WO2016183771A1 - 基于无头模式的无人机控制方法及设备 - Google Patents

基于无头模式的无人机控制方法及设备 Download PDF

Info

Publication number
WO2016183771A1
WO2016183771A1 PCT/CN2015/079191 CN2015079191W WO2016183771A1 WO 2016183771 A1 WO2016183771 A1 WO 2016183771A1 CN 2015079191 W CN2015079191 W CN 2015079191W WO 2016183771 A1 WO2016183771 A1 WO 2016183771A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
remote controller
information
remote
controller
Prior art date
Application number
PCT/CN2015/079191
Other languages
English (en)
French (fr)
Inventor
宋健宇
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201810188398.4A priority Critical patent/CN108227748A/zh
Priority to PCT/CN2015/079191 priority patent/WO2016183771A1/zh
Priority to JP2016557908A priority patent/JP6279097B2/ja
Priority to CN201580002667.8A priority patent/CN105992980A/zh
Priority to EP15892150.2A priority patent/EP3299920B1/en
Publication of WO2016183771A1 publication Critical patent/WO2016183771A1/zh
Priority to US15/816,455 priority patent/US11079750B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0033Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by having the operator tracking the vehicle either by direct line of sight or via one or more cameras located remotely from the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention relates to the technical field of drones, and in particular to a method and a device for controlling a drone based on a headless mode.
  • the unmanned aircraft is referred to as the "unmanned aerial vehicle". It is a non-manned aircraft operated by radio remote control equipment and its own program control device. It has broad application prospects in the fields of detection, search and rescue, aerial photography and so on.
  • the conventional drone's steering mode is the pilot-led mode.
  • the so-called pilot-led mode means that the pilot's angle of view always coincides with the drone's head angle, and is executed according to the pilot's dominant direction, that is, the rudder rocker of the remote control device moves forward.
  • the drone flies in the direction of the nose, and the rudder rocker of the remote control device moves backward, and the drone flies toward the tail.
  • one of the situations in which the pilot's dominant mode includes the operator's tail facing the operator.
  • the flight action of the drone is consistent with the operation direction of the rudder rocker of the remote control device.
  • the nose of the drone is facing the operator.
  • the rudder rocker of the remote control device is forward, and the drone advances toward the nose, that is, toward the operator.
  • the flight direction of the drone is different, which makes the operator need to accurately determine the heading of the drone, and can control the pilot in a dominant manner.
  • Man-machine flight however, for users who are new to drones, the pilot-led approach has higher maneuvering difficulty.
  • a headless operation mode of the remote control operation of the drone is proposed.
  • the take-off direction of the drone is recorded, and the take-off direction is taken as the flight direction of the drone.
  • the relationship between the flight direction of the drone and the steering direction on the remote control device is as follows: the rudder rocker of the remote control device is pushed forward, and the drone moves along the takeoff In the direction of the direction of flight, the rudder rocker pushes backwards, then flies in the opposite direction of the take-off direction; the joystick pushes right, the drone flies right, the rocker pushes left, and the drone flies left.
  • the relationship between the flight direction of the drone and the steering direction on the remote control device is as follows: when the rudder rocker of the remote control device is pushed forward, the drone flies in the opposite direction of the take-off direction. After the rudder rocker is pushed back, it will fly in the direction of takeoff; the rudder rocker will be pushed right, the drone will fly right, the rudder rocker will be pushed left, and the drone will fly left. Similarly, in the headless mode of the drone There will be confusion in the direction of flight and increase the difficulty of maneuvering.
  • the embodiment of the present invention provides a UAV control method and device based on a headless mode, which is used to implement intelligent control of the headless mode of the UAV, reduce the operation difficulty of the remote control, and improve the user.
  • a headless mode which is used to implement intelligent control of the headless mode of the UAV, reduce the operation difficulty of the remote control, and improve the user.
  • a first aspect of the present invention provides a UAV control method based on a headless mode, which may include:
  • the remote control information includes a head orientation in the posture information of the remote controller and an operation angle value of the rudder rocker of the remote controller
  • the remote control information is used to indicate the The direction of operation of the rudder rocker of the remote control
  • a second aspect of the present invention provides a UAV control method based on a headless mode, which may include:
  • the remote control information includes a target flight direction of the drone, and the remote control information is based on the posture information of the remote controller and the posture information of the remote controller Obtaining an operating angle value of the nose and the rudder rocker of the remote controller;
  • a third aspect of the present invention provides a UAV control method based on a headless mode, which may include:
  • the remote control information is sent to the drone.
  • a fourth aspect of the present invention provides a UAV control method based on a headless mode, which may include:
  • Remote control information is transmitted to the drone, the remote control information including a target flight direction of the drone.
  • a fifth aspect of the present invention provides a flight controller, which may include:
  • a receiver configured to receive remote control information sent by the remote controller, where the remote control information includes a head orientation of the posture information of the remote controller and an operation angle value of the rudder rocker of the remote controller, where the remote control information is used Instructing an operation direction of the rudder rocker of the remote controller;
  • An attitude sensor for acquiring posture information of the drone
  • An intelligent controller configured to determine a target flight direction of the drone according to the remote control information and posture information of the drone, and control the drone to fly to the target flight direction, the target flight direction and the rudder
  • the joystick operates in the same direction.
  • a sixth aspect of the present invention provides a flight controller, which may include:
  • a transmitter for transmitting posture information of the drone to the remote controller
  • a receiver configured to receive remote control information sent by the remote controller, where the remote control information includes a target flight direction of the drone, and the remote control information is the remote controller according to the posture information of the drone, the remote control Obtaining the head orientation of the attitude information of the device and the operating angle value of the rudder rocker of the remote controller;
  • An intelligent controller is configured to control the drone to fly toward the target flight direction.
  • a seventh aspect of the present invention provides a processor, which may include:
  • An attitude sensor configured to acquire posture information of the remote controller
  • the intelligent controller is further configured to generate remote control information according to an operating angle value of the rudder stick and a head orientation of posture information of the remote controller, where the remote control information is used to indicate a rudder shake of the remote controller The direction of operation of the rod;
  • a transmitter for transmitting the remote control information to the drone.
  • An eighth aspect of the present invention provides a processor, which may include:
  • An attitude sensor configured to acquire posture information of the remote controller
  • a receiver configured to receive posture information of the drone sent by the drone
  • the intelligent controller is further configured to obtain a target flight of the drone according to an operation angle value of the rudder stick, a head orientation of the posture information of the remote controller, and posture information of the drone direction;
  • a transmitter configured to send remote control information to the drone, where the remote control information includes a target flight direction of the drone.
  • a ninth aspect of the present invention provides a drone comprising the flight controller of the fifth aspect.
  • a tenth aspect of the invention provides a drone comprising the flight controller provided by the sixth aspect.
  • An eleventh aspect of the present invention provides a remote controller comprising the processor provided in the seventh aspect.
  • a twelfth aspect of the present invention provides a processor comprising the processor provided in the eighth aspect.
  • a thirteenth aspect of the present invention provides a drone control system comprising the flight controller provided in the fifth aspect and the processor provided in the seventh aspect, or the flight controller provided in the sixth aspect and the eighth aspect Processor.
  • remote control information is received from the remote controller, the remote control information is used to indicate the operation direction of the rudder rocker of the remote controller, and then according to the remote control information and the unmanned
  • the attitude information of the machine determines the target flight direction of the drone, wherein the target flight direction is the same as the operation direction of the rudder rocker of the remote controller, and finally the drone is controlled to fly toward the target flight direction, realizing the headless mode.
  • the intelligent remote control makes the flight direction of the drone the same as the operation direction of the rudder rocker, which simplifies the remote control operation, reduces the operation difficulty of the remote control, and improves the user experience.
  • remote control information is received from a remote controller, the remote control information including a target flight direction of the drone, and then the drone is controlled to fly in a target flight direction, wherein
  • the target flight direction of the machine is that the processor on the remote controller side is obtained according to the attitude information of the drone, the head orientation of the posture information of the remote controller, and the operation direction of the rudder stick, due to the target flight direction and the rudder rocker of the remote controller.
  • the operation direction is the same, and the intelligent remote control in the headless mode is realized, so that the flight direction of the drone is the same as the operation direction of the rudder stick, which simplifies the remote operation, reduces the operation difficulty of the remote control, and improves the user experience.
  • FIG. 1 is a schematic flowchart of a method for controlling a drone based on a headless mode according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention
  • 3a is a schematic diagram of an operation direction of a rudder rocker marked in a coordinate system of a remote controller according to an embodiment of the present invention
  • FIG. 3b is a schematic diagram of a UAV coordinate system according to an embodiment of the present invention.
  • 3c is a schematic diagram of a target flight direction of a drone marked on a UAV coordinate system according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention
  • 3 e is a schematic flow chart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention
  • FIG. 4a is a schematic flow chart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention.
  • FIG. 4b is a schematic flowchart diagram of a method for controlling a drone based on a headless mode according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention.
  • FIG. 5b is a schematic flowchart diagram of a method for controlling a drone based on a headless mode according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for controlling a drone based on a headless mode according to another embodiment of the present invention. schematic diagram;
  • FIG. 7 is a schematic structural diagram of a flight controller according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a flight controller according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a processor according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a processor according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a drone according to another embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a remote controller according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a remote controller according to another embodiment of the present invention.
  • 15a is a schematic structural diagram of a drone control system according to an embodiment of the present invention.
  • FIG. 15b is a schematic structural diagram of a drone control system according to another embodiment of the present invention.
  • the embodiment of the present invention provides a UAV control method based on the headless mode, which is used to implement the intelligent control of the headless mode of the UAV, reduce the operation difficulty of the remote control, and improve the user experience.
  • a flight controller is provided in the drone provided by the embodiment of the invention, and the flight controller includes the following modules:
  • the locator can obtain the geographic location information of the drone.
  • the locator of this embodiment can be, but is not limited to, a Global Position System (GPS).
  • GPS Global Position System
  • a receiver for receiving remote control information sent by the remote controller
  • the attitude sensor is configured to acquire the attitude information of the drone under static or dynamic conditions, and the attitude information of the drone includes a heading angle (head orientation), a pitch angle and a roll angle of the drone.
  • the flight controller provided by the embodiment of the invention simultaneously sets the compass and the inertial measurement An attitude sensor such as an Inertial Measurement Unit (IMU), in which the compass is mainly used to obtain the flight direction information of the drone, and the IMU is mainly used to know the flight direction information of the drone and the attitude information of the drone. Therefore, in the embodiment of the present invention, by combining the data information obtained by both the compass and the IMU, the flight direction of the drone can be accurately known. Of course, it is also possible to accurately know the flight direction of the drone by combining the geographic location information of the UAV acquired by the GPS and the flight direction information and attitude information of the UMU acquired by the IMU.
  • IMU Inertial Measurement Unit
  • a recorder for recording the geographical location information of the return point and the flight direction of the drone in real time.
  • a processor is provided in the remote controller, and the processor mainly includes the following modules:
  • a transmitter for transmitting remote control information to the drone
  • the attitude sensor is configured to obtain the posture information of the remote controller under static or dynamic state, and the posture information of the remote controller includes a nose orientation, a pitch angle and a roll angle of the remote controller.
  • an attitude sensor such as a compass and an IMU is simultaneously disposed, wherein the compass is mainly used to obtain direction information of the remote controller, and the IMU is mainly used to obtain posture information of the remote controller. Therefore, in the embodiment of the present invention, by combining the data information obtained by both the compass and the IMU, the head orientation of the remote controller can be accurately known. Similarly, the geographical position information of the remote controller acquired by the GPS and the posture information of the remote controller acquired by the IMU can be combined to accurately know the head orientation of the remote controller.
  • the present invention is based on the function corresponding to the locking mechanism of the remote control device in the headless mode of the drone. Therefore, the remote device lock mode button is set on the remote controller, and the remote control device is used to lock the mode button to turn on the remote control. The function corresponding to the device locking mechanism.
  • the remote control device locking mechanism means that in the headless mode of the drone, it is not necessary to judge the head orientation of the drone, nor to record the flight direction of the take-off moment of the drone, only the rudder shake by operating the remote controller
  • the rod controls the drone to fly in the direction of operation of the rudder rocker, ensuring that the flight direction of the drone is the same as the operation direction of the rudder rocker under the locking mechanism of the remote control device, thereby realizing intelligent control of the drone and reducing the The difficulty of remote operation of the drone.
  • a common heading lock mode heading lock mechanism
  • a return point lock mode return point locking mechanism
  • the drone control mode is the pilot-led mode, and the user can select the headless mode or the pilot.
  • any one of the above-described heading lock mode, the return point lock mode, and the remote device lock mode may be selected.
  • corresponding programs of the above-mentioned headless mode and/or the pilot dominant mode, and corresponding programs of the heading lock mode, the return point lock mode, and the remote device lock mode are respectively set so that no The man-machine cooperates with the remote control to complete the corresponding remote control function.
  • FIG. 1 is a schematic flowchart of a UAV control method based on a headless mode according to an embodiment of the present invention; as shown in FIG. 1 , a UAV control method based on a headless mode is applied to
  • the flight controller on the human machine side may include:
  • the remote control information includes a head orientation of the posture information of the remote controller and an operation angle value of the rudder rocker of the remote controller, and the remote control information is used to indicate a rudder of the remote controller.
  • the remote control information is generated by the processor on the remote controller side according to the user's selection of the headless mode and the remote control device locking mechanism, according to the user's operation angle value of the rudder stick and the posture information of the remote controller.
  • the processor of the remote controller only provides relevant remote control information, including the head orientation of the posture information of the remote controller and the operating angle value of the rudder rocker of the remote controller, and then the flight control by the drone side.
  • the device combines the remote control information and the attitude information of the drone to perform analysis processing to obtain the target flight direction.
  • the flight controller receives remote control information from the remote controller, and the remote control information is used to indicate the operation direction of the rudder rocker of the remote controller, and then determines the target flight of the drone based on the remote control information and the posture information of the drone.
  • Direction where the target flight direction and the rudder rocker of the remote control are operated To the same, finally control the drone to fly toward the target flight direction, realize the intelligent remote control in the headless mode, so that the flight direction of the drone is the same as the operation direction of the rudder rocker, simplifying the remote control operation and reducing the drone
  • the operation difficulty of the remote control improves the user experience.
  • step 103 specifically includes the steps shown in FIG. 2:
  • A1 taking the coordinate origin of the geographic coordinate system as the coordinate origin, marking the remote controller coordinate system according to the head orientation of the posture information of the remote controller, and marking the drone coordinate system according to the posture information of the drone;
  • A2 according to the operating angle value of the rudder rocker of the remote controller, marking the operation direction of the rudder rocker of the remote controller on the remote controller coordinate system, determining that the operation direction of the rudder rocker of the remote controller is the unmanned The target flight direction of the machine.
  • FIG. 3a is a schematic diagram of the operation direction of the rudder rocker marked in the remote controller coordinate system, wherein the geographic coordinate system NEO is established on the plane, and then the coordinate origin O of the geographic coordinate system NEO is taken as the coordinate origin.
  • the head of the remote controller is oriented toward the upper half of the vertical axis, and the tail of the remote controller corresponds to the lower half of the vertical axis, according to the orientation of the head of the remote controller.
  • the direction F of ⁇ is the operating direction of the remote controller rudder stick.
  • the ⁇ may be obtained by a channel value corresponding to the rudder stick operation of the remote controller, specifically a trigonometric value of the channel value.
  • Figure 3b is a schematic diagram of the UAV coordinate system.
  • the geographic coordinate system NEO is established, and the coordinate origin O of the geographic coordinate system is used as the coordinate origin, and the UAV coordinate system Y2X2O is marked according to the posture information of the drone, wherein the head orientation of the drone is corresponding The upper axis of the vertical axis of the UAV coordinate system Y2X2O.
  • FIG. 3c is a schematic diagram of a target flight direction of a drone marked on a UAV coordinate system according to an embodiment of the present invention.
  • 3c is based on FIG. 3a and 3b, taking the coordinate origin O of the geographic coordinate system NEO as the coordinate origin, and then labeling the remote controller coordinate system according to the head orientation of the posture information of the remote controller respectively, according to the drone's coordinate system
  • the attitude information is marked with the UAV coordinate system, that is, FIG. 3a coincides with FIG. 3b.
  • the angle ⁇ is equal to ⁇
  • the direction F is the target flight direction of the drone
  • the direction F and the UAV coordinate system are horizontal. Angle The angle of flight for the drone target.
  • the remote controller may also be in different postures. Therefore, it is necessary to further consider the posture information of the remote controller.
  • the unmanned aerial vehicle is currently flying horizontally and the remote controller is also in a horizontal plane as an example.
  • step 104 specifically includes the steps shown in FIG. 3d:
  • the drone can obtain the target flight direction according to the posture information of the remote controller and the operating angle value of the rudder rocker of the remote controller and the current attitude information of the drone, and the target flight The direction is the same as the direction of operation of the rudder rocker of the remote control, and then the drone is controlled to fly in the direction of the target.
  • the remote controller needs to carry the headless mode indication information and the remote control locking mechanism indication information in the remote control information, and the drone starts the headless mode. Remote lock mode.
  • some embodiments of the present invention further provide a UAV control method based on a headless mode, which is applied to a flight controller on the UAV side, and specifically includes:
  • the remote control information includes a head orientation in the posture information of the remote controller, an operation angle value of the rudder rocker of the remote controller, and geographic location information of the remote controller.
  • the geographic location information of the drone is obtained by a locator in the flight controller.
  • the physical position of the remote controller and the orientation of the head can be determined, and then the drone is determined according to the geographical position information of the drone.
  • the relative position to the remote control means that the drone is in front of the remote control head or behind the remote control head.
  • the operating angle of the rudder rocker of the remote controller is 90 degrees or 360 degrees, and only two channels on the remote controller are used, that is, the operating direction of the rudder rocker is toward the remote controller.
  • the target flight direction of the drone includes the following cases:
  • the drone is in front of the remote control head, and the operation direction of the rudder rocker is the direction in which the remote control head is oriented, and the target flying direction of the drone is determined to be far from the remote controller, and the direction of the rudder rocker is used. Fly in the direction indicated, thus away from the remote control;
  • the drone is in front of the remote control head, and the operating direction of the rudder rocker is the opposite direction of the head of the remote control, and the target flying direction of the drone is determined to be flying toward the remote controller, and the rudder rocker is used. Flying in the direction indicated by the direction of operation to access the remote control;
  • the drone is behind the remote control head, and the operation direction of the rudder rocker is the direction in which the remote control head is oriented, and the target flying direction of the drone is determined to be flying toward the remote controller, and the rudder rocker is operated. Flying in the direction indicated by the direction to approach the remote control;
  • the drone is behind the remote control head, and the operating direction of the rudder rocker is the opposite direction of the head of the remote control, determining that the target flying direction of the drone is far from the remote control, and the direction of operation of the rudder rocker Fly in the direction indicated, thus away from the remote control.
  • the remote control information sent by the remote controller further includes the geographical location information of the remote controller. Therefore, in the embodiment of the present invention, the geographic location information of the remote controller and the posture information of the remote controller may be combined.
  • the head is oriented to determine the target flight direction of the drone, and the geographical position of the drone is more effectively controlled to avoid the loss of the drone.
  • FIG. 1 to FIG. 3d may be implemented by two functions, which may be implemented by using different selection switches on the remote controller or starting different application programs. Choose either of the two modes.
  • the embodiment of the present invention can also dynamically set the return point and control the drone to return. Therefore, the embodiment of the present invention further provides a UAV control method based on the headless mode, which is applied to the flight controller of the UAV. As shown in FIG. 3f, the method may include:
  • the return point locking mode can be triggered by launching the relevant button on the remote controller or when the remote controller is turned off, and the remote control information is sent to the drone, and the remote control information is carried.
  • Return flight indication information the return flight indication information includes at least geographical location information of the remote controller.
  • the return point is dynamically set by using the geographical position of the remote controller as a return point to realize the final return of the drone.
  • FIG. 4a is a schematic flowchart of a UAV control method based on a headless mode according to an embodiment of the present invention; as shown in FIG. 4a, a UAV control method based on a headless mode is applied to
  • the flight controller on the human machine side may include:
  • the flight controller of the drone transmits the attitude information of the drone to the remote controller, and then the processor of the remote controller according to the posture information of the drone and the head orientation of the posture information of the remote controller And the operating angle value of the rudder rocker of the remote controller obtains the target flight direction of the drone, and then directly sends the target flight direction to the flight controller, and the flight controller controls the drone to fly toward the target flight direction. That is, in the embodiment of the present invention, the acquisition of the target flight direction of the drone is performed by the processor on the remote controller side.
  • a drone-based drone control method includes:
  • the remote control information is obtained by the remote controller based on the posture information of the drone, the head orientation of the posture information of the remote controller, and the operating angle value of the rudder stick of the remote controller.
  • the method of obtaining the target flight direction of the drone and the motor control component of the rotor of the drone by the processor on the remote controller side is the same as the acquisition method of the flight controller on the drone side. For details, refer to FIG. 3a to FIG. 3d, no longer repeat here.
  • the flight controller on the UAV side transmits the posture information of the acquired UAV to the processor on the remote controller side, and then the processor according to the posture information of the UAV, the remote controller
  • the attitude information and the operating angle value of the rudder rocker of the remote controller are solved to obtain the target flight direction of the drone and the motor control component of the rotor of the drone, and then the processor on the remote side will target the flight direction and the unmanned
  • the motor control component of the rotor of the machine is carried in the remote control information and sent to the flight controller.
  • the flight controller can control the rotor rotation of the drone through the motor control component to control the drone to fly in the target flight direction.
  • the locator will also obtain the geographical location information of the drone, and then send the geographic location information of the drone to the remote controller, so that the remote controller according to the geographical location information of the drone, the geographical location information of the remote controller, and none The head orientation in the posture information of the man-machine is determined to determine the target flight direction of the drone.
  • the specific determination method will be described in detail in the subsequent remote controller embodiment, and details are not described herein again.
  • the embodiment of the present invention can also dynamically set the return point and control the drone to return. Therefore, the drone also receives the return indication information sent by the remote controller, the return flight indication information includes geographical location information of the remote controller, and then controls the geographic location indicated by the remote controller to the remote location information of the remote controller. Flight location. For details, refer to the embodiment shown in FIG. 3, and details are not described herein again.
  • FIG. 5a is a schematic flowchart of a UAV control method based on a headless mode according to an embodiment of the present invention; as shown in FIG. 5a, a UAV control method based on a headless mode is applied.
  • the processor on the remote side may include:
  • the processor on the remote controller side monitors the user's operation on the remote controller in real time, including the operation of the remote controller rudder rocker, and of course, the start operation of the button on the remote controller.
  • the processor also acquires the head orientation of the posture information of the remote controller.
  • the target flight direction of the drone is obtained by the flight controller on the UAV side (the specific acquisition method is described in detail in FIG. 3a to FIG. 3d, and details are not described herein again), therefore, the remote control
  • the processor on the side of the device needs to transmit the attitude information of the remote controller and the operating angle value of the rudder stick to the flight controller.
  • the UAV control device in the remote controller obtains the operation angle value of the rudder rocker by monitoring the operation of the rudder rocker by the user, and then acquires the head orientation of the posture information of the remote controller. Generating remote control information according to the operating angle value of the rudder rocker and the head orientation of the posture information of the remote controller, the remote control information indicating the operation direction of the rudder rocker of the remote controller, and transmitting the remote control information to the drone, the drone The drone control device further obtains the target flight direction of the drone according to the remote control information.
  • the intelligent remote control in the headless mode is realized, thereby making the unmanned
  • the flight direction of the machine is the same as the operation direction of the rudder rocker, which simplifies the remote control operation, reduces the operation difficulty of the remote control of the drone, and improves the user experience.
  • the generating the remote control information according to the operating angle value of the rudder rocker and the head orientation of the remote controller is specifically configured to: monitor a user's operation on the rudder rocker of the remote controller, and obtain a channel value corresponding to the rudder rocker of the remote controller; according to the channel value, obtaining an operation angle value of the rudder rocker of the remote controller; according to the operation angle value of the rudder rocker of the remote controller and the posture information of the remote controller The head is oriented to generate the above remote control information.
  • each channel corresponds to one channel value, and each channel value is different.
  • the operation of the rudder rocker of the remote controller is to pluck the rudder rocker to the corresponding channel, and the drone control device of the remote controller acquires the channel value, and then performs a trigonometric function on the channel value.
  • ⁇ in Fig. 3a the operating angle value of the rudder rocker of the remote controller.
  • FIG. 5b is a schematic flowchart of a UAV control method based on a headless mode according to another embodiment of the present invention. As shown in FIG. 5b, a UAV control method based on a headless mode may be include:
  • the remote controller detects the operation of the remote controller by the user, and specifically includes the startup operation of the headless mode, the activation of the remote control lock mode, and the operation of the rudder rocker, thereby obtaining the above-mentioned absence.
  • the head mode indication information, the remote control locking mechanism indication information, the posture information of the remote controller, and the operation angle value of the rudder rocker of the remote controller, and the information is carried in the remote control information and sent to the drone so that the drone starts according to the remote control information.
  • the target flight direction is obtained, and the drone is controlled to fly toward the target flight direction.
  • the remote location side also obtains the geographical location information of the remote controller through the locator, and then carries the geographical location information of the remote controller in the remote control information and sends it to the drone, so that the drone can combine the remote location information and remote control.
  • the orientation of the head in the attitude information of the device determines the target flight direction of the drone.
  • the embodiment of the present invention can also dynamically set the return point and control the drone to return.
  • the return button can be triggered by the relevant button on the remote controller or when the remote controller is turned off, and the remote control information is sent to the drone, and the return information is carried in the remote control information.
  • the return flight indication information includes at least the geographical location information of the remote controller. Therefore, in the embodiment of the present invention, the geographical position of the remote controller can be used as a return point to realize the setting of the dynamic return point.
  • FIG. 6 is a schematic flowchart diagram of a UAV control method based on a headless mode according to an embodiment of the present invention. As shown in FIG. 6, a UAV control method based on a headless mode includes:
  • Steps 602 and 603 are not executed in the order of precedence.
  • the target flight direction of the drone is obtained by the processor on the remote controller side, and then directly sent to the flight controller of the drone side, and then the flight controller can directly control the drone to fly to the target.
  • Direction flight is obtained by the processor on the remote controller side, and then directly sent to the flight controller of the drone side, and then the flight controller can directly control the drone to fly to the target.
  • obtaining the operation angle value of the rudder stick includes: monitoring the operation of the rudder stick of the remote controller by the user, and acquiring the rudder of the remote controller.
  • the channel value corresponding to the rocker; according to the above channel value, the operating angle value of the rudder rocker of the remote controller is obtained.
  • obtaining an operation angle value of the rudder stick of the remote controller means that a trigonometric function is performed on the channel value to obtain an operation angle value of the rudder stick of the remote controller.
  • step 604 specifically includes the steps shown in FIG. 2, and the specific solution process is shown in FIG. 3a to FIG. 3c, and details are not described herein again.
  • the remote control information provided by the embodiment of the present invention further includes a motor control point of the rotor of the drone. Therefore, after determining the operation direction of the rudder rocker of the remote controller as the target flight direction of the drone, the motor control component of the rotor of the drone can also be acquired according to the steps shown in FIG. 3d.
  • the remote controller further receives the geographic location information of the drone sent by the drone, and the step 604 specifically includes the following steps:
  • the physical position of the remote controller and the orientation of the head can be determined, and then the drone is determined according to the geographical position information of the drone.
  • the relative position to the remote control means that the drone is in front of the remote control head or behind the remote control head.
  • the operating angle of the rudder rocker of the remote controller is 90 degrees or 360 degrees, and only two channels on the remote controller are used, that is, the operating direction of the rudder rocker is toward the remote controller.
  • the target flight direction of the drone includes the following cases:
  • the drone is in front of the remote control head, and the operation direction of the rudder rocker is the direction in which the remote control head is oriented, and the target flying direction of the drone is determined to be far from the remote controller, and the direction of the rudder rocker is used. Fly in the direction indicated, thus away from the remote control;
  • the drone is in front of the remote control head, and the operating direction of the rudder rocker is the opposite direction of the head of the remote control, and the target flying direction of the drone is determined to be flying toward the remote controller, and the rudder rocker is used. Flying in the direction indicated by the direction of operation to access the remote control;
  • the drone is behind the remote control head, and the operation direction of the rudder rocker is the direction in which the remote control head is oriented, and the target flying direction of the drone is determined to be flying toward the remote controller, and the rudder rocker is operated. Flying in the direction indicated by the direction to approach the remote control;
  • the drone is behind the remote control head, and the operation direction of the rudder rocker is the opposite direction of the head of the remote control, and the target flying direction of the drone is determined to be far from the remote controller, and the rudder rocker is operated. Fly in the direction indicated by the direction so as to stay away from the remote control.
  • the return instruction information may be sent to the drone, and the return indication information includes geographical location information of the remote controller, and further, the geographical location indicated by the geographic location information of the remote control to the remote controller is controlled. Fly and return to the return point.
  • the embodiment of the present invention further provides a flight controller 700 corresponding to the headless mode-based drone control method as shown in FIG. 1, the flight controller 700 includes:
  • the receiver 710 is configured to receive remote control information sent by the remote controller, where the remote control information includes a head orientation of the posture information of the remote controller and an operation angle value of the rudder stick of the remote controller, where the remote control information is used to indicate the foregoing The direction of operation of the rudder rocker of the remote control;
  • the attitude sensor 720 is configured to acquire posture information of the drone
  • the intelligent controller 730 is configured to determine a target flight direction of the drone according to the remote control information and the posture information of the drone, and control the drone to fly to the target flight direction, where the target flight direction and the rudder rocker are The operation direction is the same.
  • the receiver 710 receives remote control information from the remote controller, the remote control information is used to indicate the operation direction of the rudder rocker of the remote controller, and the posture sensor 720 is configured to acquire the attitude information of the drone, thereby intelligently controlling
  • the controller 730 determines a target flight direction of the drone according to the remote control information and the attitude information of the drone, wherein the target flight direction is the same as the operation direction of the rudder stick indicated by the remote control information, after which the intelligent controller 730 controls the drone. Flying toward the target flight direction to realize the intelligentization of the remote control, reducing the operation difficulty of the remote control and improving the user experience.
  • the smart controller 730 is further specifically configured to use the coordinate origin of the geographic coordinate system as a coordinate origin, mark the remote controller coordinate system according to the head orientation of the posture information of the remote controller, and according to the posture information of the drone Marking the UAV coordinate system; according to the operating angle value of the rudder rocker of the remote controller, marking the operation direction of the rudder rocker of the remote controller on the remote controller coordinate system, determining the operation of the rudder rocker of the remote controller The direction is the target flight direction of the above drone.
  • the smart controller 730 is specifically configured to mark the remote controller coordinate system according to the posture information of the remote controller, where the posture information of the remote controller includes the nose orientation, the elevation angle, and the roll of the remote controller. angle.
  • the smart controller 730 is further specifically configured to acquire the UAV coordinate system.
  • the angle between the upper horizontal axis and the target flight direction is obtained, and the motor control component of the rotor of the drone is obtained according to the angle; the rotor rotation of the drone is controlled according to the motor control component to control the drone to The target flight direction is flying.
  • the remote controller needs to carry the headless mode indication information and the remote control locking mechanism indication information in the remote control information, and the smart controller 730 also uses the smart controller 730.
  • the headless mode corresponding to the headless mode indication information and the remote controller locking mode indicated by the remote controller locking mechanism indication information are activated.
  • the remote control information further includes geographic location information of the remote controller
  • the flight controller 700 further includes:
  • a locator 740 configured to acquire geographic location information of the drone
  • the smart controller 730 is further configured to determine the drone and the location according to the geographic location information of the drone, the geographic location information of the remote controller, and the head orientation in the posture information of the remote controller. Determining a relative position of the remote controller; determining a target flight direction of the drone based on the relative position and an operating angle value of the rudder rocker of the remote controller.
  • the receiver 710 is further configured to receive return indication information sent by the remote controller, where the return flight indication information includes geographic location information of the remote controller;
  • the smart controller 730 is further configured to control the drone to fly to a geographic location indicated by the geographic location information of the remote controller.
  • another embodiment of the present invention further provides a flight controller 800 corresponding to the headless mode-based drone control method as shown in FIG. 4a, which may include:
  • a transmitter 810 configured to send the posture information of the drone to the remote controller
  • the receiver 820 is configured to receive the remote control information sent by the remote controller, where the remote control information includes a target flight direction of the drone, and the remote control information is the posture information of the remote controller according to the posture of the remote controller and the posture information of the remote controller.
  • the head angle and the operating angle value of the rudder rocker of the remote controller are obtained;
  • the intelligent controller 830 is configured to control the drone to fly to the target flight direction.
  • the flight controller 800 transmits the attitude information of the drone to the processor on the remote controller side, and the processor solves the target flight direction of the drone.
  • the flight controller 800 further includes an attitude sensor 840 for remote control Before sending the attitude information of the drone, the posture information of the drone is obtained.
  • the remote control information further includes a motor control component of the rotor of the drone
  • the intelligent controller 830 is further configured to control the rotation of the rotor of the drone according to the motor control component to control the drone Flying in the direction of the target flight.
  • the receiver 820 is further configured to receive return indication information sent by the remote controller, where the return flight indication information includes geographic location information of the remote controller;
  • the smart controller 830 is further configured to control the remote controller to fly to a geographic location indicated by the geographic location information of the remote controller.
  • another embodiment of the present invention further provides a processor 900 corresponding to the headless mode-based drone control method as shown in FIG. 5a, the processor 900 comprising:
  • the intelligent controller 910 is configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain an operation angle value of the rudder rocker;
  • An attitude sensor 920 configured to acquire a head orientation of the posture information of the remote controller
  • the smart controller 910 is further configured to generate remote control information according to an operation angle value of the rudder stick and posture information of the remote controller, where the remote control information is used to indicate an operation direction of the rudder rocker of the remote controller ;
  • the transmitter 930 is configured to send the remote control information to the drone.
  • the intelligent controller 910 obtains the operating angle value of the rudder stick by monitoring the user's operation on the rudder stick, and the head orientation of the attitude sensor 920 acquiring the posture information of the remote controller, and then the smart controller 910 according to the The operating angle value of the rudder rocker and the posture information of the remote controller generate remote control information for indicating the operating direction of the rudder rocker of the remote controller, after which the transmitter 930 transmits the remote control information to the drone, the drone The flight controller further obtains the target flight direction of the drone according to the remote control information.
  • the intelligent remote control in the headless mode is realized, so that the drone flight
  • the direction is the same as the direction of operation of the rudder stick, which simplifies the remote control operation, reduces the operation difficulty of the remote control, and improves the user experience.
  • the smart controller 910 is specifically configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain a channel value corresponding to the rudder rocker of the remote controller; and obtain the operation of the rudder rocker of the remote controller according to the channel value. Angle value.
  • the smart controller 910 is specifically configured to perform a trigonometric function on the channel value.
  • the operating angle value of the rudder rocker of the above remote controller is obtained.
  • the smart controller 910 is specifically configured to generate the remote control information according to the headless mode indication information, the remote controller locking mechanism indication information, the operating angle value of the rudder stick, and the posture information of the remote controller.
  • the processor 900 further includes:
  • the locator 940 is configured to acquire geographic location information of the remote controller, where the remote control information further includes geographic location information of the remote controller.
  • the geographic information of the remote controller acquired by the locator 940 is combined with other information to generate remote control information, and then the remote control information is sent to the drone, so that the drone can obtain the geographical location information of the drone and the geographical location information of the remote controller according to the remote device.
  • the direction of the head in the attitude information of the remote controller is determined, and the flight direction of the drone is determined. The specific flight direction is described in detail in the embodiment shown in FIG. 3e, and details are not described herein again.
  • the transmitter 930 is further configured to send return indication information to the drone, where the return flight indication information includes geographic location information of the remote controller.
  • another embodiment of the present invention further provides a processor 1000 corresponding to the headless mode-based drone control method as shown in FIG. 6a, the processor 1000 comprising:
  • the intelligent controller 1001 is configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain an operation angle value of the rudder rocker;
  • An attitude sensor 1002 configured to acquire a head orientation of posture information of the remote controller
  • a receiver 1003 configured to receive posture information of the drone sent by the drone;
  • the smart controller 1001 is further configured to obtain a target flight direction of the drone according to an operation angle value of the rudder stick, posture information of the remote controller, and posture information of the drone;
  • the transmitter 1004 is configured to send remote control information to the drone, where the remote control information includes a target flight direction of the drone.
  • the smart controller 1001 is specifically configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain a channel value corresponding to the rudder rocker of the remote controller; and obtain the remote control according to the channel value.
  • the operating angle value of the rudder rocker is specifically configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain a channel value corresponding to the rudder rocker of the remote controller; and obtain the remote control according to the channel value.
  • the operating angle value of the rudder rocker is specifically configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain a channel value corresponding to the rudder rocker of the remote controller; and obtain the remote control according to the channel value.
  • the operating angle value of the rudder rocker is specifically configured to monitor a user's operation on the rudder rocker of the remote controller, and obtain a channel value corresponding to the rudder rocker of the remote controller; and obtain the remote control
  • the smart controller 1001 is specifically configured to perform a trigonometric function on the channel value to obtain an operation angle value of the rudder stick of the remote controller.
  • the smart controller 1001 is specifically configured to use a coordinate origin of a geographic coordinate system as a coordinate origin, mark a remote control coordinate system according to a head orientation of the posture information of the remote controller, and according to the posture of the drone
  • the information is marked with a UAV coordinate system; according to the operating angle value of the rudder rocker of the remote controller, an operation direction of the rudder rocker of the remote controller is marked on the remote controller coordinate system, and then the remote controller is determined
  • the operating direction of the rudder rocker is the target flight direction of the drone.
  • the smart controller 1001 is specifically configured to mark the remote controller coordinate system according to the posture information of the remote controller, and the posture information of the remote controller includes a head orientation, a pitch angle, and a roll of the remote controller. angle.
  • the remote control information provided by the embodiment of the present invention further includes a motor control component of the rotor of the drone. Therefore, the fourth processor 1001 is specifically configured to acquire a horizontal axis of the UAV coordinate system. An angle of the target flight direction; obtaining a motor control component of the rotor of the drone according to the included angle.
  • the receiver 1003 is further configured to receive geographic location information of the drone sent by the drone;
  • the smart controller 1001 is further configured to acquire geographic location information of the remote controller; according to geographic location information of the remote controller, a head orientation of the posture information of the remote controller, and a geography of the drone a position determining a relative position of the drone and the remote controller; determining a target flight direction of the drone according to the relative position and an operating angle value of the rudder rocker of the remote controller.
  • the transmitter 1004 is further configured to send return indication information to the drone, where the return flight indication information includes geographic location information of the remote controller.
  • an embodiment of the present invention provides a drone 1100, which specifically includes a flight controller 700 as shown in FIG.
  • the drone 1100 will not be introduced.
  • the method embodiment please refer to the above detailed description of the flight controller 700.
  • another embodiment of the present invention further provides a drone 1200, the drone 1200.
  • a flight controller 800 as shown in FIG.
  • the unmanned aerial vehicle 1200 will not be introduced.
  • the method embodiment please refer to the detailed description of the flight controller 800.
  • an embodiment of the present invention provides a remote controller 1300, which specifically includes a processor 900 as shown in FIG.
  • the remote controller 1300 is not described here. For details, refer to the method embodiment. For details, refer to the foregoing description of the processor 900.
  • an embodiment of the present invention provides a remote controller 1400, which specifically includes a processor 1000 as shown in FIG.
  • the remote controller 1400 will not be introduced.
  • the method embodiment and refer to the detailed description of the processor 1000.
  • an embodiment of the present invention further provides a drone control system, which specifically includes:
  • FIG 15a may include a drone 1100 as shown in Figure 11 and a remote control 1300 as shown in Figure 13;
  • a drone 1300 as shown in Fig. 12 and a remote controller 1400 as shown in Fig. 14 are included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种基于无头模式的无人机控制方法,包括:接收遥控器发送的遥控信息,其中,接收遥控器发送的遥控信息,其中,所述遥控信息包括所述遥控器的姿态信息的机头朝向和所述遥控器的方向舵摇杆的操作角度值,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;获取无人机的姿态信息;根据所述遥控信息和所述无人机的姿态信息确定无人机的目标飞行方向,所述目标飞行方向与所述方向舵摇杆的操作方向相同;控制所述无人机向所述目标飞行方向飞行。该方法实现无人机的无头模式的智能控制,降低遥控的操作难度,提高用户体验。

Description

基于无头模式的无人机控制方法及设备 技术领域
本发明涉及无人机技术领域,具体涉及一种基于无头模式的无人机控制方法及设备。
背景技术
无人驾驶飞机简称“无人机”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,在侦测、搜救、航拍等领域有着广泛应用前景。常规的无人机的操纵模式为飞行员主导方式,所谓的飞行员主导方式是指飞行员视角一直与无人机机头视角重合,依照飞行员主导确认的方向来执行,即遥控设备的方向舵摇杆向前,无人机向机头方向飞行,遥控设备的方向舵摇杆向后,无人机向机尾方向飞行。其中,飞行员主导方式包括的情况之一是无人机机尾面对操纵员,此时,无人机的飞行动作与遥控设备方向舵摇杆的操作方向一致。另一种情况是无人机机头面对操纵员,此时,遥控设备的方向舵摇杆向前,无人机向着机头方向前进,即向着操纵员方向飞行。可见,在上述两种情况下,方向舵摇杆的操作方向相同时,无人机的飞行方向不同,这就使得操纵员需要时刻准确判明无人机机头朝向,才能按照飞行员主导方式来控制无人机飞行,但是,对于刚刚接触无人机的用户来说,飞行员主导方式具有较高的操纵难度。
为了解决因为飞行员主导方式导致的操作难度,提出了一种无人机遥控操作的无头操作模式。在无人机的无头模式中,在无人机起飞时,记录了无人机的起飞方向,并将该起飞方向作为无人机的飞行方向。其中,以起飞方向为遥控设备的正前方为例,此时,无人机的飞行方向与遥控设备上的操纵方向对应关系如下:遥控设备的方向舵摇杆前推,则无人机沿着起飞方向的方向飞行,方向舵摇杆后推,则沿着起飞方向的相反方向飞行;摇杆右推,无人机右飞,摇杆左推,无人机左飞。
当无人机顺时针旋转180度后,无人机的飞行方向与遥控设备上的操纵方向对应关系如下:遥控设备的方向舵摇杆前推,则无人机沿着起飞方向的相反方向飞行,方向舵摇杆后推,则沿着起飞方向的方向飞行;方向舵摇杆右推,无人机右飞,方向舵摇杆左推,无人机左飞。同样,在无人机的无头模式中同 样会出现飞行方向混乱,增加操纵的难度的问题。
发明内容
针对上述存在的技术缺陷,本发明实施例提供了一种基于无头模式的无人机控制方法及设备,用以实现无人机的无头模式的智能控制,降低遥控的操作难度,提高用户体验。
本发明第一方面提供了一种基于无头模式的无人机控制方法,可包括:
接收遥控器发送的遥控信息,其中,所述遥控信息包括所述遥控器的姿态信息中的机头朝向和所述遥控器的方向舵摇杆的操作角度值,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
获取无人机的姿态信息;
根据所述遥控信息和所述无人机的姿态信息确定无人机的目标飞行方向,所述目标飞行方向与所述方向舵摇杆的操作方向相同;
控制所述无人机向所述目标飞行方向飞行。
本发明第二方面提供了一种基于无头模式的无人机控制方法,可包括:
向遥控器发送无人机的姿态信息;
接收所述遥控器发送的遥控信息,所述遥控信息包括无人机的目标飞行方向,所述遥控信息为所述遥控器根据所述无人机的姿态信息、所述遥控器的姿态信息的机头朝向和所述遥控器的方向舵摇杆的操作角度值获取得到;
控制所述无人机向所述目标飞行方向飞行。
本发明第三方面提供了一种基于无头模式的无人机控制方法,可包括:
监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
获取所述遥控器的姿态信息的机头朝向,根据所述方向舵摇杆的操作角度值和所述遥控器的姿态信息,生成遥控信息,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
向无人机发送所述遥控信息。
本发明第四方面提供了一种基于无头模式的无人机控制方法,可包括:
监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
获取所述遥控器的姿态信息,以及接收无人机发送的无人机的姿态信息;
根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息的机头朝向和所述无人机的姿态信息,得到所述无人机的目标飞行方向;
向所述无人机发送遥控信息,所述遥控信息包括所述无人机的目标飞行方向。
本发明第五方面提供了一种飞行控制器,可包括:
接收器,用于接收遥控器发送的遥控信息,其中,所述遥控信息包括所述遥控器的姿态信息的机头朝向和所述遥控器的方向舵摇杆的操作角度值,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
姿态传感器,用于获取无人机的姿态信息;
智能控制器,用于根据所述遥控信息和无人机的姿态信息确定无人机的目标飞行方向,控制所述无人机向所述目标飞行方向飞行,所述目标飞行方向与所述方向舵摇杆的操作方向相同。
本发明第六方面提供了一种飞行控制器,可包括:
发送器,用于向遥控器发送无人机的姿态信息;
接收器,用于接收所述遥控器发送的遥控信息,所述遥控信息包括无人机的目标飞行方向,所述遥控信息为所述遥控器根据所述无人机的姿态信息、所述遥控器的姿态信息的机头朝向和所述遥控器的方向舵摇杆的操作角度值获取得到;
智能控制器,用于控制所述无人机向所述目标飞行方向飞行。
本发明第七方面提供了一种处理器,可包括:
智能控制器,用于监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
姿态传感器,用于获取所述遥控器的姿态信息;
所述智能控制器还用于,根据所述方向舵摇杆的操作角度值和所述遥控器的姿态信息的机头朝向,生成遥控信息,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
发送器,用于向无人机发送所述遥控信息。
本发明第八方面提供了一种处理器,可包括:
智能控制器,用于监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
姿态传感器,用于获取所述遥控器的姿态信息;
接收器,用于接收无人机发送的无人机的姿态信息;
所述智能控制器还用于,根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息的机头朝向和所述无人机的姿态信息,得到所述无人机的目标飞行方向;
发送器,用于向所述无人机发送遥控信息,所述遥控信息包括所述无人机的目标飞行方向。
本发明第九方面提供了一种无人机,包括第五方面提供的飞行控制器。
本发明第十方面提供了一种无人机,包括第六方面提供的飞行控制器。
本发明第十一方面提供了一种遥控器,包括第七方面提供的处理器。
本发明第十二方面提供了一种处理器,包括第八方面提供的处理器。
本发明第十三方面提供了一种无人机控制***,包括第五方面提供的飞行控制器和第七方面提供的处理器,或者,包括第六方面提供的飞行控制器和第八方面提供的处理器。
可以看出,本发明一方面中对于无人机侧的飞行控制器,从遥控器接收遥控信息,该遥控信息用于指示遥控器的方向舵摇杆的操作方向,之后根据该遥控信息和无人机的姿态信息确定出无人机的目标飞行方向,其中,目标飞行方向与遥控器的方向舵摇杆的操作方向相同,最后控制无人机向着目标飞行方向飞行,实现了在无头模式下的智能化遥控,使得无人机飞行方向与方向舵摇杆的操作方向相同,简化了遥控操作,降低遥控的操作难度,提高用户体验。
本发明另一方面中对于无人机侧的飞行控制器,从遥控器接收遥控信息,该遥控信息包括无人机的目标飞行方向,进而控制无人机向目标飞行方向飞行,其中,无人机的目标飞行方向是遥控器侧的处理器根据无人机的姿态信息、遥控器的姿态信息的机头朝向和方向舵摇杆的操作方向得到,由于目标飞行方向与遥控器的方向舵摇杆的操作方向相同,实现了在无头模式下的智能化遥控,使得无人机飞行方向与方向舵摇杆的操作方向相同,简化了遥控操作,降低遥控的操作难度,提高用户体验。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的基于无头模式的无人机控制方法的流程示意图;
图2为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图3a为本发明实施例提供的在遥控器坐标系中标注的方向舵摇杆的操作方向示意图;
图3b为本发明实施例提供的无人机坐标系的示意图;
图3c为本发明实施例提供的在无人机坐标系上标注的无人机目标飞行方向的示意图;
图3d为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图3e为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图3f为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图4a为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图4b为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图5a为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图5b为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;
图6为本发明另一实施例提供的基于无头模式的无人机控制方法的流程 示意图;
图7为本发明实施例提供的飞行控制器的结构示意图;
图8为本发明另一实施例提供的飞行控制器的结构示意图;
图9为本发明实施例提供的处理器的结构示意图;
图10为本发明另一实施例提供的处理器的结构示意图;
图11为本发明实施例提供的无人机的结构示意图;
图12为本发明另一实施例提供的无人机的结构示意图;
图13为本发明实施例提供的遥控器的结构示意图;
图14为本发明另一实施例提供的遥控器的结构示意图;
图15a为本发明实施例提供的无人机控制***的结构示意图;
图15b为本发明另一实施例提供的无人机控制***的结构示意图。
具体实施方式
本发明实施例提供了一种基于无头模式的无人机控制方法,用以实现无人机的无头模式的智能控制,降低遥控的操作难度,提高用户体验,本发明实施例还相应提供一种飞行控制器、一种处理器及无人机和遥控器。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供的无人机中设置飞行控制器,该飞行控制器包括如下模块:
***,能够获取无人机的地理位置信息,本实施例的***可以是但并不限于是全球定位***(Global Position System,简称GPS)。
接收器,用于接收遥控器发送的遥控信息;
智能控制器,用于处理遥控信息,以及根据处理结果控制无人机飞行;
姿态传感器,用于在静态或动态下获知无人机的姿态信息,该无人机的姿态信息包括无人机的航向角(机头朝向)、俯仰角和横滚角。
举例来说,在本发明实施例提供的飞行控制器同时设置指南针和惯性测量 单元(Inertial Measurement Unit,简称IMU)等姿态传感器,其中,指南针主要用于获知无人机的飞行方向信息,IMU主要用于获知无人机的飞行方向信息和无人机的姿态信息。因此,在本发明实施例中,通过结合指南针和IMU两者获知的数据信息,能够准确获知无人机的飞行方向。当然,也可以结合GPS获取的无人机的地理位置信息和IMU获取的无人机的飞行方向信息和姿态信息,准确获知无人机的飞行方向。
记录器,用于记录返航点的地理位置信息和无人机实时的飞行方向等。
同样,在遥控器中设置有处理器,该处理器主要包括如下模块:
智能控制器,用于监测用户的操作,获得相关的遥控信息;
发送器,用于向无人机发送遥控信息;
***,用于获取遥控器的地理位置信息;
姿态传感器,用于在静态或动态下获知遥控器的姿态信息,该遥控器的姿态信息包括遥控器的机头朝向、俯仰角和横滚角。
举例来说,在本发明实施例提供的处理器中同时设置指南针和IMU等姿态传感器,其中,指南针主要用于获知遥控器的方向信息,IMU主要用于获知遥控器的姿态信息。因此,在本发明实施例中,通过结合指南针和IMU两者获知的数据信息,能够准确获知遥控器的机头朝向。同样,也可以结合GPS获取的遥控器的地理位置信息和IMU获取的遥控器的姿态信息,准确获知遥控器的机头朝向。
需要说明的是,本发明是基于无人机的无头模式下的遥控设备锁定机制对应的功能的实现,因此,在遥控器上设置了遥控设备锁定模式按钮,通过遥控设备锁定模式按钮开启遥控设备锁定机制对应的功能。其中,遥控设备锁定机制是指在无人机的无头模式下,不用判断无人机的机头朝向,也不用记录无人机的起飞时刻的飞行方向,只需要通过操作遥控器的方向舵摇杆,控制无人机向方向舵摇杆的操作方向飞行,保证在该遥控设备锁定机制下,无人机的飞行方向与方向舵摇杆的操作方向相同,实现无人机的智能化控制,降低了无人机遥控操作难度。
对于该无头模式下的遥控方式,除了上述的遥控设备锁定模式,还可以设置常用的航向锁定模式(航向锁定机制)、返航点锁定模式(返航点锁定机制), 分别通过相应的按钮启动,以实现无人机的智能化控制的多选择性。
可以理解的是,还可以在遥控器中设置无头模式按钮和常规的无人机操纵模式(有头模式)按钮,无人机操纵模式即飞行员主导方式,用户可以选择无头模式或飞行员主导方式,在无头模式下,可以选择上述航向锁定模式、返航点锁定模式和遥控设备锁定模式中的任意一种。
另外需要说明,在无人机中,相应地设置了上述无头模式和/或飞行员主导方式的相应程序,以及上述航向锁定模式、返航点锁定模式和遥控设备锁定模式的相应程序,以使得无人机配合遥控器完成相应的遥控功能。
基于上述介绍,下面将以具体实施例,对本发明进行详细介绍。
请参阅图1,图1为本发明实施例提供的基于无头模式的无人机控制方法的流程示意图;如图1所示,一种基于无头模式的无人机控制方法,应用于无人机侧的飞行控制器,可以包括:
101、接收遥控器发送的遥控信息,其中,上述遥控信息包括上述遥控器的姿态信息的机头朝向和上述遥控器的方向舵摇杆的操作角度值,上述遥控信息用于指示上述遥控器的方向舵摇杆的操作方向;
其中,遥控信息是由遥控器侧的处理器在用户选择了无头模式和启动遥控设备锁定机制下,根据用户对方向舵摇杆的操作角度值和遥控器的姿态信息生成得到。
102、获取无人机的姿态信息;
103、根据所述遥控信息和上述无人机的姿态信息确定无人机的目标飞行方向,所述目标飞行方向与所述方向舵摇杆的操作方向相同;
104、控制所述无人机向所述目标飞行方向飞行。
在本发明实施例中,遥控器的处理器仅提供相关的遥控信息,包括遥控器的姿态信息的机头朝向和遥控器的方向舵摇杆的操作角度值,然后由无人机侧的飞行控制器结合遥控信息和无人机的姿态信息,进行分析处理以得到目标飞行方向。
可以看出,飞行控制器从遥控器接收遥控信息,该遥控信息用于指示遥控器的方向舵摇杆的操作方向,之后根据该遥控信息和无人机的姿态信息确定出无人机的目标飞行方向,其中,目标飞行方向与遥控器的方向舵摇杆的操作方 向相同,最后控制无人机向着目标飞行方向飞行,实现了在无头模式下的智能化遥控,使得无人机飞行方向与方向舵摇杆的操作方向相同,简化了遥控操作,降低无人机遥控的操作难度,提高用户体验。
在一个可实施例的方式中,上述步骤103具体包括如图2所示的步骤:
A1、以地理坐标系的坐标原点作为坐标原点,根据上述遥控器的姿态信息的机头朝向标注遥控器坐标系,以及根据上述无人机的姿态信息标注无人机坐标系;
A2、根据上述遥控器的方向舵摇杆的操作角度值,在上述遥控器坐标系上标注上述遥控器的方向舵摇杆的操作方向,则确定上述遥控器的方向舵摇杆的操作方向为上述无人机的目标飞行方向。
如图3a所示,图3a为在遥控器坐标系中标注的方向舵摇杆的操作方向示意图,其中,在平面上建立地理坐标系NEO,然后以地理坐标系NEO的坐标原点O作为坐标原点,根据遥控器的姿态信息的机头朝向进行遥控器坐标系Y1X1O的标注,其中,遥控器的机头朝向对应纵轴的上半轴,遥控器的机尾对应纵轴的下半轴。从遥控器坐标系Y1X1O的横轴正半轴开始逆时针得到遥控器的方向舵摇杆的操作角度值,如图3a中的角度θ,则与遥控器坐标系Y1X1O的横轴正半轴形成角度θ的方向F为遥控器方向舵摇杆的操作方向。
其中,上述θ可以由遥控器的方向舵摇杆操作后所对应的通道值得到,具体是该通道值的三角函数值。
如图3b所示,图3b为无人机坐标系的示意图。在图3b中,建立地理坐标系NEO,以地理坐标系的坐标原点O作为坐标原点,根据无人机的姿态信息进行无人机坐标系Y2X2O的标注,其中,无人机的机头朝向对应无人机坐标系Y2X2O的纵轴上半轴。
如图3c所示,图3c为本发明实施例提供的在无人机坐标系上标注的无人机目标飞行方向的示意图。其中,图3c是在图3a和3b的基础上,以地理坐标系NEO的坐标原点O作为坐标原点,然后分别根据遥控器的姿态信息的机头朝向标注遥控器坐标系,根据无人机的姿态信息标注无人机坐标系,即将图3a与图3b重合,那么在图3c中,角度φ等于θ,方向F即为无人机的目标飞行方向,方向F与无人机坐标系横轴的夹角
Figure PCTCN2015079191-appb-000001
为无人机目标飞行角度。
需要说明,在建立如附图3c所示的坐标系时,在同一个水平面上进行建立,但是,在实际应用时,遥控器也可能处于不同的姿态,因此,需要进一步考虑遥控器的姿态信息中的俯仰角和横滚角,从而更加准确地标注方向F,从而解算到方向F与无人机坐标系横轴的夹角
Figure PCTCN2015079191-appb-000002
而在附图3a~3c中以无人机当前正处于水平飞行、遥控器也处于一个水平面为例进行说明。
进一步,上述步骤104具体包括如图3d所示的步骤:
B1、获取无人机坐标系上的横轴与上述目标飞行方向的夹角;
B2、根据上述夹角获取上述无人机的旋翼的电机控制分量;
B3、根据上述无人机的当前姿态信息和上述电机控制分量控制上述无人机的旋翼旋转,以控制上述无人机向上述目标飞行方向飞行。
其中,根据图3c中方向F与无人机坐标系横轴的夹角
Figure PCTCN2015079191-appb-000003
以及结合无人机的姿态,从而得到各个旋翼的电机控制分量,再根据旋翼的电机控制分量上控制旋翼旋转,从而达到控制无人机向着方向F飞行的目的。
可以看出,在本发明实施例中,无人机根据遥控器的姿态信息和遥控器的方向舵摇杆的操作角度值、以及无人机的当前姿态信息,可以得到目标飞行方向,该目标飞行方向与遥控器的方向舵摇杆的操作方向相同,然后控制无人机向该目标飞行方向飞行。
需要说明,由于本发明实施例实现的是遥控设备锁定机制对应的功能,因此,遥控器需要在遥控信息中携带无头模式指示信息和遥控器锁定机制指示信息,无人机启动无头模式下的遥控器锁定模式。
如图3e所示,本发明一些实施例还提供了基于无头模式的无人机控制方法,应用于无人机侧的飞行控制器,具体包括:
301、接收遥控器发送的遥控信息;
其中,该遥控信息包括遥控器的姿态信息中的机头朝向、遥控器的方向舵摇杆的操作角度值和遥控器的地理位置信息。
302、获取无人机的地理位置信息;
其中,通过飞行控制器中的***获取无人机的地理位置信息。
303、根据所述无人机的地理位置信息、所述遥控器的地理位置信息和所述遥控器的姿态信息中的机头朝向,确定所述无人机与所述遥控器的相对位 置;
根据遥控器的地理位置信息和遥控器的姿态信息中的机头朝向,则可以确定了遥控器所在的物理位置和其机头朝向,然后再根据无人机的地理位置信息,确定无人机与遥控器的相对位置,该相对位置是指无人机是在遥控器机头前方或者是在遥控器机头后方。
304、根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向;
需要说明,在本发明实施例中,遥控器的方向舵摇杆的操作角度值为90度或360度,只使用遥控器上的两个通道,也就是方向舵摇杆的操作方向是向着遥控器机头朝向的方向,或者是遥控器机头朝向的反方向。
根据上述步骤303中确定的无人机在遥控器机头的前方或者后方,无人机的目标飞行方向包括如下情况:
1、无人机在遥控器机头前方,且方向舵摇杆的操作方向是遥控器机头朝向的方向,确定无人机的目标飞行方向为远离遥控器,且以方向舵摇杆的操作方向所指示的方向飞行,从而远离遥控器;
2、无人机在遥控器机头前方,且方向舵摇杆的操作方向是遥控器机头朝向的反方向,确定无人机的目标飞行方向为朝着遥控器飞行,且以方向舵摇杆的操作方向所指示的方向飞行,从而接近遥控器;
3、无人机在遥控器机头后方,且方向舵摇杆的操作方向是遥控器机头朝向的方向,确定无人机的目标飞行方向为朝着遥控器飞行,且以方向舵摇杆的操作方向所指示的方向飞行,从而接近遥控器;
4、无人机在遥控器机头后方,且方向舵摇杆的操作方向是遥控器机头朝向的反方向,确定无人机的目标飞行方向为远离遥控器,且以方向舵摇杆的操作方向所指示的方向飞行,从而远离遥控器。
305、控制所述无人机向所述目标飞行方向飞行。
可以看出,在本发明实施例中,遥控器发送的遥控信息中还包括遥控器的地理位置信息,因此,在本发明实施例中可以结合遥控器地理位置信息、遥控器的姿态信息中的机头朝向,确定无人机的目标飞行方向,更加有效控制无人机的地理位置,避免无人机丢失。
需要说明,本发明实施例与上述图1~图3d所提供的实施例可以是两种功能的实现,可以通过遥控器上不同的选择开关或者启动不同的应用程序来实现,用户可以根据需要,选择两种模式中的任意一种。
另外,本发明实施例还能通过动态设定返航点,并控制无人机返航。因此,本发明实施例中还提供了一种基于无头模式的无人机控制方法,应用于无人机的飞行控制器,如图3f所示,可以包括:
311、接收遥控器发送的遥控信息,所述遥控信息包括返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
可以理解的是,在需要无人机返回时,可以通过启动遥控器上的相关按钮或者是在关闭遥控器时,触发返航点锁定模式,向无人机发送遥控信息,在遥控信息中携带了返航指示信息,该返航指示信息至少包括遥控器的地理位置信息。
312、控制无人机向所述遥控器的地理位置信息所指示的地理位置飞行。
在本发明实施例中,通过以遥控器的地理位置作为返航点,从而实现动态设定返航点,以实现无人机最后的返航。
请参阅图4a,图4a为本发明实施例提供的基于无头模式的无人机控制方法的流程示意图;如图4a所示,一种基于无头模式的无人机控制方法,应用于无人机侧的飞行控制器,可以包括:
401、向遥控器发送无人机的姿态信息;
402、接收上述遥控器发送的遥控信息,上述遥控信息包括无人机的目标飞行方向,上述遥控信息为上述遥控器根据上述无人机的姿态信息、上述遥控器的姿态信息的机头朝向和上述遥控器的方向舵摇杆的操作角度值获取得到;
403、控制上述无人机向上述目标飞行方向飞行。
在本发明实施例中,无人机的飞行控制器将无人机的姿态信息发送给遥控器,然后由遥控器的处理器根据无人机的姿态信息、遥控器的姿态信息的机头朝向和遥控器的方向舵摇杆的操作角度值得到无人机的目标飞行方向,然后直接将目标飞行方向发送给飞行控制器,飞行控制器控制无人机向目标飞行方向飞行。即在本发明实施例中,由遥控器侧的处理器进行无人机的目标飞行方向的获取。
如图4b所示,一种基于无头模式的无人机控制方法包括:
411、获取无人机的姿态信息;
412、向遥控器发送上述无人机的姿态信息;
413、接收上述遥控器发送的遥控信息,上述遥控信息包括无人机的目标飞行方向和该无人机的旋翼的电机控制分量;
上述遥控信息为上述遥控器根据上述无人机的姿态信息、上述遥控器的姿态信息的机头朝向和上述遥控器的方向舵摇杆的操作角度值获取得到。
其中,遥控器侧的处理器获取无人机的目标飞行方向和无人机的旋翼的电机控制分量的方法,与无人机侧的飞行控制器的获取方法相同,具体可以参阅图3a~图3d,在此不再赘述。
414、根据上述电机控制分量控制上述无人机的旋翼旋转,以控制上述无人机向上述目标飞行方向飞行。
可以看出,在本发明实施例中,无人机侧的飞行控制器将获取无人机的姿态信息发送给遥控器侧的处理器,进而由处理器根据无人机的姿态信息、遥控器的姿态信息和遥控器的方向舵摇杆的操作角度值,解算得到无人机的目标飞行方向和无人机的旋翼的电机控制分量,然后遥控器侧的处理器将目标飞行方向和无人机的旋翼的电机控制分量携带在遥控信息中发送给飞行控制器,最后,飞行控制器能够通过电机控制分量控制无人机的旋翼旋转,以控制无人机向目标飞行方向飞行。
另外,***还将获取无人机的地理位置信息,然后将该无人机的地理位置信息发送给遥控器,以便遥控器根据无人机的地理位置信息、遥控器的地理位置信息和无人机的姿态信息中的机头朝向确定无人机的目标飞行方向,具体确定方法将在后续遥控器实施例中进行详细介绍,在此不再赘述。
另外,本发明实施例还能通过动态设定返航点,并控制无人机返航。因此,无人机还会接收到遥控器发送的返航指示信息,该返航指示信息包括所述遥控器的地理位置信息,然后控制所述遥控器向所述遥控器的地理位置信息所指示的地理位置飞行。具体可以参阅图3所示的实施例,在此不再赘述。
请参阅图5a,图5a为本发明实施例提供的基于无头模式的无人机控制方法的流程示意图;如图5a所示,一种基于无头模式的无人机控制方法,应用 于遥控器侧的处理器,结合图1,可以包括:
501、监测用户对遥控器的方向舵摇杆的操作,得到该方向舵摇杆的操作角度值;
其中,遥控器侧的处理器实时监测用户对遥控器的操作,其中,包括对遥感器方向舵摇杆的操作,当然,还有对遥控器上按钮的启动操作等。
502、获取上述遥控器的姿态信息的机头朝向;
其中,处理器还将获取遥控器的姿态信息的机头朝向。
503、根据上述方向舵摇杆的操作角度值和上述遥控器的姿态信息的机头朝向,生成遥控信息,上述遥控信息用于指示上述遥控器的方向舵摇杆的操作方向;
504、向无人机发送上述遥控信息。
在本发明实施例中,由无人机侧的飞行控制器获取无人机的目标飞行方向(具体获取方法在图3a~图3d中进行了详细说明,在此不再赘述),因此,遥控器侧的处理器需要将遥控器的姿态信息和方向舵摇杆的操作角度值发送给飞行控制器。
可以看出,本发明实施例中,遥控器中的无人机控制装置通过监测用户对方向舵摇杆的操作,得到方向舵摇杆的操作角度值,然后获取遥控器的姿态信息的机头朝向,根据方向舵摇杆的操作角度值和遥控器的姿态信息的机头朝向生成遥控信息,该遥控信息指示了遥控器的方向舵摇杆的操作方向,将遥控信息发送给无人机,无人机中的无人机控制装置进而根据遥控信息得到无人机的目标飞行方向,由于目标飞行方向与遥控器的方向舵摇杆的操作方向相同,实现了在无头模式下的智能化遥控,使得无人机飞行方向与方向舵摇杆的操作方向相同,简化了遥控操作,降低无人机遥控的操作难度,提高用户体验。
在一个可实施例的方式中,上述根据上述方向舵摇杆的操作角度值和上述遥控器的姿态信息的机头朝向生成遥控信息具体包括:监测用户对上述遥控器的方向舵摇杆的操作,获取上述遥控器的方向舵摇杆对应的通道值;根据上述通道值,得到上述遥控器的方向舵摇杆的操作角度值;根据上述遥控器的方向舵摇杆的操作角度值和上述遥控器的姿态信息的机头朝向,生成上述遥控信息。
可以理解的是,遥控器中通常设置有8个通道,每个通道对应一个通道值,每个通道值不同。其中,对遥控器的方向舵摇杆的操作,就是将方向舵摇杆拨动到相应的通道上,则遥控器的无人机控制装置则获取到该通道值,然后对该通道值进行三角函数求解,得到附图3a中的θ,遥控器的方向舵摇杆的操作角度值。
请参阅图5b,图5b为本发明另一实施例提供的基于无头模式的无人机控制方法的流程示意图;如图5b所示,一种基于无头模式的无人机控制方法,可以包括:
511、监测用户对上述无头模式的启动操作,获得上述无头模式指示信息;
512、监测用户对遥控器的遥控器锁定模式的启动操作,获得上述遥控器锁定机制指示信息;
513、监测用户对遥控器的方向舵摇杆的操作,得到该方向舵摇杆的操作角度值;
514、获取上述遥控器的姿态信息;
515、根据上述无头模式指示信息、上述遥控器锁定机制指示信息、上述遥控器的姿态信息和上述方向舵摇杆的操作角度值,生成遥控信息;
516、向无人机发送上述遥控信息。
需要说明,在本发明实施例中解算无人机的目标飞行方向时,还将考虑遥控器的姿态信息中的所有项,即同时考虑机头朝向、俯仰角和横滚角。
可以看出,在本发明实施例中,遥控器检测用户对遥控器的操作,具体包括有无头模式的启动操作、遥控器锁定模式的启动、以及对方向舵摇杆的操作,从而得到上述无头模式指示信息、遥控器锁定机制指示信息、遥控器的姿态信息和遥控器的方向舵摇杆的操作角度值,这些信息携带在遥控信息中发送给无人机,以便无人机根据遥控信息启动相应的程序,并根据地理位置信息和遥控器的方向舵摇杆的操作角度值得到目标飞行方向,控制无人机向着目标飞行方向飞行。
在遥控器侧还通过***获取遥控器的地理位置信息,然后将所述遥控器的地理位置信息携带在遥控信息中发送给无人机,使得无人机可以结合遥控器地理位置信息、遥控器的姿态信息中的机头朝向,确定无人机的目标飞行方向, 具体确定方法在上述图3e所示的实施例中有详细说明,在此不再赘述。
另外,本发明实施例还能通过动态设定返航点,并控制无人机返航。在需要无人机返回时,可以通过启动遥控器上的相关按钮或者是在关闭遥控器时,触发返航点锁定模式,向无人机发送遥控信息,在遥控信息中携带了返航指示信息,该返航指示信息至少包括遥控器的地理位置信息。因此,在本发明实施例中可以将遥控器的地理位置作为返航点,以实现动态返航点的设定。
请参阅图6,图6为本发明实施例提供的基于无头模式的无人机控制方法的流程示意图;如图6所示,一种基于无头模式的无人机控制方法包括:
601、监测用户对遥控器的方向舵摇杆的操作,得到上述方向舵摇杆的操作角度值;
602、获取上述遥控器的姿态信息的机头朝向;
603、接收无人机发送的无人机的姿态信息;
步骤602和603没有执行上的先后顺序。
604、根据上述方向舵摇杆的操作角度值、上述遥控器的姿态信息和上述无人机的姿态信息,得到上述无人机的目标飞行方向;
605、向上述无人机发送遥控信息,上述遥控信息包括上述无人机的目标飞行方向。
在本发明实施例中,由遥控器侧的处理器获取无人机的目标飞行方向,然后直接发送给无人机侧的飞行控制器,进而飞行控制器则可以直接控制无人机向目标飞行方向飞行。
进一步地,上述步骤601中的监测用户对遥控器的方向舵摇杆的操作,得到上述方向舵摇杆的操作角度值包括:监测用户对上述遥控器的方向舵摇杆的操作,获取上述遥控器的方向舵摇杆对应的通道值;根据上述通道值,得到上述遥控器的方向舵摇杆的操作角度值。
其中,根据上述通道值,得到上述遥控器的方向舵摇杆的操作角度值是指,对上述通道值进行三角函数求解得到上述遥控器的方向舵摇杆的操作角度值。
在本发明一些可实施的方式中,上述步骤604具体包括附图2所示的步骤,其具体的解算过程如图3a~3c所示,在此不再赘述。
另外,本发明实施例提供的遥控信息还包括有无人机的旋翼的电机控制分 量,因此,在确定遥控器的方向舵摇杆的操作方向为无人机的目标飞行方向之后,还可以根据图3d所示的步骤获取该无人机的旋翼的电机控制分量。
在本发明一些实施例中,遥控器还接收无人机发送的所述无人机的地理位置信息,进而上述步骤604具体包括如下步骤:
S1、获取所述遥控器的地理位置信息;
S2、根据所述遥控器的地理位置信息、所述遥控器的姿态信息的机头朝向和所述无人机的地理位置,确定所述无人机与所述遥控器的相对位置;
S3、根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
根据遥控器的地理位置信息和遥控器的姿态信息中的机头朝向,则可以确定了遥控器所在的物理位置和其机头朝向,然后再根据无人机的地理位置信息,确定无人机与遥控器的相对位置,该相对位置是指无人机是在遥控器机头前方或者是在遥控器机头后方。
需要说明,在本发明实施例中,遥控器的方向舵摇杆的操作角度值为90度或360度,只使用遥控器上的两个通道,也就是方向舵摇杆的操作方向是向着遥控器机头朝向的方向,或者是遥控器机头朝向的反方向。
根据上述步骤S3中确定的无人机在遥控器机头的前方或者后方,无人机的目标飞行方向包括如下情况:
1、无人机在遥控器机头前方,且方向舵摇杆的操作方向是遥控器机头朝向的方向,确定无人机的目标飞行方向为远离遥控器,且以方向舵摇杆的操作方向所指示的方向飞行,从而远离遥控器;
2、无人机在遥控器机头前方,且方向舵摇杆的操作方向是遥控器机头朝向的反方向,确定无人机的目标飞行方向为朝着遥控器飞行,且以方向舵摇杆的操作方向所指示的方向飞行,从而接近遥控器;
3、无人机在遥控器机头后方,且方向舵摇杆的操作方向是遥控器机头朝向的方向,确定无人机的目标飞行方向为朝着遥控器飞行,且以方向舵摇杆的操作方向所指示的方向飞行,从而接近遥控器;
4、无人机在遥控器机头后方,且方向舵摇杆的操作方向是遥控器机头朝向的反方向,确定无人机的目标飞行方向为远离遥控器,且以方向舵摇杆的操 作方向所指示的方向飞行,从而远离遥控器。
另外,在需要无人机返航时,可以向无人机发送返航指示信息,该返航指示信息包括遥控器的地理位置信息,进而,控制无人机向着遥控器的地理位置信息所指示的地理位置飞行,回到返航点。
如图7所示,本发明实施例还提供一种如附图1所示的基于无头模式的无人机控制方法对应的飞行控制器700,该飞行控制器700包括:
接收器710,用于接收遥控器发送的遥控信息,其中,上述遥控信息包括上述遥控器的姿态信息的机头朝向和上述遥控器的方向舵摇杆的操作角度值,上述遥控信息用于指示上述遥控器的方向舵摇杆的操作方向;
姿态传感器720,用于获取无人机的姿态信息;
智能控制器730,用于根据上述遥控信息和上述无人机的姿态信息确定无人机的目标飞行方向,控制上述无人机向上述目标飞行方向飞行,上述目标飞行方向与上述方向舵摇杆的操作方向相同。
在本发明实施例中,接收器710从遥控器中接收遥控信息,该遥控信息用于指示遥控器的方向舵摇杆的操作方向,姿态传感器720用于获取无人机的姿态信息,进而智能控制器730根据该遥控信息和无人机的姿态信息确定无人机的目标飞行方向,其中,目标飞行方向与遥控信息指示的方向舵摇杆的操作方向相同,之后,智能控制器730控制无人机向着目标飞行方向飞行,以实现遥控的智能化,降低遥控的操作难度,提高用户体验。
进一步地,上述智能控制器730进一步具体用于,以地理坐标系的坐标原点作为坐标原点,根据上述遥控器的姿态信息的机头朝向标注遥控器坐标系,以及根据上述无人机的姿态信息标注无人机坐标系;根据上述遥控器的方向舵摇杆的操作角度值,在上述遥控器坐标系上标注上述遥控器的方向舵摇杆的操作方向,则确定上述遥控器的方向舵摇杆的操作方向为上述无人机的目标飞行方向。
进一步地,上述智能控制器730具体用于,根据所述遥控器的姿态信息标注所述遥控器坐标系,所述遥控器的姿态信息包括所述遥控器的机头朝向、俯仰角和横滚角。
进一步地,上述智能控制器730进一步具体用于,获取上述无人机坐标系 上的横轴与上述目标飞行方向的夹角,根据上述夹角获取上述无人机的旋翼的电机控制分量;根据上述电机控制分量控制无人机的旋翼旋转,以控制上述无人机向上述目标飞行方向飞行。
需要说明,由于本发明实施例实现的是遥控设备锁定机制对应的功能,因此,遥控器需要在遥控信息中携带无头模式指示信息和遥控器锁定机制指示信息,则上述智能控制器730还用于,启动上述无头模式指示信息对应的无头模式和上述遥控器锁定机制指示信息指示的遥控器锁定模式。
在本发明一些可实施例的方式中,遥控信息还包括遥控器的地理位置信息,上述飞行控制器700还包括:
***740,用于获取所述无人机的地理位置信息;
上述智能控制器730还用于,根据所述无人机的地理位置信息、所述遥控器的地理位置信息和所述遥控器的姿态信息中的机头朝向,确定所述无人机与所述遥控器的相对位置;根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
在本发明一些可实施例的方式中,上述接收器710还用于,接收所述遥控器发送的返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
上述智能控制器730还用于,控制所述无人机向所述遥控器的地理位置信息所指示的地理位置飞行。
如图8所示,本发明另一实施例还提供了一种如附图4a所示的基于无头模式的无人机控制方法对应的飞行控制器800,该飞行控制器800可以包括:
发送器810,用于向遥控器发送无人机的姿态信息;
接收器820,用于接收上述遥控器发送的遥控信息,上述遥控信息包括无人机的目标飞行方向,上述遥控信息为上述遥控器根据上述无人机的姿态信息、上述遥控器的姿态信息的机头朝向和上述遥控器的方向舵摇杆的操作角度值获取得到;
智能控制器830,用于控制上述无人机向上述目标飞行方向飞行。
可以看出,在本发明实施例中,飞行控制器800将无人机的姿态信息发送给遥控器侧的处理器,由处理器解算无人机的目标飞行方向。
进一步地,上述飞行控制器800中还包括姿态传感器840,用于在向遥控 器发送无人机的姿态信息之前,获取所述无人机的姿态信息。
进一步地,在上述遥控信息还包括无人机的旋翼的电机控制分量,那么智能控制器830还用于根据所述电机控制分量控制所述无人机的旋翼旋转,以控制所述无人机向所述目标飞行方向飞行。
在本发明一些可实施的方式中,上述接收器820还用于,接收所述遥控器发送的返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
上述智能控制器830还用于,控制所述遥控器向所述遥控器的地理位置信息所指示的地理位置飞行。
如图9所示,本发明另一实施例还提供了一种如附图5a所示的基于无头模式的无人机控制方法对应的处理器900,该处理器900包括:
智能控制器910,用于监测用户对遥控器的方向舵摇杆的操作,得到该方向舵摇杆的操作角度值;
姿态传感器920,用于获取上述遥控器的姿态信息的机头朝向;
上述智能控制器910还用于,根据所述方向舵摇杆的操作角度值和所述遥控器的姿态信息,生成遥控信息,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
发送器930,用于向无人机发送所述遥控信息。
可以看出,智能控制器910通过监测用户对方向舵摇杆的操作,得到方向舵摇杆的操作角度值,以及姿态传感器920获取遥控器的姿态信息的机头朝向,然后智能控制器910再根据该方向舵摇杆的操作角度值、遥控器的姿态信息生成遥控信息,该遥控信息用于指示遥控器的方向舵摇杆的操作方向,之后,发送器930将遥控信息发送给无人机,无人机的飞行控制器进而根据遥控信息得到无人机的目标飞行方向,由于目标飞行方向与遥控器的方向舵摇杆的操作方向相同,实现了在无头模式下的智能化遥控,使得无人机飞行方向与方向舵摇杆的操作方向相同,简化了遥控操作,降低遥控的操作难度,提高用户体验。
上述智能控制器910具体用于,监测用户对上述遥控器的方向舵摇杆的操作,获取上述遥控器的方向舵摇杆对应的通道值;根据上述通道值,得到上述遥控器的方向舵摇杆的操作角度值。
进一步地,上述智能控制器910具体用于,对上述通道值进行三角函数求 解得到上述遥控器的方向舵摇杆的操作角度值。
进一步地,上述智能控制器910具体用于,根据上述无头模式指示信息、上述遥控器锁定机制指示信息、上述方向舵摇杆的操作角度值、上述遥控器的姿态信息,生成上述遥控信息。
在本发明一些可实施的方式中,上述处理器900还包括:
***940,用于获取所述遥控器的地理位置信息,所述遥控信息还包括所述遥控器的地理位置信息。
其中,将***940获取的遥控器的地理信息和其它信息一起生成遥控信息,然后将遥控信息发送给无人机,以便无人机根据无人机的地理位置信息、遥控器的地理位置信息和遥控器的姿态信息中的机头朝向,确定无人机的飞行方向,具体飞行方向在图3e所示实施例中有详细说明,在此不再赘述。
在本发明一些实施例中,上述发送器930还用于向所述无人机发送返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息。
在无人机需要返航时,将遥控器的地理位置作为无人机的返航点,控制无人机返航。
如图10所示,本发明另一实施例还提供了一种如附图6a所示的基于无头模式的无人机控制方法对应的处理器1000,该处理器1000包括:
智能控制器1001,用于监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
姿态传感器1002,用于获取所述遥控器的姿态信息的机头朝向;
接收器1003,用于接收无人机发送的无人机的姿态信息;
所述智能控制器1001还用于,根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息和所述无人机的姿态信息,得到所述无人机的目标飞行方向;
发送器1004,用于向所述无人机发送遥控信息,所述遥控信息包括所述无人机的目标飞行方向。
进一步地,上述智能控制器1001具体用于,监测用户对所述遥控器的方向舵摇杆的操作,获取所述遥控器的方向舵摇杆对应的通道值;根据所述通道值,得到所述遥控器的方向舵摇杆的操作角度值。
进一步地,上述智能控制器1001具体用于,对所述通道值进行三角函数求解得到所述遥控器的方向舵摇杆的操作角度值。
进一步地,上述智能控制器1001具体用于,以地理坐标系的坐标原点作为坐标原点,根据所述遥控器的姿态信息的机头朝向标注遥控器坐标系,以及根据所述无人机的姿态信息标注无人机坐标系;根据所述遥控器的方向舵摇杆的操作角度值,在所述遥控器坐标系上标注所述遥控器的方向舵摇杆的操作方向,则确定所述遥控器的方向舵摇杆的操作方向为所述无人机的目标飞行方向。
进一步地,上述智能控制器1001具体用于,根据所述遥控器的姿态信息标注所述遥控器坐标系,所述遥控器的姿态信息包括所述遥控器的机头朝向、俯仰角和横滚角。
进一步地,本发明实施例提供的遥控信息还包括所述无人机的旋翼的电机控制分量,因此,上述第四处理器1001具体用于,获取所述无人机坐标系上的横轴与所述目标飞行方向的夹角;根据所述夹角获取所述无人机的旋翼的电机控制分量。
在本发明一些可实施的方式中,上述接收器1003还用于接收所述无人机发送的所述无人机的地理位置信息;
因此,上述智能控制器1001还用于,获取所述遥控器的地理位置信息;根据所述遥控器的地理位置信息、所述遥控器的姿态信息的机头朝向和所述无人机的地理位置,确定所述无人机与所述遥控器的相对位置;根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
在本发明一些实施例中,上述发送器1004还用于向所述无人机发送返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息。
如图11所示,本发明实施例提供了一种无人机1100,该无人机1100具体包括如附图7所示的飞行控制器700。
在此,不再对无人机1100进行介绍,具体内容请结合方法实施例,参阅上述对飞行控制器700的详细介绍。
如图12所示,本发明另一实施例还提供了一种无人机1200,该无人机1200 具体包括了如附图8所示的飞行控制器800。
在此,不再对无人机1200进行介绍,具体内容请结合方法实施例,参阅上述对飞行控制器800的详细介绍。
如图13所示,本发明实施例提供了一种遥控器1300,该遥控器1300具体包括如附图9所示的处理器900。
在此,不再对遥控器1300进行介绍,具体内容请结合方法实施例,参阅上述对处理器900的详细介绍。
如图14所示,本发明实施例提供了一种遥控器1400,该遥控器1400具体包括如附图10所示的处理器1000。
在此,不再对遥控器1400进行介绍,具体内容请结合方法实施例,参阅上述对处理器1000的详细介绍。
另外,本发明实施例还提供了一种无人机控制***,具体包括:
如图15a所示,可以包括如图11所示的无人机1100和如图13所示的遥控器1300;
或者,如图15b所示,包括如图12所示的无人机1300和如图14所示的遥控器1400。
其中,具体内容,请参阅上述方法实施例、无人机和遥控器实施例的介绍。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上对本发明所提供的一种基于无头模式的无人机控制方法及设备进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (52)

  1. 一种基于无头模式的无人机控制方法,其特征在于,包括:
    接收遥控器发送的遥控信息,其中,所述遥控信息包括所述遥控器的姿态信息中的机头朝向和所述遥控器的方向舵摇杆的操作角度值,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
    获取无人机的姿态信息;
    根据所述遥控信息和所述无人机的姿态信息确定所述无人机的目标飞行方向,所述目标飞行方向与所述方向舵摇杆的操作方向相同;
    控制所述无人机向所述目标飞行方向飞行。
  2. 根据权利要求1所述的无人机控制方法,其特征在于,
    所述根据所述遥控信息和所述无人机的姿态信息,确定所述无人机的目标飞行方向包括:
    以地理坐标系的坐标原点作为坐标原点,根据所述遥控器的姿态信息的机头朝向标注遥控器坐标系,以及根据所述无人机的姿态信息标注无人机坐标系;
    根据所述遥控器的方向舵摇杆的操作角度值,在所述遥控器坐标系上标注所述遥控器的方向舵摇杆的操作方向,则确定所述遥控器的方向舵摇杆的操作方向为所述无人机的目标飞行方向。
  3. 根据权利要求2所述的无人机控制方法,其特征在于,
    所述控制所述无人机向所述目标飞行方向飞行包括:
    获取所述无人机坐标系上的横轴与所述目标飞行方向的夹角;
    根据所述夹角获取所述无人机的旋翼的电机控制分量;
    根据所述电机控制分量控制所述无人机的旋翼旋转,以控制所述无人机向所述目标飞行方向飞行。
  4. 根据权利要求2或3所述的无人机控制方法,其特征在于,
    所述根据所述遥控器的姿态信息的机头朝向标注遥控器坐标系包括:
    根据所述遥控器的姿态信息标注所述遥控器坐标系,所述遥控器的姿态信息包括所述遥控器的机头朝向、俯仰角和横滚角。
  5. 根据权利要求1所述的无人机控制方法,其特征在于,
    所述遥控信息还包括遥控器的地理位置信息,所述根据所述遥控信息和所述无人机的姿态信息确定无人机的目标飞行方向,所述目标飞行方向与所述方向舵摇杆的操作方向相同包括:
    获取所述无人机的地理位置信息;
    根据所述无人机的地理位置信息、所述遥控器的地理位置信息和所述遥控器的姿态信息中的机头朝向,确定所述无人机与所述遥控器的相对位置;
    根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
  6. 根据权利要求1或5所述的无人机控制方法,其特征在于,所述方法还包括:
    接收所述遥控器发送的返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
    控制所述无人机向所述遥控器的地理位置信息所指示的地理位置飞行。
  7. 一种飞行控制器,其特征在于,包括:
    接收器,用于接收遥控器发送的遥控信息,其中,所述遥控信息包括所述遥控器的姿态信息中的机头朝向和所述遥控器的方向舵摇杆的操作角度值,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
    姿态传感器,用于获取无人机的姿态信息;
    智能控制器,用于根据所述遥控信息和无人机的姿态信息确定无人机的目标飞行方向,控制所述无人机向所述目标飞行方向飞行,所述目标飞行方向与所述方向舵摇杆的操作方向相同。
  8. 根据权利要求7所述的飞行控制器,其特征在于,
    所述智能控制器具体用于,以地理坐标系的坐标原点作为坐标原点,根据所述遥控器的姿态信息标注遥控器坐标系,以及根据所述无人机的姿态信息的机头朝向标注无人机坐标系;根据所述遥控器的方向舵摇杆的操作角度值,在所述遥控器坐标系上标注所述遥控器的方向舵摇杆的操作方向,则确定所述遥控器的方向舵摇杆的操作方向为所述无人机的目标飞行方向。
  9. 根据权利要求8所述的飞行控制器,其特征在于,
    所述智能控制器具体用于,根据所述遥控器的姿态信息标注所述遥控器坐 标系,所述遥控器的姿态信息包括所述遥控器的机头朝向、俯仰角和横滚角。
  10. 根据权利要求8或9所述的飞行控制器,其特征在于,
    所述智能控制器具体用于,获取所述无人机坐标系上的横轴与所述目标飞行方向的夹角,根据所述无人机的当前姿态信息和所述夹角获取所述无人机的旋翼的电机控制分量;根据所述电机控制分量控制所述无人机的旋翼旋转,以控制所述无人机向所述目标飞行方向飞行。
  11. 根据权利要求7所述的飞行控制器,其特征在于,
    所述遥控信息还包括遥控器的地理位置信息,所述飞行控制器还包括:
    ***,用于获取所述无人机的地理位置信息;
    所述智能控制器还用于,根据所述无人机的地理位置信息、所述遥控器的地理位置信息和所述遥控器的姿态信息中的机头朝向,确定所述无人机与所述遥控器的相对位置;根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
  12. 根据要求7或11所述的飞行控制器,其特征在于,
    所述接收器还用于,接收所述遥控器发送的返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
    所述智能控制器还用于,控制所述无人机向所述遥控器的地理位置信息所指示的地理位置飞行。
  13. 一种无人机,其特征在于,包括权利要求7至12任一项所述的飞行控制器。
  14. 一种基于无头模式的无人机控制方法,其特征在于,
    监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
    获取所述遥控器的姿态信息的机头朝向,根据所述方向舵摇杆的操作角度值和所述遥控器的姿态信息的机头朝向,生成遥控信息,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
    向无人机发送所述遥控信息。
  15. 根据权利要求14所述的无人机控制方法,其特征在于,
    所述监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作 角度值包括:
    监测用户对所述遥控器的方向舵摇杆的操作,获取所述遥控器的方向舵摇杆对应的通道值;
    根据所述通道值,得到所述遥控器的方向舵摇杆的操作角度值。
  16. 根据权利要求15所述的无人机控制方法,其特征在于,
    所述根据所述通道值,得到所述遥控器的方向舵摇杆的操作角度值包括:
    对所述通道值进行三角函数求解得到所述遥控器的方向舵摇杆的操作角度值。
  17. 根据权利要求14所述的无人机控制方法,其特征在于,
    获取所述遥控器的地理位置信息,所述遥控信息还包括所述遥控器的地理位置信息。
  18. 根据权利要求14所述的无人机控制方法,其特征在于,所述方法还包括:
    向所述无人机发送返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息。
  19. 一种处理器,其特征在于,包括:
    智能控制器,用于监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
    姿态传感器,用于获取所述遥控器的姿态信息的机头朝向;
    所述智能控制器还用于,根据所述方向舵摇杆的操作角度值和所述遥控器的姿态信息的机头朝向,生成遥控信息,所述遥控信息用于指示所述遥控器的方向舵摇杆的操作方向;
    发送器,用于向无人机发送所述遥控信息。
  20. 根据权利要求19所述的处理器,其特征在于,
    所述智能控制器具体用于,监测用户对所述遥控器的方向舵摇杆的操作,获取所述遥控器的方向舵摇杆对应的通道值;根据所述通道值,得到所述遥控器的方向舵摇杆的操作角度值。
  21. 根据权利要求20所述的处理器,其特征在于,
    所述智能控制器具体用于,对所述通道值进行三角函数求解得到所述遥控 器的方向舵摇杆的操作角度值。
  22. 根据权利要求19所述的处理器,其特征在于,所述处理器还包括:
    ***,用于获取所述遥控器的地理位置信息,所述遥控信息还包括所述遥控器的地理位置信息。
  23. 根据权利要求19所述的处理器,其特征在于,
    所述发送器还用于向所述无人机发送返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息。
  24. 一种遥控器,其特征在于,包括权利要求19至23任一项所述的处理器。
  25. 一种无人机控制***,其特征在于,包括权利要求13所述的无人机和权利要求24所述的遥控器。
  26. 一种基于无头模式的无人机控制方法,其特征在于,包括:
    向遥控器发送无人机的姿态信息;
    接收所述遥控器发送的遥控信息,所述遥控信息包括无人机的目标飞行方向,所述遥控信息为所述遥控器根据所述无人机的姿态信息、所述遥控器的姿态信息的机头朝向和所述遥控器的方向舵摇杆的操作角度值获取得到;
    控制所述无人机向所述目标飞行方向飞行。
  27. 根据权利要求26所述的无人机控制方法,其特征在于,
    所述向遥控器发送无人机的姿态信息之前包括:
    获取所述无人机的姿态信息。
  28. 根据权利要求26或27所述的无人机控制方法,其特征在于,
    所述遥控信息还包括所述无人机的旋翼的电机控制分量;所述控制所述无人机向所述目标飞行方向飞行包括:
    根据所述电机控制分量控制所述无人机的旋翼旋转,以控制所述无人机向所述目标飞行方向飞行。
  29. 根据权利要求26所述的无人机控制方法,其特征在于,所述方法还包括:
    接收所述遥控器发送的返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
    控制所述遥控器向所述遥控器的地理位置信息所指示的地理位置飞行。
  30. 一种飞行控制器,其特征在于,包括:
    发送器,用于向遥控器发送无人机的姿态信息;
    接收器,用于接收所述遥控器发送的遥控信息,所述遥控信息包括无人机的目标飞行方向,所述遥控信息为所述遥控器根据所述无人机的姿态信息、所述遥控器的姿态信息的机头朝向和所述遥控器的方向舵摇杆的操作角度值获取得到;
    智能控制器,用于控制所述无人机向所述目标飞行方向飞行。
  31. 根据权利要求30所述的飞行控制器,其特征在于,
    所述飞行控制器还包括:
    姿态传感器,用于在向遥控器发送无人机的姿态信息之前,获取所述无人机的姿态信息。
  32. 根据权利要求30或31所述的飞行控制器,其特征在于,
    所述遥控信息还包括所述无人机的旋翼的电机控制分量;
    所述智能控制器还用于根据所述电机控制分量控制所述无人机的旋翼旋转,以控制所述无人机向所述目标飞行方向飞行。
  33. 根据权利要求30所述的飞行控制器,其特征在于,
    所述接收器还用于,接收所述遥控器发送的返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息;
    所述智能控制器还用于,控制所述遥控器向所述遥控器的地理位置信息所指示的地理位置飞行。
  34. 一种无人机,其特征在于,包括权利要求30至33任一项所述的飞行控制器。
  35. 一种基于无头模式的无人机控制方法,其特征在于,包括:
    监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
    获取所述遥控器的姿态信息的机头朝向,以及接收无人机发送的无人机的姿态信息;
    根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息的机头朝向和 所述无人机的姿态信息,得到所述无人机的目标飞行方向;
    向所述无人机发送遥控信息,所述遥控信息包括所述无人机的目标飞行方向。
  36. 根据权利要求35所述的无人机控制方法,其特征在于,
    所述监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值包括:
    监测用户对所述遥控器的方向舵摇杆的操作,获取所述遥控器的方向舵摇杆对应的通道值;
    根据所述通道值,得到所述遥控器的方向舵摇杆的操作角度值。
  37. 根据权利要求36所述的无人机控制方法,其特征在于,
    所述根据所述通道值,得到所述遥控器的方向舵摇杆的操作角度值包括:
    对所述通道值进行三角函数求解得到所述遥控器的方向舵摇杆的操作角度值。
  38. 根据权利要求35~38任一项所述的无人机控制方法,其特征在于,
    所述根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息的机头朝向和所述无人机的姿态信息,得到所述无人机的目标飞行方向包括:
    以地理坐标系的坐标原点作为坐标原点,根据所述遥控器的姿态信息的机头朝向标注遥控器坐标系,以及根据所述无人机的姿态信息标注无人机坐标系;
    根据所述遥控器的方向舵摇杆的操作角度值,在所述遥控器坐标系上标注所述遥控器的方向舵摇杆的操作方向,则确定所述遥控器的方向舵摇杆的操作方向为所述无人机的目标飞行方向。
  39. 根据权利要求38所述的无人机控制方法,其特征在于,
    所述根据所述遥控器的姿态信息的机头朝向标注遥控器坐标系包括:
    根据所述遥控器的姿态信息标注所述遥控器坐标系,所述遥控器的姿态信息包括所述遥控器的机头朝向、俯仰角和横滚角。
  40. 根据权利要求38或39所述的无人机控制方法,其特征在于,
    所述遥控信息还包括所述无人机的旋翼的电机控制分量,所述确定所述遥控器的方向舵摇杆的操作方向为所述无人机的目标飞行方向之后包括:
    获取所述无人机坐标系上的横轴与所述目标飞行方向的夹角;
    根据所述夹角获取所述无人机的旋翼的电机控制分量。
  41. 根据权利要求35所述的无人机控制方法,其特征在于,所述方法还包括:
    接收所述无人机发送的所述无人机的地理位置信息;
    所述根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息的机头朝向和所述无人机的姿态信息,得到所述无人机的目标飞行方向包括:
    获取所述遥控器的地理位置信息;
    根据所述遥控器的地理位置信息、所述遥控器的姿态信息的机头朝向和所述无人机的地理位置,确定所述无人机与所述遥控器的相对位置;
    根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
  42. 根据权利要求35或41所述的无人机控制方法,其特征在于,所述方法还包括:
    向所述无人机发送返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息。
  43. 一种处理器,其特征在于,包括:
    智能控制器,用于监测用户对遥控器的方向舵摇杆的操作,得到所述方向舵摇杆的操作角度值;
    姿态传感器,用于获取所述遥控器的姿态信息的机头朝向;
    接收器,用于接收无人机发送的无人机的姿态信息;
    所述智能控制器还用于,根据所述方向舵摇杆的操作角度值、所述遥控器的姿态信息的机头朝向和所述无人机的姿态信息,得到所述无人机的目标飞行方向;
    发送器,用于向所述无人机发送遥控信息,所述遥控信息包括所述无人机的目标飞行方向。
  44. 根据权利要求43所述的处理器,其特征在于,包括:
    所述智能控制器具体用于,监测用户对所述遥控器的方向舵摇杆的操作,获取所述遥控器的方向舵摇杆对应的通道值;根据所述通道值,得到所述遥控 器的方向舵摇杆的操作角度值。
  45. 根据权利要求44所述的处理器,其特征在于,包括:
    所述智能控制器具体用于,对所述通道值进行三角函数求解得到所述遥控器的方向舵摇杆的操作角度值。
  46. 根据权利要求43~45任一项所述的处理器,其特征在于,
    所述智能控制器具体用于,以地理坐标系的坐标原点作为坐标原点,根据所述遥控器的姿态信息的机头朝向标注遥控器坐标系,以及根据所述无人机的姿态信息标注无人机坐标系;根据所述遥控器的方向舵摇杆的操作角度值,在所述遥控器坐标系上标注所述遥控器的方向舵摇杆的操作方向,则确定所述遥控器的方向舵摇杆的操作方向为所述无人机的目标飞行方向。
  47. 根据权利要求46所述的处理器,其特征在于,
    所述智能控制器具体用于,根据所述遥控器的姿态信息标注所述遥控器坐标系,所述遥控器的姿态信息包括所述遥控器的机头朝向、俯仰角和横滚角。
  48. 根据权利要求46或47所述的处理器,其特征在于,
    所述遥控信息还包括所述无人机的旋翼的电机控制分量;
    所述第四处理器具体用于,获取所述无人机坐标系上的横轴与所述目标飞行方向的夹角;根据所述夹角获取所述无人机的旋翼的电机控制分量。
  49. 根据权利要求43所述的无人机控制方法,其特征在于,
    所述接收器还用于,接收所述无人机发送的所述无人机的地理位置信息;
    所述智能控制器还用于,获取所述遥控器的地理位置信息;根据所述遥控器的地理位置信息、所述遥控器的姿态信息的机头朝向和所述无人机的地理位置,确定所述无人机与所述遥控器的相对位置;根据所述相对位置和所述遥控器的方向舵摇杆的操作角度值,确定所述无人机的目标飞行方向。
  50. 根据权利要求43或49所述的无人机控制方法,其特征在于,
    所述发送器还用于向所述无人机发送返航指示信息,所述返航指示信息包括所述遥控器的地理位置信息。
  51. 一种遥控器,其特征在于,包括权利要求43至50任一项所述的处理器。
  52. 一种无人机控制***,其特征在于,
    包括权利要求34所述的无人机和权利要求51所述的遥控器。
PCT/CN2015/079191 2015-05-18 2015-05-18 基于无头模式的无人机控制方法及设备 WO2016183771A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201810188398.4A CN108227748A (zh) 2015-05-18 2015-05-18 基于无头模式的无人机控制方法及设备
PCT/CN2015/079191 WO2016183771A1 (zh) 2015-05-18 2015-05-18 基于无头模式的无人机控制方法及设备
JP2016557908A JP6279097B2 (ja) 2015-05-18 2015-05-18 ヘッドレスモードに基づく無人機の制御方法とデバイス
CN201580002667.8A CN105992980A (zh) 2015-05-18 2015-05-18 基于无头模式的无人机控制方法及设备
EP15892150.2A EP3299920B1 (en) 2015-05-18 2015-05-18 Unmanned aerial vehicle control method and device based on no-head mode
US15/816,455 US11079750B2 (en) 2015-05-18 2017-11-17 Control methods and apparatuses based on headless mode for unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079191 WO2016183771A1 (zh) 2015-05-18 2015-05-18 基于无头模式的无人机控制方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/816,455 Continuation US11079750B2 (en) 2015-05-18 2017-11-17 Control methods and apparatuses based on headless mode for unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2016183771A1 true WO2016183771A1 (zh) 2016-11-24

Family

ID=57040241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079191 WO2016183771A1 (zh) 2015-05-18 2015-05-18 基于无头模式的无人机控制方法及设备

Country Status (5)

Country Link
US (1) US11079750B2 (zh)
EP (1) EP3299920B1 (zh)
JP (1) JP6279097B2 (zh)
CN (2) CN105992980A (zh)
WO (1) WO2016183771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843266A (zh) * 2016-12-30 2017-06-13 歌尔科技有限公司 一种飞行器的遥控器、朝向控制***和方位指示方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107016840A (zh) * 2016-11-10 2017-08-04 宁波蓝飞鹂航空科技有限公司 一种基于操控者为基准点的机头一键对准模式的方法
CN106959699A (zh) * 2016-11-10 2017-07-18 宁波蓝飞鹂航空科技有限公司 一种基于操控者为基准点的一键自动返航模式的方法
CN106527493B (zh) * 2016-11-29 2020-01-14 深圳市元征科技股份有限公司 一种基于地磁方式的无人机控制方法和无人机
CN106774390A (zh) 2016-12-09 2017-05-31 深圳市道通智能航空技术有限公司 一种飞行器航向控制方法、装置和电子设备
CN108205327A (zh) * 2016-12-20 2018-06-26 昊翔电能运动科技(昆山)有限公司 用于无人机的辅助操控方法和***
CN106802664B (zh) * 2016-12-22 2021-02-09 深圳市元征科技股份有限公司 一种无人机无头模式的飞行控制方法及无人机
CN106774416B (zh) * 2017-01-11 2021-02-19 联想(北京)有限公司 信息处理方法及装置、控制装置、无人机***
WO2018133041A1 (zh) * 2017-01-20 2018-07-26 深圳市大疆创新科技有限公司 无人机的控制方法及无人机
CN110177997A (zh) * 2017-04-14 2019-08-27 深圳市大疆创新科技有限公司 无人机及其控制方法
WO2019071390A1 (zh) * 2017-10-09 2019-04-18 深圳市大疆灵眸科技有限公司 机械角度检测方法、云台及机器可读存储介质
US10467581B2 (en) 2018-01-19 2019-11-05 Udelv Inc. Delivery management system
JP6921026B2 (ja) * 2018-03-30 2021-08-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 送信機、飛行体、飛行制御指示方法、飛行制御方法、プログラム、及び記憶媒体
CN110337560B (zh) * 2018-05-30 2021-06-25 深圳市大疆创新科技有限公司 云台的控制方法、云台、拍摄设备及可读存储介质
CN108803641B (zh) * 2018-06-08 2022-08-05 深圳臻迪信息技术有限公司 飞行控制方法及飞行器
CN108628334B (zh) * 2018-06-28 2022-09-13 广州极飞科技股份有限公司 无人飞行器的控制方法及装置、***、无人飞行器
CN110658853A (zh) * 2018-06-29 2020-01-07 天津深之蓝海洋设备科技有限公司 运载工具遥控方法、运载工具、遥控器及遥控***
CN109407667A (zh) * 2018-10-25 2019-03-01 丰疆智慧农业股份有限公司 智能农机控制方法及控制***
CN109062259A (zh) * 2018-10-31 2018-12-21 西安天问智能科技有限公司 一种无人机自动避障方法及其装置
CN109947096B (zh) * 2019-02-25 2022-06-21 广州极飞科技股份有限公司 受控对象的控制方法及装置、无人驾驶***
CN111665827A (zh) * 2019-03-07 2020-09-15 北京奇虎科技有限公司 一种信息处理方法、控制设备和被控设备
CN110069078B (zh) * 2019-05-21 2021-06-01 深圳市道通智能航空技术股份有限公司 一种飞行控制方法、装置、***及无人机
CN112543899A (zh) * 2019-12-26 2021-03-23 深圳市大疆创新科技有限公司 可移动载体的控制方法、控制装置、计算机可读存储介质
CN113272754A (zh) * 2020-09-28 2021-08-17 深圳市大疆创新科技有限公司 无人机的控制方法、装置、无人机、控制终端及***
CN112799418B (zh) * 2020-12-31 2023-06-13 广州极飞科技股份有限公司 控制方法、装置、遥控设备及可读存储介质
JP7289152B2 (ja) * 2021-03-17 2023-06-09 株式会社RedDotDroneJapan 飛行制御システム
CN113110545A (zh) * 2021-04-19 2021-07-13 广东工业大学 基于遥控器姿态的无人机飞行控制方法及其控制***
CN113220035A (zh) * 2021-05-19 2021-08-06 广东艾檬电子科技有限公司 一种控制无人机朝向方法和装置
WO2024009885A1 (ja) * 2022-07-06 2024-01-11 ソニーグループ株式会社 制御装置、移動体および操縦システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024004A1 (en) * 1994-03-02 1995-09-08 United Technologies Corporation Variable referenced control system for remotely operated vehicles
CN104180796A (zh) * 2013-05-22 2014-12-03 上海九鹰电子科技有限公司 遥控信号的发送及接收的装置和方法、遥控设备
WO2015126447A1 (en) * 2013-08-15 2015-08-27 Traxxas Lp Controllable flight during automated tricks

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519854A (ja) 1991-07-12 1993-01-29 Pioneer Electron Corp 移動体の移動制御装置および移動監視装置
JPH11115896A (ja) 1997-10-17 1999-04-27 Komatsu Ltd 操作自在な無人低速飛翔体
JP3245392B2 (ja) 1998-07-08 2002-01-15 双葉電子工業株式会社 模型用ラジオコントロール装置
JP2001209427A (ja) * 2000-01-28 2001-08-03 Fuji Heavy Ind Ltd 無人飛行機の遠隔操縦装置
SE521051C2 (sv) * 2001-11-16 2003-09-23 Volvo Penta Ab Fjärrmanövreringssystem för ett fordon.
US6694228B2 (en) * 2002-05-09 2004-02-17 Sikorsky Aircraft Corporation Control system for remotely operated vehicles for operational payload employment
JP2006282037A (ja) 2005-04-01 2006-10-19 Yamaha Motor Co Ltd 昇降速度高度計
US8229163B2 (en) * 2007-08-22 2012-07-24 American Gnc Corporation 4D GIS based virtual reality for moving target prediction
US8200375B2 (en) * 2008-02-12 2012-06-12 Stuckman Katherine C Radio controlled aircraft, remote controller and methods for use therewith
US8157383B2 (en) * 2008-10-01 2012-04-17 The United States Of America As Represented By The Secretary Of The Army System for displaying images and/or information on aircraft blades and method thereof
US8876295B2 (en) * 2008-10-01 2014-11-04 The United States Of America As Represented By The Secretary Of The Army Method for displaying images and/or other information on aircraft blades
JP5473304B2 (ja) 2008-12-02 2014-04-16 三菱電機株式会社 遠隔地画像表示装置、遠隔操縦装置、車両制御装置、遠隔操縦システム、遠隔操縦方法、遠隔操縦プログラム、車両制御プログラム、遠隔地画像表示方法、遠隔地画像表示プログラム
TW201235949A (en) * 2011-02-24 2012-09-01 Hon Hai Prec Ind Co Ltd Unmanned aerial vehicle and method for adjusting control command of the unmanned aerial vehicle
JP5854348B2 (ja) * 2011-08-02 2016-02-09 株式会社マイスタジオ リモートコントロール方法及びリモートコントロールシステム
FR2985329B1 (fr) * 2012-01-04 2015-01-30 Parrot Procede de pilotage intuitif d'un drone au moyen d'un appareil de telecommande.
CN102561700B (zh) * 2012-01-16 2014-05-21 三一重工股份有限公司 一种机械臂控制***、方法及工程机械
CN103345826B (zh) 2013-07-05 2017-07-18 深圳市大疆创新科技有限公司 无人飞行器的遥控终端、飞行辅助***和方法
CN103365298B (zh) 2013-07-05 2017-06-20 深圳市大疆创新科技有限公司 无人飞行器的飞行辅助***和方法
CN107168360B (zh) * 2013-07-05 2021-03-30 深圳市大疆创新科技有限公司 无人飞行器的飞行辅助方法和装置
CN103453875A (zh) * 2013-08-07 2013-12-18 北京理工大学 一种用于无人机俯仰角与滚转角实时计算方法
CN103956036B (zh) * 2013-10-14 2016-12-07 天津锋时互动科技有限公司 一种应用于家电的非触碰式遥控器
CN103590606B (zh) * 2013-11-13 2015-10-28 三一汽车制造有限公司 一种臂架控制方法和装置及混凝土泵车及布料机
US9681320B2 (en) * 2014-04-22 2017-06-13 Pc-Tel, Inc. System, apparatus, and method for the measurement, collection, and analysis of radio signals utilizing unmanned aerial vehicles
CN204050970U (zh) * 2014-10-08 2014-12-31 杨舟 一种多旋翼航模飞行器的飞行方向识别***
CN105793792B (zh) * 2014-12-25 2018-09-25 深圳市大疆创新科技有限公司 无人机的飞行辅助方法和***、无人机和移动终端
CN205211142U (zh) * 2015-11-27 2016-05-04 杨珊珊 无人飞行器的遥控装置
CN105717930A (zh) * 2016-01-19 2016-06-29 深圳一电科技有限公司 控制无人机的方法、装置及***
CN105867405A (zh) * 2016-05-23 2016-08-17 零度智控(北京)智能科技有限公司 无人机、无人机降落控制装置及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024004A1 (en) * 1994-03-02 1995-09-08 United Technologies Corporation Variable referenced control system for remotely operated vehicles
CN104180796A (zh) * 2013-05-22 2014-12-03 上海九鹰电子科技有限公司 遥控信号的发送及接收的装置和方法、遥控设备
WO2015126447A1 (en) * 2013-08-15 2015-08-27 Traxxas Lp Controllable flight during automated tricks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299920A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843266A (zh) * 2016-12-30 2017-06-13 歌尔科技有限公司 一种飞行器的遥控器、朝向控制***和方位指示方法
CN106843266B (zh) * 2016-12-30 2024-04-05 歌尔科技有限公司 一种飞行器的遥控器、朝向控制***和方位指示方法

Also Published As

Publication number Publication date
US11079750B2 (en) 2021-08-03
EP3299920B1 (en) 2021-06-23
CN108227748A (zh) 2018-06-29
EP3299920A1 (en) 2018-03-28
CN105992980A (zh) 2016-10-05
EP3299920A4 (en) 2018-12-26
JP6279097B2 (ja) 2018-02-14
JP2017520031A (ja) 2017-07-20
US20180074487A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
WO2016183771A1 (zh) 基于无头模式的无人机控制方法及设备
WO2016138690A1 (zh) 基于智能终端的体感飞行操控***及终端设备
US10222792B2 (en) Drone piloting device adapted to hold piloting commands and associated control method
US9663227B1 (en) Systems and methods for controlling an unmanned aerial vehicle
JP6671375B2 (ja) 無人機の飛行補助方法
EP3345832B1 (en) Unmanned aerial vehicle and method for controlling the same
WO2021078165A1 (zh) 一种无人机的飞行控制方法、装置、无人机和存储介质
WO2016192249A1 (zh) 一种飞行器的操控方法和装置
US10474152B2 (en) Path-based flight maneuvering system
US20210333807A1 (en) Method and system for controlling aircraft
WO2018214155A1 (zh) 用于设备姿态调整的方法、设备、***和计算机可读存储介质
US20170146995A1 (en) System and method of controlling autonomous vehicles
US20200169666A1 (en) Target observation method, related device and system
WO2018103462A1 (zh) 一种飞行器航向控制方法、装置和电子设备
US20180307225A1 (en) Method for piloting a rotary wing drone, related computer program, electronic apparatus and drone
EP3399380B1 (en) Headless control method
US12024284B2 (en) Information processing device, information processing method, and recording medium
CN109032184B (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制***
CN113614670A (zh) 无人机的返航控制方法和设备
WO2018020744A1 (ja) 移動体操縦システム、操縦シグナル送信システム、移動体操縦方法、プログラム、および記録媒体
JP6843779B2 (ja) ヘッドレスモードに基づく無人機の制御方法とデバイス
Lu et al. iOS application for quadrotor remote control: Implementation of basic functions with iphone
WO2020042186A1 (zh) 可移动平台的控制方法、可移动平台、终端设备和***
CN110622086B (zh) 可移动物体应用框架
WO2018191927A1 (zh) 飞行器的控制方法、遥控设备和移动设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016557908

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE