WO2016181964A1 - Electroconductive film, transistor, and method for producing thin film - Google Patents

Electroconductive film, transistor, and method for producing thin film Download PDF

Info

Publication number
WO2016181964A1
WO2016181964A1 PCT/JP2016/063882 JP2016063882W WO2016181964A1 WO 2016181964 A1 WO2016181964 A1 WO 2016181964A1 JP 2016063882 W JP2016063882 W JP 2016063882W WO 2016181964 A1 WO2016181964 A1 WO 2016181964A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
manufacturing
carbon nanotube
substrate
film
Prior art date
Application number
PCT/JP2016/063882
Other languages
French (fr)
Japanese (ja)
Inventor
祥子 帰山
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2016181964A1 publication Critical patent/WO2016181964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to a method for manufacturing a thin film, a conductive film, and a transistor.
  • the present invention claims the priority of Japanese Patent Application No. 2015-098026 filed on May 13, 2015, and for the designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
  • a technology for obtaining a transparent conductive film or a transistor by forming a thin film containing carbon nanotubes having high electrical conductivity, mechanical strength, thermal conductivity, and heat resistance as main properties is widely used.
  • Patent Document 1 discloses a “gate electrode forming step of forming a gate electrode on a substrate, a gate insulating layer forming step of forming a gate insulating layer on the substrate so as to cover the gate electrode, and a gate insulating layer on the gate insulating layer”.
  • a conductive liquid coating step for forming a conductive portion by applying a conductive liquid to the thin film transistor. It discloses to obtain a transistor by static method of manufacturing ".
  • a surfactant When preparing a carbon nanotube dispersion, a surfactant may be added to improve dispersibility. However, the surfactant needs to be appropriately removed because it remains in the produced carbon nanotube thin film and causes a decrease in the conductivity of the thin film.
  • An object of the present invention is to provide a method for producing a highly conductive thin film.
  • An aspect of the present invention is a method for producing a thin film on a substrate, and a film forming process for forming a carbon nanotube layer using a dispersion liquid containing carbon nanotubes and a surfactant, and cleaning the carbon nanotube layer A cleaning process, wherein the film forming process is performed a plurality of times, and the cleaning process is performed at least once during the film forming process performed a plurality of times.
  • Another aspect of the present invention is a conductive film, which is formed by the above-described thin film manufacturing method.
  • Another embodiment of the present invention is a transistor including a semiconductor film formed by the above-described thin film manufacturing method, and a source electrode and a drain electrode in contact with the semiconductor film.
  • FIG. 1 is a process diagram for explaining an example of a thin film manufacturing method according to the present embodiment.
  • the substrate is cleaned.
  • a generally used substrate material is used for the substrate.
  • glass polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC) ), Cellulose acetate propionate (CAP) or the like.
  • a general method such as ultrasonic cleaning can be used.
  • step S12 the substrate is irradiated with UV (UltraViolet).
  • UV UltraViolet
  • a general UV irradiation apparatus is used for UV irradiation, but it is desirable to irradiate light having a wavelength of 200 nm or less (for example, 10 nm or more and 200 nm or less).
  • impurities on the substrate surface are removed and the substrate is hydrophilized.
  • an undercoat layer is formed on the substrate.
  • a hole dope compound solution obtained by dissolving a hole dope compound in a solvent is prepared.
  • the hole-doped compound for example, tetrafluorotetracyanoquinodimethane (hereinafter referred to as F4-TCNQ) is used.
  • the solvent for example, alcohols such as ethanol, 1-propanol and 2-propanol, and mixtures thereof can be used.
  • An undercoat layer is formed by applying the hole dope compound solution to a substrate after UV irradiation using a spray film forming apparatus or a spin coater.
  • the solution used for forming the undercoat layer is not limited to the hole dope compound, and any solution that improves the adhesion between the substrate and the carbon nanotube layer to be described later may be used. It is preferable to form an undercoat layer using a hole-doped compound because it tends to increase carriers and reduce the contact resistance between carbon nanotubes. Note that the step of forming the undercoat layer may be omitted, and the carbon nanotube layer may be formed directly on the substrate.
  • a carbon nanotube dispersion liquid to be applied to the substrate is generated.
  • the carbon nanotube refers to a graphene having a cylindrical structure.
  • Single-walled carbon nanotubes (SWCNTs) with a single cylindrical structure are called multi-walled carbon nanotubes (MWCNTs), and the diameter is 5 nm or less for single-walled carbon nanotubes.
  • Nanotubes are several tens of nm or less.
  • the dispersant is dissolved in the dispersion medium.
  • various solvents such as water, alcohol, and a combination thereof are used.
  • the dispersant is a surfactant used for enhancing the dispersibility of the carbon nanotubes.
  • anionic surfactants such as sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfate (SDBS), sodium cholate (SC), sodium deoxycholate (DOC) and the like are used.
  • SDS sodium dodecyl sulfate
  • SDBS sodium dodecylbenzene sulfate
  • SC sodium cholate
  • DOC sodium deoxycholate
  • you may use a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • step S22 the carbon nanotubes are dispersed. Carbon nanotubes are added to a dispersion in which the dispersant is sufficiently dissolved, and subjected to ultrasonic treatment, high pressure treatment, and stirring treatment to disperse the carbon nanotubes in the dispersion medium.
  • step S23 the carbon nanotube dispersion is centrifuged and the supernatant is collected. By collecting the supernatant, a carbon nanotube dispersion from which aggregates and impurities are removed is obtained.
  • step S31 the carbon nanotube dispersion liquid collected in step S23 is applied to the substrate (film formation process).
  • the dispersion can be applied by a method of spraying the dispersion onto a substrate using a spray film forming apparatus, a commonly known method such as spin coating, dip coating, bar coating, etc. In this embodiment, spraying is performed. An embodiment using a film forming apparatus will be described.
  • step S13 the carbon nanotube dispersion liquid is applied to the substrate on which the undercoat layer is formed using a spray film forming apparatus.
  • Carbon nanotubes can be formed in either a single layer or multiple layers, but a single wall is desirable.
  • step S32 the carbon nanotube layer is dried (drying process).
  • the carbon nanotube dispersion liquid is applied to the substrate heated below the softening point of the substrate in the film forming step.
  • coating is performed with respect to the board
  • the dispersion medium evaporates by heating the substrate and the carbon nanotube layer is dried. Since the carbon nanotubes remain on the substrate while maintaining a dispersed state, the carbon nanotube layer tends to be uniformly formed.
  • the softening point refers to a temperature at which the substrate starts to soften and begins to deform when the substrate is heated, and can be determined by, for example, a test method according to JIS K7207 (Method A).
  • the film forming process and the drying process are performed in parallel, but this does not prevent the drying process from being performed after the film forming process is completed.
  • the drying process is not necessarily performed by heating the substrate.
  • natural drying may be performed by installing the substrate for a predetermined time at room temperature.
  • step S33 the carbon nanotube layer is cleaned (cleaning process).
  • a liquid in which the dispersant in the carbon nanotube dispersion liquid can be dissolved such as water, alcohol, and a combination liquid thereof, is used.
  • a cleaning method a method of pouring a cleaning solution into a carbon nanotube layer formed on a substrate inclined with respect to the horizontal, or a method of immersing the substrate in a container filled with the cleaning solution for a certain period of time is used. By this treatment, the dispersant present in the carbon nanotube layer is removed.
  • the cleaning liquid remaining in the carbon nanotube layer may be dried by, for example, heating the substrate or blowing dry air or nitrogen. If the cleaning liquid remains in the carbon nanotube layer, the carbon nanotubes contained in the applied dispersion liquid tend to aggregate when the second and subsequent carbon nanotube dispersion liquid is applied. Since the sheet resistance value of the thin film increases when the carbon nanotubes aggregate, it is preferable to suppress the increase in the sheet resistance value by drying the carbon nanotube layer after the cleaning process.
  • step S34 a second dispersion liquid application is performed.
  • the carbon nanotube dispersion liquid is applied so as to overlap the carbon nanotube layer. As a result, a second carbon nanotube layer is formed.
  • step S35 the carbon nanotube layer is dried.
  • the processing performed in step S35 and step S36 is the same as the processing performed in step S32 and step S33. Then, the process of step S34 to step S36 is repeated as needed, and a thin film is obtained.
  • a thin film having a desired resistance value can be obtained by performing a cleaning process between the film forming process and appropriately removing the surfactant.
  • the carbon nanotube layer forming process and the carbon nanotube layer cleaning process are alternately performed.
  • the film forming process may be further performed without performing the cleaning process, or after the plurality of film forming processes, the cleaning process may not be performed at the end. What is necessary is just to perform a washing
  • a UV irradiation process of irradiating UV may be performed after the film formation process and before the drying step. If impurities remain in the thin film formed in the film forming process, it causes a rise in resistance. By irradiating the thin film with UV after the film forming step, impurities are removed and the resistance value is lowered.
  • the UV irradiation step may be performed after the film formation step and before the drying step, may be performed after the drying step, before the cleaning step, or may be performed after the cleaning step.
  • the thin film generated by this embodiment can be used not only as a transparent conductive film used in devices such as touch panels and thin film solar cells, but also in devices such as transistors.
  • a transistor having suitable performance can be obtained by manufacturing the thin film generated in this embodiment as a semiconductor layer in contact with the source electrode and the drain electrode.
  • FIG. 2 is a diagram showing an outline of a Roll-to-Roll manufacturing apparatus that realizes the present embodiment.
  • this manufacturing apparatus when a substrate formed in a roll shape is placed on one side of the apparatus, the thin film on which the carbon nanotube layer is formed is discharged from the other side of the apparatus.
  • the substrate contains a resin and has flexibility.
  • the substrate is cleaned. This process corresponds to step S11 described above.
  • the substrate is dried.
  • moisture attached to the substrate during cleaning is evaporated by a blower or the like.
  • the substrate is irradiated with UV. This process corresponds to step S12 described above.
  • an undercoat layer is formed on the substrate. This process corresponds to step S13 described above.
  • a film forming step is performed in which a carbon nanotube dispersion previously generated is applied to the substrate.
  • This step corresponds to step S31 described above.
  • the carbon nanotube dispersion liquid is applied to the heated substrate to perform the drying step. Therefore, the fifth step also corresponds to step S32 described above.
  • a cleaning step for cleaning the substrate on which the carbon nanotube layer is formed is performed. This process corresponds to step S33 described above.
  • the surfactant is removed from the substrate by sequentially immersing the sheet-like substrate in a container filled with the cleaning liquid.
  • the cleaned substrate is heated and a carbon nanotube dispersion is applied. This process corresponds to step S34 and step S35 described above.
  • a cleaning step or a film forming step and a drying step are performed again as necessary.
  • the carbon nanotube layer can be continuously formed on the roll-shaped substrate.
  • a thin film with high performance can be formed using a temperature lower than the softening point of a flexible substrate including a resin.
  • a carbon nanotube manufactured by Meijo Nanocarbon: MEIJO Arc SO-P was prepared.
  • the number of carbon nanotube layers was one, and the diameter was 2 to 3 nm.
  • Water was used as a dispersion medium, and surfactant sodium dodecyl sulfate (SDS) was selected as a dispersant.
  • SDS sodium dodecyl sulfate
  • sodium dodecyl sulfate was added at a ratio of 1.0 wt% with respect to water, and sodium dodecyl sulfate was dissolved in water by ultrasonic irradiation.
  • the prepared carbon nanotubes were added at a rate of 0.4 mg / mL with respect to the sodium dodecyl sulfate solution.
  • the carbon nanotubes were dispersed in the sodium dodecyl sulfate solution by irradiation with 300 W ultrasonic waves for 10 hours. Thereafter, the mixture was centrifuged at 3500 rpm for 30 minutes to precipitate aggregates and impurities, and about 90% of the supernatant was collected to obtain a carbon nanotube dispersion.
  • F4-TCNQ was prepared as a hole dope compound.
  • F4-TCNQ was added at a rate of 2.5 mg / mL to 2-propanol prepared as a solvent, and was dissolved by ultrasonic irradiation to obtain an F4-TCNQ solution.
  • a PET substrate was prepared as a substrate, and an F4-TCNQ solution was deposited to form an undercoat layer.
  • the film was formed at 2000 rpm for 5 seconds using a spin coater. Thereafter, the substrate was placed in a drying oven at 60 degrees for 10 minutes to evaporate 2-propanol as a solvent.
  • the substrate after drying is placed on a stage heated to 80 degrees, and the above-mentioned carbon nanotube dispersion is sprayed using a spray film forming apparatus, whereby the carbon nanotube layer is formed into a substrate. Formed. The carbon nanotube layer was instantly dried when it reached the substrate.
  • the substrate was cleaned after the carbon nanotube layer was formed.
  • the surface of the carbon nanotube layer was washed away by inclining the substrate with respect to the horizontal and pouring distilled water. Thereafter, the substrate was dried to obtain “Sample 1”.
  • Example 2 in which film formation was performed twice was obtained by repeating the above-described film formation process, drying process, and washing process for “sample 1”.
  • “Sample 3” in which film formation was performed three times was obtained by similarly performing the film formation step, the drying step, and the cleaning step on “Sample 2”.
  • “Sample 4” in which film formation was performed four times was obtained by similarly performing the film formation step, the drying step, and the cleaning step on “Sample 3”. The same process was repeated for “Sample 4” to obtain “Sample 5” in which film formation was performed 5 times.
  • a sample was obtained by performing one cleaning process after performing the film forming process and the drying process one or more times. Specifically, first, “Sample 11” was obtained by performing a film forming process, a drying process, and a cleaning process under the same conditions as in the production of “Sample 1” in Example 1. In addition, the film forming process and the drying process were performed on the substrate under the same conditions as in Example 1, and then the film forming process and the drying process were further performed without performing the cleaning process. Thereafter, by performing a cleaning process, “Sample 12” in which film formation was performed twice was obtained.
  • the film formation step and the drying step were repeated three times, and then a washing step was performed to obtain “Sample 13” on which film formation was performed three times.
  • the film formation process and the drying process were repeated four times, and then a washing process was performed, thereby obtaining “Sample 14” in which the film formation was performed four times.
  • the film formation process and the drying process were repeated 5 times, and then the washing process was performed to obtain “Sample 15” in which the film formation was performed 5 times.
  • Example 2 When the dispersant was dissolved in the dispersion, sodium dodecyl sulfate was added at a weight ratio of 0.5 wt% with respect to water and dissolved. Other conditions are the same as in the first embodiment.
  • Example 31 on which film formation was performed once was obtained.
  • a film forming process and a drying process were performed on the substrate under the same conditions as in Example 1, and then a film forming process was further performed without performing a cleaning process.
  • a “sample 32” in which film formation was performed twice was obtained by performing a cleaning process.
  • “Sample 33” in which the film was formed three times was obtained.
  • a “sample 34” in which the film formation was performed four times was obtained.
  • “Sample 35” in which the film was formed five times was obtained.
  • FIG. 3 is a graph showing the sheet resistance and transmittance of a carbon nanotube layer using 1.0 wt% of a surfactant.
  • the measurement points are shown in circles as the measurement results of the sample generated under the conditions of Comparative Example 1, and the measurement points are shown as squares in the conditions of Example 1. It is the measurement result of the sample.
  • the measurement points shown in the upper right part of the figure are the measurement points of “Sample 1” and “Sample 11” generated by one film formation.
  • the measurement points move from the right to the left, the measurement points related to the sample having a larger number of film formations are shown. From this figure, it can be seen that in both cases of Example 1 and Comparative Example 1, as the number of film formation increases, the sheet resistance and the transmittance decrease.
  • Example 1 As the number of film formation increases, the sample produced in Example 1 has a lower sheet resistance and improved transmittance than the sample produced in Comparative Example 1. Therefore, the thin film produced in Example 1 where the cleaning process is performed each time the film forming process is performed is more transparent than the thin film produced in Comparative Example 1 where the cleaning process is performed once after a plurality of film forming processes. It can be said that it is preferable.
  • FIG. 4 is a graph showing the sheet resistance and transmittance of a carbon nanotube layer using 0.5 wt% of a surfactant.
  • the measurement points are indicated by diamonds, which are the measurement results of the sample generated under the conditions of Comparative Example 2, and the measurement points indicated by triangles are generated under the conditions of Example 2. It is the measurement result of the sample.
  • this figure shows measurement points related to a sample with a large number of film formations as the measurement points move from right to left.
  • the measurement point of Example 2 in which the cleaning process is performed each time the film is formed is measured in Comparative Example 2 in which the post-cleaning process is performed a plurality of times.
  • the sheet resistance is lower than the point, and the transmittance is high. Therefore, even when the surfactant content is 0.5 wt%, the thin film manufacturing method in which the cleaning process is performed each time the film forming process is performed multiple times as in the case where the content is 1.0 wt%. It turns out that a more suitable thin film is manufactured than the manufacturing method which performs a washing
  • FIG. 5 is an SEM image of the cross section of the obtained thin film.
  • FIG. 5A is an SEM image of a cross section of “Sample 33” in Comparative Example 2 described above.
  • FIG. 5B is an SEM image of the cross section of “Sample 23” in Example 2 described above.
  • the tube shape appears in the SEM image as compared with the thin film formation portion shown in FIG. This indicates that the surfactant is removed from the thin film of FIG. 5B while the carbon nanotubes in the thin film of FIG. 5A are covered with the surfactant.
  • the insulating surfactant is reduced. Visible through observation of SEM image.

Abstract

The purpose of the present invention is to provide a method with which it is possible to obtain a more highly electroconductive thin film. Provided is a method for producing a thin film on a substrate, wherein the method is characterized by having a film formation step for using a liquid dispersion that contains carbon nanotubes and a surfactant to form a carbon nanotube layer, and a washing step for washing the carbon nanotube layer, the washing step being performed a plurality of times, and being performed at least once between film formation steps that are performed a plurality of times.

Description

薄膜の製造方法、導電膜、及びトランジスタThin film manufacturing method, conductive film, and transistor
 本発明は、薄膜の製造方法、導電膜、及びトランジスタに関する。本発明は2015年5月13日に出願された日本国特許の出願番号2015-098026の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a method for manufacturing a thin film, a conductive film, and a transistor. The present invention claims the priority of Japanese Patent Application No. 2015-098026 filed on May 13, 2015, and for the designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
 高い電気伝導性、機械的強度、熱伝導性、耐熱性を主な性質として有するカーボンナノチューブを含む薄膜を成膜し、透明導電膜やトランジスタを得る技術が普及している。 A technology for obtaining a transparent conductive film or a transistor by forming a thin film containing carbon nanotubes having high electrical conductivity, mechanical strength, thermal conductivity, and heat resistance as main properties is widely used.
 特許文献1には、「基板上にゲート電極を形成するゲート電極形成工程と、前記ゲート電極を覆うように前記基板上にゲート絶縁層を形成するゲート絶縁層形成工程と、前記ゲート絶縁層上に、ソース電極及びドレイン電極を互いに離間して形成するソース・ドレイン電極形成工程と、前記ソース電極及び前記ドレイン電極間の前記ゲート絶縁層上に、前記ソース電極及び前記ドレイン電極と離間して、少なくともカーボンナノチューブを含む水溶液からなる分散液を塗布してカーボンナノチューブからなる半導体層を形成する半導体層形成工程と、前記半導体層と前記ソース電極との間及び前記半導体層と前記ドレイン電極との間に各々導電性液体を塗布して導電部を形成する導電性液体塗布工程とを備えたことを特徴とする薄膜トランジスタの製造方法」によってトランジスタを得ることが開示されている。 Patent Document 1 discloses a “gate electrode forming step of forming a gate electrode on a substrate, a gate insulating layer forming step of forming a gate insulating layer on the substrate so as to cover the gate electrode, and a gate insulating layer on the gate insulating layer”. A source / drain electrode forming step of forming the source electrode and the drain electrode apart from each other, and on the gate insulating layer between the source electrode and the drain electrode, separated from the source electrode and the drain electrode, A semiconductor layer forming step of forming a semiconductor layer composed of carbon nanotubes by applying a dispersion composed of an aqueous solution containing at least carbon nanotubes; and between the semiconductor layer and the source electrode and between the semiconductor layer and the drain electrode. And a conductive liquid coating step for forming a conductive portion by applying a conductive liquid to the thin film transistor. It discloses to obtain a transistor by static method of manufacturing ".
特開2009-105083号公報JP 2009-105083 A
 カーボンナノチューブの分散液を作製する際、分散性向上のために界面活性剤を添加することがある。しかしながら、界面活性剤は、作製されたカーボンナノチューブ薄膜に残存することで当該薄膜の導電性低下の要因となるため、適切に除去される必要がある。 When preparing a carbon nanotube dispersion, a surfactant may be added to improve dispersibility. However, the surfactant needs to be appropriately removed because it remains in the produced carbon nanotube thin film and causes a decrease in the conductivity of the thin film.
 本発明は、より導電性の高い薄膜の製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a highly conductive thin film.
 本発明の態様は、基板上に薄膜を製造する方法であって、カーボンナノチューブと界面活性剤とを含む分散液を用いて、カーボンナノチューブ層を形成する成膜工程と、カーボンナノチューブ層を洗浄する洗浄工程と、を有し、前記成膜工程は複数回行われ、前記洗浄工程は、複数回行われる前記成膜工程の間に少なくとも1回行われることを特徴とする。 An aspect of the present invention is a method for producing a thin film on a substrate, and a film forming process for forming a carbon nanotube layer using a dispersion liquid containing carbon nanotubes and a surfactant, and cleaning the carbon nanotube layer A cleaning process, wherein the film forming process is performed a plurality of times, and the cleaning process is performed at least once during the film forming process performed a plurality of times.
 また、本発明の他の態様は、導電膜であって、上述の薄膜の製造方法により形成されたことを特徴とする。 Another aspect of the present invention is a conductive film, which is formed by the above-described thin film manufacturing method.
 また、本発明の他の態様は、トランジスタであって、上述の薄膜の製造方法により形成された半導体膜と、前記半導体膜と接するソース電極とドレイン電極とを有することを特徴とする。 Another embodiment of the present invention is a transistor including a semiconductor film formed by the above-described thin film manufacturing method, and a source electrode and a drain electrode in contact with the semiconductor film.
本実施形態に係る薄膜の製造方法の一例を説明するための工程図である。It is process drawing for demonstrating an example of the manufacturing method of the thin film which concerns on this embodiment. Roll to Roll方式製造装置の概要を示す図である。It is a figure which shows the outline | summary of a Roll-to-Roll type manufacturing apparatus. 界面活性剤1.0wt%を用いたカーボンナノチューブ層のシート抵抗と透過率とを示すグラフである。It is a graph which shows the sheet resistance and the transmittance | permeability of a carbon nanotube layer using 1.0 wt% of surfactant. 界面活性剤0.5wt%を用いたカーボンナノチューブ層のシート抵抗と透過率とを示すグラフである。It is a graph which shows the sheet resistance and the transmittance | permeability of a carbon nanotube layer using 0.5 wt% of surfactant. 得られた薄膜の断面のSEM像である。It is a SEM image of the section of the obtained thin film.
 以下、本発明の実施形態の一例について図面を参照しながら説明する。 Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
 図1は、本実施形態に係る薄膜の製造方法の一例を説明するための工程図である。 FIG. 1 is a process diagram for explaining an example of a thin film manufacturing method according to the present embodiment.
 まず、ステップS11において、基板を洗浄する。基板には、一般に用いられる基板材料を用いる。例えば、ガラス、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等を用いる。 First, in step S11, the substrate is cleaned. A generally used substrate material is used for the substrate. For example, glass, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC) ), Cellulose acetate propionate (CAP) or the like.
 基板の洗浄には、超音波洗浄等の一般的な方法を用いることができる。 For cleaning the substrate, a general method such as ultrasonic cleaning can be used.
 次に、ステップS12において、基板にUV(UltraViolet:紫外線)を照射する。UVの照射には一般的なUV照射装置を用いるが、200nm以下(例えば、10nm以上200nm以下)の波長を含む光を照射することが望ましい。UVを照射することで、基板表面の不純物が除去され、親水化される。 Next, in step S12, the substrate is irradiated with UV (UltraViolet). A general UV irradiation apparatus is used for UV irradiation, but it is desirable to irradiate light having a wavelength of 200 nm or less (for example, 10 nm or more and 200 nm or less). By irradiating UV, impurities on the substrate surface are removed and the substrate is hydrophilized.
 次に、ステップS13において、基板にアンダーコート層を成膜する。まず、ホールドープ化合物を溶媒に溶解して得たホールドープ化合物溶液を準備する。ホールドープ化合物には、例えばテトラフルオロテトラシアノキノジメタン(以下F4-TCNQと記載)を用いる。溶媒には、例えばエタノール、1-プロパノール、2-プロパノール等のアルコール、及びそれらの混合物を用いることができる。ホールドープ化合物溶液を、スプレー成膜装置やスピンコーターを用いて、UV照射後の基板に塗布することにより、アンダーコート層を成膜する。 Next, in step S13, an undercoat layer is formed on the substrate. First, a hole dope compound solution obtained by dissolving a hole dope compound in a solvent is prepared. For the hole-doped compound, for example, tetrafluorotetracyanoquinodimethane (hereinafter referred to as F4-TCNQ) is used. As the solvent, for example, alcohols such as ethanol, 1-propanol and 2-propanol, and mixtures thereof can be used. An undercoat layer is formed by applying the hole dope compound solution to a substrate after UV irradiation using a spray film forming apparatus or a spin coater.
 なお、アンダーコート層の成膜に用いる溶液は、ホールドープ化合物に限定されず、基板と後述するカーボンナノチューブ層との密着性を向上させるものであればよいが、ホールドープ化合物はカーボンナノチューブ層のキャリアを増加させ、カーボンナノチューブ同士の接触抵抗を低下させる傾向があることから、ホールドープ化合物を用いてアンダーコート層を形成することが好ましい。なお、アンダーコート層を形成する工程は省略してもよく、基板上に直接カーボンナノチューブ層を形成するようにしてもよい。 The solution used for forming the undercoat layer is not limited to the hole dope compound, and any solution that improves the adhesion between the substrate and the carbon nanotube layer to be described later may be used. It is preferable to form an undercoat layer using a hole-doped compound because it tends to increase carriers and reduce the contact resistance between carbon nanotubes. Note that the step of forming the undercoat layer may be omitted, and the carbon nanotube layer may be formed directly on the substrate.
 基板の準備とは別工程で、ステップS21~ステップS23において、基板に対して塗布するためのカーボンナノチューブ分散液を生成する。なお、カーボンナノチューブとは、グラフェンが円筒状の構造をとったものを指す。円筒状の構造が1層のものは単層カーボンナノチューブ(SWCNT)、同軸管状に重なり多層となったものは多層カーボンナノチューブ(MWCNT)と呼び、直径は、単層カーボンナノチューブで5nm以下、多層カーボンナノチューブで数十nm以下である。 In a step separate from the substrate preparation, in steps S21 to S23, a carbon nanotube dispersion liquid to be applied to the substrate is generated. The carbon nanotube refers to a graphene having a cylindrical structure. Single-walled carbon nanotubes (SWCNTs) with a single cylindrical structure are called multi-walled carbon nanotubes (MWCNTs), and the diameter is 5 nm or less for single-walled carbon nanotubes. Nanotubes are several tens of nm or less.
 まず、ステップS21において、分散媒に分散剤を溶解する。分散媒には、水、アルコール、及びそれらを組み合わせた溶媒など、各種溶媒を用いる。分散剤は、カーボンナノチューブの分散性を高めるために用いる界面活性剤である。分散剤には、例えば陰イオン性界面活性剤である、ドデシル硫酸ナトリウム(SDS)、ドデシルベンゼン硫酸ナトリウム(SDBS)、コール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)等を用いる。また、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤を用いてもよい。分散媒に分散剤を添加し、充分に溶解させる。この際、分散剤を添加した分散媒に超音波処理を施してもよい。 First, in step S21, the dispersant is dissolved in the dispersion medium. As the dispersion medium, various solvents such as water, alcohol, and a combination thereof are used. The dispersant is a surfactant used for enhancing the dispersibility of the carbon nanotubes. As the dispersant, for example, anionic surfactants such as sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfate (SDBS), sodium cholate (SC), sodium deoxycholate (DOC) and the like are used. Moreover, you may use a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. Add a dispersant to the dispersion medium and dissolve it sufficiently. At this time, the dispersion medium to which the dispersant is added may be subjected to ultrasonic treatment.
 次に、ステップS22において、カーボンナノチューブを分散させる。分散剤が充分に溶解した分散液にカーボンナノチューブを添加し、超音波処理や高圧処理、撹拌処理を施すことでカーボンナノチューブを分散媒中に分散させる。 Next, in step S22, the carbon nanotubes are dispersed. Carbon nanotubes are added to a dispersion in which the dispersant is sufficiently dissolved, and subjected to ultrasonic treatment, high pressure treatment, and stirring treatment to disperse the carbon nanotubes in the dispersion medium.
 次に、ステップS23において、カーボンナノチューブ分散液を遠心分離し、上澄みを採取する。上澄みを採取することにより、凝集体や不純物が除去されたカーボンナノチューブ分散液を得る。 Next, in step S23, the carbon nanotube dispersion is centrifuged and the supernatant is collected. By collecting the supernatant, a carbon nanotube dispersion from which aggregates and impurities are removed is obtained.
 次に、ステップS31において、基板にステップS23で採取されたカーボンナノチューブ分散液を塗布する(成膜工程)。分散液の塗布は、スプレー成膜装置を用いて分散液を基板に噴霧する方法、スピンコート、ディップコート、バーコート等の通常知られた方法を用いることができるが、本実施形態では、スプレー成膜装置を用いる態様について説明する。ステップS13においてアンダーコート層が成膜された基板に対し、スプレー成膜装置を用いてカーボンナノチューブ分散液を塗布する。カーボンナノチューブは単層、多層のどちらでも成膜が可能であるが、単層であることが望ましい。 Next, in step S31, the carbon nanotube dispersion liquid collected in step S23 is applied to the substrate (film formation process). The dispersion can be applied by a method of spraying the dispersion onto a substrate using a spray film forming apparatus, a commonly known method such as spin coating, dip coating, bar coating, etc. In this embodiment, spraying is performed. An embodiment using a film forming apparatus will be described. In step S13, the carbon nanotube dispersion liquid is applied to the substrate on which the undercoat layer is formed using a spray film forming apparatus. Carbon nanotubes can be formed in either a single layer or multiple layers, but a single wall is desirable.
 次に、ステップS32において、カーボンナノチューブ層を乾燥させる(乾燥工程)。乾燥工程は、上述の成膜工程と並行して行ってもよい。この場合、成膜工程におけるカーボンナノチューブ分散液の塗布は、基板の軟化点以下に加熱された基板に対して行われる。望ましくは、50℃以上120℃以下に加熱された基板に対して塗布が行われる。 Next, in step S32, the carbon nanotube layer is dried (drying process). You may perform a drying process in parallel with the above-mentioned film-forming process. In this case, the carbon nanotube dispersion liquid is applied to the substrate heated below the softening point of the substrate in the film forming step. Desirably, application | coating is performed with respect to the board | substrate heated at 50 to 120 degreeC.
 基板を加熱しながらカーボンナノチューブ分散液を塗布することにより、基板にカーボンナノチューブ分散液が到達した際、基板の加熱により分散媒が蒸発し、カーボンナノチューブ層が乾燥する。なお、カーボンナノチューブが分散状態を保ったまま基板上に留まるため、均一にカーボンナノチューブ層が成膜される傾向にある。 By applying the carbon nanotube dispersion while heating the substrate, when the carbon nanotube dispersion reaches the substrate, the dispersion medium evaporates by heating the substrate and the carbon nanotube layer is dried. Since the carbon nanotubes remain on the substrate while maintaining a dispersed state, the carbon nanotube layer tends to be uniformly formed.
 ここで、軟化点とは、基板を加熱した場合に、基板が軟化して、変形を起こし始める温度をいい、例えば、JIS  K7207(A法)に準じた試験方法によりもとめることができる。 Here, the softening point refers to a temperature at which the substrate starts to soften and begins to deform when the substrate is heated, and can be determined by, for example, a test method according to JIS K7207 (Method A).
 なお、本実施形態では、成膜工程と乾燥工程とは並行して実施しているが、成膜工程終了後に乾燥工程を行うことを妨げるものではない。また、乾燥工程は必ずしも基板を加熱することにより行わなくてもよい。例えば常温下に所定時間基板を設置することにより自然乾燥を行うものであってもよい。 In this embodiment, the film forming process and the drying process are performed in parallel, but this does not prevent the drying process from being performed after the film forming process is completed. Further, the drying process is not necessarily performed by heating the substrate. For example, natural drying may be performed by installing the substrate for a predetermined time at room temperature.
 次に、ステップS33において、カーボンナノチューブ層の洗浄を行う(洗浄工程)。洗浄には、水、アルコール、及びそれらを組み合わせた液体など、カーボンナノチューブ分散液中の分散剤が溶解可能な液体を用いる。洗浄方法として、水平に対し傾斜させた基板に成膜されたカーボンナノチューブ層に洗浄液を注ぐ方法や、洗浄液を満たした容器に基板を一定時間浸漬させる方法を用いる。本処理により、カーボンナノチューブ層に存在する分散剤が除去される。 Next, in step S33, the carbon nanotube layer is cleaned (cleaning process). For the cleaning, a liquid in which the dispersant in the carbon nanotube dispersion liquid can be dissolved, such as water, alcohol, and a combination liquid thereof, is used. As a cleaning method, a method of pouring a cleaning solution into a carbon nanotube layer formed on a substrate inclined with respect to the horizontal, or a method of immersing the substrate in a container filled with the cleaning solution for a certain period of time is used. By this treatment, the dispersant present in the carbon nanotube layer is removed.
 洗浄後、例えば基板の加熱や、ドライエアー又は窒素を吹き付けることにより、カーボンナノチューブ層に残存する洗浄液を乾燥させてもよい。カーボンナノチューブ層に洗浄液が残存していると、後述する2度目以降のカーボンナノチューブ分散液の塗布を行った際に、塗布する分散液に含まれるカーボンナノチューブが凝集しやすい傾向にある。カーボンナノチューブが凝集すると薄膜のシート抵抗値が上がるため、洗浄工程後にカーボンナノチューブ層を乾燥させることでシート抵抗値の上昇を抑制することが好ましい。 After cleaning, the cleaning liquid remaining in the carbon nanotube layer may be dried by, for example, heating the substrate or blowing dry air or nitrogen. If the cleaning liquid remains in the carbon nanotube layer, the carbon nanotubes contained in the applied dispersion liquid tend to aggregate when the second and subsequent carbon nanotube dispersion liquid is applied. Since the sheet resistance value of the thin film increases when the carbon nanotubes aggregate, it is preferable to suppress the increase in the sheet resistance value by drying the carbon nanotube layer after the cleaning process.
 次に、ステップS34において、2度目の分散液塗布を行う。ステップS33で洗浄されカーボンナノチューブ層に重ねてカーボンナノチューブ分散液を塗布する。これにより、2層目のカーボンナノチューブ層が成膜される。 Next, in step S34, a second dispersion liquid application is performed. In step S33, the carbon nanotube dispersion liquid is applied so as to overlap the carbon nanotube layer. As a result, a second carbon nanotube layer is formed.
 次に、ステップS35において、カーボンナノチューブ層を乾燥させる。ステップS35及びステップS36において行われる処理は、ステップS32及びステップS33において行われる処理と同様である。その後、必要に応じてステップS34からステップS36の処理を繰り返し、薄膜を得る。 Next, in step S35, the carbon nanotube layer is dried. The processing performed in step S35 and step S36 is the same as the processing performed in step S32 and step S33. Then, the process of step S34 to step S36 is repeated as needed, and a thin film is obtained.
 なお一般的に、成膜工程を複数回行うことにより、膜厚が厚くなるとともに、薄膜のシート抵抗値が低下する。しかしながら、カーボンナノチューブ層に含まれる界面活性剤を除去せずに積層を行うと、界面活性剤の絶縁性のために抵抗値が上がってしまう。本実施形態では、成膜工程と成膜工程との間に洗浄工程を行い、界面活性剤を適切に除去することにより、所望の抵抗値を有する薄膜を得ることができる。 In general, when the film forming process is performed a plurality of times, the film thickness increases and the sheet resistance value of the thin film decreases. However, if lamination is performed without removing the surfactant contained in the carbon nanotube layer, the resistance value increases due to the insulating properties of the surfactant. In the present embodiment, a thin film having a desired resistance value can be obtained by performing a cleaning process between the film forming process and appropriately removing the surfactant.
 なお、図1の工程では、便宜上、カーボンナノチューブ層の成膜工程と、カーボンナノチューブ層の洗浄工程とを交互に行っている。しかしながら、例えばステップS35の乾燥工程の後、洗浄工程を行わずにさらに成膜工程を行ってもよく、複数回の成膜工程の後、最後に洗浄工程を行わないものであってもよい。複数回行われる成膜工程の間の少なくとも1回、洗浄工程が行われるものであればよい。 In the process of FIG. 1, for convenience, the carbon nanotube layer forming process and the carbon nanotube layer cleaning process are alternately performed. However, for example, after the drying process in step S35, the film forming process may be further performed without performing the cleaning process, or after the plurality of film forming processes, the cleaning process may not be performed at the end. What is necessary is just to perform a washing | cleaning process at least once between the film-forming processes performed several times.
 また、成膜工程後、次の成膜工程を行う前に、UVを照射するUV照射工程を行ってもよい。成膜工程で成膜された薄膜に不純物が残存していると、抵抗値が上がる要因となる。成膜工程後に薄膜に対してUVを照射することにより、不純物が除去され、抵抗値が低下する。なお、UV照射工程は、成膜工程後、乾燥工程前に行われてもよいし、乾燥工程後、洗浄工程前に行われてもよいし、洗浄工程後に行われてもよい。 Further, after the film formation process, before performing the next film formation process, a UV irradiation process of irradiating UV may be performed. If impurities remain in the thin film formed in the film forming process, it causes a rise in resistance. By irradiating the thin film with UV after the film forming step, impurities are removed and the resistance value is lowered. Note that the UV irradiation step may be performed after the film formation step and before the drying step, may be performed after the drying step, before the cleaning step, or may be performed after the cleaning step.
 また、本実施形態により生成される薄膜は、タッチパネルや薄膜太陽電池などのデバイスに用いられる透明導電膜として利用可能であるだけでなく、トランジスタ等のデバイスにおいても利用可能である。ソース電極及びドレイン電極と接する半導体層として、本実施形態において生成された薄膜を製造することにより、好適な性能を有するトランジスタを得ることができる。 In addition, the thin film generated by this embodiment can be used not only as a transparent conductive film used in devices such as touch panels and thin film solar cells, but also in devices such as transistors. A transistor having suitable performance can be obtained by manufacturing the thin film generated in this embodiment as a semiconductor layer in contact with the source electrode and the drain electrode.
 図2は、本実施形態を実現するRoll to Roll方式製造装置の概要を示す図である。本製造装置では、ロール状に形成された基板を装置の一方に設置すると、カーボンナノチューブ層が形成された薄膜が装置の他方から排出される。なお、基板は樹脂を含み、可撓性を有するものである。 FIG. 2 is a diagram showing an outline of a Roll-to-Roll manufacturing apparatus that realizes the present embodiment. In this manufacturing apparatus, when a substrate formed in a roll shape is placed on one side of the apparatus, the thin film on which the carbon nanotube layer is formed is discharged from the other side of the apparatus. The substrate contains a resin and has flexibility.
 まず、第1の工程として、基板を洗浄する。本工程は上述のステップS11と対応している。 First, as a first step, the substrate is cleaned. This process corresponds to step S11 described above.
 次に、第2の工程として、基板を乾燥させる。例えば送風機等により、洗浄の際に基板に付着した水分を蒸発させる。 Next, as a second step, the substrate is dried. For example, moisture attached to the substrate during cleaning is evaporated by a blower or the like.
 次に、第3の工程として、基板にUVを照射する。本工程は上述のステップS12と対応している。 Next, as a third step, the substrate is irradiated with UV. This process corresponds to step S12 described above.
 次に、第4の工程として、基板にアンダーコート層を成膜する。本工程は上述のステップS13と対応している。 Next, as a fourth step, an undercoat layer is formed on the substrate. This process corresponds to step S13 described above.
 次に、第5の工程として、予め生成しておいたカーボンナノチューブ分散液を、基板に対して塗布する成膜工程を行う。本工程は、上述のステップS31と対応している。また、第5の工程では、加熱された基板に対してカーボンナノチューブ分散液を塗布することにより、乾燥工程を行う。従って、第5の工程は、上述のステップS32とも対応している。 Next, as a fifth step, a film forming step is performed in which a carbon nanotube dispersion previously generated is applied to the substrate. This step corresponds to step S31 described above. In the fifth step, the carbon nanotube dispersion liquid is applied to the heated substrate to perform the drying step. Therefore, the fifth step also corresponds to step S32 described above.
 次に、第6の工程として、カーボンナノチューブ層が成膜された基板を洗浄する洗浄工程を行う。本工程は、上述のステップS33と対応している。図2においては、洗浄液が満たされた容器にシート状の基板を順に浸漬させることにより、界面活性剤を基板上から除去している。 Next, as a sixth step, a cleaning step for cleaning the substrate on which the carbon nanotube layer is formed is performed. This process corresponds to step S33 described above. In FIG. 2, the surfactant is removed from the substrate by sequentially immersing the sheet-like substrate in a container filled with the cleaning liquid.
 次に、第7の工程として、洗浄後の基板を加熱し、カーボンナノチューブ分散液を塗布する。本工程は、上述のステップS34及びステップS35と対応する。 Next, as a seventh step, the cleaned substrate is heated and a carbon nanotube dispersion is applied. This process corresponds to step S34 and step S35 described above.
 第7の工程の終了後、必要に応じて再度洗浄工程又は成膜工程及び乾燥工程が行われる。 After completion of the seventh step, a cleaning step or a film forming step and a drying step are performed again as necessary.
 以上、Roll to Roll方式製造装置を用いることで、ロール状に形成された基板上に連続してカーボンナノチューブ層を形成することができる。また、樹脂を含み可撓性を備える基板に対し、軟化点よりも低い温度を用いて、性能の高い薄膜を成膜することができる。 As described above, by using the Roll-to-Roll manufacturing apparatus, the carbon nanotube layer can be continuously formed on the roll-shaped substrate. A thin film with high performance can be formed using a temperature lower than the softening point of a flexible substrate including a resin.
 以下に、実施例を示して本発明の態様をより具体的に説明する。ただし、本発明は、これらの実施例によって限定されるものではない。 Hereinafter, embodiments of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 <実施例1>
 まず、カーボンナノチューブ(名城ナノカーボン製:MEIJO Arc SO-P)を準備した。カーボンナノチューブの層数は1層、直径は2~3nmであった。分散媒として水を用い、分散剤として界面活性剤であるドデシル硫酸ナトリウム(SDS)を選択した。分散液生成工程として、水に対してドデシル硫酸ナトリウムを重量比で1.0wt%の割合で添加し、超音波照射によりドデシル硫酸ナトリウムを水に溶解させた。
<Example 1>
First, a carbon nanotube (manufactured by Meijo Nanocarbon: MEIJO Arc SO-P) was prepared. The number of carbon nanotube layers was one, and the diameter was 2 to 3 nm. Water was used as a dispersion medium, and surfactant sodium dodecyl sulfate (SDS) was selected as a dispersant. As a dispersion producing step, sodium dodecyl sulfate was added at a ratio of 1.0 wt% with respect to water, and sodium dodecyl sulfate was dissolved in water by ultrasonic irradiation.
 その後、ドデシル硫酸ナトリウム溶液に対して0.4mg/mLの割合で、準備したカーボンナノチューブを添加した。300Wの超音波を10時間照射することで、カーボンナノチューブをドデシル硫酸ナトリウム溶液に分散させた。その後、3500rpmで30分間遠心分離を行うことにより、凝集体や不純物を沈殿させ、上澄みの9割程度を採取することで、カーボンナノチューブ分散液を得た。 Thereafter, the prepared carbon nanotubes were added at a rate of 0.4 mg / mL with respect to the sodium dodecyl sulfate solution. The carbon nanotubes were dispersed in the sodium dodecyl sulfate solution by irradiation with 300 W ultrasonic waves for 10 hours. Thereafter, the mixture was centrifuged at 3500 rpm for 30 minutes to precipitate aggregates and impurities, and about 90% of the supernatant was collected to obtain a carbon nanotube dispersion.
 次に、ホールドープ化合物として、F4-TCNQを準備した。溶媒として準備した2-プロパノールに対して2.5mg/mLの割合でF4-TCNQを添加し、超音波照射により溶解させ、F4-TCNQ溶液とした。 Next, F4-TCNQ was prepared as a hole dope compound. F4-TCNQ was added at a rate of 2.5 mg / mL to 2-propanol prepared as a solvent, and was dissolved by ultrasonic irradiation to obtain an F4-TCNQ solution.
 次に、基板としてPET基板を準備し、F4-TCNQ溶液を成膜することで、アンダーコート層を成膜した。成膜にはスピンコーターを用い、2000rpmで5秒間成膜を行った。その後、基板を60度の乾燥炉に10分間入れ、溶媒である2-プロパノールを蒸発させた。 Next, a PET substrate was prepared as a substrate, and an F4-TCNQ solution was deposited to form an undercoat layer. The film was formed at 2000 rpm for 5 seconds using a spin coater. Thereafter, the substrate was placed in a drying oven at 60 degrees for 10 minutes to evaporate 2-propanol as a solvent.
 次に、成膜工程及び乾燥工程として、80度に加熱したステージに乾燥後の基板を設置し、スプレー成膜装置を用いて上述のカーボンナノチューブ分散液を噴霧させることにより、カーボンナノチューブ層を基板に形成した。なお、カーボンナノチューブ層は基板到達時に瞬時に乾燥した。 Next, as a film forming process and a drying process, the substrate after drying is placed on a stage heated to 80 degrees, and the above-mentioned carbon nanotube dispersion is sprayed using a spray film forming apparatus, whereby the carbon nanotube layer is formed into a substrate. Formed. The carbon nanotube layer was instantly dried when it reached the substrate.
 次に、洗浄工程として、カーボンナノチューブ層の成膜後、基板の洗浄を行った。基板を水平に対して傾斜させ、蒸留水を注ぐことにより、カーボンナノチューブ層の表面を洗い流した。その後、基板を乾燥させ、「試料1」を得た。 Next, as a cleaning step, the substrate was cleaned after the carbon nanotube layer was formed. The surface of the carbon nanotube layer was washed away by inclining the substrate with respect to the horizontal and pouring distilled water. Thereafter, the substrate was dried to obtain “Sample 1”.
 「試料1」に対し、上述の成膜工程、乾燥工程、及び洗浄工程を繰り返すことにより、2回の成膜が行われた「試料2」を得た。また、「試料2」に対し、同様に成膜工程、乾燥工程、及び洗浄工程を行うことにより、3回の成膜が行われた「試料3」を得た。また、「試料3」に対し、同様に成膜工程、乾燥工程、及び洗浄工程を行うことにより、4回の成膜が行われた「試料4」を得た。「試料4」に対して同様の工程を繰り返し、5回の成膜が行われた「試料5」を得た。 Sample 2” in which film formation was performed twice was obtained by repeating the above-described film formation process, drying process, and washing process for “sample 1”. In addition, “Sample 3” in which film formation was performed three times was obtained by similarly performing the film formation step, the drying step, and the cleaning step on “Sample 2”. In addition, “Sample 4” in which film formation was performed four times was obtained by similarly performing the film formation step, the drying step, and the cleaning step on “Sample 3”. The same process was repeated for “Sample 4” to obtain “Sample 5” in which film formation was performed 5 times.
 <比較例1>
 本比較例では、1回又は複数回の成膜工程及び乾燥工程を行った後に、1回の洗浄工程を行うことで試料を得た。具体的には、まず実施例1における「試料1」の生成と同様の条件で、成膜工程、乾燥工程、及び洗浄工程を行うことにより「試料11」を得た。また、実施例1と同様の条件で基板に対して成膜工程及び乾燥工程を行い、その後洗浄工程を行わずに、さらに成膜工程及び乾燥工程を行った。その後、洗浄工程を行うことにより、2回の成膜が行われた「試料12」を得た。
<Comparative Example 1>
In this comparative example, a sample was obtained by performing one cleaning process after performing the film forming process and the drying process one or more times. Specifically, first, “Sample 11” was obtained by performing a film forming process, a drying process, and a cleaning process under the same conditions as in the production of “Sample 1” in Example 1. In addition, the film forming process and the drying process were performed on the substrate under the same conditions as in Example 1, and then the film forming process and the drying process were further performed without performing the cleaning process. Thereafter, by performing a cleaning process, “Sample 12” in which film formation was performed twice was obtained.
 同様に、成膜工程及び乾燥工程を3回繰り返し、その後洗浄工程を行うことにより、3回の成膜が行われた「試料13」を得た。また、成膜工程及び乾燥工程を4回繰り返し、その後洗浄工程を行うことにより、4回の成膜が行われた「試料14」を得た。また、成膜工程及び乾燥工程を5回繰り返し、その後洗浄工程を行うことにより、5回の成膜が行われた「試料15」を得た。 Similarly, the film formation step and the drying step were repeated three times, and then a washing step was performed to obtain “Sample 13” on which film formation was performed three times. Moreover, the film formation process and the drying process were repeated four times, and then a washing process was performed, thereby obtaining “Sample 14” in which the film formation was performed four times. In addition, the film formation process and the drying process were repeated 5 times, and then the washing process was performed to obtain “Sample 15” in which the film formation was performed 5 times.
 <実施例2>
 分散液に分散剤を溶解させる際、水に対してドデシル硫酸ナトリウムを重量比で0.5wt%の割合で添加し、溶解させた。その他の条件は、実施例1と同様である。
<Example 2>
When the dispersant was dissolved in the dispersion, sodium dodecyl sulfate was added at a weight ratio of 0.5 wt% with respect to water and dissolved. Other conditions are the same as in the first embodiment.
 これにより、1回の成膜が行われた「試料21」と、2回の成膜が行われた「試料22」と、3回の成膜が行われた「試料23」と、4回の成膜が行われた「試料24」と、5回の成膜が行われた「試料25」とを得た。 As a result, “Sample 21” in which the film was formed once, “Sample 22” in which the film was formed twice, “Sample 23” in which the film was formed three times, and four times Thus, “Sample 24” on which film formation was performed and “Sample 25” on which film formation was performed 5 times were obtained.
 <比較例2>
 実施例2と同様の条件で、1回の成膜が行われた「試料31」を得た。同様に、実施例1と同様の条件で基板に対して成膜工程及び乾燥工程を行い、その後洗浄工程を行わずに、さらに成膜工程を行った。その後、洗浄工程を行うことにより、2回の成膜が行われた「試料32」を得た。また、成膜工程及び乾燥工程を3回繰り返した後に洗浄工程を行うことにより、3回の成膜が行われた「試料33」を得た。また、成膜工程及び乾燥工程を4回繰り返した後に洗浄工程を行うことにより、4回の成膜が行われた「試料34」を得た。また、成膜工程及び乾燥工程を5回繰り返した後に洗浄工程を行うことにより、5回の成膜が行われた「試料35」を得た。
<Comparative example 2>
Under the same conditions as in Example 2, “Sample 31” on which film formation was performed once was obtained. Similarly, a film forming process and a drying process were performed on the substrate under the same conditions as in Example 1, and then a film forming process was further performed without performing a cleaning process. Thereafter, a “sample 32” in which film formation was performed twice was obtained by performing a cleaning process. Further, by performing the cleaning step after repeating the film forming step and the drying step three times, “Sample 33” in which the film was formed three times was obtained. In addition, by performing the cleaning step after repeating the film formation step and the drying step four times, a “sample 34” in which the film formation was performed four times was obtained. Further, by performing the cleaning step after repeating the film forming step and the drying step five times, “Sample 35” in which the film was formed five times was obtained.
 (評価)
 図3は、界面活性剤1.0wt%を用いたカーボンナノチューブ層のシート抵抗と透過率とを示すグラフである。本グラフにおいて、計測点を円形で示しているのが、比較例1の条件において生成された試料の計測結果であり、計測点を四角形で示しているのが、実施例1の条件において生成された試料の計測結果である。
(Evaluation)
FIG. 3 is a graph showing the sheet resistance and transmittance of a carbon nanotube layer using 1.0 wt% of a surfactant. In this graph, the measurement points are shown in circles as the measurement results of the sample generated under the conditions of Comparative Example 1, and the measurement points are shown as squares in the conditions of Example 1. It is the measurement result of the sample.
 本図の右上部分に示す計測点(矢印が指す計測点)は、1回の成膜により生成された「試料1」及び「試料11」の計測点である。本図では、計測点が右から左に向かうにつれ、成膜回数が多い試料に係る計測点を示している。本図により、実施例1及び比較例1のいずれの場合も、成膜回数が増えるにつれ、シート抵抗及び透過率が低下することが分かる。 The measurement points shown in the upper right part of the figure (measurement points indicated by arrows) are the measurement points of “Sample 1” and “Sample 11” generated by one film formation. In this figure, as the measurement points move from the right to the left, the measurement points related to the sample having a larger number of film formations are shown. From this figure, it can be seen that in both cases of Example 1 and Comparative Example 1, as the number of film formation increases, the sheet resistance and the transmittance decrease.
 成膜回数が増えるにつれ、実施例1において生成された試料は、比較例1において生成された試料よりも、シート抵抗が低下するとともに、透過率が向上している。従って、成膜工程が行われる都度洗浄工程を行う実施例1により生成される薄膜が、複数回の成膜工程後に1回洗浄工程を行う比較例1により生成される薄膜よりも、透明電極として好適であるといえる。 As the number of film formation increases, the sample produced in Example 1 has a lower sheet resistance and improved transmittance than the sample produced in Comparative Example 1. Therefore, the thin film produced in Example 1 where the cleaning process is performed each time the film forming process is performed is more transparent than the thin film produced in Comparative Example 1 where the cleaning process is performed once after a plurality of film forming processes. It can be said that it is preferable.
 図4は、界面活性剤0.5wt%を用いたカーボンナノチューブ層のシート抵抗と透過率とを示すグラフである。本グラフにおいて、計測点を菱形で示しているのが、比較例2の条件において生成された試料の計測結果であり、計測点を三角形で示しているのが、実施例2の条件において生成された試料の計測結果である。 FIG. 4 is a graph showing the sheet resistance and transmittance of a carbon nanotube layer using 0.5 wt% of a surfactant. In this graph, the measurement points are indicated by diamonds, which are the measurement results of the sample generated under the conditions of Comparative Example 2, and the measurement points indicated by triangles are generated under the conditions of Example 2. It is the measurement result of the sample.
 図3と同様に、本図では計測点が右から左に向かうにつれ、成膜回数が多い試料に係る計測点を示している。本図においても、図3と同様に、成膜の都度洗浄工程を行っている実施例2の計測点の方が、複数回の成膜工程の後洗浄工程を行っている比較例2の計測点よりもシート抵抗において低い値を示し、透過率において高い値を示している。従って、界面活性剤の含有量が0.5wt%の場合においても、含有量が1.0wt%と同様に、成膜工程の都度洗浄工程を行う薄膜の製造方法の方が、複数回の成膜後に1回洗浄工程を行う製造方法よりも好適な薄膜が製造されることがわかる。 As in FIG. 3, this figure shows measurement points related to a sample with a large number of film formations as the measurement points move from right to left. Also in this figure, as in FIG. 3, the measurement point of Example 2 in which the cleaning process is performed each time the film is formed is measured in Comparative Example 2 in which the post-cleaning process is performed a plurality of times. The sheet resistance is lower than the point, and the transmittance is high. Therefore, even when the surfactant content is 0.5 wt%, the thin film manufacturing method in which the cleaning process is performed each time the film forming process is performed multiple times as in the case where the content is 1.0 wt%. It turns out that a more suitable thin film is manufactured than the manufacturing method which performs a washing | cleaning process once after a film | membrane.
 図5は、得られた薄膜の断面のSEM像である。図5(A)は、上述の比較例2における「試料33」の断面のSEM像である。図5(B)は、上述の実施例2における「試料23」の断面のSEM像である。 FIG. 5 is an SEM image of the cross section of the obtained thin film. FIG. 5A is an SEM image of a cross section of “Sample 33” in Comparative Example 2 described above. FIG. 5B is an SEM image of the cross section of “Sample 23” in Example 2 described above.
 図5(B)に示す薄膜の形成部分は、図5(A)に示す薄膜の形成部分に比べ、チューブ形状がSEM像に表れている。これは、図5(A)の薄膜中のカーボンナノチューブが界面活性剤に覆われている一方で、図5(B)の薄膜において界面活性剤が除去されていることを示す。成膜工程の都度洗浄工程を行う薄膜の製造方法が、複数回の成膜工程後に1回洗浄工程を行う薄膜の製造方法に比べ、絶縁性を有する界面活性剤が減少していることが、SEM像の観察により視認しうる。 In the thin film formation portion shown in FIG. 5B, the tube shape appears in the SEM image as compared with the thin film formation portion shown in FIG. This indicates that the surfactant is removed from the thin film of FIG. 5B while the carbon nanotubes in the thin film of FIG. 5A are covered with the surfactant. Compared with the thin film manufacturing method in which the thin film manufacturing method in which the cleaning step is performed every time the film forming step is performed is performed once after the plurality of film forming steps, the insulating surfactant is reduced. Visible through observation of SEM image.

Claims (10)

  1.  基板上に薄膜を製造する方法であって、
     カーボンナノチューブと界面活性剤とを含む分散液を用いて、カーボンナノチューブ層を形成する成膜工程と、
     カーボンナノチューブ層を洗浄する洗浄工程と、を有し、
     前記成膜工程は複数回行われ、前記洗浄工程は、複数回行われる前記成膜工程の間に少なくとも1回行われることを特徴とする薄膜の製造方法。
    A method for producing a thin film on a substrate, comprising:
    A film forming step of forming a carbon nanotube layer using a dispersion liquid containing carbon nanotubes and a surfactant,
    A cleaning step of cleaning the carbon nanotube layer,
    The film forming process is performed a plurality of times, and the cleaning process is performed at least once during the film forming process performed a plurality of times.
  2.  請求項1に記載の薄膜の製造方法であって、
     カーボンナノチューブ層を乾燥させる乾燥工程を有し、
     前記洗浄工程は、前記乾燥工程により乾燥された前記カーボンナノチューブ層を洗浄することを特徴とする薄膜の製造方法。
    It is a manufacturing method of the thin film according to claim 1,
    Having a drying step of drying the carbon nanotube layer;
    In the cleaning process, the carbon nanotube layer dried in the drying process is cleaned.
  3.  請求項2に記載の薄膜の製造方法であって、
     前記乾燥工程は、前記基板の軟化点より低い温度で行われることを特徴とする薄膜の製造方法。
    It is a manufacturing method of the thin film according to claim 2,
    The method of manufacturing a thin film, wherein the drying step is performed at a temperature lower than a softening point of the substrate.
  4.  請求項3に記載の薄膜の製造方法であって、
     前記乾燥工程は、50℃以上120℃以下の温度で行われることを特徴とする薄膜の製造方法。
    It is a manufacturing method of the thin film according to claim 3,
    The said drying process is performed at the temperature of 50 to 120 degreeC, The manufacturing method of the thin film characterized by the above-mentioned.
  5.  請求項1から4のいずれか一項に記載の薄膜の製造方法であって、
     前記成膜工程と前記洗浄工程とは、交互に行われることを特徴とする薄膜の製造方法。
    It is a manufacturing method of the thin film according to any one of claims 1 to 4,
    The method for producing a thin film, wherein the film forming step and the cleaning step are alternately performed.
  6.  請求項1から5のいずれか一項に記載の薄膜の製造方法であって、
     前記薄膜は、ホールドープ化合物を含む層上に形成されることを特徴とする薄膜の製造方法。
    It is a manufacturing method of the thin film according to any one of claims 1 to 5,
    The method for producing a thin film, wherein the thin film is formed on a layer containing a hole-doped compound.
  7.  請求項1から6のいずれか一項に記載の薄膜の製造方法であって、
     前記基板は、樹脂材料を含むことを特徴とする薄膜の製造方法。
    It is a manufacturing method of the thin film according to any one of claims 1 to 6,
    The method for producing a thin film, wherein the substrate includes a resin material.
  8.  請求項1から7のいずれか一項に記載の薄膜の製造方法であって、
     前記カーボンナノチューブ層に対して紫外線を照射する紫外線照射工程を有することを特徴とする薄膜製造方法。
    It is a manufacturing method of the thin film according to any one of claims 1 to 7,
    A thin film manufacturing method comprising an ultraviolet irradiation step of irradiating the carbon nanotube layer with ultraviolet rays.
  9.  請求項1から請求項8のいずれか一項に記載の薄膜の製造方法により製造された導電膜。 The electrically conductive film manufactured by the manufacturing method of the thin film as described in any one of Claims 1-8.
  10.  請求項1から請求項8のいずれか一項に記載の薄膜の製造方法により製造された半導体膜と、前記半導体膜と接するソース電極とドレイン電極とを有するトランジスタ。 A transistor having a semiconductor film manufactured by the method for manufacturing a thin film according to any one of claims 1 to 8, and a source electrode and a drain electrode in contact with the semiconductor film.
PCT/JP2016/063882 2015-05-13 2016-05-10 Electroconductive film, transistor, and method for producing thin film WO2016181964A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015098026 2015-05-13
JP2015-098026 2015-05-13

Publications (1)

Publication Number Publication Date
WO2016181964A1 true WO2016181964A1 (en) 2016-11-17

Family

ID=57248195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063882 WO2016181964A1 (en) 2015-05-13 2016-05-10 Electroconductive film, transistor, and method for producing thin film

Country Status (1)

Country Link
WO (1) WO2016181964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616272A (en) * 2019-11-05 2022-06-10 Mcd技术有限公司 Composition for solid tire and traceless solid tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105083A (en) * 2007-10-19 2009-05-14 Brother Ind Ltd Method of manufacturing thin film transistor, and thin film transistor manufactured by the manufacturing method
JP2009203118A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Nanocarbon film, electrode using it, and its manufacturing method
WO2013047341A1 (en) * 2011-09-29 2013-04-04 国立大学法人九州大学 Transparent conductor and method for producing same
WO2014064432A1 (en) * 2012-10-22 2014-05-01 Cambridge Enterprise Limited Functional inks based on layered materials and printed layered materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105083A (en) * 2007-10-19 2009-05-14 Brother Ind Ltd Method of manufacturing thin film transistor, and thin film transistor manufactured by the manufacturing method
JP2009203118A (en) * 2008-02-28 2009-09-10 Fujifilm Corp Nanocarbon film, electrode using it, and its manufacturing method
WO2013047341A1 (en) * 2011-09-29 2013-04-04 国立大学法人九州大学 Transparent conductor and method for producing same
WO2014064432A1 (en) * 2012-10-22 2014-05-01 Cambridge Enterprise Limited Functional inks based on layered materials and printed layered materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114616272A (en) * 2019-11-05 2022-06-10 Mcd技术有限公司 Composition for solid tire and traceless solid tire

Similar Documents

Publication Publication Date Title
JP6164617B2 (en) Method for producing conductive thin film and conductive thin film produced by the method
Yu et al. Ultra‐transparent, flexible single‐walled carbon nanotube non‐volatile memory device with an oxygen‐decorated graphene electrode
JP5473148B2 (en) Transparent conductive film with improved conductivity and method for producing the same
Xia et al. Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes
Fukaya et al. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications
Shim et al. Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit
KR101956145B1 (en) Carbon nanotube-macromolecule composite layered transparent flexible electrode and preparation method therefor
JP4955506B2 (en) Method for producing transparent conductive film
JP5578640B2 (en) Conductive film, conductive substrate, transparent conductive film, and production method thereof
Shi et al. Fabrication of Superstrong Ultrathin Free‐Standing Single‐Walled Carbon Nanotube Films via a Wet Process
JP6455944B2 (en) Device and method for producing carbon nanotube composite film
JP2007534588A (en) Temporary viscosity and stability modifier for carbon nanotube compositions
Esconjauregui et al. Efficient transfer doping of carbon nanotube forests by MoO3
KR101143304B1 (en) Substrate improved adhesion stability of carbon nanotube conductive film and manufacturing method thereof
WO2013176155A1 (en) Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel
Kim et al. Janus graphene liquid crystalline fiber with tunable properties enabled by ultrafast flash reduction
CN101913596A (en) Preparation method of high-orientation carbon nanotube film
JP5111324B2 (en) Preparation method of carbon nanotube alignment film
Azoubel et al. Controlling Adhesion Properties of SWCNT–PET Films Prepared by Wet Deposition
Ko et al. Meniscus-dragging deposition of single-walled carbon nanotubes for highly uniform, large-area, transparent conductors
WO2016181964A1 (en) Electroconductive film, transistor, and method for producing thin film
JP2011082165A (en) Method of manufacturing electrode substrate
KR101534298B1 (en) a composition for electro-magnetic interference shielding film, a method of fabricating a electro-magnetic interference shielding film therewith and an electro-magnetic interference shielding film fabricated thereby
Castro et al. Enhanced electrical conduction in aluminum wires coated with carbon nanotubes
Shi et al. Multiwalled carbon nanotube microspheres from layer-by-layer assembly and calcination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP