WO2016182052A1 - User terminal, wireless base station, and wireless communication method - Google Patents

User terminal, wireless base station, and wireless communication method Download PDF

Info

Publication number
WO2016182052A1
WO2016182052A1 PCT/JP2016/064246 JP2016064246W WO2016182052A1 WO 2016182052 A1 WO2016182052 A1 WO 2016182052A1 JP 2016064246 W JP2016064246 W JP 2016064246W WO 2016182052 A1 WO2016182052 A1 WO 2016182052A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
signal
user terminal
epdcch
transmission
Prior art date
Application number
PCT/JP2016/064246
Other languages
French (fr)
Japanese (ja)
Inventor
和晃 武田
チン ムー
リュー リュー
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2016182052A1 publication Critical patent/WO2016182052A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 a successor system of LTE (for example, called LTE-A (LTE-Advanced), FRA (Future Radio Access), etc.) is also being studied.
  • LTE-A LTE-Advanced
  • FRA Full Radio Access
  • inter-device communication M2M: Machine-to-Machine
  • MTC Machine Type Communication
  • 3GPP Third Generation Partnership Project
  • MTC terminals MTC UE (User Equipment)
  • MTC UE User Equipment
  • 3GPP TS 36.300 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2”
  • 3GPP TR 36.888 “Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12)”
  • MTC Machine-Type Communications
  • UEs User Equipments
  • the low-cost MTC terminal is realized by limiting the use band of the uplink (UL) and the downlink (DL) to a narrow band that is a part of the system band.
  • the system band corresponds to, for example, an existing LTE band (20 MHz or the like), a component carrier (CC), or the like.
  • the same signal is repeatedly transmitted over a plurality of subframes in the downlink (DL) and / or uplink (UL), so that the received signal-to-interference noise ratio (SINR: Signal) -to-Interference plus Noise Ratio) is considered to apply repetition.
  • SINR Signal-to-interference noise ratio
  • the present invention has been made in view of such a point, and in the communication of a user terminal in which the use band is limited to a narrow band that is a part of the system band, when repeated transmission using a plurality of different repetition numbers is applied. Even so, it is an object to provide a user terminal, a radio base station, and a radio communication method that can suppress a decrease in throughput.
  • a user terminal is a user terminal in which a use band is limited to a narrow part of a system band, and downlink control information (DCI: Downlink Control Information) transmitted repeatedly on a downlink control channel And a receiving unit that receives the downlink shared channel corresponding to the DCI, and a control unit that determines reception timing of the downlink shared channel based on the content of the DCI.
  • DCI Downlink Control Information
  • the present invention it is possible to suppress a decrease in throughput even in the case where repeated transmission is applied in communication of a user terminal in which a use band is limited to a narrow part of the system band.
  • a low-cost MTC terminal it is considered to allow a reduction in processing capability and simplify the hardware configuration.
  • the peak rate is reduced, the transport block size is limited, and resource blocks (RB (Resource Block), PRB (Physical Resource Block)) are compared to existing user terminals (LTE terminals). It is considered to apply the restriction on the reception and the restriction on the reception RF.
  • RB Resource Block
  • PRB Physical Resource Block
  • the low cost MTC terminal may be simply referred to as an MTC terminal.
  • An existing user terminal may be referred to as a normal UE or a non-MTC UE.
  • the upper limit of the use band of the MTC terminal is set to the system band (for example, 20 MHz (100 RB), one component carrier).
  • the upper limit of the use band of the MTC terminal is a predetermined narrow band (for example, 1.4 MHz) (6RB)).
  • the MTC terminal whose bandwidth is limited is considered to operate within the LTE / LTE-A system band.
  • the MTC terminal may be represented as a terminal whose maximum band to be supported is a narrow band that is a part of the system band, or a terminal that has a transmission / reception performance in a narrower band than the LTE / LTE-A system band May be represented.
  • FIG. 1 is a diagram showing an example of arrangement of narrow bands in the system band.
  • a predetermined narrow band for example, 1.4 MHz
  • the LTE system band for example, 20 MHz
  • the narrow band corresponds to a frequency band that can be detected by the MTC terminal.
  • the narrow band frequency position which is the use band of the MTC terminal
  • the MTC terminal preferably performs communication using different frequency resources for each predetermined period (for example, subframe).
  • the MTC terminal preferably has an RF retuning function in consideration of application of frequency hopping and frequency scheduling.
  • the channel used by the MTC terminal may be represented by adding “M” indicating MTC to a conventional channel used for the same application.
  • MTC terminal receives downlink control information (DCI: Downlink Control Information) using a downlink control channel arranged in a narrow band, and the downlink control channel is called EPDCCH (Enhanced Physical Downlink Control Channel). It may be called MPDCCH (MTC PDCCH).
  • DCI Downlink Control Information
  • EPDCCH Enhanced Physical Downlink Control Channel
  • MPDCCH MTC PDCCH
  • the MTC terminal receives downlink data using a downlink shared channel (downlink data channel) arranged in a narrow band, but the downlink shared channel may be called PDSCH (Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • MPDSCH MTC PDSCH
  • EPDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the present invention is not limited to this.
  • CE coverage enhancement
  • FIG. 2 is a schematic diagram of coverage extension using repetitive transmission.
  • UE # 1 and # 2 are located in the range of eNB's normal coverage (Normal coverage), and UE # 3 and # 4 are located in the range of eNB's extended coverage (Enhanced coverage).
  • a UE under normal coverage receives an EPDCCH adjusted (link adaptation) according to a channel state or the like.
  • a low AL Aggregation Level
  • ECCE Enhanced Control Channel Element
  • the UE channel state is bad, the UE is high.
  • the ECC of AL is set.
  • repeated transmission using a high AL ECCE is set for a UE under extended coverage.
  • the UE preferably supports monitoring of a plurality of different repetition numbers (also referred to as repetition transmission times).
  • information on the correspondence between the AL related to a predetermined signal and the repetition level is sent to the user terminal in higher layer signaling (for example, RRC signaling, MAC signaling, Notification information (MIB (Master Information Block)), system information (SIB (System Information Block))), downlink control information (DCI), or the like may be used.
  • higher layer signaling for example, RRC signaling, MAC signaling, Notification information (MIB (Master Information Block)), system information (SIB (System Information Block))), downlink control information (DCI), or the like may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • DCI downlink control information
  • a table indicating the correspondence between AL and repetition level and a predetermined index may be notified.
  • the information may include information related to a plurality of signals, or information related to a certain signal may be used as information related to another signal.
  • the repetition level is information regarding the number of repetitions, and may be, for example, the number of repetitions itself or predetermined information (for example, an index) associated with the number of repetitions.
  • the radio base station notifies the MTC terminal of information related to the correspondence between the repetition level and the repetition number using higher layer signaling (for example, RRC signaling, broadcast information), downlink control information (DCI), or a combination thereof. can do.
  • higher layer signaling for example, RRC signaling, broadcast information
  • DCI downlink control information
  • correspondences may be common to all cells or may be specified for each cell. Moreover, the information regarding these correspondences is good also as a structure preset to a wireless base station and a user terminal.
  • Repeated transmission includes data signals (eg, PDSCH, PUSCH (Physical Uplink Shared Channel)), control signals (eg, EPDCCH), synchronization signals (eg, PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal)), reference signals (For example, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal)), etc. Good.
  • data signals eg, PDSCH, PUSCH (Physical Uplink Shared Channel)
  • control signals eg, EPDCCH
  • synchronization signals eg, PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal)
  • reference signals For example, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal)
  • the MTC terminal can perform blind decoding (BD: Blind Decoding) of EPDCCH corresponding to each repetition number when a plurality of different repetition numbers are set in the EPDCCH.
  • FIG. 3 is a diagram illustrating an example of EPDCCH decoding and a corresponding PDSCH reception scenario when the number of repetitions is different.
  • 3A and 3B show blind decoding candidates # 1 and # 2, respectively.
  • level 1 for example, 4 repetitions
  • PDSCH repetitions 6 are assumed as EPDCCH repetition levels.
  • level 2 for example, 8 repetitions
  • PDSCH repetitions 6 are assumed as EPDCCH repetition levels.
  • PDSCH repetitive transmission is started after k subframes (for example, one subframe) from the last subframe of EPDCCH repetitive transmission. If the MTC terminal succeeds in detecting (decoding) the EPDCCH, the MTC terminal may start receiving the PDSCH after k subframes.
  • the value of k is not limited to this, and may be 0 or a number larger than 1, for example. In addition, the value of k may be different for each candidate. Further, information regarding the value of k may be notified to the MTC terminal or may be defined in advance.
  • EPDCCH blind decoding candidates is not limited to the example in FIG. 3, and candidates corresponding to different repetition levels may be set.
  • the radio base station may repeatedly perform transmission based on a subframe configuration (timing etc.) defined by blind decoding candidates.
  • the radio resource for blind decoding of the EPDCCH may be referred to as an EPDCCH search space.
  • FIG. 4 is a diagram illustrating a problem when the UE has successfully detected the EPDCCH before the repeated transmission of the EPDCCH is completed.
  • the eNB repeatedly transmits the EPDCCH eight times so that the subframe configuration of the candidate # 2 in FIG. 3 is obtained, and repeatedly transmits the PDSCH six times after one subframe in which the EPDCCH transmission is completed. Further, the UE assumes blind decoding candidates # 1 and # 2 shown in FIG. 3 and tries blind decoding. The UE has succeeded in decoding the EPDCCH as a result of blind decoding assuming candidate # 1 at the time of receiving 4 sub-frames of EPDCCH.
  • the UE since the eNB is transmitting with the candidate # 2, the UE tries the PDSCH reception process based on the candidate # 1. Therefore, the UE starts PDSCH reception processing (decoding) on the assumption that PDSCH starts in the sixth subframe from the left in FIG. 4, but uses EPDCCH and a subframe in which nothing is transmitted for reception processing. A correct decoding result cannot be obtained. It is obvious that the same problem can occur even when repetitive transmission is not applied to the PDSCH.
  • the UE determines the PDSCH reception timing based on the timing at which the EPDCCH is successfully detected, there is a possibility that the reception process cannot be performed appropriately. As a result, problems such as a decrease in throughput and an increase in power consumption of the UE occur.
  • the present inventors have conceived that when the UE has successfully detected the EPDCCH, the reception timing of the corresponding PDSCH can be appropriately recognized (determined). According to an embodiment of the present invention, since the DCI included in the EPDCCH detected by the UE is associated with the reception timing of the corresponding PDSCH, even when a plurality of repetitions can be set for EPDCCH transmission. Thus, the corresponding PDSCH can be appropriately decoded.
  • an MTC terminal is illustrated as a user terminal whose use band is limited to a narrow band
  • application of the present invention is not limited to an MTC terminal.
  • the narrow band is described as 6PRB (1.4 MHz)
  • the present invention can be applied based on the present specification even in other narrow bands.
  • the EPDCCH blind decoding candidates are described as being two as illustrated in FIG. 3, the present invention is not limited to this.
  • it demonstrates as what applies repetition transmission also to PDSCH, it is not restricted to this.
  • the UE determines the PDSCH reception start timing according to the maximum number of repetitions of the EPDCCH. Specifically, the UE can determine the subframe corresponding to the maximum number of repetitions among the set number of repetitions regardless of the number of repetitions of EPDCCH actually detected (regardless of the timing at which EPDCCH is successfully detected). Assume that transmission of PDSCH starts after elapse of.
  • FIG. 5 is a diagram illustrating an example of PDSCH reception start timing in the first embodiment.
  • FIG. 5 shows EPDCCH blind decoding candidates # 1 and # 2.
  • the subframe until the PDSCH is transmitted is not after k subframes from the last subframe of the actual repeated transmission of the EPDCCH, but the maximum number of repetitions (in FIG. 5). 8 times) after the last subframe of the EPDCCH.
  • PDSCH corresponding to each number of repetitions of EPDCCH is appropriately decoded without requiring additional additional signaling. be able to.
  • information (specific information) for specifying (determining) reception timing of a downlink data channel (PDSCH) corresponding to a downlink control channel is explicitly set (notified) in the UE.
  • the DCI notified by the EPDCCH is notified including information on the repetition level of the EPDCCH and / or information on the corresponding start subframe of the PDSCH.
  • the UE can determine the PDSCH reception timing based on these pieces of information.
  • the information regarding the repetition level may be an index indicating the repetition level, for example.
  • the information on the PDSCH start subframe may be, for example, the number of subframes (k described above) from the last subframe of the repeated transmission of the EPDCCH to the start subframe of the PDSCH repeated transmission. It may be an index, information on a subframe offset, or the like. Further, the information related to the PDSCH start subframe may be predetermined information (for example, an index) associated with the PDSCH start subframe.
  • the UE may determine the specific information using a predetermined table (for example, a table indicating a correspondence relationship between information on the repetition level and / or information on the start subframe and an index included in the DCI).
  • Information on the table may be notified to the UE using higher layer signaling (for example, RRC signaling, broadcast information), downlink control information (DCI), or a combination thereof, or may be set in advance.
  • FIG. 6 is a diagram illustrating an example of PDSCH reception start timing in the second embodiment.
  • FIG. 6 illustrates an example in which the eNB repeatedly performs transmission with the subframe configuration of candidate # 2 in FIG. Further, the UE assumes blind decoding candidates # 1 and # 2 shown in FIG. 3 and tries blind decoding. The UE has succeeded in decoding the EPDCCH as a result of blind decoding assuming candidate # 1 at the time of receiving 4 sub-frames of EPDCCH.
  • the UE acquires information for specifying the PDSCH start subframe from the DCI obtained by decoding.
  • “RL 2” repetition level 2
  • starting subframe 2 start subframe 2
  • the UE is notified or knows in advance that the start subframe 2 is 9 subframes after the start of transmission of the EPDCCH. For this reason, when the UE recognizes that the PDSCH starts in the start subframe 2 by DCI, the UE determines to start receiving the PDSCH corresponding to the EPDCCH 9 subframes after the transmission start of the EPDCCH.
  • the UE can appropriately perform PDSCH reception processing at the timing of candidate # 2 even though the UE detects EPDCCH at the timing of candidate # 1.
  • the specific information can be notified to the user terminal through a part or all of a predetermined field of DCI.
  • the information may be notified using a new bit field that is not defined in the conventional LTE / LTE-A system, or may be notified by replacing an existing DCI bit field.
  • an existing bit field any one of resource allocation (RA) field, MCS (Modulation and Coding Scheme) field, HPN (HARQ Process Number) field, or a combination thereof can be used. Note that other fields may be read and used.
  • the RA field only needs to be able to specify a predetermined narrow band (for example, 6 RB) resource, and the bit amount can be reduced compared to the RA field in the existing system. For this reason, a part or all of the RA field of the existing system can be used as the specific information.
  • a predetermined narrow band for example, 6 RB
  • the coverage extension mode when used in the MTC terminal (repetitive signal transmission is performed), it is considered that a part of the MCS (for example, a relatively high MCS) in the existing system is not selected. For this reason, a part or all of the MCS field of the existing system can be used as the specific information.
  • the normal terminal using FDD Frequency Division Duplex
  • the normal terminal using TDD Time Division Duplex
  • TDD Time Division Duplex
  • information regarding which field of DCI indicates information for specifying the PDSCH start subframe may be notified to the user terminal by higher layer signaling (for example, RRC signaling, broadcast information) or the like.
  • the second embodiment uses the repetition level not defined by the correspondence in the EPDCCH. Transmission may be performed.
  • the UE can determine the repetition level of the EPDCCH based on the information regarding the repetition level of the EPDCCH included in the DCI.
  • the AL of EPDCCH may be determined based on the correspondence relationship.
  • information (specific information) for specifying the start subframe of the PDSCH can be explicitly notified to the UE, so that the UE process is prevented from becoming complicated. be able to. Further, by notifying the information using a part or all of the existing DCI field, an increase in communication overhead can be suppressed.
  • a different identifier (RNTI: Radio Network Temporary Identifier) is applied to the EPDCCH according to the repetition level.
  • RNTI Radio Network Temporary Identifier
  • a CRC Cyclic Redundancy Check
  • the RNTI is, for example, C-RNTI (Cell-RNTI), but is not limited thereto.
  • the RNTI used for scrambling may be called M-RNTI (MTC-RNTI) or the like.
  • FIG. 7 is a diagram illustrating an example of a correspondence relationship between the repetition level and the RNTI in the third embodiment.
  • RNTI-1 is associated with repetition level 1
  • RNTI-2 is associated with repetition level 2.
  • the radio base station notifies the user terminal of information regarding the correspondence relationship between the repetition level and the RNTI, using either upper layer signaling (for example, RRC signaling, broadcast information), downlink control information, or a combination thereof. be able to.
  • the information on the correspondence relationship may be notified by being included in an RAR (Random Access Response) in the random access procedure, or may be notified along with the setting of the EPDCCH.
  • the information on the correspondence relationship may be configured in advance in the radio base station and the user terminal.
  • the RNTI itself associated with the repetition level may be notified by various methods in the same manner as the information on the correspondence relationship, or may be set in advance.
  • FIG. 8 is a diagram illustrating an example of eNB transmission processing according to the third embodiment.
  • FIG. 8 shows an example in which the eNB repeatedly performs transmission with the subframe configuration of candidate # 2 in FIG. It is assumed that the EPDCCH repetition level is determined in advance.
  • the eNB selects an RNTI to be used for DCI masking based on the EPDCCH repetition level. In the case of FIG. 8, since the repetition level is 2, RNTI-2 is selected.
  • the eNB transmits the EPDCCH with a predetermined number of repetitions based on the repetition level. Thereafter, PDSCH transmission is started after k subframes from the last subframe of EPDCCH repeated transmission.
  • the UE reception process in the third embodiment will be described with reference to FIGS. 9 and 10 as an example. In either figure, processing corresponding to the transmission in FIG. 8 is shown.
  • the following processing is performed.
  • the UE blindly decodes the EPDCCH assuming a certain repetition level for each subframe. That is, the CRC is descrambled (demasked) using only the RNTI corresponding to the currently assumed repetition level.
  • the repetition level corresponding to the RNTI used for the decoding can be specified, and the PDSCH reception process is started k subframes after the last subframe of the EPDCCH repeated transmission.
  • the EPDCCH decoding is not successful at the current repetition level, if there is a next repetition level, the blind decoding of the EPDCCH is attempted on the assumption.
  • FIG. 9 is a diagram illustrating an example of UE reception processing in the third embodiment.
  • the UE for the EPDCCH received in each subframe, the UE first attempts to descramble CRC using only RNTI-1 assuming a repetition level 1 (1 to 4 subframes). When 4 subframes have elapsed, decoding using RNTI-1 has not been successful.
  • the following processing is performed.
  • the UE blindly decodes the EPDCCH assuming a certain repetition level for each subframe.
  • the RNTI corresponding to the currently assumed repetition level and the RNTI corresponding to the repetition level larger than the current level are set. Used to descramble (demask) the CRC.
  • PDSCH reception processing is started k subframes after the last subframe of the EPDCCH repetitive transmission corresponding to the RNTI used for decoding. If EPDCCH can be detected by RNTI corresponding to a larger repetition level among a plurality of repetition levels, blind decoding of EPDCCH is stopped for a predetermined period (for example, period until PDSCH reception processing is started). Also good.
  • EPDCCH can be detected in a short time, and the amount of processing is increased by not performing blind decoding after detecting EPDCCH. Can be suitably suppressed.
  • FIG. 10 is a diagram illustrating another example of UE reception processing in the third embodiment.
  • the UE for example, for the EPDCCH received in each subframe, the UE first assumes repetition levels 1 and 2, and attempts to descramble CRC in each of RNTI-1 and RNTI-2 (subframes 1 to 4). ). When 4 subframes passed, decoding using RNTI-1 was not successful, but decoding using RNTI-2 was successful.
  • the PDSCH corresponding to each number of repetitions of EPDCCH can be appropriately decoded without increasing the size of DCI. Can do.
  • the table of FIG. 7 may prescribe the correspondence between the information related to the PDSCH start subframe as shown in the second embodiment and the RNTI.
  • the blind decoding process of the EPDCCH is tried for each subframe, but the present invention is not limited to this.
  • the blind decoding process may be tried every time a plurality of subframes (2 subframes, 4 subframes, etc.) are received.
  • wireless communication system Wireless communication system
  • wireless communication method which concerns on said each embodiment may each be applied independently, and may be applied in combination.
  • an MTC terminal is illustrated as a user terminal whose use band is limited to a narrow band, but is not limited to an MTC terminal.
  • FIG. 11 is a schematic configuration diagram of a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system 1 shown in FIG. 11 is an example in which an LTE system is adopted in a network domain of a machine communication system.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied.
  • the LTE system is assumed to be set to a maximum system bandwidth of 20 MHz for both downlink and uplink, but is not limited to this configuration.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • the wireless communication system 1 includes a wireless base station 10 and a plurality of user terminals 20A, 20B, and 20C that are wirelessly connected to the wireless base station 10.
  • the radio base station 10 is connected to the higher station apparatus 30 and is connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • the plurality of user terminals 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C can communicate with the radio base station 10 in the cell 50.
  • the user terminal 20A is a user terminal (hereinafter, LTE terminal) that supports LTE (up to Rel-10) or LTE-Advanced (including Rel-10 and later), and the other user terminals 20B and 20C are machine
  • the MTC terminal is a communication device in the communication system.
  • the user terminals 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C are simply referred to as the user terminal 20 unless it is necessary to distinguish between them.
  • the MTC terminals 20B and 20C are terminals compatible with various communication systems such as LTE and LTE-A, and are not limited to fixed communication terminals such as electric meters, gas meters, and vending machines, but also mobile communication terminals such as vehicles. Good. Further, the user terminal 20 may communicate directly with another user terminal 20 or may communicate via the radio base station 10.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access methods are not limited to these combinations.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, and predetermined SIB (System Information Block) are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the HAICH transmission confirmation signal (ACK / NACK) for PUSCH is transmitted by PHICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. Physical Random Access Channel) is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH random access channel
  • Physical Random Access Channel Physical Random Access Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), a delivery confirmation signal, and the like are transmitted by PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • the channel for the MTC terminal may be represented with “M”.
  • EPDCCH, PDSCH, PUCCH, and PUSCH for the MTC terminal are called MPDCCH, MPDSCH, MPUCCH, MPUSCH, and the like, respectively. Also good.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes at least a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
  • Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band and transmits the converted signal.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can transmit and receive various signals with a narrow bandwidth (for example, 1.4 MHz) limited by the system bandwidth (for example, one component carrier).
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102.
  • Each transmitting / receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, a reception signal processing unit 304, a measurement unit 305, , At least.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
  • the control unit 301 controls scheduling (for example, resource allocation) of system information, a downlink data signal transmitted by PDSCH, and a downlink control signal transmitted by PDCCH and / or EPDCCH (MPDCCH). It also controls scheduling of synchronization signals and downlink reference signals such as CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DM-RS (Demodulation Reference Signal).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DM-RS Demodulation Reference Signal
  • the control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • an uplink data signal transmitted on the PUSCH for example, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
  • HARQ-ACK delivery confirmation signal
  • the control unit 301 controls the transmission signal generation unit 302 and the mapping unit 303 so that various signals are allocated to a narrow band and transmitted to the user terminal 20.
  • the control unit 301 performs control so that downlink broadcast information (MIB, SIB), EPDCCH, PDSCH, and the like are transmitted in a narrow band.
  • MIB downlink broadcast information
  • SIB downlink broadcast information
  • control unit 301 dynamically controls (sets, etc.) the number of repetitions applied to the transmission signal and / or reception signal of a predetermined user terminal 20.
  • the control unit 301 can use a plurality of different values as the number of repetitions. Then, the control unit 301 controls transmission / reception timing for a predetermined signal in consideration of the number of repetitions.
  • control unit 301 controls the interval between the last subframe for transmitting EPDCCH and the transmission start subframe for PDSCH corresponding to the EPDCCH (first implementation). Form).
  • control unit 301 performs control so that transmission of the PDSCH corresponding to the EPDCCH is started after k subframes (for example, one subframe) from the last subframe of the repeated transmission of the EPDCCH (second and third).
  • control unit 301 includes information for specifying the reception timing of the corresponding PDSCH in the DCI transmitted using the EPDCCH (second embodiment) or is associated with the repetition level for the CRC field. Control is performed so that scrambling processing is applied with an identifier (for example, C-RNTI) (third embodiment).
  • the control unit 301 determines the correspondence between the repetition level and the number of repetitions, the correspondence between the AL related to a predetermined signal and the repetition level, information for specifying the reception timing of the downlink data channel (for example, information on the repetition level of the EPDCCH, Information on the PDSCH start subframe) and the index included in the DCI, and at least a part of the correspondence between the repetition level and the RNTI. Further, the control unit 301 can perform control so as to notify the user terminal 20 of information related to these correspondences.
  • the transmission signal generation unit (generation unit) 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301. Further, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI) from each user terminal 20.
  • CSI channel state information
  • the transmission signal generation unit 302 generates the same downlink signal over a plurality of subframes and outputs it to the mapping unit 303 when downlink signal repetition transmission (for example, EPDCCH and PDSCH repetition transmission) is set. To do.
  • downlink signal repetition transmission for example, EPDCCH and PDSCH repetition transmission
  • the transmission signal generation unit 302 Based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a downlink signal (EPDCCH signal, MPDCCH signal) including DCI having identification information of the corresponding PDSCH reception timing, and sends it to the mapping unit 303. Output (second embodiment). Further, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a downlink signal including DCI obtained by applying scrambling processing with an identifier associated with the repetition level for the CRC field, and sends it to the mapping unit 303. Output (third embodiment).
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined narrowband radio resource (for example, a maximum of 6 resource blocks) based on an instruction from the control unit 301, and transmits and receives To 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 applies reception processing for the repetitive signal to the reception signal from the user terminal 20 that transmits the repetitive signal.
  • Reception signal processing section 304 outputs information decoded by the reception processing to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may measure signal reception power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like.
  • the measurement result may be output to the control unit 301.
  • FIG. 14 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes at least a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the user terminal 20 may include a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, and the like.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives DCI including information on the repetition level of EPDCCH.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • FIG. 15 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit (generation unit) 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit. 405.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403.
  • the control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
  • the control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10.
  • the control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like.
  • HARQ-ACK acknowledgment signal
  • control unit 401 when the user terminal 20 is set with the number of repetitions of the uplink signal (for example, PUCCH and / or PUSCH), the control unit 401 includes the same information based on information on the repetition level of a predetermined signal. Control can be performed so that the signal is repeatedly transmitted over a plurality of subframes.
  • the control unit 401 can determine the mode of the own terminal based on the information. Further, the control unit 401 may determine the mode based on information regarding the repetition level.
  • the control unit 401 can assume a plurality of different values as the number of repetitions.
  • the control unit 401 controls transmission / reception timing for a predetermined signal in consideration of the number of repetitions. For example, the control unit 401 determines the PDSCH reception timing in consideration of the number of EPDCCH repetitions.
  • the control unit 401 determines the PDSCH reception timing corresponding to the detected EPDCCH (DCI) based on the DCI.
  • the PDSCH reception timing corresponding to the detected EPDCCH (DCI) is determined based on the maximum number of repetitions of EPDCCH (DCI) and / or the reception timing specifying information included in the decoded DCI (first Embodiment, second embodiment).
  • the reception timing may be a reception start timing (for example, reception start subframe), a transmission start timing (for example, transmission start subframe), or the like.
  • control unit 401 determines the PDSCH reception timing corresponding to the DCI based on the identifier (C-RNTI) that has successfully decoded the DCI (third embodiment).
  • the control unit 401 may instruct the received signal processing unit 404 to perform a DCI decoding process using one identifier for each subframe, or a plurality of identifiers for each subframe. Each may be used to perform DCI decoding processing, and if decoding succeeds with an identifier corresponding to a larger repetition level, it may be instructed not to perform DCI decoding processing for a predetermined period.
  • the control unit 401 correlates the repetition level and the number of repetitions, the correspondence between the AL and the repetition level for a predetermined signal, information for specifying the reception timing of the downlink data channel (for example, information regarding the repetition level of the EPDCCH, Information on the PDSCH start subframe) and the index included in the DCI, and at least a part of the correspondence between the repetition level and the RNTI.
  • the control unit 401 can determine the PDSCH reception timing using these correspondences. Note that the control unit 401 may update the correspondence relationship when information regarding the correspondence relationship is input from the reception signal processing unit 404.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example.
  • the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401.
  • the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • the transmission signal generation unit 402 generates the same uplink signal over a plurality of subframes and outputs it to the mapping unit 403 when the user terminal 20 is configured to repeatedly transmit a predetermined uplink signal.
  • the number of repetitions may be set based on an instruction from the control unit 401.
  • the mapping unit 403 Based on an instruction from the control unit 401, the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource (for example, a maximum of 6 resource blocks) and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 applies reception processing for the repetitive signal to the reception signal from the radio base station 10 that transmits the repetitive signal.
  • the received signal processing unit 404 may perform a DCI (EPDCCH) decoding process using a predetermined identifier based on an instruction from the control unit 401.
  • DCI EPDCCH
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example.
  • the reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may measure, for example, the received power (for example, RSRP), reception quality (for example, RSRQ), channel state, and the like of the received signal.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be.
  • the radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk.
  • the program may be transmitted from a network via a telecommunication line.
  • the radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
  • the functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • the processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
  • the program may be a program that causes a computer to execute the operations described in the above embodiments.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
  • software, instructions, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave.
  • DSL digital subscriber line
  • wireless technology such as infrared, wireless and microwave.
  • the radio resource may be indicated by an index.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be called a carrier frequency, a cell, or the like.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • notification of information is not limited to the aspect / embodiment shown in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • the RRC signaling may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the information, signals, etc. shown in this specification may be represented using any of a variety of different technologies.
  • data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
  • Each aspect / embodiment shown in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand)
  • Bluetooth registered trademark

Abstract

 The present invention suppresses reductions to throughput in communication by a user terminal for which the use band is limited to a narrow band that is part of a system band, even in cases in which repetition using a plurality of different repetition numbers is applied. A user terminal according to one aspect of the present invention has the use band thereof limited to a narrow band that is part of a system band, and is provided with a reception unit for receiving downlink control information (DCI) transmitted repeatedly on a downlink control channel and a downlink shared channel corresponding to the aforementioned DCI, and a control unit for determining the reception timing of the aforementioned downlink shared channel on the basis of the details in the aforementioned DCI.

Description

ユーザ端末、無線基地局及び無線通信方法User terminal, radio base station, and radio communication method
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。 The present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)などと呼ばれる)も検討されている。 In the UMTS (Universal Mobile Telecommunications System) network, Long Term Evolution (LTE) has been specified for the purpose of higher data rates and lower delay (Non-Patent Document 1). In addition, for the purpose of further broadbanding and speeding up from LTE, a successor system of LTE (for example, called LTE-A (LTE-Advanced), FRA (Future Radio Access), etc.) is also being studied.
 ところで、近年、通信装置の低コスト化に伴い、ネットワークに繋がれた装置が、人間の手を介さずに相互に通信して自動的に制御を行う機器間通信(M2M:Machine-to-Machine)の技術開発が盛んに行われている。特に、3GPP(Third Generation Partnership Project)は、M2Mの中でも機器間通信用のセルラシステムとして、MTC(Machine Type Communication)の最適化に関する標準化を進めている(非特許文献2)。MTC端末(MTC UE(User Equipment))は、例えば電気メータ、ガスメータ、自動販売機、車両、その他産業機器などの幅広い分野への利用が考えられている。 By the way, in recent years, with the cost reduction of communication devices, inter-device communication (M2M: Machine-to-Machine) in which devices connected to a network communicate with each other automatically without intervention of human hands. ) Is being actively developed. In particular, 3GPP (Third Generation Partnership Project) is promoting standardization regarding MTC (Machine Type Communication) optimization as a cellular system for inter-device communication in M2M (Non-patent Document 2). MTC terminals (MTC UE (User Equipment)) are considered to be used in a wide range of fields such as electric meters, gas meters, vending machines, vehicles, and other industrial equipment.
 コストの低減及びセルラシステムにおけるカバレッジエリアの改善の観点から、MTC端末の中でも、簡易なハードウェア構成で実現可能な低コストMTC端末(LC(Low-Cost)-MTC UE)の需要が高まっている。低コストMTC端末は、上りリンク(UL)及び下りリンク(DL)の使用帯域を、システム帯域の一部の狭帯域(narrow band)に制限することで実現される。システム帯域は、例えば、既存のLTE帯域(20MHzなど)、コンポーネントキャリア(CC)などに相当する。 From the viewpoint of cost reduction and improvement of coverage area in cellular systems, demand for low-cost MTC terminals (LC (Low-Cost) -MTC UE) that can be realized with a simple hardware configuration is increasing among MTC terminals. . The low-cost MTC terminal is realized by limiting the use band of the uplink (UL) and the downlink (DL) to a narrow band that is a part of the system band. The system band corresponds to, for example, an existing LTE band (20 MHz or the like), a component carrier (CC), or the like.
 さらに、MTC端末では、カバレッジ拡張(Coverage enhancement)の適用が検討されている。具体的には、カバレッジ拡張の方法として、下りリンク(DL)及び/又は上りリンク(UL)において同じ信号を複数サブフレームに渡って繰り返し送信することで、受信信号対干渉雑音比(SINR:Signal-to-Interference plus Noise Ratio)を向上させる繰り返し送信(repetition)の適用が考えられる。 Furthermore, application of coverage enhancement is being studied for MTC terminals. Specifically, as a method of coverage extension, the same signal is repeatedly transmitted over a plurality of subframes in the downlink (DL) and / or uplink (UL), so that the received signal-to-interference noise ratio (SINR: Signal) -to-Interference plus Noise Ratio) is considered to apply repetition.
 また、リンクアダプテーションを実現するために、繰り返し数を動的に変更して繰り返し送信を行うことが検討されている。しかしながら、この場合、所定の信号(例えば、下り制御チャネル)を検出したタイミングに基づいて他の信号(例えば、下りデータチャネル)の受信処理を行うと、受信処理を適切に行うことができないおそれがある。このため、スループットの低下、UEの電力消費の増大などが生じるという課題がある。 Also, in order to realize link adaptation, it has been studied to change the number of repetitions dynamically and perform transmission repeatedly. However, in this case, if reception processing of another signal (for example, downlink data channel) is performed based on the timing at which a predetermined signal (for example, downlink control channel) is detected, there is a possibility that the reception processing cannot be performed appropriately. is there. For this reason, there exists a subject that the fall of a throughput, the increase in the power consumption of UE, etc. arise.
 本発明はかかる点に鑑みてなされたものであり、使用帯域がシステム帯域の一部の狭帯域に制限されるユーザ端末の通信において、異なる複数の繰り返し数を用いた繰り返し送信が適用される場合であっても、スループットの低下を抑制することができるユーザ端末、無線基地局及び無線通信方法を提供することを目的の1つとする。 The present invention has been made in view of such a point, and in the communication of a user terminal in which the use band is limited to a narrow band that is a part of the system band, when repeated transmission using a plurality of different repetition numbers is applied. Even so, it is an object to provide a user terminal, a radio base station, and a radio communication method that can suppress a decrease in throughput.
 本発明の一態様に係るユーザ端末は、システム帯域の一部の狭帯域に使用帯域が制限されたユーザ端末であって、下り制御チャネルで繰り返し送信される下り制御情報(DCI:Downlink Control Information)と、前記DCIに対応する下り共有チャネルと、を受信する受信部と、前記DCIの内容に基づいて、前記下り共有チャネルの受信タイミングを判断する制御部と、を有する。 A user terminal according to an aspect of the present invention is a user terminal in which a use band is limited to a narrow part of a system band, and downlink control information (DCI: Downlink Control Information) transmitted repeatedly on a downlink control channel And a receiving unit that receives the downlink shared channel corresponding to the DCI, and a control unit that determines reception timing of the downlink shared channel based on the content of the DCI.
 本発明によれば、使用帯域がシステム帯域の一部の狭帯域に制限されるユーザ端末の通信において、繰り返し送信を適用する場合であっても、スループットの低下を抑制することができる。 According to the present invention, it is possible to suppress a decrease in throughput even in the case where repeated transmission is applied in communication of a user terminal in which a use band is limited to a narrow part of the system band.
システム帯域内における狭帯域の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the narrow band within a system band. 繰り返し送信を用いたカバレッジ拡張の模式図である。It is a schematic diagram of coverage extension using repetitive transmission. 繰り返し数が異なる場合のEPDCCHの復号及び対応するPDSCHの受信シナリオの一例を示す図である。It is a figure which shows an example of the reception scenario of EPDCCH decoding and corresponding PDSCH when the number of repetitions is different. EPDCCHの繰り返し送信が完了する前に、UEがEPDCCHの検出に成功した場合の問題点を説明する図である。It is a figure explaining a problem when UE succeeds in detection of EPDCCH, before the repetition transmission of EPDCCH is completed. 第1の実施形態におけるPDSCHの受信開始タイミングの一例を示す図である。It is a figure which shows an example of the reception start timing of PDSCH in 1st Embodiment. 第2の実施形態におけるPDSCHの受信開始タイミングの一例を示す図である。It is a figure which shows an example of the reception start timing of PDSCH in 2nd Embodiment. 第3の実施形態における、繰り返しレベルとRNTIとの対応関係の一例を示す図である。It is a figure which shows an example of the correspondence of a repetition level and RNTI in 3rd Embodiment. 第3の実施形態におけるeNBの送信処理の一例を示す図である。It is a figure which shows an example of the transmission process of eNB in 3rd Embodiment. 第3の実施形態におけるUEの受信処理の一例を示す図である。It is a figure which shows an example of the reception process of UE in 3rd Embodiment. 第3の実施形態におけるUEの受信処理の別の一例を示す図である。It is a figure which shows another example of the reception process of UE in 3rd Embodiment. 本発明の一実施形態に係る無線通信システムの概略構成図である。It is a schematic block diagram of the radio | wireless communications system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the wireless base station which concerns on one Embodiment of this invention. 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the wireless base station which concerns on one Embodiment of this invention. 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the user terminal which concerns on one Embodiment of this invention. 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user terminal which concerns on one Embodiment of this invention.
 低コストMTC端末では、処理能力の低下を許容して、ハードウェア構成を簡略化することが検討されている。例えば、低コストMTC端末では、既存のユーザ端末(LTE端末)に比べて、ピークレートの減少、トランスポートブロックサイズの制限、リソースブロック(RB(Resource Block)、PRB(Physical Resource Block)ともいう)の制限、受信RFの制限などを適用することが検討されている。 In a low-cost MTC terminal, it is considered to allow a reduction in processing capability and simplify the hardware configuration. For example, in a low-cost MTC terminal, the peak rate is reduced, the transport block size is limited, and resource blocks (RB (Resource Block), PRB (Physical Resource Block)) are compared to existing user terminals (LTE terminals). It is considered to apply the restriction on the reception and the restriction on the reception RF.
 低コストMTC端末は、単にMTC端末と呼ばれてもよい。また、既存のユーザ端末は、ノーマルUE又はnon-MTC UEなどと呼ばれてもよい。 The low cost MTC terminal may be simply referred to as an MTC terminal. An existing user terminal may be referred to as a normal UE or a non-MTC UE.
 使用帯域の上限がシステム帯域(例えば、20MHz(100RB)、1コンポーネントキャリアなど)に設定される既存のユーザ端末とは異なり、MTC端末の使用帯域の上限は所定の狭帯域(例えば、1.4MHz(6RB))に制限される。帯域が制限されたMTC端末は、既存のユーザ端末との関係を考慮してLTE/LTE-Aのシステム帯域内で動作させることが検討されている。 Unlike existing user terminals in which the upper limit of the use band is set to the system band (for example, 20 MHz (100 RB), one component carrier), the upper limit of the use band of the MTC terminal is a predetermined narrow band (for example, 1.4 MHz) (6RB)). Considering the relationship with existing user terminals, the MTC terminal whose bandwidth is limited is considered to operate within the LTE / LTE-A system band.
 例えば、LTE/LTE-Aのシステム帯域において、帯域が制限されたMTC端末と帯域が制限されない既存のユーザ端末との間で、周波数多重がサポートされる。したがって、MTC端末は、サポートする最大の帯域がシステム帯域の一部の狭帯域である端末と表されてもよいし、LTE/LTE-Aのシステム帯域よりも狭帯域の送受信性能を有する端末と表されてもよい。 For example, in the LTE / LTE-A system band, frequency multiplexing is supported between an MTC terminal whose band is limited and an existing user terminal whose band is not limited. Therefore, the MTC terminal may be represented as a terminal whose maximum band to be supported is a narrow band that is a part of the system band, or a terminal that has a transmission / reception performance in a narrower band than the LTE / LTE-A system band May be represented.
 図1は、システム帯域内における狭帯域の配置例を示す図である。図1では、LTEのシステム帯域(例えば、20MHz)に比べて狭い所定の狭帯域(例えば、1.4MHz)が、システム帯域の一部に設定されている。当該狭帯域は、MTC端末によって検出可能な周波数帯域に相当する。 FIG. 1 is a diagram showing an example of arrangement of narrow bands in the system band. In FIG. 1, a predetermined narrow band (for example, 1.4 MHz) narrower than the LTE system band (for example, 20 MHz) is set as a part of the system band. The narrow band corresponds to a frequency band that can be detected by the MTC terminal.
 なお、MTC端末の使用帯域となる狭帯域の周波数位置は、システム帯域内で変化可能な構成とすることが好ましい。例えば、MTC端末は、所定の期間(例えば、サブフレーム)毎に異なる周波数リソースを用いて通信することが好ましい。これにより、MTC端末に対するトラヒックオフロードや、周波数ダイバーシチ効果が実現でき、周波数利用効率の低下を抑制することができる。したがって、MTC端末は、周波数ホッピングや周波数スケジューリングの適用を考慮して、RFの再調整(retuning)機能を有することが好ましい。 It should be noted that it is preferable that the narrow band frequency position, which is the use band of the MTC terminal, can be changed within the system band. For example, the MTC terminal preferably performs communication using different frequency resources for each predetermined period (for example, subframe). Thereby, the traffic offload with respect to an MTC terminal and the frequency diversity effect are realizable, and the fall of frequency utilization efficiency can be suppressed. Therefore, the MTC terminal preferably has an RF retuning function in consideration of application of frequency hopping and frequency scheduling.
 MTC端末が利用するチャネルは、同じ用途に用いられる従来のチャネルにMTCを示す「M」を付して表されてもよい。例えば、MTC端末は、狭帯域に配置される下り制御チャネルを用いて下り制御情報(DCI:Downlink Control Information)を受信するが、当該下り制御チャネルは、EPDCCH(Enhanced Physical Downlink Control Channel)と呼ばれてもよいし、MPDCCH(MTC PDCCH)と呼ばれてもよい。 The channel used by the MTC terminal may be represented by adding “M” indicating MTC to a conventional channel used for the same application. For example, an MTC terminal receives downlink control information (DCI: Downlink Control Information) using a downlink control channel arranged in a narrow band, and the downlink control channel is called EPDCCH (Enhanced Physical Downlink Control Channel). It may be called MPDCCH (MTC PDCCH).
 また、MTC端末は、狭帯域に配置される下り共有チャネル(下りデータチャネル)を用いて下りデータを受信するが、当該下り共有チャネルは、PDSCH(Physical Downlink Shared Channel)と呼ばれてもよいし、MPDSCH(MTC PDSCH)と呼ばれてもよい。以下では、MTC端末が用いる下り制御チャネルをEPDCCH、下り共有チャネルをPDSCHとして説明するが、これに限られない。 In addition, the MTC terminal receives downlink data using a downlink shared channel (downlink data channel) arranged in a narrow band, but the downlink shared channel may be called PDSCH (Physical Downlink Shared Channel). , MPDSCH (MTC PDSCH). Hereinafter, the downlink control channel used by the MTC terminal will be described as EPDCCH, and the downlink shared channel will be described as PDSCH. However, the present invention is not limited to this.
 ところで、MTC端末の無線通信には、カバレッジ拡張(CE:Coverage Enhancement)を適用することが検討されている。例えば、MTC端末では、既存のユーザ端末と比較して最大で15dBのカバレッジ拡張が検討されている。 By the way, it is considered to apply coverage enhancement (CE) to wireless communication of MTC terminals. For example, in the MTC terminal, a coverage extension of 15 dB at the maximum is considered as compared with the existing user terminal.
 MTC端末の無線通信におけるカバレッジ拡張方法としては、上りリンク(UL)及び/又は下りリンク(DL)において同一の信号(例えば、トランスポートブロック)を繰り返し送信する方法(repetition)を適用することが考えられる。 As a method for extending coverage in radio communication of an MTC terminal, it is considered to apply a method (repetition) of repeatedly transmitting the same signal (for example, transport block) in the uplink (UL) and / or downlink (DL). It is done.
 図2は、繰り返し送信を用いたカバレッジ拡張の模式図である。図2において、UE#1及び#2はeNBの通常カバレッジ(Normal coverage)の範囲に位置し、UE#3及び#4はeNBの拡張カバレッジ(Enhanced coverage)の範囲に位置する。 FIG. 2 is a schematic diagram of coverage extension using repetitive transmission. In FIG. 2, UE # 1 and # 2 are located in the range of eNB's normal coverage (Normal coverage), and UE # 3 and # 4 are located in the range of eNB's extended coverage (Enhanced coverage).
 例えば、通常カバレッジ下のUEは、チャネル状態などに応じて調整(リンクアダプテーション)されたEPDCCHを受信する。具体的には、UEのチャネル状態が良い場合、当該UEには低AL(Aggregation Level)のECCE(Enhanced Control Channel Element)が設定される一方、UEのチャネル状態が悪い場合、当該UEには高ALのECCEが設定される。図2においては、UE#1は比較的チャネル状態が悪く、高いAL(AL=8)が設定されているが、UE#2は比較的チャネル状態が良く、低いAL(AL=2)が設定されている。 For example, a UE under normal coverage receives an EPDCCH adjusted (link adaptation) according to a channel state or the like. Specifically, when the UE channel state is good, a low AL (Aggregation Level) ECCE (Enhanced Control Channel Element) is set for the UE, whereas when the UE channel state is bad, the UE is high. The ECC of AL is set. In FIG. 2, UE # 1 has a relatively poor channel state and a high AL (AL = 8) is set, but UE # 2 has a relatively good channel state and a low AL (AL = 2) is set. Has been.
 また、拡張カバレッジ下のUEには、所望の受信品質を達成するために、高ALのECCEを用いた繰り返し送信が設定される。ここで、EPDCCHのリンクアダプテーションを考慮すると、UEは異なる複数の繰り返し数(繰り返し送信回数ともいう)のモニタリングに対応していることが好ましい。図2においては、UE#3は繰り返し数4、UE#4は繰り返し数2でそれぞれ高いAL(AL=8)のEPDCCHの受信処理を行うように設定されている。 In addition, in order to achieve a desired reception quality, repeated transmission using a high AL ECCE is set for a UE under extended coverage. Here, considering the link adaptation of the EPDCCH, the UE preferably supports monitoring of a plurality of different repetition numbers (also referred to as repetition transmission times). In FIG. 2, UE # 3 is configured to perform reception processing of EPDCCH with a high AL (AL = 8) with a repetition number of 4 and UE # 4 with a repetition number of 2, respectively.
 なお、所定の信号に関するALと繰り返しレベル(あるいは、繰り返し数、繰り返しサブフレーム数などと呼んでもよい)との対応関係に関する情報は、ユーザ端末に、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、報知情報(MIB(Master Information Block))、システム情報(SIB(System Information Block)))、下り制御情報(DCI)などで通知されてもよい。例えば、AL及び繰り返しレベルと、所定のインデックスとの対応関係を示すテーブルが通知されてもよい。当該情報は、複数の信号に関する情報を含んでもよいし、ある信号に関する情報を他の信号に関する情報としても用いる構成としてもよい。 Note that information on the correspondence between the AL related to a predetermined signal and the repetition level (or may be called the number of repetitions, the number of repetition subframes, etc.) is sent to the user terminal in higher layer signaling (for example, RRC signaling, MAC signaling, Notification information (MIB (Master Information Block)), system information (SIB (System Information Block))), downlink control information (DCI), or the like may be used. For example, a table indicating the correspondence between AL and repetition level and a predetermined index may be notified. The information may include information related to a plurality of signals, or information related to a certain signal may be used as information related to another signal.
 ここで、繰り返しレベル(Repetition level)とは、繰り返し数に関する情報であり、例えば、繰り返し数そのものであってもよいし、繰り返し数に関連付けられた所定の情報(例えば、インデックス)であってもよい。無線基地局は、繰り返しレベルと繰り返し数との対応関係に関する情報を、上位レイヤシグナリング(例えば、RRCシグナリング、報知情報)、下り制御情報(DCI)又はこれらの組み合わせを利用して、MTC端末に通知することができる。 Here, the repetition level (Repetition level) is information regarding the number of repetitions, and may be, for example, the number of repetitions itself or predetermined information (for example, an index) associated with the number of repetitions. . The radio base station notifies the MTC terminal of information related to the correspondence between the repetition level and the repetition number using higher layer signaling (for example, RRC signaling, broadcast information), downlink control information (DCI), or a combination thereof. can do.
 なお、これらの対応関係は、全てのセルで共通としてもよいし、セル固有に規定されるものとしてもよい。また、これらの対応関係に関する情報は、予め無線基地局及びユーザ端末に設定される構成としてもよい。 Note that these correspondences may be common to all cells or may be specified for each cell. Moreover, the information regarding these correspondences is good also as a structure preset to a wireless base station and a user terminal.
 繰り返し送信は、データ信号(例えば、PDSCH、PUSCH(Physical Uplink Shared Channel))、制御信号(例えば、EPDCCH)や同期信号(例えば、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal))、参照信号(例えば、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal))などの各種の信号(チャネル)に適用されてもよい。 Repeated transmission includes data signals (eg, PDSCH, PUSCH (Physical Uplink Shared Channel)), control signals (eg, EPDCCH), synchronization signals (eg, PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal)), reference signals (For example, CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DMRS (Demodulation Reference Signal), SRS (Sounding Reference Signal)), etc. Good.
 MTC端末は、EPDCCHに異なる複数の繰り返し数が設定される場合には、各繰り返し数に対応したEPDCCHのブラインド復号(BD:Blind Decoding)を実施できることが好ましい。図3は、繰り返し数が異なる場合のEPDCCHの復号及び対応するPDSCHの受信シナリオの一例を示す図である。 It is preferable that the MTC terminal can perform blind decoding (BD: Blind Decoding) of EPDCCH corresponding to each repetition number when a plurality of different repetition numbers are set in the EPDCCH. FIG. 3 is a diagram illustrating an example of EPDCCH decoding and a corresponding PDSCH reception scenario when the number of repetitions is different.
 図3A及び3Bは、それぞれブラインド復号の候補#1及び#2を示している。候補#1では、EPDCCHの繰り返しレベルとしてレベル1(例えば、繰り返し数4回)、PDSCHの繰り返し数6回が想定されている。候補#2では、EPDCCHの繰り返しレベルとしてレベル2(例えば、繰り返し数8回)、PDSCHの繰り返し数6回が想定されている。 3A and 3B show blind decoding candidates # 1 and # 2, respectively. In candidate # 1, level 1 (for example, 4 repetitions) and PDSCH repetitions 6 are assumed as EPDCCH repetition levels. In candidate # 2, level 2 (for example, 8 repetitions) and PDSCH repetitions 6 are assumed as EPDCCH repetition levels.
 また、いずれの候補でも、PDSCHの繰り返し送信は、EPDCCHの繰り返し送信の最後のサブフレームからkサブフレーム(例えば、1サブフレーム)後に開始されることが想定されている。MTC端末は、EPDCCHの検出(復号)に成功すると、kサブフレーム後にPDSCHの受信を開始すればよい。なお、kの値はこれに限られず、例えば0としてもよいし、1より大きな数としてもよい。また、各候補でkの値は異なっていてもよい。また、kの値に関する情報は、MTC端末に通知されてもよいし、予め規定されていてもよい。 Also, in any candidate, it is assumed that PDSCH repetitive transmission is started after k subframes (for example, one subframe) from the last subframe of EPDCCH repetitive transmission. If the MTC terminal succeeds in detecting (decoding) the EPDCCH, the MTC terminal may start receiving the PDSCH after k subframes. Note that the value of k is not limited to this, and may be 0 or a number larger than 1, for example. In addition, the value of k may be different for each candidate. Further, information regarding the value of k may be notified to the MTC terminal or may be defined in advance.
 なお、EPDCCHのブラインド復号の候補の数及び/又は構成は図3の例に限られず、さらに別の繰り返しレベルに対応した候補が設定されてもよい。また、無線基地局も、ブラインド復号の候補で規定されるサブフレーム構成(タイミングなど)に基づいて、繰り返し送信を実施してもよい。また、EPDCCHをブラインド復号する無線リソースは、EPDCCH用サーチスペースなどと呼ばれてもよい。 Note that the number and / or configuration of EPDCCH blind decoding candidates is not limited to the example in FIG. 3, and candidates corresponding to different repetition levels may be set. Also, the radio base station may repeatedly perform transmission based on a subframe configuration (timing etc.) defined by blind decoding candidates. Further, the radio resource for blind decoding of the EPDCCH may be referred to as an EPDCCH search space.
 ところが、EPDCCHの繰り返し送信が完了する前に、UEがEPDCCHの検出に成功する場合がある。この場合、PDSCHの復号にエラーが生じるおそれがある。図4を用いてこの問題を説明する。図4は、EPDCCHの繰り返し送信が完了する前に、UEがEPDCCHの検出に成功した場合の問題点を説明する図である。 However, the UE may succeed in detecting the EPDCCH before the repeated transmission of the EPDCCH is completed. In this case, an error may occur in the PDSCH decoding. This problem will be described with reference to FIG. FIG. 4 is a diagram illustrating a problem when the UE has successfully detected the EPDCCH before the repeated transmission of the EPDCCH is completed.
 図4では、eNBは図3の候補#2のサブフレーム構成となるように、EPDCCHを8回繰り返し送信し、EPDCCHの送信を完了した1サブフレーム後からPDSCHを6回繰り返し送信する。また、UEは図3に示したブラインド復号の候補#1及び#2を想定し、ブラインド復号を試行する。UEは、EPDCCHを4サブフレーム受信した時点で、候補#1を想定してブラインド復号を行った結果、当該EPDCCHの復号に成功している。 In FIG. 4, the eNB repeatedly transmits the EPDCCH eight times so that the subframe configuration of the candidate # 2 in FIG. 3 is obtained, and repeatedly transmits the PDSCH six times after one subframe in which the EPDCCH transmission is completed. Further, the UE assumes blind decoding candidates # 1 and # 2 shown in FIG. 3 and tries blind decoding. The UE has succeeded in decoding the EPDCCH as a result of blind decoding assuming candidate # 1 at the time of receiving 4 sub-frames of EPDCCH.
 この場合、eNBは候補#2で送信を行っているにも関わらず、UEは候補#1に基づいてPDSCHの受信処理を試みることになる。したがって、UEは図4中の左から6サブフレーム目でPDSCHが開始すると想定してPDSCHの受信処理(復号)を開始するが、EPDCCHや何も送信されないサブフレームを受信処理に用いてしまうため、正しい復号結果が得られない。なお、PDSCHに繰り返し送信が適用されない場合であっても、同じ問題が生じ得ることは明らかである。 In this case, although the eNB is transmitting with the candidate # 2, the UE tries the PDSCH reception process based on the candidate # 1. Therefore, the UE starts PDSCH reception processing (decoding) on the assumption that PDSCH starts in the sixth subframe from the left in FIG. 4, but uses EPDCCH and a subframe in which nothing is transmitted for reception processing. A correct decoding result cannot be obtained. It is obvious that the same problem can occur even when repetitive transmission is not applied to the PDSCH.
 このように、UEが、EPDCCHの検出に成功したタイミングに基づいてPDSCHの受信タイミングを判断すると、受信処理を適切に行うことができないおそれがある。この結果、スループットの低下、UEの電力消費の増大などの問題が生じる。 Thus, if the UE determines the PDSCH reception timing based on the timing at which the EPDCCH is successfully detected, there is a possibility that the reception process cannot be performed appropriately. As a result, problems such as a decrease in throughput and an increase in power consumption of the UE occur.
 そこで、本発明者らは、UEがEPDCCHの検出に成功したときに、対応するPDSCHの受信タイミングを適切に認識(判断)できるようにすることを着想した。本発明の一実施形態によれば、UEが検出したEPDCCHに含まれるDCIは、対応するPDSCHの受信タイミングと関連付けられているため、EPDCCH送信に複数の繰り返し数が設定され得る場合であっても、対応するPDSCHを適切に復号することが可能となる。 Therefore, the present inventors have conceived that when the UE has successfully detected the EPDCCH, the reception timing of the corresponding PDSCH can be appropriately recognized (determined). According to an embodiment of the present invention, since the DCI included in the EPDCCH detected by the UE is associated with the reception timing of the corresponding PDSCH, even when a plurality of repetitions can be set for EPDCCH transmission. Thus, the corresponding PDSCH can be appropriately decoded.
 以下、本発明に係る実施形態について説明する。使用帯域が狭帯域に制限されたユーザ端末としてMTC端末を例示するが、本発明の適用はMTC端末に限定されない。また、狭帯域を6PRB(1.4MHz)として説明するが、他の狭帯域であっても、本明細書に基づいて本発明を適用することができる。また、EPDCCHのブラインド復号の候補は図3に示した2つであるものとして説明するが、これに限られない。また、PDSCHにも繰り返し送信を適用するものとして説明するが、これに限られない。 Hereinafter, embodiments according to the present invention will be described. Although an MTC terminal is illustrated as a user terminal whose use band is limited to a narrow band, application of the present invention is not limited to an MTC terminal. Although the narrow band is described as 6PRB (1.4 MHz), the present invention can be applied based on the present specification even in other narrow bands. In addition, although the EPDCCH blind decoding candidates are described as being two as illustrated in FIG. 3, the present invention is not limited to this. Moreover, although it demonstrates as what applies repetition transmission also to PDSCH, it is not restricted to this.
(第1の実施形態)
 第1の実施形態では、UEは、PDSCHの受信開始タイミングを、EPDCCHの最大の繰り返し数に従って判断する。具体的には、UEは、実際に検出したEPDCCHの繰り返し数に関わらず(EPDCCHの検出に成功したタイミングに依存せず)、設定された繰り返し数のうち、最大の繰り返し数に相当するサブフレームの経過後にPDSCHの送信が開始されると想定する。
(First embodiment)
In the first embodiment, the UE determines the PDSCH reception start timing according to the maximum number of repetitions of the EPDCCH. Specifically, the UE can determine the subframe corresponding to the maximum number of repetitions among the set number of repetitions regardless of the number of repetitions of EPDCCH actually detected (regardless of the timing at which EPDCCH is successfully detected). Assume that transmission of PDSCH starts after elapse of.
 図5は、第1の実施形態におけるPDSCHの受信開始タイミングの一例を示す図である。図5には、EPDCCHのブラインド復号の候補#1及び#2が示されている。しかしながら、図3とは異なり、PDSCHが送信されるまでのサブフレームは、EPDCCHの実際の繰り返し送信の最後のサブフレームからkサブフレーム後ではなく、全候補のうち最大の繰り返し数(図5では、8回)を想定した場合のEPDCCHの最後のサブフレームからkサブフレーム後で統一されている。 FIG. 5 is a diagram illustrating an example of PDSCH reception start timing in the first embodiment. FIG. 5 shows EPDCCH blind decoding candidates # 1 and # 2. However, unlike FIG. 3, the subframe until the PDSCH is transmitted is not after k subframes from the last subframe of the actual repeated transmission of the EPDCCH, but the maximum number of repetitions (in FIG. 5). 8 times) after the last subframe of the EPDCCH.
 UEは、EPDCCHに対応するPDSCHを、常にEPDCCHの送信開始から8(最大の繰り返し数)+k(k=1)=9サブフレーム後に受信開始すると判断できる。 The UE can always determine that the PDSCH corresponding to the EPDCCH starts to be received after 8 (the maximum number of repetitions) + k (k = 1) = 9 subframes from the transmission start of the EPDCCH.
 以上、第1の実施形態によれば、EPDCCHの繰り返しレベルが複数設定される場合であっても、余分な追加のシグナリングを必要とせず、各繰り返し数のEPDCCHに対応したPDSCHを適切に復号することができる。 As described above, according to the first embodiment, even when multiple repetition levels of EPDCCH are set, PDSCH corresponding to each number of repetitions of EPDCCH is appropriately decoded without requiring additional additional signaling. be able to.
(第2の実施形態)
 第2の実施形態では、下り制御チャネル(例えば、EPDCCH)に対応する下りデータチャネル(PDSCH)の受信タイミングを特定(判断)するための情報(特定情報)を、UEに明示的に設定(通知)する。具体的には、EPDCCHで通知するDCIに、当該EPDCCHの繰り返しレベルに関する情報及び/又は対応するPDSCHの開始サブフレームに関する情報を含めて通知する。UEは、これらの情報に基づいて、PDSCHの受信タイミングを判断することができる。
(Second Embodiment)
In the second embodiment, information (specific information) for specifying (determining) reception timing of a downlink data channel (PDSCH) corresponding to a downlink control channel (for example, EPDCCH) is explicitly set (notified) in the UE. ) Specifically, the DCI notified by the EPDCCH is notified including information on the repetition level of the EPDCCH and / or information on the corresponding start subframe of the PDSCH. The UE can determine the PDSCH reception timing based on these pieces of information.
 繰り返しレベルに関する情報は、例えば、繰り返しレベルを示すインデックスであってもよい。また、PDSCHの開始サブフレームに関する情報は、例えば、EPDCCHの繰り返し送信の最後のサブフレームからPDSCHの繰り返し送信の開始サブフレームまでのサブフレーム数(上述のk)であってもよいし、サブフレームインデックスや、サブフレームオフセットに関する情報などであってもよい。また、PDSCHの開始サブフレームに関する情報は、PDSCHの開始サブフレームに関連付けられた所定の情報(例えば、インデックス)であってもよい。 The information regarding the repetition level may be an index indicating the repetition level, for example. The information on the PDSCH start subframe may be, for example, the number of subframes (k described above) from the last subframe of the repeated transmission of the EPDCCH to the start subframe of the PDSCH repeated transmission. It may be an index, information on a subframe offset, or the like. Further, the information related to the PDSCH start subframe may be predetermined information (for example, an index) associated with the PDSCH start subframe.
 UEは、所定のテーブル(例えば、繰り返しレベルに関する情報及び/又は開始サブフレームに関する情報とDCIに含まれるインデックスとの対応関係を示すテーブル)を用いて特定情報を判断してもよい。当該テーブルに関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング、報知情報)、下り制御情報(DCI)など又はこれらの組み合わせを用いてUEに通知されてもよいし、予め設定されてもよい。 The UE may determine the specific information using a predetermined table (for example, a table indicating a correspondence relationship between information on the repetition level and / or information on the start subframe and an index included in the DCI). Information on the table may be notified to the UE using higher layer signaling (for example, RRC signaling, broadcast information), downlink control information (DCI), or a combination thereof, or may be set in advance.
 図6は、第2の実施形態におけるPDSCHの受信開始タイミングの一例を示す図である。図6には、eNBが図3の候補#2のサブフレーム構成で繰り返し送信を行う例が示されている。また、UEは図3に示したブラインド復号の候補#1及び#2を想定し、ブラインド復号を試行する。UEは、EPDCCHを4サブフレーム受信した時点で、候補#1を想定してブラインド復号を行った結果、当該EPDCCHの復号に成功している。 FIG. 6 is a diagram illustrating an example of PDSCH reception start timing in the second embodiment. FIG. 6 illustrates an example in which the eNB repeatedly performs transmission with the subframe configuration of candidate # 2 in FIG. Further, the UE assumes blind decoding candidates # 1 and # 2 shown in FIG. 3 and tries blind decoding. The UE has succeeded in decoding the EPDCCH as a result of blind decoding assuming candidate # 1 at the time of receiving 4 sub-frames of EPDCCH.
 UEは、PDSCHの開始サブフレームを特定するための情報を、復号して得たDCIから取得する。図6では、当該情報として、「RL 2」(繰り返しレベル2)及び/又は「starting subframe 2」(開始サブフレーム2)がDCIの所定のフィールドに含まれている。 The UE acquires information for specifying the PDSCH start subframe from the DCI obtained by decoding. In FIG. 6, “RL 2” (repetition level 2) and / or “starting subframe 2” (start subframe 2) are included in the predetermined field of DCI as the information.
 UEは、DCIにより、EPDCCHが繰り返しレベル2であることを認識すると、EPDCCHに対応するPDSCHを、EPDCCHの送信開始から8(繰り返し数)+k(k=1)=9サブフレーム後に受信開始することを決定する。 When the UE recognizes that the EPDCCH is at repetition level 2 by DCI, the UE starts receiving the PDSCH corresponding to the EPDCCH after 8 (number of repetitions) + k (k = 1) = 9 subframes from the transmission start of the EPDCCH. To decide.
 また、UEは、開始サブフレーム2がEPDCCHの送信開始から9サブフレーム後であることを、通知されている又は予め知っている。このため、UEは、DCIにより、PDSCHが開始サブフレーム2で開始することを認識すると、EPDCCHに対応するPDSCHを、EPDCCHの送信開始から9サブフレーム後に受信開始することを決定する。 Also, the UE is notified or knows in advance that the start subframe 2 is 9 subframes after the start of transmission of the EPDCCH. For this reason, when the UE recognizes that the PDSCH starts in the start subframe 2 by DCI, the UE determines to start receiving the PDSCH corresponding to the EPDCCH 9 subframes after the transmission start of the EPDCCH.
 図6の例では、UEは候補#1のタイミングでEPDCCHを検出したにも関わらず、PDSCHの受信処理を候補#2のタイミングで適切に行うことができる。 In the example of FIG. 6, the UE can appropriately perform PDSCH reception processing at the timing of candidate # 2 even though the UE detects EPDCCH at the timing of candidate # 1.
 なお、上記特定情報は、DCIの所定のフィールドの一部又は全部でユーザ端末に通知することができる。例えば、当該情報は、従来のLTE/LTE-Aシステムでは規定されていない新しいビットフィールドを用いて通知されてもよいし、既存のDCIのビットフィールドを読み替えることで通知されてもよい。既存のビットフィールドとして、リソース割り当て(RA:Resource Allocation)フィールド、MCS(Modulation and Coding Scheme)フィールド、HPN(HARQ Process Number)フィールドなどのいずれか又はこれらの組み合わせを利用することができる。なお、他のフィールドを読み替えて利用してもよい。 Note that the specific information can be notified to the user terminal through a part or all of a predetermined field of DCI. For example, the information may be notified using a new bit field that is not defined in the conventional LTE / LTE-A system, or may be notified by replacing an existing DCI bit field. As an existing bit field, any one of resource allocation (RA) field, MCS (Modulation and Coding Scheme) field, HPN (HARQ Process Number) field, or a combination thereof can be used. Note that other fields may be read and used.
 MTC端末において、RAフィールドは、所定の狭帯域(例えば、6RB)のリソースを特定できればよく、既存システムにおけるRAフィールドに比べてビット量を削減することができる。このため、既存システムのRAフィールドの一部又は全部を、特定情報として用いることができる。 In the MTC terminal, the RA field only needs to be able to specify a predetermined narrow band (for example, 6 RB) resource, and the bit amount can be reduced compared to the RA field in the existing system. For this reason, a part or all of the RA field of the existing system can be used as the specific information.
 また、MTC端末において、カバレッジ拡張モードを用いる(繰り返し信号送信を行う)場合、既存システムにおけるMCSの一部(例えば、比較的高いMCS)は選択されないことが考えられる。このため、既存システムのMCSフィールドの一部又は全部を、特定情報として用いることができる。 In addition, when the coverage extension mode is used in the MTC terminal (repetitive signal transmission is performed), it is considered that a part of the MCS (for example, a relatively high MCS) in the existing system is not selected. For this reason, a part or all of the MCS field of the existing system can be used as the specific information.
 また、MTC端末において、カバレッジ拡張モードで用いる場合、FDD(Frequency Division Duplex)を用いる通常端末では8つあるHARQバッファ数(又はTDD(Time Division Duplex)を用いる通常端末では最大16個あるHARQバッファ数)を低減することも考えられる。このため、既存システムのHPNフィールドの一部又は全部を、特定情報として用いることができる。当該フィールドは、DLアサインメント(例えば、DCIフォーマット1/1A/1B)などに含まれる。 In addition, when the MTC terminal is used in the coverage extension mode, the normal terminal using FDD (Frequency Division Duplex) has 8 HARQ buffers (or the maximum 16 HARQ buffers in a normal terminal using TDD (Time Division Duplex). ) May be reduced. For this reason, a part or all of the HPN field of the existing system can be used as the specific information. The field is included in a DL assignment (for example, DCI format 1 / 1A / 1B).
 なお、DCIのどのフィールドがPDSCHの開始サブフレームを特定するための情報を示すかに関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング、報知情報)などでユーザ端末に通知されてもよい。 Note that information regarding which field of DCI indicates information for specifying the PDSCH start subframe may be notified to the user terminal by higher layer signaling (for example, RRC signaling, broadcast information) or the like.
 なお、所定の信号に関するALと繰り返しレベルとの対応関係に関する情報がUEに通知されている場合であっても、第2の実施形態においては、当該対応関係で規定されない繰り返しレベルを用いてEPDCCHの送信が行われてもよい。この場合、DCIに含まれるEPDCCHの繰り返しレベルに関する情報により、UEはEPDCCHの繰り返しレベルを判断することができる。また、EPDCCHのALは上記対応関係に基づいて判断されてもよい。 Note that even when the information about the correspondence between the AL and the repetition level regarding the predetermined signal is notified to the UE, the second embodiment uses the repetition level not defined by the correspondence in the EPDCCH. Transmission may be performed. In this case, the UE can determine the repetition level of the EPDCCH based on the information regarding the repetition level of the EPDCCH included in the DCI. Moreover, the AL of EPDCCH may be determined based on the correspondence relationship.
 以上、第2の実施形態によれば、PDSCHの開始サブフレームを特定するための情報(特定情報)をUEに明示的に通知することができるため、UEの処理が複雑になることを抑制することができる。また、当該情報を、既存のDCIのフィールドの一部又は全部を用いて通知することで、通信オーバヘッドの増大を抑制することができる。 As described above, according to the second embodiment, information (specific information) for specifying the start subframe of the PDSCH can be explicitly notified to the UE, so that the UE process is prevented from becoming complicated. be able to. Further, by notifying the information using a part or all of the existing DCI field, an increase in communication overhead can be suppressed.
(第3の実施形態)
 第3の実施形態では、EPDCCHに、繰り返しレベルに応じて異なる識別子(RNTI:Radio Network Temporary Identifier)を適用する。具体的には、EPDCCHで送信されるDCIにはCRC(Cyclic Redundancy Check)が付与されるが、当該CRCに対して、EPDCCHの繰り返しレベルに関連付けられたRNTIを用いてスクランブリング(マスキング)を行う。ここで、RNTIは、例えばC-RNTI(Cell-RNTI)であるが、これに限られない。例えば、スクランブルに用いるRNTIは、M-RNTI(MTC-RNTI)などと呼ばれてもよい。
(Third embodiment)
In the third embodiment, a different identifier (RNTI: Radio Network Temporary Identifier) is applied to the EPDCCH according to the repetition level. Specifically, a CRC (Cyclic Redundancy Check) is added to the DCI transmitted on the EPDCCH, and the CRC is scrambled (masked) using the RNTI associated with the EPDCCH repetition level. . Here, the RNTI is, for example, C-RNTI (Cell-RNTI), but is not limited thereto. For example, the RNTI used for scrambling may be called M-RNTI (MTC-RNTI) or the like.
 図7は、第3の実施形態における、繰り返しレベルとRNTIとの対応関係の一例を示す図である。図7の対応関係(テーブル)では、繰り返しレベル1にRNTI-1が関連付けられており、繰り返しレベル2にRNTI-2が関連付けられている。 FIG. 7 is a diagram illustrating an example of a correspondence relationship between the repetition level and the RNTI in the third embodiment. In the correspondence relationship (table) of FIG. 7, RNTI-1 is associated with repetition level 1, and RNTI-2 is associated with repetition level 2.
 無線基地局は、繰り返しレベルとRNTIとの対応関係に関する情報を、上位レイヤシグナリング(例えば、RRCシグナリング、報知情報)及び下り制御情報のいずれか又はこれらの組み合わせを利用して、ユーザ端末に通知することができる。例えば、当該対応関係に関する情報は、ランダムアクセス手順におけるRAR(Random Access Response)に含まれて通知されてもよいし、EPDCCHの設定に伴って通知されてもよい。なお、当該対応関係に関する情報は、予め無線基地局及びユーザ端末に設定される構成としてもよい。 The radio base station notifies the user terminal of information regarding the correspondence relationship between the repetition level and the RNTI, using either upper layer signaling (for example, RRC signaling, broadcast information), downlink control information, or a combination thereof. be able to. For example, the information on the correspondence relationship may be notified by being included in an RAR (Random Access Response) in the random access procedure, or may be notified along with the setting of the EPDCCH. Note that the information on the correspondence relationship may be configured in advance in the radio base station and the user terminal.
 また、繰り返しレベルと関連付けられるRNTI自体についても、上記対応関係に関する情報と同様に様々な方法で通知されてもよいし、予め設定されていてもよい。 Also, the RNTI itself associated with the repetition level may be notified by various methods in the same manner as the information on the correspondence relationship, or may be set in advance.
 第3の実施形態におけるeNBの送信処理について、図8を例に説明する。図8は、第3の実施形態におけるeNBの送信処理の一例を示す図である。図8には、eNBが図3の候補#2のサブフレーム構成で繰り返し送信を行う例が示されている。EPDCCHの繰り返しレベルは、予め決定されているものとする。 The eNB transmission processing in the third embodiment will be described with reference to FIG. FIG. 8 is a diagram illustrating an example of eNB transmission processing according to the third embodiment. FIG. 8 shows an example in which the eNB repeatedly performs transmission with the subframe configuration of candidate # 2 in FIG. It is assumed that the EPDCCH repetition level is determined in advance.
 まず、eNBはEPDCCHの繰り返しレベルに基づいて、DCIのマスキングに用いるRNTIを選択する。図8の場合、繰り返しレベルが2であるため、RNTI-2が選択される。次に、eNBは、繰り返しレベルに基づいて、所定の繰り返し数でEPDCCHを送信する。その後、EPDCCHの繰り返し送信の最後のサブフレームからkサブフレーム後に、PDSCHの送信を開始する。 First, the eNB selects an RNTI to be used for DCI masking based on the EPDCCH repetition level. In the case of FIG. 8, since the repetition level is 2, RNTI-2 is selected. Next, the eNB transmits the EPDCCH with a predetermined number of repetitions based on the repetition level. Thereafter, PDSCH transmission is started after k subframes from the last subframe of EPDCCH repeated transmission.
 第3の実施形態におけるUEの受信処理について、図9及び図10を例に説明する。いずれの図にも、図8の送信に対応する処理が示されている。 The UE reception process in the third embodiment will be described with reference to FIGS. 9 and 10 as an example. In either figure, processing corresponding to the transmission in FIG. 8 is shown.
 第3の実施形態におけるUEの受信処理の一例では、以下の処理を行う。UEは、サブフレームごとに、ある繰り返しレベルを仮定して、EPDCCHをブラインド復号する。つまり、現在仮定している繰り返しレベルに対応するRNTIのみを用いて、CRCをデスクランブリング(デマスキング)する。 In an example of UE reception processing in the third embodiment, the following processing is performed. The UE blindly decodes the EPDCCH assuming a certain repetition level for each subframe. That is, the CRC is descrambled (demasked) using only the RNTI corresponding to the currently assumed repetition level.
 この結果、EPDCCH復号に成功した場合、復号に用いたRNTIに対応する繰り返しレベルを特定することができ、EPDCCHの繰り返し送信の最後のサブフレームからkサブフレーム後に、PDSCHの受信処理を開始する。一方、現在の繰り返しレベルでEPDCCH復号に成功しなかった場合、次の繰り返しレベルがあれば、それを仮定してEPDCCHのブラインド復号を試行する。 As a result, when the EPDCCH decoding is successful, the repetition level corresponding to the RNTI used for the decoding can be specified, and the PDSCH reception process is started k subframes after the last subframe of the EPDCCH repeated transmission. On the other hand, if the EPDCCH decoding is not successful at the current repetition level, if there is a next repetition level, the blind decoding of the EPDCCH is attempted on the assumption.
 当該処理によれば、サブフレームごとに行うデスクランブル処理量の増大を、好適に抑制することができる。 According to this processing, an increase in the descrambling processing amount performed for each subframe can be suitably suppressed.
 図9は、第3の実施形態におけるUEの受信処理の一例を示す図である。図9の場合、例えばUEは、各サブフレームで受信するEPDCCHについて、まず繰り返しレベル1を仮定して、RNTI-1のみを用いてCRCのデスクランブルを試みる(1~4サブフレーム)。4サブフレームが経過した時点で、RNTI-1を用いた復号が成功していない。 FIG. 9 is a diagram illustrating an example of UE reception processing in the third embodiment. In the case of FIG. 9, for example, for the EPDCCH received in each subframe, the UE first attempts to descramble CRC using only RNTI-1 assuming a repetition level 1 (1 to 4 subframes). When 4 subframes have elapsed, decoding using RNTI-1 has not been successful.
 そこで、UEは、別の繰り返しレベル(繰り返しレベル2)を仮定して、RNTI-2のみを用いてCRCのデスクランブルを試みる。例えば、6サブフレームが経過した時点で、UEはRNTI-2を用いた復号に成功すると、RNTI-2に対応する繰り返しレベルである8を特定することができ、EPDCCHの送信開始から8(繰り返し数)+k(k=1)=9サブフレーム後に、PDSCHの受信処理を開始する。 Therefore, the UE attempts to descramble the CRC using only RNTI-2 assuming another repetition level (repetition level 2). For example, when 6 subframes have elapsed, if the UE succeeds in decoding using RNTI-2, it can identify 8 which is a repetition level corresponding to RNTI-2, and 8 (repeated from the start of EPDCCH transmission). Number) + k (k = 1) = 9 After the subframe, the PDSCH reception process is started.
 第3の実施形態におけるUEの受信処理の別の一例では、以下の処理を行う。UEは、サブフレームごとに、ある繰り返しレベルを仮定して、EPDCCHをブラインド復号する。ここで、現在仮定している繰り返しレベルより大きな繰り返しレベルがある場合には、上記の例とは異なり、現在仮定している繰り返しレベルに対応するRNTI及び当該レベルより大きな繰り返しレベルに対応するRNTIを用いて、CRCをデスクランブリング(デマスキング)する。 In another example of UE reception processing in the third embodiment, the following processing is performed. The UE blindly decodes the EPDCCH assuming a certain repetition level for each subframe. Here, when there is a repetition level larger than the currently assumed repetition level, unlike the above example, the RNTI corresponding to the currently assumed repetition level and the RNTI corresponding to the repetition level larger than the current level are set. Used to descramble (demask) the CRC.
 EPDCCH復号に成功した場合、復号に用いたRNTIに対応するEPDCCHの繰り返し送信の最後のサブフレームからkサブフレーム後に、PDSCHの受信処理を開始する。なお、複数の繰り返しレベルのうち、より大きな繰り返しレベルに対応するRNTIでEPDCCHが検出できた場合、所定の期間(例えば、PDSCHの受信処理を開始するまでの期間)EPDCCHのブラインド復号を停止してもよい。 When the EPDCCH decoding is successful, PDSCH reception processing is started k subframes after the last subframe of the EPDCCH repetitive transmission corresponding to the RNTI used for decoding. If EPDCCH can be detected by RNTI corresponding to a larger repetition level among a plurality of repetition levels, blind decoding of EPDCCH is stopped for a predetermined period (for example, period until PDSCH reception processing is started). Also good.
 当該処理によれば、サブフレームごとに複数のデスクランブルを試行するため、EPDCCHの検出を短時間で行うことができるとともに、EPDCCHを検出した後のブラインド復号を実施しないことで、処理量の増大を好適に抑制することができる。 According to the processing, since a plurality of descrambling is tried for each subframe, EPDCCH can be detected in a short time, and the amount of processing is increased by not performing blind decoding after detecting EPDCCH. Can be suitably suppressed.
 図10は、第3の実施形態におけるUEの受信処理の別の一例を示す図である。図10の場合、例えばUEは、各サブフレームで受信するEPDCCHについて、まず繰り返しレベル1及び2を仮定して、RNTI-1及びRNTI-2それぞれでCRCのデスクランブルを試みる(サブフレーム1~4)。4サブフレームが経過した時点で、RNTI-1を用いた復号は成功しなかったが、RNTI-2を用いた復号に成功した。 FIG. 10 is a diagram illustrating another example of UE reception processing in the third embodiment. In the case of FIG. 10, for example, for the EPDCCH received in each subframe, the UE first assumes repetition levels 1 and 2, and attempts to descramble CRC in each of RNTI-1 and RNTI-2 (subframes 1 to 4). ). When 4 subframes passed, decoding using RNTI-1 was not successful, but decoding using RNTI-2 was successful.
 そこで、UEは、EPDCCHの繰り返しレベルが2であることを認識し、EPDCCHのブラインド復号処理をサブフレーム5~8において省略する。その後、EPDCCHの送信開始から8(繰り返し数)+k(k=1)=9サブフレーム後に、PDSCHの受信処理を開始する。 Therefore, the UE recognizes that the repetition level of EPDCCH is 2, and omits the blind decoding process of EPDCCH in subframes 5 to 8. Thereafter, PDSCH reception processing is started after 8 (number of repetitions) + k (k = 1) = 9 subframes from the start of EPDCCH transmission.
 以上、第3の実施形態によれば、EPDCCHの繰り返しレベルが複数設定される場合であっても、DCIのサイズを増大することなく、各繰り返し数のEPDCCHに対応したPDSCHを適切に復号することができる。 As described above, according to the third embodiment, even when a plurality of repetition levels of EPDCCH are set, the PDSCH corresponding to each number of repetitions of EPDCCH can be appropriately decoded without increasing the size of DCI. Can do.
 なお、上記の例では、RNTIと繰り返しレベルとが関連付けられる場合を示したが、これに限られない。例えば、図7のテーブルは、第2の実施形態に示したようなPDSCHの開始サブフレームに関する情報と、RNTIと、の対応関係を規定するものであってもよい。 In the above example, the case where the RNTI and the repetition level are associated is shown, but the present invention is not limited to this. For example, the table of FIG. 7 may prescribe the correspondence between the information related to the PDSCH start subframe as shown in the second embodiment and the RNTI.
 また、上記の例では、サブフレームごとにEPDCCHのブラインド復号処理が試行される場合を示したが、これに限られない。例えば、複数サブフレーム(2サブフレーム、4サブフレームなど)の受信ごとにブラインド復号処理を試行してもよい。 In the above example, the case where the blind decoding process of the EPDCCH is tried for each subframe is shown, but the present invention is not limited to this. For example, the blind decoding process may be tried every time a plurality of subframes (2 subframes, 4 subframes, etc.) are received.
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上述した本発明の実施形態に係る無線通信方法が適用される。なお、上記の各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。ここでは、狭帯域に使用帯域が制限されたユーザ端末としてMTC端末を例示するが、MTC端末に限定されるものではない。
(Wireless communication system)
Hereinafter, the configuration of a wireless communication system according to an embodiment of the present invention will be described. In this wireless communication system, the above-described wireless communication method according to the embodiment of the present invention is applied. In addition, the radio | wireless communication method which concerns on said each embodiment may each be applied independently, and may be applied in combination. Here, an MTC terminal is illustrated as a user terminal whose use band is limited to a narrow band, but is not limited to an MTC terminal.
 図11は、本発明の一実施形態に係る無線通信システムの概略構成図である。図11に示す無線通信システム1は、マシン通信システムのネットワークドメインにLTEシステムを採用した一例である。当該無線通信システム1では、LTEシステムのシステム帯域幅を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。また、LTEシステムが下りリンク及び上りリンク共に最大20MHzのシステム帯域に設定されるものとするが、この構成に限られない。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれてもよい。 FIG. 11 is a schematic configuration diagram of a wireless communication system according to an embodiment of the present invention. A wireless communication system 1 shown in FIG. 11 is an example in which an LTE system is adopted in a network domain of a machine communication system. In the wireless communication system 1, carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) having the system bandwidth of the LTE system as one unit can be applied. . In addition, the LTE system is assumed to be set to a maximum system bandwidth of 20 MHz for both downlink and uplink, but is not limited to this configuration. The wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
 無線通信システム1は、無線基地局10と、無線基地局10に無線接続する複数のユーザ端末20A、20B及び20Cとを含んで構成されている。無線基地局10は、上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。 The wireless communication system 1 includes a wireless base station 10 and a plurality of user terminals 20A, 20B, and 20C that are wirelessly connected to the wireless base station 10. The radio base station 10 is connected to the higher station apparatus 30 and is connected to the core network 40 via the higher station apparatus 30. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
 複数のユーザ端末20A、20B及び20Cは、セル50において無線基地局10と通信を行うことができる。例えば、ユーザ端末20Aは、LTE(Rel-10まで)又はLTE-Advanced(Rel-10以降も含む)をサポートするユーザ端末(以下、LTE端末)であり、他のユーザ端末20B、20Cは、マシン通信システムにおける通信デバイスとなるMTC端末である。以下、特に区別を要しない場合は、ユーザ端末20A、20B及び20Cは単にユーザ端末20と呼ぶ。 The plurality of user terminals 20 </ b> A, 20 </ b> B, and 20 </ b> C can communicate with the radio base station 10 in the cell 50. For example, the user terminal 20A is a user terminal (hereinafter, LTE terminal) that supports LTE (up to Rel-10) or LTE-Advanced (including Rel-10 and later), and the other user terminals 20B and 20C are machine The MTC terminal is a communication device in the communication system. Hereinafter, the user terminals 20 </ b> A, 20 </ b> B, and 20 </ b> C are simply referred to as the user terminal 20 unless it is necessary to distinguish between them.
 なお、MTC端末20B、20Cは、LTE、LTE-Aなどの各種通信方式に対応した端末であり、電気メータ、ガスメータ、自動販売機などの固定通信端末に限らず、車両などの移動通信端末でもよい。また、ユーザ端末20は、他のユーザ端末20と直接通信してもよいし、無線基地局10を介して通信してもよい。 The MTC terminals 20B and 20C are terminals compatible with various communication systems such as LTE and LTE-A, and are not limited to fixed communication terminals such as electric meters, gas meters, and vending machines, but also mobile communication terminals such as vehicles. Good. Further, the user terminal 20 may communicate directly with another user terminal 20 or may communicate via the radio base station 10.
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。 In the radio communication system 1, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink and SC-FDMA (Single Carrier Frequency Division Multiple Access) is applied to the uplink as the radio access scheme. OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there. The uplink and downlink radio access methods are not limited to these combinations.
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, and predetermined SIB (System Information Block) are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。 Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation signal (ACK / NACK) for PUSCH is transmitted by PHICH. The EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。 In the wireless communication system 1, as an uplink channel, an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), and a random access channel (PRACH) shared by each user terminal 20 are used. Physical Random Access Channel) is used. User data and higher layer control information are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), a delivery confirmation signal, and the like are transmitted by PUCCH. A random access preamble for establishing connection with a cell is transmitted by the PRACH.
 なお、MTC端末向けのチャネルは、「M」を付して表されてもよく、例えば、MTC端末向けのEPDCCH、PDSCH、PUCCH、PUSCHはそれぞれ、MPDCCH、MPDSCH、MPUCCH、MPUSCHなどと呼ばれてもよい。 The channel for the MTC terminal may be represented with “M”. For example, EPDCCH, PDSCH, PUCCH, and PUSCH for the MTC terminal are called MPDCCH, MPDSCH, MPUCCH, MPUSCH, and the like, respectively. Also good.
<無線基地局>
 図12は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を少なくとも備えている。
<Wireless base station>
FIG. 12 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention. The radio base station 10 includes at least a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。 In the baseband signal processing unit 104, with respect to user data, PDCP (Packet Data Convergence Protocol) layer processing, user data division / combination, RLC (Radio Link Control) retransmission control and other RLC layer transmission processing, MAC (Medium Access) Control) Retransmission control (for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and other transmission processing Is transferred to each transceiver 103. The downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 Each transmission / reception unit 103 converts the baseband signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band and transmits the converted signal. The transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention. In addition, the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
 送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、システム帯域幅(例えば、1コンポーネントキャリア)より制限された狭帯域幅(例えば、1.4MHz)で、各種信号を送受信することができる。 The radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101. The transmission / reception unit 103 can transmit and receive various signals with a narrow bandwidth (for example, 1.4 MHz) limited by the system bandwidth (for example, one component carrier).
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅される。各送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the uplink signal, the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102. Each transmitting / receiving unit 103 receives the upstream signal amplified by the amplifier unit 102. The transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。 The baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal. Decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. The transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
 図13は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、図13では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図13に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。 FIG. 13 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 13, the baseband signal processing unit 104 includes a control unit (scheduler) 301, a transmission signal generation unit (generation unit) 302, a mapping unit 303, a reception signal processing unit 304, a measurement unit 305, , At least.
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit (scheduler) 301 controls the entire radio base station 10. The control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
 制御部301は、例えば、送信信号生成部302による信号の生成や、マッピング部303による信号の割り当てを制御する。また、制御部301は、受信信号処理部304による信号の受信処理や、測定部305による信号の測定を制御する。 The control unit 301 controls signal generation by the transmission signal generation unit 302 and signal allocation by the mapping unit 303, for example. The control unit 301 also controls signal reception processing by the reception signal processing unit 304 and signal measurement by the measurement unit 305.
 制御部301は、システム情報、PDSCHで送信される下りデータ信号、PDCCH及び/又はEPDCCH(MPDCCH)で伝送される下り制御信号のスケジューリング(例えば、リソース割り当て)を制御する。また、同期信号や、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)、DM-RS(Demodulation Reference Signal)などの下り参照信号のスケジューリングの制御を行う。 The control unit 301 controls scheduling (for example, resource allocation) of system information, a downlink data signal transmitted by PDSCH, and a downlink control signal transmitted by PDCCH and / or EPDCCH (MPDCCH). It also controls scheduling of synchronization signals and downlink reference signals such as CRS (Cell-specific Reference Signal), CSI-RS (Channel State Information Reference Signal), DM-RS (Demodulation Reference Signal).
 また、制御部301は、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号(例えば、送達確認信号(HARQ-ACK))、PRACHで送信されるランダムアクセスプリアンブルや、上り参照信号などのスケジューリングを制御する。 The control unit 301 also transmits an uplink data signal transmitted on the PUSCH, an uplink control signal transmitted on the PUCCH and / or PUSCH (for example, a delivery confirmation signal (HARQ-ACK)), a random access preamble transmitted on the PRACH, Controls scheduling of uplink reference signals and the like.
 制御部301は、各種信号を狭帯域に割り当ててユーザ端末20に対して送信するように、送信信号生成部302及びマッピング部303を制御する。制御部301は、例えば、下りリンクの報知情報(MIB、SIB)や、EPDCCH、PDSCHなどを狭帯域で送信するように制御する。 The control unit 301 controls the transmission signal generation unit 302 and the mapping unit 303 so that various signals are allocated to a narrow band and transmitted to the user terminal 20. For example, the control unit 301 performs control so that downlink broadcast information (MIB, SIB), EPDCCH, PDSCH, and the like are transmitted in a narrow band.
 また、制御部301は、所定のユーザ端末20の送信信号及び/又は受信信号に適用する繰り返し数を動的に制御(設定など)する。制御部301は、繰り返し数として、複数の異なる値を利用可能である。そして、制御部301は、繰り返し数を考慮して、所定の信号について、送信/受信タイミングを制御する。 Further, the control unit 301 dynamically controls (sets, etc.) the number of repetitions applied to the transmission signal and / or reception signal of a predetermined user terminal 20. The control unit 301 can use a plurality of different values as the number of repetitions. Then, the control unit 301 controls transmission / reception timing for a predetermined signal in consideration of the number of repetitions.
 例えば、制御部301は、EPDCCHの最大の繰り返し数に基づいて、EPDCCHを送信する最後のサブフレームと、当該EPDCCHに対応するPDSCHの送信開始サブフレームと、の間隔を制御する(第1の実施形態)。 For example, based on the maximum number of repetitions of EPDCCH, control unit 301 controls the interval between the last subframe for transmitting EPDCCH and the transmission start subframe for PDSCH corresponding to the EPDCCH (first implementation). Form).
 また、制御部301は、EPDCCHの繰り返し送信の最後のサブフレームからkサブフレーム(例えば、1サブフレーム)後に、当該EPDCCHに対応するPDSCHの送信を開始するように制御する(第2及び第3の実施形態)。この場合、制御部301は、EPDCCHで送信するDCIに、対応するPDSCHの受信タイミングを特定するための情報を含めるか(第2の実施形態)、又はCRCフィールドに対して繰り返しレベルに関連付けられた識別子(例えば、C-RNTI)でスクランブル処理を適用する(第3の実施形態)ように制御する。 In addition, the control unit 301 performs control so that transmission of the PDSCH corresponding to the EPDCCH is started after k subframes (for example, one subframe) from the last subframe of the repeated transmission of the EPDCCH (second and third). Embodiment). In this case, the control unit 301 includes information for specifying the reception timing of the corresponding PDSCH in the DCI transmitted using the EPDCCH (second embodiment) or is associated with the repetition level for the CRC field. Control is performed so that scrambling processing is applied with an identifier (for example, C-RNTI) (third embodiment).
 制御部301は、繰り返しレベルと繰り返し数との対応関係、所定の信号に関するALと繰り返しレベルとの対応関係、下りデータチャネルの受信タイミングを特定するための情報(例えば、EPDCCHの繰り返しレベルに関する情報、PDSCHの開始サブフレームに関する情報など)とDCIに含まれるインデックスとの対応関係、繰り返しレベルとRNTIとの対応関係などの少なくとも一部を有する。また、制御部301は、これらの対応関係に関する情報を、ユーザ端末20に通知するように制御を行うことができる。 The control unit 301 determines the correspondence between the repetition level and the number of repetitions, the correspondence between the AL related to a predetermined signal and the repetition level, information for specifying the reception timing of the downlink data channel (for example, information on the repetition level of the EPDCCH, Information on the PDSCH start subframe) and the index included in the DCI, and at least a part of the correspondence between the repetition level and the RNTI. Further, the control unit 301 can perform control so as to notify the user terminal 20 of information related to these correspondences.
 送信信号生成部(生成部)302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit (generation unit) 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303. The transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。 The transmission signal generation unit 302 generates, for example, a DL assignment that notifies downlink signal allocation information and a UL grant that notifies uplink signal allocation information based on an instruction from the control unit 301. Further, the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI) from each user terminal 20.
 また、送信信号生成部302は、下り信号の繰り返し送信(例えば、EPDCCH、PDSCHの繰り返し送信)を設定されている場合、複数のサブフレームに渡って同じ下り信号を生成してマッピング部303に出力する。 In addition, the transmission signal generation unit 302 generates the same downlink signal over a plurality of subframes and outputs it to the mapping unit 303 when downlink signal repetition transmission (for example, EPDCCH and PDSCH repetition transmission) is set. To do.
 また、送信信号生成部302は、制御部301からの指示に基づいて、対応するPDSCHの受信タイミングの特定情報を有するDCIを含む下り信号(EPDCCH信号、MPDCCH信号)を生成し、マッピング部303に出力する(第2の実施形態)。また、送信信号生成部302は、制御部301からの指示に基づいて、CRCフィールドに対して繰り返しレベルに関連付けられた識別子でスクランブル処理を適用したDCIを含む下り信号を生成し、マッピング部303に出力する(第3の実施形態)。 Further, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a downlink signal (EPDCCH signal, MPDCCH signal) including DCI having identification information of the corresponding PDSCH reception timing, and sends it to the mapping unit 303. Output (second embodiment). Further, based on an instruction from the control unit 301, the transmission signal generation unit 302 generates a downlink signal including DCI obtained by applying scrambling processing with an identifier associated with the repetition level for the CRC field, and sends it to the mapping unit 303. Output (third embodiment).
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の狭帯域の無線リソース(例えば、最大6リソースブロック)にマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 The mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined narrowband radio resource (for example, a maximum of 6 resource blocks) based on an instruction from the control unit 301, and transmits and receives To 103. The mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103. Here, the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20. The reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
 受信信号処理部304は、繰り返し信号を送信するユーザ端末20からの受信信号に対して、繰り返し信号向けの受信処理を適用する。受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力する。 The reception signal processing unit 304 applies reception processing for the repetitive signal to the reception signal from the user terminal 20 that transmits the repetitive signal. Reception signal processing section 304 outputs information decoded by the reception processing to control section 301. The reception signal processing unit 304 outputs the reception signal and the signal after reception processing to the measurement unit 305.
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 305 performs measurement on the received signal. The measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 測定部305は、信号の受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 may measure signal reception power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality)), channel state, and the like. The measurement result may be output to the control unit 301.
<ユーザ端末>
 図14は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。なお、ここでは詳細な説明を省略するが、通常のLTE端末がMTC端末としてふるまうように動作してもよい。ユーザ端末20は、送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を少なくとも備えている。また、ユーザ端末20は、送受信アンテナ201、アンプ部202、送受信部203などを複数備えてもよい。
<User terminal>
FIG. 14 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment. In addition, although detailed description is abbreviate | omitted here, you may operate | move so that a normal LTE terminal may act as a MTC terminal. The user terminal 20 includes at least a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The user terminal 20 may include a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, and the like.
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。例えば、送受信部203は、EPDCCHの繰り返しレベルに関する情報を含むDCIを受信する。 The radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202. The transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202. For example, the transmission / reception unit 203 receives DCI including information on the repetition level of EPDCCH.
 送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204. The transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。 The baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal. The downlink user data is transferred to the application unit 205. The application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. In addition, broadcast information in the downlink data is also transferred to the application unit 205.
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 On the other hand, uplink user data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs transmission / reception by performing retransmission control transmission processing (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Is transferred to the unit 203. The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
 図15は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、図15においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図15に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部(生成部)402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。 FIG. 15 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 15 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 15, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit (generation unit) 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit. 405.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 controls the entire user terminal 20. The control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
 制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号の割り当てを制御する。また、制御部401は、受信信号処理部404による信号の受信処理や、測定部405による信号の測定を制御する。 The control unit 401 controls, for example, signal generation by the transmission signal generation unit 402 and signal allocation by the mapping unit 403. The control unit 401 controls signal reception processing by the reception signal processing unit 404 and signal measurement by the measurement unit 405.
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御信号や、下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号(例えば、送達確認信号(HARQ-ACK)など)や上りデータ信号の生成を制御する。 The control unit 401 obtains, from the received signal processing unit 404, a downlink control signal (a signal transmitted by PDCCH / EPDCCH) and a downlink data signal (a signal transmitted by PDSCH) transmitted from the radio base station 10. The control unit 401 generates an uplink control signal (for example, an acknowledgment signal (HARQ-ACK)) or an uplink data signal based on a downlink control signal, a result of determining whether retransmission control is necessary for the downlink data signal, or the like. To control.
 また、制御部401は、ユーザ端末20が上り信号(例えば、PUCCH及び/又はPUSCH)の繰り返し数を設定されている場合には、所定の信号の繰り返しレベルに関する情報に基づいて、同一情報を含む信号を複数のサブフレームに渡って繰り返し送信するように制御を実施することができる。 In addition, when the user terminal 20 is set with the number of repetitions of the uplink signal (for example, PUCCH and / or PUSCH), the control unit 401 includes the same information based on information on the repetition level of a predetermined signal. Control can be performed so that the signal is repeatedly transmitted over a plurality of subframes.
 制御部401は、受信信号処理部404から通常カバレッジモード又はカバレッジ拡張モードで動作することを示す情報が入力された場合、当該情報に基づいて自端末のモードを判断することができる。また、制御部401は、繰り返しレベルに関する情報に基づいて当該モードを判断してもよい。 When the information indicating that the control unit 401 operates in the normal coverage mode or the coverage extension mode is input from the received signal processing unit 404, the control unit 401 can determine the mode of the own terminal based on the information. Further, the control unit 401 may determine the mode based on information regarding the repetition level.
 制御部401は、繰り返し数として、複数の異なる値を想定することができる。制御部401は、繰り返し数を考慮して、所定の信号について、送信/受信タイミングを制御する。例えば、制御部401は、EPDCCHの繰り返し数を考慮して、PDSCHの受信タイミングを判断する。 The control unit 401 can assume a plurality of different values as the number of repetitions. The control unit 401 controls transmission / reception timing for a predetermined signal in consideration of the number of repetitions. For example, the control unit 401 determines the PDSCH reception timing in consideration of the number of EPDCCH repetitions.
 具体的には、制御部401は、DCIに基づいて、検出したEPDCCH(DCI)に対応するPDSCHの受信タイミングを判断する。例えば、EPDCCH(DCI)の最大の繰り返し数及び/又は復号されたDCIに含まれる受信タイミングの特定情報に基づいて、検出したEPDCCH(DCI)に対応するPDSCHの受信タイミングを判断する(第1の実施形態、第2の実施形態)。なお、受信タイミングは、受信開始タイミング(例えば、受信開始サブフレーム)、送信開始タイミング(例えば、送信開始サブフレーム)などであってもよい。 Specifically, the control unit 401 determines the PDSCH reception timing corresponding to the detected EPDCCH (DCI) based on the DCI. For example, the PDSCH reception timing corresponding to the detected EPDCCH (DCI) is determined based on the maximum number of repetitions of EPDCCH (DCI) and / or the reception timing specifying information included in the decoded DCI (first Embodiment, second embodiment). The reception timing may be a reception start timing (for example, reception start subframe), a transmission start timing (for example, transmission start subframe), or the like.
 また、制御部401は、DCIを成功裏に復号できた識別子(C-RNTI)に基づいて、当該DCIに対応するPDSCHの受信タイミングを判断する(第3の実施形態)。この場合、制御部401は、受信信号処理部404に対して、サブフレームごとに1つの識別子を用いてDCIの復号処理を行うように指示してもよいし、サブフレームごとに複数の識別子をそれぞれ用いてDCIの復号処理を行い、より大きな繰り返しレベルに対応する識別子で復号が成功した場合には、所定の期間DCIの復号処理を行わないように指示してもよい。 Also, the control unit 401 determines the PDSCH reception timing corresponding to the DCI based on the identifier (C-RNTI) that has successfully decoded the DCI (third embodiment). In this case, the control unit 401 may instruct the received signal processing unit 404 to perform a DCI decoding process using one identifier for each subframe, or a plurality of identifiers for each subframe. Each may be used to perform DCI decoding processing, and if decoding succeeds with an identifier corresponding to a larger repetition level, it may be instructed not to perform DCI decoding processing for a predetermined period.
 制御部401は、繰り返しレベルと繰り返し数との対応関係、所定の信号に関するALと繰り返しレベルとの対応関係、下りデータチャネルの受信タイミングを特定するための情報(例えば、EPDCCHの繰り返しレベルに関する情報、PDSCHの開始サブフレームに関する情報など)とDCIに含まれるインデックスとの対応関係、繰り返しレベルとRNTIとの対応関係などの少なくとも一部を有する。制御部401は、これらの対応関係を用いてPDSCHの受信タイミングを判断することができる。なお、制御部401は、受信信号処理部404からこれらの対応関係に関する情報が入力された場合、対応関係を更新してもよい。 The control unit 401 correlates the repetition level and the number of repetitions, the correspondence between the AL and the repetition level for a predetermined signal, information for specifying the reception timing of the downlink data channel (for example, information regarding the repetition level of the EPDCCH, Information on the PDSCH start subframe) and the index included in the DCI, and at least a part of the correspondence between the repetition level and the RNTI. The control unit 401 can determine the PDSCH reception timing using these correspondences. Note that the control unit 401 may update the correspondence relationship when information regarding the correspondence relationship is input from the reception signal processing unit 404.
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。 The transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403. The transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認信号(HARQ-ACK)やチャネル状態情報(CSI)に関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。 The transmission signal generation unit 402 generates an uplink control signal related to a delivery confirmation signal (HARQ-ACK) or channel state information (CSI) based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
 また、送信信号生成部402は、ユーザ端末20に所定の上り信号の繰り返し送信が設定されている場合、複数のサブフレームに渡って同じ上り信号を生成してマッピング部403に出力する。繰り返し数については、制御部401からの指示に基づいて、設定されてもよい。 Also, the transmission signal generation unit 402 generates the same uplink signal over a plurality of subframes and outputs it to the mapping unit 403 when the user terminal 20 is configured to repeatedly transmit a predetermined uplink signal. The number of repetitions may be set based on an instruction from the control unit 401.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソース(例えば、最大6リソースブロック)にマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。 Based on an instruction from the control unit 401, the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource (for example, a maximum of 6 resource blocks) and outputs the radio signal to the transmission / reception unit 203. The mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。 The reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203. Here, the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10. The reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
 受信信号処理部404は、繰り返し信号を送信する無線基地局10からの受信信号に対して、繰り返し信号向けの受信処理を適用する。例えば、受信信号処理部404は、制御部401からの指示に基づいて、所定の識別子を用いてDCI(EPDCCH)の復号処理を行ってもよい。 The reception signal processing unit 404 applies reception processing for the repetitive signal to the reception signal from the radio base station 10 that transmits the repetitive signal. For example, the received signal processing unit 404 may perform a DCI (EPDCCH) decoding process using a predetermined identifier based on an instruction from the control unit 401.
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号や、受信処理後の信号を、測定部405に出力する。 The reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401. The reception signal processing unit 404 outputs broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401, for example. The reception signal processing unit 404 outputs the reception signal and the signal after reception processing to the measurement unit 405.
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。 The measurement unit 405 performs measurement on the received signal. The measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
 測定部405は、例えば、受信した信号の受信電力(例えば、RSRP)、受信品質(例えば、RSRQ)やチャネル状態などについて測定してもよい。測定結果は、制御部401に出力されてもよい。 The measurement unit 405 may measure, for example, the received power (for example, RSRP), reception quality (for example, RSRQ), channel state, and the like of the received signal. The measurement result may be output to the control unit 401.
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。 In addition, the block diagram used for description of the said embodiment has shown the block of the functional unit. These functional blocks (components) are realized by any combination of hardware and software. Further, the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
 例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU:Central Processing Unit)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。つまり、本発明の一実施形態に係る無線基地局、ユーザ端末などは、本発明に係る無線通信方法の処理を行うコンピュータとして機能してもよい。 For example, some or all of the functions of the radio base station 10 and the user terminal 20 are realized using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array). May be. The radio base station 10 and the user terminal 20 are each a computer device including a processor (CPU: Central Processing Unit), a communication interface for network connection, a memory, and a computer-readable storage medium holding a program. It may be realized. That is, the radio base station, user terminal, and the like according to an embodiment of the present invention may function as a computer that performs processing of the radio communication method according to the present invention.
 ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、CD-ROM(Compact Disc-ROM)、RAM(Random Access Memory)、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。 Here, the processor and memory are connected by a bus for communicating information. Computer-readable recording media include, for example, flexible disks, magneto-optical disks, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), CD-ROM (Compact Disc-ROM), RAM (Random Access Memory), A storage medium such as a hard disk. In addition, the program may be transmitted from a network via a telecommunication line. The radio base station 10 and the user terminal 20 may include an input device such as an input key and an output device such as a display.
 無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。 The functional configurations of the radio base station 10 and the user terminal 20 may be realized by the hardware described above, may be realized by a software module executed by a processor, or may be realized by a combination of both. The processor controls the entire user terminal by operating an operating system. Further, the processor reads programs, software modules and data from the storage medium into the memory, and executes various processes according to these.
 ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Here, the program may be a program that causes a computer to execute the operations described in the above embodiments. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in a memory and operated by a processor, and may be realized similarly for other functional blocks.
 また、ソフトウェア、命令などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)などの有線技術及び/又は赤外線、無線及びマイクロ波などの無線技術を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Further, software, instructions, etc. may be transmitted / received via a transmission medium. For example, software may use websites, servers, or other devices using wired technology such as coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL) and / or wireless technology such as infrared, wireless and microwave. When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
 なお、本明細書中で説明した及び/又は本明細書の理解に必要な各用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、無線リソースはインデックスで指示されるものであってもよい。また、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC)は、キャリア周波数、セルなどと呼ばれてもよい。 Each term described in the present specification and / or necessary for understanding the present specification may be replaced with a term having the same or similar meaning. For example, the radio resource may be indicated by an index. Further, the channel and / or symbol may be a signal (signaling). The signal may be a message. Further, the component carrier (CC) may be called a carrier frequency, a cell, or the like.
 本明細書で示した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment shown in this specification may be used independently, may be used in combination, or may be switched according to execution. In addition, notification of predetermined information (for example, notification of being “X”) is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
 情報の通知は、本明細書で示した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。 The notification of information is not limited to the aspect / embodiment shown in this specification, and may be performed by other methods. For example, notification of information includes physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling), It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, the RRC signaling may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
 本明細書で示した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. shown in this specification may be represented using any of a variety of different technologies. For example, data, commands, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these May be represented by a combination of
 本明細書で示した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment shown in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems The present invention may be applied to a system and / or a next-generation system extended based on these systems.
 本明細書で示した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で示した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing procedures, sequences, flowcharts, and the like of each aspect / embodiment shown in this specification may be interchanged as long as there is no contradiction. For example, the methods presented herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described in detail above, it will be apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modified and changed modes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
 本出願は、2015年5月14日出願の特願2015-099524に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2015-099524 filed on May 14, 2015. All this content is included here.

Claims (6)

  1.  システム帯域の一部の狭帯域に使用帯域が制限されたユーザ端末であって、
     下り制御チャネルで繰り返し送信される下り制御情報(DCI:Downlink Control Information)と、前記DCIに対応する下り共有チャネルと、を受信する受信部と、
     前記DCIの内容に基づいて、前記下り共有チャネルの受信タイミングを判断する制御部と、を有することを特徴とするユーザ端末。
    A user terminal whose use band is limited to a narrow part of the system band,
    A receiving unit for receiving downlink control information (DCI: Downlink Control Information) repeatedly transmitted on a downlink control channel and a downlink shared channel corresponding to the DCI;
    And a control unit that determines reception timing of the downlink shared channel based on the content of the DCI.
  2.  前記制御部は、前記DCIに含まれる、前記下り制御チャネルの繰り返し数に関する情報に基づいて、前記下り共有チャネルの受信タイミングを判断することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the control unit determines reception timing of the downlink shared channel based on information regarding the number of repetitions of the downlink control channel included in the DCI.
  3.  前記DCIは、既存システムで規定されるDCIに比べて、リソース割り当て(RA:Resource Allocation)フィールド、MCS(Modulation and Coding Scheme)フィールド及びHPN(HARQ Process Number)フィールドの少なくとも1つのビット量が削減されていることを特徴とする請求項2に記載のユーザ端末。 Compared to DCI defined in the existing system, the DCI is reduced in at least one bit amount of a resource allocation (RA) field, an MCS (Modulation and Coding Scheme) field, and an HPN (HARQ Process Number) field. The user terminal according to claim 2, wherein:
  4.  前記制御部は、前記下り制御チャネルの最大の繰り返し数及び前記下り制御チャネルの繰り返し数に関する情報に基づいて、前記下り共有チャネルの受信タイミングを判断することを特徴とする請求項2又は請求項3に記載のユーザ端末。 The said control part judges the receiving timing of the said downlink shared channel based on the information regarding the maximum repetition number of the said downlink control channel, and the repetition number of the said downlink control channel, The Claim 2 or Claim 3 characterized by the above-mentioned. The user terminal described in 1.
  5.  システム帯域の一部の狭帯域に使用帯域が制限されたユーザ端末と通信する無線基地局であって、
     下り制御情報(DCI:Downlink Control Information)を生成する生成部と、
     前記DCIを下り制御チャネルで繰り返し送信し、前記DCIに対応するデータを下り共有チャネルで送信する送信部と、を有し、
     前記ユーザ端末において、前記DCIの内容は、前記下り共有チャネルの受信タイミングを判断するために用いられることを特徴とする無線基地局。
    A radio base station that communicates with a user terminal whose use band is limited to a narrow part of the system band,
    A generation unit that generates downlink control information (DCI);
    A transmission unit that repeatedly transmits the DCI through a downlink control channel and transmits data corresponding to the DCI through a downlink shared channel;
    In the user terminal, the content of the DCI is used to determine reception timing of the downlink shared channel.
  6.  システム帯域の一部の狭帯域に使用帯域が制限されたユーザ端末の無線通信方法であって、
     前記ユーザ端末において、下り制御チャネルで繰り返し送信される下り制御情報(DCI:Downlink Control Information)と、前記DCIに対応する下り共有チャネルと、を受信する工程と、
     前記DCIの内容に基づいて、前記下り共有チャネルの受信タイミングを判断する工程と、を有することを特徴とする無線通信方法。
    A wireless communication method of a user terminal in which a use band is limited to a narrow part of a system band,
    In the user terminal, receiving downlink control information (DCI: Downlink Control Information) repeatedly transmitted on a downlink control channel and a downlink shared channel corresponding to the DCI;
    And determining the reception timing of the downlink shared channel based on the contents of the DCI.
PCT/JP2016/064246 2015-05-14 2016-05-13 User terminal, wireless base station, and wireless communication method WO2016182052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-099524 2015-05-14
JP2015099524A JP2016219896A (en) 2015-05-14 2015-05-14 User terminal, radio base station, and radio communication method

Publications (1)

Publication Number Publication Date
WO2016182052A1 true WO2016182052A1 (en) 2016-11-17

Family

ID=57249212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064246 WO2016182052A1 (en) 2015-05-14 2016-05-13 User terminal, wireless base station, and wireless communication method

Country Status (2)

Country Link
JP (1) JP2016219896A (en)
WO (1) WO2016182052A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173225A1 (en) * 2017-03-23 2018-09-27 富士通株式会社 Terminal device, base station device, wireless communication system and wireless communication method
WO2020003523A1 (en) * 2018-06-29 2020-01-02 株式会社Nttドコモ User terminal
CN110856256A (en) * 2017-02-07 2020-02-28 上海朗帛通信技术有限公司 Method and device for wireless communication
CN110999484A (en) * 2017-06-08 2020-04-10 株式会社Ntt都科摩 User terminal and wireless communication method
US10623169B2 (en) * 2018-04-27 2020-04-14 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
CN111052694A (en) * 2017-07-13 2020-04-21 株式会社Ntt都科摩 User terminal and wireless communication method
CN111164920A (en) * 2017-08-09 2020-05-15 株式会社Ntt都科摩 User terminal and wireless communication method
CN111434162A (en) * 2017-11-16 2020-07-17 株式会社Ntt都科摩 User terminal and wireless communication method
CN111567111A (en) * 2017-12-27 2020-08-21 株式会社Ntt都科摩 User terminal and wireless communication method
CN111684847A (en) * 2017-12-04 2020-09-18 株式会社Ntt都科摩 User terminal and wireless communication method
CN111742590A (en) * 2017-12-27 2020-10-02 株式会社Ntt都科摩 Base station and wireless communication method
CN111771389A (en) * 2017-12-27 2020-10-13 株式会社Ntt都科摩 Radio base station and radio communication method
CN111788855A (en) * 2018-01-05 2020-10-16 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801972A (en) * 2018-01-12 2020-10-20 株式会社Ntt都科摩 User terminal and wireless communication method
CN111869284A (en) * 2017-12-27 2020-10-30 株式会社Ntt都科摩 User terminal and wireless communication method
CN111937453A (en) * 2018-04-02 2020-11-13 株式会社Ntt都科摩 User device
CN112262603A (en) * 2018-04-05 2021-01-22 株式会社Ntt都科摩 User terminal and radio base station
CN112400351A (en) * 2018-07-05 2021-02-23 株式会社Ntt都科摩 Terminal and wireless communication method
CN112514476A (en) * 2018-05-11 2021-03-16 株式会社Ntt都科摩 User terminal and wireless communication method base station
CN112567792A (en) * 2018-08-10 2021-03-26 株式会社Ntt都科摩 User terminal and wireless communication method
CN112586051A (en) * 2018-06-18 2021-03-30 株式会社Ntt都科摩 User terminal
CN112703794A (en) * 2018-07-20 2021-04-23 株式会社Ntt都科摩 Base station
CN112740770A (en) * 2018-07-20 2021-04-30 株式会社Ntt都科摩 Base station and user terminal
WO2021127840A1 (en) 2019-12-23 2021-07-01 Nec Corporation Method, device and computer storage medium for communication
CN113169946A (en) * 2018-09-28 2021-07-23 株式会社Ntt都科摩 User terminal and base station
CN113170482A (en) * 2018-09-28 2021-07-23 株式会社Ntt都科摩 User terminal
CN113170481A (en) * 2018-09-28 2021-07-23 株式会社Ntt都科摩 Transmission device and reception device
CN113170429A (en) * 2018-09-25 2021-07-23 株式会社Ntt都科摩 User terminal
CN113785512A (en) * 2019-02-14 2021-12-10 株式会社Ntt都科摩 User terminal and wireless communication method
CN113906778A (en) * 2019-04-11 2022-01-07 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041316A (en) * 2019-05-09 2022-02-11 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041302A (en) * 2019-04-26 2022-02-11 株式会社Ntt都科摩 User terminal and wireless communication method
CN114208246A (en) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 User device, base station device, and communication method
CN111567111B (en) * 2017-12-27 2024-05-14 株式会社Ntt都科摩 User terminal and wireless communication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11212813B2 (en) * 2017-01-13 2021-12-28 Qualcomm Incorporated Configuration of control resources
WO2020003473A1 (en) * 2018-06-28 2020-01-02 株式会社Nttドコモ User terminal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Downlink control channel related issues for MTC", 3GPP TSG-RAN WG1#80, R1-150199, 3GPP, 13 February 2015 (2015-02-13), XP050933413 *
MEDIATEK INC.: "Discussion on potential solutions for physical channels for Rel-13 MTC UE", 3GPP TSG-RAN WG1#78BIS, R1-144122, 3GPP, XP050869770 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110856256B (en) * 2017-02-07 2022-11-25 上海朗帛通信技术有限公司 Method and device for wireless communication
CN110856256A (en) * 2017-02-07 2020-02-28 上海朗帛通信技术有限公司 Method and device for wireless communication
US11877317B2 (en) 2017-02-07 2024-01-16 Honor Device Co., Ltd. Method and device used for wireless communication
WO2018173225A1 (en) * 2017-03-23 2018-09-27 富士通株式会社 Terminal device, base station device, wireless communication system and wireless communication method
CN110999484A (en) * 2017-06-08 2020-04-10 株式会社Ntt都科摩 User terminal and wireless communication method
CN110999484B (en) * 2017-06-08 2024-03-12 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
CN111052694A (en) * 2017-07-13 2020-04-21 株式会社Ntt都科摩 User terminal and wireless communication method
CN111164920A (en) * 2017-08-09 2020-05-15 株式会社Ntt都科摩 User terminal and wireless communication method
CN111434162A (en) * 2017-11-16 2020-07-17 株式会社Ntt都科摩 User terminal and wireless communication method
CN111684847B (en) * 2017-12-04 2024-04-30 株式会社Ntt都科摩 User terminal and wireless communication method
CN111684847A (en) * 2017-12-04 2020-09-18 株式会社Ntt都科摩 User terminal and wireless communication method
CN111567111B (en) * 2017-12-27 2024-05-14 株式会社Ntt都科摩 User terminal and wireless communication method
CN111869284A (en) * 2017-12-27 2020-10-30 株式会社Ntt都科摩 User terminal and wireless communication method
CN111567111A (en) * 2017-12-27 2020-08-21 株式会社Ntt都科摩 User terminal and wireless communication method
CN111742590A (en) * 2017-12-27 2020-10-02 株式会社Ntt都科摩 Base station and wireless communication method
CN111869284B (en) * 2017-12-27 2024-05-14 株式会社Ntt都科摩 User terminal and wireless communication method
CN111742590B (en) * 2017-12-27 2024-05-17 株式会社Ntt都科摩 Base station and wireless communication method
CN111771389A (en) * 2017-12-27 2020-10-13 株式会社Ntt都科摩 Radio base station and radio communication method
CN111771389B (en) * 2017-12-27 2024-05-14 株式会社Ntt都科摩 Terminal, system and wireless communication method
CN111788855B (en) * 2018-01-05 2024-05-14 株式会社Ntt都科摩 User terminal and wireless communication method
CN111788855A (en) * 2018-01-05 2020-10-16 株式会社Ntt都科摩 User terminal and wireless communication method
CN111801972B (en) * 2018-01-12 2024-05-17 株式会社Ntt都科摩 Terminal, wireless communication method, base station and system
CN111801972A (en) * 2018-01-12 2020-10-20 株式会社Ntt都科摩 User terminal and wireless communication method
CN111937453A (en) * 2018-04-02 2020-11-13 株式会社Ntt都科摩 User device
CN111937453B (en) * 2018-04-02 2024-03-15 株式会社Ntt都科摩 User device
CN112262603B (en) * 2018-04-05 2024-04-02 株式会社Ntt都科摩 User terminal and radio base station
CN112262603A (en) * 2018-04-05 2021-01-22 株式会社Ntt都科摩 User terminal and radio base station
US11743015B2 (en) 2018-04-27 2023-08-29 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
US11139943B2 (en) 2018-04-27 2021-10-05 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
US11251927B2 (en) 2018-04-27 2022-02-15 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
US10623169B2 (en) * 2018-04-27 2020-04-14 Lg Electronics Inc. Method of transmitting and receiving downlink data and apparatus therefor
CN112514476A (en) * 2018-05-11 2021-03-16 株式会社Ntt都科摩 User terminal and wireless communication method base station
CN112586051A (en) * 2018-06-18 2021-03-30 株式会社Ntt都科摩 User terminal
WO2020003523A1 (en) * 2018-06-29 2020-01-02 株式会社Nttドコモ User terminal
CN112400351A (en) * 2018-07-05 2021-02-23 株式会社Ntt都科摩 Terminal and wireless communication method
CN112400351B (en) * 2018-07-05 2023-12-19 株式会社Ntt都科摩 Terminal and wireless communication method
CN112740770A (en) * 2018-07-20 2021-04-30 株式会社Ntt都科摩 Base station and user terminal
CN112703794A (en) * 2018-07-20 2021-04-23 株式会社Ntt都科摩 Base station
CN112567792B (en) * 2018-08-10 2024-02-23 株式会社Ntt都科摩 User terminal and wireless communication method
CN112567792A (en) * 2018-08-10 2021-03-26 株式会社Ntt都科摩 User terminal and wireless communication method
CN113170429A (en) * 2018-09-25 2021-07-23 株式会社Ntt都科摩 User terminal
CN113170481B (en) * 2018-09-28 2024-03-12 株式会社Ntt都科摩 Transmitting apparatus and receiving apparatus
CN113169946A (en) * 2018-09-28 2021-07-23 株式会社Ntt都科摩 User terminal and base station
CN113170482B (en) * 2018-09-28 2024-03-01 株式会社Ntt都科摩 Terminal, base station, system and wireless communication method
CN113169946B (en) * 2018-09-28 2024-03-12 株式会社Ntt都科摩 Terminal, base station, system and base station
CN113170482A (en) * 2018-09-28 2021-07-23 株式会社Ntt都科摩 User terminal
CN113170481A (en) * 2018-09-28 2021-07-23 株式会社Ntt都科摩 Transmission device and reception device
CN113785512A (en) * 2019-02-14 2021-12-10 株式会社Ntt都科摩 User terminal and wireless communication method
CN113906778B (en) * 2019-04-11 2024-01-09 株式会社Ntt都科摩 Terminal, system and wireless communication method
CN113906778A (en) * 2019-04-11 2022-01-07 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041302A (en) * 2019-04-26 2022-02-11 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041316A (en) * 2019-05-09 2022-02-11 株式会社Ntt都科摩 User terminal and wireless communication method
CN114041316B (en) * 2019-05-09 2023-08-15 株式会社Ntt都科摩 User terminal and wireless communication method
CN114208246A (en) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 User device, base station device, and communication method
CN114208246B (en) * 2019-08-14 2024-01-09 株式会社Ntt都科摩 User device, base station device, and communication method
EP4082133A4 (en) * 2019-12-23 2022-11-23 NEC Corporation Method, device and computer storage medium for communication
WO2021127840A1 (en) 2019-12-23 2021-07-01 Nec Corporation Method, device and computer storage medium for communication

Also Published As

Publication number Publication date
JP2016219896A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2016182052A1 (en) User terminal, wireless base station, and wireless communication method
US10555280B2 (en) User terminal, radio base station and radio communication method
JP6093827B1 (en) User terminal, radio base station, and radio communication method
WO2017170889A1 (en) User terminal and wireless communication method
JP6779212B2 (en) User terminal, wireless base station and wireless communication method
WO2017135345A1 (en) User terminal, wireless base station, and wireless communication method
JP7182876B2 (en) Terminal, wireless communication method, base station and system
JP2021029057A (en) Terminal, base station, wireless communication method, and system
JP2018133821A (en) User terminal, radio base station, and radio communication method
WO2016072257A1 (en) User terminal, wireless base station, and wireless communication method
WO2017135419A1 (en) User terminal, wireless base station, and wireless communication method
JP6325693B2 (en) User terminal, radio base station, and radio communication method
WO2017033841A1 (en) User terminal, wireless base station, and wireless communication method
US10638502B2 (en) User terminal, radio base station and radio communication method
CN108702629B (en) User terminal, radio base station, and radio communication method
WO2017026513A1 (en) User terminal, wireless base station, wireless communication method, and wireless communication system
JP6844854B2 (en) Terminals, base stations and wireless communication methods
JPWO2017150451A1 (en) User terminal, radio base station, and radio communication method
WO2017051712A1 (en) User terminal, radio base station, and radio communication method
WO2017026514A1 (en) User terminal, wireless base station, wireless communication method, and wireless communication system
WO2017135418A1 (en) User terminal, wireless base station, and wireless communication method
JP2018046589A (en) User terminal, radio base station and radio communication method
JP2017038321A (en) User terminal, radio base station, and radio communication method
CN107211396B (en) User terminal and wireless communication method
JP7010696B2 (en) Terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792776

Country of ref document: EP

Kind code of ref document: A1