WO2016180056A1 - 往复直线运动转单向圆周运动装置及使用该装置的交通工具 - Google Patents

往复直线运动转单向圆周运动装置及使用该装置的交通工具 Download PDF

Info

Publication number
WO2016180056A1
WO2016180056A1 PCT/CN2016/072169 CN2016072169W WO2016180056A1 WO 2016180056 A1 WO2016180056 A1 WO 2016180056A1 CN 2016072169 W CN2016072169 W CN 2016072169W WO 2016180056 A1 WO2016180056 A1 WO 2016180056A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
linear motion
reciprocating linear
circular motion
rotating shaft
Prior art date
Application number
PCT/CN2016/072169
Other languages
English (en)
French (fr)
Inventor
罗立元
Original Assignee
深圳市南博自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市南博自动化设备有限公司 filed Critical 深圳市南博自动化设备有限公司
Priority to AU2016260141A priority Critical patent/AU2016260141A1/en
Priority to EP16791906.7A priority patent/EP3296595A4/en
Priority to JP2017559612A priority patent/JP6577600B2/ja
Priority to CA2985855A priority patent/CA2985855A1/en
Priority to KR1020177034585A priority patent/KR20180004754A/ko
Publication of WO2016180056A1 publication Critical patent/WO2016180056A1/zh
Priority to US15/811,237 priority patent/US10428920B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types
    • F16H37/124Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types for interconverting rotary motion and reciprocating motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • B62K3/002Bicycles without a seat, i.e. the rider operating the vehicle in a standing position, e.g. non-motorized scooters; non-motorized scooters with skis or runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K3/00Bicycles
    • B62K3/005Recumbent-type bicycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M1/00Rider propulsion of wheeled vehicles
    • B62M1/24Rider propulsion of wheeled vehicles with reciprocating levers, e.g. foot levers
    • B62M1/30Rider propulsion of wheeled vehicles with reciprocating levers, e.g. foot levers characterised by the use of intermediate gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G5/00Devices for producing mechanical power from muscle energy
    • F03G5/06Devices for producing mechanical power from muscle energy other than of endless-walk type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/04Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack
    • F16H19/043Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a rack for converting reciprocating movement in a continuous rotary movement or vice versa, e.g. by opposite racks engaging intermittently for a part of the stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/003Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion the gear-ratio being changed by inversion of torque direction

Definitions

  • the invention relates to the technical field of motion mode conversion, in particular to a reciprocating linear motion to unidirectional circular motion device and a vehicle using the same.
  • the object of the present invention is to provide a reciprocating linear motion to one-way circular motion device with simple and compact structure, which can quickly convert the reciprocating linear motion mode into
  • the one-way circular motion mode also provides a vehicle that uses the reciprocating linear motion to unidirectional circular motion device.
  • the present invention is implemented as follows:
  • a reciprocating linear motion to unidirectional circular motion device comprising a device body, and a reciprocating linear motion mechanism, a linear motion conversion mechanism and a circular motion output mechanism disposed on the device body
  • the reciprocating linear motion mechanism is drivingly coupled to the linear motion conversion mechanism, and the linear motion conversion mechanism converts the reciprocating linear motion outputted by the reciprocating linear motion mechanism into a bidirectional circular motion, and the linear motion conversion mechanism further
  • the circular motion output mechanism performs a one-way synchronous rotational connection for outputting a one-way circular motion.
  • the linear motion conversion mechanism includes two rotating wheels opposite to each other on the two sides of the device body, and between each of the rotating wheels and the device body a main swing spring is disposed, and the reciprocating linear motion mechanism is disposed on the same side of each of the rotary wheels, and the reciprocating linear motion mechanism is drivingly connected with the rotary wheel on the same side;
  • a main rotating shaft is disposed between the wheels, and the two ends of the main rotating shaft are respectively connected to the rotating wheel on the same side by a one-way bearing, and the main rotating shaft is connected with the circular motion output mechanism, thereby
  • the linear motion conversion mechanism and the circular motion output mechanism are configured to achieve a one-way synchronous rotational connection.
  • the reciprocating linear motion to unidirectional circular motion device further includes a rotation speed adjustment mechanism built in the apparatus body, and the rotation speed adjustment mechanism is N gear sets.
  • N N ⁇ 2; each of the gear sets includes a plurality of gears having unequal diameters; a first gear set of the N gear sets is synchronously rotatably coupled to the main rotating shaft, wherein the N gear sets are The other gear sets are synchronously rotatably connected to their respective rotating shafts, and the two ends of the corresponding rotating shafts of the gear set are respectively connected with the device body bearing; each of the N gear sets is sequentially meshed and connected; a corresponding rotating shaft of the Nth gear set is synchronously rotatably coupled with the circular motion output mechanism; a plurality of shifters are disposed in the N gear sets to cause different adjacent meshing of adjacent gear sets under the driving of the shifter the way.
  • the reciprocating linear motion to unidirectional circular motion device further includes a rotation speed adjustment mechanism built in the apparatus body, the linear motion conversion mechanism and the rotation speed adjustment
  • the mechanism is unidirectional synchronous rotation connection, the rotation speed adjustment mechanism is drivingly connected with the circular motion output mechanism;
  • the rotation speed adjustment mechanism is N gear sets, wherein N ⁇ 2; each of the gear sets includes several diameters
  • Each of the gear sets is synchronously rotatably coupled to a corresponding rotating shaft, and two ends of the corresponding rotating shaft of the gear set are respectively coupled to the device body bearing; each of the N gear sets
  • the group of the gears are sequentially engaged, wherein the corresponding rotating shaft of the first gear set is unidirectionally and rotationally coupled with the linear motion converting mechanism, and the corresponding rotating shaft of the Nth gear set is synchronously connected with the circular motion output mechanism;
  • the N gears A plurality of shifters are provided in the set such that adjacent gear sets are driven by the shifters to change different intermeshing modes.
  • the rotation speed adjusting mechanism includes a first gear set disposed on the first rotating shaft, a second gear set disposed on the second rotating shaft, and disposed on the third rotating shaft a third gear set, and the first gear set, the second gear set and the third gear set respectively comprise a large gear, a middle gear and a pinion;
  • the first gear set is in the first shifter Driving freely on the first rotating shaft to the gear meshing position, such that the large gear of the first gear set is meshed with the pinion gear of the second gear set, or the first gear set is a middle gear is meshed with the middle gear of the second gear set, or the pinion gear of the first gear set is meshed with the large gear of the second gear set;
  • the third gear set is at the second Driving on the third rotating shaft to the gear meshing position under the driving of the shifter, so that the large gear of the third gear set meshes with the pinion gear of the second gear set, or makes the third In the middle of the gear set
  • the first shifter and the second shifter respectively include a dial base with a sliding slot and a center pin, and a speed regulating lever a shifting lever and a shifting cylinder with a rotating spring, the dial rotating cylinder is sleeved on the center pin, the lever slider is slidably disposed in the sliding slot, and the dial is rotated
  • a cylinder is drivingly coupled to the lever slider, the governor lever being disposed adjacent to the first gear set or the third gear set.
  • the linear motion conversion mechanism includes an input gear, an input rotating shaft disposed through the main body of the device, a main bevel gear, and two side bevel gears, and the input rotating shaft and the a bearing connection between the main body of the device, the input gear is synchronously rotatably connected with an end of the input rotating shaft located outside the main body of the device, and the main bevel gear is synchronously connected with one end of the input rotating shaft located in the main body of the device.
  • the two ends of the first rotating shaft are respectively unidirectionally synchronously connected with a side bevel gear through a one-way bearing, and each of the side bevel gears is meshed with the main bevel gear, and the input gear
  • the reciprocating linear motion mechanism is respectively disposed on opposite sides of each of the two sides, and each of the reciprocating linear motion mechanisms is drivingly connected to the input gear.
  • the linear motion conversion mechanism includes an input gear, an input shaft disposed through the apparatus body, a first main gear, a second main gear, a first slave gear, and a a slave gear, a sub-rotary shaft and a sub-gear, wherein the input shaft is coupled to the main body of the device, and the input gear is synchronously rotatably connected to an end of the input shaft located outside the main body of the device, the first main The gear is coupled to the end of the input shaft in the main body of the apparatus through a first one-way bearing, and the second main gear is located in the main body of the apparatus through the second one-way bearing and the input shaft One end of the one-way synchronous rotation connection, and the installation direction of the first one-way bearing is opposite to the installation direction of the second one-way bearing, and the two ends of the first rotation shaft are respectively associated with the first slave The gear and the second slave gear are synchronously rotatably connected, and two ends of the auxiliary shaft are
  • the linear motion conversion mechanism includes an input gear, an input rotating shaft disposed through the main body of the device, a main bevel gear, and two side bevel gears, and the input rotating shaft and the a bearing connection between the main body of the device, the input gear is synchronously rotatably connected with an end of the input rotating shaft located outside the main body of the device, and the main bevel gear is synchronously connected with one end of the input rotating shaft located in the main body of the device.
  • Each of the side bevel gears is meshed with the main bevel gear, and the reciprocating linear motion mechanism is respectively disposed on opposite sides of the input gear, and each of the reciprocating linear motion mechanisms and the input gear a driving connection is arranged; a driving shaft is disposed between the two bevel gears, and two ends of the driving shaft are respectively unidirectionally synchronously connected with a side bevel gear through a one-way bearing; the driving shaft and the driving shaft
  • the circular motion output mechanism is drivingly coupled to enable the linear motion conversion mechanism to achieve one-way synchronization with the circular motion output mechanism Action connection.
  • the linear motion conversion mechanism includes an input gear, an input shaft disposed through the apparatus body, a first main gear, a second main gear, a first slave gear, and a a slave gear, a sub-rotary shaft and a sub-gear, wherein the input shaft is coupled to the main body of the device, and the input gear is synchronously rotatably connected to an end of the input shaft located outside the main body of the device, the first main The gear is coupled to the end of the input shaft in the main body of the apparatus through a first one-way bearing, and the second main gear is located in the main body of the apparatus through the second one-way bearing and the input shaft One end of the first one-way bearing is disposed opposite to the mounting direction of the second one-way bearing, and two ends of the auxiliary rotating shaft are respectively connected with the device body bearing.
  • the sub-gear is synchronously rotatably coupled to the auxiliary rotating shaft, and the auxiliary gears are respectively meshed and coupled to the first main gear and the first driven gear,
  • the second main gear is meshed with the second slave gear wheel, and the reciprocating linear motion mechanism is respectively disposed on opposite sides of the input gear, and each of the reciprocating linear motion mechanisms is performed with the input gear
  • a drive shaft is disposed between the first slave gear and the second slave gear, and two ends of the drive shaft are synchronously connected with the first slave gear and the second slave gear, respectively.
  • the driving shaft is drivingly coupled to the circular motion output mechanism, so that the linear motion converting mechanism and the circular motion output mechanism achieve a one-way synchronous rotational connection.
  • the reciprocating linear motion mechanism includes a linear slide rail, a rack slidably disposed on the linear slide rail, and a pedal provided on the rack,
  • the linear slide rail is fixed on the main body of the device, and the rack is meshed with the rotary wheel, so that the reciprocating linear motion mechanism is drivingly connected with the linear motion conversion mechanism.
  • the reciprocating linear motion mechanism includes a linear slide rail, a rack slidably disposed on the linear slide rail, and a pedal provided on the rack,
  • the linear slide rail is fixed on the main body of the device, and the rack is meshed with the input gear, so that the reciprocating linear motion mechanism is drivingly connected with the linear motion conversion mechanism.
  • the reciprocating linear motion mechanism includes a linear slide rail, a pedal slidingly disposed on the linear slide rail, a transmission chain fixedly connected to the pedal, and a plurality of auxiliary chains a linear slide rail is fixed on the main body of the device, and the transmission chain is coupled to the plurality of sub-sprocket wheels and the rotary wheel to cause the reciprocating linear motion mechanism and the straight line
  • the motion conversion mechanism performs a transmission connection.
  • the reciprocating linear motion mechanism includes a linear slide rail, a pedal slidingly disposed on the linear slide rail, a transmission chain fixedly connected to the pedal, and a plurality of auxiliary chains
  • the linear slide rail is fixed on the main body of the device, and the transmission chain is drivingly coupled with the plurality of sub-sprocket wheels and the input gear, so that the reciprocating linear motion mechanism and the linear motion
  • the conversion mechanism is connected to the drive.
  • a vehicle including a power output mechanism and The above-mentioned reciprocating linear motion is transferred to the unidirectional circular motion device, and the circular motion output mechanism is drivingly connected to the power output mechanism.
  • the vehicle is a manual or child toy vehicle or a manual power boat or an artificial power umbrella
  • the power output mechanism is a wheel of a manual power vehicle or a wheel of a children's toy vehicle or a propeller of a manual power boat or Propeller of artificial powered umbrella.
  • the beneficial effects of the present invention are:
  • the present invention provides a reciprocating linear motion to unidirectional circular motion device, which is simple and compact in structure
  • the reciprocating linear motion mode can be quickly converted into the one-way circular motion mode, and the A vehicle that reciprocates linear motion to a one-way circular motion device.
  • FIG. 1 is a schematic structural view of a reciprocating linear motion to unidirectional circular motion device of Embodiment 1.
  • FIG. 2 is a schematic view showing the structure of the reciprocating linear motion-turning one-way circular motion device shown in FIG.
  • FIG. 3 is a schematic exploded view of the reciprocating linear motion to unidirectional circular motion device of FIG. 1.
  • FIG. 4 is a schematic structural view of a reciprocating linear motion to one-way circular motion device of Embodiment 2.
  • FIG. 5 is a schematic structural view of a reciprocating linear motion to unidirectional circular motion device of Embodiment 3.
  • FIG. 5 is a schematic structural view of a reciprocating linear motion to unidirectional circular motion device of Embodiment 3.
  • Fig. 6 is a structural schematic view showing the reciprocating linear motion to one-way circular motion device of the fourth embodiment.
  • Fig. 7 is a structural schematic view showing the reciprocating linear motion to one-way circular motion device shown in Fig. 6 without the main body of the device.
  • FIG. 8 is a schematic view showing another angle structure of the reciprocating linear motion to unidirectional circular motion device shown in FIG. 6.
  • FIG. 8 is a schematic view showing another angle structure of the reciprocating linear motion to unidirectional circular motion device shown in FIG. 6.
  • Figure 9 is a schematic view showing the structure of the reciprocating linear motion to one-way circular motion device of the fifth embodiment.
  • Fig. 10 is a structural schematic view showing the reciprocating linear motion to one-way circular motion device of the sixth embodiment.
  • Figure 11 is a schematic view showing the structure of the reciprocating linear motion to one-way circular motion device of the seventh embodiment without the main body of the device.
  • Figure 12 is a schematic view showing another arrangement structure of the gear set of the reciprocating linear motion to one-way circular motion device of the present invention.
  • Figure 13 is a schematic view showing the structure of the reciprocating linear motion to one-way circular motion device of the eighth embodiment.
  • Fig. 14 is a structural schematic view showing the embodiment of the ninth reciprocating linear motion to unidirectional circular motion device without a device main body.
  • Fig. 15 is a structural schematic view showing the embodiment of the tenth reciprocating linear motion to one-way circular motion device without a device body.
  • Fig. 16 is a structural schematic view showing the reciprocating linear motion to one-way circular motion device of the eleventh embodiment.
  • Figure 17 is a schematic view showing the structure of the reciprocating linear motion to one-way circular motion device of the twelfth embodiment.
  • Figure 18 is a schematic view showing the structure of the reciprocating linear motion to one-way circular motion device of the thirteenth embodiment.
  • Figure 21 is a schematic view showing the structure of the artificial power vehicle of the fourteenth embodiment.
  • Figure 22 is a schematic view showing the structure of the artificial electric vehicle of the fifteenth embodiment.
  • Figure 24 is a schematic view showing the structure of the artificial power boat of the seventeenth embodiment.
  • Embodiment 1 As shown in FIG. 1 and FIG. 2 , the embodiment provides a reciprocating linear motion to unidirectional circular motion device 1 .
  • the reciprocating linear motion to unidirectional circular motion device 1 includes a device main body 11, and a reciprocating linear motion mechanism 12, a linear motion conversion mechanism 13, and a circular motion output mechanism 14 disposed on the device main body 11, a reciprocating linear motion mechanism 12 and a linear motion conversion
  • the mechanism 13 is connected to the drive, and the linear motion conversion mechanism 13 converts the reciprocating linear motion outputted by the reciprocating linear motion mechanism 12 into a bidirectional circular motion.
  • the linear motion conversion mechanism 13 also performs a one-way synchronous rotational connection with the circular motion output mechanism 14, and the circular motion output mechanism 14 is used to output a one-way circular motion.
  • the reciprocating linear motion to unidirectional circular motion device 1 further includes a rotational speed adjusting mechanism 15 built in the apparatus main body 11, the rotational speed adjusting mechanism 15 is N gear sets, wherein N ⁇ 2; each gear set includes several diameters Each of the gear sets is synchronously coupled to the corresponding rotating shaft, and the two ends of the rotating shaft are respectively connected with the bearing body of the device; among the N gear sets, each of the gear sets is meshed and connected in sequence, wherein the first gear set is correspondingly
  • the rotating shaft and the linear motion converting mechanism 13 are unidirectionally synchronously rotatably connected, and the corresponding rotating shaft of the Nth gear set is synchronously connected with the circular motion output mechanism 14; the N gear sets are provided with a plurality of shifters so that the adjacent gear sets are in the shifter.
  • the drive down converts the different intermeshing modes.
  • the circular motion output mechanism 14 is an output sprocket
  • the rotational speed adjusting mechanism 15 includes a first gear set 152 disposed on the main rotating shaft 151, a second gear set 154 disposed on the second rotating shaft 153, and a third gear set 155 disposed on the third rotating shaft 155.
  • the third gear set 156, and the first gear set 152, the second gear set 154 and the third gear set 156 respectively include a large gear, a middle gear and a pinion, a first gear set 152, a second gear set 154 and a third gear Groups 156 are arranged in a straight line.
  • the first gear set 152 is synchronously rotatably coupled to the main rotating shaft 151 via a keyway, and the first gear set 152 is freely driven on the main rotating shaft 151 by the first shifter 16. Sliding to the gear meshing position, the large gear of the first gear set 152 is meshed with the pinion gear of the second gear set 154, or the middle gear of the first gear set 152 is meshed with the middle gear of the second gear set 154 Or causing the pinion of the first gear set 152 to mesh with the large gear of the second gear set 154.
  • the main rotating shaft 151 is provided with a positioning circular hole (not shown), first The gear set 151 is internally provided with a spring and a steel ball (not shown), and the steel ball is positioned in the positioning circular hole of the main rotating shaft 151 by the elastic force of the spring to ensure the sliding positioning of the first gear set 152 on the main rotating shaft 151.
  • the two ends of the second rotating shaft 153 are respectively connected to the main body 11 of the apparatus, and the second rotating shaft 153 and the second rotating shaft 154 are synchronously connected by a key groove, and the second rotating shaft 153 is provided.
  • a limiting structure (not shown) for preventing the second gear set 154 from sliding on the second rotating shaft 153 is preferably a shaft card provided at both ends of the gear set 153.
  • the third gear set 156 and the third rotating shaft 155 are synchronously rotatably connected by the key groove, and the third gear set 156 is slidably slid on the third rotating shaft 155 to the gear meshing position by the second shifter 17, so that the third gear
  • the large gear of the set 156 is meshed with the pinion of the second gear set 154, or the intermediate gear of the third gear set 156 is meshed with the middle gear of the second gear set 154, or the third gear set 156 is small
  • the gear is meshed with the large gear of the second gear set 154.
  • the third rotating shaft 155 is provided with a positioning circular hole 1551, and a third
  • the gear set 156 is provided with a spring 1561 and a steel ball 1562.
  • the steel ball 1562 is positioned in the positioning circular hole 1551 of the third rotating shaft 155 by the elastic force of the spring 1561 to ensure the third.
  • Both ends of the third rotating shaft 156 are respectively coupled to the device main body 11, and a circular motion output mechanism 14 (ie, an output sprocket) is disposed at one side of the apparatus main body 11, and one end of the circular motion output mechanism 14 and the third rotating shaft 156 passes through the key groove. Make a synchronous rotation connection.
  • the linear motion conversion mechanism 13 includes two rotating wheels opposite to each other on the two sides of the apparatus main body 11 .
  • the two ends of the main rotating shaft 151 respectively pass through a one-way bearing 18 and a turning wheel.
  • a unidirectional synchronous rotation connection is provided, and a main rotation spring 19 is further disposed between each slewing wheel and the apparatus main body 11, and a reciprocating linear motion mechanism 12 is disposed on the same side of each slewing wheel, and the reciprocating linear motion mechanism 12 is the same
  • the side slewing wheels are connected to the drive.
  • the reciprocating linear motion mechanism 12 includes a linear slide rail 121, a rack 122 that is slidably disposed on the linear slide rail 121, and a pedal 123 that is disposed on the rack 122.
  • the linear slide rail 121 is fixed on the apparatus main body 11, and the rack 122 is meshed with the slewing wheel on the same side, so that the reciprocating linear motion mechanism 12 is connected with the slewing wheel on the same side, thereby making the reciprocating linear motion mechanism 12 is drivingly connected to the linear motion conversion mechanism 13.
  • the pedal 122 controls the rack 122 to move up and down linearly on the linear slide 121, thereby driving the rotary wheel to rotate.
  • the main rotary shaft 151 can only be unidirectionally synchronized with the rotary wheel.
  • the main turning spring 19 drives the turning wheel to rotate
  • the one-way bearing 151 has no resistance, and the main rotating shaft 151 does not rotate.
  • the first gear set 152, the second gear set 154, and the third gear set 156 can be sequentially rotated.
  • the output sprocket completes the circular motion.
  • the first shifter 16 and the second shifter 17 can respectively drive the second gear set 154 by driving the first gear set 152 and the third gear set 156 to achieve the purpose of changing the output torque and the rotational speed.
  • the first shifter 16 includes a dial base 163 with a sliding groove 161 and a center pin 162, a lever slider 165 with a speed regulating lever 164, and a rotating spring 166.
  • the dial rotating cylinder 167 is disposed on the center pin 162, the lever slider 165 is slidably disposed in the sliding slot 161, and the dial rotating cylinder 167 is drivingly connected with the lever slider 165, and the speed adjusting lever 164 is disposed adjacent to the first gear set 152.
  • the dial rotating cylinder 167 rotates, so that the lever slider 165 slides in the sliding slot 161, thereby driving the lever slider 165 to move the first gear set 152, so that the first gear set 152 is free to slide on the main rotating shaft 151 to the gear.
  • the meshing position further causes the large gear of the first gear set 152 to mesh with the pinion gear of the second gear set 154 or, in turn, the middle gear of the first gear set 152 to mesh with the middle gear of the second gear set 154, Or the pinion of the first gear set 152 is in meshing engagement with the large gear of the second gear set 154.
  • the swing spring 166 rotates the dial rotation cylinder 167, and the lever slider 165 slides in the reverse direction to reset it.
  • the structure and working principle of the second shifter 17 are the same as those of the first shifter 16, and the speed regulating lever 174 of the second shifter 17 is disposed adjacent to the third gear set 156.
  • Embodiment 2 As shown in FIG. 4, the present embodiment provides a reciprocating linear motion to unidirectional circular motion device 2, and the difference between the reciprocating linear motion and the unidirectional circular motion device 2 and the reciprocating linear motion to the unidirectional circular motion device 1 is that
  • the reciprocating linear motion mechanism 22 includes a linear slide 221, a pedal 223 slidably disposed on the linear slide 221, a drive chain 222 fixedly coupled to the pedal 223, and three sub-sprocket wheels 224.
  • the linear slide rail 221 is fixed on the apparatus main body 21, and the transmission chain 222 is drivingly coupled with the three sub-sprocket wheels 224 and the revolving wheels on the same side, so that the reciprocating linear motion mechanism 22 and the revolving wheel on the same side are performed.
  • the drive is coupled to cause the reciprocating linear motion mechanism 22 to be in driving connection with the linear motion conversion mechanism 23.
  • the number of the sub-sprocket wheels 224 can be increased or decreased according to actual needs.
  • the pedal 223 is linearly moved up and down on the linear slide 221 to drive the transmission chain 222 to drive, thereby rotating the rotary wheel.
  • Embodiment 3 As shown in FIG. 5, the embodiment provides a reciprocating linear motion to unidirectional circular motion device 3, and the difference between the reciprocating linear motion and the unidirectional circular motion device 3 and the reciprocating linear motion to the unidirectional circular motion device 1 is that
  • the reciprocating linear motion mechanism 32 includes a linear slide 321 , a pedal 323 that is slidably disposed on the linear slide 321 , a drive belt 322 that is fixedly coupled to the pedal 323 , and three secondary pulleys 324 .
  • the linear slide 321 is fixed on the apparatus main body 31, and the transmission belt 322 is belt-drivenly connected with the three sub-pulleys 324 and the slewing wheel of the same side, so that the reciprocating linear motion mechanism 32 is connected with the slewing wheel of the same side. Further, the reciprocating linear motion mechanism 32 is coupled to the linear motion conversion mechanism 33.
  • the number of the secondary pulleys 324 can be increased or decreased according to actual needs.
  • the pedal 323 is linearly moved up and down on the linear slide 321 to drive the transmission belt 322 to drive, thereby rotating the rotary wheel.
  • Embodiment 4 As shown in FIG. 6 and FIG. 7, the embodiment provides a reciprocating linear motion to unidirectional circular motion device 4, and the reciprocating linear motion to unidirectional circular motion device 4 is different from the reciprocating linear motion to the unidirectional circular motion device 1.
  • the linear motion conversion mechanism 43 includes an input gear 431, an input rotating shaft 432 provided through the apparatus main body 41, a main bevel gear 433, and two side bevel gears 434.
  • the input rotating shaft 432 is coupled to the main body 41 of the apparatus, and the input gear 431 is synchronously rotated by the key groove.
  • the input input shaft 432 is located at one end of the device main body 41.
  • the main bevel gear 433 is synchronously rotatably connected to one end of the input shaft 432 in the apparatus main body 41.
  • the two ends of the first rotating shaft 451 are respectively passed through a one-way bearing (not shown).
  • a one-way synchronous rotation connection with one side bevel gear 434, each side bevel gear 434 is meshed with the main bevel gear 433, and a reciprocating linear motion mechanism 42 is respectively disposed on opposite sides of the input gear 431, and each reciprocating straight line
  • the motion mechanism 42 is all in transmission connection with the input gear 431.
  • the rotational speed adjusting mechanism 45 includes a first gear set 452 disposed on the first rotating shaft 451 , a second gear set 454 disposed on the second rotating shaft 453 , and a third rotating shaft 455 disposed on the third rotating shaft 455 .
  • the third gear set 456, and the first gear set 452, the second gear set 454, and the third gear set 456 respectively include a large gear, a middle gear, and a pinion, and the first gear set 452 and the second gear set
  • the 454 and the third gear set 456 are arranged in a triangle.
  • the input gear 431 is a sprocket
  • the reciprocating linear motion mechanism 42 includes a linear slide 421, a pedal 423 slidably disposed on the linear slide 421, a drive chain 422 fixedly coupled to the pedal 423, and two A secondary sprocket 424.
  • the two reciprocating linear motion mechanisms 42 on opposite sides of the sprocket ie, the input gear 431 share a drive chain 422 and two secondary sprockets 424, and two reciprocating linear motion mechanisms 42.
  • the linear slide rails 421 are respectively fixed on the apparatus main body 41, and the transmission chain 422 is mechanically coupled with the two sub-sprocket wheels 424 and the sprocket (ie, the input gear 431), so that the two reciprocating linear motion mechanisms 42 are combined with the sprocket.
  • the input gear 431 is connected to the drive, so that the two reciprocating linear motion mechanisms 42 are all in transmission connection with the linear motion conversion mechanism 43.
  • the pedal 423 is linearly moved up and down on the linear slide 421, and the transmission chain 422 is driven to rotate, so that the sprocket (ie, the input gear 431) rotates, so that the main bevel gear 423 rotates synchronously to drive the bevel gears on both sides.
  • the rotation of 434 causes the first rotating shaft 451 to rotate synchronously with the side bevel gear 434 only in one direction due to the setting of the one-way bearing.
  • the first gear set 452, the second gear set 454, and the third gear set 456 can be sequentially rotated.
  • the output sprocket 44 completes the circumference.
  • the first shifter 46 and the second shifter 47 can respectively drive the second gear set 454 by driving the first gear set 452 and the third gear set 456 to achieve the purpose of changing the output torque and the rotational speed.
  • Embodiment 5 As shown in FIG. 9 , the embodiment provides a reciprocating linear motion to unidirectional circular motion device 5 .
  • the difference between the reciprocating linear motion and the unidirectional circular motion device 5 and the reciprocating linear motion to the unidirectional circular motion device 4 is that the auxiliary chain The number of wheels 524 is one.
  • the drive chain 522 is coupled to the secondary sprocket 524 and the sprocket (ie, the input gear 531) such that both of the reciprocating linear motion mechanisms 52 are in driving connection with the sprocket (ie, the input gear 531). It can be seen that the number of the secondary sprocket 524 can be increased or decreased according to actual needs.
  • the drive chain 522 can also be replaced with a drive belt (not shown), and the secondary sprocket 524 must be replaced with a secondary pulley.
  • Example 6 As shown in FIG. 10, the present embodiment provides a reciprocating linear motion to unidirectional circular motion device 6, and the reciprocating linear motion to one-way circular motion device 6 is different from the reciprocating linear motion to the one-way circular motion device 4.
  • Each of the reciprocating linear motion mechanisms 62 includes a linear slide rail 621, a rack 622 slidably disposed on the linear slide rail 621, and a pedal 623 disposed on the rack 622.
  • the linear slide rail 621 is fixed on the apparatus main body 61, and
  • the rack 622 is meshed with the input gear 631 such that the reciprocating linear motion mechanism 62 is in driving connection with the input gear 631.
  • Example 7 As shown in FIG. 11 , the present embodiment provides a reciprocating linear motion to unidirectional circular motion device 9 , the difference between the reciprocating linear motion and the unidirectional circular motion device 7 and the reciprocating linear motion to the unidirectional circular motion device 4 of the fourth embodiment Yes,
  • the linear motion conversion mechanism 73 includes an input gear 731, an input shaft 732 provided through a device body (not shown), a first main gear 733, a second main gear 734, a first slave gear 735, a second slave gear 736, and a secondary shaft. 737 and the auxiliary gear 738, the input shaft 732 is coupled to the main body of the device, and the input gear 731 is synchronously connected with the one end of the input shaft 732 located outside the main body of the device.
  • the first main gear 733 passes through the first one-way bearing (not shown) a one-way synchronous rotational connection with one end of the input shaft 732 located in the main body of the apparatus, and the second main gear 734 performs one-way synchronous rotation with an end of the input shaft 732 located in the main body of the apparatus through a second one-way bearing (not shown) Connecting, and the mounting direction of the first one-way bearing is opposite to the mounting direction of the second one-way bearing, and the two ends of the first rotating shaft 551 are also synchronously connected with the first and second slave gears 735 and 736, respectively.
  • the two ends of the rotating shaft 737 are respectively connected with the bearing of the device body, the auxiliary gear 738 is synchronously connected to the auxiliary rotating shaft 737, and the auxiliary gears 738 are respectively meshed and coupled with the first main gear 733 and The first slave gear 735, the second main gear 734 is meshed with the second slave gear wheel 736, and the opposite sides of the input gear 731 are respectively provided with a reciprocating linear motion mechanism 72, and each of the reciprocating linear motion mechanisms 72 and the input gear 731 Make the drive connection.
  • the input gear 731 rotates clockwise (or counterclockwise) under the transmission of the reciprocating linear motion mechanism 72, thereby driving the input shaft 732 to rotate synchronously.
  • the first main gear 733 and the second main gear 734 are unidirectionally rotated in different directions, and the first main gear 733 drives the first slave gear 735 through the sub gear 738, and the second main gear 734 directly drives the second slave gear 734.
  • the gear 736 rotates, and the commutation of the sub-gear 738 causes the first slave gear 735 and the second slave gear 736 to rotate only clockwise in one direction or counterclockwise in one direction.
  • the gears of each of the gear sets of the first embodiment to the seventh embodiment described above are According to the arrangement of small, large and medium, the skipping shifting can be realized. As shown in Fig. 12, the gears of each gear set are arranged in the order of large, medium and small, and the stepwise shifting is realized. Between the reciprocating linear motion mechanism and the linear motion conversion mechanism, except as in the above-described first embodiment to seventh embodiment The combination of the rack and the gear or the combination of the chain and the sprocket or the combination of the belt and the pulley is also connected by the combination of the wire rope and the wire wheel. The main implementation method is to fix the wire rope to the main wheel at a certain position.
  • the two ends of the wire rope are wound clockwise and counterclockwise respectively, and it is determined that the length of the wire rope wound on the wire wheel in both directions is longer than the length of the slide rail, so that the same embodiment as the pulley is realized, but the wire rope transmission is occupied.
  • the space is smaller.
  • the present invention can also provide more sets of gear sets according to the needs of specific situations, thereby achieving more stages of shifting effects.
  • Example 8 As shown in FIG. 13 , the embodiment provides a reciprocating linear motion to unidirectional circular motion device 8 , a reciprocating linear motion to unidirectional circular motion device 8 and a reciprocating linear motion to unidirectional circular motion device 1 provided in the first embodiment.
  • the linear motion conversion mechanism 83 i.e., the slewing wheels provided on both sides of the apparatus main body 81
  • the linear motion conversion mechanism 83 is unidirectionally and rotationally coupled to both ends of the main rotating shaft 851 through a one-way bearing (not shown), and the main rotating shaft 851 directly passes through the keyway.
  • the reciprocating linear motion to one-way circular motion device 8 does not include the rotational speed adjustment mechanism, and thus can only convert the reciprocating linear motion mode into a one-way circular motion mode, and does not have a multi-step shifting function.
  • Example 9 As shown in FIG. 14, the embodiment provides a reciprocating linear motion to unidirectional circular motion device 9, a reciprocating linear motion to unidirectional circular motion device 9, and a reciprocating linear motion to unidirectional circular motion device 6 provided in the sixth embodiment.
  • the difference is that,
  • the bevel gears 934 are respectively unidirectionally coupled to the two ends of the driving shaft 951 through a one-way bearing (not shown), and the driving shaft 951 is directly synchronized with the circular motion output mechanism 94 (ie, the output sprocket) through the key groove.
  • the reciprocating linear motion to one-way circular motion device 9 also does not include the rotational speed adjusting mechanism, so that only the reciprocating linear motion mode can be converted into the one-way circular motion mode, and the multi-speed shifting function is not provided.
  • Embodiment 10 As shown in FIG. 15, the embodiment provides a reciprocating linear motion to unidirectional circular motion device 10, the difference between the reciprocating linear motion and the unidirectional circular motion device 10 and the reciprocating linear motion to the unidirectional circular motion device 8 of the seventh embodiment.
  • the first slave gear 1035 and the second slave gear 1036 are synchronously rotatably connected to both ends of the drive shaft 1051, and the drive shaft 1051 is directly connected to the circular motion output mechanism 104 (ie, the output sprocket) through the keyway.
  • the reciprocating linear motion to one-way circular motion device 10 also does not include the rotational speed adjustment mechanism, so that only the reciprocating linear motion mode can be converted into the one-way circular motion mode, and the multi-step shifting function is not provided.
  • Embodiment 11 As shown in FIG. 16, the embodiment provides a reciprocating linear motion to unidirectional circular motion device 20, a reciprocating linear motion to unidirectional circular motion device 20, and a reciprocating linear motion to a unidirectional circumference of the second embodiment.
  • the difference between the motion device 2 is that
  • the first gear set 2052, the second gear set 2054, and the third gear set 2056 each have only one gear, and there is no first shifter and second shifter. Therefore, only the reciprocating linear motion mode can be converted into the one-way circular motion mode, and only the first-order shifting function is provided, and the multi-step shifting function is not provided.
  • the synchronous rotation connection in the above-mentioned first embodiment to the eleventh embodiment is realized by a keyway, and can also be realized by other methods such as a bushing.
  • the structure of the reciprocating linear motion to one-way circular motion device becomes more compact, and can be adjusted by fine structure, such as reducing the number of gears of the gear set of the rotational speed adjusting mechanism, and positioning the input gear of the linear motion conversion mechanism. Adjustment or the like, in which the reciprocating linear motion mechanism in the first embodiment to the eleventh embodiment is placed in the main body of the apparatus except for the two pedals, as shown in FIG. 17 (Example 12) and FIG. 18 (Embodiment 13). ) shown.
  • Embodiment 14 As shown in FIG.
  • the present embodiment provides an artificial power vehicle, which is specifically a bicycle, which includes a power output structure (ie, a wheel) and any of the above-mentioned Embodiments 1 to 13 a reciprocating linear motion to a one-way circular motion device, wherein the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device (ie, the output sprocket) passes through the transmission chain and its power output structure (ie, the wheel)
  • the transmission is connected, so that the two pedals of the reciprocating linear motion and the one-way circular motion device can be driven by a straight line to drive the wheel of the bicycle to rotate, thereby achieving the purpose of freely driving the bicycle, and the conventional bicycle passes through the circumference.
  • Compared to the way to step on the pedal Bicycles are more labor-saving.
  • Embodiment 15 As shown in FIG.
  • the present embodiment provides an artificial power vehicle, which is specifically a standing bicycle, which includes a power output structure (ie, a wheel) and any of the above-mentioned Embodiments 1 to 13 a reciprocating linear motion to a one-way circular motion device, wherein the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device (ie, the output sprocket) passes through the transmission chain and its power output structure (ie, the wheel)
  • the drive is connected, so that the two pedals of the reciprocating linear motion and the one-way circular motion device can be stepped by a straight line to drive the wheel of the standing bicycle to achieve the free driving.
  • the purpose is that the standing bicycle is more labor-saving than the traditional bicycle pedaling by circular motion.
  • Embodiment 16 As shown in FIG.
  • the present embodiment provides an artificial power vehicle, which is specifically a standing bicycle, which includes a power output structure (ie, a wheel) and any of the above-mentioned Embodiments 1 to 13 a reciprocating linear motion to a one-way circular motion device, wherein the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device passes through the transmission shaft and its power output structure (ie, the wheel)
  • the drive is connected, so that the two pedals of the reciprocating linear motion and the one-way circular motion device can be stepped by a straight line to drive the wheel of the standing bicycle to achieve the free driving.
  • the purpose is that the standing bicycle is more labor-saving than the traditional bicycle pedaling by circular motion.
  • Embodiment 17 As shown in FIG.
  • the present embodiment provides an artificial power vehicle, which is specifically a tricycle, which includes a power output structure (ie, a wheel) and any of the above-mentioned Embodiments 1 to 13 a reciprocating linear motion to a one-way circular motion device, the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device (ie, the output sprocket) passing through the transmission belt and its power output structure (ie, the wheel)
  • the drive is connected, so that the wheel of the tricycle can be driven by linearly stepping on the two pedals of the reciprocating linear motion to the one-way circular motion device, thereby achieving the free-driving tricycle
  • the purpose of this tricycle is more labor-saving than the way in which a conventional bicycle pedals the pedal by circular motion.
  • Embodiment 18 As shown in FIG.
  • the present embodiment provides an artificial power vehicle, which is specifically a backrest bicycle, which includes the power output structure (ie, the wheel) and any of the above-mentioned Embodiments 1 to 13
  • a backrest provided on the back seat of the backrest bicycle is also included.
  • the reciprocating linear motion to the one-way circular motion device is placed obliquely, and the circular motion output mechanism (ie, the output sprocket) of the reciprocating linear motion to the one-way circular motion device passes through the transmission chain and its power output structure (ie, the wheel)
  • the transmission is connected, so that the two pedals of the reciprocating linear motion and the one-way circular motion device can be driven by a straight line to drive the wheel of the backrest bicycle, thereby achieving the purpose of freely driving the backrest bicycle, and the conventional bicycle.
  • this backrest The bicycle is more labor-saving, and the backrest is set so that the driver can lie on the backrest bicycle while the driver's legs are better powered by the backrest, making the driving more comfortable.
  • Embodiment 19 As shown in FIG. 24, this embodiment provides an artificial power a ship comprising a power take-off structure (ie, a propeller) and any of the above-described first to third embodiments a reciprocating linear motion to a one-way circular motion device, wherein the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device (ie, the output sprocket) passes through the transmission shaft and its power output structure (ie, the propeller) The transmission is connected, so that when the artificial power boat is driven, the two pedals of the reciprocating linear motion and the one-way circular motion device can be linearly stepped to drive the propeller of the artificial power boat to rotate, thereby achieving manual driving. The purpose of the power boat.
  • a power take-off structure ie, a propeller
  • any of the above-described first to third embodiments a reciprocating linear motion to a one-way circular motion device wherein the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device (ie
  • the reciprocating linear motion to one-way circular motion device can also be applied to other vehicles, such as a power parachute, through the power output mechanism of the powered parachute (ie, the propeller) and the
  • the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device is connected to realize the linear propulsion of the two-step pedal of the reciprocating linear motion to the one-way circular motion device to drive the propeller of the powered parachute Rotate, and then freely drive the purpose of the paramotor, and like a children's toy car, through the power output mechanism (ie, the wheel) of the children's toy car
  • the circular motion output mechanism of the reciprocating linear motion to the one-way circular motion device is connected to realize the linear stepping of the two pedals of the reciprocating linear motion to the one-way circular motion device to drive the wheel of the children's toy vehicle Rotate and then freely
  • the circular motion output mechanism ie, the output sprocket
  • the circular motion output mechanism can be connected to the power output mechanism (such as a wheel, a propeller, etc.) of the vehicle through various transmission modes such as a transmission shaft, a transmission chain, and a transmission belt.
  • the reciprocating linear motion to unidirectional circular motion device mentioned above not only converts the linear motion driving mode of the artificial kinetic energy, but also converts the gear set and the one-way bearing into a circular motion of the output, and the structure is simple and compact, and Through the lateral sliding engagement of the gear set, the way of changing the output torque and the rotational speed is achieved, and the speed adjustment is very convenient.
  • the gears of the gear set can be arranged in the order of large, medium and small, and can be shifted step by step, or arranged in a small, large and medium manner, and jump-shifting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Transmission Devices (AREA)

Abstract

一种往复直线运动转单向圆周运动装置,可将人工驱动的直线运动方式,通过齿条齿轮的组合或链条链轮的组合或皮带皮带轮的组合,以及若干齿轮组与单向轴承的转换,使之转换单向圆周运动方式,结构简单紧凑。而由于每一齿轮组均包括大齿轮、中齿轮及小齿轮,可通过齿轮组横向滑动啮合,来达到变换输出扭矩与转速的方式,调速十分方便。另外,装置主体内的齿轮组之间根据实际需要进行任意排列,如直线排列,三角形排列等,亦可根据实际需要增减齿轮组的组合数量,增减齿轮组内齿轮个数。还有,齿轮组的齿轮可按大、中、小的顺序排列,可逐级变速,亦可按小、大、中的方式排列,跳跃式变速。此外,还提供了使用该装置的交通工具。

Description

往复直线运动转单向圆周运动装置及使用该装置的交通工具 往复直线运动转单向圆周运动装置及使用该装置的交通工具
技术领 域
本发明涉及运动方式转换技术领域,尤其涉及一种往复直线运动转单向圆周运动装置及使用该装置的交通工具。
背景技术
众所周知,在日常生产过程中,常常会遇到这样一种情况, 需要 将直线运动方式转换为圆周运动方式,甚至还要求圆周运动过程中具有不同转速,此时,便需要通过转换装置来实现,然而, 现有的 转换装置 大多结构比较复杂,调速不方便,例如,传统自行车双脚踩圆的方式,因为力臂在0到最大值之间不断重复变化,力矩也在0到最大值之间变化,浪费骑行者的体力与做功时间,而调速因链条在不同链轮之间的变换,变速时间长。
发明内容
本发明的目的在于提供一种结构简单紧凑的 往复直线运动转单向圆周运动装置,可快速将 往复直线运动方式转换为 单向 圆周运动方式,同时还提供了采用了该 往复直线运动转单向圆周运动装置的交通工具。
本发明是这样实现的:
一种往复直线运动转单向圆周运动装置,所述往复直线运动转单向圆周运动装置包括装置主体、以及设置于所述装置主体上的往复直线运动机构、直线运动转换机构及圆周运动输出机构;所述往复直线运动机构与所述直线运动转换机构传动连接,所述直线运动转换机构将所述往复直线运动机构输出的往复直线运动转换为双向圆周运动,所述直线运动转换机构还与所述圆周运动输出机构进行单向同步转动连接,所述圆周运动输出机构用于输出单向圆周运动。
作为上述往复直线运动转单向圆周运动装置的改进,所述直线运动转换机构包括相对设于所述装置主体两侧的两回转轮,每一所述回转轮与所述装置主体之间设有一主回转弹簧,每一所述回转轮的相同侧设有一所述往复直线运动机构,且所述往复直线运动机构与相同侧的所述回转轮进行传动连接;所述两回转轮之间设有一主转轴,所述主转轴两端分别通过一单向轴承与同侧所述回转轮进行单向同步转动连接,所述主转轴与所述圆周运动输出机构传动连接,从而使所述直线运动转换机构与所述圆周运动输出机构实现单向同步转动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述往复直线运动转单向圆周运动装置还包括内置于所述装置主体中的转速调节机构,所述转速调节机构为N个齿轮组,其中,N≥2;每个所述齿轮组包括若干个直径不等的齿轮;所述N个齿轮组中的第一齿轮组同步转动连接于所述主转轴上,所述N个齿轮组中的其他齿轮组分别同步转动连接于其相应的转轴上,所述齿轮组相应的转轴的两端分别与所述装置主体轴承连接;所述N个齿轮组中,每个齿轮组依次啮合连接;第N齿轮组相应的转轴与所述圆周运动输出机构同步转动连接;所述N个齿轮组中设有若干换挡器使相邻齿轮组在所述换挡器的驱动下变换不同的相互啮合方式。
作为上述往复直线运动转单向圆周运动装置的改进,所述往复直线运动转单向圆周运动装置还包括内置于所述装置主体中的转速调节机构,所述直线运动转换机构与所述转速调节机构单向同步转动连接,所述转速调节机构与所述圆周运动输出机构传动连接;所述转速调节机构为N个齿轮组,其中,N≥2;每个所述齿轮组包括若干个直径不等的齿轮;每个所述齿轮组分别同步转动连接于相应的转轴上,所述齿轮组相应的转轴的两端分别与所述装置主体轴承连接;所述N个齿轮组中,每个齿轮组依次啮合连接,其中,第一齿轮组相应的转轴与所述直线运动变换机构单向同步转动连接,第N齿轮组相应的转轴与所述圆周运动输出机构同步转动连接;所述N个齿轮组中设有若干换挡器使相邻齿轮组在所述换挡器的驱动下变换不同的相互啮合方式。
作为上述往复直线运动转单向圆周运动装置的改进,所述转速调节机构包括设于第一转轴上的第一齿轮组、设于第二转轴上的第二齿轮组以及设于第三转轴上的第三齿轮组,且所述第一齿轮组、所述第二齿轮组及所述第三齿轮组分别包括大齿轮、中齿轮及小齿轮;所述第一齿轮组在第一换挡器的驱动下在所述第一转轴上自由滑动到齿轮啮合位置,使得所述第一齿轮组的大齿轮与所述第二齿轮组的小齿轮进行啮合连接,或使得所述第一齿轮组的中齿轮与所述第二齿轮组的中齿轮进行啮合连接,或使得所述第一齿轮组的小齿轮与所述第二齿轮组的大齿轮进行啮合连接;所述第三齿轮组在第二换挡器的驱动下在所述第三转轴上自由滑动到齿轮啮合位置,使得所述第三齿轮组的大齿轮与所述第二齿轮组的小齿轮进行啮合连接,或使得所述第三齿轮组的中齿轮与所述第二齿轮组的中齿轮进行啮合连接,或使得所述第三齿轮组的小齿轮与所述第二齿轮组的大齿轮进行啮合连接;所述圆周运动输出机构与所述第三转轴的一端同步转动连接,以使得所述转速调节机构与所述圆周运动输出机构传动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述第一换挡器及所述第二换挡器分别包括带滑槽及中心销的拨动器基座、带调速拨杆的拨杆滑块以及带回转弹簧的拨挡旋转圆柱,所述拨挡旋转圆柱套设于所述中心销上,所述拨杆滑块滑设于所述滑槽中,所述拨挡旋转圆柱与所述拨杆滑块驱动连接,所述调速拨杆邻近所述第一齿轮组或所述第三齿轮组设置。
作为上述往复直线运动转单向圆周运动装置的改进,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、主锥齿轮及两侧锥齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述主锥齿轮与所述输入转轴位于所述装置主体内的一端同步转动连接,所述第一转轴的两端还分别通过一单向轴承与一所述侧锥齿轮进行单向同步转动连接,每一所述侧锥齿轮皆与所述主锥齿轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、第一主齿轮、第二主齿轮、第一从齿轮、第二从齿轮、副转轴以及副齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述第一主齿轮通过第一单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,所述第二主齿轮通过第二单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,且所述第一单向轴承的安装方向与所述第二单向轴承的安装方向相反设置,所述第一转轴的两端还分别与所述第一从齿轮及所述第二从齿轮进行同步转动连接,所述副转轴的两端分别与所述装置主体轴承连接,所述副齿轮同步转动连接于所述副转轴上,所述副齿轮分别啮合连接所述第一主齿轮及所述第一从齿轮,所述第二主齿轮与所述第二从齿轮轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、主锥齿轮及两侧锥齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述主锥齿轮与所述输入转轴位于所述装置主体内的一端同步转动连接,每一所述侧锥齿轮皆与所述主锥齿轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接;所述两侧锥齿轮之间设有驱动转轴,所述驱动转轴的两端分别通过一单向轴承与一所述侧锥齿轮进行单向同步转动连接;所述驱动转轴与所述圆周运动输出机构传动连接,从而使所述直线运动转换机构与所述圆周运动输出机构实现单向同步转动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、第一主齿轮、第二主齿轮、第一从齿轮、第二从齿轮、副转轴以及副齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述第一主齿轮通过第一单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,所述第二主齿轮通过第二单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,且所述第一单向轴承的安装方向与所述第二单向轴承的安装方向相反设置,所述副转轴的两端分别与所述装置主体轴承连接,所述副齿轮同步转动连接于所述副转轴上,所述副齿轮分别啮合连接所述第一主齿轮及所述第一从齿轮,所述第二主齿轮与所述第二从齿轮轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接,所述第一从齿轮与所述第二从齿轮之间设有驱动转轴,所述驱动转轴的两端分别与所述第一从齿轮及所述第二从齿轮进行同步转动连接,所述驱动转轴与所述圆周运动输出机构传动连接,从而使所述直线运动转换机构与所述圆周运动输出机构实现单向同步转动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的齿条以及设于所述齿条上的踏板,所述直线滑轨固设于所述装置主体上,且所述齿条与所述回转轮进行啮合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的齿条以及设于所述齿条上的踏板,所述直线滑轨固设于所述装置主体上,且所述齿条与所述输入齿轮进行啮合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的踏板、与所述踏板固定连接的传动链条以及若干副链轮,所述直线滑轨固设于所述装置主体上,所述传动链条与所述若干副链轮以及所述回转轮进行传动链合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
作为上述往复直线运动转单向圆周运动装置的改进,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的踏板、与所述踏板固定连接的传动链条以及若干副链轮,所述直线滑轨固设于所述装置主体上,所述传动链条与所述若干副链轮以及所述输入齿轮进行传动链合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
一种交通工具,所述交通工具包括动力输出机构及 上述的往复直线运动转单向圆周运动装置,所述圆周运动输出机构与所述动力输出机构传动连接。
作为上述交通工具的改进, 所述交通工具为人工动力车或儿童玩具车或人工动力船或人工动力伞,所述动力输出机构为人工动力车 的车轮 或儿童玩具车的车轮 或人工动力船的螺旋桨或 人工动力伞的螺旋桨。
本发明的有益效果是: 本发明提供一种往复直线运动转单向圆周运动装置,其 结构简单紧凑 ,通过往复直线运动机构、直线运动转换机构及圆周运动输出机构的转换,可快速将 往复直线运动方式转换为 单向 圆周运动方式 , 同时还提供了采用了该 往复直线运动转单向圆周运动装置的交通工具。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例一往复直线运动转单向圆周运动装置的结构示意图。
图2为图1所示往复直线运动转单向圆周运动装置无装置主体时的结构示意图。
图3为图1所示往复直线运动转单向圆周运动装置的分解结构示意图。
图4为实施例二往复直线运动转单向圆周运动装置的结构示意图。
图5为实施例三往复直线运动转单向圆周运动装置的结构示意图。
图6为实施例四往复直线运动转单向圆周运动装置的结构示意图。
图7为图6所示往复直线运动转单向圆周运动装置无装置主体时的结构示意图。
图8为图6所示往复直线运动转单向圆周运动装置的另一角度结构示意图。
图9为实施例五往复直线运动转单向圆周运动装置的结构示意图。
图10为实施例六往复直线运动转单向圆周运动装置的结构示意图。
图11为实施例七往复直线运动转单向圆周运动装置无装置主体时的结构示意图。
图12为本发明往复直线运动转单向圆周运动装置的齿轮组的另一种排列结构示意图。
图13为实施例八往复直线运动转单向圆周运动装置的结构示意图。
图14为实施例九往复直线运动转单向圆周运动装置无装置主体时的结构示意图。
图15为实施例十往复直线运动转单向圆周运动装置无装置主体时的结构示意图。
图16为实施例十一往复直线运动转单向圆周运动装置的结构示意图。
[根据细则91更正 29.02.2016] 
图17为实施例十二往复直线运动转单向圆周运动装置的结构示意图。
[根据细则91更正 29.02.2016] 
图18为实施例十三往复直线运动转单向圆周运动装置的结构示意图。
[根据细则91更正 29.02.2016] 
图19为实施例十二人工动力车的结构示意图。
[根据细则91更正 29.02.2016] 
图20为实施例十三人工动力车的结构示意图。
[根据细则91更正 29.02.2016] 
图21为实施例十四人工动力车的结构示意图。
[根据细则91更正 29.02.2016] 
图22为实施例十五人工动力车的结构示意图。
[根据细则91更正 29.02.2016] 
图23为实施例十六人工动力车的结构示意图
[根据细则91更正 29.02.2016] 
图24为实施例十七人工动力船的结构示意
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:如图1及图2所示,本实施例提供一种往复直线运动转单向圆周运动装置1, 往复直线运动转单向圆周运动装置1包括装置主体11、以及设置于装置主体11上的往复直线运动机构12、直线运动转换机构13及圆周运动输出机构14,往复直线运动机构12与直线运动转换机构13传动连接,直线运动转换机构13将往复直线运动机构12输出的往复直线运动转换为双向圆周运动,直线运动转换机构13还与圆周运动输出机构14进行单向同步转动连接,圆周运动输出机构14用于输出单向圆周运动。
往复直线运动转单向圆周运动装置1还包括内置于装置主体11中的转速调节机构15,转速调节机构15为N个齿轮组,其中,N≥2;每个齿轮组包括若干个直径不等的齿轮;每个齿轮组分别同步转动连接于相应的转轴上,转轴的两端分别与装置主体轴承连接;N个齿轮组中,每个齿轮组依次啮合连接,其中,第一齿轮组相应的转轴与直线运动变换机构13单向同步转动连接,第N齿轮组相应的转轴与圆周运动输出机构14同步转动连接;N个齿轮组中设有若干换挡器使相邻齿轮组在换挡器的驱动下变换不同的相互啮合方式。
在本实施例中, 圆周运动输出机构14为输出链轮,转速调节机构15包括设于主转轴151上的第一齿轮组152、设于第二转轴153上的第二齿轮组154以及设于第三转轴155上的第三齿轮组156,且第一齿轮组152、第二齿轮组154及第三齿轮组156分别包括大齿轮、中齿轮及小齿轮,第一齿轮组152、第二齿轮组154及第三齿轮组156之间呈直线排列。
具体地,如图2及图3所示,第一齿轮组152与主转轴151通过键槽进行同步转动连接,且第一齿轮组152在第一换挡器16的驱动下在主转轴151上自由滑动到齿轮啮合位置,使得第一齿轮组152的大齿轮与第二齿轮组154的小齿轮进行啮合连接,或使得第一齿轮组152的中齿轮与第二齿轮组154的中齿轮进行啮合连接,或使得第一齿轮组152的小齿轮与第二齿轮组154的大齿轮进行啮合连接。优选地,主转轴151上设有定位圆孔(未图示),第一 齿轮组151内设弹簧和钢珠(未图示),钢珠利用弹簧的弹力定位于主转轴151的定位圆孔中,以确保 第一 齿轮组152在主转轴151上的滑动定位。
如图2及图3所示,第二转轴153的两端分别与装置主体11进行轴承连接,且第二齿轮组153与第二转轴154通过键槽进行同步转动连接,第二转轴153上设有防止第二齿轮组154在第二转轴153上滑动的限位结构(图中未标示),优选地,限位结构为设于齿轮组153两端的轴卡。第三齿轮组156与第三转轴155通过键槽进行同步转动连接,且第三齿轮组156在第二换挡器17的驱动下在第三转轴155上自由滑动到齿轮啮合位置,使得第三齿轮组156的大齿轮与第二齿轮组154的小齿轮进行啮合连接,或使得第三齿轮组156的中齿轮与第二齿轮组154的中齿轮进行啮合连接,或使得第三齿轮组156的小齿轮与第二齿轮组154的大齿轮进行啮合连接。优选地,如图3所示,第三转轴155上设有定位圆孔1551,第三 齿轮组156内设弹簧1561和钢珠1562,钢珠1562利用弹簧1561的弹力定位于第三转轴155的定位圆孔1551中,以确保 第三 齿轮组156在第三转轴155上的滑动定位。 第三转轴156的两端分别与装置主体11轴承连接,圆周运动输出机构14(即输出链轮)设于装置主体11的一侧,且圆周运动输出机构14与第三转轴156的一端通过键槽进行同步转动连接。
如图1、图2及图3所示,直线运动转换机构13包括相对设于装置主体11两侧的两回转轮,主转轴151的两端分别通过一单向轴承18与一回转轮进行单向同步转动连接,每一回转轮与装置主体11之间还设有一主回转弹簧19,每一回转轮的相同侧设有一往复直线运动机构12,且往复直线运动机构12与相同侧的回转轮进行传动连接。往复直线运动机构12包括直线滑轨121、滑设于直线滑轨121上的齿条122以及设于齿条122上的踏板123。直线滑轨121固设于装置主体11上,且齿条122与相同侧的回转轮进行啮合连接,使得往复直线运动机构12与相同侧的回转轮进行传动连接,进而使得往复直线运动机构12与直线运动转换机构13进行传动连接。
工作时,通过踏板123控制齿条122在直线滑轨121上进行上下直线运动,进而带动回转轮转动,由于单向轴承18的设置,使得主转轴151只能单向与回转轮进行同步转动,当主回转弹簧19带动回转轮回转时,单向轴承151没有阻力,主转轴151不转动。当主转轴151同步转动后,可依次带动第一齿轮组152、第二齿轮组154、第三齿轮组156转动,最后,在第三转轴155的同步转动下,使得输出链轮完成圆周运动的动力输出。工作过程中 ,第一换挡器16及第二换挡器17可分别通过驱动第一齿轮组152及第三齿轮组156横向滑动啮合连接第二齿轮组154,以达到变换输出扭矩与转速的目的。
另外,如图3所示,第一换挡器16包括带滑槽161及中心销162的拨动器基座163、带调速拨杆164的拨杆滑块165以及带回转弹簧166的拨挡旋转圆柱167,拨挡旋转圆柱167套设于中心销162上,拨杆滑块165滑设于滑槽161中,拨挡旋转圆柱167与拨杆滑块165驱动连接,调速拨杆164邻近第一齿轮组152设置。工作时,可通过 钢丝拉动 拨挡旋转圆柱167转动,使得拨杆滑块165在滑槽161中滑动,进而带动拨杆滑块165拨动第一齿轮组152,使得第一齿轮组152在主转轴151上自由滑动到齿轮啮合位置,进而使得第一齿轮组152的大齿轮与第二齿轮组154的小齿轮进行啮合连接,或进而使得第一齿轮组152的中齿轮与第二齿轮组154的中齿轮进行啮合连接,或进而使得第一齿轮组152的小齿轮与第二齿轮组154的大齿轮进行啮合连接。当钢丝放松时,回转弹簧166使拨挡旋转圆柱167回转,拨杆滑块165反向滑动使之复位。第二换挡器17的结构及工作原理与第一换挡器16的结构及工作原理相同,第二换挡器17的调速拨杆174邻近第三齿轮组156设置。
实施例二: 如图4所示,本实施例提供一种往复直线运动转单向圆周运动装置2,往复直线运动转单向圆周运动装置2与往复直线运动转单向圆周运动装置1的区别在于, 往复直线运动机构22包括直线滑轨221、滑设于直线滑轨221上的踏板223、与踏板223固定连接的传动链条222以及三个副链轮224。直线滑轨221固设于装置主体21上,且传动链条222与三个副链轮224以及相同侧的回转轮进行传动链合连接,使得往复直线运动机构22与相同侧的回转轮进行传动连接,进而使得往复直线运动机构22与直线运动转换机构23进行传动连接。在本实施例中,副链轮224的数目可根据实际需要进行增减。工作时,通过踏板223在直线滑轨221上进行上下直线运动,带动传动链条222进行传动,进而使得回转轮转动。
实施例三: 如图5所示,本实施例提供一种往复直线运动转单向圆周运动装置3,往复直线运动转单向圆周运动装置3与往复直线运动转单向圆周运动装置1的区别在于, 往复直线运动机构32包括直线滑轨321、滑设于直线滑轨321上的踏板323、与踏板323固定连接的传动皮带322以及三个副皮带轮324。直线滑轨321固设于装置主体31上,且传动皮带322与三个副皮带轮324以及相同侧的回转轮进行皮带传动连接,使得往复直线运动机构32与相同侧的回转轮进行传动连接,进而使得往复直线运动机构32与直线运动转换机构33进行传动连接。在本实施例中,副皮带轮324的数目可根据实际需要进行增减。工作时,通过踏板323在直线滑轨321上进行上下直线运动,带动传动皮带322进行传动,进而使得回转轮转动。
实施例四: 如图6及图7所示,本实施例提供一种往复直线运动转单向圆周运动装置4,往复直线运动转单向圆周运动装置4与往复直线运动转单向圆周运动装置1的区别在于, 直线运动转换机构43包括输入齿轮431、贯穿装置主体41设置的输入转轴432、主锥齿轮433及两侧锥齿轮434,输入转轴432与装置主体41之间轴承连接,输入齿轮431通过键槽同步转动连接输入转轴432位于装置主体41外的一端,主锥齿轮433通过键槽同步转动连接输入转轴432位于装置主体41内的一端,第一转轴451的两端还分别通过一单向轴承(未图示)与一侧锥齿轮434进行单向同步转动连接,每一侧锥齿轮434皆与主锥齿轮433啮合连接,输入齿轮431的相对两侧分别设有一往复直线运动机构42,且每一往复直线运动机构42皆与输入齿轮431进行传动连接。
如图7及图8所示,转速调节机构45包括设于第一转轴451上的第一齿轮组452、设于第二转轴453上的第二齿轮组454以及设于第三转轴455上的第三齿轮组456,且第一齿轮组452、第二齿轮组454及第三齿轮组456分别包括直径依次递减设置的大齿轮、中齿轮及小齿轮,第一齿轮组452、第二齿轮组454及第三齿轮组456之间呈三角形排列。
如图6及图7所示,输入齿轮431为链轮,往复直线运动机构42包括直线滑轨421、滑设于直线滑轨421上的踏板423、与踏板423固定连接的传动链条422以及两个副链轮424。在本实施例中,如图6所示,位于链轮(即输入齿轮431)的相对两侧的两往复直线运动机构42共用一传动链条422及两副链轮424,两往复直线运动机构42的直线滑轨421分别固设于装置主体41上,传动链条422与两个副链轮424以及链轮(即输入齿轮431)进行传动链合连接,使得两往复直线运动机构42皆与链轮(即输入齿轮431)进行传动连接,进而使得两往复直线运动机构42皆与直线运动转换机构43进行传动连接。
工作时,通过踏板423在直线滑轨421上进行上下直线运动,带动传动链条422进行传动,使得链轮(即输入齿轮431)转动,进而使得主锥齿轮423同步转动,以带动两侧锥齿轮434转动,由于单向轴承的设置,使得第一转轴451只能单向与侧锥齿轮434进行同步转动。当第一转轴451同步转动后,可依次带动第一齿轮组452、第二齿轮组454、第三齿轮组456转动,最后,在第三转轴455的同步转动下,使得输出链轮44完成圆周运动的动力输出。工作过程中 ,第一换挡器46及第二换挡器47可分别通过驱动第一齿轮组452及第三齿轮组456横向滑动啮合连接第二齿轮组454,以达到变换输出扭矩与转速的目的。
实施例五: 如图9所示,本实施例提供一种往复直线运动转单向圆周运动装置5,往复直线运动转单向圆周运动装置5与往复直线运动转单向圆周运动装置4的区别在于,副链轮524的数目为1个, 传动链条522与副链轮524以及链轮(即输入齿轮531)进行传动链合连接,使得两往复直线运动机构52皆与链轮(即输入齿轮531)进行传动连接。可见,副链轮524的数目可根据实际需要进行增减。另外,传动链条522亦可换成传动皮带(未图示),同时需将副链轮524换成副皮带轮。
实施例六: 如图10所示,本实施例提供一种往复直线运动转单向圆周运动装置6,往复直线运动转单向圆周运动装置6与往复直线运动转单向圆周运动装置4的区别在于 ,每一往复直线运动机构62包括直线滑轨621、滑设于直线滑轨621上的齿条622以及设于齿条622上的踏板623,直线滑轨621固设于装置主体61上,且齿条622与输入齿轮631进行啮合连接,使得往复直线运动机构62与输入齿轮631进行传动连接。
实施例七: 如图11所示,本实施例提供一种往复直线运动转单向圆周运动装置9,往复直线运动转单向圆周运动装置7与实施例四的往复直线运动转单向圆周运动装置4的区别在于, 直线运动转换机构73包括输入齿轮731、贯穿装置主体(未图示)设置的输入转轴732、第一主齿轮733、第二主齿轮734、第一从齿轮735、第二从齿轮736、副转轴737以及副齿轮738,输入转轴732与装置主体之间轴承连接,输入齿轮731与输入转轴732位于装置主体外的一端同步转动连接,第一主齿轮733通过第一单向轴承(图中未标示)与输入转轴732位于装置主体内的一端进行单向同步转动连接,第二主齿轮734通过第二单向轴承(图中未标示)与输入转轴732位于装置主体内的一端进行单向同步转动连接,且第一单向轴承的安装方向与第二单向轴承的安装方向相反设置,第一转轴551的两端还分别与第一从齿轮735及第二从齿轮736进行同步转动连接,副转轴737的两端分别与装置主体轴承连接,副齿轮738同步转动连接于副转轴737上,副齿轮738分别啮合连接第一主齿轮733及第一从齿轮735,第二主齿轮734与第二从齿轮轮736啮合连接,输入齿轮731的相对两侧分别设有一往复直线运动机构72,且每一往复直线运动机构72皆与输入齿轮731进行传动连接。
工作时,输入齿轮731在往复直线运动机构72的传动下进行顺时针(或逆时针)转动,进而带动输入转轴732同步转动,由于第一单向轴承及第二单向轴承的反向设置,使得第一主齿轮733及第二主齿轮734往不同的方向进行单向转动,且第一主齿轮733通过副齿轮738来带动第一从齿轮735转动,第二主齿轮734直接带动第二从齿轮736转动,通过副齿轮738的换向,使得第一从齿轮735及第二从齿轮736均只能顺时针单向转动或逆时针单向转动。
另外,上述实施例一至实施例七的每个齿轮组的齿轮均 按小、大、中的方式排列,可实现跳跃式变速,亦可如图12所示,每个齿轮组的齿轮按大、中、小的顺序排列,实现逐级变速。 往复直线运动机构与直线运动转换机构之间除了按上述实施例一至实施例七那样通过 齿条与齿轮的组合或链条与链轮的组合或皮带与皮带轮的组合进行传动连接外,还可通过钢丝绳与钢丝轮的组合进行传动连接,主要实施方式是将钢丝绳某一处固定在主轮上,钢丝绳两端分别向顺时针与逆时针方向各绕两圈,确定两方向绕于钢丝轮上的钢丝绳长度比滑轨行程长即可实现与皮带轮一样的实施方式,但采用钢丝绳传动所占空间更小。还有,对于本领域技术人员而言,本发明还可根据具体情况的需要,而设置更多组的齿轮组,从而实现更多级的变速效果。
实施例八: 如图13所示,本实施例提供一种往复直线运动转单向圆周运动装置8,往复直线运动转单向圆周运动装置8与实施例一提供的往复直线运动转单向圆周运动装置1的区别在于, 直线运动转换机构83(即设于装置主体81两侧的回转轮)分别通过一单向轴承(未图示)与主转轴851的两端进行单向同步转动连接,主转轴851直接通过键槽与圆周运动输出机构84(即输出链轮)进行同步转动连接,由于本实施例的 往复直线运动转单向圆周运动装置8不包括转速调节机构,因而仅可将往复直线运动方式转换为单向圆周运动方式,不具备多级变速功能。
实施例九: 如图14所示,本实施例提供一种往复直线运动转单向圆周运动装置9,往复直线运动转单向圆周运动装置9与实施例六提供的往复直线运动转单向圆周运动装置6的区别在于, 两侧锥齿轮934分别通过一单向轴承(未图示)与驱动转轴951的两端进行单向同步转动连接,驱动转轴951直接通过键槽与圆周运动输出机构94(即输出链轮)进行同步转动连接,由于本实施例的 往复直线运动转单向圆周运动装置9同样不包括转速调节机构,因而仅可将往复直线运动方式转换为单向圆周运动方式,不具备多级变速功能。
实施例十 : 如图15所示,本实施例提供一种往复直线运动转单向圆周运动装置10,往复直线运动转单向圆周运动装置10与实施例七的往复直线运动转单向圆周运动装置8的区别在于, 第一从齿轮1035与第二从齿轮1036分别与驱动转轴1051的两端进行同步转动连接,驱动转轴1051直接通过键槽与圆周运动输出机构104(即输出链轮)进行同步转动连接,由于本实施例的 往复直线运动转单向圆周运动装置10同样不包括转速调节机构,因而仅可将往复直线运动方式转换为单向圆周运动方式,不具备多级变速功能。
实施例十一:如图16所示,本实施例提供一种往复直线运动转单向圆周运动装置20,往复直线运动转单向圆周运动装置20与实施例二的往复直线运动转单向圆周运动装置2的区别在于,其 第一齿轮组2052、第二齿轮组2054以及第三齿轮组2056均只有一个齿轮,且无第一换挡器及第二换挡器, 因而仅可将往复直线运动方式转换为单向圆周运动方式,及仅具备一级变速功能,不具备多级变速功能。
另外,上述实施例一至实施例十一中的同步转动连接均通过键槽来实现,亦可通过轴套等其它方式来实现。还有,为使得本发明的 往复直线运动转单向圆周运动装置的结构变得更加紧凑,可通过细微结构调整,如将 转速调节机构的齿轮组的齿轮数目进行删减、将直线运动转换机构的输入齿轮进行位置 调整等,以将 上述实施例一至实施例十一中的往复直线运动机构除两踏板外,全部置于装置主体中,具体可如 图17( 实施例十二 )及图18( 实施例十三 )所示。
实施例十四 : 如图19所示 ,本实施例提供了一种人工动力车,该人工动力车具体为自行车,其包括动力输出结构(即车轮)及 上述实施例一至实施例十 三任一提到的 往复直线运动转单向圆周运动装置,该往复直线运动转单向圆周运动装置的圆周运动输出机构(即输出链轮)通过传动链条与其 动力输出结构(即车轮) 传动连接,这样一来,便可通过直线踩动该往复直线运动转单向圆周运动装置的两个踏板来带动本自行车的车轮转动,进而达到自由驾驶本自行车的目的,与传统的自行车通过圆周运动来踩动踏板的方式相比,本 自行车更省力。
实施例十五 : 如图20所示 ,本实施例提供了一种人工动力车,该人工动力车具体为站立骑行车,其包括动力输出结构(即车轮)及 上述实施例一至实施例十 三任一提到的 往复直线运动转单向圆周运动装置,该往复直线运动转单向圆周运动装置的圆周运动输出机构(即输出链轮)通过传动链条与其 动力输出结构(即车轮) 传动连接,这样一来,便可通过直线踩动该往复直线运动转单向圆周运动装置的两个踏板来带动本 站立骑行车 的车轮转动,进而达到自由驾驶本 站立骑行车 的目的,与传统的自行车通过圆周运动来踩动踏板的方式相比,本 站立骑行车更省力。
实施例十六 : 如图21所示 ,本实施例提供了一种人工动力车,该人工动力车具体为站立骑行车,其包括动力输出结构(即车轮)及 上述实施例一至实施例十 三任一提到的 往复直线运动转单向圆周运动装置,该往复直线运动转单向圆周运动装置的圆周运动输出机构通过传动轴与其 动力输出结构(即车轮) 传动连接,这样一来,便可通过直线踩动该往复直线运动转单向圆周运动装置的两个踏板来带动本 站立骑行车 的车轮转动,进而达到自由驾驶本 站立骑行车 的目的,与传统的自行车通过圆周运动来踩动踏板的方式相比,本 站立骑行车更省力。
实施例十七 : 如图22所示 ,本实施例提供了一种人工动力车,该人工动力车具体为三轮车,其包括动力输出结构(即车轮)及 上述实施例一至实施例十 三任一提到的 往复直线运动转单向圆周运动装置,该往复直线运动转单向圆周运动装置的圆周运动输出机构(即输出链轮)通过传动皮带与其 动力输出结构(即车轮) 传动连接,这样一来,便可通过直线踩动该往复直线运动转单向圆周运动装置的两个踏板来带动本 三轮车 的车轮转动,进而达到自由驾驶本 三轮车 的目的,与传统的自行车通过圆周运动来踩动踏板的方式相比,本三轮车 更省力。
实施例十八 : 如图23所示 ,本实施例提供了一种人工动力车,该人工动力车具体为靠背自行车,其除了包括动力输出结构(即车轮)及 上述实施例一至实施例十 三任一提到的 往复直线运动转单向圆周运动装置之外,还包括一设于 靠背自行车后座的靠背,其 往复直线运动转单向圆周运动装置倾斜放置,且该往复直线运动转单向圆周运动装置的圆周运动输出机构(即输出链轮)通过传动链条与其 动力输出结构(即车轮) 传动连接,这样一来,便可通过直线踩动该往复直线运动转单向圆周运动装置的两个踏板来带动本靠背自行车的车轮转动,进而达到自由驾驶本靠背自行车的目的,与传统的自行车通过圆周运动来踩动踏板的方式相比,本靠背 自行车更省力,且靠背的设置可使得驾驶者微躺着驾驶本靠背自行车,同时,借助靠背,驾驶者腿部更好发力,使之驾驶更舒适。
实施例十九 : 如图24所示 , 本实施例提供一种人工动力 船,该人工动力船船包括动力输出结构(即螺旋桨)及上述实施例一至实施例十三任一提到的 往复直线运动转单向圆周运动装置,该往复直线运动转单向圆周运动装置的圆周运动输出机构(即输出链轮)通过传动轴与其 动力输出结构(即螺旋桨) 传动连接,这样一来,本人工动力船行驶时,便可通过直线踩动该往复直线运动转单向圆周运动装置的两个踏板来带动本人工动力船的螺旋桨转动,进而达到人工驱动本人工动力船行驶的目的。
另外,除了实施例十四至实施例十九提到的人工动力车、人工动力船等交通工具外,上述实施例一至实施例十三任一提到的 往复直线运动转单向圆周运动装置还可应用于其他交通工具上,如动力伞,通过 动力伞的动力输出机构(即螺旋桨)与该 往复直线运动转单向圆周运动装置的圆周运动输出机构传动连接,来达到直线踩动该往复直线运动转单向圆周运动装置的两个踏板便可带动动力伞的 螺旋桨 转动,进而自由驾驶本动力伞的目的,再如儿童玩具车,通过儿童玩具车 的动力输出机构(即车轮)与该 往复直线运动转单向圆周运动装置的圆周运动输出机构传动连接,来达到直线踩动该往复直线运动转单向圆周运动装置的两个踏板便可带动儿童玩具车的 车轮 转动,进而自由驾驶儿童玩具车本的目的。还有,在将 上述实施例一至实施例十三任一提到的 往复直线运动转单向圆周运动装置应用于 人工动力车、儿童玩具车、人工动力船、动力伞等交通工具时 ,其圆周运动输出机构(即输出链轮)可通过传动轴、传动链条、传动皮带等各种传动方式与交通工具的动力输出机构(如车轮、螺旋桨等) 进行 传动连接。
上述提到的往复直线运动转单向圆周运动装置,其不仅将人工动能的直线运动驱动方式,通过齿轮组与单向轴承的转换,使之变为输出圆周运动的方式,结构简单紧凑,而且通过齿轮组横向滑动啮合,来达到变换输出扭矩与转速的方式,调速十分方便。还有,齿轮组的齿轮可按大、中、小的顺序排列,可逐级变速,亦可按小、大、中的方式排列,跳跃式变速。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动转单向圆周运动装置包括装置主体、以及设置于所述装置主体上的往复直线运动机构、直线运动转换机构及圆周运动输出机构;所述往复直线运动机构与所述直线运动转换机构传动连接,所述直线运动转换机构将所述往复直线运动机构输出的往复直线运动转换为双向圆周运动,所述直线运动转换机构还与所述圆周运动输出机构进行单向同步转动连接,所述圆周运动输出机构用于输出单向圆周运动。
  2. 如权利要求1所述的往复直线运动转单向圆周运动装置,其特征在于,所述直线运动转换机构包括相对设于所述装置主体两侧的两回转轮,每一所述回转轮与所述装置主体之间设有一主回转弹簧,每一所述回转轮的相同侧设有一所述往复直线运动机构,且所述往复直线运动机构与相同侧的所述回转轮进行传动连接;所述两回转轮之间设有一主转轴,所述主转轴两端分别通过一单向轴承与同侧所述回转轮进行单向同步转动连接,所述主转轴与所述圆周运动输出机构传动连接,从而使所述直线运动转换机构与所述圆周运动输出机构实现单向同步转动连接。
  3. 如权利要求2所述的往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动转单向圆周运动装置还包括内置于所述装置主体中的转速调节机构,所述转速调节机构为N个齿轮组,其中,N≥2;每个所述齿轮组包括若干个直径不等的齿轮;所述N个齿轮组中的第一齿轮组同步转动连接于所述主转轴上,所述N个齿轮组中的其他齿轮组分别同步转动连接于其相应的转轴上,所述齿轮组相应的转轴的两端分别与所述装置主体轴承连接;所述N个齿轮组中,每个齿轮组依次啮合连接;第N齿轮组相应的转轴与所述圆周运动输出机构同步转动连接;所述N个齿轮组中设有若干换挡器使相邻齿轮组在所述换挡器的驱动下变换不同的相互啮合方式。
  4. 如权利要求1所述的往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动转单向圆周运动装置还包括内置于所述装置主体中的转速调节机构,所述直线运动转换机构与所述转速调节机构单向同步转动连接,所述转速调节机构与所述圆周运动输出机构传动连接;所述转速调节机构为N个齿轮组,其中,N≥2;每个所述齿轮组包括若干个直径不等的齿轮;每个所述齿轮组分别同步转动连接于相应的转轴上,所述齿轮组相应的转轴的两端分别与所述装置主体轴承连接;所述N个齿轮组中,每个齿轮组依次啮合连接,其中,第一齿轮组相应的转轴与所述直线运动变换机构单向同步转动连接,第N齿轮组相应的转轴与所述圆周运动输出机构同步转动连接;所述N个齿轮组中设有若干换挡器使相邻齿轮组在所述换挡器的驱动下变换不同的相互啮合方式。
  5. 如权利要求4所述的往复直线运动转单向圆周运动装置,其特征在于,所述转速调节机构包括设于第一转轴上的第一齿轮组、设于第二转轴上的第二齿轮组以及设于第三转轴上的第三齿轮组,且所述第一齿轮组、所述第二齿轮组及所述第三齿轮组分别包括大齿轮、中齿轮及小齿轮;
    所述第一齿轮组在第一换挡器的驱动下在所述第一转轴上自由滑动到齿轮啮合位置,使得所述第一齿轮组的大齿轮与所述第二齿轮组的小齿轮进行啮合连接,或使得所述第一齿轮组的中齿轮与所述第二齿轮组的中齿轮进行啮合连接,或使得所述第一齿轮组的小齿轮与所述第二齿轮组的大齿轮进行啮合连接;
    所述第三齿轮组在第二换挡器的驱动下在所述第三转轴上自由滑动到齿轮啮合位置,使得所述第三齿轮组的大齿轮与所述第二齿轮组的小齿轮进行啮合连接,或使得所述第三齿轮组的中齿轮与所述第二齿轮组的中齿轮进行啮合连接,或使得所述第三齿轮组的小齿轮与所述第二齿轮组的大齿轮进行啮合连接;
    所述圆周运动输出机构与所述第三转轴的一端同步转动连接,以使得所述转速调节机构与所述圆周运动输出机构传动连接。
  6. 如权利要求5所述的往复直线运动转单向圆周运动装置,其特征在于,所述第一换挡器及所述第二换挡器分别包括带滑槽及中心销的拨动器基座、带调速拨杆的拨杆滑块以及带回转弹簧的拨挡旋转圆柱,所述拨挡旋转圆柱套设于所述中心销上,所述拨杆滑块滑设于所述滑槽中,所述拨挡旋转圆柱与所述拨杆滑块驱动连接,所述调速拨杆邻近所述第一齿轮组或所述第三齿轮组设置。
  7. 如权利要求6所述的往复直线运动转单向圆周运动装置,其特征在于,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、主锥齿轮及两侧锥齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述主锥齿轮与所述输入转轴位于所述装置主体内的一端同步转动连接,所述第一转轴的两端还分别通过一单向轴承与一所述侧锥齿轮进行单向同步转动连接,每一所述侧锥齿轮皆与所述主锥齿轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接。
  8. 如权利要求6所述的往复直线运动转单向圆周运动装置,其特征在于,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、第一主齿轮、第二主齿轮、第一从齿轮、第二从齿轮、副转轴以及副齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述第一主齿轮通过第一单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,所述第二主齿轮通过第二单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,且所述第一单向轴承的安装方向与所述第二单向轴承的安装方向相反设置,所述第一转轴的两端还分别与所述第一从齿轮及所述第二从齿轮进行同步转动连接,所述副转轴的两端分别与所述装置主体轴承连接,所述副齿轮同步转动连接于所述副转轴上,所述副齿轮分别啮合连接所述第一主齿轮及所述第一从齿轮,所述第二主齿轮与所述第二从齿轮轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接。
  9. 如权利要求1所述的往复直线运动转单向圆周运动装置,其特征在于,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、主锥齿轮及两侧锥齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述主锥齿轮与所述输入转轴位于所述装置主体内的一端同步转动连接,每一所述侧锥齿轮皆与所述主锥齿轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接;所述两侧锥齿轮之间设有驱动转轴,所述驱动转轴的两端分别通过一单向轴承与一所述侧锥齿轮进行单向同步转动连接;所述驱动转轴与所述圆周运动输出机构传动连接,从而使所述直线运动转换机构与所述圆周运动输出机构实现单向同步转动连接。
  10. 如权利要求1所述的往复直线运动转单向圆周运动装置,其特征在于,所述直线运动转换机构包括输入齿轮、贯穿所述装置主体设置的输入转轴、第一主齿轮、第二主齿轮、第一从齿轮、第二从齿轮、副转轴以及副齿轮,所述输入转轴与所述装置主体之间轴承连接,所述输入齿轮与所述输入转轴位于所述装置主体外的一端同步转动连接,所述第一主齿轮通过第一单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,所述第二主齿轮通过第二单向轴承与所述输入转轴位于所述装置主体内的一端进行单向同步转动连接,且所述第一单向轴承的安装方向与所述第二单向轴承的安装方向相反设置,所述副转轴的两端分别与所述装置主体轴承连接,所述副齿轮同步转动连接于所述副转轴上,所述副齿轮分别啮合连接所述第一主齿轮及所述第一从齿轮,所述第二主齿轮与所述第二从齿轮啮合连接,所述输入齿轮的相对两侧分别设有一所述往复直线运动机构,且每一所述往复直线运动机构皆与所述输入齿轮进行传动连接,所述第一从齿轮与所述第二从齿轮之间设有驱动转轴,所述驱动转轴的两端分别与所述第一从齿轮及所述第二从齿轮进行同步转动连接,所述驱动转轴与所述圆周运动输出机构传动连接,从而使所述直线运动转换机构与所述圆周运动输出机构实现单向同步转动连接。
  11. 如权利要求2或3所述的往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的齿条以及设于所述齿条上的踏板,所述直线滑轨固设于所述装置主体上,且所述齿条与所述回转轮进行啮合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
  12. 如权利要求7或8或9或10所述的往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的齿条以及设于所述齿条上的踏板,所述直线滑轨固设于所述装置主体上,且所述齿条与所述输入齿轮进行啮合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
  13. 如权利要求2或3所述的往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的踏板、与所述踏板固定连接的传动链条以及若干副链轮,所述直线滑轨固设于所述装置主体上,所述传动链条与所述若干副链轮以及所述回转轮进行传动链合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
  14. 如权利要求7或8或9或10所述的往复直线运动转单向圆周运动装置,其特征在于,所述往复直线运动机构包括直线滑轨、滑设于所述直线滑轨上的踏板、与所述踏板固定连接的传动链条以及若干副链轮,所述直线滑轨固设于所述装置主体上,所述传动链条与所述若干副链轮以及所述输入齿轮进行传动链合连接,使得所述往复直线运动机构与所述直线运动转换机构进行传动连接。
  15. 一种交通工具,其特征在于,所述交通工具包括动力输出机构及如权利要求1-14所述的往复直线运动转单向圆周运动装置,所述圆周运动输出机构与所述动力输出机构传动连接。
  16. 如权利要求15所述的交通工具,所述交通工具为人工动力车或儿童玩具车或人工动力船或人工动力伞,所述动力输出机构为人工动力车的车轮或儿童玩具车的车轮或人工动力船的螺旋桨或人工动力伞的螺旋桨。
PCT/CN2016/072169 2015-05-14 2016-02-29 往复直线运动转单向圆周运动装置及使用该装置的交通工具 WO2016180056A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016260141A AU2016260141A1 (en) 2015-05-14 2016-02-29 Device for converting reciprocating rectilinear motion into one-way circular motion and transportation vehicle using device
EP16791906.7A EP3296595A4 (en) 2015-05-14 2016-02-29 UNILATERAL CIRCULAR MOTION DEVICE WITH ALTERNATIVE LINEAR MOTION TRANSFER AND MEANS FOR TRANSPORTING USING SAID DEVICE
JP2017559612A JP6577600B2 (ja) 2015-05-14 2016-02-29 往復直線運動から一方向円運動への変換装置及び該装置を用いた乗り物
CA2985855A CA2985855A1 (en) 2015-05-14 2016-02-29 Device for converting reciprocating rectilinear motion into unidirectional circular motion and transportation vehicle using device
KR1020177034585A KR20180004754A (ko) 2015-05-14 2016-02-29 왕복 직선 운동을 단방향 원운동으로 전환하는 장치 및 그 장치를 사용한 교통 수단
US15/811,237 US10428920B2 (en) 2015-05-14 2017-11-13 Device for converting reciprocating rectilinear motion into one-way circular motion and transportation vehicle using device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510246200 2015-05-14
CN201510246200.X 2015-05-14
CN201510859332.XA CN105370836B (zh) 2015-05-14 2015-11-30 往复直线运动转单向圆周运动装置及使用该装置的交通工具
CN201510859332.X 2015-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/811,237 Continuation US10428920B2 (en) 2015-05-14 2017-11-13 Device for converting reciprocating rectilinear motion into one-way circular motion and transportation vehicle using device

Publications (1)

Publication Number Publication Date
WO2016180056A1 true WO2016180056A1 (zh) 2016-11-17

Family

ID=54301655

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/081058 WO2016179870A1 (zh) 2015-05-14 2015-06-09 往复直线运动转单向圆周运动装置
PCT/CN2016/072169 WO2016180056A1 (zh) 2015-05-14 2016-02-29 往复直线运动转单向圆周运动装置及使用该装置的交通工具

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081058 WO2016179870A1 (zh) 2015-05-14 2015-06-09 往复直线运动转单向圆周运动装置

Country Status (8)

Country Link
US (1) US10428920B2 (zh)
EP (1) EP3296595A4 (zh)
JP (1) JP6577600B2 (zh)
KR (1) KR20180004754A (zh)
CN (2) CN104989799B (zh)
AU (1) AU2016260141A1 (zh)
CA (1) CA2985855A1 (zh)
WO (2) WO2016179870A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989799B (zh) 2015-05-14 2018-02-02 深圳市南博自动化设备有限公司 往复直线运动转单向圆周运动装置
CN105752255B (zh) * 2016-03-26 2018-08-17 深圳市南博自动化设备有限公司 采用往复直线运动转单向圆周运动装置的交通工具
WO2017184617A1 (en) * 2016-04-20 2017-10-26 Jack Chen Human powered watercraft or land vehicle
CN106359177A (zh) * 2016-08-31 2017-02-01 镇沅忠林现代农业科技发展有限公司 一种苦蜂蜜养殖设备
JP6825884B2 (ja) * 2016-11-15 2021-02-03 株式会社ミツトヨ 三次元測定機
CN106988869B (zh) * 2017-04-27 2022-12-09 吴坤柳 直线/旋转转换机构及发动机
CN107246466B (zh) * 2017-07-03 2023-11-28 浙江达因智能科技股份有限公司 一种单向变速器结构
CN108019476A (zh) * 2017-12-15 2018-05-11 中国矿业大学 一种组合式直线运动装置
US10167856B2 (en) * 2017-12-18 2019-01-01 Hong Cho Yew Utilization of moment of inertia and lever for mechanical gain
CN108506441B (zh) * 2018-05-28 2024-06-21 北京呈创科技股份有限公司 一种全自动锁体齿轮箱
CN110371894B (zh) * 2018-08-09 2021-05-25 北京京东乾石科技有限公司 一种齿轮传动装置和叉车
CN109027164A (zh) * 2018-09-04 2018-12-18 上海核工程研究设计院有限公司 一种可传递扭矩的直线间歇传动装置
CN109367677B (zh) * 2018-10-25 2024-05-17 深圳市南博自动化设备有限公司 一种传动复位结构
CN109383691B (zh) * 2018-10-25 2024-01-26 深圳市南博自动化设备有限公司 一种脚踏车的传动结构
CN109502955B (zh) * 2018-12-28 2021-06-29 山东泰山生力源玻璃有限公司 一种玻璃瓶轻量化制造***
US11447206B2 (en) 2019-07-25 2022-09-20 Dylan WEITZ Zero turn vehicle
CN111022595B (zh) * 2019-12-16 2021-05-04 江苏科技大学 一种由直线往复运动实现单向旋转运动的机构
FR3112117B1 (fr) * 2020-07-02 2022-08-05 Jean Bajard Propulseur amélioré pour véhicule individuel à palettes
CN114183464A (zh) * 2020-09-13 2022-03-15 何景安 相同转动的内往复轴套同步齿轮外旋转传动单向轴承
CN114183465A (zh) * 2020-09-13 2022-03-15 何景安 相同转动的外往复轴套同步齿轮内旋转传动单向轴承
US11761522B2 (en) * 2020-11-16 2023-09-19 Kurt H. Snider Actuator integration apparatus and system
CN112696477B (zh) * 2020-12-07 2022-08-19 西伯瀚(泰兴)传动技术有限公司 一种高精度的往复对称式拨架结构
CN112901745B (zh) * 2021-03-24 2024-05-31 苏州润迈德医疗科技有限公司 一种用于绳索的力学转换装置及操作方法
CN112879511B (zh) * 2021-05-06 2021-08-17 新乡天丰机械制造有限公司 一种中心距调节机构同步轮组件
CN114033814A (zh) * 2021-08-12 2022-02-11 何景安 相同转动的内方孔外齿轮(槽轮)带架单向轴承
CN113907887B (zh) * 2021-10-13 2023-07-18 中南大学 旋转伸缩制动***
CN114308746B (zh) * 2021-10-27 2023-06-30 中国科学院光电技术研究所 一种中红外光谱分析仪光学***清洁装置
CN114056469A (zh) * 2021-11-13 2022-02-18 崔晓翔 儿童手拉车
CN114030554A (zh) * 2021-11-19 2022-02-11 门立山 一种多链轮大力矩自行车
CN114505846B (zh) * 2022-03-02 2024-02-06 中国科学院沈阳自动化研究所 一种可实现定位调姿的多自由度冗余机械臂
CN115215241B (zh) * 2022-08-18 2024-05-24 南京信息职业技术学院 一种多向同步伸缩与垂直升降复合运动驱动装置
CN116436202B (zh) * 2023-03-22 2024-02-09 扬州圣迪电动车有限公司 磁动力发电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199001A (zh) * 1998-05-08 1998-11-18 阳宏 一种新式自行车
CN1778630A (zh) * 2004-11-18 2006-05-31 林介昌 踏板式齿条传动自行车
CN201023618Y (zh) * 2007-04-29 2008-02-20 侯圣春 齿轮踏板自行车
CN201283994Y (zh) * 2008-10-24 2009-08-05 邓超 直线踩踏式传力机构
CN104989799A (zh) * 2015-05-14 2015-10-21 深圳市南博自动化设备有限公司 往复直线运动转单向圆周运动装置
CN204784545U (zh) * 2015-05-14 2015-11-18 深圳市南博自动化设备有限公司 往复直线运动转单向圆周运动装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094202A (en) * 1987-07-08 1992-03-10 Belford James R Mechanism for converting reciprocating motion into rotary motion
US5167589A (en) * 1989-12-04 1992-12-01 Practical Engineering, Inc. Transfer bar actuating mechanism
US5915710A (en) * 1997-02-04 1999-06-29 Miller; Donald C. Human powered vehicle
US6237928B1 (en) * 1998-08-31 2001-05-29 John J. Islas Pedaled propulsion system
CN1381681A (zh) * 2001-04-14 2002-11-27 张勤友 转换器
JP4182667B2 (ja) * 2002-02-20 2008-11-19 日本パルスモーター株式会社 2重軸を用いた旋回・直進動作分注装置
US20030173755A1 (en) * 2002-03-18 2003-09-18 John Lachenmayer Bicycle drive mechanism
WO2003104683A1 (en) * 2002-06-10 2003-12-18 Barreiro Motor Company Pty Ltd An energy converter delivering sustained energy output with intermittent energy input
CN1721736A (zh) * 2005-06-11 2006-01-18 刘二峰 机械式自动无级变速传动装置
ES2390157B1 (es) * 2009-12-01 2013-06-20 Jorge Victorino PASTRANA MOLLEDA Optimizador de la transformación de un movimiento lineal en circular.
US20110138939A1 (en) * 2009-12-11 2011-06-16 William James Carr Fixed Moment Arm Combustion Apparatus
JP2011163521A (ja) * 2010-02-15 2011-08-25 Aisin Seiki Co Ltd 回転駆動装置
CN102748446B (zh) * 2011-04-18 2015-05-20 安里千 直线往复运动与旋转运动的交替驱动转换机构
CN102808914B (zh) * 2011-06-03 2017-07-11 祝立群 推杆与齿轮传动机构
CN202215694U (zh) * 2011-08-23 2012-05-09 陈孝谷 圆周运动变为直线运动的装置
CN102562998B (zh) * 2012-02-17 2014-07-23 安里千 一种齿轮-齿块啮合的往复直线运动与旋转运动转换装置
CN102537266A (zh) * 2012-02-23 2012-07-04 大连海事大学 摇杆式无级变速器
CN202560799U (zh) * 2012-03-14 2012-11-28 欣日兴精密电子(苏州)有限公司 具可同时平移与旋转功能的枢纽器及其掀盖式电子装置
CN203082157U (zh) * 2013-02-03 2013-07-24 袁抗美 一种翘板运动转换成圆周运动的装置
US8985607B2 (en) * 2013-04-11 2015-03-24 Kevin Alan Schminkey Single lever drive system
CN203585243U (zh) * 2013-05-23 2014-05-07 唐坤亮 一种传动装置
CA2962854C (en) * 2014-03-18 2021-08-24 Raja Ramanujam Rajendran Continuous variable transmission with uniform input-to-output ratio that is non-dependent on friction
CN104074943A (zh) * 2014-06-30 2014-10-01 王岳林 一种斜度曲轴传动无级变速装置
US20160290452A1 (en) * 2015-03-31 2016-10-06 David Joseph Ransil Full torque crank assemblies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1199001A (zh) * 1998-05-08 1998-11-18 阳宏 一种新式自行车
CN1778630A (zh) * 2004-11-18 2006-05-31 林介昌 踏板式齿条传动自行车
CN201023618Y (zh) * 2007-04-29 2008-02-20 侯圣春 齿轮踏板自行车
CN201283994Y (zh) * 2008-10-24 2009-08-05 邓超 直线踩踏式传力机构
CN104989799A (zh) * 2015-05-14 2015-10-21 深圳市南博自动化设备有限公司 往复直线运动转单向圆周运动装置
CN204784545U (zh) * 2015-05-14 2015-11-18 深圳市南博自动化设备有限公司 往复直线运动转单向圆周运动装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3296595A4 *

Also Published As

Publication number Publication date
JP6577600B2 (ja) 2019-09-18
EP3296595A1 (en) 2018-03-21
KR20180004754A (ko) 2018-01-12
CN104989799B (zh) 2018-02-02
CN105370836A (zh) 2016-03-02
AU2016260141A1 (en) 2017-11-30
CN104989799A (zh) 2015-10-21
CN105370836B (zh) 2018-06-05
WO2016179870A1 (zh) 2016-11-17
JP2018520308A (ja) 2018-07-26
US10428920B2 (en) 2019-10-01
US20180066741A1 (en) 2018-03-08
EP3296595A4 (en) 2019-01-09
CA2985855A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
WO2016180056A1 (zh) 往复直线运动转单向圆周运动装置及使用该装置的交通工具
US20190023349A1 (en) Transportation means using device for converting reciprocating rectilinear motion into single-direction circular motion
JP6608114B2 (ja) 自転車
CN202054125U (zh) 双向输入单向输出脚踏车
CN205371522U (zh) 往复直线运动转单向圆周运动装置及使用该装置的交通工具
AU2011201864A1 (en) Bicycle with bidirectional input and one-way output transmission combined with crank hole thereof
US20150226293A1 (en) Treadle-drive eccentric wheel transmission wheel series with periodically varied speed ratio
CN214913019U (zh) 一种用于健身设备的阻力传动机构
AU2012201921A1 (en) Treadle-drive eccentric wheel transmission wheel series with periodically varied speed ratio
US20130130851A1 (en) Treadle-drive eccentric wheel transmission wheel series with periodically varied speed ratio
CN111169587A (zh) 一种前后蹬踏都能使自行车前行的新装置
JP3168711U (ja) 二方向入力/一方向出力歯車列
CN113230580A (zh) 一种用于健身设备的阻力传动机构
CN111169586A (zh) 一种左右脚踏各自向前或向后蹬都能向前行驶的自行车
JP3168577U (ja) 自転車
CN201907626U (zh) 曲柄轮增速器
CN201461878U (zh) 双输入速度合成减速器
CN105292373B (zh) 自行车传动机构
CN115571258A (zh) 中置电机的牙盘变速装置及其中置电机
JP3168266U (ja) 自転車
CN203652062U (zh) 小驱动轮自行车增速机构
CN117465596A (zh) 一种无链条传动骑行装置
CN110949593A (zh) 平衡车
TW202030119A (zh) 雙驅動機構。
WO2006038241A1 (en) A transmission mechanism for pedal vehicules using non-circular gears

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559612

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2985855

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034585

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016260141

Country of ref document: AU

Date of ref document: 20160229

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016791906

Country of ref document: EP