WO2016184142A1 - 投影画面的颜色校正方法及装置 - Google Patents

投影画面的颜色校正方法及装置 Download PDF

Info

Publication number
WO2016184142A1
WO2016184142A1 PCT/CN2016/070732 CN2016070732W WO2016184142A1 WO 2016184142 A1 WO2016184142 A1 WO 2016184142A1 CN 2016070732 W CN2016070732 W CN 2016070732W WO 2016184142 A1 WO2016184142 A1 WO 2016184142A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary color
light source
color component
value
projection light
Prior art date
Application number
PCT/CN2016/070732
Other languages
English (en)
French (fr)
Inventor
曾慧鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016184142A1 publication Critical patent/WO2016184142A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for color correction of a projected picture.
  • the SPROII projection in the related art is an intelligent terminal with projection, and supports three color adjustments on SPROII, respectively, cold, normal, warm, respectively representing three colors of cold, medium and warm, and these three tones are changed by projection.
  • the brightness of the LED bulbs is achieved, but these settings are fixed.
  • SPROIII began to have a function to automatically adapt the color of the wall.
  • the traditional projector only supports color temperature adjustment.
  • the fixed color temperature allows the projected image to be yellowish, neutral, and blue with several fixed color compensations, and the fixed compensation range is very limited.
  • the invention provides a color correction method and device for a projection picture, so as to solve at least the problem of color deviation of a projection picture caused by a relatively fixed color adjustment mode of the projector in the related art.
  • a color correction method for a projection image including: acquiring a projection background image in a projection area formed by the projection light source; and analyzing color information of each primary color component in the projection background image, wherein And the color information is used to at least indicate the brightness of the primary color component; the color deviation value of the primary color component is respectively obtained according to the color information of the projected background image; and the color light deviation value of the primary color component is respectively corrected for the projection light source and the above The color information of the primary color projection light source corresponding to the primary color component.
  • the parsing the color information of each of the primary color components in the projected background image comprises: parsing the grayscale value and the gray color component of the red primary color component in each of the pixels from each of the pixels of the projected background image a grayscale value of the order value and the blue primary color component; obtaining an average grayscale value of the red primary color component according to the grayscale value of the red primary color component of all the pixels of the projected background image; and the green primary color of all the pixels according to the projected background image
  • the grayscale value of the component obtains an average grayscale of the green primary color component; and obtains an average grayscale of the blue primary color component according to the grayscale value of the blue primary color component of all the pixels of the projected background image.
  • the correcting the color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component, respectively comprising: acquiring a standard luminance value of each primary color projection light source in the projection light source, where
  • the primary color projection light source comprises a red primary color projection light source, a green primary color projection light source and a blue primary color projection light source;
  • the above R is used to represent the average gray scale value of the red primary color component R
  • the D_R is used to represent the color deviation value of the red primary color component R
  • the L_R is used to represent the standard luminance value of the red primary color projection light source
  • the New_L_R is used.
  • the above G is used to indicate An average grayscale value of the green primary color component G
  • the D_G is used to represent a color deviation value of the green primary color component G
  • the L_G is used to represent a standard luminance value of the green primary color projection light source
  • the New_L_G is used to represent the corrected green primary color.
  • the brightness value of the projection light source is used to represent the average gray level value of the blue primary color component B
  • the D_B is used to represent the color deviation value of the blue primary color component B
  • the L_B is used to indicate the standard brightness of the blue primary color projection light source.
  • the above New_L_B is used to indicate the brightness value of the corrected blue primary color projection light source.
  • the projecting the background image in the projection area formed by the acquiring the projection light source comprises: collecting the projection background image on the projection area by a camera of the projector, wherein an area of the projection background image is less than or equal to the projection area area.
  • the method further includes: projecting according to the corrected color information of the primary color projection light source The projected picture.
  • a color correction device for a projection screen comprising: an acquisition module configured to acquire a projection background image in a projection area formed by the projection light source; and an analysis module configured to parse the projection The color information of each of the primary color components in the background image, wherein the color information is used to at least indicate the brightness of the primary color component; and the acquiring module is configured to respectively obtain the color deviation value of the primary color component according to the color information of the projected background image; And a module configured to correct color information of the primary color projection light source corresponding to the primary color component of the projection light source according to the color deviation value of the primary color component.
  • the parsing module includes: an parsing unit configured to parse a grayscale value, a grayscale value of the green primary color component, and a blue primary color of the red primary color component in each of the pixels from each of the pixels of the projected background image a grayscale value of the component; the first acquiring unit is configured to obtain an average grayscale value of the red primary color component according to the grayscale value of the red primary color component of all the pixels of the projected background image; and according to the foregoing all pixels of the projected background image
  • the grayscale value of the green primary color component obtains an average grayscale of the green primary color component; according to the grayscale value of the blue primary color component of all pixels of the projected background image Get the average gray level of the blue base component.
  • D_R is used to represent the color deviation of the red primary color component R.
  • a value of G above is used to represent an average grayscale value of the green primary color component G, and the above D_G is used to represent a color deviation value of the green primary color component G; and B is used to represent an average grayscale value of the blue primary color component B, D_B is used to represent the color deviation value of the above-described blue primary color component B.
  • the color deviation value of the quantity G, the above L_G is used to indicate the standard brightness value of the green primary color projection light source
  • the New_L_G is used to represent the brightness value of the corrected green primary color projection light source
  • the above B is used to represent the average of the blue primary color component B.
  • the gray scale value, the above D_B is used to indicate the color deviation value of the blue primary color component B
  • the L_B is used to represent the standard luminance value of the blue primary color projection light source
  • the New_L_B is used to represent the luminance value of the corrected blue primary color projection light source.
  • the acquiring module is further configured to collect the projected background image on the projection area by using a camera of the projector, wherein an area of the projected background image is less than or equal to an area of the projection area.
  • the apparatus further includes: a projection module configured to: after correcting color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component, according to the corrected primary color The color information of the projection source projects the picture to be projected.
  • a projection module configured to: after correcting color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component, according to the corrected primary color The color information of the projection source projects the picture to be projected.
  • a projection background image in a projection area formed by a projection light source is acquired; color information of each primary color component in the projection background image is parsed, wherein the color information is at least used to indicate brightness of the primary color component;
  • the color information of the background image respectively obtains a color deviation value of the primary color component; and corrects color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component.
  • the present invention separately obtains the color deviation value of the primary color component by projecting the color information of the background image, and dynamically corrects the color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component, thereby realizing the projection background.
  • the color of the picture is dynamically corrected to solve the problem of color deviation of the projection picture caused by the fixed color adjustment mode of the projector in the related art, thereby achieving color correction of the projected background picture of different colors, thereby realizing
  • the effect of a white balance normal projection screen is displayed on the projected background image of different colors.
  • FIG. 1 is a flowchart of a color correction method of a projected picture according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the composition of a digital light processing DLP system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the operation of a DMD chip according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method for displaying a screen of a projector according to an embodiment of the invention.
  • FIG. 5 is a block diagram showing the structure of a color correction device for a projected picture according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram (1) of a color correction device for a projected picture according to an embodiment of the present invention
  • FIG. 7 is a structural block diagram (2) of a color correction device for a projected picture according to an embodiment of the present invention.
  • FIG. 8 is a structural block diagram (3) of a color correction device for a projected picture according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a color correction method for a projection screen according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 acquiring a projected background image in a projection area formed by the projection light source
  • Step S104 parsing color information of each primary color component in the projected background picture, wherein the color information is at least used to indicate the brightness of the primary color component;
  • Step S106 respectively acquiring color deviation values of the primary color components according to the color information of the projected background image
  • Step S108 respectively correcting color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component.
  • the color correction method of the projection screen may include, but is not limited to, based on digital light.
  • the processing Digital Light Processing, DLP for short
  • the projection background image in the projection area formed by the projection light source is collected, and the color information of each primary color component in the projected background image is analyzed, and the color deviation values of the primary color components are respectively obtained.
  • the problem of color deviation due to the manner in which the brightness of the projected LED light bulb is changed by fixing three color tones for example, cold, medium, and warm three colors
  • the projected background image may include, but is not limited to, a background image for displaying a projected image captured by a camera of the projector.
  • the background image may be a wall surface, a curtain, or the like. That is to say, the color correction method of the projection screen can perform color adjustment on the projection background images of different colors, so as to avoid the influence of the projection background images of different colors on the projection image when the image to be projected is projected, so as to achieve display. White balances the effect of a normal projection screen.
  • each of the foregoing primary color components may include, but is not limited to, a red primary color component, a green primary color component, and a blue primary color component.
  • the color information may include, but is not limited to, a brightness for indicating the primary color component, wherein the color information of each primary color component in the projected background image may include, but is not limited to, a grayscale value of each primary color component.
  • the color information of the primary color projection light source may include, but is not limited to, a brightness value of the light source.
  • FIG. 2 is a schematic diagram of the composition of a digital light processing DLP system in accordance with an embodiment of the present invention.
  • the DLP system has the following key components:
  • the light source of the DLP system is composed of three LED lights (ie R-LED, G-LED and B-LED), which respectively correspond to the light emitting RED (represented by R) and the light of GREEN (indicated by G). , BLUE (indicated by B) color of light, the higher the brightness of the LED, the higher the brightness of the projected picture.
  • the DMD chip is the core display device in the DLP projection system. It is composed of many small mirrors that can be rotated.
  • 3 is a schematic diagram of the operation of a DMD chip according to an embodiment of the present invention. As shown in FIG. 3, small mirrors are arranged in a row of pixels, and each small mirror corresponds to each pixel of the image, or each pixel of the image is controlled. The deflection angle of a small mirror.
  • the RGB data of each pixel of the image is decomposed, the RGB lights of the control LED are respectively switched.
  • the R lamp is turned on, the small mirror is deflected according to the value of R. The larger the R value, the more light the mirror reflects, G, The B lamp is turned on in the same way, and through this process, the correct brightness of RGB is reflected in the image of one frame.
  • the light reflected by the small mirror is concentrated, and then projected onto the screen according to the focal length. Different focal lengths are realized by the lens group in the lens, and the image clarity and size of the screen can be adjusted by the focal length.
  • the DLP projection is realized by the above-mentioned key components.
  • the specific projection flow diagram is shown in FIG. 4 , wherein the projection light source on the projector shown in FIG. 4 is focused on the screen and imaged.
  • the camera on the projector focuses on the reflected light obtained by the reflected light reflected from the center of the screen, and then captures the center of the projection area through the camera after focusing on the projector.
  • the picture data on the DMD chip changes the mirror flip of the DMD chip to change the intensity of the RGB light, and realizes different colors and brightness of each pixel of the picture, by changing three LEDs of R, G, B
  • the brightness of the picture can be used to control the color balance of the picture as a whole.
  • the method for parsing the color information of each of the primary color components in the projected background image includes, but is not limited to, from the projected background image.
  • the grayscale values of the three primary color components are parsed in each pixel, and then the average grayscale values of the three primary color components of all pixels of the projected background image are respectively parsed; or, each pixel of the central image of the projected background image is parsed out
  • the grayscale values of the three primary color components are then respectively parsed out the average grayscale values of the three primary color components of all pixels of the projected background image.
  • the area of the projected background image and the area of the projected area in the projection area formed by the collected projection light source include, but are not limited to, the area of the projected background image is less than or equal to the projection area. area.
  • correcting color information of the primary color projection light source corresponding to the primary color component in the projection light source includes, but is not limited to, correcting a primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component.
  • the color information, or the color information of the primary color projection light source corresponding to the primary color component in the projection light source is corrected according to a preset threshold of the primary color component.
  • the method further includes, but is not limited to, following the corrected primary color.
  • the color information of the projection source projects the picture to be projected.
  • parsing color information of each primary color component in the projected background image includes at least the following steps:
  • Step S11 parsing the grayscale value of the red primary color component, the grayscale value of the green primary color component, and the grayscale value of the blue primary color component in each pixel from each pixel of the projected background image;
  • Step S12 Obtain an average grayscale value of a red primary color component according to a grayscale value of a red primary color component of all pixels of the projected background image; and obtain a green primary color component according to a grayscale value of the green primary color component of all pixels of the projected background image.
  • An average grayscale value; an average grayscale value of the blue primary color component is obtained according to a grayscale value of the blue primary color component of all pixels of the projected background image.
  • the grayscale value of the red primary color component, the grayscale value of the green primary color component, and the grayscale value of the blue primary color component in each pixel parsed in each pixel of different projected background images are different.
  • step S11 is exemplified in combination with the following examples.
  • the background image of the camera obtained under blue, red, white, and yellow walls and the grayscale value of the RGB channel of each background image are mainly used.
  • the gray component value of the obtained R component is between 0-100, the grayscale value of the G component is between 100-255, and the grayscale value of the B component is close to 255; if the background color is red Then, the gray component value of the obtained R component is between 100 and 255, the grayscale value of the G and B components is between 100 and 255, and the grayscale value of the B channel is close to 255; if the background color is white, R, G The values of B and B are similar, about 100-255; if the background color is yellow, R, G The grayscale value is close to 255 and the value of B is close to 100.
  • Red wall R component is large; blue wall: B component is large; white wall: RGB is almost; yellow wall: R and G components are greater than B.
  • the average grayscale values of the primary color components of the red, green, and blue primary colors can be calculated by:
  • X is the image width and Y is the image height.
  • Y is the image height.
  • n X*Y pixels.
  • the color of each pixel is composed of 16 bits of RGB, a total of 48 bytes, and the upper 16 bytes represent R, the middle 16 words.
  • the section represents G and the lower 16 bytes represent B.
  • 0xFF0000 means red
  • 0x00FF00 means green
  • 0x0000FF means blue
  • 0x333333 is gray.
  • the color component of each pixel is obtained by taking 16 bytes of the high, middle, and low bits, which is a value between 0 and 255.
  • mRi is assumed to be the grayscale value of the red primary color component of pixel point i, where i is a natural number from 1 to n.
  • the average grayscale value of G and B can be obtained.
  • the average grayscale values of the three primary color components of red, green, and blue components are obtained according to the grayscale values of the red, green, and blue primary color components of all the pixels of the projected background image, thereby improving the primary color corresponding to the primary color component in the corrected projection light source.
  • the accuracy of the color information of the projection light source further solves the problem of color deviation of the projection image caused by the fixed color adjustment mode of the projector in the related art, thereby achieving color correction of the projected background image of different colors.
  • the effect of displaying a projection screen with a normal white balance on a projected background image of different colors is realized.
  • respectively obtaining the color deviation value of the primary color component according to the color information of the projected background image includes the following steps:
  • Step S21 calculating a color deviation value of the red primary color component R, the green primary color component G, and the blue primary color component B in the projected background picture by:
  • D_R (R-A_RGB)/A_RGB
  • D_G (G-A_RGB)/A_RGB
  • D_B (B-A_RGB)/A_RGB.
  • A_RGB is used to represent the average gray scale value of the red primary color component R in the projected background picture, the average grayscale value of the green primary color component G, and the average grayscale value of the blue primary color component B.
  • a value of R is used to represent an average grayscale value of the red primary color component R
  • the D is used to represent a color deviation value of the red primary color component R
  • the G is used to represent an average grayscale value of the green primary color component G
  • D_G is used to represent the color deviation value of the green primary color component G
  • the B is used to represent the average grayscale value of the blue primary color component B
  • the D_B is used to represent the color deviation value of the blue primary color component B.
  • respectively correcting color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component comprises the following steps:
  • Step S31 obtaining a standard brightness value of each of the primary color projection light sources in the projection light source, wherein the primary color projection light source comprises a red primary color projection light source, a green primary color projection light source, and a blue primary color projection light source;
  • Step S32 calculating the brightness value of the corrected primary color projection light source by:
  • New_L_R L_R-A_L_RGB*D_R,
  • New_L_G L_G-A_L_RGB*D_G,
  • New_L_B L_B-A_L_RGB*D_B.
  • A_L_RGB is used to represent the average brightness value of the red primary color projection light source, the standard brightness value of the green primary color projection light source, and the average brightness value of the blue primary color projection light source;
  • the R is used to indicate An average grayscale value of the red primary color component R
  • the D_R is used to represent a color deviation value of the red primary color component R
  • the L_R is used to represent a standard luminance value of the red primary color projection light source
  • the New_L_R is used to represent the corrected red color.
  • the luminance value of the primary color projection light source is used to represent the average grayscale value of the green primary color component G, and the D_G is used to represent the color deviation value of the green primary color component G, and the L_G is used to represent the standard of the green primary color projection light source.
  • a luminance value is used to indicate a luminance value of the corrected green primary color projection light source
  • the B is used to represent an average grayscale value of the blue primary color component B
  • the D_B is used to represent a color deviation value of the blue primary color component B
  • the L_B is used to indicate a standard luminance value of the blue primary color projection light source
  • the New_L_B is used to represent the luminance value of the corrected blue primary color projection light source.
  • the color compensation can be realized. Further, the problem of color deviation of the projection image caused by the fixed color adjustment mode of the projector in the related art is further solved, thereby achieving color correction of the projected background images of different colors to realize the projection background images of different colors. The effect of the projection screen with normal white balance is displayed.
  • acquiring the projected background image in the projection area formed by the projection light source comprises the following steps:
  • step S41 the projected background image is acquired on the projection area by the camera of the projector.
  • the area of the projected background picture is less than or equal to the area of the projection area; the camera of the projector may be the front camera of the projector.
  • the projection background image is acquired by using a projection camera (for example, a front camera), and the projection background image is further analyzed, and the color information of the primary color projection light source is corrected according to the analysis result, thereby further solving the color of the projector in the related art.
  • the problem of color deviation of the projection screen caused by the fixed adjustment method is fixed, and the color correction of the projected background image of different colors is achieved, so as to realize the effect of displaying the projection screen with normal white balance on the projected background image of different colors.
  • the method further includes the following steps:
  • Step S51 projecting the picture to be projected according to the color information of the corrected primary color projection light source.
  • the image to be projected is projected according to the color information of the corrected primary color projection light source, so that a white balance normal image can be seen on the wall of different colors, thereby dynamically adjusting the projection according to different colors of the projected background image.
  • the effect of the picture is a white balance normal image.
  • the method mainly includes the following steps:
  • Step S62 driving the camera to use a specific iso, taking a photo of the shutter aperture to obtain a picture of the projection center;
  • Step S63 analyzing the average grayscale value of the R, G, and B components of the picture of the center screen, and calculating the average grayscale value as follows:
  • X is the image width and Y is the image height.
  • Y is the image height.
  • the color of each pixel is composed of 16 bits of RGB, a total of 48 bytes, and the upper 16 bytes represent R, the middle 16 bytes. Indicates G, and the lower 16 bytes represent B.
  • 0xFF0000 means red
  • 0x00FF00 means green
  • 0x0000FF means blue
  • 0x333333 is gray.
  • the color component of each pixel is obtained by taking 16 bytes of high, medium, and low bits, which is a value between 0 and 255, assuming that mR is the component value of a certain pixel red.
  • D_R, D_G, and D_B are calculated according to the following formulas, and the three values respectively represent the percentage deviation of red, green, and blue with respect to other colors:
  • A_RGB (R+G+B)/3;
  • D_R (R-A_RGB)/A_RGB;
  • D_G (G-A_RGB)/A_RGB;
  • D_B (B-A_RGB)/A_RGB;
  • Step S65 calculating new brightness values New_L_R, New_L_G, New_L_B of the R, G, and B lamps of the optical machine to be adjusted according to D_R, D_G, and D_B,
  • A_L_RGB (L_R+L_G+L_B)/3;
  • New_L_R L_R-A_L_RGB*D_R;
  • New_L_G L_G-A_L_RGB*D_G;
  • New_L_B L_B-A_L_RGB*D_B;
  • Step S66 setting New_L_R, New_L_G, New_L_B to the LED hardware driving module, so that the RGB lights of the LED are adjusted according to the new brightness.
  • the micro-injection based on autofocus has a camera (for example, a front camera), and the camera can capture the sharpness, brightness and color of the image, and the function of capturing the color of the image by using the camera can be
  • This information is used as a data source, and three data of R, G, B (red, green, and blue) of the image are calculated, and the brightness of three LED lights of R, G, and B in the projection is guided according to the calculated result.
  • the invention solves the problem that the projection screen has a color deviation caused by the fixed color adjustment mode of the projector in the related art, and further achieves color correction on the projected background images of different colors to realize display on the projected background images of different colors. White balances the effect of a normal projection screen.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention in essence or the contribution to the related art can be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk, CD-ROM).
  • the instructions include a number of instructions for causing a terminal device (which may be a cell phone, computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a color correction device for a projection screen is also provided, which is used to implement the above-described embodiments and preferred embodiments, and the detailed description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a color correction device for a projected picture according to an embodiment of the present invention. As shown in FIG. 5, the device includes:
  • the acquisition module 52 is configured to collect a projection background image in a projection area formed by the projection light source
  • the parsing module 54 is configured to parse color information of each of the primary color components in the projected background image, wherein the color information is at least used to indicate the brightness of the primary color component;
  • the obtaining module 56 is configured to respectively obtain a color deviation value of the primary color component according to the color information of the projected background image
  • the correction module 58 is configured to respectively correct color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component.
  • the color correction device of the projection screen may include, but is not limited to, a projection area formed by acquiring a projection light source in a Digital Light Processing (DLP) system.
  • the projection background image is used to parse the color information of each primary color component in the projected background image, and respectively obtain the color deviation values of the primary color components, so as to respectively correct the projection background images corresponding to the different color information to respectively correct the primary color projection corresponding to the primary color components in the projection light source.
  • Color information of the light source to achieve color correction of the projected background image of different colors The effect of a white balance normal projection screen is displayed on the projected background image of different colors.
  • three color tones for example, cold, medium, and warm three colors
  • the projected background image may include, but is not limited to, a background image for displaying a projected image captured by a camera of the projector.
  • the background image may be a wall surface, a curtain, or the like. That is to say, the color correction method of the projection screen can perform color adjustment on the projection background images of different colors, so as to avoid the influence of the projection background images of different colors on the projection image when the image to be projected is projected, so as to achieve display. White balances the effect of a normal projection screen.
  • each of the foregoing primary color components may include, but is not limited to, a red primary color component, a green primary color component, and a blue primary color component.
  • the color information may include, but is not limited to, a brightness for indicating the primary color component, wherein the color information of each primary color component in the projected background image may include, but is not limited to, a grayscale value of each primary color component.
  • the color information of the primary color projection light source may include, but is not limited to, a brightness value of the light source.
  • FIG. 2 is a schematic diagram of the composition of a digital light processing DLP system in accordance with an embodiment of the present invention.
  • the DLP system has the following key components:
  • the light source of the DLP system is composed of three LED lights (ie R-LED, G-LED and B-LED), which respectively correspond to the light emitting RED (represented by R) and the light of GREEN (indicated by G). , BLUE (indicated by B) color of light, the higher the brightness of the LED, the higher the brightness of the projected picture.
  • the DMD chip is the core display device in the DLP projection system. It is composed of many small mirrors that can be rotated.
  • 3 is a schematic diagram of the operation of a DMD chip according to an embodiment of the present invention. As shown in FIG. 3, small mirrors are arranged in a row of pixels, and each small mirror corresponds to each pixel of the image, or each pixel of the image is controlled. The deflection angle of a small mirror.
  • the RGB data of each pixel of the image is decomposed, the RGB lights of the control LED are respectively switched.
  • the R lamp is turned on, the small mirror is deflected according to the value of R. The larger the R value, the more light the mirror reflects, G, The B lamp is turned on in the same way, and through this process, the correct brightness of RGB is reflected in the image of one frame.
  • the light reflected by the small mirror is concentrated, and then projected onto the screen according to the focal length. Different focal lengths are realized by the lens group in the lens, and the image clarity and size of the screen can be adjusted by the focal length.
  • the DLP projection is realized by the above-mentioned key components.
  • the specific projection flow diagram is shown in FIG. 4 , wherein the projection light source on the projector shown in FIG. 4 is focused on the screen and imaged.
  • the camera on the projector focuses on the reflected light obtained by the reflected light reflected from the center of the screen, and then captures the center of the projection area through the camera after focusing on the projector.
  • the picture data on the DMD chip changes the mirror flip of the DMD chip to change the intensity of the RGB light, and realizes different colors and brightness of each pixel of the picture, by changing three LEDs of R, G, B
  • the brightness of the picture can be used to control the color balance of the picture as a whole.
  • the apparatus for parsing the color information of each of the primary color components in the projected background image includes, but is not limited to, from the projected background image.
  • the grayscale values of the three primary color components are parsed in each pixel, and then the average grayscale values of the three primary color components of all pixels of the projected background image are respectively parsed; or, each pixel of the central image of the projected background image is parsed out
  • the grayscale values of the three primary color components are then respectively parsed out the average grayscale values of the three primary color components of all pixels of the projected background image.
  • the area of the projected background image and the area of the projected area in the projection area formed by the collected projection light source include, but are not limited to, the area of the projected background image is less than or equal to the projection area. area.
  • correcting color information of the primary color projection light source corresponding to the primary color component in the projection light source includes, but is not limited to, correcting a primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component.
  • the color information, or the color information of the primary color projection light source corresponding to the primary color component in the projection light source is corrected according to a preset threshold of the primary color component.
  • the method further includes, but is not limited to, following the corrected primary color.
  • the color information of the projection source projects the picture to be projected.
  • FIG. 6 is a structural block diagram (1) of a color correction device for a projected picture according to an embodiment of the present invention.
  • the analysis module 54 includes:
  • the parsing unit 62 is configured to parse out the grayscale value of the red primary color component, the grayscale value of the green primary color component, and the grayscale value of the blue primary color component in each pixel of the projected background picture;
  • the first obtaining unit 64 is configured to obtain an average grayscale value of the red primary color component according to the grayscale value of the red primary color component of all pixels of the projected background image; the green primary color component of all pixels of the projected background image
  • the grayscale value obtains an average grayscale value of the green primary color component; and obtains an average grayscale value of the blue primary color component according to the grayscale value of the blue primary color component of all pixels of the projected background image.
  • the grayscale value of the red primary color component, the grayscale value of the green primary color component, and the grayscale value of the blue primary color component in each pixel parsed in each pixel of different projected background images are different.
  • the grayscale value of the red primary color component, the grayscale value of the green primary color component, and the grayscale value of the blue primary color component in each pixel are respectively parsed from each pixel of the projected background image. .
  • the background image of the camera obtained under blue, red, white, and yellow walls and the grayscale value of the RGB channel of each background image are mainly used.
  • the gray component value of the obtained R component is between 0-100, the grayscale value of the G component is between 100-255, and the grayscale value of the B component is close to 255; if the background color is red Then, the gray component value of the obtained R component is between 100 and 255, the grayscale value of the G and B components is between 100 and 255, and the grayscale value of the B channel is close to 255; if the background color is white, R, G The values of B and B are similar, about 100-255. If the background color is yellow, the grayscale values of R and G are close to 255, and the value of B is close to 100.
  • Red wall R component is large; blue wall: B component is large; white wall: RGB is almost; yellow wall: R and G components are greater than B.
  • the average grayscale values of the primary color components of the red, green, and blue primary colors can be calculated by:
  • X is the image width and Y is the image height.
  • Y is the image height.
  • n X*Y pixels.
  • the color of each pixel is composed of 16 bits of RGB, a total of 48 bytes, and the upper 16 bytes represent R, the middle 16 words.
  • the section represents G and the lower 16 bytes represent B.
  • 0xFF0000 means red
  • 0x00FF00 means green
  • 0x0000FF means blue
  • 0x333333 is gray.
  • the color component of each pixel is obtained by taking 16 bytes of high, medium, and low bits, which is a value between 0 and 255.
  • mRi is assumed to be the grayscale value of the red primary color component of pixel point i, where i is a natural number from 1 to n.
  • the average grayscale value of G and B can be obtained.
  • the average grayscale values of the three primary color components of red, green, and blue components are obtained according to the grayscale values of the red, green, and blue primary color components of all the pixels of the projected background image, thereby improving the primary color corresponding to the primary color component in the corrected projection light source.
  • the accuracy of the color information of the projection light source further solves the problem of color deviation of the projection image caused by the fixed color adjustment mode of the projector in the related art, thereby achieving color correction of the projected background image of different colors.
  • the effect of displaying a projection screen with a normal white balance on a projected background image of different colors is realized.
  • the obtaining module 66 is further configured to calculate a color deviation value of the red primary color component R, the green primary color component G, and the blue primary color component B in the projected background image by:
  • D_R (R-A_RGB)/A_RGB
  • D_G (G-A_RGB)/A_RGB
  • D_B (B-A_RGB)/A_RGB
  • the A_RGB is used to represent an average value of the average grayscale value of the red primary color component R, the average grayscale value of the green primary color component G, and the average grayscale value of the blue primary color component B in the projected background image;
  • the R is used to represent an average grayscale value of the red primary color component R
  • the D_R is used to represent a color deviation value of the red primary color component R
  • the G is used to represent an average grayscale value of the green primary color component G
  • the D_G is used for the D_G
  • the color deviation value indicating the green primary color component G is used to represent the average grayscale value of the blue primary color component B
  • the D_B is used to represent the color deviation value of the blue primary color component B.
  • FIG. 7 is a structural block diagram (2) of a color correction device for a projected picture according to an embodiment of the present invention.
  • the correction module 58 includes:
  • the second obtaining unit 72 is configured to acquire a standard brightness value of each of the primary color projection light sources in the projection light source, wherein the primary color projection light source comprises a red primary color projection light source, a green primary color projection light source, and a blue primary color projection light source;
  • the calculating unit 74 is configured to calculate the brightness value of the corrected primary color projection light source by:
  • New_L_R L_R-A_L_RGB*D_R,
  • New_L_G L_G-A_L_RGB*D_G,
  • New_L_B L_B-A_L_RGB*D_B,
  • the A_L_RGB is used to represent an average value of a standard brightness value of the red primary color projection light source, a standard brightness value of the green primary color projection light source, and a standard brightness value of the blue primary color projection light source;
  • the R is used to represent the red primary color.
  • An average grayscale value of the component R the D_R is used to represent a color deviation value of the red primary color component R, the L_R is used to represent a standard luminance value of the red primary color projection light source, and the New_L_R is used to represent the corrected red primary color projection light source.
  • the G is used to represent an average grayscale value of the green primary color component G
  • the D_G is used to represent a color deviation value of the green primary color component G
  • the L_G is used to represent a standard luminance value of the green primary color projection light source
  • the New_L_G is used to represent the luminance value of the corrected green primary color projection light source
  • the B is used to represent the average grayscale value of the blue primary color component B
  • the D_B is used to represent the color deviation value of the blue primary color component B
  • the L_B is used for the L_B
  • the New_L_B is used to represent the brightness value of the corrected blue primary color projection light source.
  • the color compensation can be realized. Further, the problem of color deviation of the projection image caused by the fixed color adjustment mode of the projector in the related art in the related art is further solved, thereby achieving color correction of the projected background images of different colors to realize projection in different colors.
  • the effect of the projection screen with normal white balance is displayed on the background screen.
  • the acquiring module 62 is further configured to collect the projected background image on the projection area by using a camera of the projector, wherein an area of the projected background image is less than or equal to an area of the projected area.
  • the area of the projected background picture is less than or equal to the area of the projection area; the camera of the projector may be the front camera of the projector.
  • the projection background image is acquired by using a projection camera (for example, a front camera), and the projection background image is further analyzed, and the color information of the primary color projection light source is corrected according to the analysis result, thereby further solving the color of the projector in the related art.
  • the problem of color deviation of the projection screen caused by the fixed adjustment method is fixed, and the color correction of the projected background image of different colors is achieved, so as to realize the effect of displaying the projection screen with normal white balance on the projected background image of different colors.
  • the device includes: in addition to all the modules shown in FIG. 5, the device includes:
  • the projection module 82 is configured to, after correcting the color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component, projecting according to the corrected color information of the primary color projection light source The picture to be projected.
  • the image to be projected is projected according to the color information of the corrected primary color projection light source, so that a white balance normal image can be seen on the wall of different colors, thereby dynamically adjusting the projection according to different colors of the projected background image.
  • the effect of the picture is a white balance normal image.
  • the method mainly includes the following steps:
  • Step S62 driving the camera to use a specific iso, taking a photo of the shutter aperture to obtain a picture of the projection center;
  • Step S63 analyzing the average grayscale value of the R, G, and B components of the picture of the center screen, and calculating the average grayscale value as follows:
  • X is the image width and Y is the image height.
  • Y is the image height.
  • n X*Y pixels.
  • the color of each pixel is composed of 16 bits of RGB, a total of 48 bytes, and the upper 16 bytes represent R, the middle 16 bytes. Indicates G, and the lower 16 bytes represent B.
  • 0xFF0000 means red
  • 0x00FF00 means green
  • 0x0000FF means blue
  • 0x333333 is gray.
  • the color component of each pixel is obtained by taking 16 bytes of the high, middle, and low bits, which is a value between 0 and 255.
  • mRi is assumed to be the grayscale value of the red primary color component of pixel point i, where i is a natural number from 1 to n.
  • the average grayscale value of G and B can be obtained;
  • D_R, D_G, and D_B are calculated according to the following formulas, and the three values respectively represent the percentage deviation of red, green, and blue with respect to other colors:
  • A_RGB (R+G+B)/3;
  • D_R (R-A_RGB)/A_RGB;
  • D_G (G-A_RGB)/A_RGB;
  • D_B (B-A_RGB)/A_RGB;
  • Step S65 calculating new brightness values New_L_R, New_L_G, New_L_B of the R, G, and B lamps of the optical machine to be adjusted according to D_R, D_G, and D_B:
  • A_L_RGB (L_R+L_G+L_B)/3;
  • New_L_R L_R-A_L_RGB*D_R;
  • New_L_G L_G-A_L_RGB*D_G;
  • New_L_B L_B-A_L_RGB*D_B;
  • Step S66 setting New_L_R, New_L_G, New_L_B to the LED hardware driving module, so that the RGB lights of the LED are adjusted according to the new brightness.
  • the embodiment of the present invention has a camera (for example, a front camera) through micro-focusing based on auto focus, and the camera can capture the sharpness, brightness and color of the image, and the camera can capture the color of the image.
  • the information is used as a data source, and three data of R, G, B (red, green, and blue) of the image are calculated, and the brightness of three LED lights of R, G, and B in the projection is guided according to the calculated result.
  • the invention solves the problem that the projection screen has a color deviation caused by the fixed color adjustment mode of the projector in the related art, and further achieves color correction on the projected background images of different colors to realize display on the projected background images of different colors. White balances the effect of a normal projection screen.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • a storage medium may be configured to store program code for performing the following steps:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs the above steps S1, S2, S3, and S4 according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described Alternatively, each of them may be fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof may be fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • a projection background image in a projection area formed by a projection light source is acquired; color information of each primary color component in the projection background image is parsed, wherein the color information is at least used to indicate brightness of the primary color component;
  • the color information of the background image respectively obtains a color deviation value of the primary color component; and corrects color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component.
  • the present invention separately obtains the color deviation value of the primary color component by projecting the color information of the background image, and dynamically corrects the color information of the primary color projection light source corresponding to the primary color component in the projection light source according to the color deviation value of the primary color component, thereby realizing the projection background.
  • the color of the picture is dynamically corrected to solve the problem of color deviation of the projection picture caused by the fixed color adjustment mode of the projector in the related art, thereby achieving color correction of the projected background picture of different colors to achieve different
  • the effect of the projection screen with normal white balance is displayed on the projected background image of the color.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

一种投影画面的颜色校正方法及装置,其中,该方法包括:采用采集投影光源所形成的投影区域中的投影背景画面;解析投影背景画面中各个基色分量的颜色信息,其中,该颜色信息至少用于指示该基色分量的亮度;根据该投影背景画面的该颜色信息分别获取该基色分量的颜色偏差值;根据该基色分量的颜色偏差值分别校正投影光源中与该基色分量对应的基色投影光源的颜色信息。该方法解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。

Description

投影画面的颜色校正方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种投影画面的颜色校正方法及装置。
背景技术
相关技术中的SPROII投影,是带投影的智能终端,在SPROII上支持三种色彩调节,分别是cold,normal,warm,分别代表冷,中,暖三种色调,这三种色调是通过改变投影的LED灯泡的亮度来实现的,但这些设置都是固定不变的。SPROIII开始有规划一个自动适配墙面颜色的功能。
传统的投影仪只支持色温调节,固定的几个色温让投影出来的图像可以呈现偏黄,偏中性,偏蓝几种固定的色彩补偿,而且固定的补偿范围非常有限。
针对相关技术中,由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,尚未提出有效地解决方案。
发明内容
本发明提供了一种投影画面的颜色校正方法及装置,以至少解决相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题。
根据本发明实施例的一个方面,提供了一种投影画面的颜色校正方法,包括:采集投影光源所形成的投影区域中的投影背景画面;解析上述投影背景画面中各个基色分量的颜色信息,其中,上述颜色信息至少用于指示上述基色分量的亮度;根据上述投影背景画面的上述颜色信息分别获取上述基色分量的颜色偏差值;根据上述基色分量的上述颜色偏差值分别校正上述投影光源中与上述基色分量对应的基色投影光源的颜色信息。
可选地,上述解析上述投影背景画面中各个基色分量的颜色信息包括:从上述投影背景画面的每一个像素中分别解析出上述每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值;根据上述投影背景画面的全部像素的上述红基色分量的灰阶值获取红基色分量的平均灰阶值;根据上述投影背景画面的全部像素的上述绿基色分量的灰阶值获取绿基色分量的平均灰阶;根据上述投影背景画面的全部像素的上述蓝基色分量的灰阶值获取蓝基色分量的平均灰阶。
可选地,上述根据上述投影背景画面的上述颜色信息分别获取上述基色分量的颜色偏差值包括:通过以下方式计算上述投影背景画面中上述红基色分量R、上述绿基色分量G、上述蓝基色分量B的颜色偏差值,D_R=(R-A_RGB)/A_RGB,D_G=(G-A_RGB)/A_RGB,D_B=(B-A_RGB)/A_RGB,其中,上述A_RGB用于表示上述投影背景画面中上述红基色 分量R的平均灰阶值、上述绿基色分量G的平均灰阶值及上述蓝基色分量B的平均灰阶值三者的平均值;上述R用于表示上述红基色分量R的平均灰阶值,上述D_R用于表示上述红基色分量R的颜色偏差值;上述G用于表示上述绿基色分量G的平均灰阶值,上述D_G用于表示上述绿基色分量G的颜色偏差值;上述B用于表示上述蓝基色分量B的平均灰阶值,上述D_B用于表示上述蓝基色分量B的颜色偏差值。
可选地,上述根据上述基色分量的上述颜色偏差值分别校正上述投影光源中与上述基色分量对应的基色投影光源的颜色信息包括:获取上述投影光源中各个基色投影光源的标准亮度值,其中,上述基色投影光源包括红基色投影光源、绿基色投影光源及蓝基色投影光源;通过以下方式计算上述校正后的基色投影光源的亮度值,New_L_R=L_R-A_L_RGB*D_R,New_L_G=L_G-A_L_RGB*D_G,New_L_B=L_B-A_L_RGB*D_B,其中,上述A_L_RGB用于表示上述红基色投影光源的标准亮度值、上述绿基色投影光源的标准亮度值及上述蓝基色投影光源的标准亮度值三者的平均值;上述R用于表示上述红基色分量R的平均灰阶值,上述D_R用于表示上述红基色分量R的颜色偏差值,上述L_R用于表示上述红基色投影光源的标准亮度值,上述New_L_R用于表示校正后的红基色投影光源的亮度值;上述G用于表示上述绿基色分量G的平均灰阶值,上述D_G用于表示上述绿基色分量G的颜色偏差值,上述L_G用于表示上述绿基色投影光源的标准亮度值,上述New_L_G用于表示校正后的绿基色投影光源的亮度值;上述B用于表示上述蓝基色分量B的平均灰阶值,上述D_B用于表示上述蓝基色分量B的颜色偏差值,上述L_B用于表示上述蓝基色投影光源的标准亮度值,上述New_L_B用于表示校正后的蓝基色投影光源的亮度值。
可选地,上述采集投影光源所形成的投影区域中的投影背景画面包括:通过投影仪的摄像头在上述投影区域上采集上述投影背景画面,其中,上述投影背景画面的面积小于等于上述投影区域的面积。
可选地,在根据上述基色分量的上述颜色偏差值分别校正上述投影光源中与上述基色分量对应的基色投影光源的颜色信息之后,还包括:按照校正后的上述基色投影光源的颜色信息投影待投影的画面。
根据本发明实施例的另一方面,提供了一种投影画面的颜色校正装置,包括:采集模块,设置为采集投影光源所形成的投影区域中的投影背景画面;解析模块,设置为解析上述投影背景画面中各个基色分量的颜色信息,其中,上述颜色信息至少用于指示上述基色分量的亮度;获取模块,设置为根据上述投影背景画面的上述颜色信息分别获取上述基色分量的颜色偏差值;校正模块,设置为根据上述基色分量的上述颜色偏差值分别校正上述投影光源中与上述基色分量对应的基色投影光源的颜色信息。
可选地,上述解析模块包括:解析单元,设置为从上述投影背景画面的每一个像素中分别解析出上述每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值;第一获取单元,设置为根据上述投影背景画面的全部像素的上述红基色分量的灰阶值获取红基色分量的平均灰阶值;根据上述投影背景画面的全部像素的上述绿基色分量的灰阶值获取绿基色分量的平均灰阶;根据上述投影背景画面的全部像素的上述蓝基色分量的灰阶值 获取蓝基色分量的平均灰阶。
可选地,上述获取模块还设置为通过以下方式计算上述投影背景画面中上述红基色分量R、上述绿基色分量G、上述蓝基色分量B的颜色偏差值,D_R=(R-A_RGB)/A_RGB,D_G=(G-A_RGB)/A_RGB,D_B=(B-A_RGB)/A_RGB,其中,上述A_RGB用于表示上述投影背景画面中上述红基色分量R的平均灰阶值、上述绿基色分量G的平均灰阶值及上述蓝基色分量B的平均灰阶值三者的平均值;上述R用于表示上述红基色分量R的平均灰阶值,上述D_R用于表示上述红基色分量R的颜色偏差值;上述G用于表示上述绿基色分量G的平均灰阶值,上述D_G用于表示上述绿基色分量G的颜色偏差值;上述B用于表示上述蓝基色分量B的平均灰阶值,上述D_B用于表示上述蓝基色分量B的颜色偏差值。
可选地,上述校正模块包括:第二获取单元,设置为获取上述投影光源中各个基色投影光源的标准亮度值,其中,上述基色投影光源包括红基色投影光源、绿基色投影光源及蓝基色投影光源;计算单元,设置为通过以下方式计算上述校正后的基色投影光源的亮度值,New_L_R=L_R-A_L_RGB*D_R,New_L_G=L_G-A_L_RGB*D_G,New_L_B=L_B-A_L_RGB*D_B,其中,上述A_L_RGB用于表示上述红基色投影光源的标准亮度值、上述绿基色投影光源的标准亮度值及上述蓝基色投影光源的标准亮度值三者的平均值;上述R用于表示上述红基色分量R的平均灰阶值,上述D_R用于表示上述红基色分量R的颜色偏差值,上述L_R用于表示上述红基色投影光源的标准亮度值,上述New_L_R用于表示校正后的红基色投影光源的亮度值;上述G用于表示上述绿基色分量G的平均灰阶值,上述D_G用于表示上述绿基色分量G的颜色偏差值,上述L_G用于表示上述绿基色投影光源的标准亮度值,上述New_L_G用于表示校正后的绿基色投影光源的亮度值;上述B用于表示上述蓝基色分量B的平均灰阶值,上述D_B用于表示上述蓝基色分量B的颜色偏差值,上述L_B用于表示上述蓝基色投影光源的标准亮度值,上述New_L_B用于表示校正后的蓝基色投影光源的亮度值。
可选地,上述采集模块还设置为通过投影仪的摄像头在上述投影区域上采集上述投影背景画面,其中,上述投影背景画面的面积小于等于上述投影区域的面积。
可选地,上述装置还包括:投影模块,设置为在根据上述基色分量的上述颜色偏差值分别校正上述投影光源中与上述基色分量对应的基色投影光源的颜色信息之后,按照校正后的上述基色投影光源的颜色信息投影待投影的画面。
通过本发明实施例,采集投影光源所形成的投影区域中的投影背景画面;解析投影背景画面中各个基色分量的颜色信息,其中,该颜色信息至少用于指示该基色分量的亮度;根据该投影背景画面的该颜色信息分别获取该基色分量的颜色偏差值;根据该基色分量的颜色偏差值分别校正投影光源中与该基色分量对应的基色投影光源的颜色信息。换言之,本发明通过投影背景画面的颜色信息分别获取基色分量的颜色偏差值,根据该基色分量的颜色偏差值动态校正投影光源中与基色分量对应的基色投影光源的颜色信息,从而实现对投影背景画面的颜色进行动态校正,以解决相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在 不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的投影画面的颜色校正方法的流程图;
图2是根据本发明实施例的数字光处理DLP***组成原理图;
图3是根据本发明实施例的DMD芯片的工作原理图;
图4是根据本发明实施例的投影仪显示画面的方法示意图;
图5是根据本发明实施例的投影画面的颜色校正装置的结构框图;
图6是根据本发明实施例的投影画面的颜色校正装置的结构框图(一);
图7是根据本发明实施例的投影画面的颜色校正装置的结构框图(二);
图8是根据本发明实施例的投影画面的颜色校正装置的结构框图(三)。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种投影画面的颜色校正方法,图1是根据本发明实施例的投影画面的颜色校正方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,采集投影光源所形成的投影区域中的投影背景画面;
步骤S104,解析投影背景画面中各个基色分量的颜色信息,其中,该颜色信息至少用于指示该基色分量的亮度;
步骤S106,根据投影背景画面的颜色信息分别获取基色分量的颜色偏差值;
步骤S108,根据基色分量的颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息。
可选地,在本实施例中,上述投影画面的颜色校正方法可以包括但并不限于基于数字光 处理(Digital Light Processing,简称为DLP)***中,通过采集投影光源所形成的投影区域中的投影背景画面,解析投影背景画面中各个基色分量的颜色信息,分别获取基色分量的颜色偏差值,以实现针对不同颜色信息对应的投影背景画面来分别校正投影光源中与基色分量对应的基色投影光源的颜色信息,从而达到对不同颜色的投影背景画面进行颜色校正,在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。进而克服相关技术中由于通过固定三种色调(例如冷,中,暖三种色调)改变投影的LED灯泡的亮度的方式所造成的投影画面出现颜色偏差的问题。
可选地,在本实施例中,上述投影背景画面可以包括但不限于通过投影仪的摄像头拍摄得到的用于显示投影画面的背景画面。例如,上述背景画面可以为墙面、幕布等。也就是说,通过上述投影画面的颜色校正方法可以对不同颜色的投影背景画面进行颜色调整,从而实现在投影待投影的画面时,避免不同颜色的投影背景画面对投影画面的影响,以达到显示白平衡正常的投影画面的效果。
可选地,在本实施例中,上述各个基色分量可以包括但不限于:红基色分量、绿基色分量及蓝基色分量。其中,上述颜色信息可以包括但不限于用于指示该基色分量的亮度,其中,上述投影背景画面中各个基色分量的颜色信息可以包括但不限于:各个基色分量的灰阶值。上述基色投影光源的颜色信息可以包括但不限于:光源的亮度值。
可选地,在本实施例中,对于上述DLP***的关键组成部分,主要结合图2进行说明。图2是根据本发明实施例的数字光处理DLP***组成原理图。如图2所示,DLP***有如下几个关键组成部分:
光源:DLP***的光源是由三盏LED灯(即R-LED、G-LED和B-LED)组成,分别对应发出RED(用R表示)颜色的光,GREEN(用G表示)颜色的光,BLUE(用B表示)颜色的光,LED的亮度越高投影的画面亮度就越高。
数字微镜器件(Digital Micro mirror Device,简称为DMD)芯片:DMD芯片是DLP投影***中的核心显示器件,它是由许多可以旋转的小镜子组成。图3是根据本发明实施例的DMD芯片的工作原理图,如图3所示,小镜子按照像素的横列排列,每个小镜子和图像的每个像素对应,或者说图像的每个像素控制一个小镜子的偏转角度。当图像的每个像素的RGB数据分解出来后,控制LED的RGB灯分别开关,在R灯开启的时候小镜子根据R的数值做偏转,R数值越大镜子反射的光就越多,G,B灯打开同理,通过这个过程在一帧的图像中把RGB的正确亮度反射出去。
镜头:把小镜子反射的光汇聚,然后根据焦距投射到幕布上,通过镜头中的镜片组实现不同的焦距,通过焦距可以调节在幕布的成像清晰度和大小。
通过上述关键组成部分实现了DLP投影,具体的投影流程示意图如图4所示,其中,图4所示的投影仪上的投影光源,发出的投射光聚焦在幕布上成像。投影仪上的摄像头对投射光在画面中心反射后得到的反射光进行对焦,然后通过投影仪上对焦后的摄像头捕获投影区域中心的画面,在投射R=B=G的白光的情况下摄像头采用固定的ISO,快门,光圈拍摄照片。
进一步地,DLP投影***的原理,DMD芯片上的图片数据会改变DMD芯片的镜子翻转从而改变RGB光线的强弱,实现画面的各个像素颜色和亮度不同,通过改变R,G,B三个LED的亮度,可以总体控制画面的色彩平衡。
可选地,在本实施例中,在采集投影光源所形成的投影区域中的投影背景画面之后,解析投影背景画面中各个基色分量的颜色信息的方法包括但并不限于:从投影背景画面的每一个像素中解析出三基色分量的灰阶值,然后分别解析出投影背景画面的全部像素的三基色分量的平均灰阶值;或者,从投影背景画面的中心画面的每一个像素中解析出三基色分量的灰阶值,然后分别解析出投影背景画面的全部像素的三基色分量的平均灰阶值。
可选地,在本实施例中,采集到的投影光源所形成的投影区域中的投影背景画面的面积与投影区域的面积包括但并不限于:投影背景画面的面积小于或者等于该投影区域的面积。
可选地,在本实施例中,校正投影光源中与基色分量对应的基色投影光源的颜色信息包括但并不限于:根据基色分量的颜色偏差值校正投影光源中与基色分量对应的基色投影光源的颜色信息,或者,根据基色分量的预设阈值校正投影光源中与基色分量对应的基色投影光源的颜色信息。
可选地,在本实施例中,在根据基色分量的颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息之后,还包括但并不限于:按照校正后的基色投影光源的颜色信息投影待投影的画面。
在一个可选的实施方式中,解析投影背景画面中各个基色分量的颜色信息至少包括以下步骤:
步骤S11,从投影背景画面的每一个像素中分别解析出每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值;
步骤S12,根据投影背景画面的全部像素的红基色分量的灰阶值获取红基色分量的平均灰阶值;根据该投影背景画面的全部像素的该绿基色分量的灰阶值获取绿基色分量的平均灰阶值;根据该投影背景画面的全部像素的蓝基色分量的灰阶值获取蓝基色分量的平均灰阶值。
需要说明的是,不同投影背景画面的每一个像素中解析出的每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值是不相同的。
具体结合以下示例,对上述步骤S11进行举例说明。
在本实施例中,主要针对蓝色,红色,白色,黄色墙面下获取的摄像头背景画面和各个背景画面的RGB通道的灰阶值。
如果背景颜色是蓝色,那么得到的R分量的灰阶值在0-100之间,G分量的灰阶值在100-255之间,B分量的灰阶值接近255;如果背景颜色是红色,那么得到的R分量的灰阶值在100-255之间,G、B分量的灰阶值在100-255之间,B通道的灰阶值接近255;如果背景颜色是白色,R、G、B的值均差不多,大概在100-255之间;如果背景颜色是黄色,R、G的 灰阶值接近255,B的值接近100。
进一步地,在不同的颜色的墙面上获取的照片的RGB的灰阶值是不相同的。红色墙面:R分量大;蓝色墙面:B分量大;白色墙面:RGB差不多;黄色墙面:R和G分量大于B。
可选地,在本实施例中,可以通过以下方式计算红、绿、蓝三基色基色分量的平均灰阶值:
假设X为图像宽度,Y为图像高度,总共有n=X*Y个像素,每个像素的颜色由RGB各16bit的值组成,一共48个字节,高16字节表示R,中间16字节表示G,低16个字节表示B。比如0xFF0000表示红色,0x00FF00表示绿色,0x0000FF表示蓝色,0x333333就是灰色。每个像素的色彩分量通过取高中低位的16字节获得,是一个0-255之间的值。例如,以红基色分量为例,假设mRi为像素点i的红基色分量的灰阶值,其中,i为1至n中的自然数。进一步,对投影背景画面中全部像素的红基色分量的灰阶值取平均值,则投影背景画面中红基色分量R的颜色信息可以为R的平均灰阶值:R=sum(mR1…mRn)/n。同理可以求得G,B的平均灰阶值。
通过上述步骤,根据投影背景画面的全部像素的红、绿、蓝基色分量的灰阶值获取红、绿、蓝三基色分量的平均灰阶值,提高了校正投影光源中与基色分量对应的基色投影光源的颜色信息的准确性,进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
在一个可选地实施方式中,根据投影背景画面的颜色信息分别获取基色分量的颜色偏差值包括以下步骤:
步骤S21,通过以下方式计算该投影背景画面中该红基色分量R、该绿基色分量G、该蓝基色分量B的颜色偏差值,
D_R=(R-A_RGB)/A_RGB,
D_G=(G-A_RGB)/A_RGB,
D_B=(B-A_RGB)/A_RGB。
需要说明的是,A_RGB用于表示该投影背景画面中该红基色分量R的平均灰阶值、该绿基色分量G的平均灰阶值及该蓝基色分量B的平均灰阶值三者的平均值;该R用于表示该红基色分量R的平均灰阶值,该D_R用于表示该红基色分量R的颜色偏差值;该G用于表示该绿基色分量G的平均灰阶值,该D_G用于表示该绿基色分量G的颜色偏差值;该B用于表示该蓝基色分量B的平均灰阶值,该D_B用于表示该蓝基色分量B的颜色偏差值。
通过上述步骤,可以得到三组差分量,D_R,D_G,D_B,分别使用这三个值指导R,G,B三盏灯的亮度调整,进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实 现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
在一个可选的实施方式中,根据基色分量的颜色偏差值分别校正投影光源中与该基色分量对应的基色投影光源的颜色信息包括以下步骤:
步骤S31,获取投影光源中各个基色投影光源的标准亮度值,其中,该基色投影光源包括红基色投影光源、绿基色投影光源及蓝基色投影光源;
步骤S32,通过以下方式计算该校正后的基色投影光源的亮度值,
New_L_R=L_R-A_L_RGB*D_R,
New_L_G=L_G-A_L_RGB*D_G,
New_L_B=L_B-A_L_RGB*D_B。
需要说明的是,上述A_L_RGB用于表示该红基色投影光源的标准亮度值、该绿基色投影光源的标准亮度值及该蓝基色投影光源的标准亮度值三者的平均值;该R用于表示该红基色分量R的平均灰阶值,该D_R用于表示该红基色分量R的颜色偏差值,该L_R用于表示该红基色投影光源的标准亮度值,该New_L_R用于表示校正后的红基色投影光源的亮度值;该G用于表示该绿基色分量G的平均灰阶值,该D_G用于表示该绿基色分量G的颜色偏差值,该L_G用于表示该绿基色投影光源的标准亮度值,该New_L_G用于表示校正后的绿基色投影光源的亮度值;该B用于表示该蓝基色分量B的平均灰阶值,该D_B用于表示该蓝基色分量B的颜色偏差值,该L_B用于表示该蓝基色投影光源的标准亮度值,该New_L_B用于表示校正后的蓝基色投影光源的亮度值。
通过上述步骤,通过将R、G、B三个灯的经过补偿之后的亮度计算出来,即新的New_L_R,New_L_G,New_L_B设置到投影仪光机的LED灯泡上,就可以实现颜色的补偿了。进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
在一个可选的实施方式中,采集投影光源所形成的投影区域中的投影背景画面包括以下步骤:
步骤S41,通过投影仪的摄像头在该投影区域上采集该投影背景画面。
需要说明的是,在本实施例中,投影背景画面的面积小于等于该投影区域的面积;投影仪的摄像头可以投影仪的前置摄像头。
通过上述步骤,采用投影的摄像头(例如前置摄像头)采集投影背景画面,进一步实现了分析投影背景画面,根据分析结果,校正基色投影光源的颜色信息,进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
在一个可选的实施方式中,在根据基色分量的颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息之后,还包括以下步骤:
步骤S51,按照校正后的基色投影光源的颜色信息投影待投影的画面。
通过上述步骤,按照校正后的基色投影光源的颜色信息投影待投影的画面,使得可以在不同的颜色的墙上看到白平衡正常的图像,进而达到了根据投影背景画面的不同颜色动态调整投影画面的效果。
下面结合具体示例,对本发明做举例说明。
在本实施例中,主要包括以下步骤:
步骤S61,投影仪投射白色的光,软件设置的RGB灯的亮度分别是L_R=L_G=L_B=N;
步骤S62,驱动摄像头使用特定的iso,快门光圈拍照,得到投影中心的画面;
步骤S63,分析中心画面的图片的R,G,B分量的平均灰阶值,平均灰阶值的计算公式如下:
假设X为图像宽度,Y为图像高度,总共有n=X*Y个像素每个像素的颜色由RGB各16bit的值组成,一共48个字节,高16字节表示R,中间16字节表示G,低16个字节表示B。比如0xFF0000表示红色,0x00FF00表示绿色,0x0000FF表示蓝色,0x333333就是灰色。每个像素的色彩分量通过取高中低位的16字节获得,是一个0-255之间的值,假设mR为某个像素点红色的分量值。将所有的像素点的分量值做平红色的平均灰阶值为:R=sum(mR1…mRn)/n。同理可以求得G,B的平均灰阶值;
步骤S64,根据下面公式计算D_R,D_G,D_B,这三个值分别代表红、绿、蓝相对于其他颜色的偏差百分比:
A_RGB=(R+G+B)/3;
D_R=(R-A_RGB)/A_RGB;
D_G=(G-A_RGB)/A_RGB;
D_B=(B-A_RGB)/A_RGB;
步骤S65,根据D_R,D_G,D_B计算需要调整的光机的R,G,B三盏灯的新的亮度值New_L_R,New_L_G,New_L_B,
A_L_RGB=(L_R+L_G+L_B)/3;
New_L_R=L_R-A_L_RGB*D_R;
New_L_G=L_G-A_L_RGB*D_G;
New_L_B=L_B-A_L_RGB*D_B;
步骤S66,设置New_L_R,New_L_G,New_L_B到LED硬件驱动模块,让LED的RGB灯按照新亮度调整。
综上所述,本发明通实施例过基于自动对焦的微投都具有摄像头(例如前置的摄像头),摄像头可以捕获图像的清晰度,亮度和颜色,利用摄像头能够捕获图像颜色的功能可以把这个信息作为数据源,并对图像的R,G,B(红,绿,蓝)三个数据进行计算,根据计算的结果来指导投影中R,G,B三个LED灯的亮度。解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种投影画面的颜色校正装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的投影画面的颜色校正装置的结构框图,如图5所示,该装置包括:
1)采集模块52,设置为采集投影光源所形成的投影区域中的投影背景画面;
2)解析模块54,设置为解析该投影背景画面中各个基色分量的颜色信息,其中,该颜色信息至少用于指示该基色分量的亮度;
3)获取模块56,设置为根据该投影背景画面的该颜色信息分别获取该基色分量的颜色偏差值;
4)校正模块58,设置为根据该基色分量的该颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息。
可选地,在本实施例中,上述投影画面的颜色校正装置可以包括但并不限于基于公司数字光处理(Digital Light Processing,简称为DLP)***中,通过采集投影光源所形成的投影区域中的投影背景画面,解析投影背景画面中各个基色分量的颜色信息,分别获取基色分量的颜色偏差值,以实现针对不同颜色信息对应的投影背景画面来分别校正投影光源中与基色分量对应的基色投影光源的颜色信息,从而达到对不同颜色的投影背景画面进行颜色校正,在 不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。进而克服相关技术中由于通过固定三种色调(例如冷,中,暖三种色调)改变投影的LED灯泡的亮度的方式所造成的投影画面出现颜色偏差的问题。
可选地,在本实施例中,上述投影背景画面可以包括但不限于通过投影仪的摄像头拍摄得到的用于显示投影画面的背景画面。例如,上述背景画面可以为墙面、幕布等。也就是说,通过上述投影画面的颜色校正方法可以对不同颜色的投影背景画面进行颜色调整,从而实现在投影待投影的画面时,避免不同颜色的投影背景画面对投影画面的影响,以达到显示白平衡正常的投影画面的效果。
可选地,在本实施例中,上述各个基色分量可以包括但不限于:红基色分量、绿基色分量及蓝基色分量。其中,上述颜色信息可以包括但不限于用于指示该基色分量的亮度,其中,上述投影背景画面中各个基色分量的颜色信息可以包括但不限于:各个基色分量的灰阶值。上述基色投影光源的颜色信息可以包括但不限于:光源的亮度值。
可选地,在本实施例中,对于上述DLP***的关键组成部分,主要结合图2进行说明。图2是根据本发明实施例的数字光处理DLP***组成原理图。如图2所示,DLP***有如下几个关键组成部分:
光源:DLP***的光源是由三盏LED灯(即R-LED、G-LED和B-LED)组成,分别对应发出RED(用R表示)颜色的光,GREEN(用G表示)颜色的光,BLUE(用B表示)颜色的光,LED的亮度越高投影的画面亮度就越高。
数字微镜器件(Digital Micro mirror Device,简称为DMD)芯片:DMD芯片是DLP投影***中的核心显示器件,它是由许多可以旋转的小镜子组成。图3是根据本发明实施例的DMD芯片的工作原理图,如图3所示,小镜子按照像素的横列排列,每个小镜子和图像的每个像素对应,或者说图像的每个像素控制一个小镜子的偏转角度。当图像的每个像素的RGB数据分解出来后,控制LED的RGB灯分别开关,在R灯开启的时候小镜子根据R的数值做偏转,R数值越大镜子反射的光就越多,G,B灯打开同理,通过这个过程在一帧的图像中把RGB的正确亮度反射出去。
镜头:把小镜子反射的光汇聚,然后根据焦距投射到幕布上,通过镜头中的镜片组实现不同的焦距,通过焦距可以调节在幕布的成像清晰度和大小。
通过上述关键组成部分实现了DLP投影,具体的投影流程示意图如图4所示,其中,图4所示的投影仪上的投影光源,发出的投射光聚焦在幕布上成像。投影仪上的摄像头对投射光在画面中心反射后得到的反射光进行对焦,然后通过投影仪上对焦后的摄像头捕获投影区域中心的画面,在投射R=B=G的白光的情况下摄像头采用固定的ISO,快门,光圈拍摄照片。
进一步地,DLP投影***的原理,DMD芯片上的图片数据会改变DMD芯片的镜子翻转从而改变RGB光线的强弱,实现画面的各个像素颜色和亮度不同,通过改变R,G,B三个LED的亮度,可以总体控制画面的色彩平衡。
可选地,在本实施例中,在采集投影光源所形成的投影区域中的投影背景画面之后,解析投影背景画面中各个基色分量的颜色信息的装置包括但并不限于:从投影背景画面的每一个像素中解析出三基色分量的灰阶值,然后分别解析出投影背景画面的全部像素的三基色分量的平均灰阶值;或者,从投影背景画面的中心画面的每一个像素中解析出三基色分量的灰阶值,然后分别解析出投影背景画面的全部像素的三基色分量的平均灰阶值。
可选地,在本实施例中,采集到的投影光源所形成的投影区域中的投影背景画面的面积与投影区域的面积包括但并不限于:投影背景画面的面积小于或者等于该投影区域的面积。
可选地,在本实施例中,校正投影光源中与基色分量对应的基色投影光源的颜色信息包括但并不限于:根据基色分量的颜色偏差值校正投影光源中与基色分量对应的基色投影光源的颜色信息,或者,根据基色分量的预设阈值校正投影光源中与基色分量对应的基色投影光源的颜色信息。
可选地,在本实施例中,在根据基色分量的颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息之后,还包括但并不限于:按照校正后的基色投影光源的颜色信息投影待投影的画面。
图6是根据本发明实施例的投影画面的颜色校正装置的结构框图(一),如图6所示,该解析模块54包括:
1)解析单元62,设置为从该投影背景画面的每一个像素中分别解析出该每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值;
2)第一获取单元64,设置为根据该投影背景画面的全部像素的该红基色分量的灰阶值获取红基色分量的平均灰阶值;根据该投影背景画面的全部像素的该绿基色分量的灰阶值获取绿基色分量的平均灰阶值;根据该投影背景画面的全部像素的该蓝基色分量的灰阶值获取蓝基色分量的平均灰阶值。
需要说明的是,不同投影背景画面的每一个像素中解析出的每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值是不相同的。
具体结合以下示例,对从该投影背景画面的每一个像素中分别解析出该每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值进行举例说明。
在本实施例中,主要针对蓝色,红色,白色,黄色墙面下获取的摄像头背景画面和各个背景画面的RGB通道的灰阶值。
如果背景颜色是蓝色,那么得到的R分量的灰阶值在0-100之间,G分量的灰阶值在100-255之间,B分量的灰阶值接近255;如果背景颜色是红色,那么得到的R分量的灰阶值在100-255之间,G、B分量的灰阶值在100-255之间,B通道的灰阶值接近255;如果背景颜色是白色,R、G、B的值均差不多,大概在100-255之间;如果背景颜色是黄色,R、G的灰阶值接近255,B的值接近100。
进一步地,在不同的颜色的墙面上获取的照片的RGB的灰阶值是不相同的。红色墙面:R分量大;蓝色墙面:B分量大;白色墙面:RGB差不多;黄色墙面:R和G分量大于B。
可选地,在本实施例中,可以通过以下方式计算红、绿、蓝三基色基色分量的平均灰阶值:
假设X为图像宽度,Y为图像高度,总共有n=X*Y个像素,每个像素的颜色由RGB各16bit的值组成,一共48个字节,高16字节表示R,中间16字节表示G,低16个字节表示B。比如0xFF0000表示红色,0x00FF00表示绿色,0x0000FF表示蓝色,0x333333就是灰色。每个像素的色彩分量通过取高中低位的16字节获得,是一个0-255之间的值,。例如,以红基色分量为例,假设mRi为像素点i的红基色分量的灰阶值,其中,i为1至n中的自然数。进一步,对投影背景画面中全部像素的红基色分量的灰阶值取平均值,则投影背景画面中红基色分量R的颜色信息可以为R的平均灰阶值:R=sum(mR1…mRn)/n。同理可以求得G,B的平均灰阶值。
通过上述步骤,根据投影背景画面的全部像素的红、绿、蓝基色分量的灰阶值获取红、绿、蓝三基色分量的平均灰阶值,提高了校正投影光源中与基色分量对应的基色投影光源的颜色信息的准确性,进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
可选地,在本实施例中,获取模块66还设置为通过以下方式计算该投影背景画面中该红基色分量R、该绿基色分量G、该蓝基色分量B的颜色偏差值,
D_R=(R-A_RGB)/A_RGB,
D_G=(G-A_RGB)/A_RGB,
D_B=(B-A_RGB)/A_RGB,
其中,该A_RGB用于表示该投影背景画面中该红基色分量R的平均灰阶值、该绿基色分量G的平均灰阶值及该蓝基色分量B的平均灰阶值三者的平均值;该R用于表示该红基色分量R的平均灰阶值,该D_R用于表示该红基色分量R的颜色偏差值;该G用于表示该绿基色分量G的平均灰阶值,该D_G用于表示该绿基色分量G的颜色偏差值;该B用于表示该蓝基色分量B的平均灰阶值,该D_B用于表示该蓝基色分量B的颜色偏差值。
通过上述步骤,可以得到三组差分量,D_R,D_G,D_B,分别使用这三个值指导R,G,B三盏灯的亮度调整,进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
图7是根据本发明实施例的投影画面的颜色校正装置的结构框图(二),如图7所示,该校正模块58包括:
1)第二获取单元72,设置为获取该投影光源中各个基色投影光源的标准亮度值,其中,该基色投影光源包括红基色投影光源、绿基色投影光源及蓝基色投影光源;
2)计算单元74,设置为通过以下方式计算该校正后的基色投影光源的亮度值,
New_L_R=L_R-A_L_RGB*D_R,
New_L_G=L_G-A_L_RGB*D_G,
New_L_B=L_B-A_L_RGB*D_B,
其中,该A_L_RGB用于表示该红基色投影光源的标准亮度值、该绿基色投影光源的标准亮度值及该蓝基色投影光源的标准亮度值三者的平均值;该R用于表示该红基色分量R的平均灰阶值,该D_R用于表示该红基色分量R的颜色偏差值,该L_R用于表示该红基色投影光源的标准亮度值,该New_L_R用于表示校正后的红基色投影光源的亮度值;该G用于表示该绿基色分量G的平均灰阶值,该D_G用于表示该绿基色分量G的颜色偏差值,该L_G用于表示该绿基色投影光源的标准亮度值,该New_L_G用于表示校正后的绿基色投影光源的亮度值;该B用于表示该蓝基色分量B的平均灰阶值,该D_B用于表示该蓝基色分量B的颜色偏差值,该L_B用于表示该蓝基色投影光源的标准亮度值,该New_L_B用于表示校正后的蓝基色投影光源的亮度值。
通过上述步骤,通过将R、G、B三个灯的经过补偿之后的亮度计算出来,即新的New_L_R,New_L_G,New_L_B设置到投影仪光机的LED灯泡上,就可以实现颜色的补偿了。进一步解决了相关技术中相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
可选地,在本实施例中,采集模块62还设置为通过投影仪的摄像头在该投影区域上采集该投影背景画面,其中,该投影背景画面的面积小于等于该投影区域的面积。
需要说明的是,在本实施例中,投影背景画面的面积小于等于该投影区域的面积;投影仪的摄像头可以投影仪的前置摄像头。
通过上述步骤,采用投影的摄像头(例如前置摄像头)采集投影背景画面,进一步实现了分析投影背景画面,根据分析结果,校正基色投影光源的颜色信息,进一步解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
图8是根据本发明实施例的投影画面的颜色校正装置的结构框图(三),如图8所示,该装置除了包括图5所示的所有模块外,还包括:
1)投影模块82,设置为在根据该基色分量的该颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息之后,按照校正后的该基色投影光源的颜色信息投影 待投影的画面。
通过上述步骤,按照校正后的基色投影光源的颜色信息投影待投影的画面,使得可以在不同的颜色的墙上看到白平衡正常的图像,进而达到了根据投影背景画面的不同颜色动态调整投影画面的效果。
下面结合具体示例,对本发明做举例说明。
在本实施例中,主要包括以下步骤:
步骤S61,投影仪投射白色的光,软件设置的RGB灯的亮度分别是L_R=L_G=L_B=N;
步骤S62,驱动摄像头使用特定的iso,快门光圈拍照,得到投影中心的画面;
步骤S63,分析中心画面的图片的R,G,B分量的平均灰阶值,平均灰阶值的计算公式如下:
假设X为图像宽度,Y为图像高度,总共有n=X*Y个像素每个像素的颜色由RGB各16bit的值组成,一共48个字节,高16字节表示R,中间16字节表示G,低16个字节表示B。比如0xFF0000表示红色,0x00FF00表示绿色,0x0000FF表示蓝色,0x333333就是灰色。每个像素的色彩分量通过取高中低位的16字节获得,是一个0-255之间的值。例如,以红基色分量为例,假设mRi为像素点i的红基色分量的灰阶值,其中,i为1至n中的自然数。进一步,对投影背景画面中全部像素的红基色分量的灰阶值取平均值,则投影背景画面中红基色分量R的颜色信息可以为R的平均灰阶值:R=sum(mR1…mRn)/n。同理可以求得G,B的平均灰阶值;
步骤S64,根据下面公式计算D_R,D_G,D_B,这三个值分别代表红、绿、蓝相对于其他颜色的偏差百分比:
A_RGB=(R+G+B)/3;
D_R=(R-A_RGB)/A_RGB;
D_G=(G-A_RGB)/A_RGB;
D_B=(B-A_RGB)/A_RGB;
步骤S65,根据D_R,D_G,D_B计算需要调整的光机的R,G,B三盏灯的新的亮度值New_L_R,New_L_G,New_L_B:
A_L_RGB=(L_R+L_G+L_B)/3;
New_L_R=L_R-A_L_RGB*D_R;
New_L_G=L_G-A_L_RGB*D_G;
New_L_B=L_B-A_L_RGB*D_B;
步骤S66,设置New_L_R,New_L_G,New_L_B到LED硬件驱动模块,让LED的RGB灯按照新亮度调整。
综上所述,本发明实施例通过基于自动对焦的微投都具有摄像头(例如前置的摄像头),摄像头可以捕获图像的清晰度,亮度和颜色,利用摄像头能够捕获图像颜色的功能可以把这个信息作为数据源,并对图像的R,G,B(红,绿,蓝)三个数据进行计算,根据计算的结果来指导投影中R,G,B三个LED灯的亮度。解决了相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
实施例3
本发明的实施例还提供了一种存储介质。该实施例的应用场景及实例可以参考上述实施例1和实施例2,在此不赘述。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,采集投影光源所形成的投影区域中的投影背景画面;
S2,解析投影背景画面中各个基色分量的颜色信息,其中,该颜色信息至少用于指示该基色分量的亮度;
S3,根据投影背景画面的颜色信息分别获取基色分量的颜色偏差值;
S4,根据基色分量的颜色偏差值分别校正该投影光源中与该基色分量对应的基色投影光源的颜色信息。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述步骤S1、S2、S3以及S4。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步 骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,采集投影光源所形成的投影区域中的投影背景画面;解析投影背景画面中各个基色分量的颜色信息,其中,该颜色信息至少用于指示该基色分量的亮度;根据该投影背景画面的该颜色信息分别获取该基色分量的颜色偏差值;根据该基色分量的颜色偏差值分别校正投影光源中与该基色分量对应的基色投影光源的颜色信息。换言之,本发明通过投影背景画面的颜色信息分别获取基色分量的颜色偏差值,根据该基色分量的颜色偏差值动态校正投影光源中与基色分量对应的基色投影光源的颜色信息,从而实现对投影背景画面的颜色进行动态校正,以解决相关技术中由于投影仪的颜色调整方式较为固定所造成的投影画面存在颜色偏差的问题,进而达到了对不同颜色的投影背景画面进行颜色校正,以实现在不同颜色的投影背景画面上显示白平衡正常的投影画面的效果。

Claims (12)

  1. 一种投影画面的颜色校正方法,包括:
    采集投影光源所形成的投影区域中的投影背景画面;
    解析所述投影背景画面中各个基色分量的颜色信息,其中,所述颜色信息至少用于指示所述基色分量的亮度;
    根据所述投影背景画面的所述颜色信息分别获取所述基色分量的颜色偏差值;
    根据所述基色分量的所述颜色偏差值分别校正所述投影光源中与所述基色分量对应的基色投影光源的颜色信息。
  2. 根据权利要求1所述的方法,其中,所述解析所述投影背景画面中各个基色分量的颜色信息包括:
    从所述投影背景画面的每一个像素中分别解析出所述每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值;
    根据所述投影背景画面的全部像素的所述红基色分量的灰阶值获取红基色分量的平均灰阶值;根据所述投影背景画面的全部像素的所述绿基色分量的灰阶值获取绿基色分量的平均灰阶值;根据所述投影背景画面的全部像素的所述蓝基色分量的灰阶值获取蓝基色分量的平均灰阶值。
  3. 根据权利要求2所述的方法,其中,所述根据所述投影背景画面的所述颜色信息分别获取所述基色分量的颜色偏差值包括:
    通过以下方式计算所述投影背景画面中所述红基色分量R、所述绿基色分量G、所述蓝基色分量B的颜色偏差值,
    D_R=(R-A_RGB)/A_RGB,
    D_G=(G-A_RGB)/A_RGB,
    D_B=(B-A_RGB)/A_RGB,
    其中,所述A_RGB用于表示所述投影背景画面中所述红基色分量R的平均灰阶值、所述绿基色分量G的平均灰阶值及所述蓝基色分量B的平均灰阶值三者的平均值;所述R用于表示所述红基色分量R的平均灰阶值,所述D_R用于表示所述红基色分量R的颜色偏差值;所述G用于表示所述绿基色分量G的平均灰阶值,所述D_G用于表示所述绿基色分量G的颜色偏差值;所述B用于表示所述蓝基色分量B的平均灰阶值,所述D_B用于表示所述蓝基色分量B的颜色偏差值。
  4. 根据权利要求3所述的方法,其中,所述根据所述基色分量的所述颜色偏差值分别校正所述投影光源中与所述基色分量对应的基色投影光源的颜色信息包括:
    获取所述投影光源中各个基色投影光源的标准亮度值,其中,所述基色投影光源包 括红基色投影光源、绿基色投影光源及蓝基色投影光源;
    通过以下方式计算所述校正后的基色投影光源的亮度值,
    New_L_R=L_R-A_L_RGB*D_R,
    New_L_G=L_G-A_L_RGB*D_G,
    New_L_B=L_B-A_L_RGB*D_B,
    其中,所述A_L_RGB用于表示所述红基色投影光源的标准亮度值、所述绿基色投影光源的标准亮度值及所述蓝基色投影光源的标准亮度值三者的平均值;所述R用于表示所述红基色分量R的平均灰阶值,所述D_R用于表示所述红基色分量R的颜色偏差值,所述L_R用于表示所述红基色投影光源的标准亮度值,所述New_L_R用于表示校正后的红基色投影光源的亮度值;所述G用于表示所述绿基色分量G的平均灰阶值,所述D_G用于表示所述绿基色分量G的颜色偏差值,所述L_G用于表示所述绿基色投影光源的标准亮度值,所述New_L_G用于表示校正后的绿基色投影光源的亮度值;所述B用于表示所述蓝基色分量B的平均灰阶值,所述D_B用于表示所述蓝基色分量B的颜色偏差值,所述L_B用于表示所述蓝基色投影光源的标准亮度值,所述New_L_B用于表示校正后的蓝基色投影光源的亮度值。
  5. 根据权利要求1所述的方法,其中,所述采集投影光源所形成的投影区域中的投影背景画面包括:
    通过投影仪的摄像头在所述投影区域上采集所述投影背景画面,其中,所述投影背景画面的面积小于等于所述投影区域的面积。
  6. 根据权利要求1所述的方法,其中,在根据所述基色分量的所述颜色偏差值分别校正所述投影光源中与所述基色分量对应的基色投影光源的颜色信息之后,还包括:
    按照校正后的所述基色投影光源的颜色信息投影待投影的画面。
  7. 一种投影画面的颜色校正装置,包括:
    采集模块,设置为采集投影光源所形成的投影区域中的投影背景画面;
    解析模块,设置为解析所述投影背景画面中各个基色分量的颜色信息,其中,所述颜色信息至少用于指示所述基色分量的亮度;
    获取模块,设置为根据所述投影背景画面的所述颜色信息分别获取所述基色分量的颜色偏差值;
    校正模块,设置为根据所述基色分量的所述颜色偏差值分别校正所述投影光源中与所述基色分量对应的基色投影光源的颜色信息。
  8. 根据权利要求7所述的装置,其中,所述解析模块包括:
    解析单元,设置为从所述投影背景画面的每一个像素中分别解析出所述每一个像素中红基色分量的灰阶值、绿基色分量的灰阶值及蓝基色分量的灰阶值;
    第一获取单元,设置为根据所述投影背景画面的全部像素的所述红基色分量的灰阶值获取红基色分量的平均灰阶值;根据所述投影背景画面的全部像素的所述绿基色分量的灰阶值获取绿基色分量的平均灰阶值;根据所述投影背景画面的全部像素的所述蓝基色分量的灰阶值获取蓝基色分量的平均灰阶值。
  9. 根据权利要求8所述的装置,其中,所述获取模块还设置为通过以下方式计算所述投影背景画面中所述红基色分量R、所述绿基色分量G、所述蓝基色分量B的颜色偏差值,
    D_R=(R-A_RGB)/A_RGB,
    D_G=(G-A_RGB)/A_RGB,
    D_B=(B-A_RGB)/A_RGB,
    其中,所述A_RGB用于表示所述投影背景画面中所述红基色分量R的平均灰阶值、所述绿基色分量G的平均灰阶值及所述蓝基色分量B的平均灰阶值三者的平均值;所述R用于表示所述红基色分量R的平均灰阶值,所述D_R用于表示所述红基色分量R的颜色偏差值;所述G用于表示所述绿基色分量G的平均灰阶值,所述D_G用于表示所述绿基色分量G的颜色偏差值;所述B用于表示所述蓝基色分量B的平均灰阶值,所述D_B用于表示所述蓝基色分量B的颜色偏差值。
  10. 根据权利要求9所述的装置,其中,所述校正模块包括:
    第二获取单元,设置为获取所述投影光源中各个基色投影光源的标准亮度值,其中,所述基色投影光源包括红基色投影光源、绿基色投影光源及蓝基色投影光源;
    计算单元,设置为通过以下方式计算所述校正后的基色投影光源的亮度值,
    New_L_R=L_R-A_L_RGB*D_R,
    New_L_G=L_G-A_L_RGB*D_G,
    New_L_B=L_B-A_L_RGB*D_B,
    其中,所述A_L_RGB用于表示所述红基色投影光源的标准亮度值、所述绿基色投影光源的标准亮度值及所述蓝基色投影光源的标准亮度值三者的平均值;所述R用于表示所述红基色分量R的平均灰阶值,所述D_R用于表示所述红基色分量R的颜色偏差值,所述L_R用于表示所述红基色投影光源的标准亮度值,所述New_L_R用于表示校正后的红基色投影光源的亮度值;所述G用于表示所述绿基色分量G的平均灰阶值,所述D_G用于表示所述绿基色分量G的颜色偏差值,所述L_G用于表示所述绿基色投影光源的标准亮度值,所述New_L_G用于表示校正后的绿基色投影光源的亮度值;所述B用于表示所述蓝基色分量B的平均灰阶值,所述D_B用于表示所述蓝基色分量B的颜色偏差值, 所述L_B用于表示所述蓝基色投影光源的标准亮度值,所述New_L_B用于表示校正后的蓝基色投影光源的亮度值。
  11. 根据权利要求7所述的装置,其中,所述采集模块还设置为通过投影仪的摄像头在所述投影区域上采集所述投影背景画面,其中,所述投影背景画面的面积小于等于所述投影区域的面积。
  12. 根据权利要求7所述的装置,其中,所述装置还包括:
    投影模块,设置为在根据所述基色分量的所述颜色偏差值分别校正所述投影光源中与所述基色分量对应的基色投影光源的颜色信息之后,按照校正后的所述基色投影光源的颜色信息投影待投影的画面。
PCT/CN2016/070732 2015-11-25 2016-01-12 投影画面的颜色校正方法及装置 WO2016184142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510831371.9A CN106791737B (zh) 2015-11-25 2015-11-25 投影画面的颜色校正方法及装置
CN201510831371.9 2015-11-25

Publications (1)

Publication Number Publication Date
WO2016184142A1 true WO2016184142A1 (zh) 2016-11-24

Family

ID=57319312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070732 WO2016184142A1 (zh) 2015-11-25 2016-01-12 投影画面的颜色校正方法及装置

Country Status (2)

Country Link
CN (1) CN106791737B (zh)
WO (1) WO2016184142A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179362A (zh) * 2019-12-14 2020-05-19 西安交通大学 一种基于动态光照校正算法的试纸颜色均匀性检测方法
CN113885195A (zh) * 2021-08-17 2022-01-04 屏丽科技成都有限责任公司 一种消除合光棱镜影像偏差的色场校正方法
CN115695742A (zh) * 2021-07-23 2023-02-03 青岛海尔科技有限公司 投影方法及装置、存储介质及电子装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600595B (zh) * 2017-09-30 2021-09-24 阿里巴巴(中国)有限公司 图像处理方法及装置
CN110177265A (zh) * 2019-06-11 2019-08-27 成都极米科技股份有限公司 投影控制方法、投影控制装置及投影***
CN112601062B (zh) * 2021-02-22 2021-07-02 深圳市火乐科技发展有限公司 投影设备控制方法、装置、介质及电子设备
CN115499630A (zh) * 2021-06-17 2022-12-20 中强光电股份有限公司 投影***及其色彩校正方法
WO2024001922A1 (zh) * 2022-06-27 2024-01-04 青岛海信激光显示股份有限公司 一种投影图像源的校正方法及超短焦投影设备
CN115529445A (zh) * 2022-09-15 2022-12-27 海信视像科技股份有限公司 一种投影设备及投影画质调整方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031441A (ja) * 2007-07-25 2009-02-12 Sony Corp 投射型表示装置
US20090153749A1 (en) * 2007-12-14 2009-06-18 Stephen Randall Mixon Portable projector background color correction scheme
CN102547306A (zh) * 2012-03-14 2012-07-04 海信集团有限公司 投影仪及其投影图像颜色校正方法
CN102611822A (zh) * 2012-03-14 2012-07-25 海信集团有限公司 投影仪及其投影图像校正方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036320A (en) * 1998-01-28 2000-03-14 Inaba; Minoru Stereo slide mount
JP4438696B2 (ja) * 2005-06-15 2010-03-24 セイコーエプソン株式会社 画像表示装置及び方法
JP5796380B2 (ja) * 2011-07-11 2015-10-21 セイコーエプソン株式会社 画像処理方法、画像処理装置及び画像表示システム
CN102355567A (zh) * 2011-10-27 2012-02-15 王悦 一种自动偏色干扰处理方法
CN103561223B (zh) * 2013-09-05 2016-10-05 苏州佳世达光电有限公司 根据显示背景进行投影的方法及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031441A (ja) * 2007-07-25 2009-02-12 Sony Corp 投射型表示装置
US20090153749A1 (en) * 2007-12-14 2009-06-18 Stephen Randall Mixon Portable projector background color correction scheme
CN102547306A (zh) * 2012-03-14 2012-07-04 海信集团有限公司 投影仪及其投影图像颜色校正方法
CN102611822A (zh) * 2012-03-14 2012-07-25 海信集团有限公司 投影仪及其投影图像校正方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179362A (zh) * 2019-12-14 2020-05-19 西安交通大学 一种基于动态光照校正算法的试纸颜色均匀性检测方法
CN111179362B (zh) * 2019-12-14 2022-02-22 西安交通大学 一种基于动态光照校正算法的试纸颜色均匀性检测方法
CN115695742A (zh) * 2021-07-23 2023-02-03 青岛海尔科技有限公司 投影方法及装置、存储介质及电子装置
CN113885195A (zh) * 2021-08-17 2022-01-04 屏丽科技成都有限责任公司 一种消除合光棱镜影像偏差的色场校正方法
CN113885195B (zh) * 2021-08-17 2023-10-03 成都九天画芯科技有限公司 一种消除合光棱镜影像偏差的色场校正方法

Also Published As

Publication number Publication date
CN106791737B (zh) 2021-04-20
CN106791737A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2016184142A1 (zh) 投影画面的颜色校正方法及装置
US8605106B2 (en) Projector and color improvement method of the projector
CN103973958B (zh) 图像处理方法及设备
US8491127B2 (en) Auto-focusing projector and method for automatically focusing the projector
US9769466B2 (en) Digital cinema projection method, optimization device and projection system
JP6946564B2 (ja) 画像処理方法および画像処理装置、コンピュータ可読記憶媒体ならびにコンピュータ機器
US20150062350A1 (en) Light parameter measurement method and device, screen adjustment method and electronic device
TWI634792B (zh) 投影圖像調整方法及投影機
CN108737806B (zh) 一种投影仪色彩校正方法及装置、计算机存储介质
JP2021010162A (ja) 投影システム及びその投影方法
WO2019134317A1 (zh) Led显示屏的整屏校正方法、校正***及存储介质
CN116486048A (zh) 虚实融合画面的生成方法、装置、设备及***
JP2008187362A (ja) プロジェクタおよび投写画像調整方法
US20090009658A1 (en) Calibrating a projection system
JP2010010754A (ja) 表示装置
KR101621201B1 (ko) 웨어러블 프로젝션 장치 및 프로젝션 방법
JP6196882B2 (ja) マルチエリアホワイトバランス制御装置、マルチエリアホワイトバランス制御方法、マルチエリアホワイトバランス制御プログラム、マルチエリアホワイトバランス制御プログラムを記録したコンピュータ、マルチエリアホワイトバランス画像処理装置、マルチエリアホワイトバランス画像処理方法、マルチエリアホワイトバランス画像処理プログラム、マルチエリアホワイトバランス画像処理プログラムを記録したコンピュータ及びマルチエリアホワイトバランス画像処理装置を備えた撮像装置
CN203120072U (zh) 一种摄像头测试装置
WO2016145872A1 (zh) 测距、对焦处理方法及装置
JP2015192152A (ja) ホワイトバランス調整装置及びホワイトバランス調整方法並びに撮影装置
US9525857B2 (en) Color processing device, color processing system, and non-transitory computer readable medium
CN106791736B (zh) 一种梯形校正方法和投影机
US9270962B2 (en) Method of eliminating color cast of image in photographic device
JP2021127998A (ja) 距離情報取得装置および距離情報取得方法
US20190052803A1 (en) Image processing system, imaging apparatus, image processing apparatus, control method, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795629

Country of ref document: EP

Kind code of ref document: A1