WO2016186762A1 - Vortex tube reformer for hydrogen production, separation, and integrated use - Google Patents

Vortex tube reformer for hydrogen production, separation, and integrated use Download PDF

Info

Publication number
WO2016186762A1
WO2016186762A1 PCT/US2016/027442 US2016027442W WO2016186762A1 WO 2016186762 A1 WO2016186762 A1 WO 2016186762A1 US 2016027442 W US2016027442 W US 2016027442W WO 2016186762 A1 WO2016186762 A1 WO 2016186762A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
vortex tube
tube
vortex
assembly
Prior art date
Application number
PCT/US2016/027442
Other languages
French (fr)
Inventor
Robert Hotto
Original Assignee
Energyield Llc
Rogitz, John L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/715,026 external-priority patent/US9840413B2/en
Priority claimed from US15/078,263 external-priority patent/US9843062B2/en
Application filed by Energyield Llc, Rogitz, John L. filed Critical Energyield Llc
Priority to JP2017559701A priority Critical patent/JP6532544B2/en
Priority to GB1718215.5A priority patent/GB2554276B/en
Priority to CA2983924A priority patent/CA2983924C/en
Priority to CN201680028834.0A priority patent/CN107847897A/en
Priority to DE112016002284.0T priority patent/DE112016002284B4/en
Publication of WO2016186762A1 publication Critical patent/WO2016186762A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2405Stationary reactors without moving elements inside provoking a turbulent flow of the reactants, such as in cyclones, or having a high Reynolds-number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/243Tubular reactors spirally, concentrically or zigzag wound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/28Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using moving solid particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M33/00Other apparatus for treating combustion-air, fuel or fuel-air mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00076Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00119Heat exchange inside a feeding nozzle or nozzle reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • B01J2219/00772Baffles attached to the reactor wall inclined in a helix
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1642Controlling the product
    • C01B2203/1671Controlling the composition of the product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates generally to vortex tube reformers for syngas production, hydrogen separation and injection to engines and fuel cells.
  • An assembly includes at least one vortex tube having an inlet and a Hydrogen outlet.
  • a reformer mechanism is associated with the vortex tube to remove Hydrogen from Carbon in molecules of hydrocarbon fuel input to the inlet.
  • the reformer mechanism includes a catalytic constituent inside the vortex tube, and/or heated water vapor injected into the vortex tube along with the hydrocarbon fuel.
  • the vortex tube includes a swirl chamber, with the inlet of the vortex tube being into the swirl chamber.
  • the vortex tube can include a main tube segment communicating with the swirl chamber and having an outlet different from the hydrogen outlet.
  • a fuel intake of an engine can be in fluid communication with the outlet that is different from the hydrogen outlet of the vortex tube.
  • the outlet that is different from the hydrogen outlet can be juxtaposed with an inside surface of a wall of the main tube segment.
  • a catalytic constituent may be disposed on the inside surface of the wall of the main tube segment.
  • a hydrogen-permeable tube is disposed centrally in the main tube segment and defines the hydrogen outlet at one end of the hydrogen-permeable tube.
  • plural vortex tubes may be provided and arranged in a toroidal configuration, with a first vortex tube in the plural vortex tubes defining the inlet of the vortex tube and providing fluid to an inlet of a next vortex tube in the plural vortex tubes.
  • the engine may be a turbine or an internal combustion engine such as a diesel engine.
  • the inlet of the vortex tube can be in fluid communication with a source of hydrocarbon fuel.
  • the inlet of the vortex tube can be in fluid communication with an exhaust of the engine.
  • a method in another aspect, includes reforming hydrocarbon fuel using at least one vortex tube.
  • the reforming includes removing Hydrogen from Carbon-based constituents in molecules of the hydrocarbon fuel.
  • the vortex is also used to separate the Hydrogen from the Carbon-based constituents to render a Hydrogen stream substantially free of Carbon.
  • the Hydrogen stream is provided to a hydrogen receiver such as a tank or a turbine or an engine.
  • an assembly in another aspect, includes at least a first vortex tube configured for receiving hydrocarbon fuel and separating the hydrocarbon fuel into a first stream and a second stream.
  • the first stream is composed primarily of Hydrogen
  • the second stream includes Carbon such as Carbon-based constituents.
  • At least a first Hydrogen receiver is configured for receiving the first stream.
  • at least a second vortex tube is configured for receiving the second stream from the first vortex tube for separating the second stream into a third stream and a fourth stream.
  • the third stream is composed primarily of Hydrogen for provisioning thereof to the Hydrogen receiver, while the second stream includes Carbon.
  • the Hydrogen receiver can include a hydrogen tank.
  • the Hydrogen receiver may include a fuel cell. Both the first and third streams may be provided to the Hydrogen receiver.
  • the Hydrogen receiver may include a turbine or other engine.
  • At least one heat exchanger is disposed in fluid communication between the vortex tubes and is configured for removing heat from the second stream prior to the second stream being input lo the second vortex tube.
  • at least a first catalytic constituent can be on an inside surface of the first vortex tube and at least a second catalytic constituent can be on an inside surface of the second vortex tube but not on the inside surface of the first vortex tube.
  • the second catalytic constituent may include Copper, and in specific embodiments Zinc and Aluminum may also be on the inside surface of the second vortex tube.
  • a reformer assembly in another aspect, includes at least one vortex tube comprising a swirl chamber having an input and a main tube segment communicating with the swirl chamber and having a first output juxtaposed with an inside surface of a wall of the main tube segment.
  • the first output is for outputting relatively hotter and heavier constituents of fluid provided at the input.
  • At least one catalytic constituent is on the inside surface of the wall of the main tube segment.
  • At least one hydrogen-permeable tube is disposed centrally in the main tube segment and defining a second output at one end of the hydrogen- permeable tube for outputting at least one relatively lighter and cooler constituent of fluid provided at the input.
  • the at least one relatively lighter and cooler constituent may include hydrogen and the relatively hotter and heavier constituents of fluid provided at the input can include carbon.
  • a fuel cell or engine or other Hydrogen receiver such as a tank may be connected to the second output.
  • a system in another aspect, includes at least one fuel cell and at least one vortex tube assembly for receiving hydrocarbon fuel as input and providing hydrogen reformed from the hydrocarbon fuel within the vortex tube to the fuel cell.
  • Figure 1 is a block diagram of an example energy generation system
  • FIG. 2 is a block diagram of an example vortex tube reformer/separator assembly
  • Figure 3 is a schematic diagram of a toroidal vortex tube assembly
  • Figure 4 is a schematic diagram of a vortex tube in an engine system
  • Figure 5 is a schematic diagram of a vortex tube-based Hydrogen-injection system for an engine
  • Figure 6 is a schematic diagram from a transverse view of a vortex tube, illustrating separation;
  • Figures 7*9 are additional schematic diagrams of a vortex tube-based Hydrogen reformer systems:
  • FIG. 10 is a block diagram of an example electrical component subsystem for supporting the vortex tube systems shown in the drawings.
  • Figure 11 is a flow chart of an example process flow of the vortex tube systems shown in the drawings, illustrating logic that may be executed by a processor.
  • Figure 1 shows an actuation system 10, described further below, that in one example imparts energy to a receiver, such as an engine such as an internal combustion engine for a vehicle or in the example shown by imparting torque to a rotor of a turbine 12 to rotate an output shaft of the turbine.
  • the turbine 12 may include a compressor section, a combustion section, and a turbine section in accordance with turbine principles and may also have one or more rotors or shafts which typically are coupled to each other and which may be concentric to each other.
  • FIG. 1 shows that in one implementation, a fuel tank 14 which contains hydrocarbon-based fuel such as but not limited to jet fuel can provide fuel to an intake 16 of the turbine 12.
  • the fuel typically is injected through injectors in the turbine, where it mixes with air compressed by the compressor section of the turbine and ignited in a so-called “flame holder” or “can”.
  • "Intake” refers generally to these portions of the turbine that are preliminary to the turbine blades.
  • the high-pressure mixture is then directed to impinge on turbine blades 18 which are coupled to the output shaft. In this way torque is imparted to the output shaft to cause it to rotate about its axis.
  • the turbine 12 need not be a combustion turbine, and as alluded to above other receivers such as engines in vehicles may be used.
  • the output shaft of (he turbine can be coupled to the rotor of an electrical generator to rotate the generator rotor within an electric field and thus cause the generator to output electricity.
  • the output shaft of the turbine may be coupled to the rotor of an aircraft fan to rotate the tan and thus cause it to generate thrust for propelling a turbofan jet plane.
  • the output shaft of the turbine may be coupled to the rotor of a propulsion component such as the rotor of a helicopter, the shaft of a watercraft on which a propeller is mounted, or a drive shaft of8 land vehicle such as a military tank to rotate the rotor/shaft/drive shaft as the case may be to propel the platform through the air or water or over land, depending on the nature of the conveyance.
  • the propulsion component may include a drive train that can include a combination of components known in the art, e.g., crankshafts, transmissions, axles, and so on.
  • the actuation system 10 may include a reformer assembly 20 which receives fuel from the fuel tank 14. While some embodiments of the reformer assembly may include a reformer and a membrane-type hydrogen separator to separate hydrogen in the reformed product of the reformer from the carbon-based constituents, a vortex tube-based reformer assembly is described further below.
  • the reformer assembly 20 produces hydrogen from the fuel, and the hydrogen is sent to a fuel cell 22, in some cases through a hydrogen tank 24 first as shown. If desired, multiple reformers and/or fuel cells may be used in parallel with each other and/or in series with each other.
  • the fuel cell 22 uses the hydrogen to generate electricity, typically with a relatively high efficiency, by oxidizing the hydrogen with oxygen from, e.g., the ambient atmosphere.
  • the fuel cell 22 may be a polymer exchange membrane fuel cell (PEMFC), a solid oxide fuel cell (SOFC), an alkaline fuel cell (AFC), a molten-carbonate fuel cell (MCFC), a phosphoric-acid fuel cell (PAFC), or a direct-methanol fuel cell (DMFC).
  • PEMFC polymer exchange membrane fuel cell
  • SOFC solid oxide fuel cell
  • AFC alkaline fuel cell
  • MCFC molten-carbonate fuel cell
  • PAFC phosphoric-acid fuel cell
  • DMFC direct-methanol fuel cell
  • electricity from the fuel cell 22 may be sent to an electric motor 26 to cause an output shaft of the motor 26 to turn.
  • the motor shaft is mechanically coupled through a rotor coupling 28 to a rotor of the turbine 12.
  • the turbine/engine rotor to which the motor 26 is coupled is not the same segment of rotor bearing the blades 18, although in some implementations this can be the case, instead, the rotor to which the motor 26 may be coupled may be a segment of the blade rotor that does not bear blades or a rotor separate from the blade rotor and concentric therewith or otherwise coupled thereto.
  • the motor 26, when energized by the fuel cell 22, imparts torque (through appropriate couplings if desired) through a rotor to the output shaft of the turbine 12, which in some cases may be the same shaft as that establishing the rotor.
  • Power from the motor 26 may be provided to components other than the receiver embodied by the turbine.
  • the electrical power produced by the fuel ceil and lurbine/engine may be sent to electrical storage, such as a battery .system, or to a power load such as the electrical distribution grid of a municipality.
  • output of the fuel cell such as water in the form of steam produced by the fuel cell 22 may be mixed with hydrocarbon that is input to the reformer assembly 20 in a mixer 30, which may be a tank or simple pipe or other void in which the water and carbon can mix, with the mixture then being directed (through, e.g., appropriate piping or ducting) to the turbine intake 16.
  • a mixer 30 may be a tank or simple pipe or other void in which the water and carbon can mix, with the mixture then being directed (through, e.g., appropriate piping or ducting) to the turbine intake 16.
  • surfactant from a surfactant tank 32 may also be added to the steam/carbon mixture.
  • the steam from the fuel cell may be sent to the reformer assembly described below without mixing the steam with carbon and/or without mixing the steam with surfactant
  • the steam/carbon mixture may supplement fuel injection directly from the fuel tank 14 to the intake 16, or replace altogether fuel injection directly from the fuel tank 14 to the intake 16.
  • electricity produced by the fuel cell 22 may be used not only to actuate the electric motor 26 (or provide power to a battery storage or the grid) but also to provide ignition current for the appropriate components in the turbine or engine 12.
  • electricity from the fuel cell may be used for other auxiliary purposes, e.g., in addition to actuating the electric motor, powering other electrical appliances.
  • these fluids may also be directed to heat exchangers associated with or coupled to the reformer and a steam generator.
  • water can be returned from the fuel cell 22 if desired to the reformer assembly 20 through a water line 34.
  • heat from the receiver e.g., from the turbine 12
  • FIG. 2 illustrates a vortex tube-based reformer assembly 20.
  • the assembly 20 may include a steam reservoir 200 and a fuel reservoir 202.
  • the steam reservoir 200 and fuel reservoir 202 may be heat exchangers, schematically depicted by illustrating a respective outer heating chamber 200a, 202a surrounding a respective inner fluid chamber 200b, 202b, with the heat in each outer heat exchange chamber heating the fluid in the respective inner fluid chamber.
  • Heat may be supplied to each heat exchange chamber 200a, 202a via the exhaust line 36 from the exhaust of the receiver of Figure 1 , e.g., the turbine 12.
  • initial water or steam for startup may be supplied to the intake side of an optional impeller 204 or other fluid movement device until such time as the initial water or steam may be supplemented and preferably superseded by steam exhaust from the fuel cell 22 via the line 34 as shown.
  • Initial startup heat may also be provided, e.g., from an electric heating element 206 in the heat exchange chamber 200a of the fluid reservoir 200, from exhaust heat from the turbine or engine, or from some other source of heat until such time as the startup heat may be supplemented and preferably superseded by exhaust heat from the receiver (e.g., turbine 12) via the exhaust line 36 as shown.
  • the initial water heated into steam for startup and the steam from the fuel cell during operation are sent to a mixer/injector reservoir 208, under the influence of the impeller 204 when provided or simply under steam pressure within the inner fluid chamber 200b.
  • hydrocarbon fuel such as but not limited to natural gas may be supplied from the fuel tank 14 to the intake side of an optional impeller 210 or other fluid movement device.
  • Initial startup heat may also be provided, e.g., from an electric heating element 212 in the heat exchange chamber 202a of the fuel reservoir 202 or from some other source of heat until such time as the startup heat may be supplemented and preferably superseded by exhaust heat from the receiver (e.g., turbine 12) via the exhaust line 36 as shown.
  • the heated fuel in the fluid chamber 202b of the fuel reservoir 202 preferably scrubbed of sulfur by desu!furizer sorbent elements 213 that may be provided on the inside wall of the fuel chamber, is sent to the mixer/injector reservoir 208, under the influence of the impeller 210 when provided or simply under fluid pressure within the inner fluid chamber 202b.
  • the fuel may not be heated prior to provision to the mixer/injector 208.
  • the steam in the steam reservoir 200 and/or fuel in the fuel reservoir 202 may be heated to six hundred degrees Celsius (600° C) to one thousand one hundred degrees Celsius ( 1100° C) at a pressure of three atmospheres to thirty atmospheres (3 arm - 30 atm). More generally, the reaction temperatures applied to the hydrocarbon and steam mixtures can proceed from a low temperature of 300C up to 1200C. These temperatures can be optimized for the input hydrocarbon feed type, the duty transit time of the process through the reaction tube, and the applied pressures caused by the turbulent flow such the vortex generated in the reaction tube.
  • the mixer/injector 208 mixes the steam from the steam reservoir 200 with the fuel from the fuel reservoir 202.
  • the mixing may be accomplished under the influence of the turbidity of the respective fluids as they enter the mixer/injector 208 and/or by additional mixing components such as rotating impellers within the mixer/injector 208 and/or by other suitable means.
  • the mixer/injector 208 injects the mixed steam and fuel into a vortex tube 214, e.g., through fuel injectors or simply through a port and fluid line under the influence of fluid pressure within the mixer.
  • the vortex tube 214 which also may be known as a Ranque-Hiisch vortex tube, is a mechanical device that separates a compressed fluid into hot and cold streams. It typically has no moving parts.
  • the pressurized mixture of steam and fuel from the mixer/injector 208 is injected, preferably tangentially, into a swirl chamber 2)6 of the vortex tube 214, and accelerated to a high rate of rotation by the cooperation of geometry between the swirl chamber 216 and cylindrical wall of a main tube segment 218 that is oriented perpendicular to the input axis of the swirl chamber 216 as shown.
  • a first conical nozzle 220 may be provided at one end of the vortex tube 214 so that only the outer shell of the compressed gas is allowed to escape at that end.
  • the opening at this end thus is annular with its central part blocked (eg., by a valve as described further below) so that the remainder of the gas is forced to return back through the main inner tube 218 toward the swirl chamber 216 in an inner vortex of reduced diameter that is substantially coaxial with the main tube segment 218 as shown.
  • the inner vortex can be enclosed in a hydrogen-permeable tube 222 that leads to a hydrogen output 224, which may be established by a second conical nozzle.
  • the hydrogen- permeable tube 222 when provided, preferably is impermeable to carbon-based constituents.
  • the tube 222 may include Palladium.
  • a catalyzing layer 226 may be formed on or made integral with the inside surface of at least the main inner tube 218 to attract carbon-based constituents to the outer circumference of the passageway formed by the main inner tube.
  • the catalyzing layer may include nickel and/or platinum and/or rhodium and/or palladium and/or gold and/or copper.
  • the tube 218 may be composed of the catalyzing layer or the layer 226 may be added to a tube substrate as by, e.g., vapor deposition of the catalyzing layer 226 onto the tube substrate, which may be ceramic.
  • the cooperation of structure of the vortex tube 214 forces relatively cooler hydrogen from the input fuel toward the axis of the main tube 218 into the hydrogen-permeable tube 222 when provided, and left looking down at Figure 2 along the axis of the main tube 218, while forcing the relatively heavier and hotter carbon-based constituents of the fuel outward against the catalytic layer 226 and right looking down at Figure 2.
  • the fuel is both chemically reformed into hydrogen and carbon-based constituents and the hydrogen is physically separated from the carbon-based constituents for provisioning to the fuel cell 22.
  • an evacuation mechanism such as a vacuum pump 228 may be provided to aid in withdrawing hydrogen from the hydrogen output 224 of the vortex tube 214.
  • the hydrogen may be passed through a water gas shift reactor (VYSGR) 230 to further purify the hydrogen, prior to provisioning to the fuel cell 22. Examples of vortex tube-based WGSR embodiments are discussed further below.
  • the carbon-based constituents of the fuel are sent out of the right side of the main tube 218 of the vortex tube 214 to the receiver, e.g., the turbine 12, in some cases via the mixer 30 shown in Figure 1.
  • Fuel cells typically work better when the hydrogen input to them is relatively cooler than that produced by conventional reformers, which consequently may require cooling. Moreover, it may be difficult to employ certain hydrogen cooling techniques such as WGSR with extremely high temperature hydrogen from a conventional reformer, meaning the hydrogen may require significant cooling.
  • WGSR hydrogen cooling techniques
  • the generated vortex provides centrifugal spinning action which is applied to the gases in a circular tube, initially to the hydrocarbon and steam, which tangentially presses at higher pressures and temperatures against the walls of the catalyst-lined main tube 218 » enhancing the rate of reforming. This is due to the higher temperatures and pressures on the on (he more massive molecular gases (the hydrocarbons and steam) imposed by the swirling motion contacting the walls of the catalyst lined tube.
  • the input hydrocarbon gas mixture differentiates or stratifies axial ly in (he tube according to gas densities.
  • the hydrocarbons and the steam being the densest congregate at the inside wall of the tube and the hydrogen having the lowest density will move towards the center of the vortex.
  • the higher momentums are imparted to the heavier gases, the longest chain hydrocarbons and the steam, which collide with high force and in high densities with the catalyst-lined wall of the tube. This optimizes compliance and the interface between the hydrocarbon, the steam and the catalyst for a given pressure.
  • the hydrogen gases which are less massive, are pulled toward the center of the vortex, toward the lower pressure zone, away from the peripheral. This effect, moving the hydrogen away from the peripheral, improves the access path to the catalyst for the heavier hydrocarbons, steam, and carbon oxides.
  • the hydrogen is separated and drawn to the center of the vortex due to its lower density and it is further drawn into the walls of the hydrogen permeable separation tube due to the negative pressure applied to the tube.
  • the drawing off or harvesting of hydrogen from the ongoing reforming further improves the dynamic chemical reactions in conjunction with catalyst by depleting hydrogen, limiting unfavorable hydrogen reversible reactions. This increases the hydrogen to carbon production ratio
  • the product of the reformation reaction (syngas) is continually tapped during the transit time along the vortex tube providing the purified output streams and further changing the equilibrium balance of the ongoing reaction to improve the amount of hydrogen produced.
  • the vortex cyclonic action may be applied to the injected hydrocarbon and steam feeds by means of propeller, or pump which a causes the heavy hydrocarbon base gases and steam towards the tube walls. This action causes reforming of some of the hydrocarbons impinging on the catalysts, ejecting hydrogen and carbon monoxide. These two gases being lighter than the CH4 are propelled towards the center of the vortex away from the wall of the vortex tube.
  • the separated output streams consisting of hydrogen on the one hand and steam, carbon monoxide, carbon dioxide, and trace impurities on the other are individually tapped and fed to respective output streams.
  • the production and the separation of the output fuels streams are both enhanced by means of the vortex action in the reaction tube and the progressive removal of the fractional products, such as hydrogen, which farther provides dynamic optimization due to the continuous non equilibrium conditions.
  • the vortex tube may include fuel and steam injectors, heating inputs, heat exchangers, high shear turbulent mixers, filters, and output stream taps.
  • the output hydrogen and some steam can be fed to the fuel cell 22, with carbon-based constituents and some steam being fed to the receiver.
  • most of the steam and heaver fractional hydrocarbons can be fed back into the vortex tube or a plurality of vortex tubes.
  • FIG 3 illustrates an embodiment in which plural vortex tubes arc arranged in an endless loop 300, referred to herein as a "toroidal" configuration without implying that the endless loop is perfectly round.
  • Each vortex tube may be substantially identical in construction and operation to the vortex tube 214 in Figure 2.
  • fuel may be input to an initial vortex tube 302, the hydrogen output from the hydrogen permeable tube of which is sent as input to the swirl chamber of the next vortex tube 304, whose hydrogen output in turn is provided as input to the next vortex tube.
  • W N" vortex tubes may this be arranged in series in the configuration 300, with "N” being an integer (in the example shown, NTM8) and with the hydrogen output of the N* vortex tube 306 being scnt to the fuel cell 22. in this way, the hydrogen is successively separated into ever-more- pure input for the fuel cell, while the carbon-based constituents output from each vortex tube can he individually withdrawn from each tube and sent to the receiver, as indicated by the * 'N" arrows 308.
  • the configuration 300 of Figure 3 may be used in the system shown in Figure 2, with the initial vortex tube 302 receiving fuel from the mixer/injector 208 and sending hydrogen from the hydrogen output 224 to the swirl chamber input of the next vortex tube, and with the hydrogen output of the N* vortex tube 306 being sent to the fuel cell 22 via the vacuum pump 228 and WSGR 230.
  • Carbon-based constituents from each vortex tube of Figure 3 may be sent to the mixer/rcccivcr 30/12.
  • the carbon output of each tube is sent to the input of the next tube with the hydrogen outputs of each tube being individually directed out of the toroidal configuration 300 and sent to the fuel cell.
  • FIG. 4 illustrates a vortex tube 400 that may be established by a vortex tube or tubes described above and shown in Figures 2 or 3.
  • the vortex tube 400 of Figure 4 may include at least one inlet 402 at least one hydrogen outlet 404 as shown, with at least one engine 406 such as a diescl engine having an input port 408 in fluid communication with the hydrogen outlet 404 of the vortex tube 400.
  • engine 406 such as a diescl engine having an input port 408 in fluid communication with the hydrogen outlet 404 of the vortex tube 400.
  • hydrogen produced by the reforming within the vortex tube 400 is provided as hydrogen injection or enhancement to the engine 406, in which the hydrogen may be combined with diescl fuel from a tank 410 and received at a fuel intake 412 of the engine.
  • the hydrogen inlet 408 of the engine 406 may be separate from the fuel intake 412 or it may be the same or in the same mechanical assembly as the fuel intake 412.
  • the vortex tube 400 may typically include a swirl chamber into which hydrocarbon is provided through the inlet 402 and a main tube segment communicating with the swirl chamber and having an outlet 414 that is different from the hydrogen outlet 404.
  • the fuel intake 412 of the engine 406 is in fluid communication with the outlet 414 to receive hydrogen-depleted reformat c from the vortex tube 400.
  • the outlet 414 typically is juxtaposed with an inside surface of a wall of the main tube segment, onto which at least one catalytic constituent may be disposed.
  • the vortex tube 400 may include a hydrogen-permeable tube disposed centrally in the main tube segment and defining the hydrogen outlet 404 at one end of the hydrogen-permeable tube.
  • the vortex tube 400 in Figure 4 may represent an assembly established by the plural vortex tubes arranged in a toroidal configuration of Figure 3.
  • a vortex tube outlet conduit 416 communicates with the vortex tube outlet 414 to convey hydrogen-depleted reformate to an engine fuel supply conduit 418 that connects the fuel tank 410 to the fuel intake 412 of the engine.
  • the vortex tube outlet conduit 416 extends from the vortex tube outlet 414 directly to the fuel intake 412 of the engine 406 without joining the fuel supply conduit 418.
  • the inlet 402 of the vortex tube 400 can be in fluid communication with the fuel tank 410 through a fuel tank supply conduit 420. to receive hydrocarbon fuel to be reformed.
  • the inlet 402 of the vortex tube 400 may be in fluid communication with the exhaust system 422 of the engine 406 to receive, through a vehicle exhaust conduit 424, a hydrocarbon stream to be reformed.
  • a vehicle exhaust conduit 424 can join the fuel tank supply conduit 420 so that only a single inlet opening need be provided in the vortex tube 400.
  • the vehicle exhaust conduit 424 can extend from the vehicle exhaust 422 directly to the inlet 402 and similarly the fuel tank supply conduit 420 can extend from the fuel tank 410 directly to the inlet 402.
  • Figure 4 also illustrates optional valves that are depicted in Figure 4 as being electronically-operated valves that can be controlled by the engine control module (ECM) 426 of the engine 406 (typically a component of the engine 406 but not housed within combustion portions of the engine 406).
  • ECM engine control module
  • one or more of the valves shown may be check valves that permit one-way flow only in the directions indicated by the respective arrows next to the respective valves.
  • a hydrogen outlet valve 428 may be disposed in a hydrogen outlet conduit 430 that extends from the hydrogen outlet 404 of the vortex tube 400.
  • the hydrogen outlet valve 428 is upstream of an outlet assembly 432 that may includc, e.g., the pump 228 and WGSR 230 shown in Figure 2.
  • the hydrogen outlet valve 428 may be downstream of the assembly 432.
  • An engine exhaust vortex tube supply valve 434 may be provided in the vehicle exhaust conduit 424 as shown, preferably upstream of where the fuel tank supply conduit 420 joins the exhaust conduit 424.
  • a fuel tank vortex tube supply valve 436 may be provided in the fuel tank supply conduit 420. Ihe vortex tube supply valves 434, 436 may be controlled by the ECM 426 to selectively control which source or sources of hydrocarbon are provided to the vortex tube 400.
  • first and second engine supply valves 438, 440 may be respectively provided in the vortex tube outlet conduit 416 and fuel supply conduit 418.
  • the second engine supply valve 440 in the fuel supply conduit 418 is provided downstream of where the fuel tank supply conduit 420 that provides fuel to the vortex tube taps into the fuel supply conduit 418, so that the second engine supply valve 440 and the fuel tank vortex tube supply valve 436 can be shut to isolate their respective conduits as desired without affecting the other conduit.
  • the vortex tube 400 reforms hydrocarbon fuel and/or exhaust from an engine, separating hydrogen from carbon-based constituents during the reforming, with hydrogen separated as a result of the reforming being provided to the engine 406.
  • FIGS shows a specific system in which the discussion above is incorporated.
  • a vortex tube 500 receives, through a mixer 502, hydrocarbon fuel such as gasoline or diesel from a fuel tank 504, e.g.. from the gas tank of a vehicle in which the system shown in Figure 5 is disposed. Any of the above-described vortex tubes may be used.
  • the steam mixer/injector 502 mixes the steam with the hydrocarbon and injects the mixture at a high-pressure into the vortex tube inlet.
  • the vortex generator established by the vortex tube 500, which causes the input mixture to swirl at a high rate and travel (right, looking down on Figure 5) toward the Carbon end of the tube 500, swirling along the inside peripheral of the tube at a high rate, pressure, and temperature in contact with the catalyst coating the inside surface of the tube as described above for the catalyzing layer 226 in Figure 2.
  • This swirling action of the syngas causes the mixture closest to the outer periphery of the interior chamber of the vortex tube 500 to both increase in temperature and to apply high centripetal forces to the catalyst lining inside the tube, increasing the reforming reaction rate and preventing carbon buildup on the catalyst.
  • one output stream of the vortex tube is composed primarily of Hydrogen, and is output (if desired, through intervening components such as the below* described pump 527) to a Hydrogen receiver, such as a Hydrogen lank or, in the non-limiting example shown, a fuel cell 520.
  • the second output of the vortex tube includes primarily Carbon-based constituents and in some cases water and residual Hydrogen.
  • ⁇ fuel pump 506 may be provided with a suction on the fuel tank 504 and discharge into the mixer 502 to pump fuel into the mixer 502.
  • the vortex tube 500 receives, through the mixer 502, water or steam from a water tank 508.
  • a water pump 510 may be provided with a suction on the water tank 508 and discharge into the mixer 502 to pump water into the mixer 502.
  • the vortex tube may receive a mixture of fuel and water from the mixer 502.
  • a fuel line valve 512 may be provided in the communication path between the fuel tank 504 and mixer 502.
  • a water line valve 514 may be provided in the communication path between the water tank 508 and the mixer 502.
  • the valves herein may be processor-controlled and thus may include solenoids.
  • An example processing circuit is described further below.
  • the position of one or bow valves 512, 514 may be established based on signals from one or more mixer sensors 516 (only a single sensor shown for clarity).
  • the mixer sensor(s) 516 may be one or more of a fuel sensor or Oxygen sensor or Carbon sensor or temperature sensor or pressure sensor other appropriate sensor that senses the composition (and/or temperature and/or pressure) of the mixture within the mixer 502. For example, if the ratio of water to fuel is too high, (he fuel valve 512 may be caused to open one or more valve position increments and/or the water valve may be caused to shut one or more increments.
  • the fuel valve 512 may be caused to shut one or more valve position increments and/or the water valve may be caused to open one or more increments.
  • heat may be applied to the mixer 502 as shown at 5 lit, and when the sensor S 16 includes a temperature sensor, the signal from the sensor can be used to adjust the heat input to optimize the temperature of the mixture in the mixer S02.
  • the heat application 518 may be an electrical heater thermally engaged with the mixer 502 and/or a conduit for conducting heat from the below-described heat exchanger to the mixer 502.
  • the vortex tube 500 outputs Hydrogen to a fuel cell 520.
  • the fuel cell 520 may be used to provide electricity to an electric propulsion motor 522 in the vehicle.
  • the fuel cell 520 may also output water via a line 524 to a water tank 526 and/or direct to the previously-described water tank 508 and/or directly into the mixer 502 as shown.
  • A. Hydrogen pump 527 may be provided with a suction on the vortex tube 500 and a discharge into the fuel ceil 520.
  • the vortex tube 500 may output water as well as Carbon- based constituents including Carbon Monoxide (CO) and Carbon Dioxide (CO?) to a first heat exchanger 528.
  • the first heat exchanger may warm or cool the fluid supplied to it using a water circulation pump pumping water from any of the water tanks described herein through a water jacket or using air cooling. Heat from the fuel cell 520 and/or any of the engines in the system may be applied to the heat exchanger to heat it. Heat from the first heat exchanger may be provided through an outlet 530 to one or more of the components shown herein, e.g., to a heat element 532 of the mixer 502 and/or to heating element 534 thermally engaged with the vortex tube 500 nearer the Hydrogen end than the Carbon end.
  • an electric heater 536 also may be thermally engaged with the vortex tube 500 for providing heat thereto until sueh time as one of the heat exchangers herein is warm enough to supply heat to the vortex tube 500.
  • Output from the heat exchanger 528 may be supplied, through an outlet control valve 538 to an engine 540, which may be implemented by a turbine, a diese! engine, or a gasoline engine to propel the vehicle.
  • a second heat exchanger 542 may be provided to extract heat from the engine 540, with heat from the second heat exchanger 542 being supplied as necessary to one or more of the mixer 502 and vortex tube 500 through respective conduits 544, 546. Note that the first and second heat exchangers 528, 542 may be combined into a single unit if desired.
  • some output from the fuel tank 504 may flow through a fuel line 548 in which a hydrocarbon valve 550 may be provided to provide fuel to the engine 540 in a startup mode.
  • a hydrocarbon valve 550 In the startup mode the valve 550 is opened, connecting the hydrocarbon tank to the engine/rurbine to supply fuel and startup the engine/turbine, which in turn supplies heat lo the heat exchanger, which in turn heats up the vortex tube-based reformer/separator structure shown.
  • One or more sensors 552 may be provided to sense parameters in the output of the Carbon end of the vortex tube 500. These one or more sensors may sense temperature, CO2, CO, water. Hydrogen etc. and may input signals to a processor to control a throttle control valve 554 in the Carbon outlet of the vortex tube 500 upstream of the sensor(s) 552 as necessary to ensure parameters may stay within predetermined ranges. With greater specificity, at the Carbon end of the vortex tube 500, the swirling syngas encounters the partial blockage created by the throttle control valve 554. The position of the throttle control valve 554 may be adjusted by the below-described processor based on one or more input signals from the sensors described herein such that the heavier carbon-rich mixture passes through the peripheral gap of the control valve 554. In an example, the below- described processor determines, from sensor signals, the hydrogen/carbon ratio and adjusts the position of (he throttle control valve 554 accordingly.
  • the center of the syngas swirl is reflected off of the center of the throttle control valve 554. This prevents the Hydrogen from escaping through the valve 5S4 and to travel back (left, looking down on Figure 5) toward the Hydrogen end of the vortex rube 500, where it exits the tube and is input into the fuel cell 520.
  • the hydrogen stream which is concentrated at the center of the vortex tube, exits the vortex tube at a lower temperature than both the peripheral swirl and the initially injected hydrocarbon steam mixture. This lower temperature hydrogen is well suited for use in the fuel cell.
  • one or more sensors 556 may be provided to sense parameters in the Hydrogen output of the vortex tube. These one or more sensors 556 may sense temperature, CO2, CO, water, Hydrogen etc. and may input signals to a processor to control one or more of the valves or other components herein as necessary to ensure parameters may stay within predetermined ranges. Thus, temperature within the vortex tube 500 may be sensed through a temperature sensor and can be regulated by the below-described processor to maintain proper temperature for reforming. It may now be appreciated that Figure 5 illustrates an integrated vortex tube-based reformer and hydrogen separator connected to a rue) cell S20 and to an engine/turbine 540 to establish a hybrid fuel cell turbine.
  • the structure of Figure 5 provides the capability of immediately starting up for a vehicle such as a car or truck having onboard reforming by means of porting fuel from the tank 504 through the line 54$ to the engine 540.
  • a vehicle such as a car or truck having onboard reforming by means of porting fuel from the tank 504 through the line 54$ to the engine 540.
  • the engine/turbine 540 is powered up first by means fuel ported through the valve 550 so that the vehicle can operate immediately and in turn heat up the reformer separator prior to switching to hydrogen operation.
  • the system of Figure 5 includes two front end supply tanks, namely, the water tank 508 and hydrocarbon tank 504 that supply product to the steam mixer/injector 502 via the above-described control valves 512, 514.
  • These control valves 512, 514 advantageously may be regulated based on sensed parameters, such as power demand and reaction rates, temperatures, gas mixtures sensed by the sensors shown in Figure 5 and controlled by the processor shown and described below.
  • Figure 6 illustrates schematically gas separation in the vortex tube 500.
  • the central Hydrogen-permeable tube 600 receives relatively cool Hydrogen while relatively warm Carbon constituents arc drawn toward the catalytic lining 602 on the inner surface of the outer wall of (he vortex tube 500.
  • Arrows 602 represent the steam/Hydrocarbon swirl of the gases in the vortex tube.
  • Figure 6 thus illustrates the swirling action of the hydrocarbon steam mixturc, the reforming, and the stratification of the syngas with the Hydrogen moving towards the center.
  • the reformer vortex rube is illustrated with the catalyst lining, such as a nickel-based catalyst with the integrated heaters and heat exchangers proving energy to the reforming reaction.
  • Figure 6 shows the swirling action of the hydrocarbon steam mixture, the reforming, and the stratification of the syngas with the hydrogen moving towards the center and the heavier gases in contact with the peripheral tube.
  • the hydrocarbon steam mixture is reformed into syngas through contact with die catalyst-lined tube. This breaks the methane component of the natural gas into carbon monoxide (CO) and H2 gas.
  • CO carbon monoxide
  • FIGS 7-9 illustrate additional systems in which vortex tubes are used as reformers for separating Hydrogen from fuel for a variety of purposes, including any of the purposes mentioned above (e.g.. injection of Hydrogen into engines) as well as in Hydrogen production for petro chemical installations, and other purposes.
  • Figure 7 illustrates an integrated reformer and hydrogen separator connected to an integrated water gas shift and hydrogen separator for producing hydrogen and carbon dioxide from hydrocarbons
  • a first stage vortex tube 700 receives a heated fuel and water mixture from a mixer 702, with the relevant sensor, pumping, valving, and heating components disclosed in Figure S also being provided in the example shown and labeled in Figure 7.
  • the Carbon output of the first stage vortex tube 700 in Figure 7 is sent through a heat exchanger 704 if desired to the inlet 706 of a second stage vortex tube 70S.
  • the second stage vortex rube 708 extracts residual Hydrogen in the Carbon output of the fust stage vortex tube 700.
  • the second stage vortex tube 708 may be regarded as a water gas shift separator.
  • the second stage vortex tube 708 may be internally coated with a catalyzing layer (similar to the layer 226 shown in Figure 2) that is made of different constituents than the catalyzing layer used to coat the interior of the first stage vortex tube 700.
  • the first stage vortex tube 700 may include nickel in the catalyzing layer whereas the second stage vortex tube 708 may include copper in its catalyzing layer.
  • the catalyzing layer of the second stage vortex tube 708 corresponding to the layer 226 shown in Figure 2 may be composed of Copper Oxide, Zinc Oxide, and Aluminum Oxide. Jn non-limiting specific examples, the catalyzing layer may be made of 32-33% CuO, 34-53% ZnO, and 15-33% Ah0 3 .
  • the heat exchanger 704 extracts heat from the Carbon output of the first stage vortex tube 700.
  • the heat exchanger may include a cool water jacket or it may include air cooling fins or other air cooling structure. It may also be a thermoelectric heat exchanger.
  • the heat exchanger cools the input fluid to 200°C - 250°C.
  • the second stage vortex tube 708, owing to the combination of structure shown, may be regarded as a vortex tube-based WGSR in which residual Hydrogen in the Carbon output of the first stage vortex tube 700 is extracted through the combining of Carbon Monoxide with water vapor from the Carbon output of the first stage vortex tube 700 to produce Carbon Dioxide and Hydrogen (in the form of Hb).
  • the Hydrogen outputs of both vortex tubes 700, 708 can be sent through one or respective Hydrogen filters 710, 712 to further purify the Hydrogen by filtering out non- Hydrogen material.
  • the outputs 714, 716 of the Hydrogen filters may communicate with the intake of an engine such as any of the engines described herein to provide, for instance. Hydrogen-assisted combustion.
  • a condenser 718 may be provided at the outlet of the second stage vortex tube 708 to separate CO2 from water, with water being sent to the illustrated water tank and CO: vented from the top of the condenser as shown to atmosphere.
  • Figure 8 illustrates an integrated reformer and hydrogen separator connected to an integrated water gas shift and hydrogen separator connected to a hydrogen and hydrocarbon fuel mixer to inject into an engine, turbine, or burner to provide hydrogen assisted combustion.
  • Figure 8 shows a first stage vortex rube 800 receiving a water and fuel mixture from a mixer 802 according to principles above and outputting from its Carbon end input to a second stage vortex tube 804.
  • the difference between the system of Figure 8 compared to the system of Figure 7 is that the hydrogen outputs of both vortex tubes 800, 804 in Figure 8 may be combined with fuel from the fuel tank 806 that also supplies fuel to the inlet of the first stage vortex tube 800 in a fuel/Hydrogen mixer 808.
  • the mixture in the fuel/Hydrogen mixer 808 may be sent to an engine 810 as shown.
  • a condenser 812 may be provided at the outlet of the engine 810 to separate CO2 from water, with water being sent to the illustrated water tank and CO2 vented from the top of the condenser as shown to atmosphere.
  • a separate condenser 814 may be provided at the outlet of the second stage vortex tube 804 according to prior disclosure with respect to Figure 7.
  • the condensers may be implemented by a single condenser.
  • Figure 9 illustrates an integrated reformer and hydrogen separator connected to an integrated water gas shift and hydrogen separator powering a hybrid fuel cell system.
  • a system includes first stage and second stage vortex tubes 900, 902 substantially as described above, but with the Hydrogen outputs of each vortex tube being supplied to a Hydrogen receptacle 904, which communicates with a fuel cell 906 and engine 908 to provide Hydrogen to both.
  • the fuel cell 906 may establish the Hydrogen receptacle 904, in which case excess Hydrogen not used by the fuel cell is sent to the engine 908. Both the engine 908 and fuel cell 906 can be used to provide propulsive power to a vehicle.
  • FIG 10 illustrates an example processing circuit for controlling the pumps, valves, and other components in the preceding figures.
  • a controller 1000 such as a processor receives input from any of the above-described sensors (shown at 1002) and may also receive valve position signals from the actuators of any of the above-described valves (shown at 1004) as well as a demanded load signal from a demanded load signal source 1006 such as a vehicle accelerator.
  • the controller uses the inputs to control one or more of the heat exchangers and attendant components (shown at 1008) and throttle valves (shown at 1010).
  • the controller 1000 also communicates with or established by control components in any of the above- described fuel cells and engines (shown at 1012 and 1014, respectively).
  • a control system herein may include computers and processors connected over a network such (hat data may be exchanged between the client and server components.
  • the client components may include one or more computing devices such as engine control modules (ECMs), portable computers such as laptops and tablet computers, and other mobile devices including smart phones.
  • ECMs engine control modules
  • portable computers such as laptops and tablet computers
  • other mobile devices including smart phones.
  • These computing devices may operate with a variety of operating environments.
  • some of the client computers may employ, as examples, Linux operating systems, operating systems from Microsoft, or a Unix operating system, or operating systems produced by Apple Computer or Google, or VxWorks embedded operating systems from Wind River.
  • components can include firewalls, load balancers, temporary storages, and proxies, and other network infrastructure for reliability and security.
  • instructions refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware and include any type of programmed step undertaken by components of the system,
  • a processor may be any conventional general purpose single- or multi-chip processor that can execute logic by means of various lines such as address lines, data lines, and control lines and registers and shift registers.
  • Software modules described by way of the flow charts and user interfaces herein can include various sub-routines, procedures, etc. Without limiting the disclosure, logic stated to be executed by a particular module can be redistributed to other software modules and/or combined together in a single module and/ or made available in a library. Present principles described herein can be implemented as hardware, software, firmware, or combinations thereof; hence, illustrative components, blocks, modules, circuits, and steps are set forth in terms of their functionality.
  • logical blocks, modules, and circuits described below can be implemented or performed with a general purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA) or other programmable logic device such as an application specific integrated circuit (ASIC), discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • a processor can be implemented by a controller or state machine or a combination of computing devices.
  • connection may establish a computer- readable medium.
  • Such connections can include, as examples, hard-wired cables including fiber optic and coaxial wires and digital subscriber line (DSL) and twisted pair wires, Such connections may include wireless communication connections including infrared and radio.
  • DSL digital subscriber line
  • the logic commences at state ⁇ 00 and proceeds to block 1102, wherein the hydrocarbon fuel valve 550 is opened to port hydrocarbon fuel to the engine 540 pursuant to starting the engine.
  • the heat exchanger 520 is started and the electric heaters of the mixer 502 and vortex tube 500 are energized at block 1 106 to initialize the reforming of the vortex tube. Once the heat exchanger is hot enough to supply heat to the mixer and vortex tube, the heat from the heat exchanger may replace the heat from the electric heaters, which may be deenergized.
  • Decision diamond 1 108 indicates that one or more of the sensors described above embodied as a temperature sensor is sampled and when its signal indicates that the vortex tube has reached a sufficient temperature for reforming the hydrocarbon from the mixer 502, the vortex tube is actuated at block 1 1 10, and the fuel cell 520 initialized.
  • Input may be received at decision diamond 11 12 indicating that the driver is ready to transition from hydrocarbon propulsion from the engine 540 to electric propulsion from the fuel cell 520, at which point the logic moves to block 1 114 to shut the fuel valve 550 and transition to electric drive at block 1 116.
  • a system having at least one of A, B, and C (likewise "a system having at least one of A, B, or C" end "a system having at least one of A, B, C") includes systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

A reformer assembly includes a vortex tube (214/700/800/900) receiving heated fuel mixed with steam. A catalyst (226) coats the inner wall of the main tube of the vortex tube and a hydrogen-permeable tube (222) is positioned in the middle of the main tube coaxially with the main tube. With this structure the vortex tube outputs primarily Hydrogen from one end (224) and Carbon-based constituents from the other end (220). In some embodiments a second vortex tube (708/804/902) receives the Carbon output of the first vortex tube to establish a water gas shift reactor, producing Hydrogen from the Carbon output of the first vortex tube.

Description

VORTEX TUBE REFORMER FOR HYDROGEN PRODUCTION, SEPARATION,
AND INTEGRATED USE
TECHNICAL FIELD
The present application relates generally to vortex tube reformers for syngas production, hydrogen separation and injection to engines and fuel cells.
SUMMARY
An assembly includes at least one vortex tube having an inlet and a Hydrogen outlet. A reformer mechanism is associated with the vortex tube to remove Hydrogen from Carbon in molecules of hydrocarbon fuel input to the inlet. The reformer mechanism includes a catalytic constituent inside the vortex tube, and/or heated water vapor injected into the vortex tube along with the hydrocarbon fuel.
In example embodiments, the vortex tube includes a swirl chamber, with the inlet of the vortex tube being into the swirl chamber. Also, the vortex tube can include a main tube segment communicating with the swirl chamber and having an outlet different from the hydrogen outlet. A fuel intake of an engine can be in fluid communication with the outlet that is different from the hydrogen outlet of the vortex tube. Furthermore, the outlet that is different from the hydrogen outlet can be juxtaposed with an inside surface of a wall of the main tube segment. A catalytic constituent may be disposed on the inside surface of the wall of the main tube segment. l.n some embodiments, a hydrogen-permeable tube is disposed centrally in the main tube segment and defines the hydrogen outlet at one end of the hydrogen-permeable tube.
In some embodiments, plural vortex tubes may be provided and arranged in a toroidal configuration, with a first vortex tube in the plural vortex tubes defining the inlet of the vortex tube and providing fluid to an inlet of a next vortex tube in the plural vortex tubes.
The engine may be a turbine or an internal combustion engine such as a diesel engine.
The inlet of the vortex tube can be in fluid communication with a source of hydrocarbon fuel. In addition or alternatively, the inlet of the vortex tube can be in fluid communication with an exhaust of the engine.
In another aspect, a method includes reforming hydrocarbon fuel using at least one vortex tube. The reforming includes removing Hydrogen from Carbon-based constituents in molecules of the hydrocarbon fuel. The vortex is also used to separate the Hydrogen from the Carbon-based constituents to render a Hydrogen stream substantially free of Carbon. The Hydrogen stream is provided to a hydrogen receiver such as a tank or a turbine or an engine.
In another aspect, an assembly includes at least a first vortex tube configured for receiving hydrocarbon fuel and separating the hydrocarbon fuel into a first stream and a second stream. The first stream is composed primarily of Hydrogen, whereas the second stream includes Carbon such as Carbon-based constituents. At least a first Hydrogen receiver is configured for receiving the first stream. On the other hand, at least a second vortex tube is configured for receiving the second stream from the first vortex tube for separating the second stream into a third stream and a fourth stream. The third stream is composed primarily of Hydrogen for provisioning thereof to the Hydrogen receiver, while the second stream includes Carbon.
The Hydrogen receiver can include a hydrogen tank. In addition or alternatively, the Hydrogen receiver may include a fuel cell. Both the first and third streams may be provided to the Hydrogen receiver. The Hydrogen receiver may include a turbine or other engine.
In some examples, at least one heat exchanger is disposed in fluid communication between the vortex tubes and is configured for removing heat from the second stream prior to the second stream being input lo the second vortex tube. In addition or alternatively, at least a first catalytic constituent can be on an inside surface of the first vortex tube and at least a second catalytic constituent can be on an inside surface of the second vortex tube but not on the inside surface of the first vortex tube. The second catalytic constituent may include Copper, and in specific embodiments Zinc and Aluminum may also be on the inside surface of the second vortex tube.
In another aspect, a reformer assembly includes at least one vortex tube comprising a swirl chamber having an input and a main tube segment communicating with the swirl chamber and having a first output juxtaposed with an inside surface of a wall of the main tube segment. The first output is for outputting relatively hotter and heavier constituents of fluid provided at the input. At least one catalytic constituent is on the inside surface of the wall of the main tube segment.
in some examples of this last aspect, at least one hydrogen-permeable tube is disposed centrally in the main tube segment and defining a second output at one end of the hydrogen- permeable tube for outputting at least one relatively lighter and cooler constituent of fluid provided at the input. The at least one relatively lighter and cooler constituent may include hydrogen and the relatively hotter and heavier constituents of fluid provided at the input can include carbon. A fuel cell or engine or other Hydrogen receiver such as a tank may be connected to the second output.
In another aspect, a system includes at least one fuel cell and at least one vortex tube assembly for receiving hydrocarbon fuel as input and providing hydrogen reformed from the hydrocarbon fuel within the vortex tube to the fuel cell.
The details of the present description, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram of an example energy generation system;
Figure 2 is a block diagram of an example vortex tube reformer/separator assembly; Figure 3 is a schematic diagram of a toroidal vortex tube assembly;
Figure 4 is a schematic diagram of a vortex tube in an engine system;
Figure 5 is a schematic diagram of a vortex tube-based Hydrogen-injection system for an engine;
Figure 6 is a schematic diagram from a transverse view of a vortex tube, illustrating separation; Figures 7*9 are additional schematic diagrams of a vortex tube-based Hydrogen reformer systems:
Figure 10 is a block diagram of an example electrical component subsystem for supporting the vortex tube systems shown in the drawings; and
Figure 11 is a flow chart of an example process flow of the vortex tube systems shown in the drawings, illustrating logic that may be executed by a processor.
DETAILED DESCRIPTION
Figure 1 shows an actuation system 10, described further below, that in one example imparts energy to a receiver, such as an engine such as an internal combustion engine for a vehicle or in the example shown by imparting torque to a rotor of a turbine 12 to rotate an output shaft of the turbine. The turbine 12 may include a compressor section, a combustion section, and a turbine section in accordance with turbine principles and may also have one or more rotors or shafts which typically are coupled to each other and which may be concentric to each other.
Figure 1 shows that in one implementation, a fuel tank 14 which contains hydrocarbon-based fuel such as but not limited to jet fuel can provide fuel to an intake 16 of the turbine 12. The fuel typically is injected through injectors in the turbine, where it mixes with air compressed by the compressor section of the turbine and ignited in a so-called "flame holder" or "can". "Intake" refers generally to these portions of the turbine that are preliminary to the turbine blades. The high-pressure mixture is then directed to impinge on turbine blades 18 which are coupled to the output shaft. In this way torque is imparted to the output shaft to cause it to rotate about its axis. In other implementations the turbine 12 need not be a combustion turbine, and as alluded to above other receivers such as engines in vehicles may be used.
The output shaft of (he turbine can be coupled to the rotor of an electrical generator to rotate the generator rotor within an electric field and thus cause the generator to output electricity. Or, the output shaft of the turbine may be coupled to the rotor of an aircraft fan to rotate the tan and thus cause it to generate thrust for propelling a turbofan jet plane. Yet again, the output shaft of the turbine may be coupled to the rotor of a propulsion component such as the rotor of a helicopter, the shaft of a watercraft on which a propeller is mounted, or a drive shaft of8 land vehicle such as a military tank to rotate the rotor/shaft/drive shaft as the case may be to propel the platform through the air or water or over land, depending on the nature of the conveyance. The propulsion component may include a drive train that can include a combination of components known in the art, e.g., crankshafts, transmissions, axles, and so on.
In addition to or in lieu of actuating a receiver such as the turbine 12 with fuel directly from the fuel tank 14, the actuation system 10 may include a reformer assembly 20 which receives fuel from the fuel tank 14. While some embodiments of the reformer assembly may include a reformer and a membrane-type hydrogen separator to separate hydrogen in the reformed product of the reformer from the carbon-based constituents, a vortex tube-based reformer assembly is described further below. The reformer assembly 20 produces hydrogen from the fuel, and the hydrogen is sent to a fuel cell 22, in some cases through a hydrogen tank 24 first as shown. If desired, multiple reformers and/or fuel cells may be used in parallel with each other and/or in series with each other.
The fuel cell 22 uses the hydrogen to generate electricity, typically with a relatively high efficiency, by oxidizing the hydrogen with oxygen from, e.g., the ambient atmosphere. Without limitation, the fuel cell 22 may be a polymer exchange membrane fuel cell (PEMFC), a solid oxide fuel cell (SOFC), an alkaline fuel cell (AFC), a molten-carbonate fuel cell (MCFC), a phosphoric-acid fuel cell (PAFC), or a direct-methanol fuel cell (DMFC).
In turn, electricity from the fuel cell 22 may be sent to an electric motor 26 to cause an output shaft of the motor 26 to turn. The motor shaft is mechanically coupled through a rotor coupling 28 to a rotor of the turbine 12. Typically, the turbine/engine rotor to which the motor 26 is coupled is not the same segment of rotor bearing the blades 18, although in some implementations this can be the case, instead, the rotor to which the motor 26 may be coupled may be a segment of the blade rotor that does not bear blades or a rotor separate from the blade rotor and concentric therewith or otherwise coupled thereto. In any case, the motor 26, when energized by the fuel cell 22, imparts torque (through appropriate couplings if desired) through a rotor to the output shaft of the turbine 12, which in some cases may be the same shaft as that establishing the rotor. Power from the motor 26 may be provided to components other than the receiver embodied by the turbine. Yet again, the electrical power produced by the fuel ceil and lurbine/engine may be sent to electrical storage, such as a battery .system, or to a power load such as the electrical distribution grid of a municipality.
In addition, to realize further efficiencies, output of the fuel cell such as water in the form of steam produced by the fuel cell 22 may be mixed with hydrocarbon that is input to the reformer assembly 20 in a mixer 30, which may be a tank or simple pipe or other void in which the water and carbon can mix, with the mixture then being directed (through, e.g., appropriate piping or ducting) to the turbine intake 16. If desired, surfactant from a surfactant tank 32 may also be added to the steam/carbon mixture. Or, the steam from the fuel cell may be sent to the reformer assembly described below without mixing the steam with carbon and/or without mixing the steam with surfactant
In any case, it may now be appreciated that the steam/carbon mixture may supplement fuel injection directly from the fuel tank 14 to the intake 16, or replace altogether fuel injection directly from the fuel tank 14 to the intake 16.
Still further, electricity produced by the fuel cell 22 may be used not only to actuate the electric motor 26 (or provide power to a battery storage or the grid) but also to provide ignition current for the appropriate components in the turbine or engine 12. Also, electricity from the fuel cell may be used for other auxiliary purposes, e.g., in addition to actuating the electric motor, powering other electrical appliances. In cases where die reformer assembly 20 generates carbon dioxide and steam, these fluids may also be directed to heat exchangers associated with or coupled to the reformer and a steam generator. In some embodiments, water can be returned from the fuel cell 22 if desired to the reformer assembly 20 through a water line 34. Also if desired, heat from the receiver (e.g., from the turbine 12) may be collected and routed back to the reformer assembly 20 through ducting/piping 36, to heat the reformer assembly.
Figure 2 illustrates a vortex tube-based reformer assembly 20. As shown, the assembly 20 may include a steam reservoir 200 and a fuel reservoir 202. The steam reservoir 200 and fuel reservoir 202 may be heat exchangers, schematically depicted by illustrating a respective outer heating chamber 200a, 202a surrounding a respective inner fluid chamber 200b, 202b, with the heat in each outer heat exchange chamber heating the fluid in the respective inner fluid chamber. Heat may be supplied to each heat exchange chamber 200a, 202a via the exhaust line 36 from the exhaust of the receiver of Figure 1 , e.g., the turbine 12.
First considering the steam reservoir 200, initial water or steam for startup may be supplied to the intake side of an optional impeller 204 or other fluid movement device until such time as the initial water or steam may be supplemented and preferably superseded by steam exhaust from the fuel cell 22 via the line 34 as shown. Initial startup heat may also be provided, e.g., from an electric heating element 206 in the heat exchange chamber 200a of the fluid reservoir 200, from exhaust heat from the turbine or engine, or from some other source of heat until such time as the startup heat may be supplemented and preferably superseded by exhaust heat from the receiver (e.g., turbine 12) via the exhaust line 36 as shown. In any case, the initial water heated into steam for startup and the steam from the fuel cell during operation are sent to a mixer/injector reservoir 208, under the influence of the impeller 204 when provided or simply under steam pressure within the inner fluid chamber 200b.
With respect to the fuel reservoir 202, hydrocarbon fuel such as but not limited to natural gas may be supplied from the fuel tank 14 to the intake side of an optional impeller 210 or other fluid movement device. Initial startup heat may also be provided, e.g., from an electric heating element 212 in the heat exchange chamber 202a of the fuel reservoir 202 or from some other source of heat until such time as the startup heat may be supplemented and preferably superseded by exhaust heat from the receiver (e.g., turbine 12) via the exhaust line 36 as shown. In any case, the heated fuel in the fluid chamber 202b of the fuel reservoir 202, preferably scrubbed of sulfur by desu!furizer sorbent elements 213 that may be provided on the inside wall of the fuel chamber, is sent to the mixer/injector reservoir 208, under the influence of the impeller 210 when provided or simply under fluid pressure within the inner fluid chamber 202b. In some case, the fuel may not be heated prior to provision to the mixer/injector 208.
In some examples, the steam in the steam reservoir 200 and/or fuel in the fuel reservoir 202 may be heated to six hundred degrees Celsius (600° C) to one thousand one hundred degrees Celsius ( 1100° C) at a pressure of three atmospheres to thirty atmospheres (3 arm - 30 atm). More generally, the reaction temperatures applied to the hydrocarbon and steam mixtures can proceed from a low temperature of 300C up to 1200C. These temperatures can be optimized for the input hydrocarbon feed type, the duty transit time of the process through the reaction tube, and the applied pressures caused by the turbulent flow such the vortex generated in the reaction tube.
The mixer/injector 208 mixes the steam from the steam reservoir 200 with the fuel from the fuel reservoir 202. The mixing may be accomplished under the influence of the turbidity of the respective fluids as they enter the mixer/injector 208 and/or by additional mixing components such as rotating impellers within the mixer/injector 208 and/or by other suitable means. The mixer/injector 208 injects the mixed steam and fuel into a vortex tube 214, e.g., through fuel injectors or simply through a port and fluid line under the influence of fluid pressure within the mixer.
The vortex tube 214, which also may be known as a Ranque-Hiisch vortex tube, is a mechanical device that separates a compressed fluid into hot and cold streams. It typically has no moving parts.
As shown, the pressurized mixture of steam and fuel from the mixer/injector 208 is injected, preferably tangentially, into a swirl chamber 2)6 of the vortex tube 214, and accelerated to a high rate of rotation by the cooperation of geometry between the swirl chamber 216 and cylindrical wall of a main tube segment 218 that is oriented perpendicular to the input axis of the swirl chamber 216 as shown. A first conical nozzle 220 may be provided at one end of the vortex tube 214 so that only the outer shell of the compressed gas is allowed to escape at that end. The opening at this end thus is annular with its central part blocked (eg., by a valve as described further below) so that the remainder of the gas is forced to return back through the main inner tube 218 toward the swirl chamber 216 in an inner vortex of reduced diameter that is substantially coaxial with the main tube segment 218 as shown. In one embodiment, the inner vortex can be enclosed in a hydrogen-permeable tube 222 that leads to a hydrogen output 224, which may be established by a second conical nozzle. The hydrogen- permeable tube 222, when provided, preferably is impermeable to carbon-based constituents. The tube 222 may include Palladium.
A catalyzing layer 226 may be formed on or made integral with the inside surface of at least the main inner tube 218 to attract carbon-based constituents to the outer circumference of the passageway formed by the main inner tube. The catalyzing layer may include nickel and/or platinum and/or rhodium and/or palladium and/or gold and/or copper. The tube 218 may be composed of the catalyzing layer or the layer 226 may be added to a tube substrate as by, e.g., vapor deposition of the catalyzing layer 226 onto the tube substrate, which may be ceramic.
The cooperation of structure of the vortex tube 214 forces relatively cooler hydrogen from the input fuel toward the axis of the main tube 218 into the hydrogen-permeable tube 222 when provided, and left looking down at Figure 2 along the axis of the main tube 218, while forcing the relatively heavier and hotter carbon-based constituents of the fuel outward against the catalytic layer 226 and right looking down at Figure 2. Owing to the cooperation of structure depicted, the fuel is both chemically reformed into hydrogen and carbon-based constituents and the hydrogen is physically separated from the carbon-based constituents for provisioning to the fuel cell 22. If desired, an evacuation mechanism such as a vacuum pump 228 may be provided to aid in withdrawing hydrogen from the hydrogen output 224 of the vortex tube 214. Also, if desired the hydrogen may be passed through a water gas shift reactor (VYSGR) 230 to further purify the hydrogen, prior to provisioning to the fuel cell 22. Examples of vortex tube-based WGSR embodiments are discussed further below.
On the other hand, the carbon-based constituents of the fuel are sent out of the right side of the main tube 218 of the vortex tube 214 to the receiver, e.g., the turbine 12, in some cases via the mixer 30 shown in Figure 1.
Fuel cells typically work better when the hydrogen input to them is relatively cooler than that produced by conventional reformers, which consequently may require cooling. Moreover, it may be difficult to employ certain hydrogen cooling techniques such as WGSR with extremely high temperature hydrogen from a conventional reformer, meaning the hydrogen may require significant cooling. By reforming the foe], separating the hydrogen, and cooling the hydrogen (relative to the carbon-based constituents) in a single reformer assembly as described herein, multiple benefits accrue, including the ability to produce relatively cool hydrogen which requires less post-reforming cooling and which extends the life of the fuel cell.
Accordingly, ihe application of vortex or cyclonic swirling action enables the elegant integration of these processes and provides higher energy efficiency, improved fuel utilization, and increased hydrogen yield. Additional advantages over conventional reformers include shifting of the chemical equilibrium to favor hydrogen production. This is achieved by the placement of a hydrogen permeable membrane separator tube at the low-pressure site of the vortex to pull or harvest hydrogen from the evolving hydrocarbon syngas mixture during the reforming process in the tube. This process is achieved through the combination of a generated vortex or vortexes, which enhances the reforming and vortex gas separation simultaneously while also enhancing the harvesting and cooling of the hydrogen gas.
In the approach described above, the generated vortex provides centrifugal spinning action which is applied to the gases in a circular tube, initially to the hydrocarbon and steam, which tangentially presses at higher pressures and temperatures against the walls of the catalyst-lined main tube 218» enhancing the rate of reforming. This is due to the higher temperatures and pressures on the on (he more massive molecular gases (the hydrocarbons and steam) imposed by the swirling motion contacting the walls of the catalyst lined tube.
As the reforming process proceeds down the tube in the vortex, the input hydrocarbon gas mixture differentiates or stratifies axial ly in (he tube according to gas densities. The hydrocarbons and the steam being the densest congregate at the inside wall of the tube and the hydrogen having the lowest density will move towards the center of the vortex. The higher momentums are imparted to the heavier gases, the longest chain hydrocarbons and the steam, which collide with high force and in high densities with the catalyst-lined wall of the tube. This optimizes compliance and the interface between the hydrocarbon, the steam and the catalyst for a given pressure.
The hydrogen gases, which are less massive, are pulled toward the center of the vortex, toward the lower pressure zone, away from the peripheral. This effect, moving the hydrogen away from the peripheral, improves the access path to the catalyst for the heavier hydrocarbons, steam, and carbon oxides. The center of the tube, where the vortex has its lowest pressures, contains the hydrogen permeable filter tube 222 with suction for pulling hydrogen. Therefore hydrogen permeates in to the center and is drawn off from the reaction with a negative pressure, thereby harvesting the hydrogen while the reforming process proceeds.
The hydrogen is separated and drawn to the center of the vortex due to its lower density and it is further drawn into the walls of the hydrogen permeable separation tube due to the negative pressure applied to the tube. The drawing off or harvesting of hydrogen from the ongoing reforming further improves the dynamic chemical reactions in conjunction with catalyst by depleting hydrogen, limiting unfavorable hydrogen reversible reactions. This increases the hydrogen to carbon production ratio,
With the above in mind, the product of the reformation reaction (syngas) is continually tapped during the transit time along the vortex tube providing the purified output streams and further changing the equilibrium balance of the ongoing reaction to improve the amount of hydrogen produced. The vortex cyclonic action may be applied to the injected hydrocarbon and steam feeds by means of propeller, or pump which a causes the heavy hydrocarbon base gases and steam towards the tube walls. This action causes reforming of some of the hydrocarbons impinging on the catalysts, ejecting hydrogen and carbon monoxide. These two gases being lighter than the CH4 are propelled towards the center of the vortex away from the wall of the vortex tube. The separated output streams consisting of hydrogen on the one hand and steam, carbon monoxide, carbon dioxide, and trace impurities on the other are individually tapped and fed to respective output streams.
The production and the separation of the output fuels streams are both enhanced by means of the vortex action in the reaction tube and the progressive removal of the fractional products, such as hydrogen, which farther provides dynamic optimization due to the continuous non equilibrium conditions.
In addition to appropriate sensors, valves, and controller electronics, the vortex tube may include fuel and steam injectors, heating inputs, heat exchangers, high shear turbulent mixers, filters, and output stream taps. The output hydrogen and some steam can be fed to the fuel cell 22, with carbon-based constituents and some steam being fed to the receiver. In some implementations most of the steam and heaver fractional hydrocarbons can be fed back into the vortex tube or a plurality of vortex tubes.
Figure 3 illustrates an embodiment in which plural vortex tubes arc arranged in an endless loop 300, referred to herein as a "toroidal" configuration without implying that the endless loop is perfectly round. Each vortex tube may be substantially identical in construction and operation to the vortex tube 214 in Figure 2.
As shown, fuel may be input to an initial vortex tube 302, the hydrogen output from the hydrogen permeable tube of which is sent as input to the swirl chamber of the next vortex tube 304, whose hydrogen output in turn is provided as input to the next vortex tube. WN" vortex tubes may this be arranged in series in the configuration 300, with "N" being an integer (in the example shown, N™8) and with the hydrogen output of the N* vortex tube 306 being scnt to the fuel cell 22. in this way, the hydrogen is successively separated into ever-more- pure input for the fuel cell, while the carbon-based constituents output from each vortex tube can he individually withdrawn from each tube and sent to the receiver, as indicated by the *'N" arrows 308.
The configuration 300 of Figure 3 may be used in the system shown in Figure 2, with the initial vortex tube 302 receiving fuel from the mixer/injector 208 and sending hydrogen from the hydrogen output 224 to the swirl chamber input of the next vortex tube, and with the hydrogen output of the N* vortex tube 306 being sent to the fuel cell 22 via the vacuum pump 228 and WSGR 230. Carbon-based constituents from each vortex tube of Figure 3 may be sent to the mixer/rcccivcr 30/12.
In other embodiments, the carbon output of each tube is sent to the input of the next tube with the hydrogen outputs of each tube being individually directed out of the toroidal configuration 300 and sent to the fuel cell.
Figure 4 illustrates a vortex tube 400 that may be established by a vortex tube or tubes described above and shown in Figures 2 or 3. The vortex tube 400 of Figure 4 may include at least one inlet 402 at least one hydrogen outlet 404 as shown, with at least one engine 406 such as a diescl engine having an input port 408 in fluid communication with the hydrogen outlet 404 of the vortex tube 400. In this way, hydrogen produced by the reforming within the vortex tube 400 is provided as hydrogen injection or enhancement to the engine 406, in which the hydrogen may be combined with diescl fuel from a tank 410 and received at a fuel intake 412 of the engine. Note that the hydrogen inlet 408 of the engine 406 may be separate from the fuel intake 412 or it may be the same or in the same mechanical assembly as the fuel intake 412.
It will be appreciated in light of preceding disclosure that the vortex tube 400 may typically include a swirl chamber into which hydrocarbon is provided through the inlet 402 and a main tube segment communicating with the swirl chamber and having an outlet 414 that is different from the hydrogen outlet 404. in some embodiments such as the one illustrated, the fuel intake 412 of the engine 406 is in fluid communication with the outlet 414 to receive hydrogen-depleted reformat c from the vortex tube 400. According to the above disclosure, the outlet 414 typically is juxtaposed with an inside surface of a wall of the main tube segment, onto which at least one catalytic constituent may be disposed.
Likewise, the vortex tube 400, as described above in the case of the preceding vortex tubes, may include a hydrogen-permeable tube disposed centrally in the main tube segment and defining the hydrogen outlet 404 at one end of the hydrogen-permeable tube.
As mentioned above, the vortex tube 400 in Figure 4 may represent an assembly established by the plural vortex tubes arranged in a toroidal configuration of Figure 3.
In the example shown, a vortex tube outlet conduit 416 communicates with the vortex tube outlet 414 to convey hydrogen-depleted reformate to an engine fuel supply conduit 418 that connects the fuel tank 410 to the fuel intake 412 of the engine. In this way, only a single input opening need be provided in the fuel intake. However, in alternate embodiments the vortex tube outlet conduit 416 extends from the vortex tube outlet 414 directly to the fuel intake 412 of the engine 406 without joining the fuel supply conduit 418. In the example shown, the inlet 402 of the vortex tube 400 can be in fluid communication with the fuel tank 410 through a fuel tank supply conduit 420. to receive hydrocarbon fuel to be reformed. In addition or alternatively, the inlet 402 of the vortex tube 400 may be in fluid communication with the exhaust system 422 of the engine 406 to receive, through a vehicle exhaust conduit 424, a hydrocarbon stream to be reformed. In the example shown, when two sources of hydrocarbon to be reformed are provided (engine exhaust and fuel tank), the vehicle exhaust conduit 424 can join the fuel tank supply conduit 420 so that only a single inlet opening need be provided in the vortex tube 400. However, in alternate embodiments using two vortex tube input sources, the vehicle exhaust conduit 424 can extend from the vehicle exhaust 422 directly to the inlet 402 and similarly the fuel tank supply conduit 420 can extend from the fuel tank 410 directly to the inlet 402.
Figure 4 also illustrates optional valves that are depicted in Figure 4 as being electronically-operated valves that can be controlled by the engine control module (ECM) 426 of the engine 406 (typically a component of the engine 406 but not housed within combustion portions of the engine 406). Alternatively, one or more of the valves shown may be check valves that permit one-way flow only in the directions indicated by the respective arrows next to the respective valves.
In greater particularity, a hydrogen outlet valve 428 may be disposed in a hydrogen outlet conduit 430 that extends from the hydrogen outlet 404 of the vortex tube 400. In the example shown, the hydrogen outlet valve 428 is upstream of an outlet assembly 432 that may includc, e.g., the pump 228 and WGSR 230 shown in Figure 2. In other embodiments the hydrogen outlet valve 428 may be downstream of the assembly 432.
An engine exhaust vortex tube supply valve 434 may be provided in the vehicle exhaust conduit 424 as shown, preferably upstream of where the fuel tank supply conduit 420 joins the exhaust conduit 424. Likewise, a fuel tank vortex tube supply valve 436 may be provided in the fuel tank supply conduit 420. Ihe vortex tube supply valves 434, 436 may be controlled by the ECM 426 to selectively control which source or sources of hydrocarbon are provided to the vortex tube 400.
To control what fuel is received by the engine 406, first and second engine supply valves 438, 440 may be respectively provided in the vortex tube outlet conduit 416 and fuel supply conduit 418. In the non-limiting example shown, the second engine supply valve 440 in the fuel supply conduit 418 is provided downstream of where the fuel tank supply conduit 420 that provides fuel to the vortex tube taps into the fuel supply conduit 418, so that the second engine supply valve 440 and the fuel tank vortex tube supply valve 436 can be shut to isolate their respective conduits as desired without affecting the other conduit.
It may now be appreciated that in operation, the vortex tube 400 reforms hydrocarbon fuel and/or exhaust from an engine, separating hydrogen from carbon-based constituents during the reforming, with hydrogen separated as a result of the reforming being provided to the engine 406.
Figure S shows a specific system in which the discussion above is incorporated. A vortex tube 500 receives, through a mixer 502, hydrocarbon fuel such as gasoline or diesel from a fuel tank 504, e.g.. from the gas tank of a vehicle in which the system shown in Figure 5 is disposed. Any of the above-described vortex tubes may be used.
The steam mixer/injector 502 mixes the steam with the hydrocarbon and injects the mixture at a high-pressure into the vortex tube inlet. Located behind the vortex inlet is the vortex generator established by the vortex tube 500, which causes the input mixture to swirl at a high rate and travel (right, looking down on Figure 5) toward the Carbon end of the tube 500, swirling along the inside peripheral of the tube at a high rate, pressure, and temperature in contact with the catalyst coating the inside surface of the tube as described above for the catalyzing layer 226 in Figure 2. This swirling action of the syngas causes the mixture closest to the outer periphery of the interior chamber of the vortex tube 500 to both increase in temperature and to apply high centripetal forces to the catalyst lining inside the tube, increasing the reforming reaction rate and preventing carbon buildup on the catalyst.
During the reforming process, syngas is generated at the catalyzing layer, and the Hydrogen component of the syngas then moves toward the center of the swirl in the vortex tube since the Hydrogen is lighter than the carbon/steam mixture, which is urged toward the outer part of the swirl. Thus, one output stream of the vortex tube is composed primarily of Hydrogen, and is output (if desired, through intervening components such as the below* described pump 527) to a Hydrogen receiver, such as a Hydrogen lank or, in the non-limiting example shown, a fuel cell 520. The second output of the vortex tube includes primarily Carbon-based constituents and in some cases water and residual Hydrogen. Λ fuel pump 506 may be provided with a suction on the fuel tank 504 and discharge into the mixer 502 to pump fuel into the mixer 502. Also, the vortex tube 500 receives, through the mixer 502, water or steam from a water tank 508. A water pump 510 may be provided with a suction on the water tank 508 and discharge into the mixer 502 to pump water into the mixer 502. Thus, the vortex tube may receive a mixture of fuel and water from the mixer 502.
A fuel line valve 512 may be provided in the communication path between the fuel tank 504 and mixer 502. Likewise, a water line valve 514 may be provided in the communication path between the water tank 508 and the mixer 502. In general, the valves herein may be processor-controlled and thus may include solenoids. An example processing circuit is described further below.
The position of one or bow valves 512, 514 may be established based on signals from one or more mixer sensors 516 (only a single sensor shown for clarity). The mixer sensor(s) 516 may be one or more of a fuel sensor or Oxygen sensor or Carbon sensor or temperature sensor or pressure sensor other appropriate sensor that senses the composition (and/or temperature and/or pressure) of the mixture within the mixer 502. For example, if the ratio of water to fuel is too high, (he fuel valve 512 may be caused to open one or more valve position increments and/or the water valve may be caused to shut one or more increments. Similarly, if the ratio of water to fuel is too low, the fuel valve 512 may be caused to shut one or more valve position increments and/or the water valve may be caused to open one or more increments. Furthermore, heat may be applied to the mixer 502 as shown at 5 lit, and when the sensor S 16 includes a temperature sensor, the signal from the sensor can be used to adjust the heat input to optimize the temperature of the mixture in the mixer S02. The heat application 518 may be an electrical heater thermally engaged with the mixer 502 and/or a conduit for conducting heat from the below-described heat exchanger to the mixer 502.
At its hydrogen output end, the vortex tube 500 outputs Hydrogen to a fuel cell 520. The fuel cell 520 may be used to provide electricity to an electric propulsion motor 522 in the vehicle. The fuel cell 520 may also output water via a line 524 to a water tank 526 and/or direct to the previously-described water tank 508 and/or directly into the mixer 502 as shown. A. Hydrogen pump 527 may be provided with a suction on the vortex tube 500 and a discharge into the fuel ceil 520.
At its Carbon output end, the vortex tube 500 may output water as well as Carbon- based constituents including Carbon Monoxide (CO) and Carbon Dioxide (CO?) to a first heat exchanger 528. The first heat exchanger may warm or cool the fluid supplied to it using a water circulation pump pumping water from any of the water tanks described herein through a water jacket or using air cooling. Heat from the fuel cell 520 and/or any of the engines in the system may be applied to the heat exchanger to heat it. Heat from the first heat exchanger may be provided through an outlet 530 to one or more of the components shown herein, e.g., to a heat element 532 of the mixer 502 and/or to heating element 534 thermally engaged with the vortex tube 500 nearer the Hydrogen end than the Carbon end. Note that an electric heater 536 also may be thermally engaged with the vortex tube 500 for providing heat thereto until sueh time as one of the heat exchangers herein is warm enough to supply heat to the vortex tube 500.
Output from the heat exchanger 528 may be supplied, through an outlet control valve 538 to an engine 540, which may be implemented by a turbine, a diese! engine, or a gasoline engine to propel the vehicle. A second heat exchanger 542 may be provided to extract heat from the engine 540, with heat from the second heat exchanger 542 being supplied as necessary to one or more of the mixer 502 and vortex tube 500 through respective conduits 544, 546. Note that the first and second heat exchangers 528, 542 may be combined into a single unit if desired.
Also, some output from the fuel tank 504 may flow through a fuel line 548 in which a hydrocarbon valve 550 may be provided to provide fuel to the engine 540 in a startup mode. In the startup mode the valve 550 is opened, connecting the hydrocarbon tank to the engine/rurbine to supply fuel and startup the engine/turbine, which in turn supplies heat lo the heat exchanger, which in turn heats up the vortex tube-based reformer/separator structure shown.
One or more sensors 552 may be provided to sense parameters in the output of the Carbon end of the vortex tube 500. These one or more sensors may sense temperature, CO2, CO, water. Hydrogen etc. and may input signals to a processor to control a throttle control valve 554 in the Carbon outlet of the vortex tube 500 upstream of the sensor(s) 552 as necessary to ensure parameters may stay within predetermined ranges. With greater specificity, at the Carbon end of the vortex tube 500, the swirling syngas encounters the partial blockage created by the throttle control valve 554. The position of the throttle control valve 554 may be adjusted by the below-described processor based on one or more input signals from the sensors described herein such that the heavier carbon-rich mixture passes through the peripheral gap of the control valve 554. In an example, the below- described processor determines, from sensor signals, the hydrogen/carbon ratio and adjusts the position of (he throttle control valve 554 accordingly.
On the other hand, the center of the syngas swirl, mostly Hydrogen, is reflected off of the center of the throttle control valve 554. This prevents the Hydrogen from escaping through the valve 5S4 and to travel back (left, looking down on Figure 5) toward the Hydrogen end of the vortex rube 500, where it exits the tube and is input into the fuel cell 520. The hydrogen stream, which is concentrated at the center of the vortex tube, exits the vortex tube at a lower temperature than both the peripheral swirl and the initially injected hydrocarbon steam mixture. This lower temperature hydrogen is well suited for use in the fuel cell.
Similarly, one or more sensors 556 may be provided to sense parameters in the Hydrogen output of the vortex tube. These one or more sensors 556 may sense temperature, CO2, CO, water, Hydrogen etc. and may input signals to a processor to control one or more of the valves or other components herein as necessary to ensure parameters may stay within predetermined ranges. Thus, temperature within the vortex tube 500 may be sensed through a temperature sensor and can be regulated by the below-described processor to maintain proper temperature for reforming. It may now be appreciated that Figure 5 illustrates an integrated vortex tube-based reformer and hydrogen separator connected to a rue) cell S20 and to an engine/turbine 540 to establish a hybrid fuel cell turbine. The structure of Figure 5 provides the capability of immediately starting up for a vehicle such as a car or truck having onboard reforming by means of porting fuel from the tank 504 through the line 54$ to the engine 540. In this instance, when the system is cold, the engine/turbine 540 is powered up first by means fuel ported through the valve 550 so that the vehicle can operate immediately and in turn heat up the reformer separator prior to switching to hydrogen operation.
Once warm enough to operate in the hydrogen operating mode, the generated hydrogen stream from the vortex tube 500 is supplied to the fuel cell 520, and the Carbon stream from the vortex tube 500 is supplied to the turbine/engine 540. The system of Figure 5 includes two front end supply tanks, namely, the water tank 508 and hydrocarbon tank 504 that supply product to the steam mixer/injector 502 via the above-described control valves 512, 514. These control valves 512, 514 advantageously may be regulated based on sensed parameters, such as power demand and reaction rates, temperatures, gas mixtures sensed by the sensors shown in Figure 5 and controlled by the processor shown and described below.
Figure 6 illustrates schematically gas separation in the vortex tube 500. The central Hydrogen-permeable tube 600 receives relatively cool Hydrogen while relatively warm Carbon constituents arc drawn toward the catalytic lining 602 on the inner surface of the outer wall of (he vortex tube 500. Arrows 602 represent the steam/Hydrocarbon swirl of the gases in the vortex tube. Figure 6 thus illustrates the swirling action of the hydrocarbon steam mixturc, the reforming, and the stratification of the syngas with the Hydrogen moving towards the center.
In Figure 6, the reformer vortex rube is illustrated with the catalyst lining, such as a nickel-based catalyst with the integrated heaters and heat exchangers proving energy to the reforming reaction. Figure 6 shows the swirling action of the hydrocarbon steam mixture, the reforming, and the stratification of the syngas with the hydrogen moving towards the center and the heavier gases in contact with the peripheral tube. The hydrocarbon steam mixture is reformed into syngas through contact with die catalyst-lined tube. This breaks the methane component of the natural gas into carbon monoxide (CO) and H2 gas.
Figures 7-9 illustrate additional systems in which vortex tubes are used as reformers for separating Hydrogen from fuel for a variety of purposes, including any of the purposes mentioned above (e.g.. injection of Hydrogen into engines) as well as in Hydrogen production for petro chemical installations, and other purposes.
Figure 7 illustrates an integrated reformer and hydrogen separator connected to an integrated water gas shift and hydrogen separator for producing hydrogen and carbon dioxide from hydrocarbons, in Figure 7, a first stage vortex tube 700 receives a heated fuel and water mixture from a mixer 702, with the relevant sensor, pumping, valving, and heating components disclosed in Figure S also being provided in the example shown and labeled in Figure 7. However, in contrast to the system of Figure 5, the Carbon output of the first stage vortex tube 700 in Figure 7 is sent through a heat exchanger 704 if desired to the inlet 706 of a second stage vortex tube 70S. The second stage vortex rube 708 extracts residual Hydrogen in the Carbon output of the fust stage vortex tube 700. Effectively, the second stage vortex tube 708 may be regarded as a water gas shift separator. The second stage vortex tube 708 may be internally coated with a catalyzing layer (similar to the layer 226 shown in Figure 2) that is made of different constituents than the catalyzing layer used to coat the interior of the first stage vortex tube 700. For example, the first stage vortex tube 700 may include nickel in the catalyzing layer whereas the second stage vortex tube 708 may include copper in its catalyzing layer. In specific embodiments, the catalyzing layer of the second stage vortex tube 708 corresponding to the layer 226 shown in Figure 2 may be composed of Copper Oxide, Zinc Oxide, and Aluminum Oxide. Jn non-limiting specific examples, the catalyzing layer may be made of 32-33% CuO, 34-53% ZnO, and 15-33% Ah03.
The heat exchanger 704 extracts heat from the Carbon output of the first stage vortex tube 700. To this end, the heat exchanger may include a cool water jacket or it may include air cooling fins or other air cooling structure. It may also be a thermoelectric heat exchanger. Preferably, the heat exchanger cools the input fluid to 200°C - 250°C.
In any case, the second stage vortex tube 708, owing to the combination of structure shown, may be regarded as a vortex tube-based WGSR in which residual Hydrogen in the Carbon output of the first stage vortex tube 700 is extracted through the combining of Carbon Monoxide with water vapor from the Carbon output of the first stage vortex tube 700 to produce Carbon Dioxide and Hydrogen (in the form of Hb).
The Hydrogen outputs of both vortex tubes 700, 708 can be sent through one or respective Hydrogen filters 710, 712 to further purify the Hydrogen by filtering out non- Hydrogen material. The outputs 714, 716 of the Hydrogen filters may communicate with the intake of an engine such as any of the engines described herein to provide, for instance. Hydrogen-assisted combustion.
A condenser 718 may be provided at the outlet of the second stage vortex tube 708 to separate CO2 from water, with water being sent to the illustrated water tank and CO: vented from the top of the condenser as shown to atmosphere.
Figure 8 illustrates an integrated reformer and hydrogen separator connected to an integrated water gas shift and hydrogen separator connected to a hydrogen and hydrocarbon fuel mixer to inject into an engine, turbine, or burner to provide hydrogen assisted combustion.
With greater specificity, Figure 8 shows a first stage vortex rube 800 receiving a water and fuel mixture from a mixer 802 according to principles above and outputting from its Carbon end input to a second stage vortex tube 804. The difference between the system of Figure 8 compared to the system of Figure 7 is that the hydrogen outputs of both vortex tubes 800, 804 in Figure 8 may be combined with fuel from the fuel tank 806 that also supplies fuel to the inlet of the first stage vortex tube 800 in a fuel/Hydrogen mixer 808. The mixture in the fuel/Hydrogen mixer 808 may be sent to an engine 810 as shown.
A condenser 812 may be provided at the outlet of the engine 810 to separate CO2 from water, with water being sent to the illustrated water tank and CO2 vented from the top of the condenser as shown to atmosphere. A separate condenser 814 may be provided at the outlet of the second stage vortex tube 804 according to prior disclosure with respect to Figure 7. In some embodiments the condensers may be implemented by a single condenser.
Figure 9 illustrates an integrated reformer and hydrogen separator connected to an integrated water gas shift and hydrogen separator powering a hybrid fuel cell system. With greater specific, as shown in Figure 9, a system includes first stage and second stage vortex tubes 900, 902 substantially as described above, but with the Hydrogen outputs of each vortex tube being supplied to a Hydrogen receptacle 904, which communicates with a fuel cell 906 and engine 908 to provide Hydrogen to both. The fuel cell 906 may establish the Hydrogen receptacle 904, in which case excess Hydrogen not used by the fuel cell is sent to the engine 908. Both the engine 908 and fuel cell 906 can be used to provide propulsive power to a vehicle.
Figure 10 illustrates an example processing circuit for controlling the pumps, valves, and other components in the preceding figures. A controller 1000 such as a processor receives input from any of the above-described sensors (shown at 1002) and may also receive valve position signals from the actuators of any of the above-described valves (shown at 1004) as well as a demanded load signal from a demanded load signal source 1006 such as a vehicle accelerator. The controller uses the inputs to control one or more of the heat exchangers and attendant components (shown at 1008) and throttle valves (shown at 1010). The controller 1000 also communicates with or established by control components in any of the above- described fuel cells and engines (shown at 1012 and 1014, respectively).
Thus, a control system herein may include computers and processors connected over a network such (hat data may be exchanged between the client and server components. The client components may include one or more computing devices such as engine control modules (ECMs), portable computers such as laptops and tablet computers, and other mobile devices including smart phones. These computing devices may operate with a variety of operating environments. For example, some of the client computers may employ, as examples, Linux operating systems, operating systems from Microsoft, or a Unix operating system, or operating systems produced by Apple Computer or Google, or VxWorks embedded operating systems from Wind River.
Information may be exchanged over a network between the components. To this end and for security, components can include firewalls, load balancers, temporary storages, and proxies, and other network infrastructure for reliability and security.
As used herein, instructions refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware and include any type of programmed step undertaken by components of the system,
A processor may be any conventional general purpose single- or multi-chip processor that can execute logic by means of various lines such as address lines, data lines, and control lines and registers and shift registers.
Software modules described by way of the flow charts and user interfaces herein can include various sub-routines, procedures, etc. Without limiting the disclosure, logic stated to be executed by a particular module can be redistributed to other software modules and/or combined together in a single module and/ or made available in a library. Present principles described herein can be implemented as hardware, software, firmware, or combinations thereof; hence, illustrative components, blocks, modules, circuits, and steps are set forth in terms of their functionality.
Further to what has been alluded to above, logical blocks, modules, and circuits described below can be implemented or performed with a general purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA) or other programmable logic device such as an application specific integrated circuit (ASIC), discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor can be implemented by a controller or state machine or a combination of computing devices.
The functions and methods described below, when implemented in software, can be written in an appropriate language such as but not limited to Java, C# or C++, and can be stored on or transmitted through a computer-readable storage medium such as a random access memory (RAM), read-only memory (ROM), electrically erasable programmable readonly memory (EEPROM), compact disk read-only memory (CD-ROM) or other optical disk storage such as digital versatile disc (DVD), magnetic disk storage or other magnetic storage devices including removable thumb drives, etc. A connection may establish a computer- readable medium. Such connections can include, as examples, hard-wired cables including fiber optic and coaxial wires and digital subscriber line (DSL) and twisted pair wires, Such connections may include wireless communication connections including infrared and radio. The operating logic of Figure 11 is specifically directed to the system shown in Figure 5, although its principles may apply where relevant to the other systems shown herein.
The logic commences at state Π00 and proceeds to block 1102, wherein the hydrocarbon fuel valve 550 is opened to port hydrocarbon fuel to the engine 540 pursuant to starting the engine. The heat exchanger 520 is started and the electric heaters of the mixer 502 and vortex tube 500 are energized at block 1 106 to initialize the reforming of the vortex tube. Once the heat exchanger is hot enough to supply heat to the mixer and vortex tube, the heat from the heat exchanger may replace the heat from the electric heaters, which may be deenergized.
Decision diamond 1 108 indicates that one or more of the sensors described above embodied as a temperature sensor is sampled and when its signal indicates that the vortex tube has reached a sufficient temperature for reforming the hydrocarbon from the mixer 502, the vortex tube is actuated at block 1 1 10, and the fuel cell 520 initialized. Input may be received at decision diamond 11 12 indicating that the driver is ready to transition from hydrocarbon propulsion from the engine 540 to electric propulsion from the fuel cell 520, at which point the logic moves to block 1 114 to shut the fuel valve 550 and transition to electric drive at block 1 116.
Components included in one embodiment can be used in other embodiments in any appropriate combination. For example, any of the various components described herein and/or depicted in the Figures may be combined, interchanged or excluded from other embodiments. "A system having at least one of A, B, and C" (likewise "a system having at least one of A, B, or C" end "a system having at least one of A, B, C") includes systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.
While the particular systems and methods are herein shown and described in detail, the scope of the present application is limited only by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. An assembly, comprising:
at least one vortex tube having an inlet and at least a Hydrogen outlet; and
at least one reformer mechanism associated with the vortex tube to remove Hydrogen from Carbon in molecules of hydrocarbon fuel input to the inlet, the reformer mechanism including at least one of: a catalytic constituent inside the vortex tube; and heated water vapor injected into the vortex tube along with Ihe hydrocarbon fuel.
2. The assembly of Claim I, wherein the vortex tube comprises a swirl chamber, the inlet of the vortex tube being into the swirl chamber, the vortex tube comprising a main tube segment communicating with the swirl chamber and having an outlet different from the hydrogen outlet.
3. The assembly of Claim 2, comprising at least one engine having an input port in fluid communication with the hydrogen outlet of the vortex tube, wherein a fuel intake of the engine is in fluid communication with the outlet different from the hydrogen outlet of the vortex tube,
4. The assembly of Claim 3, wherein the outlet different from the hydrogen outlet is juxtaposed with an inside surface of a wall of the main tube segment.
5. The assembly of Claim 4, comprising the at least one catalytic constituent on the inside surface of the wall of the main tube segment.
6. The assembly of Claim 2, comprising at least one hydrogen-permeable tube disposed centrally in the main tube segment and defining the hydrogen outlet at one end of the hydrogen-permeable tube.
7. The assembly of Claim 1 , comprising plural vortex tubes arranged in a toroidal configuration, a first vortex tube in the plural vortex tubes defining the inlet of the vortex tube and providing fluid to an inlet of a next vortex tube in the plural vortex tubes.
8. The assembly of Claim 1, wherein the reformer mechanism includes the catalytic constituent inside the vortex tube.
9. The assembly of Claim 1 , wherein the reformer mechanism includes the heated water vapor injected into the vortex tube along with the hydrocarbon fuel.
10. The assembly of Claim 8, wherein the reformer mechanism includes the heated water vapor injected into the vortex tube along with the hydrocarbon fuel.
1 1. The assembly of Claim 1, wherein the inlet of the vortex tube is in fluid communication with an exhaust of an engine.
12. A method comprising:
reforming hydrocarbon fuel using at least one vortex tube;
the reforming including removing Hydrogen from Carbon-based constituents in molecules of the hydrocarbon fuel;
separating the Hydrogen from the Carbon-based constituents using the vortex tube to render a Hydrogen stream substantially free of Carbon; and
providing the Hydrogen stream to a hydrogen receiver.
13. An assembly comprising;
at least a first vortex tube configured for receiving hydrocarbon fuel and separating the hydrocarbon fuel into a first stream and a second stream, the first stream being composed primarily of Hydrogen, the second stream including Carbon;
at least a first Hydrogen receiver configured for receiving the first stream; and at least a second vortex rube configured for receiving the second stream from the first vortex tube and for separating the second stream into a third stream and a fourth stream, the third stream being composed primarily of Hydrogen for provisioning thereof to the Hydrogen receiver, the second stream including Carbon.
14. The assembly of Claim 13, wherein the Hydrogen receiver includes a hydrogen
15. The assembly of Claim 13, wherein the Hydrogen receiver includes a fuel cell
16. The assembly of Claim 13, wherein the first and third streams are provided lo the Hydrogen receiver.
17. The assembly of Claim 13, comprising at least one heat exchanger disposed in fluid communication between the vortex tubes and configured for removing heat from the second stream prior to the second stream being input to the second vortex tube.
18. The assembly of Claim 13, wherein at least a first catalytic constituent is on an inside surface of the first vortex rube and at least a second catalytic constituent is on an inside surface of the second vortex tube but is not on the inside surface of the first vortex tube.
19. The assembly of Claim 18, wherein the second catalytic constituent includes
Copper.
20. The assembly of Claim 19. further comprising Zinc and Aluminum on the inside surface of the second vortex tube.
21. The assembly of Claim 13, wherein at least a first catalytic constituent is on an inside surface of the first vortex tube and at least a second catalytic constituent is on an inside surface of the second vortex tube but is not on the inside surface of the first vortex tube.
22. A reformer assembly, comprising:
ut least one vortex rube comprising a swirl chamber having an input and a main tube segment communicating with the swirl chamber and having a first output juxtaposed with an inside surface of a wall of the main tube segment, the first output for outputting relatively hotter and heavier constituents of fluid provided at the input;
at least one catalytic constituent on the inside surface of the wall of the main tube segment.
23. The reformer assembly of Claim 22, comprising:
at least one hydrogen-permeable tube disposed centrally in the main tube segment and defining a second output at one end of the hydrogen-permeable tube for outputting at least one relatively lighter and cooler constituent of fluid provided at the input.
24. The reformer assembly of Claim 23, wherein the at least one relatively lighter and cooler constituent includes hydrogen.
25. The reformer assembly of Claim 24, wherein the relatively hotter and heavier constituents of fluid provided at the input include carbon.
26. The reformer assembly of Claim 23, comprising a fuel cell connected to the second output.
27. The reformer assembly of Claim 23, comprising an engine connected to the first output.
28. System comprising:
at least one fuel cell; and
at least one vortex tube assembly for receiving hydrocarbon fuel as input and providing hydrogen reformed from the hydrocarbon fuel within the vortex tube to the fuel cell
PCT/US2016/027442 2015-05-18 2016-04-14 Vortex tube reformer for hydrogen production, separation, and integrated use WO2016186762A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017559701A JP6532544B2 (en) 2015-05-18 2016-04-14 Vortex tube reformer for hydrogen production, separation, and integrated use
GB1718215.5A GB2554276B (en) 2015-05-18 2016-04-14 Vortex tube reformer for hydrogen production, separation, and intergrated use
CA2983924A CA2983924C (en) 2015-05-18 2016-04-14 Vortex tube reformer for hydrogen production, separation, and integrated use
CN201680028834.0A CN107847897A (en) 2015-05-18 2016-04-14 For hydrogen production, separation and the comprehensive vortex tube reformer used
DE112016002284.0T DE112016002284B4 (en) 2015-05-18 2016-04-14 Vortex tube reformer for hydrogen production, as well as processes for hydrogen separation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14/715,026 US9840413B2 (en) 2015-05-18 2015-05-18 Integrated reformer and syngas separator
US14/715,026 2015-05-18
US15/078,263 2016-03-23
US15/078,263 US9843062B2 (en) 2016-03-23 2016-03-23 Vortex tube reformer for hydrogen production, separation, and integrated use

Publications (1)

Publication Number Publication Date
WO2016186762A1 true WO2016186762A1 (en) 2016-11-24

Family

ID=57320151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/027442 WO2016186762A1 (en) 2015-05-18 2016-04-14 Vortex tube reformer for hydrogen production, separation, and integrated use

Country Status (6)

Country Link
JP (1) JP6532544B2 (en)
CN (1) CN107847897A (en)
CA (1) CA2983924C (en)
DE (1) DE112016002284B4 (en)
GB (1) GB2554276B (en)
WO (1) WO2016186762A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220268491A1 (en) * 2020-01-13 2022-08-25 Be Aerospace, Inc. Temperature control system in a passenger service unit
AT524785A4 (en) * 2021-06-07 2022-09-15 Ecool Advanced Urban Eng Gmbh Device and method for separating carbon and hydrogen from a hydrocarbon-containing gas mixture
CN117025252A (en) * 2023-10-09 2023-11-10 东营联合石化有限责任公司 Hydrocracking and hydrodesulfurization combined device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638324B (en) * 2018-11-26 2020-06-23 南京航空航天大学 Pure hydrogen catalytic device and PEMFC power generation system of many sleeve structures of integration to multiple hydrocarbon fuel
CN111852660A (en) * 2020-06-16 2020-10-30 华电电力科学研究院有限公司 Gas turbine performance heating system and operation method thereof
CN114278469B (en) * 2021-12-30 2022-10-21 重庆望江摩托车制造有限公司 Hybrid energy motorcycle utilizing methanol cracking to produce hydrogen
CN114933279B (en) * 2022-06-14 2023-07-25 中南大学 Control method for hydrogen production by alcohol fuel pyrolysis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116344A (en) * 1960-08-19 1963-12-31 Shell Oil Co Vortex tube reactor and process for converting hydrocarbons therein
US6521205B1 (en) * 1998-05-05 2003-02-18 SHEC Labs—Solar Hydrogen Energy Corporation Process for the production of hydrogen by thermal decomposition of water, and apparatus therefor
US20050045033A1 (en) * 2003-08-27 2005-03-03 Nicol Donald V. Vortex tube system and method for processing natural gas
US20060135630A1 (en) * 2003-03-05 2006-06-22 Bowe Michael J Producing longer-chain hydrocarbons from natural gas
WO2012023858A1 (en) * 2010-08-17 2012-02-23 Gasplas As An apparatus, a system and a method for producing hydrogen
US8210214B2 (en) * 2007-12-27 2012-07-03 Texaco Inc. Apparatus and method for providing hydrogen at a high pressure

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3563883A (en) * 1968-12-30 1971-02-16 Texaco Inc Catalytic reforming
US3546891A (en) 1969-07-18 1970-12-15 Lancelot A Fekete Vortex tube process and apparatus
JPS5240221A (en) * 1975-09-25 1977-03-29 Nippon Soken Inc Carureter of a fuel quality improving device
US6986797B1 (en) * 1999-05-03 2006-01-17 Nuvera Fuel Cells Inc. Auxiliary reactor for a hydrocarbon reforming system
US6793698B1 (en) * 2001-03-09 2004-09-21 Uop Llc Fuel processor reactor with integrated pre-reforming zone
JP2004196646A (en) * 2002-10-23 2004-07-15 Nissan Motor Co Ltd Fuel reforming apparatus
JP2006199509A (en) * 2005-01-18 2006-08-03 Iwatani Internatl Corp Reformer
KR101126207B1 (en) * 2005-02-28 2012-03-26 삼성에스디아이 주식회사 Fuel supply apparatus for reformer and fuel cell system
US7588746B1 (en) * 2006-05-10 2009-09-15 University Of Central Florida Research Foundation, Inc. Process and apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons
WO2007132692A1 (en) * 2006-05-11 2007-11-22 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production system and method of controlling flow rate of offgas in the system
US20110123880A1 (en) * 2006-10-16 2011-05-26 Sumitomo Electric Industries, Ltd Hydrogen generator and fuel cell system including the same
US20090200176A1 (en) 2008-02-07 2009-08-13 Mccutchen Co. Radial counterflow shear electrolysis
US8147767B2 (en) * 2009-06-26 2012-04-03 Global Energy Science, Llc Chemical process accelerator systems utilizing taylor vortex flows
WO2013137720A1 (en) * 2012-03-16 2013-09-19 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Method and system for the production of hydrogen
US9023243B2 (en) * 2012-08-27 2015-05-05 Proton Power, Inc. Methods, systems, and devices for synthesis gas recapture
KR101429652B1 (en) * 2012-09-19 2014-08-14 충남대학교산학협력단 High temperature type fuel cell system with use of temperature improved
CA2894535C (en) 2012-12-11 2018-05-29 Foret Plasma Labs, Llc High temperature countercurrent vortex reactor system, method and apparatus
EP3021961B1 (en) * 2013-07-18 2020-03-18 Watt Fuel Cell Corp. Fuel cell system and method of mixing reformable fuels and an oxygen-containing gas and/or steam in a fuel cell system
KR101925826B1 (en) * 2013-11-06 2018-12-06 와트 퓨얼 셀 코퍼레이션 Reformer with perovskite as structural component thereof
CN105706282B (en) * 2013-11-06 2018-05-01 瓦特燃料电池公司 Fuel gas CPOX reformers and CPOX reforming methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116344A (en) * 1960-08-19 1963-12-31 Shell Oil Co Vortex tube reactor and process for converting hydrocarbons therein
US6521205B1 (en) * 1998-05-05 2003-02-18 SHEC Labs—Solar Hydrogen Energy Corporation Process for the production of hydrogen by thermal decomposition of water, and apparatus therefor
US20060135630A1 (en) * 2003-03-05 2006-06-22 Bowe Michael J Producing longer-chain hydrocarbons from natural gas
US20050045033A1 (en) * 2003-08-27 2005-03-03 Nicol Donald V. Vortex tube system and method for processing natural gas
US8210214B2 (en) * 2007-12-27 2012-07-03 Texaco Inc. Apparatus and method for providing hydrogen at a high pressure
WO2012023858A1 (en) * 2010-08-17 2012-02-23 Gasplas As An apparatus, a system and a method for producing hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220268491A1 (en) * 2020-01-13 2022-08-25 Be Aerospace, Inc. Temperature control system in a passenger service unit
US11649988B2 (en) * 2020-01-13 2023-05-16 B/E Aerospace, Inc. Temperature control system in a passenger service unit
AT524785A4 (en) * 2021-06-07 2022-09-15 Ecool Advanced Urban Eng Gmbh Device and method for separating carbon and hydrogen from a hydrocarbon-containing gas mixture
AT524785B1 (en) * 2021-06-07 2022-09-15 Ecool Advanced Urban Eng Gmbh Device and method for separating carbon and hydrogen from a hydrocarbon-containing gas mixture
CN117025252A (en) * 2023-10-09 2023-11-10 东营联合石化有限责任公司 Hydrocracking and hydrodesulfurization combined device
CN117025252B (en) * 2023-10-09 2023-12-12 东营联合石化有限责任公司 Hydrocracking and hydrodesulfurization combined device

Also Published As

Publication number Publication date
GB201718215D0 (en) 2017-12-20
GB2554276A (en) 2018-03-28
CA2983924A1 (en) 2016-11-24
JP6532544B2 (en) 2019-06-19
CN107847897A (en) 2018-03-27
GB2554276B (en) 2021-04-07
DE112016002284B4 (en) 2021-12-02
CA2983924C (en) 2019-07-30
JP2018522799A (en) 2018-08-16
DE112016002284T5 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US11444302B2 (en) Vortex tube reformer for hydrogen production, separation, and integrated use
CA2983924C (en) Vortex tube reformer for hydrogen production, separation, and integrated use
US20180093887A1 (en) Integrated reformer and syngas separator
US11505328B2 (en) Electrical power generation on a vehicle
JP5570614B2 (en) Efficiency improving turbine
US11289726B2 (en) Systems for hybrid fuel cell power generation
JP5443353B2 (en) FUEL CELL AND METHOD FOR OPERATING FUEL CELL DEVICE
US11434021B2 (en) Electrical power generation on a vehicle
JP2001216980A (en) Fuel cell system having fuel supply device
KR20180075263A (en) Ship
WO2023158425A1 (en) Air-cooled fuel cell system and method for operating same
US20040213712A1 (en) Gas generation system having a reformer and a device for the selective separation of hydrogen from the reformate gas stream
EP3379631A1 (en) Electrical power generation and cooling system
EP3379630A1 (en) Electrical power generation on a vehicle
WO2004027915A2 (en) Gas supply system for a fuel cell and implementation method
KR20180075281A (en) Ship
KR20180075262A (en) Ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2983924

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 201718215

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160414

ENP Entry into the national phase

Ref document number: 2017559701

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016002284

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796888

Country of ref document: EP

Kind code of ref document: A1