WO2016190221A1 - Coating composition and process for producing layered photoresist object - Google Patents

Coating composition and process for producing layered photoresist object Download PDF

Info

Publication number
WO2016190221A1
WO2016190221A1 PCT/JP2016/064921 JP2016064921W WO2016190221A1 WO 2016190221 A1 WO2016190221 A1 WO 2016190221A1 JP 2016064921 W JP2016064921 W JP 2016064921W WO 2016190221 A1 WO2016190221 A1 WO 2016190221A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing compound
coating composition
solvent
group
Prior art date
Application number
PCT/JP2016/064921
Other languages
French (fr)
Japanese (ja)
Inventor
龍二郎 山崎
伊藤 昌宏
好彦 坂根
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015157194A external-priority patent/JP2018119019A/en
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016190221A1 publication Critical patent/WO2016190221A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a coating composition.
  • the present invention relates to a coating composition useful as a composition for forming an antireflection film in photolithography, and a method for producing a photoresist laminate using the same.
  • TARC method a method of providing an antireflection film on the surface of a photoresist layer
  • resist pattern a photoresist pattern
  • the ideal refractive index of the antireflection film for obtaining a good antireflection effect in the TARC method is the square root ( ⁇ n) of the refractive index n of the photoresist layer (for example, Patent Document 1). Paragraph [0004]).
  • the refractive index at 193 nm of a commonly used resist is 1.6 to 1.8 (for example, paragraph [0006] of Patent Document 1).
  • the refractive index at 193 nm of the antireflection film is desirably closer to the range of 1.265 to 1.342.
  • Patent Document 2 describes a method of forming an antireflection film on a photoresist layer using a fluoropolymer having a hydrophilic group that can be dissolved in water, an aqueous solvent or a developer.
  • a coating composition in which a copolymer of a fluorine-containing monomer having a hydroxyl group at the end of the side chain and tetrafluoroethylene was dissolved in a mixed solvent of water and isopropyl alcohol was obtained to form a film. It is described that the refractive index (193 nm) of the film was 1.39.
  • Patent Document 3 describes a method for realizing an antireflection layer having a low refractive index by a layer mainly composed of fine particles (particle size: 1 to 100 nm). In this method, it is described that the refractive index is lowered by forming voids corresponding to the shape of the fine particles in the antireflection layer, and in Example 8, the refractive index at 193 nm was 1.32.
  • Patent Document 4 a polymer having a ring structure in the main chain, obtained by cyclopolymerization of a fluorine-containing monomer having two polymerizable carbon-carbon double bonds, is reflected on the photoresist layer. A method of forming a protective film is described.
  • the refractive index of the antireflection film is preferably closer to the range of 1.265 to 1.342 at 193 nm, and the coating composition described in Patent Document 2 is insufficient. Since the antireflection film of Patent Document 3 contains fine particles, exposure light may be scattered. When the present inventors measured the refractive index in 193 nm about the antireflection film described in patent document 4 (example 6 mentioned later), it was 1.38 and was inadequate.
  • the present invention provides a coating composition capable of forming an antireflection film having a low refractive index without using fine particles, and a method for producing a photoresist laminate using the same.
  • the present invention provides a coating composition having the following constitutions [1] to [12] and a method for producing a photoresist laminate.
  • a coating composition comprising at least one fluorine-containing compound selected from the following fluorine-containing compound (A1) and the following fluorine-containing compound (A2).
  • Fluorine-containing compound (A1) A polymer comprising only one unit selected from the following units (I), and having a number average molecular weight of 1,000 to 50,000.
  • Unit (I) a unit based on a monomer having only one polymerizable carbon-carbon double bond, composed of only carbon, oxygen and fluorine atoms, and having one or more side chains, The unit in which at least one side chain contains one or more etheric oxygen atoms that do not constitute a ring, and the terminal is —CF 3 .
  • Fluorine-containing compound (A2) A compound having a perfluoropolyether skeleton in the main chain and a number average molecular weight of 1,000 to 50,000.
  • a hydrogen group (wherein the number of etheric oxygen atoms is less than or equal to the number of carbon atoms), and the other is a perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms not containing an etheric oxygen atom that does not form a ring, or Indicates a fluorine atom.)
  • At least one of X 1 , X 2 , X 3 , X 4 is a —O—Rf 1 group (the Rf 1 group is a carbon having 0 to 3 etheric oxygen atoms between carbon-carbon atoms) (4)
  • the fluorine-containing solvent has a fluorine atom content of 65% by mass or more.
  • a method for producing a photoresist laminate in which an antireflection film is provided on the surface of a photoresist layer, the coating being any one of [1] to [11] on the surface of the photoresist layer A method for producing a photoresist laminate, comprising: applying a composition to form a coating film comprising the coating composition; and if the coating film contains a solvent, the solvent is then removed from the coating film.
  • an antireflection film having a low refractive index can be formed without using fine particles.
  • a photoresist laminate in which an antireflection film having a low refractive index and containing no fine particles is formed on the surface of the photoresist layer can be obtained.
  • Fluorine-containing compound means a compound having a fluorine atom in the molecule.
  • the fluorine-containing compound includes a fluorine-containing polymer.
  • the “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer.
  • the monomer and the unit based thereon are denoted by the same reference numerals.
  • units (I) those based on the monomer (I) are referred to as units (I).
  • a unit (I) that is obtained by chemically converting the structure of the unit (I) after forming the polymer is also referred to as the unit (I).
  • perfluoropolyether skeleton means a molecular chain in which two or more oxyperfluoroalkylene groups are linked.
  • Perfluoro means that all of the hydrogen atoms bonded to the carbon atom are substituted with fluorine atoms.
  • oxyperfluoroalkylene group means a group in which an oxygen atom is bonded to one end of the perfluoroalkylene group, and the chemical formula represents the oxygen atom on the right side of the perfluoroalkylene group.
  • the values of “mass average molecular weight and number average molecular weight of fluorine-containing compound” are polystyrene (PS) equivalent molecular weights determined by gel permeation chromatography (GPC).
  • “Fluorine atom content of fluorine-containing compound (unit: mass%)” is obtained by fluorine atom content analysis and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing compound.
  • “Fluorine atom content of fluorine-containing solvent (unit: mass%)” is obtained by fluorine atom content analysis and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing solvent.
  • the “molecular weight of the monomer” is a formula weight obtained based on the chemical formula. “Branched” means having a branched chain, and also having a branched chain and including a ring is also called branched.
  • the coating composition of the present invention contains at least one fluorine-containing compound selected from the fluorine-containing compound (A1) and the fluorine-containing compound (A2).
  • fluorine-containing compound (A1) and the fluorine-containing compound (A2) are collectively referred to as “fluorine-containing compound (A)”.
  • the fluorine-containing compound (A) has a molecular structure that contributes to a decrease in the refractive index, and the refractive index at 193 nm can be adjusted to 1.32 to 1.36.
  • the refractive index can be expressed.
  • the refractive index at 193 nm of the film made of the fluorine-containing compound (A) can be set to 1.32 to 1.36.
  • the refractive index of the fluorine-containing compound (A) is not more than the upper limit of the above range, it is preferable because the refractive index is close to the above-described range of 1.265 to 1.342.
  • the refractive index of the fluorine-containing compound (A) is an eigenvalue and is constant regardless of the shape of the film or the like.
  • the fluorine-containing compound (A1) is a homopolymer in which the unit present in the polymer is only one selected from the following units (I).
  • Unit (I) a unit based on a monomer having only one polymerizable carbon-carbon double bond, which is composed of only carbon atoms, oxygen atoms, and fluorine atoms, and has one or more side chains , Wherein at least one side chain includes one or more etheric oxygen atoms that do not constitute a ring, and the terminal is a unit of —CF 3 .
  • a carbon chain (—C—C—) generated by cleavage of one double bond is the main chain of the fluorine-containing compound (A1).
  • the atoms constituting the unit (I) are only carbon atoms, oxygen atoms and fluorine atoms. By not containing other atoms such as hydrogen atoms, the fluorine atom content is increased, which contributes to a decrease in refractive index.
  • Unit (I) has one or more side chains.
  • the number of side chains is 1 to 4, preferably 1 to 3, and particularly preferably 1 to 2. When two or more side chains are present, the structures of the plurality of side chains may be the same or different.
  • At least one of the side chains of the unit (I) contains one or more etheric oxygen atoms that do not form a ring, and the terminal is —CF 3 .
  • the etheric oxygen atom that does not constitute a ring increases the mobility of the molecule and contributes to a decrease in crystallinity of the fluorine-containing compound (A1). As a result, it is thought that it contributes to the fall of the refractive index of a fluorine-containing compound (A1). Note that etheric oxygen atoms present in the ring structure have a small effect of lowering the refractive index. This is probably because there is no molecular end in the ring structure, so even if an etheric oxygen atom is present, the contribution to the mobility of the molecule is small.
  • the upper limit of the number of etheric oxygen atoms that do not constitute a ring present in one side chain is not particularly limited, but is preferably 4 or less, more preferably 3 or less, and particularly preferably 2 or less, from the viewpoint of ease of production. preferable.
  • the molecular weight of the unit (I) is preferably 60 or more. When the molecular weight of the unit is not less than the lower limit of the above range, the fluorine atom content increases and the refractive index tends to be low.
  • the upper limit of the molecular weight of the unit (I) is preferably 800 or less, particularly preferably 500 or less, from the viewpoint of ease of production and easy recovery of unreacted monomers.
  • the unit (I) is preferably a unit (i) represented by the following formula (i). -[CX 1 X 2 -CX 3 X 4 ]-(i) (In the formula, at least one of X 1 , X 2 , X 3 , and X 4 independently represents a C 1-12 perfluoro saturated carbon atom containing 1 to 4 etheric oxygen atoms that do not constitute a ring.
  • a hydrogen group (hereinafter also referred to as “side chain 1”) (wherein the number of etheric oxygen atoms is not more than the number of carbon atoms) and the terminal is —CF 3 ;
  • a perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms not containing an etheric oxygen atom that does not constitute a ring (hereinafter also referred to as “side chain 2”) or a fluorine atom.)
  • the side chain 1 is preferably an —O—Rf 1 group (the Rf 1 group is a C 1-12 perfluoro saturated hydrocarbon group containing 0 to 3 etheric oxygen atoms between carbon-carbon atoms).
  • the Rf 1 group may be linear or branched, and is preferably branched from the viewpoint that the refractive index tends to be lower. If there is a branched structure, the fluorine-containing compound (A1) becomes bulky and the density decreases, so the refractive index is considered to be low.
  • the Rf 1 group may contain a ring. When a ring is included, the ring may or may not have an etheric oxygen atom.
  • the Rf 1 group preferably has 3 to 12 carbon atoms. If it is less than or equal to the upper limit, the boiling point does not become too high, and the recovery of unreacted monomers is facilitated.
  • Rf present in 1 group the upper limit of the number of rings does not constitute etheric oxygen atoms is less than or equal to the number of carbon atoms in the Rf 1 group. From the viewpoint of ease of production, it is preferably 4 or less, more preferably 3 or less, and particularly preferably 2 or less.
  • Specific examples of the side chain 1 include the following.
  • the side chain 2 is preferably a perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms (hereinafter also referred to as “Rf 2 group”).
  • Rf 2 group may be linear or branched, and is preferably branched from the viewpoint of further reducing the manufacturability and refractive index.
  • the Rf 2 group has 1 to 12 carbon atoms, preferably 1 to 6, more preferably 1 to 4, and particularly preferably 1 to 3.
  • the refractive index of the polymer becomes lower, it becomes easy recovery of unreacted monomers to be less than the upper limit value.
  • Specific examples of the Rf 2 group include —CF 3 and —CF (CF 3 ) CF 3 .
  • one of them is preferably a side chain 1 and the other 3 are fluorine atoms or other 3 It is preferable that one of them is a side chain 2 and the other two are fluorine atoms.
  • the unit (i) one in which one of X 1 , X 2 , X 3 and X 4 is an —O—Rf 1 group and the other three are fluorine atoms is particularly preferable.
  • Preferable specific examples of the unit (i) include the following.
  • both ends of the main chain of the fluorine-containing compound (A1) is not particularly limited.
  • a residue derived from the polymerization initiator or chain transfer agent used in the production of the fluorine-containing compound (A1) may be present.
  • Both end groups may be the same as or different from each other.
  • Specific examples of the terminal group of the main chain include the following.
  • the number average molecular weight of the fluorine-containing compound (A1) is 1,000 to 50,000, preferably 3,000 to 30,000, particularly preferably 3,000 to 10,000.
  • the fluorine-containing compound (A1) can be produced by a known production method. For example, the manufacturing method described in Japanese Patent No. 4962559 can be used.
  • the fluorine-containing compound (A2) is a compound having a perfluoropolyether skeleton in the main chain.
  • an etheric oxygen atom that does not constitute a ring is present in the main chain.
  • the mobility of the whole molecule is easily improved. Therefore, it is considered that the crystallinity of the fluorine-containing compound (A2) is further reduced and the refractive index of the fluorine-containing compound (A2) is further reduced.
  • the oxyperfluoroalkylene group constituting the perfluoropolyether skeleton has 1 to 5 carbon atoms, preferably 1 to 3, and particularly preferably 1 to 2.
  • the oxyperfluoroalkylene group may be linear or branched when it has 3 or more carbon atoms. A branched shape is preferable in that the refractive index of the fluorine-containing compound (A2) tends to be lower. If the branched structure is present, the fluorine-containing compound (A2) becomes bulky and the density decreases, so that the refractive index is considered to be lower.
  • the oxyperfluoroalkylene group may be one type or two or more types. When two or more kinds of oxyperfluoroalkylene groups are linked, the bonding order thereof is not particularly limited. Any of random, block, and alternate may be used, or a combination thereof.
  • a compound represented by the following formula (II) is preferable.
  • Y and Z are each independently a monovalent organic group (wherein Y is not an oxygen atom on the side bonded to —O—, and Z is bonded to — (C n F 2n O) m —)
  • n is an integer of 1 to 5
  • m is an integer of 2 to 200, and when m is 2 or more, a plurality of ( C n F 2n O) may be the same or different from each other.
  • Preferable examples of (C n F 2n O) include the following. A combination of (CF 2 O) and (CF 2 CF 2 O), a combination of (CF 2 CF 2 O) and (CF 2 CF 2 CF 2 O), (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 CF 2 O), (CF (CF 3 ) CF 2 O) alone.
  • M in the formula (II) is preferably 10 to 100, more preferably 10 to 30, further preferably 15 to 25, and particularly preferably 20 to 25.
  • Y and Z are preferably groups having a fluorine atom. Specific examples include —CF 2 CH 2 OH, —CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CH 2 OCF 2 CHFOCF 2 CF 2 CF 3 .
  • the fluorine-containing compound (A2) can be produced by a known production method. For example, the production method described in International Publication No. 2009/008380 can be used.
  • a commercially available product may be used as the fluorine-containing compound (A2).
  • FLUOROLINK D4000 or FLUOROLINK D10 / H all are product names) manufactured by Solvay Solexis, DENNUM SA (product name) manufactured by Daikin Is mentioned.
  • the fluorine-containing compound (A2) from which Y and Z differ from a commercially available thing can also be manufactured from a commercially available fluorine-containing compound (A2).
  • a fluorine-containing compound in which both Y and Z are —CF 2 CH 2 OH for example, the above FLUOROLINK D4000
  • a fluorine-containing compound in which both ends of Y and Z are perfluoroalkyl groups ( A2) can be produced.
  • perfluoro (alkyl vinyl ether) can be added to the hydroxyl group of —CF 2 CH 2 OH to convert the perfluoro (alkyl vinyl ether) to Y or Z having a perfluoroalkyl moiety at the terminal.
  • the number average molecular weight of the fluorine-containing compound (A2) is 1,000 to 50,000, preferably 3,000 to 30,000, particularly preferably 3,000 to 10,000.
  • it is at least the lower limit of the above range, the influence of the terminal group on the refractive index of the fluorine-containing compound (A2) is small, and it is easy to control the refractive index.
  • it is excellent in film forming property, and it is excellent in the uniformity of the film thickness in a flat part. If it is less than the upper limit value, it is excellent in the ability to follow a step during coating, and if the surface of the resist layer is uneven, the amount of coating required to cover the entire surface of the convex and concave portions can be reduced.
  • the coating composition of this invention contains a solvent as needed.
  • the polymer other than the fluorine-containing compound (A), or other components inevitable in production (unreacted raw materials, by-products, additives used in the production of the polymer) ) May be included.
  • fine particles may be contained. When fine particles are included, care must be taken so that scattering by the fine particles is not excessive.
  • the fluorine-containing compound (A) is preferably dissolved in the solvent.
  • the solvent for the coating composition is preferably a fluorine-containing solvent.
  • the fluorine atom content of the fluorinated solvent is preferably 65% by mass or more, and particularly preferably 70% by mass or more, from the viewpoint that good solubility of the fluorinated compound (A) is easily obtained.
  • a fluorine-containing solvent does not contain polar groups, such as a hydroxyl group and a carboxy group.
  • a solvent having a high boiling point is preferable because the film thickness can be easily increased even at the same polymer concentration.
  • a preferable boiling point is, for example, 95 ° C. or more, and 110 to 150 ° C. is particularly preferable.
  • the solvent of a coating composition does not melt
  • a fluorine-containing solvent is also preferable in this respect.
  • CF 3 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 (boiling point 114 ° C.), CF 3 CF (CF 3 ) CF (OCH 3 ) CF 2 CF 3 (boiling point 98 ° C.).
  • the temperature for dissolving the fluorine-containing compound (A) in these fluorine-containing solvents is sufficient at room temperature, and for example, stirring may be performed for about 3 hours.
  • the concentration of the total amount of the fluorine-containing compound (A) and the other polymer in the coating composition is preferably 1 to 30% by mass.
  • the ratio of the fluorine-containing compound (A) to the total amount of the fluorine-containing compound (A) and the other polymers in the coating composition is preferably 50% by mass or more, more preferably 70% by mass or more, and 100 Mass% is particularly preferred.
  • the content of the solvent in the coating composition is preferably 70 to 99% by mass.
  • the content of the fluorine-containing solvent in the coating composition is preferably 70 to 99% by mass.
  • the method for producing a photoresist laminate of the present invention is a method for producing a photoresist laminate in which an antireflection film is provided on the surface of a photoresist layer, the coating of the present invention on the surface of the photoresist layer.
  • the coating composition is applied to form a coating film comprising the coating composition, and when the coating film contains a solvent, the solvent is then removed from the coating film.
  • a known method can be used as a method for forming a coating film by applying the coating composition of the present invention on the surface of the photoresist layer.
  • the spin coating method is preferable from the viewpoint of the uniformity and simplicity of the antireflection film.
  • an antireflection film can be obtained by removing the solvent from the coating film after the coating film is formed.
  • drying conditions for example, in the case of a hot plate, conditions of 80 to 150 ° C. and 30 to 200 seconds are preferable.
  • the film thickness of the antireflection film may be set in accordance with a known antireflection theory. The film thickness is set to an odd multiple of “(exposure wavelength) / (4 ⁇ (refractive index of antireflection film))”. Since prevention performance becomes high, it is preferable.
  • the antireflection film formed on the surface of the photoresist layer using the coating composition of the present invention needs to be removed using a top antireflection film removing solvent after exposing the photoresist laminate. . Then, after removing the antireflection film, the photoresist is developed using an alkaline aqueous solution.
  • the solvent for removing the top antireflection film is preferably one having high solubility of the fluorine-containing compound (A), and is the same as the fluorine-containing solvent used in the coating composition including specific examples.
  • the solvent for removing the top antireflection film may be mixed with a non-fluorine solvent in the fluorinated solvent as long as the resist is not dissolved and the top antireflection film can be removed.
  • non-fluorine solvent examples include ketone compounds such as 2-butanone; ether compounds such as diethyl ether, dimethyl ether, tetrahydrofuran, dibutyl ether, and diisoamyl ether, and ether compounds are preferred.
  • the ether compound has an etheric oxygen atom in the same manner as the fluorine-containing compound (A) to be dissolved.
  • the ether compound contains a fluorine-containing solvent mixed with a fluorine-containing solvent ( Since the decrease in the solubility of A) can be further suppressed, a larger amount can be mixed with the fluorinated solvent.
  • Examples 1 to 9 Examples 1 to 5 and 9 are Examples, and Examples 6 to 8 are Comparative Examples.
  • the measurement method and evaluation method used the following methods.
  • a commercially available resist composition (product name: Sumiresist PAR-855S75 (J), manufactured by Sumitomo Chemical Co., Ltd.) was applied to a silicon wafer by spin coating so that the film thickness was about 120 nm, and the temperature was 150 ° C.
  • the resist film was formed by drying for 90 seconds on the adjusted hot plate. Thereafter, several drops of the fluorine-containing compound solution obtained in each example (fluorine-containing compound concentration of 20% by mass) were dropped and allowed to stand for 30 minutes. After 30 minutes, the fluorine-containing compound was removed by flowing a solvent for removing the top antireflection film of the type shown in the table over the substrate, and the resist surface was observed. If there was no change, it was judged as ⁇ (good), and if unevenness or the like occurred, it was judged as x (defect).
  • Example 1 Synthesis and evaluation of fluorine-containing compound (A1-1)] After charging 50 g of the monomer (a) and 0.68 g of the polymerization initiator solution (1) into a 50 mL pressure-resistant glass container, the system was replaced with nitrogen. Subsequently, it stirred while heating so that internal temperature might be 40 degreeC, and the polymerization reaction was performed for 72 hours. After completion of the polymerization reaction, the unreacted raw material was distilled off by vacuum drying at 80 ° C. to obtain 17.4 g of a fluorine-containing compound (A1-1).
  • the fluorine-containing polymer (A1-1) and the solvent (1) are stirred at room temperature for 3 hours to obtain a fluorine-containing compound solution (coating composition) having a concentration of the fluorine-containing compound of 20% by mass.
  • the mass average molecular weight, number average molecular weight, and fluorine atom content of the fluorine-containing compound (A1-1) are shown in Table 1 (hereinafter the same).
  • Table 1 also describes the main manufacturing conditions.
  • Example 2 and 3 Synthesis and evaluation of fluorine-containing compounds (A1-2) and (A1-3)]
  • a fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained in the same manner as in Example 1 except that the polymerization process conditions were changed as shown in Table 1. Evaluation was performed in the same manner as in Example 1.
  • Example 4 Evaluation of fluorine-containing compound (A2-1)
  • the fluorine-containing compound (A2-1) was dissolved in the solvent (1) so that the concentration of the fluorine-containing compound was 20% by mass to obtain a fluorine-containing compound solution (coating composition). Evaluation was performed in the same manner as in Example 1.
  • Example 5 Synthesis and evaluation of fluorine-containing compound (A2-2)
  • the fluorine-containing polymer (A2-1) and the monomer (a) were reacted to replace the hydrogen atoms at both ends of the fluorine-containing compound (A2-1) with —CF 2 CFHCF 2 CF 2 CF 3 .
  • a fluorine-containing compound (A2-2) was obtained.
  • Example 6 Synthesis and evaluation of fluorine-containing compound (D)]
  • a fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained in the same manner as in Example 1 except that the polymerization process conditions were changed as shown in Table 1. Evaluation was performed in the same manner as in Example 1.
  • a chain transfer agent methanol
  • the monomer (d) is a fluorine-containing monomer having a polymerizable carbon-carbon double bond at both ends.
  • the monomer (d) is a unit (d-1) represented by the following formula (d-1) by cyclopolymerization: )
  • Example 7 Synthesis and evaluation of fluorine-containing compound (E)]
  • a fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained in the same manner as in Example 1 except that the polymerization process conditions were changed as shown in Table 1. Evaluation was performed in the same manner as in Example 1. In this example, a chain transfer agent (methanol) was also added when the monomer and the polymerization initiator solution (1) were charged.
  • Example 8 Synthesis and evaluation of fluorine-containing compound (F-1)] After charging 50 g of the monomer (f) and 0.60 g of the polymerization initiator solution (1) into a 50 mL pressure-resistant glass container, the system was replaced with nitrogen. Subsequently, it stirred while heating so that internal temperature might be 40 degreeC, and the polymerization reaction was performed for 72 hours. After completion of the polymerization reaction, unreacted raw materials were distilled off by vacuum drying at 80 ° C. to obtain 19 g of a fluorine-containing compound (F). Fluorine-containing compound (F) and water are charged into a separable flask and hydrolyzed by stirring for 72 hours while maintaining at 80 ° C.
  • the fluorine-containing compound (F-1) is a fluorine-containing polymer in which —COOCH 3 at the terminal of the fluorine-containing compound (F) is hydrolyzed and converted to —COOH.
  • the obtained aqueous solution was dried to remove the solvent to obtain a fluorine-containing compound (F-1).
  • the fluorine-containing compound (F-1) and the solvent (3) are stirred at room temperature for 3 hours to obtain a fluorine-containing compound solution having a concentration of 20% by mass of the fluorine-containing compound (coating composition).
  • the mass average molecular weight and number average molecular weight of the fluorine-containing compound (F-1) can be regarded as the same as the mass average molecular weight and number average molecular weight of the fluorine-containing compound (F). These are shown in Table 1.
  • the obtained fluorine-containing compound (F-1) was evaluated in the same manner as in Example 1.
  • Example 9 In the same manner as in Example 3, a fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained and evaluated.
  • the solvent for removing the top antireflection film used for the resist solubility evaluation of the coating composition was changed as shown in Table 1.
  • the refractive index is 1.36 or less.
  • Monomer (a) and monomer (e) are composed of only C, O, and F, whereas monomer (e) has a hydrogen atom bonded to a carbon atom. It differs in that it is.
  • Example 7 has a slightly higher refractive index of the film. This shows that the refractive index of the film increases when hydrogen atoms are present in the units of the fluoropolymer.
  • the monomer (c) and the monomer (f) differ in the side chain end groups.
  • the terminal group of the side chain of the monomer (c) is —CF 3
  • the terminal group of the side chain of the unit based on the monomer (f) in the fluorine-containing compound (F-1) is a carboxy group-containing group.
  • Example 3 Comparing Example 3 using the fluorinated polymer (A1-3), which is a homopolymer of the monomer (c), and Example 8 using the fluorinated compound (F-1), Example 8 was more The refractive index of the film is much higher. As this factor, it is considered that the carboxy group present in the fluorine-containing compound (F-1) has a property of absorbing light at 193 nm.
  • Monomer (a) has only one polymerizable carbon-carbon double bond, whereas monomer (d) has a polymerizable carbon-carbon double bond at both ends,
  • the fluoropolymer (D) has a unit (d-1) represented by the above formula (d-1).
  • the unit based on the monomer (a) has an etheric oxygen atom that does not form a ring, but the unit (d-1) has an etheric oxygen atom only in the ring structure.
  • Example 1 using the fluorine-containing compound (A1-1), which is a homopolymer of the monomer (a) with Example 6 using the fluorine-containing compound (D), the film of Example 6 is more refracted. The rate is slightly high. This shows that even if it has an etheric oxygen atom, if it exists in the ring structure, the refractive index reducing effect is small.
  • the unit in the polymer is composed only of C, O, and F, has an etheric oxygen atom that does not constitute a ring, and the terminal is —CF 3 . It can be seen that having side chains is important for achieving a low refractive index. It can also be seen that it is preferable in reducing the refractive index that the fluorine-containing polymer does not have a highly polar functional group such as a hydroxyl group or a carboxy group that absorbs light near 193 nm.
  • the fluorine-containing compounds (A2-1) and (A2-2) in Examples 4 and 5 are both compounds having a perfluoropolyether skeleton in the main chain.
  • Example 4 using the fluorine-containing compound (A2-1) whose main chain terminal is a hydroxyl group and Example 5 using the fluorine-containing compound (A2-2) whose main chain terminal is a perfluoroalkyl group refraction A film having a sufficiently low rate of 1.34 was obtained. From these results, it is understood that the fluorine-containing compound having a perfluoropolyether skeleton in the main chain has a low refractive index, and the influence of the main chain end group on the refractive index of the film is small.
  • Example 1 to 7 and 9 using the solvent (1) which is a fluorine-containing solvent are compared with Example 8 using a solvent (3) which is a mixture of water and IPA.
  • the film thickness increased despite the polymer concentration in the coating composition being the same. This is presumably because the boiling point of the solvent (1) is higher than either water or IPA, and the surface tension of the solvent (1) is lower than either water or IPA.
  • the solvent (1) is used as the solvent for the spin coating solution, the spin coating solution tends to spread on the silicon wafer and the spin coating solution spread on the silicon wafer is difficult to evaporate. It is considered that the time that the wafer is covered becomes longer, and as a result, the film thickness increases.
  • Example 8 using the solvent (3) which is a mixture of water and IPA was inferior in storage stability. It can be seen that the fluorine-containing compound (F-1) used in Example 8 has a carboxy group which is a hydrophilic functional group but is not sufficiently soluble in an aqueous solvent (3).
  • the coating composition of the present invention is useful as a composition for forming an antireflection film in photolithography.
  • an antireflection film having a refractive index suitable for photolithography using an ArF excimer laser (193 nm) can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided is a coating composition which can form a low-refractive-index antireflection film without requiring the use of fine particles. The coating composition contains at least one fluorine compound selected from among fluorine compounds (A1) and among the following fluorine compounds (A2). Fluorine compounds (A1): polymers which each consist only of one kind of units selected from among the following units (I) and have a number-average molecular weight of 1,000-50,000. Units (I): units each based on a monomer which has only one polymerizable carbon-carbon double bond, composed only of carbon, oxygen, and fluorine atoms, having one or more side chains, at least one of which contains one or more etheric oxygen atoms that constitute no ring, and having -CF3 at each terminal. Fluorine compounds (A2): compounds each having a number-average molecular weight of 1,000-50,000 and having a perfluoropolyether skeleton in the main chain.

Description

コーティング用組成物およびフォトレジスト積層体の製造方法Coating composition and method for producing photoresist laminate
 本発明は、コーティング用組成物に関する。特にフォトリソグラフィにおいて反射防止膜を形成するための組成物として有用なコーティング用組成物、およびこれを用いたフォトレジスト積層体の製造方法に関する。 The present invention relates to a coating composition. In particular, the present invention relates to a coating composition useful as a composition for forming an antireflection film in photolithography, and a method for producing a photoresist laminate using the same.
 フォトリソグラフィ技術において、フォトレジストのパターン(レジストパターン)を形成する工程における、露光光の反射を防止するために、フォトレジスト層の表面上に反射防止膜を設ける方法(TARC法)が知られている。
 TARC法において良好な反射防止効果を得るための、反射防止膜の理想的な屈折率はフォトレジスト層の屈折率nの平方根(√n)であることが知られている(例えば、特許文献1の段落[0004])。
 またArFエキシマレーザ(193nm)を用いたフォトリソグラフィにおいて、一般的に用いられるレジストの193nmにおける屈折率は1.6~1.8(例えば、特許文献1の段落[0006])であり、1.6の平方根の値は約1.265、1.8の平方根の値は約1.342である。したがって反射防止膜の193nmにおける屈折率は、1.265~1.342の範囲により近い方が望ましい。
In photolithography technology, a method of providing an antireflection film on the surface of a photoresist layer (TARC method) is known in order to prevent reflection of exposure light in a step of forming a photoresist pattern (resist pattern). Yes.
It is known that the ideal refractive index of the antireflection film for obtaining a good antireflection effect in the TARC method is the square root (√n) of the refractive index n of the photoresist layer (for example, Patent Document 1). Paragraph [0004]).
In photolithography using an ArF excimer laser (193 nm), the refractive index at 193 nm of a commonly used resist is 1.6 to 1.8 (for example, paragraph [0006] of Patent Document 1). The value of the square root of 6 is about 1.265, and the value of the square root of 1.8 is about 1.342. Therefore, the refractive index at 193 nm of the antireflection film is desirably closer to the range of 1.265 to 1.342.
 特許文献2には、水、水性溶媒または現像液に溶解できる、親水性基を有する含フッ素重合体を用いて、フォトレジスト層上に反射防止膜を形成する方法が記載されている。実施例4において、側鎖の末端が水酸基である含フッ素モノマーと、テトラフルオロエチレンとの共重合体を、水とイソプロピルアルコールの混合溶媒に溶解させたコーティング組成物を成膜して得られた膜の屈折率(193nm)が1.39であったことが記載されている。
 特許文献3には、主に微粒子(粒径1~100nm)からなる層によって、低屈折率の反射防止層を実現する方法が記載されている。この方法では、反射防止層内に微粒子の形状に応じた空隙が形成されることにより屈折率が低下し、実施例8において193nmにおける屈折率が1.32であったことが記載されている。
 特許文献4には、2個の重合性炭素-炭素二重結合を有する含フッ素モノマーを環化重合して得られる、主鎖に環構造を有する重合体を用いて、フォトレジスト層上に反射防止膜を形成する方法が記載されている。
Patent Document 2 describes a method of forming an antireflection film on a photoresist layer using a fluoropolymer having a hydrophilic group that can be dissolved in water, an aqueous solvent or a developer. In Example 4, a coating composition in which a copolymer of a fluorine-containing monomer having a hydroxyl group at the end of the side chain and tetrafluoroethylene was dissolved in a mixed solvent of water and isopropyl alcohol was obtained to form a film. It is described that the refractive index (193 nm) of the film was 1.39.
Patent Document 3 describes a method for realizing an antireflection layer having a low refractive index by a layer mainly composed of fine particles (particle size: 1 to 100 nm). In this method, it is described that the refractive index is lowered by forming voids corresponding to the shape of the fine particles in the antireflection layer, and in Example 8, the refractive index at 193 nm was 1.32.
In Patent Document 4, a polymer having a ring structure in the main chain, obtained by cyclopolymerization of a fluorine-containing monomer having two polymerizable carbon-carbon double bonds, is reflected on the photoresist layer. A method of forming a protective film is described.
特許第4910829号公報Japanese Patent No. 4910829 特許第4752597号公報Japanese Patent No. 4752597 国際公開第2008/059918号International Publication No. 2008/059918 特開平5-74700号公報JP-A-5-74700
 上述したように、反射防止膜の屈折率は、193nmにおいて1.265~1.342の範囲により近い方が好ましく、特許文献2に記載のコーティング組成物では不充分である。
 特許文献3の反射防止膜は微粒子を含むため露光光が散乱するおそれがある。
 特許文献4に記載されている反射防止膜について、本発明者等が193nmにおける屈折率を測定したところ(後述の例6)、1.38であり不充分であった。
As described above, the refractive index of the antireflection film is preferably closer to the range of 1.265 to 1.342 at 193 nm, and the coating composition described in Patent Document 2 is insufficient.
Since the antireflection film of Patent Document 3 contains fine particles, exposure light may be scattered.
When the present inventors measured the refractive index in 193 nm about the antireflection film described in patent document 4 (example 6 mentioned later), it was 1.38 and was inadequate.
 本発明は、微粒子を使用しなくても、低屈折率の反射防止膜を形成できるコーティング用組成物、およびこれを用いたフォトレジスト積層体の製造方法を提供する。 The present invention provides a coating composition capable of forming an antireflection film having a low refractive index without using fine particles, and a method for producing a photoresist laminate using the same.
 本発明は、下記[1]~[12]の構成を有するコーティング用組成物およびフォトレジスト積層体の製造方法を提供する。
 [1]下記含フッ素化合物(A1)および下記含フッ素化合物(A2)から選ばれる少なくとも1種の含フッ素化合物を含有することを特徴とするコーティング用組成物。
 含フッ素化合物(A1):下記単位(I)から選ばれる1種の単位のみからなる重合体であって、数平均分子量が1,000~50,000である重合体。
 単位(I):重合性炭素-炭素二重結合を1個のみ有する単量体に基づく単位であって、炭素原子、酸素原子およびフッ素原子のみで構成され、1以上の側鎖を有し、少なくとも1つの側鎖は、環を構成しないエーテル性酸素原子を1以上含み、かつ末端が-CFである、単位。
 含フッ素化合物(A2):主鎖にペルフルオロポリエーテル骨格を有する、数平均分子量が1,000~50,000である化合物。
 [2]さらに溶媒を含む、[1]のコーティング用組成物。
 [3]コーティング用組成物中の溶媒の含有量が70~99質量%である、[2]のコーティング用組成物。
The present invention provides a coating composition having the following constitutions [1] to [12] and a method for producing a photoresist laminate.
[1] A coating composition comprising at least one fluorine-containing compound selected from the following fluorine-containing compound (A1) and the following fluorine-containing compound (A2).
Fluorine-containing compound (A1): A polymer comprising only one unit selected from the following units (I), and having a number average molecular weight of 1,000 to 50,000.
Unit (I): a unit based on a monomer having only one polymerizable carbon-carbon double bond, composed of only carbon, oxygen and fluorine atoms, and having one or more side chains, The unit in which at least one side chain contains one or more etheric oxygen atoms that do not constitute a ring, and the terminal is —CF 3 .
Fluorine-containing compound (A2): A compound having a perfluoropolyether skeleton in the main chain and a number average molecular weight of 1,000 to 50,000.
[2] The coating composition according to [1], further comprising a solvent.
[3] The coating composition according to [2], wherein the content of the solvent in the coating composition is 70 to 99% by mass.
 [4]前記単位(I)が下式(i)で表される単位である、[1]~[3]のいずれかのコーティング用組成物。
 -[CX-CX]- …(i)
 (式中、X、X、X、Xのうちの少なくとも1個は、それぞれ独立に、環を構成しないエーテル性酸素原子を1~4個含む炭素数1~12のペルフルオロ飽和炭化水素基を示し(ただし、前記エーテル性酸素原子の数は炭素数以下である。)、他は、環を構成しないエーテル性酸素原子を含まない炭素数1~12のペルフルオロ飽和炭化水素基、またはフッ素原子を示す。)
 [5]X、X、X、Xのうちの少なくとも1個が、-O-Rf基(Rf基は炭素-炭素原子間にエーテル性酸素原子を0~3個含む炭素数1~12のペルフルオロ飽和炭化水素基である。)である、[4]のコーティング用組成物。
 [6]X、X、X、Xのうちの1個が-O-Rf基であり、他の3個がフッ素原子である、[5]のコーティング用組成物。
 [7]前記含フッ素化合物(A1)の193nmにおける屈折率が1.32~1.36である、[1]~[6]のいずれかのコーティング用組成物。
[4] The coating composition according to any one of [1] to [3], wherein the unit (I) is a unit represented by the following formula (i).
-[CX 1 X 2 -CX 3 X 4 ]-(i)
(In the formula, at least one of X 1 , X 2 , X 3 , and X 4 independently represents a C 1-12 perfluoro saturated carbon atom containing 1 to 4 etheric oxygen atoms that do not constitute a ring. A hydrogen group (wherein the number of etheric oxygen atoms is less than or equal to the number of carbon atoms), and the other is a perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms not containing an etheric oxygen atom that does not form a ring, or Indicates a fluorine atom.)
[5] At least one of X 1 , X 2 , X 3 , X 4 is a —O—Rf 1 group (the Rf 1 group is a carbon having 0 to 3 etheric oxygen atoms between carbon-carbon atoms) (4) A coating composition according to [4], which is a perfluoro saturated hydrocarbon group of 1 to 12.
[6] The coating composition according to [5], wherein one of X 1 , X 2 , X 3 and X 4 is a —O—Rf 1 group, and the other 3 are fluorine atoms.
[7] The coating composition according to any one of [1] to [6], wherein the fluorine-containing compound (A1) has a refractive index at 193 nm of 1.32 to 1.36.
 [8]前記含フッ素化合物(A2)が下式(II)で表される化合物である、[1]~[3]のいずれかのコーティング用組成物。
 Y-O-(C2nO)-Z …(II)
 (式中、Y、Zはそれぞれ独立に1価の有機基(ただし、Yは-O-と結合する側の原子が酸素原子でなく、Zは-(C2nO)-と結合する側の原子が酸素原子ではない。)を示し、nは1~5の整数を示し、mは2~200の整数を示し、mが2以上のとき、1分子中に存在する複数の(C2nO)は互いに同じであってもよく、異なってもよい。)
 [9]前記含フッ素化合物(A2)の193nmにおける屈折率が1.32~1.36である、[1]、[2]、[3]または[8]のコーティング用組成物。
[8] The coating composition according to any one of [1] to [3], wherein the fluorine-containing compound (A2) is a compound represented by the following formula (II):
Y—O— (C n F 2n O) m —Z (II)
Wherein Y and Z are each independently a monovalent organic group (wherein Y is not an oxygen atom on the side bonded to —O—, and Z is bonded to — (C n F 2n O) m —) And n is an integer of 1 to 5, m is an integer of 2 to 200, and when m is 2 or more, a plurality of ( C n F 2n O) may be the same or different from each other.
[9] The coating composition according to [1], [2], [3] or [8], wherein the fluorine-containing compound (A2) has a refractive index at 193 nm of 1.32 to 1.36.
 [10]前記溶媒が含フッ素溶媒である、[1]~[9]のいずれかのコーティング用組成物。
 [11]前記含フッ素溶媒のフッ素原子含有量が65質量%以上である、[10]のコーティング用組成物。
 [12]フォトレジスト層の表面上に反射防止膜が設けられたフォトレジスト積層体を製造する方法であって、フォトレジスト層の表面上に、[1]~[11]のいずれかのコーティング用組成物を塗布して該コーティング用組成物からなる塗膜を形成し、塗膜が溶媒を含む場合は次いで前記塗膜から溶媒を除去することを特徴とするフォトレジスト積層体の製造方法。
[10] The coating composition according to any one of [1] to [9], wherein the solvent is a fluorine-containing solvent.
[11] The coating composition according to [10], wherein the fluorine-containing solvent has a fluorine atom content of 65% by mass or more.
[12] A method for producing a photoresist laminate in which an antireflection film is provided on the surface of a photoresist layer, the coating being any one of [1] to [11] on the surface of the photoresist layer A method for producing a photoresist laminate, comprising: applying a composition to form a coating film comprising the coating composition; and if the coating film contains a solvent, the solvent is then removed from the coating film.
 本発明のコーティング用組成物によれば、微粒子を使用しなくても、低屈折率の反射防止膜を形成できる。
 本発明のフォトレジスト積層体の製造方法によれば、フォトレジスト層の表面上に、微粒子を含まない、低屈折率の反射防止膜が形成されたフォトレジスト積層体が得られる。
According to the coating composition of the present invention, an antireflection film having a low refractive index can be formed without using fine particles.
According to the method for producing a photoresist laminate of the present invention, a photoresist laminate in which an antireflection film having a low refractive index and containing no fine particles is formed on the surface of the photoresist layer can be obtained.
 本明細書における以下の用語の意味は、以下の通りである。
 「含フッ素化合物」とは、分子中にフッ素原子を有する化合物を意味する。含フッ素化合物は含フッ素重合体を含む。
 「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。本明細書において単量体とそれに基づく単位とは同じ符号を付して表す。例えば単量体(I)に基づくものは単位(I)という。また単位(I)の構造を重合体形成後に化学的に変換したものも単位(I)という。
 「ペルフルオロポリエーテル骨格」とは、2つ以上のオキシペルフルオロアルキレン基が連結した分子鎖を意味する。
 「ペルフルオロ」とは炭素原子に結合する水素原子の全部がフッ素原子に置換されていることを意味する。
 「オキシペルフルオロアルキレン基」とは、ペルフルオロアルキレン基の片末端に酸素原子が結合した基を意味し、その化学式は、酸素原子をペルフルオロアルキレン基の右側に記載して表すものとする。
 「含フッ素化合物の質量平均分子量および数平均分子量」の値は、ゲルパーミエーションクロマトグラフィ(GPC)法によるポリスチレン(PS)換算分子量である。
 「含フッ素化合物のフッ素原子含有量(単位:質量%)」は、フッ素原子含有量分析により得られ、含フッ素化合物を構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。
 「含フッ素溶媒のフッ素原子含有量(単位:質量%)」は、フッ素原子含有量分析により得られ、含フッ素溶媒を構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。
 「単量体の分子量」は、化学式に基づいて得られる式量である。
 「分岐状」とは分岐鎖を有することを意味し、分岐鎖を有するとともに環を含む場合も分岐状という。
The meanings of the following terms in this specification are as follows.
“Fluorine-containing compound” means a compound having a fluorine atom in the molecule. The fluorine-containing compound includes a fluorine-containing polymer.
The “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer. In the present specification, the monomer and the unit based thereon are denoted by the same reference numerals. For example, those based on the monomer (I) are referred to as units (I). Further, a unit (I) that is obtained by chemically converting the structure of the unit (I) after forming the polymer is also referred to as the unit (I).
The “perfluoropolyether skeleton” means a molecular chain in which two or more oxyperfluoroalkylene groups are linked.
“Perfluoro” means that all of the hydrogen atoms bonded to the carbon atom are substituted with fluorine atoms.
The term “oxyperfluoroalkylene group” means a group in which an oxygen atom is bonded to one end of the perfluoroalkylene group, and the chemical formula represents the oxygen atom on the right side of the perfluoroalkylene group.
The values of “mass average molecular weight and number average molecular weight of fluorine-containing compound” are polystyrene (PS) equivalent molecular weights determined by gel permeation chromatography (GPC).
“Fluorine atom content of fluorine-containing compound (unit: mass%)” is obtained by fluorine atom content analysis and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing compound.
“Fluorine atom content of fluorine-containing solvent (unit: mass%)” is obtained by fluorine atom content analysis and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing solvent.
The “molecular weight of the monomer” is a formula weight obtained based on the chemical formula.
“Branched” means having a branched chain, and also having a branched chain and including a ring is also called branched.
[含フッ素化合物]
 本発明のコーティング用組成物は、含フッ素化合物(A1)および含フッ素化合物(A2)から選ばれる少なくとも1種の含フッ素化合物を含有する。なお、以下、含フッ素化合物(A1)と含フッ素化合物(A2)を総称して「含フッ素化合物(A)」という。
 含フッ素化合物(A)は屈折率の低下に寄与する分子構造を有し、193nmにおける屈折率を1.32~1.36にでき、微粒子を含まなくても、含フッ素化合物(A)のみで該屈折率を発現できる。すなわち、含フッ素化合物(A)からなる膜の193nmにおける屈折率を1.32~1.36にできる。
 含フッ素化合物(A)の屈折率が前記範囲の上限値以下であると、前述の屈折率1.265~1.342の範囲に近いため好ましい。なお、含フッ素化合物(A)の屈折率は固有値であり、膜等の形状によらず一定である。
[Fluorine-containing compounds]
The coating composition of the present invention contains at least one fluorine-containing compound selected from the fluorine-containing compound (A1) and the fluorine-containing compound (A2). Hereinafter, the fluorine-containing compound (A1) and the fluorine-containing compound (A2) are collectively referred to as “fluorine-containing compound (A)”.
The fluorine-containing compound (A) has a molecular structure that contributes to a decrease in the refractive index, and the refractive index at 193 nm can be adjusted to 1.32 to 1.36. The refractive index can be expressed. That is, the refractive index at 193 nm of the film made of the fluorine-containing compound (A) can be set to 1.32 to 1.36.
When the refractive index of the fluorine-containing compound (A) is not more than the upper limit of the above range, it is preferable because the refractive index is close to the above-described range of 1.265 to 1.342. The refractive index of the fluorine-containing compound (A) is an eigenvalue and is constant regardless of the shape of the film or the like.
(含フッ素化合物(A1))
 含フッ素化合物(A1)は重合体中に存在する単位が、下記単位(I)から選ばれる1種のみであるホモポリマーである。
 単位(I):重合性炭素-炭素二重結合を1個のみ有する単量体に基づく単位であって、炭素原子、酸素原子、およびフッ素原子のみで構成され、1以上の側鎖を有し、少なくとも1つの側鎖は、環を構成しないエーテル性酸素原子を1以上含み、かつ末端が-CFである、単位。
 1個の二重結合が開裂して生じた炭素鎖(-C-C-)が、含フッ素化合物(A1)の主鎖である。
(Fluorine-containing compound (A1))
The fluorine-containing compound (A1) is a homopolymer in which the unit present in the polymer is only one selected from the following units (I).
Unit (I): a unit based on a monomer having only one polymerizable carbon-carbon double bond, which is composed of only carbon atoms, oxygen atoms, and fluorine atoms, and has one or more side chains , Wherein at least one side chain includes one or more etheric oxygen atoms that do not constitute a ring, and the terminal is a unit of —CF 3 .
A carbon chain (—C—C—) generated by cleavage of one double bond is the main chain of the fluorine-containing compound (A1).
 単位(I)を構成する原子は炭素原子、酸素原子およびフッ素原子のみである。水素原子等の他の原子を含まないことでフッ素原子含有量が高くなり、屈折率の低下に寄与する。
 単位(I)は、1個以上の側鎖を有する。側鎖の数は1~4個であり、1~3個が好ましく、1~2個が特に好ましい。側鎖が2個以上の場合、複数の側鎖の構造は互いに同じであってもよく異なってもよい。
 単位(I)の側鎖の少なくとも1個は、環を構成しないエーテル性酸素原子を1以上含み、かつ末端が-CFである。
 環を構成しないエーテル性酸素原子は、分子の運動性を上げ、含フッ素化合物(A1)の結晶性の低下に寄与する。その結果含フッ素化合物(A1)の屈折率の低下に寄与すると考えられる。
 なお、環構造中に存在するエーテル性酸素原子は屈折率を低下させる効果が小さい。環構造には分子末端が存在しないため、エーテル性酸素原子が存在しても分子の運動性への寄与が小さいためと考えられる。
 1個の側鎖中に存在する、環を構成しないエーテル性酸素原子の数の上限は特に限定されないが、製造容易性の点からは4以下が好ましく、3以下がより好ましく、2以下が特に好ましい。
 単位(I)の分子量は60以上が好ましい。単位の分子量が上記範囲の下限値以上であると、フッ素原子含有量が増加して、低屈折率になりやすい。単位(I)の分子量の上限は製造容易性と未反応の単量体の回収性容易性の点からは800以下が好ましく、500以下が特に好ましい。
The atoms constituting the unit (I) are only carbon atoms, oxygen atoms and fluorine atoms. By not containing other atoms such as hydrogen atoms, the fluorine atom content is increased, which contributes to a decrease in refractive index.
Unit (I) has one or more side chains. The number of side chains is 1 to 4, preferably 1 to 3, and particularly preferably 1 to 2. When two or more side chains are present, the structures of the plurality of side chains may be the same or different.
At least one of the side chains of the unit (I) contains one or more etheric oxygen atoms that do not form a ring, and the terminal is —CF 3 .
The etheric oxygen atom that does not constitute a ring increases the mobility of the molecule and contributes to a decrease in crystallinity of the fluorine-containing compound (A1). As a result, it is thought that it contributes to the fall of the refractive index of a fluorine-containing compound (A1).
Note that etheric oxygen atoms present in the ring structure have a small effect of lowering the refractive index. This is probably because there is no molecular end in the ring structure, so even if an etheric oxygen atom is present, the contribution to the mobility of the molecule is small.
The upper limit of the number of etheric oxygen atoms that do not constitute a ring present in one side chain is not particularly limited, but is preferably 4 or less, more preferably 3 or less, and particularly preferably 2 or less, from the viewpoint of ease of production. preferable.
The molecular weight of the unit (I) is preferably 60 or more. When the molecular weight of the unit is not less than the lower limit of the above range, the fluorine atom content increases and the refractive index tends to be low. The upper limit of the molecular weight of the unit (I) is preferably 800 or less, particularly preferably 500 or less, from the viewpoint of ease of production and easy recovery of unreacted monomers.
 単位(I)としては、下式(i)で表される単位(i)が好ましい。
 -[CX-CX]- …(i)
 (式中、X、X、X、Xのうちの少なくとも1個は、それぞれ独立に、環を構成しないエーテル性酸素原子を1~4個含む炭素数1~12のペルフルオロ飽和炭化水素基(以下、「側鎖1」ともいう。)(ただし、前記エーテル性酸素原子の数は炭素数以下である。)であってかつ末端が-CFである基を示し、他は、環を構成しないエーテル性酸素原子を含まない炭素数1~12のペルフルオロ飽和炭化水素基(以下、「側鎖2」ともいう。)、またはフッ素原子を示す。)
The unit (I) is preferably a unit (i) represented by the following formula (i).
-[CX 1 X 2 -CX 3 X 4 ]-(i)
(In the formula, at least one of X 1 , X 2 , X 3 , and X 4 independently represents a C 1-12 perfluoro saturated carbon atom containing 1 to 4 etheric oxygen atoms that do not constitute a ring. A hydrogen group (hereinafter also referred to as “side chain 1”) (wherein the number of etheric oxygen atoms is not more than the number of carbon atoms) and the terminal is —CF 3 ; A perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms not containing an etheric oxygen atom that does not constitute a ring (hereinafter also referred to as “side chain 2”) or a fluorine atom.)
 側鎖1としては、-O-Rf基(Rf基は炭素-炭素原子間にエーテル性酸素原子を0~3個含む炭素数1~12のペルフルオロ飽和炭化水素基である。)が好ましい。Rf基は、炭素数が3以上の場合、直鎖状でもよく、分岐状でもよく、屈折率がより低くなりやすい点からは分岐状が好ましい。分岐構造があると、含フッ素化合物(A1)が嵩高くなり、密度が減少するため、屈折率が低くなると考えられる。Rf基は、環を含んでもよい。環を含む場合、該環はエーテル性酸素原子を有してもよく、有さなくてもよい。
 Rf基の炭素数は3~12が好ましい。上限値以下であると沸点が高くなりすぎず、未反応の単量体の回収が容易となる。Rf基中に存在する、環を構成しないエーテル性酸素原子の数の上限は、該Rf基の炭素数以下である。製造容易性の点からは4以下が好ましく、3以下がより好ましく、2以下が特に好ましい。
 側鎖1の具体例として以下が挙げられる。
 -OCF、-OCFCFCF、-OCFCFCFCF、-OCFCFOCF、-OCFCFCFOCF、-OCFCF(CF)OCFCFCF、-OCFCF(CF)OCFCF(CF)OCFCFCF
 製造容易性の点で、-OCFCF(CF)OCFCFCFが好ましい。
The side chain 1 is preferably an —O—Rf 1 group (the Rf 1 group is a C 1-12 perfluoro saturated hydrocarbon group containing 0 to 3 etheric oxygen atoms between carbon-carbon atoms). . When the number of carbon atoms is 3 or more, the Rf 1 group may be linear or branched, and is preferably branched from the viewpoint that the refractive index tends to be lower. If there is a branched structure, the fluorine-containing compound (A1) becomes bulky and the density decreases, so the refractive index is considered to be low. The Rf 1 group may contain a ring. When a ring is included, the ring may or may not have an etheric oxygen atom.
The Rf 1 group preferably has 3 to 12 carbon atoms. If it is less than or equal to the upper limit, the boiling point does not become too high, and the recovery of unreacted monomers is facilitated. Rf present in 1 group, the upper limit of the number of rings does not constitute etheric oxygen atoms is less than or equal to the number of carbon atoms in the Rf 1 group. From the viewpoint of ease of production, it is preferably 4 or less, more preferably 3 or less, and particularly preferably 2 or less.
Specific examples of the side chain 1 include the following.
—OCF 3 , —OCF 2 CF 2 CF 3 , —OCF 2 CF 2 CF 2 CF 3 , —OCF 2 CF 2 OCF 3 , —OCF 2 CF 2 CF 2 OCF 3 , —OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 , —OCF 2 CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 .
From the viewpoint of ease of production, —OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 is preferable.
 側鎖2としては、炭素数1~12のペルフルオロ飽和炭化水素基(以下、「Rf基」ともいう。)が好ましい。Rf基は、炭素数が3以上の場合、直鎖状でもよく、分岐状でもよく、製造容易性、屈折率をより低下させられる点からは分岐状が好ましい。
 Rf基の炭素数は1~12であり、1~6が好ましく、1~4がより好ましく、1~3が特に好ましい。上記範囲の下限値以上であるとRf基が存在することになるため、重合体の屈折率がより低くなり、上限値以下であると未反応の単量体の回収が容易となる。
 Rf基の具体例として、-CF、-CF(CF)CFが挙げられる。
The side chain 2 is preferably a perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms (hereinafter also referred to as “Rf 2 group”). When the number of carbon atoms is 3 or more, the Rf 2 group may be linear or branched, and is preferably branched from the viewpoint of further reducing the manufacturability and refractive index.
The Rf 2 group has 1 to 12 carbon atoms, preferably 1 to 6, more preferably 1 to 4, and particularly preferably 1 to 3. To become the Rf 2 group is present when there at least the lower limit within the above range, the refractive index of the polymer becomes lower, it becomes easy recovery of unreacted monomers to be less than the upper limit value.
Specific examples of the Rf 2 group include —CF 3 and —CF (CF 3 ) CF 3 .
 単位(i)中のX、X、X、Xとしては、そのうちの1個が側鎖1であることが好ましく、他の3個はフッ素原子であるかまたは他の3個のうち1個が側鎖2であって他の2個がフッ素原子であることが好ましい。単位(i)としては、特に、X、X、X、Xの1個が-O-Rf基であり他の3個がフッ素原子であるものが好ましい。
 単位(i)の好ましい具体例として以下が挙げられる。
 XがF、XがF、XがF、Xが-OCF(CF)CFOCFCFCFである単位。
 XがF、Xが-CF(CF)CF、XがF、Xが-OCF(CF)CFOCFCFCFである単位。
As X 1 , X 2 , X 3 , X 4 in the unit (i), one of them is preferably a side chain 1 and the other 3 are fluorine atoms or other 3 It is preferable that one of them is a side chain 2 and the other two are fluorine atoms. As the unit (i), one in which one of X 1 , X 2 , X 3 and X 4 is an —O—Rf 1 group and the other three are fluorine atoms is particularly preferable.
Preferable specific examples of the unit (i) include the following.
A unit in which X 1 is F, X 2 is F, X 3 is F, and X 4 is —OCF (CF 3 ) CF 2 OCF 2 CF 2 CF 3 .
A unit in which X 1 is F, X 2 is —CF (CF 3 ) CF 3 , X 3 is F, and X 4 is —OCF (CF 3 ) CF 2 OCF 2 CF 2 CF 3 .
 含フッ素化合物(A1)の主鎖の両末端の構造は特に限定されない。例えば、含フッ素化合物(A1)の製造に用いた重合開始剤または連鎖移動剤等に由来する残基が存在していてもよい。両末端基は互いに同じでもよく、異なっていてもよい。
 該主鎖の末端基の具体例としては以下が挙げられる。
 F-、CF-、CFCFCFO-、CFCHOCFCF-、HCFCFOCH(CF)-、CFCFCCl-、ClCFCFCFCl-、CFCFCFCFHCFOCHCFO-、HOCHCFO-、(CHCHOCOO-。
The structure of both ends of the main chain of the fluorine-containing compound (A1) is not particularly limited. For example, a residue derived from the polymerization initiator or chain transfer agent used in the production of the fluorine-containing compound (A1) may be present. Both end groups may be the same as or different from each other.
Specific examples of the terminal group of the main chain include the following.
F-, CF 3- , CF 3 CF 2 CF 2 O-, CF 3 CH 2 OCF 2 CF 2- , HCF 2 CF 2 OCH (CF 3 )-, CF 3 CF 2 CCl 2- , ClCF 2 CF 2 CFCl -, CF 3 CF 2 CF 2 CFHCF 2 OCH 2 CF 2 O-, HOCH 2 CF 2 O -, (CH 3) 2 CHOCOO-.
 含フッ素化合物(A1)の数平均分子量は1,000~50,000であり、3,000~30,000が好ましく、3,000~10,000が特に好ましい。上記範囲の下限値以上であると、含フッ素化合物(A1)の屈折率に対する末端基の影響が少なく、該屈折率を制御しやすい。また造膜性に優れ、平坦部における膜厚の均一性に優れる。上限値以下であると、塗布時の段差への追従性に優れ、レジスト層の表面に凹凸がある場合に、凸部および凹部の表面全部を覆うのに必要な塗布量が少なくて済む。
 含フッ素化合物(A1)は公知の製造方法で製造できる。例えば特許第4962559号公報に記載の製造方法を用いることができる。
The number average molecular weight of the fluorine-containing compound (A1) is 1,000 to 50,000, preferably 3,000 to 30,000, particularly preferably 3,000 to 10,000. When it is at least the lower limit of the above range, the influence of the terminal group on the refractive index of the fluorine-containing compound (A1) is small, and it is easy to control the refractive index. Moreover, it is excellent in film forming property, and it is excellent in the uniformity of the film thickness in a flat part. If it is less than the upper limit value, it is excellent in followability to a step during coating, and when the surface of the resist layer has irregularities, the amount of coating necessary to cover the entire surface of the convex and concave portions can be reduced.
The fluorine-containing compound (A1) can be produced by a known production method. For example, the manufacturing method described in Japanese Patent No. 4962559 can be used.
(含フッ素化合物(A2))
 含フッ素化合物(A2)は主鎖にペルフルオロポリエーテル骨格を有する化合物である。
 含フッ素化合物(A2)は、環を構成しないエーテル性酸素原子が主鎖に存在する。このため、かかるエーテル性酸素原子が側鎖にのみ存在する場合に比べて、分子全体の運動性がより向上しやすい。したがって、含フッ素化合物(A2)の結晶性がより低下し、含フッ素化合物(A2)の屈折率がより低下すると考えられる。
(Fluorine-containing compound (A2))
The fluorine-containing compound (A2) is a compound having a perfluoropolyether skeleton in the main chain.
In the fluorine-containing compound (A2), an etheric oxygen atom that does not constitute a ring is present in the main chain. For this reason, compared to the case where such etheric oxygen atoms are present only in the side chain, the mobility of the whole molecule is easily improved. Therefore, it is considered that the crystallinity of the fluorine-containing compound (A2) is further reduced and the refractive index of the fluorine-containing compound (A2) is further reduced.
 ペルフルオロポリエーテル骨格を構成するオキシペルフルオロアルキレン基の炭素数は、1~5であり、1~3が好ましく、1~2が特に好ましい。
 オキシペルフルオロアルキレン基は、炭素数が3以上の場合、直鎖状でもよく、分岐状でもよい。含フッ素化合物(A2)の屈折率がより低くなりやすい点では、分岐状が好ましい。分岐構造が存在すると、含フッ素化合物(A2)が嵩高くなり、密度が減少するため、屈折率がより低くなると考えられる。
 オキシペルフルオロアルキレン基は、1種でもよく、2種以上でもよい。2種以上のオキシペルフルオロアルキレン基が連結している場合、それらの結合順序は特に限定されない。ランダム状、ブロック状、交互のいずれでもよく、これらの組み合わせでもよい。
The oxyperfluoroalkylene group constituting the perfluoropolyether skeleton has 1 to 5 carbon atoms, preferably 1 to 3, and particularly preferably 1 to 2.
The oxyperfluoroalkylene group may be linear or branched when it has 3 or more carbon atoms. A branched shape is preferable in that the refractive index of the fluorine-containing compound (A2) tends to be lower. If the branched structure is present, the fluorine-containing compound (A2) becomes bulky and the density decreases, so that the refractive index is considered to be lower.
The oxyperfluoroalkylene group may be one type or two or more types. When two or more kinds of oxyperfluoroalkylene groups are linked, the bonding order thereof is not particularly limited. Any of random, block, and alternate may be used, or a combination thereof.
 含フッ素化合物(A2)としては、下式(II)で表される化合物が好ましい。
 Y-O-(C2nO)-Z …(II)
 (式中、Y、Zはそれぞれ独立に1価の有機基(ただし、Yは-O-と結合する側の原子が酸素原子でなく、Zは-(C2nO)-と結合する側の原子が酸素原子ではない。)を示し、nは1~5の整数を示し、mは2~200の整数を示し、mが2以上のとき、1分子中に存在する複数の(C2nO)は互いに同じであってもよく、異なってもよい。)
As the fluorine-containing compound (A2), a compound represented by the following formula (II) is preferable.
Y—O— (C n F 2n O) m —Z (II)
Wherein Y and Z are each independently a monovalent organic group (wherein Y is not an oxygen atom on the side bonded to —O—, and Z is bonded to — (C n F 2n O) m —) And n is an integer of 1 to 5, m is an integer of 2 to 200, and when m is 2 or more, a plurality of ( C n F 2n O) may be the same or different from each other.
 (C2nO)の好ましい例としては、以下が挙げられる。
 (CFO)と(CFCFO)の組み合わせ、(CFCFO)と(CFCFCFCFO)の組み合わせ、(CFCFCFO)と(CFCFCFCFO)の組み合わせ、(CF(CF)CFO)単独。
 式(II)中のmは、10~100が好ましく、10~30がより好ましく、15~25がさらに好ましく、20~25が特に好ましい。
Preferable examples of (C n F 2n O) include the following.
A combination of (CF 2 O) and (CF 2 CF 2 O), a combination of (CF 2 CF 2 O) and (CF 2 CF 2 CF 2 CF 2 O), (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 CF 2 CF 2 O), (CF (CF 3 ) CF 2 O) alone.
M in the formula (II) is preferably 10 to 100, more preferably 10 to 30, further preferably 15 to 25, and particularly preferably 20 to 25.
 Y、Zとしては、フッ素原子を有する基が好ましい。具体例としては、-CFCHOH、-CFH、-CFCFCF、-CFCHOCFCHFOCFCFCFが挙げられる。 Y and Z are preferably groups having a fluorine atom. Specific examples include —CF 2 CH 2 OH, —CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CH 2 OCF 2 CHFOCF 2 CF 2 CF 3 .
 含フッ素化合物(A2)は公知の製造方法で製造できる。例えば国際公開第2009/008380号に記載の製造方法を用いることができる。また、含フッ素化合物(A2)は市販品を用いてもよく、例えば、ソルベイ・ソレクシス社製のFLUOROLINK D4000、またはFLUOROLINK D10/H(いずれも製品名)、ダイキン社製のDEMNUM SA(製品名)が挙げられる。
 また、市販の含フッ素化合物(A2)からYおよびZが市販のものと異なる含フッ素化合物(A2)を製造することもできる。たとえば、Y、Zがいずれも-CFCHOHである市販の含フッ素化合物(A2)(たとえば、上記FLUOROLINK D4000)から、Y、Zの末端がいずれもペルフルオロアルキル基である含フッ素化合物(A2)を製造することができる。具体的には、たとえば、-CFCHOHの水酸基にペルフルオロ(アルキルビニルエーテル)を付加して、ペルフルオロ(アルキルビニルエーテル)のペルフルオロアルキル部分を末端に有するY、Zに変換することができる。
The fluorine-containing compound (A2) can be produced by a known production method. For example, the production method described in International Publication No. 2009/008380 can be used. In addition, as the fluorine-containing compound (A2), a commercially available product may be used. For example, FLUOROLINK D4000 or FLUOROLINK D10 / H (all are product names) manufactured by Solvay Solexis, DENNUM SA (product name) manufactured by Daikin Is mentioned.
Moreover, the fluorine-containing compound (A2) from which Y and Z differ from a commercially available thing can also be manufactured from a commercially available fluorine-containing compound (A2). For example, from a commercially available fluorine-containing compound (A2) in which both Y and Z are —CF 2 CH 2 OH (for example, the above FLUOROLINK D4000), a fluorine-containing compound in which both ends of Y and Z are perfluoroalkyl groups ( A2) can be produced. Specifically, for example, perfluoro (alkyl vinyl ether) can be added to the hydroxyl group of —CF 2 CH 2 OH to convert the perfluoro (alkyl vinyl ether) to Y or Z having a perfluoroalkyl moiety at the terminal.
 含フッ素化合物(A2)の数平均分子量は1,000~50,000であり、3,000~30,000が好ましく、3,000~10,000が特に好ましい。上記範囲の下限値以上であると、含フッ素化合物(A2)の屈折率に対する末端基の影響が少なく、該屈折率を制御しやすい。また造膜性に優れ、平坦部における膜厚の均一性に優れる。上限値以下であると塗布時の段差への追従性に優れ、レジスト層の表面に凹凸がある場合に、凸部および凹部の表面全部を覆うのに必要な塗布量が少なくて済む。 The number average molecular weight of the fluorine-containing compound (A2) is 1,000 to 50,000, preferably 3,000 to 30,000, particularly preferably 3,000 to 10,000. When it is at least the lower limit of the above range, the influence of the terminal group on the refractive index of the fluorine-containing compound (A2) is small, and it is easy to control the refractive index. Moreover, it is excellent in film forming property, and it is excellent in the uniformity of the film thickness in a flat part. If it is less than the upper limit value, it is excellent in the ability to follow a step during coating, and if the surface of the resist layer is uneven, the amount of coating required to cover the entire surface of the convex and concave portions can be reduced.
[コーティング用組成物]
 本発明のコーティング用組成物は必要に応じて溶媒を含む。本発明の効果を損なわない範囲内において、含フッ素化合物(A)以外の重合体、または他の製造上不可避の成分(未反応の原料、副生物、重合体の製造の際に用いた添加剤)を含んでもよい。
 本発明のコーティング用組成物を用いて形成される膜の屈折率をさらに低下させる目的で、微粒子を含有させてもよい。微粒子を含有させる場合は、微粒子による散乱が過大とならないように注意する必要がある。
 含フッ素化合物(A)以外の重合体としては、CH=CFCFOCF(CF)CFOCF(CF)C(CF)(CF)OHのホモポリマーが挙げられる。
[Coating composition]
The coating composition of this invention contains a solvent as needed. As long as the effects of the present invention are not impaired, the polymer other than the fluorine-containing compound (A), or other components inevitable in production (unreacted raw materials, by-products, additives used in the production of the polymer) ) May be included.
For the purpose of further reducing the refractive index of the film formed using the coating composition of the present invention, fine particles may be contained. When fine particles are included, care must be taken so that scattering by the fine particles is not excessive.
Examples of the polymer other than the fluorine-containing compound (A) include a homopolymer of CH 2 = CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) C (CF 3 ) (CF 3 ) OH.
 コーティング用組成物が溶媒を含む場合、含フッ素化合物(A)は溶媒に溶解していることが好ましい。
 コーティング用組成物の溶媒としては、含フッ素溶媒が好ましい。
 含フッ素化合物(A)の良好な溶解性が得られやすい点で、含フッ素溶媒のフッ素原子含有量が65質量%以上であることが好ましく、70質量%以上が特に好ましい。また、含フッ素溶媒の極性が高いと含フッ素化合物(A)の溶解度が低くなりやすいため、含フッ素溶媒は水酸基、カルボキシ基等の極性基を含有しないことが好ましい。
 また後述するように、スピンコート法で成膜する際に、同じ重合体濃度であっても膜厚を厚くしやすい点で沸点が高い溶媒が好ましい。好ましい沸点は例えば95℃以上であり、110~150℃が特に好ましい。
 また、コーティング用組成物の溶媒は、フォトレジスト層と接触しても、フォトレジスト層を溶解しないことが好ましい。含フッ素溶媒はこの点でも好ましい。
When the coating composition contains a solvent, the fluorine-containing compound (A) is preferably dissolved in the solvent.
The solvent for the coating composition is preferably a fluorine-containing solvent.
The fluorine atom content of the fluorinated solvent is preferably 65% by mass or more, and particularly preferably 70% by mass or more, from the viewpoint that good solubility of the fluorinated compound (A) is easily obtained. Moreover, since the solubility of a fluorine-containing compound (A) will become low easily when the polarity of a fluorine-containing solvent is high, it is preferable that a fluorine-containing solvent does not contain polar groups, such as a hydroxyl group and a carboxy group.
As will be described later, when the film is formed by spin coating, a solvent having a high boiling point is preferable because the film thickness can be easily increased even at the same polymer concentration. A preferable boiling point is, for example, 95 ° C. or more, and 110 to 150 ° C. is particularly preferable.
Moreover, it is preferable that the solvent of a coating composition does not melt | dissolve a photoresist layer, even if it contacts a photoresist layer. A fluorine-containing solvent is also preferable in this respect.
 好ましい含フッ素溶媒の例としては下記が挙げられる。
 CFCFCFCFCFCFCHCH(沸点114℃)、
 CFCF(CF)CF(OCH)CFCF(沸点98℃)。
 これらの含フッ素溶媒に含フッ素化合物(A)を溶解させる際の温度は室温で充分であり、例えば3時間程度撹拌すればよい。
The following are mentioned as an example of a preferable fluorine-containing solvent.
CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 (boiling point 114 ° C.),
CF 3 CF (CF 3 ) CF (OCH 3 ) CF 2 CF 3 (boiling point 98 ° C.).
The temperature for dissolving the fluorine-containing compound (A) in these fluorine-containing solvents is sufficient at room temperature, and for example, stirring may be performed for about 3 hours.
 コーティング用組成物が溶媒を含む場合、コーティング用組成物中の含フッ素化合物(A)およびそれ以外の重合体の合計量の濃度は、1~30質量%が好ましい。
 コーティング用組成物中の含フッ素化合物(A)およびそれ以外の重合体の合計量に対する含フッ素化合物(A)の割合が50質量%以上であることが好ましく、70質量%以上がより好ましく、100質量%が特に好ましい。
 コーティング用組成物が溶媒を含む場合、コーティング用組成物中の溶媒の含有量は70~99質量%が好ましい。コーティング用組成物が含フッ素溶媒を含む場合、コーティング用組成物中の含フッ素溶媒の含有量は70~99質量%が好ましい。
When the coating composition contains a solvent, the concentration of the total amount of the fluorine-containing compound (A) and the other polymer in the coating composition is preferably 1 to 30% by mass.
The ratio of the fluorine-containing compound (A) to the total amount of the fluorine-containing compound (A) and the other polymers in the coating composition is preferably 50% by mass or more, more preferably 70% by mass or more, and 100 Mass% is particularly preferred.
When the coating composition contains a solvent, the content of the solvent in the coating composition is preferably 70 to 99% by mass. When the coating composition contains a fluorine-containing solvent, the content of the fluorine-containing solvent in the coating composition is preferably 70 to 99% by mass.
[フォトレジスト積層体の製造方法]
 本発明のフォトレジスト積層体の製造方法は、フォトレジスト層の表面上に反射防止膜が設けられたフォトレジスト積層体を製造する方法であって、フォトレジスト層の表面上に、本発明のコーティング用組成物を塗布して該コーティング用組成物からなる塗膜を形成し、塗膜が溶媒を含む場合は次いで前記塗膜から溶媒を除去することを特徴とする。
[Method for producing photoresist laminate]
The method for producing a photoresist laminate of the present invention is a method for producing a photoresist laminate in which an antireflection film is provided on the surface of a photoresist layer, the coating of the present invention on the surface of the photoresist layer. The coating composition is applied to form a coating film comprising the coating composition, and when the coating film contains a solvent, the solvent is then removed from the coating film.
 フォトレジスト層の表面上に本発明のコーティング用組成物を塗布して塗膜を形成する方法は、公知の方法を用いることができる。反射防止膜の均一性、簡便性の点からスピンコート法が好ましい。
 塗膜が溶媒を含む場合は、塗膜形成後に該塗膜から溶媒を除去することにより反射防止膜が得られる。溶媒を除去する方法としては、例えばホットプレートまたはオーブンを用いて加熱乾燥を行うことが好ましい。乾燥条件としては、例えばホットプレートの場合、80~150℃の温度で30~200秒間の条件が好ましい。
 反射防止膜の膜厚は、公知の反射防止理論に従って設定すればよく、膜厚を「(露光波長)/(4×(反射防止膜の屈折率))」の奇数倍とすることが、反射防止性能が高くなるため好ましい。
As a method for forming a coating film by applying the coating composition of the present invention on the surface of the photoresist layer, a known method can be used. The spin coating method is preferable from the viewpoint of the uniformity and simplicity of the antireflection film.
When the coating film contains a solvent, an antireflection film can be obtained by removing the solvent from the coating film after the coating film is formed. As a method for removing the solvent, it is preferable to perform heat drying using, for example, a hot plate or an oven. As drying conditions, for example, in the case of a hot plate, conditions of 80 to 150 ° C. and 30 to 200 seconds are preferable.
The film thickness of the antireflection film may be set in accordance with a known antireflection theory. The film thickness is set to an odd multiple of “(exposure wavelength) / (4 × (refractive index of antireflection film))”. Since prevention performance becomes high, it is preferable.
 本発明のコーティング用組成物を用いて、フォトレジスト層の表面上に形成された反射防止膜は、フォトレジスト積層体を露光した後に、上面反射防止膜除去用溶剤を用いて除去する必要がある。そして反射防止膜を除去した後に、アルカリ水溶液を用いてフォトレジストの現像を行う。
 上面反射防止膜除去用溶剤は、含フッ素化合物(A)の溶解性が高いものが好ましく、具体例も含めて上記コーティング組成物に用いられる含フッ素溶媒と同様である。
 上面反射防止膜除去用溶剤は、レジストを溶解しない、かつ、上面反射防止膜を除去可能な範囲で、前記含フッ素溶媒に非フッ素溶媒を混合させてもよい。非フッ素溶媒としては、2-ブタノン等のケトン化合物;ジエチルエーテル、ジメチルエーテル、テトラヒドロフラン、ジブチルエーテル、ジイソアミルエーテル等のエーテル化合物が挙げられ、エーテル化合物が好ましい。エーテル化合物は、溶解したい含フッ素化合物(A)と同様にエーテル性酸素原子を有し、エーテル化合物以外の非フッ素溶媒に比べて、含フッ素溶媒に非フッ素溶媒を混合させることによる含フッ素化合物(A)の溶解度の減少をより小さく抑えることが可能であるため、より多くの量を含フッ素溶媒に混合することが可能である。
 含フッ素溶媒に非フッ素溶媒を混合させる場合、非フッ素溶媒の割合は、含フッ素溶媒:非フッ素溶媒=99:1~30:70(質量比)が好ましい。
The antireflection film formed on the surface of the photoresist layer using the coating composition of the present invention needs to be removed using a top antireflection film removing solvent after exposing the photoresist laminate. . Then, after removing the antireflection film, the photoresist is developed using an alkaline aqueous solution.
The solvent for removing the top antireflection film is preferably one having high solubility of the fluorine-containing compound (A), and is the same as the fluorine-containing solvent used in the coating composition including specific examples.
The solvent for removing the top antireflection film may be mixed with a non-fluorine solvent in the fluorinated solvent as long as the resist is not dissolved and the top antireflection film can be removed. Examples of the non-fluorine solvent include ketone compounds such as 2-butanone; ether compounds such as diethyl ether, dimethyl ether, tetrahydrofuran, dibutyl ether, and diisoamyl ether, and ether compounds are preferred. The ether compound has an etheric oxygen atom in the same manner as the fluorine-containing compound (A) to be dissolved. Compared with non-fluorine solvents other than the ether compound, the ether compound contains a fluorine-containing solvent mixed with a fluorine-containing solvent ( Since the decrease in the solubility of A) can be further suppressed, a larger amount can be mixed with the fluorinated solvent.
When the non-fluorine solvent is mixed with the fluorine-containing solvent, the ratio of the non-fluorine solvent is preferably fluorine-containing solvent: non-fluorine solvent = 99: 1 to 30:70 (mass ratio).
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。なお、例1~9のうち、例1~5および9は実施例、例6~8は比較例である。測定方法および評価方法は以下の方法を用いた。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Of Examples 1 to 9, Examples 1 to 5 and 9 are Examples, and Examples 6 to 8 are Comparative Examples. The measurement method and evaluation method used the following methods.
 [測定方法]
 (膜厚と屈折率)
 各例で得た含フッ素化合物溶液を希釈して作成した、含フッ素化合物の濃度2質量%の溶液の3mLを、シリコンウェハ上にスピンコート法により塗布し、150℃に温度調節したホットプレート上で90秒間乾燥させて、含フッ素化合物からなる膜(反射防止膜)を形成した。該膜の膜厚と波長193nmにおける屈折率をエリプソメータにより同時に測定した。
[Measuring method]
(Film thickness and refractive index)
On a hot plate that was prepared by diluting the fluorine-containing compound solution obtained in each example, and applying 3 mL of a fluorine-containing compound solution having a concentration of 2% by mass on a silicon wafer by spin coating, and adjusting the temperature to 150 ° C. And dried for 90 seconds to form a film made of a fluorine-containing compound (antireflection film). The film thickness and refractive index at a wavelength of 193 nm were simultaneously measured with an ellipsometer.
 (コーティング用組成物の貯蔵安定性)
 各例で得た含フッ素化合物溶液(含フッ素化合物の濃度20質量%)を、製造後2週間、5℃で放置(貯蔵)した後、シリコンウェハ上にスピンコート法により、塗布後の膜厚が約500nmとなるように塗布した。形成された塗膜の表面状態を目視で観察した。
 貯蔵中に含フッ素化合物の凝集体が発生した場合、該凝集体が視認できない程度にわずかなものであっても、スピンコート法で薄膜状にすると塗膜の表面が均一にならず異常が発生する。例えばハジキと呼ばれる膜厚ムラが生じる。
 塗膜の表面に異常が全くなく均一である場合を貯蔵安定性が〇(良好)、異常が1つでも発生した場合は×(不良)と判定した。
(Storage stability of coating composition)
The fluorine-containing compound solution obtained in each example (fluorine-containing compound concentration of 20% by mass) was left (stored) at 5 ° C. for 2 weeks after production, and then coated on a silicon wafer by spin coating. Was applied to a thickness of about 500 nm. The surface state of the formed coating film was visually observed.
When aggregates of fluorine-containing compounds are generated during storage, even if the aggregates are so small that they are not visible, the surface of the coating film does not become uniform when a thin film is formed by spin coating. To do. For example, film thickness unevenness called repelling occurs.
The case where the surface of the coating film was uniform and completely free of abnormalities was judged as being ◯ (good), and when even one abnormality occurred, it was judged as x (bad).
 (コーティング組成物のレジスト溶解性)
 市販のレジスト用組成物(製品名:スミレジスト PAR-855S75(J)、住友化学社製)を、シリコンウェハ上にスピンコート法により膜厚が約120nmになるように塗布し、150℃に温度調節したホットプレート上で90秒間乾燥させて、レジスト膜を形成した。その後、各例で得た含フッ素化合物溶液(含フッ素化合物の濃度20質量%)を数滴滴下して30分放置した。30分経過後、表に示す種類の上面反射防止膜除去用溶剤を基板上に流すことで含フッ素化合物を除去して、レジスト表面を観察した。変化が無ければ○(良好)、ムラ等が発生していれば×(不良)と判定した。
(Resist solubility of coating composition)
A commercially available resist composition (product name: Sumiresist PAR-855S75 (J), manufactured by Sumitomo Chemical Co., Ltd.) was applied to a silicon wafer by spin coating so that the film thickness was about 120 nm, and the temperature was 150 ° C. The resist film was formed by drying for 90 seconds on the adjusted hot plate. Thereafter, several drops of the fluorine-containing compound solution obtained in each example (fluorine-containing compound concentration of 20% by mass) were dropped and allowed to stand for 30 minutes. After 30 minutes, the fluorine-containing compound was removed by flowing a solvent for removing the top antireflection film of the type shown in the table over the substrate, and the resist surface was observed. If there was no change, it was judged as ◯ (good), and if unevenness or the like occurred, it was judged as x (defect).
[使用した化合物]
 (単量体)
 (a):CF=CFOCFCFCF(分子量266)
 (b):CF=CFOCFCFCFOCF(分子量332)
 (c):CF=CF-O-CFCF(CF)-O-CFCFCF(分子量432)
 (d):CF=CFOCFCFCF=CF(分子量278)
 (e):CH=CFOCFCFCF(分子量230)
 (f):CF=CF-O-CFCF(CF)-O-CFCFCFCOOCH(分子量472)
 (重合開始剤)
 重合開始剤溶液(1):ジイソプロピルペルオキシジカーボネート溶液(濃度50質量%、溶媒:CFCHOCFCFH)
[Used compounds]
(Monomer)
(A): CF 2 = CFOCF 2 CF 2 CF 3 (molecular weight 266)
(B): CF 2 = CFOCF 2 CF 2 CF 2 OCF 3 (molecular weight 332)
(C): CF 2 ═CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 3 (molecular weight 432)
(D): CF 2 = CFOCF 2 CF 2 CF = CF 2 ( molecular weight 278)
(E): CH 2 = CFOCF 2 CF 2 CF 3 ( molecular weight 230)
(F): CF 2 ═CF—O—CF 2 CF (CF 3 ) —O—CF 2 CF 2 CF 2 COOCH 3 (molecular weight 472)
(Polymerization initiator)
Polymerization initiator solution (1): diisopropyl peroxydicarbonate solution (concentration 50% by mass, solvent: CF 3 CH 2 OCF 2 CF 2 H)
 (市販の含フッ素化合物)
 (A2-1):HOCHCF-O-(CFO)(CFCFO)-CFCHOH(製品名:FLUOROLINK D4000、ソルベイ・ソレクシス社製、aは約20、bは約20である。)
(Commercially available fluorine-containing compounds)
(A2-1): HOCH 2 CF 2 —O— (CF 2 O) a (CF 2 CF 2 O) b —CF 2 CH 2 OH (product name: FLUOROLINK D4000, manufactured by Solvay Solexis, a is about 20 , B is about 20.)
 (コーティング用組成物の溶媒)
 (1):CFCFCFCFCFCFCHCH
 (2):水
 (3):水/イソプロピルアルコール(以下、「IPA」ともいう。)の質量比が7/3である混合溶液
(Solvent for coating composition)
(1): CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3
(2): Water (3): Mixed solution having a mass ratio of water / isopropyl alcohol (hereinafter also referred to as “IPA”) of 7/3
 (上面反射防止膜除去用溶剤)
 (1):CFCFCFCFCFCFCHCH
 (2):水
 (3):CFCFCFCFCFCFCHCHとテトラヒドロフランとを1:1(質量比)で混合した混合溶媒
(Solvent for removing the top antireflection film)
(1): CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3
(2): Water (3): Mixed solvent in which CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 and tetrahydrofuran are mixed at 1: 1 (mass ratio).
 [例1:含フッ素化合物(A1-1)の合成および評価]
 50mLの耐圧ガラス製容器に、単量体(a)の50gと重合開始剤溶液(1)の0.68gを仕込んだ後、系内を窒素により置換した。
 次いで、内温が40℃になるように加熱しながら撹拌し、72時間重合反応を行った。重合反応終了後、未反応の原料を80℃の真空乾燥により留去して含フッ素化合物(A1-1)の17.4gを得た。
 セパラブルフラスコ内で、含フッ素重合体(A1-1)と、溶媒(1)を、室温で3時間撹拌して、含フッ素化合物の濃度が20質量%の含フッ素化合物溶液(コーティング用組成物)を得た。
 含フッ素化合物(A1-1)の質量平均分子量、数平均分子量、フッ素原子含有量を表1に示す(以下、同様)。
 得られた含フッ素化合物(A1-1)について、上記の方法で膜厚、膜の屈折率、貯蔵安定性、レジスト溶解性を評価した。
 表1には主な製造条件も記載する。また重合開始剤の使用量を、重合反応に用いる単量体のモル数の合計に対する割合(単位:モル%)に換算した値も記載する(以下、同様)。
[Example 1: Synthesis and evaluation of fluorine-containing compound (A1-1)]
After charging 50 g of the monomer (a) and 0.68 g of the polymerization initiator solution (1) into a 50 mL pressure-resistant glass container, the system was replaced with nitrogen.
Subsequently, it stirred while heating so that internal temperature might be 40 degreeC, and the polymerization reaction was performed for 72 hours. After completion of the polymerization reaction, the unreacted raw material was distilled off by vacuum drying at 80 ° C. to obtain 17.4 g of a fluorine-containing compound (A1-1).
In a separable flask, the fluorine-containing polymer (A1-1) and the solvent (1) are stirred at room temperature for 3 hours to obtain a fluorine-containing compound solution (coating composition) having a concentration of the fluorine-containing compound of 20% by mass. )
The mass average molecular weight, number average molecular weight, and fluorine atom content of the fluorine-containing compound (A1-1) are shown in Table 1 (hereinafter the same).
With respect to the obtained fluorine-containing compound (A1-1), the film thickness, the refractive index of the film, the storage stability, and the resist solubility were evaluated by the above methods.
Table 1 also describes the main manufacturing conditions. Moreover, the value which converted the usage-amount of the polymerization initiator into the ratio (unit: mol%) with respect to the sum total of the number-of-moles of the monomer used for a polymerization reaction is described (hereinafter, the same).
[例2、3:含フッ素化合物(A1-2)および(A1-3)の合成および評価]
 重合工程の条件を表1に示すとおりに変更したほかは例1と同様にして、含フッ素化合物の含有量(濃度)が20質量%である含フッ素化合物溶液(コーティング用組成物)を得、例1と同様に評価した。
[Examples 2 and 3: Synthesis and evaluation of fluorine-containing compounds (A1-2) and (A1-3)]
A fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained in the same manner as in Example 1 except that the polymerization process conditions were changed as shown in Table 1. Evaluation was performed in the same manner as in Example 1.
[例4:含フッ素化合物(A2-1)の評価]
 含フッ素化合物(A2-1)を、含フッ素化合物の濃度が20質量%となるように溶媒(1)に溶解して、含フッ素化合物溶液(コーティング用組成物)を得た。例1と同様に評価した。
[Example 4: Evaluation of fluorine-containing compound (A2-1)]
The fluorine-containing compound (A2-1) was dissolved in the solvent (1) so that the concentration of the fluorine-containing compound was 20% by mass to obtain a fluorine-containing compound solution (coating composition). Evaluation was performed in the same manner as in Example 1.
[例5:含フッ素化合物(A2-2)の合成および評価]
 含フッ素重合体(A2-1)と単量体(a)とを反応させて、含フッ素化合物(A2-1)の両末端の水素原子が-CFCFHCFCFCFに置換された含フッ素化合物(A2-2)を得た。
 すなわち、3つ口フラスコに、濃度20質量%のKOH水溶液の1.45g、tert-ブチルアルコールの16.5g、1,3-ビス(トリフルオロメチル)ベンゼンの55g、含フッ素化合物(A2-1)の110gを入れ、単量体(a)の14.6g加えた。窒素雰囲気下、40℃で20時間撹拌した。希塩酸水溶液で1回洗浄し、有機相を回収し、エバポレータで濃縮することによって、含フッ素化合物(A2-2):CFCFCFCFHCFOCHCF-O-(CFO)(CFCFO)-CFCHOCFCFHCFCFCFの115gを得た。この中から10gを採取して、例4と同様に溶媒(1)に溶解して、含フッ素化合物溶液(コーティング用組成物)を得た。例1と同様に評価した。
[Example 5: Synthesis and evaluation of fluorine-containing compound (A2-2)]
The fluorine-containing polymer (A2-1) and the monomer (a) were reacted to replace the hydrogen atoms at both ends of the fluorine-containing compound (A2-1) with —CF 2 CFHCF 2 CF 2 CF 3 . A fluorine-containing compound (A2-2) was obtained.
That is, in a three-necked flask, 1.45 g of a 20 wt% KOH aqueous solution, 16.5 g of tert-butyl alcohol, 55 g of 1,3-bis (trifluoromethyl) benzene, a fluorine-containing compound (A2-1) ) Was added and 14.6 g of monomer (a) was added. The mixture was stirred at 40 ° C. for 20 hours under a nitrogen atmosphere. By washing once with a dilute hydrochloric acid solution, the organic phase is recovered, and concentrated by an evaporator to obtain a fluorine-containing compound (A2-2): CF 3 CF 2 CF 2 CFHCF 2 OCH 2 CF 2 —O— (CF 2 O) 115 g of a (CF 2 CF 2 O) b —CF 2 CH 2 OCF 2 CFHCF 2 CF 2 CF 3 was obtained. 10 g was collected from this and dissolved in the solvent (1) in the same manner as in Example 4 to obtain a fluorine-containing compound solution (coating composition). Evaluation was performed in the same manner as in Example 1.
[例6:含フッ素化合物(D)の合成および評価]
 重合工程の条件を表1に示すとおりに変更したほかは例1と同様にして、含フッ素化合物の含有量(濃度)が20質量%である含フッ素化合物溶液(コーティング用組成物)を得、例1と同様に評価した。本例では単量体と重合開始剤溶液(1)を仕込む際に、連鎖移動剤(メタノール)も添加した。
 なお単量体(d)は両末端に重合性炭素-炭素二重結合を有する含フッ素単量体であり、環化重合して下式(d-1)で表される単位(d-1)となる。
[Example 6: Synthesis and evaluation of fluorine-containing compound (D)]
A fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained in the same manner as in Example 1 except that the polymerization process conditions were changed as shown in Table 1. Evaluation was performed in the same manner as in Example 1. In this example, a chain transfer agent (methanol) was also added when the monomer and the polymerization initiator solution (1) were charged.
The monomer (d) is a fluorine-containing monomer having a polymerizable carbon-carbon double bond at both ends. The monomer (d) is a unit (d-1) represented by the following formula (d-1) by cyclopolymerization: )
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[例7:含フッ素化合物(E)の合成および評価]
 重合工程の条件を表1に示すとおりに変更したほかは例1と同様にして、含フッ素化合物の含有量(濃度)が20質量%である含フッ素化合物溶液(コーティング用組成物)を得、例1と同様に評価した。本例では単量体と重合開始剤溶液(1)を仕込む際に、連鎖移動剤(メタノール)も添加した。
[Example 7: Synthesis and evaluation of fluorine-containing compound (E)]
A fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained in the same manner as in Example 1 except that the polymerization process conditions were changed as shown in Table 1. Evaluation was performed in the same manner as in Example 1. In this example, a chain transfer agent (methanol) was also added when the monomer and the polymerization initiator solution (1) were charged.
[例8:含フッ素化合物(F-1)の合成および評価]
 50mLの耐圧ガラス製容器に、単量体(f)の50gと、重合開始剤溶液(1)の0.60gを仕込んだ後、系内を窒素により置換した。
 次いで、内温が40℃になるように加熱しながら撹拌し、72時間重合反応を行った。重合反応終了後、未反応の原料を80℃の真空乾燥により留去して含フッ素化合物(F)の19gを得た。
 セパラブルフラスコに含フッ素化合物(F)と水を仕込み、80℃に保ちつつ72時間撹拌することで加水分解を行い、濃度が5質量%である含フッ素化合物(F-1)の水溶液を得た。含フッ素化合物(F-1)は、含フッ素化合物(F)の末端の-COOCHが加水分解されて-COOHに変換された含フッ素重合体である。得られた水溶液を乾燥させて溶媒を除去して含フッ素化合物(F-1)を得た。
 セパラブルフラスコ内で、含フッ素化合物(F-1)と、溶媒(3)を、室温で3時間撹拌して、含フッ素化合物の濃度が20質量%の含フッ素化合物溶液(コーティング用組成物)を得た。
 含フッ素化合物(F-1)の質量平均分子量、数平均分子量は、含フッ素化合物(F)の質量平均分子量、数平均分子量、と同じとみなすことができる。これらを表1に示す。
 得られた含フッ素化合物(F-1)について、例1と同様に評価した。
[Example 8: Synthesis and evaluation of fluorine-containing compound (F-1)]
After charging 50 g of the monomer (f) and 0.60 g of the polymerization initiator solution (1) into a 50 mL pressure-resistant glass container, the system was replaced with nitrogen.
Subsequently, it stirred while heating so that internal temperature might be 40 degreeC, and the polymerization reaction was performed for 72 hours. After completion of the polymerization reaction, unreacted raw materials were distilled off by vacuum drying at 80 ° C. to obtain 19 g of a fluorine-containing compound (F).
Fluorine-containing compound (F) and water are charged into a separable flask and hydrolyzed by stirring for 72 hours while maintaining at 80 ° C. to obtain an aqueous solution of fluorine-containing compound (F-1) having a concentration of 5% by mass. It was. The fluorine-containing compound (F-1) is a fluorine-containing polymer in which —COOCH 3 at the terminal of the fluorine-containing compound (F) is hydrolyzed and converted to —COOH. The obtained aqueous solution was dried to remove the solvent to obtain a fluorine-containing compound (F-1).
In a separable flask, the fluorine-containing compound (F-1) and the solvent (3) are stirred at room temperature for 3 hours to obtain a fluorine-containing compound solution having a concentration of 20% by mass of the fluorine-containing compound (coating composition). Got.
The mass average molecular weight and number average molecular weight of the fluorine-containing compound (F-1) can be regarded as the same as the mass average molecular weight and number average molecular weight of the fluorine-containing compound (F). These are shown in Table 1.
The obtained fluorine-containing compound (F-1) was evaluated in the same manner as in Example 1.
[例9]
 例3と同様にして、含フッ素化合物の含有量(濃度)が20質量%である含フッ素化合物溶液(コーティング用組成物)を得、評価した。本例ではコーティング組成物のレジスト溶解性評価に用いる上面反射防止膜除去用溶剤を表1に示すとおりに変更した。
[Example 9]
In the same manner as in Example 3, a fluorine-containing compound solution (coating composition) having a fluorine-containing compound content (concentration) of 20% by mass was obtained and evaluated. In this example, the solvent for removing the top antireflection film used for the resist solubility evaluation of the coating composition was changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果に示されるように、本発明にかかる含フッ素化合物(A1)または(A2)を用いた例1~5および9のコーティング用組成物によれば、屈折率が1.36以下の膜を得ることができた。
 単量体(a)と単量体(e)とは、単量体(a)がC、O、Fのみからなるのに対して、単量体(e)は炭素原子に水素原子が結合している点で異なる。単量体(a)のホモポリマーである含フッ素化合物(A1-1)を用いた例1と、単量体(e)のホモポリマーである含フッ素化合物(E)を用いた例7とを比較すると、例7の方が膜の屈折率がやや高い。このことから、含フッ素重合体の単位中に水素原子が存在すると膜の屈折率が上昇することがわかる。
As shown in the results of Table 1, according to the coating compositions of Examples 1 to 5 and 9 using the fluorine-containing compound (A1) or (A2) according to the present invention, the refractive index is 1.36 or less. A membrane could be obtained.
Monomer (a) and monomer (e) are composed of only C, O, and F, whereas monomer (e) has a hydrogen atom bonded to a carbon atom. It differs in that it is. Example 1 using a fluorine-containing compound (A1-1) which is a homopolymer of monomer (a) and Example 7 using a fluorine-containing compound (E) which is a homopolymer of monomer (e) In comparison, Example 7 has a slightly higher refractive index of the film. This shows that the refractive index of the film increases when hydrogen atoms are present in the units of the fluoropolymer.
 単量体(c)と単量体(f)とは側鎖の末端基が異なる。単量体(c)の側鎖の末端基は-CFであり、含フッ素化合物(F-1)において単量体(f)に基づく単位の側鎖の末端基はカルボキシ基含有基である。
 単量体(c)のホモポリマーである含フッ素重合体(A1-3)を用いた例3と、含フッ素化合物(F-1)を用いた例8とを比較すると、例8の方が膜の屈折率が格段に高い。この要因として、含フッ素化合物(F-1)中に存在するカルボキシ基が、193nmの光を吸収する性質を有することが考えられる。
The monomer (c) and the monomer (f) differ in the side chain end groups. The terminal group of the side chain of the monomer (c) is —CF 3 , and the terminal group of the side chain of the unit based on the monomer (f) in the fluorine-containing compound (F-1) is a carboxy group-containing group. .
Comparing Example 3 using the fluorinated polymer (A1-3), which is a homopolymer of the monomer (c), and Example 8 using the fluorinated compound (F-1), Example 8 was more The refractive index of the film is much higher. As this factor, it is considered that the carboxy group present in the fluorine-containing compound (F-1) has a property of absorbing light at 193 nm.
 単量体(a)は重合性炭素-炭素二重結合を1個のみ有するのに対して、単量体(d)は両末端に重合性炭素-炭素二重結合を有しており、含フッ素重合体(D)は上記式(d-1)で表される単位(d-1)を有する。単量体(a)に基づく単位は環を構成しないエーテル性酸素原子を有するが、単位(d-1)はエーテル性酸素原子が環構造内にのみ存在する。
 単量体(a)のホモポリマーである含フッ素化合物(A1-1)を用いた例1と、含フッ素化合物(D)を用いた例6とを比較すると、例6の方が膜の屈折率がやや高い。このことからエーテル性酸素原子を有していても、それが環構造内に存在すると屈折率低減効果が小さいことがわかる。
Monomer (a) has only one polymerizable carbon-carbon double bond, whereas monomer (d) has a polymerizable carbon-carbon double bond at both ends, The fluoropolymer (D) has a unit (d-1) represented by the above formula (d-1). The unit based on the monomer (a) has an etheric oxygen atom that does not form a ring, but the unit (d-1) has an etheric oxygen atom only in the ring structure.
Comparing Example 1 using the fluorine-containing compound (A1-1), which is a homopolymer of the monomer (a), with Example 6 using the fluorine-containing compound (D), the film of Example 6 is more refracted. The rate is slightly high. This shows that even if it has an etheric oxygen atom, if it exists in the ring structure, the refractive index reducing effect is small.
 以上のことから、含フッ素化合物(A1)において、重合体中の単位が、C、O、Fのみから構成されており、環を構成しないエーテル性酸素原子を有するとともに末端が-CFである側鎖を有することが、低屈折率を実現するために重要であることがわかる。また含フッ素重合体中に水酸基やカルボキシ基等の、193nm付近の光を吸収する高極性官能基が存在しないことが、低屈折率化において好ましいことがわかる。 From the above, in the fluorine-containing compound (A1), the unit in the polymer is composed only of C, O, and F, has an etheric oxygen atom that does not constitute a ring, and the terminal is —CF 3 . It can be seen that having side chains is important for achieving a low refractive index. It can also be seen that it is preferable in reducing the refractive index that the fluorine-containing polymer does not have a highly polar functional group such as a hydroxyl group or a carboxy group that absorbs light near 193 nm.
 例4、5の含フッ素化合物(A2-1)、(A2-2)はいずれもペルフルオロポリエーテル骨格を主鎖に有する化合物である。
 主鎖末端が水酸基である含フッ素化合物(A2-1)を用いた例4、および主鎖末端がペルフルオロアルキル基である含フッ素化合物(A2-2)を用いた例5のいずれにおいても、屈折率が1.34と充分に低い膜が得られた。
 これらの結果から、ペルフルオロポリエーテル骨格を主鎖に有する含フッ素化合物は屈折率が低く、主鎖末端基の膜の屈折率への影響は小さいことがわかる。
The fluorine-containing compounds (A2-1) and (A2-2) in Examples 4 and 5 are both compounds having a perfluoropolyether skeleton in the main chain.
In both Example 4 using the fluorine-containing compound (A2-1) whose main chain terminal is a hydroxyl group and Example 5 using the fluorine-containing compound (A2-2) whose main chain terminal is a perfluoroalkyl group, refraction A film having a sufficiently low rate of 1.34 was obtained.
From these results, it is understood that the fluorine-containing compound having a perfluoropolyether skeleton in the main chain has a low refractive index, and the influence of the main chain end group on the refractive index of the film is small.
 表1の膜厚の結果に注目すると、含フッ素溶媒である溶媒(1)を用いた例1~7および9は、水とIPAの混合物である溶媒(3)を用いた例8に比べて、コーティング用組成物中の重合体濃度が同じであるにもかかわらず、膜厚が大きくなった。
 これは、溶媒(1)の沸点が水またはIPAのいずれよりも高く、かつ溶媒(1)の表面張力が水またはIPAのいずれよりも低いためと考えられる。つまり、スピンコート液の溶媒として溶媒(1)を使用した場合は、シリコンウェハ上にスピンコート液が広がりやすく、かつシリコンウェハ上に広がったスピンコート液が蒸発しにくいため、スピンコート液がシリコンウェハを覆った状態で存在する時間が長くなり、その結果、膜厚が増大すると考えられる。
Paying attention to the film thickness results in Table 1, Examples 1 to 7 and 9 using the solvent (1) which is a fluorine-containing solvent are compared with Example 8 using a solvent (3) which is a mixture of water and IPA. The film thickness increased despite the polymer concentration in the coating composition being the same.
This is presumably because the boiling point of the solvent (1) is higher than either water or IPA, and the surface tension of the solvent (1) is lower than either water or IPA. In other words, when the solvent (1) is used as the solvent for the spin coating solution, the spin coating solution tends to spread on the silicon wafer and the spin coating solution spread on the silicon wafer is difficult to evaporate. It is considered that the time that the wafer is covered becomes longer, and as a result, the film thickness increases.
 表1の貯蔵安定性の結果に注目すると、含フッ素溶媒である溶媒(1)を用いた例1~7および9では良好な貯蔵安定性が得られた。
 一方、水とIPAの混合物である溶媒(3)を用いた例8は、貯蔵安定性は劣っていた。例8で用いた含フッ素化合物(F-1)は、親水性官能基であるカルボキシ基を有するが、水系の溶媒(3)への溶解性が充分でないことがわかる。
Paying attention to the storage stability results in Table 1, in Examples 1 to 7 and 9 using the solvent (1) which is a fluorine-containing solvent, good storage stability was obtained.
On the other hand, Example 8 using the solvent (3) which is a mixture of water and IPA was inferior in storage stability. It can be seen that the fluorine-containing compound (F-1) used in Example 8 has a carboxy group which is a hydrophilic functional group but is not sufficiently soluble in an aqueous solvent (3).
 表1のレジスト溶解性の結果に注目すると、例1~7および9の含フッ素化合物溶液(コーティング用組成物)をレジスト膜に接触させてもレジスト膜表面に変化は見られなかった。
 一方、水とIPAの混合物である溶媒(3)を用いた例8の含フッ素化合物溶液(コーティング用組成物)を、同様にレジスト膜に接触させたところ、レジスト膜表面に荒れ(ムラ等)が生じた。
Paying attention to the results of resist solubility in Table 1, no change was observed on the resist film surface even when the fluorine-containing compound solutions (coating compositions) of Examples 1 to 7 and 9 were brought into contact with the resist film.
On the other hand, when the fluorine-containing compound solution (coating composition) of Example 8 using the solvent (3) which is a mixture of water and IPA was similarly brought into contact with the resist film, the resist film surface was roughened (unevenness, etc.). Occurred.
 本発明のコーティング用組成物は、フォトリソグラフィにおいて反射防止膜を形成するための組成物として有用である。特に、ArFエキシマレーザ(193nm)を用いたフォトリソグラフィにおいて適した屈折率を有する反射防止膜を形成することができる。
 なお、2015年5月28日に出願された日本特許出願2015-108897号および2015年8月7日に出願された日本特許出願2015-157194号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The coating composition of the present invention is useful as a composition for forming an antireflection film in photolithography. In particular, an antireflection film having a refractive index suitable for photolithography using an ArF excimer laser (193 nm) can be formed.
It should be noted that the description, claims, abstract and drawings of Japanese Patent Application No. 2015-108897 filed on May 28, 2015 and Japanese Patent Application No. 2015-157194 filed on August 7, 2015. Is hereby incorporated by reference as a disclosure of the specification of the present invention.

Claims (12)

  1.  下記含フッ素化合物(A1)および下記含フッ素化合物(A2)から選ばれる少なくとも1種の含フッ素化合物を含有することを特徴とするコーティング用組成物。
     含フッ素化合物(A1):下記単位(I)から選ばれる1種の単位のみからなる重合体であって、数平均分子量が1,000~50,000である重合体。
     単位(I):重合性炭素-炭素二重結合を1個のみ有する単量体に基づく単位であって、炭素原子、酸素原子およびフッ素原子のみで構成され、1以上の側鎖を有し、少なくとも1つの側鎖は、環を構成しないエーテル性酸素原子を1以上含み、かつ末端が-CFである、単位。
     含フッ素化合物(A2):主鎖にペルフルオロポリエーテル骨格を有する、数平均分子量が1,000~50,000である化合物。
    A coating composition comprising at least one fluorine-containing compound selected from the following fluorine-containing compound (A1) and the following fluorine-containing compound (A2).
    Fluorine-containing compound (A1): A polymer comprising only one unit selected from the following units (I), and having a number average molecular weight of 1,000 to 50,000.
    Unit (I): a unit based on a monomer having only one polymerizable carbon-carbon double bond, composed of only carbon, oxygen and fluorine atoms, and having one or more side chains, The unit in which at least one side chain contains one or more etheric oxygen atoms that do not constitute a ring, and the terminal is —CF 3 .
    Fluorine-containing compound (A2): A compound having a perfluoropolyether skeleton in the main chain and a number average molecular weight of 1,000 to 50,000.
  2.  さらに溶媒を含む、請求項1に記載のコーティング用組成物。 The coating composition according to claim 1, further comprising a solvent.
  3.  コーティング用組成物中の溶媒の含有量が70~99質量%である、請求項2に記載のコーティング用組成物。 The coating composition according to claim 2, wherein the content of the solvent in the coating composition is 70 to 99% by mass.
  4.   前記単位(I)が下式(i)で表される単位である、請求項1~3のいずれか一項に記載のコーティング用組成物。
     -[CX-CX]- …(i)
     (式中、X、X、X、Xのうちの少なくとも1個は、それぞれ独立に、環を構成しないエーテル性酸素原子を1~4個含む炭素数1~12のペルフルオロ飽和炭化水素基を示し(ただし、前記エーテル性酸素原子の数は炭素数以下である。)、他は、環を構成しないエーテル性酸素原子を含まない炭素数1~12のペルフルオロ飽和炭化水素基、またはフッ素原子を示す。)
    The coating composition according to any one of claims 1 to 3, wherein the unit (I) is a unit represented by the following formula (i).
    -[CX 1 X 2 -CX 3 X 4 ]-(i)
    (In the formula, at least one of X 1 , X 2 , X 3 , and X 4 independently represents a C 1-12 perfluoro saturated carbon atom containing 1 to 4 etheric oxygen atoms that do not constitute a ring. A hydrogen group (wherein the number of etheric oxygen atoms is less than or equal to the number of carbon atoms), and the other is a perfluoro saturated hydrocarbon group having 1 to 12 carbon atoms not containing an etheric oxygen atom that does not form a ring, or Indicates a fluorine atom.)
  5.  X、X、X、Xのうちの少なくとも1個が、-O-Rf基(Rf基は炭素-炭素原子間にエーテル性酸素原子を0~3個含む炭素数1~12のペルフルオロ飽和炭化水素基である。)である、請求項4に記載のコーティング用組成物。 At least one of X 1 , X 2 , X 3 and X 4 is a —O—Rf 1 group (the Rf 1 group is a group having 1 to 3 carbon atoms containing 0 to 3 etheric oxygen atoms between carbon-carbon atoms). The coating composition according to claim 4, which is 12 perfluoro saturated hydrocarbon groups.
  6.  X、X、X、Xのうちの1個が-O-Rf基であり、他の3個がフッ素原子である、請求項5に記載のコーティング用組成物。 6. The coating composition according to claim 5, wherein one of X 1 , X 2 , X 3 and X 4 is a —O—Rf 1 group, and the other 3 are fluorine atoms.
  7.  前記含フッ素化合物(A1)の193nmにおける屈折率が1.32~1.36である、請求項1~6のいずれか一項に記載のコーティング用組成物。 The coating composition according to any one of claims 1 to 6, wherein the fluorine-containing compound (A1) has a refractive index at 193 nm of 1.32 to 1.36.
  8.  前記含フッ素化合物(A2)が下式(II)で表される化合物である、請求項1~3のいずれか一項に記載のコーティング用組成物。
     Y-O-(C2nO)-Z …(II)
     (式中、Y、Zはそれぞれ独立に1価の有機基(ただし、Yは-O-と結合する側の原子が酸素原子でなく、Zは-(C2nO)-と結合する側の原子が酸素原子ではない。)を示し、nは1~5の整数を示し、mは2~200の整数を示し、mが2以上のとき、1分子中に存在する複数の(C2nO)は互いに同じであってもよく、異なってもよい。)
    The coating composition according to any one of claims 1 to 3, wherein the fluorine-containing compound (A2) is a compound represented by the following formula (II).
    Y—O— (C n F 2n O) m —Z (II)
    Wherein Y and Z are each independently a monovalent organic group (wherein Y is not an oxygen atom on the side bonded to —O—, and Z is bonded to — (C n F 2n O) m —) And n is an integer of 1 to 5, m is an integer of 2 to 200, and when m is 2 or more, a plurality of ( C n F 2n O) may be the same or different from each other.
  9.  前記含フッ素化合物(A2)の193nmにおける屈折率が1.32~1.36である、請求項1、2、3または8に記載のコーティング用組成物。 The coating composition according to claim 1, 2, 3, or 8, wherein the fluorine-containing compound (A2) has a refractive index of 1.32 to 1.36 at 193 nm.
  10.  前記溶媒が含フッ素溶媒である、請求項1~9のいずれか一項に記載のコーティング用組成物。 The coating composition according to any one of claims 1 to 9, wherein the solvent is a fluorine-containing solvent.
  11.  前記含フッ素溶媒のフッ素原子含有量が65質量%以上である、請求項10に記載のコーティング用組成物。 The coating composition according to claim 10, wherein the fluorine atom content of the fluorine-containing solvent is 65% by mass or more.
  12.  フォトレジスト層の表面上に反射防止膜が設けられたフォトレジスト積層体を製造する方法であって、フォトレジスト層の表面上に、請求項1~11のいずれか一項に記載のコーティング用組成物を塗布して該コーティング用組成物からなる塗膜を形成し、塗膜が溶媒を含む場合は次いで前記塗膜から溶媒を除去することを特徴とするフォトレジスト積層体の製造方法。 A method for producing a photoresist laminate in which an antireflection film is provided on the surface of a photoresist layer, the composition for coating according to any one of claims 1 to 11 on the surface of the photoresist layer. A method for producing a photoresist laminate, comprising: forming a coating film comprising the coating composition by coating an object, and then removing the solvent from the coating film when the coating film contains a solvent.
PCT/JP2016/064921 2015-05-28 2016-05-19 Coating composition and process for producing layered photoresist object WO2016190221A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015108897 2015-05-28
JP2015-108897 2015-05-28
JP2015-157194 2015-08-07
JP2015157194A JP2018119019A (en) 2015-05-28 2015-08-07 Coating composition and production method of photoresist laminate

Publications (1)

Publication Number Publication Date
WO2016190221A1 true WO2016190221A1 (en) 2016-12-01

Family

ID=57392750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064921 WO2016190221A1 (en) 2015-05-28 2016-05-19 Coating composition and process for producing layered photoresist object

Country Status (2)

Country Link
TW (1) TW201708440A (en)
WO (1) WO2016190221A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167849A (en) * 1983-03-11 1984-09-21 Hitachi Maxell Ltd Magnetic recording medium
JPS6262520A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Pattern forming method
JPH04202278A (en) * 1990-11-29 1992-07-23 Tosoh Corp Coating material composition
JPH05241332A (en) * 1992-02-26 1993-09-21 Tokyo Ohka Kogyo Co Ltd Resist material
JPH0641768A (en) * 1992-07-23 1994-02-15 Shin Etsu Chem Co Ltd Antireflecting material and method for forming resist pattern using same
JPH0844066A (en) * 1994-08-01 1996-02-16 Mitsubishi Chem Corp Surface antireflection coating composition
WO2003087176A1 (en) * 2002-04-05 2003-10-23 3M Innovative Properties Company Dispersions containing perfluorovinyl ether homopolymers and use thereof
JP2006160988A (en) * 2004-12-10 2006-06-22 Asahi Glass Co Ltd Fluorine-containing polymer, method for producing the same and resist protective coat composition
JP2008129519A (en) * 2006-11-24 2008-06-05 Asahi Glass Co Ltd Polymer for resist protective film and method of forming resist pattern
JP2008255328A (en) * 2007-03-14 2008-10-23 Kanto Denka Kogyo Co Ltd Fluorine-containing random copolymer, and method of manufacturing the same
JP2011170208A (en) * 2010-02-19 2011-09-01 Dainippon Printing Co Ltd Antireflection film
JP2012173501A (en) * 2011-02-21 2012-09-10 Asahi Glass Co Ltd Resist protective film composition for immersion exposure and method for forming resist pattern

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59167849A (en) * 1983-03-11 1984-09-21 Hitachi Maxell Ltd Magnetic recording medium
JPS6262520A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Pattern forming method
JPH04202278A (en) * 1990-11-29 1992-07-23 Tosoh Corp Coating material composition
JPH05241332A (en) * 1992-02-26 1993-09-21 Tokyo Ohka Kogyo Co Ltd Resist material
JPH0641768A (en) * 1992-07-23 1994-02-15 Shin Etsu Chem Co Ltd Antireflecting material and method for forming resist pattern using same
JPH0844066A (en) * 1994-08-01 1996-02-16 Mitsubishi Chem Corp Surface antireflection coating composition
WO2003087176A1 (en) * 2002-04-05 2003-10-23 3M Innovative Properties Company Dispersions containing perfluorovinyl ether homopolymers and use thereof
JP2006160988A (en) * 2004-12-10 2006-06-22 Asahi Glass Co Ltd Fluorine-containing polymer, method for producing the same and resist protective coat composition
JP2008129519A (en) * 2006-11-24 2008-06-05 Asahi Glass Co Ltd Polymer for resist protective film and method of forming resist pattern
JP2008255328A (en) * 2007-03-14 2008-10-23 Kanto Denka Kogyo Co Ltd Fluorine-containing random copolymer, and method of manufacturing the same
JP2011170208A (en) * 2010-02-19 2011-09-01 Dainippon Printing Co Ltd Antireflection film
JP2012173501A (en) * 2011-02-21 2012-09-10 Asahi Glass Co Ltd Resist protective film composition for immersion exposure and method for forming resist pattern

Also Published As

Publication number Publication date
TW201708440A (en) 2017-03-01

Similar Documents

Publication Publication Date Title
US8163813B2 (en) Photocurable composition and method for producing molded product with fine pattern
EP1238310A1 (en) Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
JP2952962B2 (en) Pollution prevention equipment
TW500972B (en) Pellicle
WO2006011427A1 (en) Fluorine-containing compound, fluorine-containing polymer, resist composition and resist protective film composition
TW201422690A (en) An amorphous fluorine-containing resin composition and a manufacturing method of thin films
WO2015002008A1 (en) Method for producing fluorine-containing polymer
US6824930B1 (en) Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
CN101014633A (en) Fluorochemical having hydrolyzable metal alkoxide moiety, curable fluoropolymer obtained from the compound, and curable fluororesin composition containing the polymer
US6770404B1 (en) Ultraviolet and vacuum ultraviolet transparent polymer compositions and their uses
WO2002066526A1 (en) Ethylenic fluoromonomer containing hydroxyl or fluoroalkylcarbonyl group and fluoropolymer obtained by polymerizing the same
KR20080108459A (en) Material of the resist-protecting membrane for immersion lithography
WO2015080061A1 (en) Coating composition, and method for producing photoresist laminate
JP2018119019A (en) Coating composition and production method of photoresist laminate
JP2016089050A (en) Coating composition and production method of photoresist laminate
JP5124966B2 (en) Resist pattern formation method
WO2016190221A1 (en) Coating composition and process for producing layered photoresist object
JPH04226177A (en) Fluoropolymer coating composition and its use
KR20090122201A (en) Composition for antireflective coating
JP6881452B2 (en) Method for producing coating composition and method for producing photoresist laminate
JPWO2005095471A1 (en) NOVEL FLUORINE-CONTAINING POLYMER AND METHOD FOR PRODUCING THE SAME
JP2003057803A (en) Pellicle film for lithography
JP2999503B2 (en) Resin composition for coating
JP2019085451A (en) Fluorine-containing polymer and curable composition
JP6848547B2 (en) Method for producing coating composition and photoresist laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP