
  • Running buffer B was used.
  • FIGS. 5A to 5D show 2.6% when 1% C polyacrylamide gel and running buffer A are used, and 1% C polyacrylamide gel and running buffer B are used, respectively. It is a photograph which shows the electrophoresis result when 2.6% C polyacrylamide gel and electrophoresis buffer B are used when C polyacrylamide gel and electrophoresis buffer A are used. The pH of the polyacrylamide gel was 7.3 for all. Other conditions were the same as in Test 1.
  • the electrophoresis buffer A is used ((a) and (c) of FIG. 5), and the electrophoresis buffer B is used (FIG. 5).
  • B) and (d)) were able to detect a low molecular weight protein marker (10 kDa) that could not be detected.
  • electrophoresis buffer A When electrophoresis buffer A is used, bicine and tris contained in electrophoresis buffer A function as (i) leading ions, (ii) pH of polyacrylamide is higher than 7.0, and 8.0. Unlike the case where only HCl ions act as leading ions by moving faster than HCl ions under the following conditions (when electrophoresis buffer B is used), the pH of polyacrylamide is greater than 7.0, Even in the case of 8.0 or less, it shows that a low molecular weight protein marker such as 10 kDa can be suitably separated.
  • FIG. 6 is a graph showing the movement distance in the polyacrylamide gel of protein markers of various molecular weights contained in the sample.
  • 6A shows the case where the electrophoresis buffer A is used
  • FIG. 6B shows the case where the electrophoresis buffer B is used.
  • the vertical axis of each graph indicates the molecular weight of each protein marker
  • the horizontal axis indicates the movement distance (relative degree) of each protein marker after electrophoresis.
  • Each graph shows a case where 1% C polyacrylamide gel is used and a case where 2.6% C polyacrylamide gel is used.
  • FIG. 7 are photographs showing the results of electrophoresis when using polyacrylamide gels with% C of 2.6, 1, 0.5, and 0.2, respectively.
  • the moving speed of the sample is improved. It was. In particular, the migration rate of medium to high molecular weight protein markers of 25 kDa or more contained in the sample was improved. Almost no change was observed in the migration speed of the protein marker of less than 25 kDa. In the discharge transfer type electrophoresis, it was confirmed in this test that the middle molecular weight to high molecular weight protein marker was discharged quickly, and that the problem could be solved by lowering% C.
  • the present invention can be used for biomolecule analysis technology.
  • Electrophoresis device 20 Clamp (transfer part, transfer film holding part) 21 Clamp (transfer part, transfer film holding part) 20a / 21a elastic body 20b / 21b pressing member 22 clamp frame (transfer part, transfer film holding part) 23 Carrier (transfer section, drive mechanism) 30 Anode buffer tank 31 Table 32 Anode 33/34 Guide 40 Cathode buffer tank 41 Cathode 42 Lock 50 Gel holding part 50a First opening (discharge part) 50b Second opening 51/53 Insulating plate 52 Electrophoresis gel 62 Motor (transfer section, drive mechanism) 63 Ball screw (transfer section, drive mechanism) 64 Guide shaft (transfer section, drive mechanism) 65 Shaft holder (transfer section, drive mechanism) 66 Guide pole (transfer section, drive mechanism) 68 Control unit (transfer unit, drive mechanism) 100 Electrophoresis device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

pHが7.0より大きく8.0以下であるポリアクリルアミドゲルからなる、電気泳動ゲル。pHが7.0より大きく8.0以下であるポリアクリルアミドゲルを用いた電気泳動によりサンプルを分離する分離工程を包含する、電気泳動方法。

Description

電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法
 本発明は、電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法に関する。
 ヒトゲノムプロジェクトの終了後、今日まで、様々な疾患と生体高分子の関係性が明らかになりつつある。特に、生体高分子の一つであるタンパク質は生体の細胞、器官、および臓器の機能に直接関与しており、アミノ酸配列および立体構造の相違、糖鎖およびリン酸化などの化学的修飾などによって多くの疾患を引き起こす可能性があることが明らかになり始めている。
 このような状況の中、多くのプロテオーム解析が行われている。プロテオームとは、特定の細胞、器官、および臓器の中で翻訳生産されているタンパク質全体のことを意味しており、その解析としては、タンパク質のプロファイリングおよび機能解析などが挙げられる。中でも、タンパク質の翻訳後生体内で合成されたタンパク質はリン酸化などの翻訳後修飾によって、タンパク質の機能の制御を行っていることが知られており、タンパク質の化学的修飾に関する情報の入手は、今後のプロテオーム解析において重要事項の一つとなりうる。そのため、タンパク質が複数混在する試料を、高精度で分離および検出する方法が重要視され、そのための装置の開発が進められている。
 現在、有益なタンパク質の分離手法としては、ゲル電気泳動、キャピラリー電気泳動、および液体クロマトグラフィーなどがあるが、その簡易性および分離能の高さからゲル電気泳動が一般的に広く利用されている。
 特許文献1には、2つの端部を有する電気泳動ゲルを含む、ゲル電気泳動のためのシステムであって、前記ゲルは、中性ゲルバッファーを含むポリアクリルアミドゲルであり、ゲルの一端がアノードバッファー溶液と接触し、他端が、カソードバッファー溶液と接触し、前記ゲルバッファー溶液が、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)を含み、前記カソードバッファーが、3-(N-モルホリノ)プロパンスルホン酸(MOP)または、2-(N-モルホリノ)エタンスルホン酸(MES)を含み、かつ、前記電気泳動ゲルは、プレキャストであって貯蔵に適合する、システムが記載されている。
日本国公開特許公報「特開2007-263976号公報(2007年10月11日公開)」
 ゲル電気泳動において、電気泳動ゲル中のサンプルの移動速度を向上させることは、電気泳動に掛かる時間を短縮することができるため、好ましい。特に、後述する排出転写方式の電気泳動に使用する電気泳動ゲルにおいて、高分子サンプルの移動速度を向上させるための技術は、非常に有用である。
 本発明は、上記課題に鑑みてなされたものであり、電気泳動ゲル中のサンプルの移動速度を向上させるための新規な技術を提供することを主たる目的とする。
 本発明の一態様に係る電気泳動ゲルは、pHが7.0より大きく8.0以下であるポリアクリルアミドゲルからなる。
 本発明の一態様に係る電気泳動方法は、pHが7.0より大きく8.0以下であるポリアクリルアミドゲルを用いた電気泳動によりサンプルを分離する分離工程を包含する。
 本発明の一態様によれば、電気泳動ゲル中のサンプルの移動速度を向上させることができる。
本発明の一実施形態に係る電気泳動装置の概略構成を模式的に示す側方断面図である。 本発明の一実施形態に係る電気泳動装置の概略構成を模式的に示す側方断面図である。 実施例における電気泳動結果の写真を示す図である。 実施例における電気泳動結果の写真を示す図である。 実施例における電気泳動結果の写真を示す図である。 実施例における電気泳動結果のグラフを示す図である。 実施例における電気泳動結果の写真を示す図である。
 〔実施形態1〕
 (電気泳動ゲル)
 一実施形態において、本発明は、電気泳動ゲルを提供する。本明細書において、「電気泳動ゲル」とは、ゲル電気泳動において用いられるゲルを指す。
 一実施形態において、本発明に係る電気泳動ゲルは、ポリアクリルアミドゲルからなり、当該ポリアクリルアミドゲルのpHは、例えば、6.0以上8.8以下であり得るが、7.0より大きく8.0以下であることがより好ましく、7.0より大きく7.7以下であることがさらに好ましく、7.0より大きく7.5以下であることが特に好ましい。あるいは、7.2より大きく8.0以下、7.2より大きく7.7以下、7.2より大きく7.5以下であってもよい。なお、一つの局面において、電気泳動ゲルまたはポリアクリルアミドゲルのpHは、電気泳動ゲルに含まれるゲルバッファーのpHであり得る。ポリアクリルアミドゲルのpHが上記の条件を満たすことにより、電気泳動ゲル中のサンプルの移動速度を向上させることができる。
 また、上記ポリアクリルアミドゲルの%Tは、例えば、5.0%T以上20.0%T以下であり得るが、6.5%T以上12.5%T以下であることがより好ましい。なお、本明細書において「%T」とは、ポリアクリルアミドゲルに含有されるアクリルアミドの含有量(g/mL)を示す。なお、電気泳動ゲルは、サンプルを分離するための分離ゲルとサンプルを濃縮するための濃縮ゲルとからなる構造を有していてもよく、この場合、濃縮ゲルの%Tは、分離ゲルの%Tよりも小さくすることが好ましい。
 また、上記ポリアクリルアミドゲルの%Cは、例えば、2.6%C以下であり得るが、2.4%C未満であることがより好ましく、2.2%C未満、2.0%C未満、1.5%C以下、1.0%C以下、または、0.5%C以下であることが特に好ましい。また、上記ポリアクリルアミドゲルの%Cの下限は、特に限定されないが、例えば、0.1%Cまたは0.2%Cであり得る。ポリアクリルアミドゲルの%Cが、上記の条件を満たすことにより、電気泳動ゲル中のサンプルの移動速度をより向上させることができる。これは、後述するように、陰極バッファーが、リーディングイオンとしてトリスおよびビシンからなる群より選択されるリーディングイオンを含有している場合に顕著となる。
 なお、本明細書において「%C」とは、ポリアクリルアミドゲルに含有されるアクリルアミド中のアクリルアミド架橋剤の含有量(g/g)を示す。すなわち、2.4%C未満のポリアクリルアミドゲルは、当該ポリアクリルアミドゲルに含有されるアクリルアミドの2.4重量%未満のアクリルアミド架橋剤を含有しているといえる。
 一実施形態において、このような電気泳動ゲルは、pHが調整されたゲルバッファーに、アクリルアミドモノマーおよびアクリルアミド架橋剤を加えてゲル溶液を調製し、当該ゲル溶液をゲル作製用の容器に注入してからアクリルアミドモノマーとアクリルアミド架橋剤とを重合させることによって作製することができる。アクリルアミドモノマーとアクリルアミド架橋剤との重合のために、ゲル溶液には、適宜、重合促進剤を添加してもよい。
 ゲルバッファーは、緩衝剤を含有する電解液であれば特に限定されないが、例えば、Bis-Tris(ビス(2-ヒドロキシエチル)-アミノ-トリス(ヒドロキシメチル)メタン)、MOPS(3(N-モルホリノ)プロパンスルホン酸)、HEPES(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸)等の電気泳動ゲルに用いられる公知の緩衝剤を含有していることが好ましく、Bis-Trisを含有していることが特に好ましい。ゲルバッファーがBis-Trisを含有していることにより、7.0より大きく、8.0以下の範囲に好適に緩衝領域を有することができる。なお、ゲルバッファーのpHは、適切な酸、例えば塩酸、硫酸、酢酸、ホウ酸、リン酸、及びグリコール酸等を用いて所望の範囲に調整することができる。
 アクリルアミド架橋剤とは、アクリルアミドモノマーと反応してアクリルアミドモノマーの重合の過程で架橋を形成する分子である。アクリルアミド架橋剤としては、公知のアクリルアミド架橋剤であればよく、例えば、N,N’-メチレン-ビス-アクリルアミド(ビスアクリルアミド)、エチレンジアクリラート(ED)、ジアリル-酒石酸ジアミド(DATD)、及びジヒロドキシエチレン-ビスアクリルアミド(DHEBA)が挙げられ、ビスアクリルアミドであることがより好ましい。なお、ゲルバッファーに添加するアクリルアミドモノマーおよびアクリルアミド架橋剤の量は、上述した%Tおよび%Cに適合するように調整すればよい。
 重合促進剤としては、これに限定するものではないが、例えば、過硫酸アンモニウム(APS)、N,N’-テトラメチレンジアミン(TEMED)、リボフラビン、及びβ-ジメチルアミノプロピオニトリルが挙げられ、特に、APSとTEMEDとの組み合わせが好適に用いられる。重合促進剤は、例えば、電気泳動ゲルの使用直前にゲル溶液に添加されることが好ましい。
 また、ゲル溶液には、さらなる試薬または添加剤を加えてもよい。ゲル作製用の容器としては、特に限定されないが、例えば、図1に示すような、スペーサーを介して重ね合わされた絶縁板11・12を用いることができる。また、サンプルをロードするウェルを形成するためのコームを使用してもよい。容器のサイズは、分離するサンプルの種類、量等に応じたサイズを有するものを適宜用いることができる。
 また、一実施形態において、電気泳動ゲルを用いた電気泳動方法では、当該電気泳動ゲルの特定の位置(例えば、一方の端部)にサンプルをロードし、当該電気泳動ゲルを挟んで電圧を印加することにより、サンプルに含まれる生体分子(例えば、タンパク質)を、各々の分子量、電荷又はその両方により異なる移動率で当該電気泳動ゲル内を移動(電気泳動)させることにより(分離工程)、各生体分子を電気泳動ゲル中の移動経路上の異なる位置にバンド状に分離することができる。
 分離対象のサンプルは、特に限定されないが、例えば、生物材料(例えば、生物個体、体液、細胞株、組織培養物、もしくは組織断片)からの調製物、又は、生体分子を含む市販の試薬などが挙げられ、特に、タンパク質または核酸を含有するものであり得る。
 電気泳動ゲルに電圧を印加する方法は特に限定されないが、例えば、泳動バッファー(陰極バッファーおよび陽極バッファー)を用い、電気泳動ゲルの一方の端部を陰極バッファーに接触させ、電気泳動ゲルの他方の端部を陽極バッファーに接触させ、陰極バッファー内に配置した陰極と、陽極バッファー内に配置した陽極との間に電圧を印加することにより、電気泳動ゲルに電圧を印加することができる。
 泳動バッファーは、緩衝剤を含有する電解液であればよく、陰極バッファーと陽極バッファーとで同一または異なる組成を有し得る。泳動バッファーに含まれ得る緩衝剤としては、例えば、Bis-Tris、MOPS、MES(2(N-モルホリノ)エタンスルホン酸)、HEPES、Tris/グリシン、酢酸、炭酸ナトリウム、CAPS、Tris/ホウ酸/EDTA、Tris/酢酸/EDTA、MOPS、リン酸、Tris/トリシン等の電気泳動ゲルに用いられる公知の緩衝剤が挙げられ、特に、Bis-Trisを含有していることが好ましい。また、泳動バッファーは、SDS等の界面活性剤を含んでいてもよい。
 また、泳動バッファーは、さらに、リーディングイオンおよびトレーリングイオンを含み得る。リーディングイオンとは、電気泳動中に、電気泳動ゲル中を最も速く移動する物質であり、この移動速度が遅いと、低分子の分離が困難になる。トレーリングイオンとは、電気泳動中に、サンプルの後ろを流れる物質である。なお、リーディングイオンおよびトレーリングイオンは、電気泳動中にサンプルとともに電気泳動されることにより機能するものであり、陰極バッファーのみに含まれていればよく、陽極バッファーには含まれていなくともよい。
 リーディングイオンとしては、例えば、HCl等の公知のリーディングイオンを用いてもよいが、好ましくは、トリスおよびビシンからなる群より選択されるリーディングイオンを用いることにより、ポリアクリルアミドゲルのpHが7.0より大きく、8.0以下である場合において、低分子量のサンプルを好適に分離することができる。
 トレーリングイオンとしては、例えば、MOPS、MES、グリシン等の公知のトレーリングイオンを用いることができるが、MOPSおよびMESからなる群より選択されるトレーリングイオンを用いることがより好ましい。
 (電気泳動キット)
 このように、本発明は、一実施形態において、電気泳動のための電気泳動キットを提供する。電気泳動キットは、電気泳動ゲル、陰極バッファーおよび陽極バッファーを含み得る。電気泳動キットは、さらに、電気泳動に用いるその他の器具および試薬、ならびに、説明書等の文書、または、当該文書が収められた記録媒体等を含んでいてもよい。また、一実施形態において、電気泳動キットは、次に説明する電気泳動装置に組み込まれ得る。
 (電気泳動装置)
 一実施形態において、上述した電気泳動ゲルおよび電気泳動キットは、電気泳動装置に組み込んでもよい。一実施形態において、本発明に係る電気泳動装置は、上述した電気泳動キットと、陰極バッファーを溜め、陰極が配置される陰極バッファー槽と、陽極バッファーを溜め、陽極が配置される陽極バッファー槽と、電気泳動ゲルを、その一方の端部が陰極バッファーに接触し、その他方の端部が陽極バッファーに接触するように保持するゲル保持部と、を備えている電気泳動装置であり得る。
 図1は、本発明の一実施形態に係る電気泳動装置の概略構成の一例を示す側方断面図である。図1に示すように、電気泳動装置10は、電気泳動ゲル5、絶縁板(ゲル保持部)11・12、陰極バッファー槽13および陽極バッファー槽14、陽極15および陰極16を備えている。
 陰極バッファー槽13は、陰極バッファーを溜め、陰極16が配置されるようになっている。陽極バッファー槽14は、陽極バッファーを溜め、陽極15が配置されるようになっている。絶縁板11・12は、上端が陰極バッファー槽13内において開口し、下端が陽極バッファー槽14内において開口することによって、電気泳動ゲル5を、その一方の端部が陰極バッファーに接触し、その他方の端部が陽極バッファーに接触するように保持するようになっている。
 陽極15及び陰極16は、金属などの導電性を有する材料から形成される。陽極15及び陰極16を形成する材料としては、例えば電極のイオン化を抑制する観点から白金が好ましい。
 そして、電気泳動ゲル5の上端から、サンプルを電気泳動ゲル5にロード(導入)し、陽極15と陰極16との間に電流を流すことによって、電気泳動によりサンプルを分離することができる。なお、サンプルには、分析対象となる生体分子の他、電気泳動の進行状態を確認するための可視分子量マーカーを加えることが好ましい。また、陽極15と陰極16との間に流す電流値としては、特に限定されないが、50mA以下であることが好ましく、20mA以上、30mA以下であることがより好ましい。なお、電流値が一定になるように制御してもよいし、電圧が一定になるように制御してもよいし、その他の態様で電流・電圧を制御してもよい。
 電気泳動後、サンプルが分離された電気泳動ゲル5は、電気泳動装置10から取り外し、生体分子を分析するためのその後の処理(例えば、転写膜への転写および染色もしくは免疫反応、または、ゲルの切り出しおよび目的タンパク質の回収など)に供することができる。
 〔実施形態2〕
 本発明の他の実施形態(実施形態2)について、図面に基づいて説明すれば以下のとおりである。
 本発明は、実施形態1において説明した態様で電気泳動を行う構成に限定されず、ゲル電気泳動がなされる限り種々の構成に適用することができる。例えば、一実施形態において、本発明は、電気泳動によってサンプルを分離し、分離したサンプルを陽極バッファー槽内の排出部から排出し、転写膜を排出部に当接させて移動させることによって分離したサンプルを該転写膜に転写する電気泳動(以降、「排出転写方式の電気泳動」と称する。)に適用することができる。
 一実施形態において、排出転写方式の電気泳動は、転写膜を、電気泳動ゲルの陽極バッファー槽内の端部に対向させながら移動させることによって、電気泳動ゲルにおいて分離され、電気泳動ゲルの陽極バッファー槽内の端部から排出されるサンプルを、当該転写膜に転写する転写部を備えた電気泳動装置を用いることにより、実施することができる。
 このような転写部は、これに限定するものではないが、例えば、転写膜を電気泳動ゲルの陽極バッファー槽内の端部に対向させた状態で保持する転写膜保持部と、当該転写膜保持部を移動させる駆動機構とによって実現することができる。また、転写膜を、電気泳動ゲルの陽極バッファー槽内の端部に対向させながら移動させるローラー式の紙送り機構によって実現してもよい。
 ここで、排出転写方式の電気泳動では、一般的な電気泳動に比べて、高分子の電気泳動速度をより向上させる必要がある。なぜなら、一般的な電気泳動では、各サンプル内の生体分子は、電気泳動ゲルの先端まで泳動する必要はなく、特に、高分子は、電気泳動後でも、電気泳動ゲルの後部側に留まっていることが多い。しかしながら、排出転写方式の電気泳動では、高分子を含むサンプル内の全ての生体分子を電気泳動ゲルの先端から排出させる必要がある。そのため、電気泳動に掛かる時間が長大化するおそれがあり、それゆえに、排出転写方式の電気泳動において、高分子の電気泳動速度を向上することは非常に重要である。本発明に係る電気泳動ゲルによれば、高分子の電気泳動速度についても向上させることができるため、排出転写方式の電気泳動に好適に適用することができる。
 図2は、本発明の一実施形態に係る電気泳動装置の概略構成の他の例を示す側方断面図である。図2に示すように、電気泳動装置100は、電気泳動によってサンプルを分離し、分離した該サンプルを排出部から排出し、転写膜を該排出部に当接させて移動させることによって分離した該サンプルを該転写膜に転写する排出転写方式の電気泳動を行う電気泳動装置であり、クランプ(転写部、転写膜保持部)20、クランプ(転写部、転写膜保持部)21、クランプフレーム(転写部、転写膜保持部)22、キャリア(転写部、駆動機構)23、陽極バッファー槽30、テーブル31、陰極バッファー槽40、ゲル保持部50、モータ(転写部、駆動機構)62、ボールネジ(転写部、駆動機構)63、ガイドシャフト(転写部、駆動機構)64、シャフトホルダ(転写部、駆動機構)65、ガイドポール(転写部、駆動機構)66、並びに制御部(転写部、駆動機構)68を備えている。また、説明のために図示していないが、安全のため、動作時に全体を覆う蓋をさらに備えている。
 ここで、ゲル保持部50は、電気泳動ゲル52を収納しており、陽極バッファー槽30内に開口する第一開口(排出部)50a及び陰極バッファー槽40内に開口する第二開口50bを有している。また、陽極バッファー槽30内には、転写膜1が第一開口50aに対向するように配置されている。また、陽極バッファー槽30内には陽極32が配置されており、陰極バッファー槽40内には陰極41が配置されている。
 このため、電気泳動装置100では、陰極バッファー槽40に陰極バッファーを、陽極バッファー槽30に陽極バッファーをそれぞれ満たすことによって、陰極バッファー槽40内の陰極41と陽極バッファー槽30内の陽極32とが、2つの槽における泳動バッファー、電気泳動ゲル52、及び転写膜1を介して電気的に接続される。すなわち、電気泳動装置100は、陰極41と陽極32との間に電圧を印加することによって、第二開口50bから導入されたサンプルを電気泳動ゲル52によって分離し、分離された各成分を第一開口50aから排出させて転写膜1に吸着させる装置である。
 (陽極及び陰極)
 陽極32は陽極バッファー槽30内に配置されており、陰極41は陰極バッファー槽40内に配置されている。これらの電極配置に関しては、陽極32は陽極バッファー槽30内に配置されており、陰極41は陰極バッファー槽40内に配置されていればよく、特に限定されないが、例えば、陰極41、第一開口50a、及び陽極32が、略一直線上に配置されていてもよい。このような配置において図2に示すように転写膜1が配置されれば、第一開口50aを通る電気力線は転写膜1に対して略垂直になるため、サンプルの吸着の精度を向上し得る。
 また、陽極32は、転写膜1から離して配置することが好ましい。これによって、陽極32から発生する気泡が、転写膜1に対する分離成分の吸着に悪影響を及ぼすことを抑制することができる。
 陽極32及び陰極41は、例えば、制御部68に接続して使用してもよいし、外部のパワーサプライ(直流電源装置)に接続して使用してもよい。外部のパワーサプライに接続して使用する場合、当該パワーサプライに時間、電流及び電圧をセットした後、パワーサプライの動作開始と同時に、制御部68を操作して電気泳動装置100を動作開始させればよい。
 (陽極バッファー槽及び陰極バッファー槽)
 陽極バッファー槽30及び陰極バッファー槽40は、泳動バッファーを滞留させる絶縁性の容器である。陰極バッファー槽40は、陽極バッファー槽30に対して上方に設けられている。なお、本実施形態では、陽極バッファー槽30はテーブル31上に固定されており、陰極バッファー槽40は陽極バッファー槽30に固定されているが、本発明はこの構成には限定されない。
 また、詳細は後述するが、陽極バッファー槽30の底部には、転写膜1の移動経路中において、転写膜1を、転写膜1の裏面から支持するガイド33・34が設けられている。
 (ゲル保持部)
 ゲル保持部50は、その内部に電気泳動ゲル52を収納している。本実施形態において、ゲル保持部50は、略垂直方向に起立しており、その下部は陽極バッファー槽30内に配置され、その上部は片面が陰極バッファー槽40に接するように配置されている。これにより、電気泳動ゲル52は、陽極バッファー槽30内の陽極バッファー及び陰極バッファー槽40内の陰極バッファーの少なくとも一方によって水冷され、十分に冷却することができる。
 また、ゲル保持部50は、陽極バッファー槽30内に開口する第一開口50a及び陰極バッファー槽40内に開口する第二開口50bを有する。これにより、電気泳動ゲル52は、第一開口50aを介して陽極バッファー槽30内に面し、第二開口50bを介して陰極バッファー槽40内に面するようになっている。なお、本実施形態では、ゲル保持部50は、陰極バッファー槽40に設けられたロック42によって、陰極バッファー槽40に固定されているが、本発明はこの構成には限定されない。
 ゲル保持部50は、ガラス又はアクリルなどの絶縁体から形成された2枚の絶縁板51・53から構成され得る。一実施形態において、ゲル保持部50は、第二開口50bにおいて絶縁板53の一部が欠けることによって、電気泳動ゲル52を露出させており、これによって、電気泳動ゲル52に対してサンプルを容易に導入することができる。
 また、ゲル保持部50の第一開口50aは、その周囲を含めて、導電性の多孔質材料(例えば、親水性PVDF(Polyvinylidene difluoride)膜、親水性PTFE(Polytetrafluoro ethylene)膜等)によって形成された被覆部によって覆われていてもよい。これによって、第一開口50aに転写膜1が接するあるいは押付けられている場合(第一開口50aと転写膜1の間に距離を設けない場合)において、転写膜1が搬送される時に転写膜1がゲル保持部50及び電気泳動ゲル52から受ける摩擦抵抗及び損傷を低減することができる。
 なお、ゲル保持部50が、略垂直方向に起立していることにより、ゲル保持部50が、略水平方向に設置されている構成に比べて、サンプル導入量を増大させることができる。なぜなら、水平型の電気泳動装置では、分離ゲルに設けるウェルの深さを変えることが困難であるが、垂直型の電気泳動装置では、ウェルの深さを容易に変えることができるため、サンプル導入量を容易に増大させることができるからである。
 (転写膜1)
 転写膜1は、電気泳動ゲル52によって分離されたサンプルを長期間にわたって安定に保存可能にし、さらに、その後の分析を容易にするサンプルの吸着・保持体であることが好ましい。転写膜1の材質としては、高い強度を有し、かつサンプル結合能(単位面積当たりに吸着可能な重量)が高いものが好ましい。転写膜1としては、サンプルがタンパク質である場合にはPVDF膜又はニトロセルロース膜などが適している。なお、PVDF膜は予めメタノールなどを用いて親水化処理を行っておくことが好ましい。これ以外には、ニトロセルロース膜又はナイロン膜など、従来からタンパク質、DNA及び核酸の吸着に利用されている膜も使用可能である。
 なお、電気泳動装置100において分離及び吸着され得るサンプルとしては、これらに限定されないが、生物材料(例えば、生物個体、体液、細胞株、組織培養物、もしくは組織断片)からの調製物、又は、市販の試薬などが挙げられる。例えば、ポリペプチド又はポリヌクレオチドが挙げられる。
 転写膜1は、陽極バッファー槽30内において陽極バッファーに浸漬された状態で使用される。
 本実施形態において、転写膜1は、1回の電気泳動・転写に使用される長さ、換言すれば、1回の電気泳動・転写において陽極バッファー槽30内を移動する距離の長さを有していればよい。転写膜1をこのように構成することにより、1回の電気泳動・転写毎に、転写膜1を切断する操作が不要となり、電気泳動装置100の使用性を向上させることができる。また、転写膜1の横幅は、電気泳動ゲル52の横幅に対応する長さとすればよい。
 (アジャスタ)
 本実施形態において、転写膜1は、アジャスタ(転写膜保持部)2によって、電気泳動ゲル52の陽極バッファー槽30内の端部に対向するように保持された状態で使用される。アジャスタ2は、クランプ20・21及びクランプフレーム22を備え、陽極バッファー槽30の側壁の内側に配置されている。
 クランプ20は、弾性体20aおよび押し付け部材20bを備えており、弾性体20aを転写膜1の裏面(第一開口50aに当接する面とは反対側の面)に当接させ、押し付け部材20bにより転写膜1の表面側から転写膜1を弾性体20aに押し付けることによって転写膜1を固定している。特に、押し付け部材20bは、転写膜1を弾性体20aに押し込むようになっていることが好ましい。
 同様に、クランプ21は、弾性体21aおよび押し付け部材21bを備えており、弾性体21aを転写膜1の裏面(第一開口50aに当接する面とは反対側の面)に当接させ、押し付け部材21bにより転写膜1の表面側から転写膜1を弾性体20aに押し付けることによって転写膜1を固定している。特に、押し付け部材21bは、転写膜1を弾性体21aに押し込むようになっていることが好ましい。
 ここで、アジャスタ2の機能について説明する。アジャスタ2は、転写膜1を保持する構造体であり、転写膜1の張力ができるだけ高い状態を維持するようになっていることが好ましい。なぜなら、転写膜1の張力が低い(転写膜が緩む)と、転写膜1をゲル保持部50の第一開口50aに当接させても、転写膜1を第一開口50aに密着させることが難しいからである。以下に説明するように、本実施形態に係るアジャスタ2は、転写膜1の張力を好適に維持するようになっており、転写膜1を容易に第一開口50aに密着させることができる。
 アジャスタ2によって転写膜1を保持している状態、すなわち、クランプ20・21によって転写膜1を固定している状態において、転写膜1がゲル保持部50の第一開口50aに当接すると、転写膜1が第一開口50aによって押し下げられ、クランプ20・21の固定位置の内側において、上記押し下げられた転写膜1によって、弾性体20a・21aが押し下げられる。このとき、弾性体20a・21aからの反発力が転写膜1に掛かるため、転写膜1の張力を維持することができる。これにより、転写膜1を第一開口50aに好適に密着させることができる。
 弾性体20a・21aの材料は、押し付け部材20b・21b及び転写膜1をめり込ませることができる柔らかさを有し、転写膜1を押し付け部材20b・21bと対になって固定することができる弾性体であれば特に限定されないが、例えば、シリコンスポンジ、ウレタンゴム、クロロプレンゴム、フッ素ゴム等のエラストマーを好適に用いることができる。
 クランプフレーム22は、クランプ20・21を連結する軸部材であり、クランプ20・21を所定距離離間して連結している。これにより、クランプ20・21によって転写膜1の両端部を固定したときに、転写膜1を、その移動方向に沿って緩み無く張ることができる。これにより、転写結果が転写膜1の緩みによりぶれることを抑制し、測定感度を向上させることができる。また、クランプ20の移動に伴って搬送される転写膜1に加えられる張力を一定にすることができる。従って、転写膜1に対してサンプルをムラなくより好適に転写することができる。
 クランプフレーム22は、転写膜1を移動方向側方から挟む位置に配置されており、これによって、転写膜1の表面(第一開口50aと対向する面)及び裏面(第一開口50aとは反対側の面)にクランプフレーム22が重なることを避けることができる。これによって、電気泳動ゲル52から転写膜1への転写や、転写膜1の裏面へ他部材の当接等(詳細については後述する)がクランプフレーム22によって阻害されることを防ぐことができる。また、クランプ20・21による転写膜1の固定も阻害しない。
 クランプフレーム22、クランプ20・21(弾性体20a・21aを除く)は、これに限定されないが、例えば、テフロン(登録商標)、アクリル樹脂、PEEK樹脂のような合成樹脂によって構成することができる。
 (アーム部)
 本実施形態において、アジャスタ2はアーム部に組み込まれている。アーム部は、転写膜1を、移動、及び、第一開口50aと当接させるものである。本実施形態において、アーム部は、連結された一連の部材であるアジャスタ2、キャリア23及びガイドポール66から構成される。
 ガイドポール66は、後述する駆動部(シャフトホルダ65)に連結し、陽極バッファー槽30の側壁の外側を通るように配置されている軸部材である。キャリア23は、ガイドポール66に連結し、陽極バッファー槽30の側壁の上端を回り込んで、クランプ20に連結している部材である。
 以上のように、アーム部は、駆動部に連結している位置から、陽極バッファー槽30の側壁の外側を通り、該側壁の上端を回り込んで、該側壁の内側につながっている。
 なお、本発明を限定するものではないが、本実施形態では、ガイドポール66は、陽極バッファー槽30の側壁の外側を、当該側壁の上端に並ぶ位置まで延伸している。そして、キャリア23は、ガイドポール66に嵌合し、陽極バッファー槽30の側壁の上端を跨いで当該側壁の内側に延伸している。
 このように構成することにより、キャリア23は、駆動部に対して容易に着脱することができる。ガイドポール66は、陽極バッファー槽30の側壁の外側に配置されており、必要に応じて行われる、陽極バッファー槽30の取り外し及び電極のセット等の各種操作の邪魔になることはない。そのため、キャリア23を適宜外すことにより、各種操作を首尾よく行うことができる。
 (駆動部)
 駆動部は、アーム部を略水平方向に駆動するものであり、本実施形態では、モータ62、ボールネジ63、ガイドシャフト64及びシャフトホルダ65によって構成されている。
 モータ62は、ボールネジ63を回転させる。モータ62は、回転数を変化可能なものを使用してもよいし、回転数が固定のものをギアと組み合わせて使用してもよい。ボールネジ63は、シャフトホルダ65を貫通すると共に、シャフトホルダ65に螺合している。ガイドシャフト64は、シャフトホルダ65を貫通しており、シャフトホルダ65は、ガイドシャフト64に沿って移動可能に構成されている。そして、モータ62がボールネジ63を回転させることにより、シャフトホルダ65が図中X方向(略水平方向)に駆動される。シャフトホルダ65は、アーム部(ガイドポール66)に連結しており、これによって、駆動部は、アーム部を、図中X方向(略水平方向)に駆動することができる。そして、アーム部は、転写膜1を保持しているため、転写膜1は、図中X方向(略水平方向)に移動する。
 但し、本発明はこれに限定されず、アーム部を略水平方向に駆動することができるものであれば、その他の駆動機構(例えば、ベルト、ギア等)によって駆動部を構成するようにしてもよい。
 また、駆動部は、陽極バッファー槽30下に設けられている。これによって、陽極バッファー槽30から飛散した緩衝液が駆動部の耐用性を低下させるおそれ、及び、駆動部が電気泳動装置100に対する各種操作の妨げになるおそれを防止することができる。
 (制御部)
 制御部68は、電気泳動装置100の各種制御(アーム部の位置の制御、陽極32及び陰極41に印加する電流・電圧の制御等)を行う制御盤である。制御部68は、ユーザからの入力を受けるためのボタン、スイッチや、動作状態をユーザに通知するためのランプ、表示部等を備えていてもよい。
 (サンプルの電気泳動及び転写)
 次に、電気泳動装置100におけるサンプルの電気泳動及び転写の流れについて、図2を参照して説明する。図2に示すように、サンプルの電気泳動及び転写時において、転写膜1は、アジャスタ2によって、第一開口50aに当接する位置に配置された状態で保持される。このとき、陽極バッファー槽30の底部に設けられたガイド33・34によって、転写膜1は、転写膜1の裏面(ゲル保持部50とは反対側)から支持されている。
 ガイド33・34は、陽極バッファー槽30の底部に、転写膜1が移動する移動経路中において転写膜を支持するように設けられている。ガイド33・34は、その長手方向が、転写膜1の移動方向(X方向)に直交しており、第一開口50aの長手方向と平行になっている。
 そして、ゲル保持部50(の第一開口50a側)が、転写膜1の表面(ゲル保持部50側)に当接することにより、転写膜1は、ゲル保持部50とは反対側が凸になるように折り曲げられている。このように、ガイド33・34によって転写膜1が支持され、ゲル保持部50がそれを押さえて、下に(ゲル保持部50とは反対側に)凸になるように折り曲げられる。これによって、転写膜1に張力が掛かり、転写膜1を第一開口50aにより密着させることができる。これにより電気泳動ゲル52から転写膜1への転写をより好適に行うことができる。
 特に、ガイド33・34が、陽極バッファー槽30の底部において第一開口50aに対向する位置を対になって挟む位置に夫々形成されていることにより、ゲル保持部50の両側に配置されたガイド33・34によって転写膜1が支持され、ゲル保持部50がそれを押さえて、下に(分離部とは反対側に)凸になるように折り曲げられる。これによって、転写膜1により均一に張力が掛かり、転写膜1を第一開口50aにより均一に密着させることができる。これにより電気泳動ゲル52から転写膜1への転写をより好適に行うことができる。
 なお、上述したように、クランプフレーム22は、転写膜1を移動方向側方から挟む位置に配置されているため、ガイド33・34が、転写膜1をその裏面から支持することを妨げない。
 そして、ゲル保持部50の第二開口50bから、サンプルを電気泳動ゲル52に導入する。以上の状態で、サンプルの電気泳動による分離を行う。制御部68は、モータ62を制御して、転写膜1の位置をスタート位置に設定し、陽極32と陰極41との間に電流を流し、電気泳動を開始する。陽極32と陰極41との間に流す電流値としては、特に限定されないが、50mA以下であることが好ましく、20mA以上、30mA以下であることがより好ましい。なお、電流値が一定になるように制御してもよいし、電圧が一定になるように制御してもよいし、その他の態様で電流・電圧を制御してもよい。
 転写膜1は、ゲル保持部50における電気泳動の進行に合わせて、駆動部によるアーム部(アジャスター)の駆動によりX方向(略水平方向)に向かって徐々に移動される。X方向は、第一開口50aの長手方向と直交する方向である。転写膜1の移動速度は、特に限定されないが、例えば、60~120分間に、5~10cm移動するペースとすることができる。
 そして、第一開口50aから、電気泳動によって排出されるサンプル(電気泳動ゲル52内で分離されたもの)が、転写膜1における排出されるタイミングに従った位置(排出されたタイミングにおいて第一開口50aに対向していた位置)に吸着される。これにより、転写膜1に分離されたサンプルが転写される。
 転写後、転写膜1を回収し、染色又は免疫反応(ウェスタンブロット法におけるブロッキング及び抗原抗体反応)などに供することができる。その後、蛍光検出器などによって、転写膜1に転写された成分の分離パターンが検出される。このような蛍光検出器は、電気泳動装置100に組み込まれていてもよく、これによって電気泳動、転写、及び検出の全工程を自動化することができる。
 〔まとめ〕
 本発明の態様1に係る電気泳動ゲル(5、52)は、pHが7.0より大きく8.0以下であるポリアクリルアミドゲルからなる。
 上記構成によれば、電気泳動ゲル中のサンプルの移動速度を向上させることができる。
 本発明の態様2に係る電気泳動ゲルは、上記態様1において、上記ポリアクリルアミドゲルは、当該ポリアクリルアミドゲルに含有されるアクリルアミドの2.4重量%未満のアクリルアミド架橋剤を含有していてもよい。
 本発明の態様3に係る電気泳動ゲルは、ポリアクリルアミドゲルからなり、上記ポリアクリルアミドゲルは、当該ポリアクリルアミドゲルに含有されるアクリルアミドの2.4重量%未満のアクリルアミド架橋剤を含有していてもよい。
 上記構成によれば、電気泳動ゲル中のサンプルの移動速度をより向上させることができる。この効果は、電気泳動のために用いる陰極バッファーが、トリスおよびビシンからなる群より選択されるリーディングイオンを含有している場合に特に顕著になる。
 本発明の態様4に係る電気泳動ゲルは、上記態様1~3において、上記ポリアクリルアミドゲルは、ビス(2-ヒドロキシエチル)-アミノ-トリス(ヒドロキシメチル)メタンを含有していてもよい。
 上記構成によれば、電気泳動を好適に行うことができる。
 本発明の態様5に係る電気泳動キットは、上記態様1~4の電気泳動ゲルと、陰極バッファーと、陽極バッファーとを備えている。
 上記構成によれば、電気泳動を好適に行うことができる。
 本発明の態様6に係る電気泳動キットは、上記態様5において、上記陰極バッファーは、トリスおよびビシンからなる群より選択されるリーディングイオンを含有していてもよい。
 上記構成によれば、サンプルに含まれる低分子についても好適に分離することができる。
 本発明の態様7に係る電気泳動キットは、上記態様5または6において、上記陰極バッファーは、ビス(2-ヒドロキシエチル)-アミノ-トリス(ヒドロキシメチル)メタンと、3(N-モルホリノ)プロパンスルホン酸および2(N-モルホリノ)エタンスルホン酸からなる群より選択されるトレーリングイオンとを含有していてもよい。
 上記構成によれば、電気泳動を好適に行うことができる。
 本発明の態様8に係る電気泳動装置(10、100)は、上記態様5~7の電気泳動キットと、上記陰極バッファーを溜め、陰極(16、41)が配置される陰極バッファー槽(13、40)と、上記陽極バッファーを溜め、陽極(15、32)が配置される陽極バッファー槽(14、30)と、上記電気泳動ゲルを、その一方の端部が上記陰極バッファーに接触し、その他方の端部が上記陽極バッファーに接触するように保持するゲル保持部と、を備えている。
 上記構成によれば、電気泳動を好適に行うことができる。
 本発明の態様9に係る電気泳動装置は、上記態様8において、転写膜(1)を、上記電気泳動ゲルの上記他方の端部に対向させながら移動させることによって、上記電気泳動ゲルにおいて分離され、当該他方の端部から排出されるサンプルを、当該転写膜に転写する転写部(アジャスタ2(クランプ20・21、クランプフレーム22)、キャリア23、モータ62、ボールネジ63、ガイドシャフト64、シャフトホルダ65、ガイドポール66、制御部68)を備えていてもよい。
 上記構成によれば、転写部を備えることにより排出転写方式の電気泳動を行うことができる。ここで、排出転写方式の電気泳動では、高分子についても電気泳動ゲルの先端まで電気泳動する必要があるため、高分子の電気泳動速度を向上させることは非常に重要である。本発明によれば、高分子の電気泳動速度についても向上させることができるため、排出転写方式の電気泳動を好適に行うことができる。
 本発明の態様10に係る電気泳動方法は、pHが7.0より大きく8.0以下であるポリアクリルアミドゲルを用いた電気泳動によりサンプルを分離する分離工程を包含する。
 上記構成によれば、電気泳動ゲル中のサンプルの移動速度を向上させることができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 (試験1)
 pHを6.0から8.0の範囲で変化させた複数の1%Cのポリアクリルアミドゲルを作製し、同一の条件で電気泳動を行うことにより、1%Cのポリアクリルアミドゲルにおいて、ポリアクリルアミドゲルのpHの違いが、電気泳動にどのような影響を及ぼすのかを試験した。
 ポリアクリルアミドゲルは、長さ70mm、厚さ1mmのミニゲルサイズで作製した。ゲルバッファーとしてはBis-Trisバッファーを用いた。Bis-Trisの終濃度は375mMとした。重合促進剤としては、過硫酸アンモニウム(APS)およびN,N’-テトラメチレンジアミン(TEMED)を用いた。アクリルアミド架橋剤としてはビスアクリルアミドを用いた。分離ゲルのアクリルアミド濃度は10%Tとし、濃縮ゲルのアクリルアミド濃度は4~5%Tとした。
 陽極バッファーおよび陰極バッファーとしては、50mM Bis-Tris・HCl,50mM MOPS,0.15%SDS水溶液を用いた。電気泳動は、40mA定電流で、30分間実施した。サンプルとして、市販の着色分子量マーカー(プレシジョンプロテイン2色スタンダード、バイオラッドラボラトリーズ社製)を用いた。
 図3の(a)~(j)は、それぞれ、pHが6.0、6.4、6.9、7.0、7.1、7.2、7.3、7.5、7.7、8.0のポリアクリルアミドゲルを用いたときの電気泳動結果を示す写真である。サンプルは、ポリアクリルアミドゲルの紙面上端部にロードされ、紙面下方に向かって電気泳動した。
 図3に示すように、ポリアクリルアミドのpHが7.0よりも大きく、8.0以下の場合(図3の(e)~(h))、ポリアクリルアミドのpHが7以下の場合(図3の(a)~(d))に比べて、サンプルの移動速度が顕著に向上していた。
 なお、pHが8.0のときは、ポリアクリルアミドゲルが高抵抗になり発熱するために、サンプルがロードされることにより生じるバンドの解像度が悪くなっているものの、サンプルの移動速度は速いことが確かめられた。
 (試験2)
 続いて、2.6%Cのポリアクリルアミドゲルを用いた場合にも、ポリアクリルアミドのpHが7.0よりも大きくすることで、サンプルの移動速度が顕著に向上するか否かを試験した。
 試験1と同様に、複数種類のポリアクリルアミドゲルを作製し、同一の条件で電気泳動を行い、結果を比較した。図4の(a)~(d)は、それぞれ、1%CかつpH7.3、1%CかつpH6.0、2.6%CかつpH7.3、2.6%CかつpH6.0のポリアクリルアミドゲルを用いたときの電気泳動結果を示す写真である。なお、ポリアクリルアミドゲルの%CおよびpH以外の条件は、試験1と同様とした。
 図4に示すように、ポリアクリルアミドゲルの%Cが1%C以外の場合でも、ポリアクリルアミドのpHが7.0よりも大きく、8.0以下の場合(図4の(a)、(c))、ポリアクリルアミドのpHが7以下の場合(図4の(b)、(d))に比べて、サンプルの移動速度が顕著に向上していた。
 (試験3)
 続いて、ポリアクリルアミドのpHが7.0よりも大きく、8.0以下の場合に、泳動バッファーの組成の違いが電気泳動にどのような影響を及ぼすのかを試験した。
 試験1と同様に、複数種類のポリアクリルアミドゲルを作製し、泳動バッファーの組成以外は同一の条件で電気泳動を行い、結果を比較した。泳動バッファーの組成としては、50mM Bis-Tris・HCl,50mM MOPS,50mM トリス,50mM ビシン,0.15% SDSの泳動バッファーA、または、50mM Bis-Tris・HCl,50mM MOPS,0.15% SDSの泳動バッファーBを用いた。
 図5の(a)~(d)は、それぞれ、1%Cのポリアクリルアミドゲルおよび泳動バッファーAを用いたとき、1%Cのポリアクリルアミドゲルおよび泳動バッファーBを用いたとき、2.6%Cのポリアクリルアミドゲルおよび泳動バッファーAを用いたとき、2.6%Cのポリアクリルアミドゲルおよび泳動バッファーBを用いたときの電気泳動結果を示す写真である。なお、ポリアクリルアミドゲルのpHは、いずれも7.3とした。その他の条件は、試験1と同様とした。
 図5に示すように、ポリアクリルアミドゲルの%Cがいずれの場合においても、泳動バッファーAを用いた場合(図5の(a)、(c))、泳動バッファーBを用いた場合(図5の(b)、(d))には検出できなかった低分子量のタンパク質マーカー(10kDa)を、検出することができた。
 これは、泳動バッファーAを用いた場合、泳動バッファーAに含まれているビシンおよびトリスが、(i)リーディングイオンとして働き、(ii)ポリアクリルアミドのpHが7.0よりも大きく、8.0以下の条件下において、HClイオンよりも速く移動することによって、HClイオンのみがリーディングイオンとして働く場合(泳動バッファーBを用いた場合)とは異なり、ポリアクリルアミドのpHが7.0よりも大きく、8.0以下の場合であっても、10kDaのような低分子量のタンパク質マーカーを好適に分離し得ることを示している。
 (試験4)
 続いて、ポリアクリルアミドのpHが7.0よりも大きく、8.0以下の場合に、ポリアクリルアミドゲルの%Cの違いおよび泳動バッファーの組成の違いが電気泳動にどのような影響を及ぼすのかをさらに詳細に試験した。
 具体的には、泳動バッファーAを用いた場合と、泳動バッファーBを用いた場合とについて、%Cが異なるポリアクリルアミドゲルを用いた場合に、電気泳動速度がどのように変化するのかを比較した。その他の条件は、試験1と同様とした。
 図6は、サンプルに含まれる各分子量のタンパク質マーカーのポリアクリルアミドゲル中の移動距離を示すグラフである。図6の(a)は、泳動バッファーAを用いた場合を示し、図6の(b)は、泳動バッファーBを用いた場合を示す。各グラフの縦軸は、各タンパク質マーカーの分子量を示し、横軸は各タンパク質マーカーの電気泳動後の移動距離(相対的度合い)を示す。各グラフには、1%Cのポリアクリルアミドゲルを用いた場合と、2.6%Cのポリアクリルアミドゲルを用いた場合とをそれぞれ示す。
 図6に示すように、泳動バッファーAを用いた場合、低分子量(10kDa)のサンプルを分離することができた。また、泳動バッファーAを用いた場合、より低い%C(1%C)のポリアクリルアミドゲルを用いることにより、よりサンプルの移動速度を向上させることができた。
 (試験5)
 続いて、ポリアクリルアミドのpHが7.0よりも大きく、8.0以下で、泳動バッファーAを用いた場合に、ポリアクリルアミドゲルの%Cの違いが電気泳動にどのような影響を及ぼすのかをさらに詳細に試験した。
 具体的には、泳動バッファーAを用いた場合について、%Cが異なるポリアクリルアミドゲルを用いた場合に、電気泳動速度がどのように変化するのかを比較した。なお、ポリアクリルアミドゲルのpHは、いずれも7.3とした。その他の条件は、試験1と同様とした。
 図7の(a)~(d)は、それぞれ、%Cが2.6、1、0.5、0.2のポリアクリルアミドゲルを用いたときの電気泳動結果を示す写真である。
 図7に示すように、ポリアクリルアミドゲルの%Cが2.6%C、1.0%C、0.5%C、0.2%Cと低くなるにつれて、サンプルの移動速度が向上していた。特に、サンプルに含まれる25kDa以上の中分子量~高分子分子量のタンパク質マーカーの移動速度が向上していた。25kDa未満のタンパク質マーカーの移動速度においては、殆ど変化が見られなかった。排出転写方式の電気泳動では、中分子量~高分子量のタンパク質マーカーを早く排出させることが課題であり、%Cを低くしていくことで当該課題を解決できることを本試験で確かめることができた。
 本発明は、生体分子の分析技術に利用することができる。
 1   転写膜
 2   アジャスタ(転写部、転写膜保持部)
 5   電気泳動ゲル
 10  電気泳動装置
 20  クランプ(転写部、転写膜保持部)
 21  クランプ(転写部、転写膜保持部)
  20a・21a 弾性体
  20b・21b 押し付け部材
 22  クランプフレーム(転写部、転写膜保持部)
 23  キャリア(転写部、駆動機構)
 30  陽極バッファー槽
 31  テーブル
 32  陽極
 33・34  ガイド
 40  陰極バッファー槽
 41  陰極
 42  ロック
 50  ゲル保持部
  50a 第一開口(排出部)
  50b 第二開口
 51・53  絶縁板
 52  電気泳動ゲル
 62  モータ(転写部、駆動機構)
 63  ボールネジ(転写部、駆動機構)
 64  ガイドシャフト(転写部、駆動機構)
 65  シャフトホルダ(転写部、駆動機構)
 66  ガイドポール(転写部、駆動機構)
 68  制御部(転写部、駆動機構)
 100  電気泳動装置

Claims (10)

  1.  pHが7.0より大きく8.0以下であるポリアクリルアミドゲルからなる、電気泳動ゲル。
  2.  上記ポリアクリルアミドゲルは、当該ポリアクリルアミドゲルに含有されるアクリルアミドの2.4重量%未満のアクリルアミド架橋剤を含有している、請求項1に記載の電気泳動ゲル。
  3.  ポリアクリルアミドゲルからなり、
     上記ポリアクリルアミドゲルは、当該ポリアクリルアミドゲルに含有されるアクリルアミドの2.4重量%未満のアクリルアミド架橋剤を含有している、電気泳動ゲル。
  4.  上記ポリアクリルアミドゲルは、ビス(2-ヒドロキシエチル)-アミノ-トリス(ヒドロキシメチル)メタンを含有している、請求項1~3の何れか一項に記載の電気泳動ゲル。
  5.  請求項1~4の何れか一項に記載の電気泳動ゲルと、陰極バッファーと、陽極バッファーとを備えている、電気泳動キット。
  6.  上記陰極バッファーは、トリスおよびビシンからなる群より選択されるリーディングイオンを含有している、請求項5に記載の電気泳動キット。
  7.  上記陰極バッファーは、ビス(2-ヒドロキシエチル)-アミノ-トリス(ヒドロキシメチル)メタンと、3(N-モルホリノ)プロパンスルホン酸および2(N-モルホリノ)エタンスルホン酸からなる群より選択されるトレーリングイオンとを含有している、請求項5または6に記載の電気泳動キット。
  8.  請求項5~7の何れか一項に記載の電気泳動キットと、
     上記陰極バッファーを溜め、陰極が配置される陰極バッファー槽と、
     上記陽極バッファーを溜め、陽極が配置される陽極バッファー槽と、
     上記電気泳動ゲルを、その一方の端部が上記陰極バッファーに接触し、その他方の端部が上記陽極バッファーに接触するように保持するゲル保持部と、を備えている、電気泳動装置。
  9.  転写膜を、上記電気泳動ゲルの上記他方の端部に対向させながら移動させることによって、上記電気泳動ゲルにおいて分離され、当該他方の端部から排出されるサンプルを、当該転写膜に転写する転写部を備えている、請求項8に記載の電気泳動装置。
  10.  pHが7.0より大きく8.0以下であるポリアクリルアミドゲルを用いた電気泳動によりサンプルを分離する分離工程を包含する、電気泳動方法。
PCT/JP2016/065358 2015-05-25 2016-05-24 電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法 WO2016190321A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015105784 2015-05-25
JP2015-105784 2015-05-25

Publications (1)

Publication Number Publication Date
WO2016190321A1 true WO2016190321A1 (ja) 2016-12-01

Family

ID=57392942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065358 WO2016190321A1 (ja) 2015-05-25 2016-05-24 電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法

Country Status (1)

Country Link
WO (1) WO2016190321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133307A (zh) * 2017-09-26 2020-05-08 株式会社日立高新技术 毛细管电泳装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004702A (ja) * 2001-06-15 2003-01-08 Bio Meito:Kk 高分解能電気泳動用ゲルの製造方法
JP2007527513A (ja) * 2003-06-30 2007-09-27 ビオヴィトルム・アクチボラゲット サイトカインを調節する作用物質の同定方法
JP2010008376A (ja) * 2008-06-30 2010-01-14 Sharp Corp サンプル分離吸着器具
JP2011033548A (ja) * 2009-08-04 2011-02-17 Hoyu Co Ltd 2次元電気泳動方法
JP2012501459A (ja) * 2008-09-02 2012-01-19 バイオ−ラッド ラボラトリーズ インコーポレーティッド 加水分解耐性ポリアクリルアミドゲル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004702A (ja) * 2001-06-15 2003-01-08 Bio Meito:Kk 高分解能電気泳動用ゲルの製造方法
JP2007527513A (ja) * 2003-06-30 2007-09-27 ビオヴィトルム・アクチボラゲット サイトカインを調節する作用物質の同定方法
JP2010008376A (ja) * 2008-06-30 2010-01-14 Sharp Corp サンプル分離吸着器具
JP2012501459A (ja) * 2008-09-02 2012-01-19 バイオ−ラッド ラボラトリーズ インコーポレーティッド 加水分解耐性ポリアクリルアミドゲル
JP2011033548A (ja) * 2009-08-04 2011-02-17 Hoyu Co Ltd 2次元電気泳動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133307A (zh) * 2017-09-26 2020-05-08 株式会社日立高新技术 毛细管电泳装置

Similar Documents

Publication Publication Date Title
JP4813244B2 (ja) サンプル分離吸着器具
US8449748B2 (en) Sample separation/adsorption appliance
WO2016163052A1 (ja) サンプル分離転写装置およびサンプル分析方法
JP5236609B2 (ja) サンプル分離吸着器具
JP2009063454A (ja) 電気泳動転写装置
US20060275917A1 (en) Method for staining and destaining gel, electrophoresis destaining device for gel, and kit for staining and destaining gel
WO2002071024A2 (en) Apparatus and method for electrophoresis
WO2016190321A1 (ja) 電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法
CN106415259B (zh) 电泳分离方法
JP6914243B2 (ja) サンプル分離器具およびサンプル分析装置
JP5806548B2 (ja) 電気泳動ゲルチップならびにその製造方法および製造キット
CN106233132B (zh) 生物体分子分析装置
CA2752349A1 (en) Aqueous transfer buffer
EP3264075B1 (en) Separation transfer device with transfer membrane holder
US20170038335A1 (en) Frame member-equipped transfer film, biomolecule analysis device, reagent tank, and shaking device
KR101855031B1 (ko) 생체 분자 분석 장치
US20170122902A1 (en) Separation medium cassette for sample separation adsorption and analysis device for sample separation adsorption
McLaren et al. Univalent salts as modifiers in micellar capillary electrophoresis
Grunbaum An automatic one-to eight-sample applicator for fast qualitative and quantitative microelectrophoresis of plasma proteins, hemoglobins, isoenzymes, and cross-over electrophoresis
JP2016156842A (ja) 転写膜保持器具及び分離転写装置
JP6030681B2 (ja) 生体分子分析装置
EP2146200A1 (en) Device and method for isoelectric focusing
WO2005073709A1 (en) Determination of the operational isoelectric point of isoelectric membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16800026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP