WO2016179940A1 - Oled像素单元、透明显示装置及制作方法、显示设备 - Google Patents

Oled像素单元、透明显示装置及制作方法、显示设备 Download PDF

Info

Publication number
WO2016179940A1
WO2016179940A1 PCT/CN2015/090238 CN2015090238W WO2016179940A1 WO 2016179940 A1 WO2016179940 A1 WO 2016179940A1 CN 2015090238 W CN2015090238 W CN 2015090238W WO 2016179940 A1 WO2016179940 A1 WO 2016179940A1
Authority
WO
WIPO (PCT)
Prior art keywords
display element
opaque
transparent
transparent display
anode
Prior art date
Application number
PCT/CN2015/090238
Other languages
English (en)
French (fr)
Inventor
刘利宾
刘德明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15884172.6A priority Critical patent/EP3297027B1/en
Priority to US15/126,564 priority patent/US10002847B2/en
Publication of WO2016179940A1 publication Critical patent/WO2016179940A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/176Passive-matrix OLED displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present invention relates to the field of display technologies, and in particular to an OLED (organic light emitting diode) pixel unit, a transparent display device, a method of fabricating the same, and a display device.
  • OLED organic light emitting diode
  • Transparent display is a new display technology that allows viewers to see the background behind the screen through the display screen. This novel display effect broadens the field of application of displays and can be applied to display devices such as cell phones, notebook computers, display windows, refrigerator doors, car displays, and billboards.
  • Fig. 1 schematically shows a conventional transparent OLED display device (hereinafter simply referred to as a transparent display device).
  • the transparent display device 10 includes a plurality of OLED pixel units 100 defined by gate lines 150 and data lines 160.
  • Each OLED pixel unit 100 includes an opaque region 110 and a light transmissive region 120.
  • the opaque region 110 typically includes a display device 111 that emits light when illuminated with a data line (not shown) to illuminate the light transmissive region 120, thereby enabling the function of transparent display.
  • the light transmissive region 120 is not provided with any pixel structure and is mainly used to transmit light emitted by the display device 111.
  • an OLED pixel unit comprising an opaque region and a light transmissive region disposed side by side, the opaque region comprising an opaque display element, wherein the opaque display region
  • the light area comprises at least one transparent display element.
  • the transparent display element is transparent when it is not in operation, the normal operation of the opaque display element is not affected. That is, when the transparent display element operates, the OLED pixel unit can still achieve transparent display in the light-transmitting region. Therefore, according to this embodiment, the light-transmitting region of the OLED pixel unit is fully utilized, and the resolution of the OLED pixel unit is improved.
  • the cathode of the opaque display element and the cathode of the transparent display element may be simultaneously formed by the same material layer and disconnected from each other. According to this embodiment, since the opaque display element and the transparent display element have cathodes isolated from each other, the opaque display element and the transparent display element can be independently controlled.
  • At least one of the cathode structure of the opaque display element and the multilayer structure under the cathode of the transparent display element is between the opaque region and the light transmissive region There may be a height difference.
  • the multilayer structure under the cathode has a step difference between the opaque region and the light-transmitting region, the opaque display member formed over the multilayer structure and the cathode of the transparent display member can be disconnected from each other That is isolated from each other.
  • the multilayer structure may include a passivation layer disposed under an anode of the opaque display element and an anode of the transparent display element, the passivation layer being opaque
  • the thickness of the region is greater than the thickness of the light transmissive region.
  • a spacer may be disposed under the cathode of the opaque display element.
  • the spacer since the spacer is disposed under the cathode of the opaque display element, the spacer is not disposed under the cathode of the transparent display element, so that the subsequently formed opaque display element and the cathode of the transparent display element can be disconnected from each other. Open, that is, isolated from each other.
  • the anode of the opaque display element and the anode of the transparent display element may be disposed in the same layer. According to this embodiment, since the anode of the opaque display element and the anode of the transparent display element are disposed in the same layer, the anode of the transparent display element can be fabricated without affecting the fabrication process of the opaque display element.
  • the anode of the opaque display element may be a laminate of a first transparent electrode layer, a reflective electrode layer and a second transparent electrode layer, and an anode of the transparent display element may be A transparent electrode layer is formed.
  • the one-side illumination (top emission) realizes the function of transparent display
  • the transparent display element operates independently, the function of double-sided display is realized.
  • the first transparent electrode layer may be formed of a polycrystalline transparent conductive oxide
  • the reflective electrode layer may be formed of a reflective metal
  • the second transparent electrode layer may be formed by A shaped transparent conductive oxide is formed.
  • the transparent conductive oxide may be ITO (indium tin oxide), IZO (indium zinc oxide), IGZO (indium gallium zinc oxide), InGaSnO (indium gallium oxide) or the like.
  • the transparent conductive The oxide is ITO.
  • the reflective metal may be Ag, a Mg/Ag alloy, or the like.
  • the anode of the transparent display element can be formed during the formation of the anode of the opaque display element by utilizing different morphologically different transparent conductive oxides for different tolerances to the etchant, thereby simplifying the anode Production process.
  • the opaque display element may be an AMOLED (active matrix OLED) display element
  • the transparent display element may be a PMOLED (passive matrix OLED) display element.
  • the technical solution of the present invention is implemented using a common opaque display element and a transparent display element.
  • the PMOLED display element has the advantages of simple structure, simple driving method, and low cost, and thus is used herein as the transparent display element.
  • each OLED pixel unit includes only one opaque display element and one transparent display element.
  • each OLED pixel unit includes an AMOLED display element and a PMOLED display element.
  • a transparent display device comprising a plurality of OLED pixel units arranged in a matrix, each OLED pixel unit comprising opaque regions arranged side by side and light transmissive a region, the opaque region comprising an opaque display element, the light transmissive region comprising at least one transparent display element.
  • the transparent display element of the transparent display device is transparent when it is not in operation, the normal operation of the opaque display element is not affected. That is, when the transparent display element operates, the OLED pixel unit can still achieve transparent display in the light-transmitting region. Therefore, according to this embodiment, the light-transmitting area of the transparent display device is fully utilized, and the resolution of the transparent display device is improved.
  • the cathode of the opaque display element and the cathode of the transparent display element may be simultaneously formed by the same material layer and disconnected from each other. According to this embodiment, since the opaque display element and the transparent display element have cathodes isolated from each other, the opaque display element and the transparent display element can be independently controlled.
  • the transparent display device of the present invention at least one of the cathode structure of the opaque display element and the multilayer structure under the cathode of the transparent display element is between the opaque region and the light transmissive region There can be a step difference.
  • the opaque display member formed over the multilayer structure and the cathode of the transparent display member may be mutually connected to each other Disconnected, that is, isolated from each other.
  • the multilayer structure may include a passivation layer disposed under an anode of the opaque display element and an anode of the transparent display element, the passivation layer being opaque
  • the thickness of the region is greater than the thickness of the light transmissive region.
  • a spacer may be disposed under the cathode of the opaque display element.
  • the spacer since the spacer is disposed under the cathode of the opaque display element, the spacer is not disposed under the cathode of the transparent display element, so that the subsequently formed opaque display element and the cathode of the transparent display element can be disconnected from each other. Open, that is, isolated from each other.
  • the anode of the opaque display element and the anode of the transparent display element may be disposed in the same layer. According to this embodiment, since the anode of the opaque display element and the anode of the transparent display element are disposed in the same layer, the anode of the transparent display element can be fabricated without affecting the fabrication process of the opaque display element.
  • the anode of the opaque display element may be a laminate of a first transparent electrode layer, a reflective electrode layer and a second transparent electrode layer, and an anode of the transparent display element may be A transparent electrode layer is formed.
  • the one-side illumination (top emission) realizes the function of transparent display
  • the transparent display element operates independently, the function of double-sided display is realized.
  • the first transparent electrode layer may be formed of polycrystalline ITO
  • the reflective electrode layer is formed of Ag
  • the second transparent electrode layer may be formed of amorphous ITO.
  • the ITO having different forms is different in resistance to the etching liquid, and the anodes of the opaque display element and the transparent display element are successively formed, which simplifies the manufacturing process of the anode.
  • the opaque display element may be an AMOLED display element
  • the transparent display element may be a PMOLED display element
  • the plurality of OLED pixel units are defined by gate lines and data lines.
  • the technical solution of the present invention is implemented using a common opaque display element and a transparent display element.
  • the PMOLED display element has the advantages of simple structure, simple driving method, and low cost, and thus is used herein as the transparent display element.
  • each OLED pixel unit includes only one opaque display element and one transparent display element.
  • each OLED pixel unit can include one AMOLED display element and one PMOLED display element.
  • the cathodes of any two adjacent transparent display elements may be electrically connected to each other by an electrical connection.
  • the anode and cathode of the transparent display element may be respectively connected to the positive and negative electrodes of the driving power source such that the transparent display element is illuminated.
  • the cathodes of any two adjacent transparent display elements are interconnected by the electrical connectors, the negative electrode of the driving power source only needs to be connected to one of the plurality of cathodes without being connected to each of the cathodes, thereby The drive circuit can be simplified.
  • the expression "any two adjacent transparent display elements" herein includes a variety of situations.
  • each OLED pixel unit includes only one transparent display element
  • the expression refers to two transparent display elements of any two adjacent OLED pixel units.
  • the expression refers to any two adjacent transparent display elements within each OLED pixel unit, or two of any two adjacent OLED pixel units. Transparent display element.
  • the electrical connector and the anode of the transparent display element may be simultaneously formed by the same material layer and disconnected from each other. According to this embodiment, since the electrical connector and the anode of the transparent display element are simultaneously formed of the same material layer, the fabrication process can be simplified.
  • a method of fabricating a transparent display device comprising a plurality of OLED pixel units arranged in a matrix, each OLED pixel unit comprising opaque light arranged side by side a region and a light transmissive region, the opaque region comprising an opaque display element, and the light transmissive region comprising at least one transparent display element, the fabrication method comprising: forming an opaque display on a substrate of the opaque region And forming at least one transparent display element on the substrate of the light transmissive region.
  • forming the opaque display element and the transparent display element may include depositing a conductive material on the substrate by first patterning Forming a process to form an anode of the opaque display element and an anode of the transparent display element, wherein an anode of the transparent display element is transparent; forming an anode covering the opaque display element and an anode of the transparent display element a first interlayer dielectric layer, a patterned first interlayer dielectric layer is formed by a second patterning process; an organic light emitting material is deposited to form an organic light emitting layer of the opaque display element and an organic light emitting layer of the transparent display element And depositing a transparent conductive material, forming a cathode of the opaque display element and a cathode of the transparent display element by a third patterning process, wherein a cathode of the opaque display element and a cathode of the transparent display element are disconnected from each other.
  • the transparent display element is formed during the formation of the opaque display element such that the fabrication process of the transparent display element is compatible with the fabrication process of the opaque display element, reducing variations in the fabrication process of the opaque display element. Further, according to this embodiment, since the opaque display element and the transparent display element have cathodes isolated from each other, the opaque display element and the transparent display element can be independently controlled.
  • the first interlayer dielectric layer may include at least a pixel defining layer disposed at a periphery of the opaque region and the transparent region to define a pixel opening (pixel An aperture), and the pixel defining layer has a via at a periphery of the light transmissive region.
  • the opaque display element and the pixel defining layer of the transparent display element can be simultaneously formed, thereby simplifying the fabrication process.
  • the opaque display element may be an AMOLED display element
  • the transparent display element may be a PMOLED display element
  • the manufacturing method further comprising: forming an anode of the opaque display element and the transparent Forming a thin film transistor (TFT) of the opaque display element in the opaque region before depositing an anode of the component; and depositing a passivation layer overlying the thin film transistor on the substrate, wherein The passivation layer is formed with a via hole exposing a source or a drain of the thin film transistor, and an anode of the opaque display element passes through a via hole in the passivation layer and a source or a drain of the thin film transistor Extremely electrical connection.
  • an AMOLED display element is formed in an opaque region of the transparent display device.
  • the fabrication method of the present invention may further include: after depositing the passivation layer, performing a fourth patterning process on the passivation layer such that a thickness of the patterned passivation layer in the opaque region is greater than The thickness of the light transmitting region.
  • the passivation layer has a step difference between the opaque region and the light-transmitting region, the subsequently formed opaque display element and the cathode of the transparent display element can be disconnected from each other, that is, isolated from each other.
  • the fabrication method of the present invention may further include forming a spacer on the patterned first interlayer dielectric layer in the opaque region before forming the cathode of the opaque display element.
  • the spacer since the spacer is disposed under the cathode of the opaque display element, the spacer is not disposed under the cathode of the transparent display element, so that the subsequently formed opaque display element and the cathode of the transparent display element can be disconnected from each other. Open, that is, isolated from each other.
  • forming the anode of the opaque display element and the anode of the transparent display element may include: depositing a stack including the first transparent electrode layer, the reflective electrode layer, and the second transparent electrode layer; The laminate performs a fifth patterning process, forming a laminate including the first transparent electrode layer, the reflective electrode layer, and the second transparent electrode layer as an anode of the opaque display element in the opaque region, and Only the first transparent electrode layer remains as an anode of the transparent display element in the light transmissive region, wherein an anode of the opaque display element and an anode of the transparent display element are disconnected from each other.
  • the one-side illumination top emission
  • forming the anode of the opaque display element and the anode of the transparent display element may include depositing the laminate including the first transparent electrode layer, the reflective electrode layer, and the second transparent electrode layer Thereafter, a photoresist layer is formed over the stack using a half stone mask, wherein a thickness of the photoresist layer in the opaque region is greater than the light transmission a thickness of the photoresist layer in the region; removing the laminate between the opaque region and the light transmissive region by etching; thinning the opacity by exposure The photoresist layer in the region and removing the photoresist layer in the light transmissive region; removing the reflective electrode layer and the second in the light transmissive region by etching a transparent electrode layer; and by exposure, removing the thinned photoresist layer in the opaque region.
  • the anode of the transparent display element can be formed during the formation of the anode of the opaque display element, thereby simplifying the fabrication process of the
  • the first transparent electrode layer may be formed of a polycrystalline transparent conductive oxide
  • the reflective electrode layer may be formed of a reflective metal
  • the second transparent electrode layer may be formed of amorphous
  • the transparent conductive oxide is formed.
  • the transparent conductive oxide may be ITO (indium tin oxide), IZO (indium zinc oxide), IGZO (indium gallium zinc oxide), InGaSnO (indium gallium oxide) or the like.
  • the transparent conductive oxide For ITO.
  • the reflective metal may be Ag, a Mg/Ag alloy, or the like.
  • the anode of the transparent display element can be formed during the formation of the anode of the opaque display element by utilizing different morphologically different transparent conductive oxides for different tolerances to the etchant, thereby simplifying the anode Production process.
  • the fabrication method of the present invention may further include forming an electrical connector to electrically connect the cathodes of any two adjacent transparent display elements to each other.
  • the cathodes of any two adjacent transparent display elements are interconnected by the electrical connectors, the negative electrode of the driving power source only needs to be connected to one of the plurality of cathodes without being connected to each of the cathodes, thereby The drive circuit can be simplified.
  • the manufacturing method of the present invention may further include: simultaneously forming an anode of the transparent display element and the electrical connector by the first patterning process after depositing a conductive material on the substrate, wherein the transparent display element The anode and the electrical connector are disconnected from each other, and the electrical connector is electrically connected to the cathode of the transparent display element through a via in the pixel defining layer.
  • the fabrication process can be simplified.
  • a display device comprising an OLED pixel unit as described above or comprising a transparent display device as described above.
  • the display device according to this embodiment has the same or similar technical effects as the above-described OLED pixel unit and/or transparent display device, and details are not described herein again.
  • FIG. 1 is a schematic view of a conventional transparent display device
  • FIG. 2 is a schematic diagram of a transparent display device according to an embodiment of the invention.
  • 3A is a cross-sectional view of the transparent display device taken along line AA of FIG. 2;
  • Figure 3B is a cross-sectional view of the transparent display device taken along line BB of Figure 2;
  • 4A, 4B, 4C, 4D, and 4E are cross-sectional views showing a process of fabricating an anodic structure of an opaque display element and a transparent display element in a transparent display device;
  • FIG. 5 is a flow chart of a method of fabricating a transparent display device according to an embodiment of the invention.
  • the display element 111, the drive circuit, and the like are generally opaque.
  • these opaque components are integrated into the opaque region 110 in each OLED pixel unit 100 as much as possible, thereby improving the light transmittance of the OLED pixel unit 100 and achieving the transparent display effect of the OLED display device 10.
  • OLED display elements can be classified into AMOLED and PMOLED display elements.
  • the AMOLED display element uses a separate thin film transistor to control the display function.
  • the PMOLED display element has a simple structure and does not use a transistor to drive, but a display function can be realized by directly applying a voltage to both ends of the display element.
  • by forming a transparent display element in the transparent region of the transparent display device the normal operation of the opaque display element is not affected, and the transparent region in the conventional transparent display device is fully utilized, thereby improving the transparent display device. Resolution.
  • FIG. 2 schematically illustrates a transparent display device 20 in accordance with an embodiment of the present invention.
  • the transparent display device 20 includes a plurality of OLED pixel units 200 arranged in a matrix.
  • the plurality of OLED pixel units 200 are defined by mutually intersecting gate lines 250 and data lines 260.
  • each OLED pixel unit 200 includes an opaque region 210 and a light transmissive region 220 disposed side by side, the opaque region 210 includes an opaque display element 211, and the light transmissive region 220 includes At least one transparent display element 221.
  • the data line 260 of the opaque display element 211 can be arranged in a gap between adjacent transparent display elements 221, so that the data lines are easily arranged.
  • the opaque display element 211 can be an AMOLED display element
  • the transparent display element 221 can be a PMOLED display element.
  • the PMOLED display element has the advantages of simple structure, simple driving method, and low cost, and thus is used herein as a transparent display element.
  • Other examples of the opaque display element 211 and the transparent display element 221 are conceivable by those skilled in the art, which is not limited by the present invention.
  • the PMOLED display element 221 when the AMOLED display element 211 emits light independently, the PMOLED display element 221 does not illuminate, but the area where the PMOLED display element 221 is located may still be a light-transmitting area, whereby transparent display can be achieved. Additional display may be provided in the light transmissive region 220 when the PMOLED display element 221 is independently illuminated.
  • independent illumination of the AMOLED display element and the PMOLED display element can be achieved without affecting the light transmittance, and the resolution of the transparent display device can be improved.
  • FIG. 3A is a cross-sectional view of the transparent display device taken along line AA of FIG. 2
  • FIG. 3B is a cross-sectional view of the transparent display device taken along line BB of FIG. 2.
  • the AMOLED display element 211 and the PMOLED display element 221 are formed on a substrate 310 made of, for example, glass or a transparent resin material.
  • an AMOLED display element 211 is disposed in the opaque region 210, and includes a thin film transistor formed on the substrate 310, and an organic light emitting device driven by the thin film transistor.
  • the thin film transistor includes a gate electrode 320 formed on a substrate 310, a gate insulating layer 322 formed on the substrate 310 to cover the gate electrode 320, an active region 323 formed on the gate insulating layer 322, and formed A source 324 and a drain 325 are on the active region 323.
  • a passivation layer 326 covering a corresponding portion of the thin film transistor is formed on the gate insulating layer 322.
  • a planarization layer (PLN) layer (not shown) is formed over the passivation layer 326 to provide a planar surface for subsequent organic light emitting devices.
  • the organic light emitting device includes an anode 340, an organic light emitting layer 350, and a cathode 360.
  • the anode 340 is formed on the passivation layer 326 and is electrically connected to the source 324 or the drain 325 of the thin film transistor through a via formed in the passivation layer 326.
  • the AMOLED display element 211 is driven to emit light via the power supply line V dd according to the pixel illumination gray scale and time length information input through the data line 260.
  • the PMOLED display element 221 is disposed in the light transmissive region 220, And includes an organic light emitting device formed on the substrate 310.
  • the organic light emitting device includes an anode 342, an organic light emitting layer 352, and a cathode 362.
  • the opaque region 210 and the periphery of the light transmissive region 220 are provided with a pixel defining layer 332.
  • the pixel defining layer 332 is patterned by a patterning process to define pixel openings of the AMOLED display element 211 and the PMOLED display element 221.
  • the cathode 360 of the AMOLED display element 211 and the cathode 362 of the PMOLED display element 221 may be simultaneously formed by the same material layer and disconnected from each other.
  • the cathodes 360, 362 may be formed of a Mg/Ag alloy and may have a thickness of approximately
  • the cathodes 360, 362 are formed by evaporation. Since the AMOLED display element 211 and the PMOLED display element 221 have cathodes 360, 362 isolated from each other, the AMOLED display element 211 and the PMOLED display element 221 can be independently controlled.
  • At least one of the cathode structure under the cathode 360 of the AMOLED display element 211 and the cathode 362 of the PMOLED display element 221 is in the opaque region 210 and the through There may be a step difference between the light regions 220. Specifically, as shown in FIG. 3A, the thickness of the passivation layer 326 under the anodes 340, 342 is greater in the opaque region 210 than in the transparent region 220, thereby increasing the opaque region 210 and the transparent region 220. The step difference between them further facilitates the isolation of the cathode 360 of the AMOLED display element 211 and the cathode 362 of the PMOLED display element 221.
  • a spacer 334 may be disposed under the cathode 360 of the AMOLED display element 211, and a spacer is not disposed under the cathode 362 of the PMOLED display element 221. Similarly, this may also increase the step difference between the opaque region 210 and the light transmissive region 220 such that the cathode 360 of the AMOLED display element 211 and the cathode 362 of the PMOLED display element 221 are isolated from each other.
  • the AMOLED display element 211 and the PMOLED display element 221 further include a protective layer 380 covering the cathodes 360, 362, and optionally a planarization layer on the protective layer 380 (not show).
  • the gate insulating layer 322, the passivation layer 326, the planarization layer, the pixel defining layer 332, and the spacer 334 described herein are all insulating layers.
  • the insulating layer may be formed of a silicon oxide, silicon nitride or silicon oxynitride material.
  • the anode 340 of the AMOLED display element 211 and The anode 342 of the PMOLED display element 221 may be disposed in the same layer.
  • the passivation layer 326 is formed with a via exposing the source 324 or the drain 325 of the thin film transistor, and the anode 340 of the AMOLED display element 211 is electrically connected to the source 324 or the drain through the via. 325.
  • the anode 342 of the PMOLED display element 221 may be formed during the formation of the anode 340 of the AMOLED display element 211, thereby simplifying the fabrication process of the anode 342.
  • the anode 340 of the AMOLED display element 211 may be a stack of the first transparent electrode layer 402, the reflective electrode layer 404, and the second transparent electrode layer 406, and the anode 342 of the PMOLED display element 221 is only The first transparent electrode layer 402 is included.
  • the first transparent electrode layer 402 may be formed of a polycrystalline transparent conductive oxide
  • the reflective electrode layer 404 may be formed of a reflective metal
  • the second transparent electrode layer 406 may It is formed of an amorphous transparent conductive oxide.
  • the transparent conductive oxide may be ITO (indium tin oxide), IZO (indium zinc oxide), IGZO (indium gallium zinc oxide), InGaSnO (indium gallium oxide) or the like.
  • the reflective metal may be Ag or a Mg/Ag alloy.
  • the reflective electrode layer 404 can be an Ag layer and has a thickness of approximately
  • the first transparent electrode layer 402 and the second transparent electrode layer 406 may be an ITO layer and have a thickness of about
  • the anode 342 of the transparent display element 221 may be formed during the formation of the anode 340 of the opaque display element 211 by utilizing different morphologically transparent conductive oxides for different tolerances to the etchant. The fabrication process of the anode 342 is simplified.
  • the electrical connector 241 electrically connects the cathodes 362 of any two adjacent PMOLED display elements 221 to each other.
  • the electrical connector 241 is made of a conductive material.
  • the electrical connector 241 may be formed simultaneously with the same material layer as the anode 342 of the PMOLED display element 221 and disconnected from each other.
  • the anode 342 and the cathode 362 may be respectively connected to the positive and negative electrodes of the driving power source such that the PMOLED display element 221 is illuminated.
  • the cathodes 362 of any two adjacent PMOLED display elements 221 are interconnected by the electrical connectors 241, the negative pole of the driving power source only needs to be connected to one of the plurality of cathodes without being connected to each of the cathodes 362, thereby Simplify the drive circuit.
  • the electrical connector 241 and the anode 342 It can be formed simultaneously from the same material layer, which simplifies the manufacturing process.
  • the cathodes 362 of any two adjacent PMOLED display elements 221 are electrically connected to each other by electrical connectors 241.
  • the cathode 362 of each PMOLED display element 221 may be formed of a continuous conductive film.
  • the AMOLED display element and the cathode of the PMOLED display element may be isolated from each other to achieve independent driving of the AMOLED display element and the PMOLED display element. That is, the implementation of the cathode of the PMOLED display element is not limited to the embodiments described above.
  • 4A, 4B, 4C, 4D, and 4E are schematic cross-sectional views showing an anode structure fabrication process of an opaque display element and a transparent display element in a transparent display device in accordance with an embodiment of the present invention.
  • FIG. 5 is a flow chart schematically showing a method of fabricating a transparent display device according to an embodiment of the invention.
  • a method of fabricating a transparent display device includes: step 502, forming an opaque display element on a substrate of an opaque region, and step 504, a substrate in the light transmissive region At least one transparent display element is formed thereon.
  • the step 502 may include forming a thin film transistor on a substrate of the opaque region, and forming an organic light emitting device of the opaque display element driven by the thin film transistor.
  • the step 504 may include forming an organic light emitting device of a transparent display element on a substrate of the light transmissive region.
  • an organic light emitting device of an opaque display element and a transparent display element is simultaneously formed. According to the present invention, independent driving of the AMOLED display element and the PMOLED display element can be achieved by forming a transparent display element in the light-transmitting region of the transparent display device.
  • the fabrication method includes depositing a conductive material on the substrate 310, forming an anode 340 of the opaque display element 211 and an anode of the transparent display element 221 by a first patterning process 342, wherein the anode 342 is transparent; forming a first interlayer dielectric layer covering the anodes 340, 342, forming a patterned first interlayer dielectric layer by a second patterning process; depositing an organic light emitting material to form The organic light emitting layer 350 of the opaque display element 211 and the transparent display element 221 An organic light-emitting layer 352; and a transparent conductive material, a cathode 360 of the opaque display element 211 and a cathode 362 of the transparent display element 221 are formed by a third patterning process, wherein the cathodes 360, 362 are disconnected from each other.
  • the organic light emitting device of the transparent display element 221 is formed during the formation of the organic light emitting device of the opaque display element 211, so that the fabrication process of the transparent display element 221 is compatible with the fabrication process of the opaque display element 211, reducing the existing manufacturing process Change. Further, since the opaque display element 211 and the transparent display element 221 have the cathodes 360, 362 isolated from each other, the opaque display element 211 and the transparent display element 221 can be independently controlled.
  • the patterning process typically includes, but is not limited to, substrate cleaning, film formation, photoresist coating, exposure, development, etching, stripping photoresist, and the like.
  • the organic light emitting layers 350, 352 may be formed by evaporation using a high precision metal mask (FMM).
  • the minimum positioning error of the FMM is approximately ⁇ 1 ⁇ m.
  • the cathodes 360, 362 can be formed by evaporation using an open mask.
  • the positioning error of the Open Mask is approximately ⁇ 10 microns, which is sufficient for a low resolution display structure such as a transparent display device.
  • the first interlayer dielectric layer may include at least a pixel defining layer 332 disposed at a periphery of the opaque region 210 and the transparent region 220 to define opacity
  • the pixel defining layer 332 has a via hole at a periphery of the light transmissive region 220.
  • the opaque display element 211 and the pixel defining layer 332 of the transparent display element 221 can be simultaneously formed, thereby simplifying the fabrication process.
  • the fabricating method may further include: forming a thin film transistor of the opaque display element 211 in the opaque region 210 before forming the anodes 340, 342; A passivation layer 326 covering the thin film transistor is deposited on the substrate 310, wherein the passivation layer 326 is formed with a via exposing the source 324 or the drain 325 of the thin film transistor, and the opaque display element 211
  • the anode 340 is electrically coupled to the source 324 or drain 325 through a via in the passivation layer 326.
  • an opaque display element 211 such as an AMOLED display element is formed in the opaque region 210.
  • the fabricating method may further include: after depositing the passivation layer 326, performing a fourth patterning process on the passivation layer 326 to cause patterning
  • the passivation layer 326 has a thickness in the opaque region 210 that is greater than a thickness in the light transmissive region 220. According to this embodiment, since the passivation layer 326 has a step difference between the opaque region 210 and the light transmissive region 220, the subsequently formed opaque display element 211 and the cathodes 360, 362 of the transparent display element 221 may be isolated from each other. .
  • the fabricating method may further include forming a patterned first interlayer dielectric layer in the opaque region 210 before forming the cathode 360 of the opaque display element 211.
  • Spacer 334 Since the spacer 334 is disposed under the cathode 360 of the opaque display element 211, and the spacer is not disposed under the cathode 362 of the transparent display element 221, the step difference between the opaque region 210 and the transparent region 220 can be increased. It is advantageous to form cathodes 360, 362 that are isolated from one another.
  • forming the anode 340 of the opaque display element 211 and the anode 342 of the transparent display element 221 may include depositing a first transparent electrode layer 402, a reflective electrode a stack of layer 404 and a second transparent electrode layer 406; and performing a fifth patterning process on the stack, forming the first transparent electrode layer 402, the reflective electrode layer 404, and the opaque region 210
  • a stack of the second transparent electrode layer 406 serves as the anode 340 of the opaque display element 211, and only the first transparent electrode layer 402 remains as the anode 342 of the transparent display element 221 in the light transmissive region 220.
  • the anode 340 of the opaque display element 211 and the anode 342 of the transparent display element 221 are disconnected from each other. According to this embodiment, when the opaque display element 211 operates independently, the one-side illumination (top emission) realizes the function of transparent display, and when the transparent display element 221 operates independently, the function of double-sided display is realized.
  • the anode 340 forming the opaque display element 211 and the anode 342 of the transparent display element 221 may include: including a first transparent electrode layer 402, a reflective electrode layer 404, and a second transparent electrode during deposition After lamination of layer 406, a photoresist layer 412, 422 is formed over the stack using a halftone mask, wherein the thickness of the photoresist layer 412 in the opaque region 210 Greater than the thickness of the photoresist layer 422 in the light transmissive region 220 (FIG. 4A); removing the between the opaque region 210 and the light transmissive region 220 by etching Lamination (Fig.
  • the anode 342 of the transparent display element 221 can be formed in the process of forming the anode 340 of the opaque display element 211, thereby simplifying the fabrication process of the anode 342.
  • the first transparent electrode layer 402 may be formed of a polycrystalline transparent conductive oxide
  • the reflective electrode layer 404 may be formed of a reflective metal
  • the second transparent electrode layer 406 may It is formed of an amorphous transparent conductive oxide.
  • the transparent conductive oxide may be ITO (indium tin oxide), IZO (indium zinc oxide), IGZO (indium gallium zinc oxide), InGaSnO (indium gallium oxide) or the like.
  • the reflective metal may be Ag or a Mg/Ag alloy.
  • the reflective electrode layer 404 can be an Ag layer and has a thickness of approximately
  • the first transparent electrode layer 402 and the second transparent electrode layer 406 may be an ITO layer and have a thickness of about
  • the anode 342 of the transparent display element 221 may be formed during the formation of the anode 340 of the opaque display element 211 by utilizing different morphologically transparent conductive oxides for different tolerances to the etchant. The fabrication process of the anode 342 is simplified.
  • the first transparent electrode layer 402 may be formed of polycrystalline ITO
  • the second transparent electrode layer 406 may be formed of amorphous ITO.
  • the second transparent electrode layer 406 in the light-transmitting region 220 is removed by etching (FIG. 4D), since the polycrystalline ITO is insensitive to the etching liquid for etching the amorphous ITO, it is formed of polycrystalline ITO.
  • the first transparent electrode layer 402 is not etched.
  • the fabrication method may further include forming an electrical connector 241 to electrically connect the cathodes 362 of any two adjacent transparent display elements 221 to each other. Since the cathodes 362 of any two adjacent transparent display elements 221 are interconnected by the electrical connectors 241, the negative pole of the driving power source only needs to be connected to one of the plurality of cathodes 362 without being connected to each cathode, thereby Simplify the drive circuit.
  • the manufacturing method may further include: simultaneously forming the transparent display element 221 by the first patterning process after depositing a conductive material on the substrate 310.
  • the present invention also provides a display device including the above The OLED pixel unit 200, or a transparent display device 20 as described above.
  • the display device has the same or similar technical effects as the OLED pixel unit 200 and/or the transparent display device 20, and details are not described herein again.
  • the display device may be any product or component having a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, an electronic paper, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED像素单元(200)、透明显示装置(20)及制作方法、显示设备。OLED像素单元(200)包括并排设置的不透光区域(210)和透光区域(220),不透光区域(210)包括不透明显示元件(211),并且透光区域(220)包括至少一个透明显示元件(221)。在不影响OLED像素单元中透光区域(220)中的透明显示的情况下,实现了不透明显示元件(211)和透明显示元件(221)分别独立工作,提高了OLED像素单元(200)的分辨率。

Description

OLED像素单元、透明显示装置及制作方法、显示设备 技术领域
本发明涉及显示技术领域,并且具体而言涉及一种OLED(organic light emitting diode)像素单元、透明显示装置及其制作方法、以及显示设备。
背景技术
透明显示作为一种全新的显示技术,可以让观察者透过显示屏幕看到屏幕后方的背景。这种新颖的显示效果拓宽了显示器的应用领域,并且可以应用于手机、笔记本电脑、展示橱窗、冰箱门、车载显示器及广告牌等显示装置。
图1示意性示出一种现有的透明OLED显示装置(在下文中简称为透明显示装置)。该透明显示装置10包括由栅线150和数据线160界定的多个OLED像素单元100。每个OLED像素单元100包括不透光区域110和透光区域120。不透光区域110通常包括显示器件111,该显示器件111被在利用数据线(未示出)激励时发光以照亮透光区域120,从而实现透明显示的功能。透光区域120不设置任何像素结构,主要用于透射由显示器件111发射的光线。
发明内容
现有的透明显示装置存在改进余地。本发明各实施例的目的在于改进现有的透明显示装置。
在本发明的第一个方面中,提供了一种OLED像素单元,该OLED像素单元包括并排设置的不透光区域和透光区域,所述不透光区域包括不透明显示元件,其中所述透光区域包括至少一个透明显示元件。根据该实施例,由于透明显示元件不工作时是透明的,不透明显示元件的正常工作不受影响。即,透明显示元件工作时,OLED像素单元在透光区域中仍可以实现透明显示。因此,根据该实施例,OLED像素单元的透光区域得到充分利用,并且OLED像素单元的分辨率提高。
在本发明的OLED像素单元中,所述不透明显示元件的阴极和所述透明显示元件的阴极可以由同一材料层同时形成并且相互断开。根据该实施例,由于不透明显示元件和透明显示元件具有彼此孤立的阴极,因而可以独立地控制不透明显示元件和透明显示元件。
在本发明的OLED像素单元中,所述不透明显示元件的阴极和所述透明显示元件的阴极下方的多层结构中的至少一个绝缘层在所述不透光区域和所述透光区域之间可以存在段差(height difference)。根据该实施例,由于阴极下方的多层结构在不透光区域和透光区域之间存在段差,形成于所述多层结构上方的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
在本发明的OLED像素单元中,所述多层结构可以包括设置在所述不透明显示元件的阳极和所述透明显示元件的阳极下方的钝化层,所述钝化层在所述不透光区域的厚度大于在所述透光区域的厚度。根据该实施例,由于钝化层在不透光区域和透光区域之间存在段差,后续形成的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
在本发明的OLED像素单元中,所述不透明显示元件的所述阴极下方可以设置有隔垫物。根据该实施例,由于不透明显示元件的阴极下方设置有隔垫物,而透明显示元件的阴极下方未设置有隔垫物,使得后续形成的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
在本发明的OLED像素单元中,所述不透明显示元件的阳极和所述透明显示元件的阳极可以同层设置。根据该实施例,由于所述不透明显示元件的阳极和所述透明显示元件的阳极同层设置,因此可以在不影响不透明显示元件的制作工艺的情况下制作透明显示元件的阳极。
在本发明的OLED像素单元中,所述不透明显示元件的阳极可以为第一透明电极层、反射电极层和第二透明电极层的叠层,并且所述透明显示元件的阳极可以由所述第一透明电极层形成。根据该实施例,在不透明显示元件独立工作时,单侧发光(顶发射),实现透明显示的功能,而在透明显示元件独立工作时,实现双面显示的功能。
在本发明的OLED像素单元中,所述第一透明电极层可以由多晶态的透明导电氧化物形成,所述反射电极层可以由反射金属形成,并且所述第二透明电极层可以由无定形的透明导电氧化物形成。例如,所述透明导电氧化物可以为ITO(氧化铟锡)、IZO(氧化铟锌)、IGZO(氧化铟镓锌)、InGaSnO(氧化铟镓锡)等。在优选实施例中,所述透明导电 氧化物为ITO。例如,所述反射金属可以为Ag、Mg/Ag合金等。根据该实施例,利用不同形态的透明导电氧化物对于蚀刻液的不同耐受性,可以在形成所述不透明显示元件的阳极的过程中形成所述透明显示元件的阳极,由此简化所述阳极的制作工艺。
在本发明的OLED像素单元中,所述不透明显示元件可以为AMOLED(active matrix OLED,主动矩阵OELD)显示元件,并且所述透明显示元件可以为PMOLED(passive matrix OLED,被动矩阵OELD)显示元件。根据该实施例,利用常见的不透明显示元件和透明显示元件实现本发明的技术方案。PMOLED显示元件具有结构简单、驱动方式简单且成本较低的优点,因此在此被用作所述透明显示元件。
在本发明的OLED像素单元中,所述不透光区域可以包括一个所述不透明显示元件,并且所述透光区域可以包括一个所述透明显示元件。根据该实施例,每个OLED像素单元仅包括一个不透明显示元件和一个透明显示元件。例如,每个OLED像素单元包括一个AMOLED显示元件和一个PMOLED显示元件。
在本发明的第二个方面中,提供了一种透明显示装置,该透明显示装置包括按照矩阵方式布置的多个OLED像素单元,每个OLED像素单元包括并排设置的不透光区域和透光区域,所述不透光区域包括不透明显示元件所述透光区域包括至少一个透明显示元件。根据该实施例,由于透明显示装置的透明显示元件不工作时是透明的,不透明显示元件的正常工作不受影响。即,透明显示元件工作时,OLED像素单元在透光区域中仍可以实现透明显示。因此,根据该实施例,透明显示装置的透光区域得到充分利用,并且透明显示装置的分辨率提高。
在本发明的透明显示装置中,所述不透明显示元件的阴极和所述透明显示元件的阴极可以由同一材料层同时形成并且相互断开。根据该实施例,由于不透明显示元件和透明显示元件具有彼此孤立的阴极,因而可以独立地控制不透明显示元件和透明显示元件。
在本发明的透明显示装置中,所述不透明显示元件的阴极和所述透明显示元件的阴极下方的多层结构中的至少一个绝缘层在所述不透光区域和所述透光区域之间可以存在段差。根据该实施例,由于阴极下方的多层结构在不透光区域和透光区域之间存在段差,形成于所述多层结构上方的不透明显示元件和透明显示元件的阴极之间可以彼此 断开,即彼此孤立。
在本发明的透明显示装置中,所述多层结构可以包括设置在所述不透明显示元件的阳极和所述透明显示元件的阳极下方的钝化层,所述钝化层在所述不透光区域的厚度大于在所述透光区域的厚度。根据该实施例,由于钝化层在不透光区域和透光区域之间存在段差,后续形成的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
在本发明的透明显示装置中,所述不透明显示元件的所述阴极下方可以设置有隔垫物。根据该实施例,由于不透明显示元件的阴极下方设置有隔垫物,而透明显示元件的阴极下方未设置有隔垫物,使得后续形成的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
在本发明的透明显示装置中,所述不透明显示元件的阳极和所述透明显示元件的阳极可以同层设置。根据该实施例,由于所述不透明显示元件的阳极和所述透明显示元件的阳极同层设置,因此可以在不影响不透明显示元件的制作工艺的情况下制作透明显示元件的阳极。
在本发明的透明显示装置中,所述不透明显示元件的阳极可以为第一透明电极层、反射电极层和第二透明电极层的叠层,并且所述透明显示元件的阳极可以由所述第一透明电极层形成。根据该实施例,在不透明显示元件独立工作时,单侧发光(顶发射),实现透明显示的功能,而在透明显示元件独立工作时,实现双面显示的功能。
在本发明的透明显示装置中,所述第一透明电极层可以由多晶态的ITO形成,所述反射电极层由Ag形成,并且所述第二透明电极层可以由无定形的ITO形成。根据该实施例,利用不同形态的ITO对于蚀刻液的耐受性不同,先后形成不透明显示元件和透明显示元件的阳极,可以简化所述阳极的制作工艺。
在本发明的透明显示装置中,所述不透明显示元件可以为AMOLED显示元件,所述透明显示元件可以为PMOLED显示元件,并且所述多个OLED像素单元由栅线和数据线限定。根据该实施例,利用常见的不透明显示元件和透明显示元件实现本发明的技术方案。PMOLED显示元件具有结构简单、驱动方式简单且成本较低的优点,因此在此被用作所述透明显示元件。
在本发明的透明显示装置中,所述不透光区域可以包括一个所述不透明显示元件,并且所述透光区域可以包括一个所述透明显示元件。根据该实施例,每个OLED像素单元仅包括一个不透明显示元件和一个透明显示元件。例如,每个OLED像素单元可以包括一个AMOLED显示元件和一个PMOLED显示元件。
在本发明的透明显示装置中,任意两个相邻的透明显示元件的阴极可以通过电连接件彼此电连接。在透明显示元件独立工作时,透明显示元件的阳极和阴极可以分别连接到驱动电源的正极和负极,使得所述透明显示元件被点亮。根据该实施例,由于任意两个相邻的透明显示元件的阴极通过电连接件互连,驱动电源的负极只需连接到多个阴极的其中之一,而无需连接到每个阴极,藉此可以简化驱动电路。此处的表述“任意两个相邻的透明显示元件”包括多种情形。对于每个OLED像素单元只包括一个透明显示元件的情形,该表述是指任意两个相邻的OLED像素单元的两个透明显示元件。对于每个OLED像素单元包括至少2个透明显示元件的情形,该表述是指每个OLED像素单元内的任意两个相邻的透明显示元件,或者任意两个相邻的OLED像素单元的两个透明显示元件。
在本发明的透明显示装置中,所述电连接件和所述透明显示元件的阳极可以由同一材料层同时形成并且相互断开。根据该实施例,由于所述电连接件和所述透明显示元件的阳极由同一材料层同时形成,可以简化制作工艺。
在本发明的第三个方面中,提供了一种透明显示装置的制作方法,所述透明显示装置包括按照矩阵方式布置的多个OLED像素单元,每个OLED像素单元包括并排设置的不透光区域和透光区域,所述不透光区域包括不透明显示元件,并且所述透光区域包括至少一个透明显示元件,所述制作方法包括:在所述不透光区域的衬底上形成不透明显示元件,并且在所述透光区域的衬底上形成至少一个透明显示元件。根据该实施例,通过在透明显示装置的透光区域中形成透明显示元件,不影响不透明显示元件的正常工作,充分利用透光区域,并且提高透明显示装置的分辨率。
在本发明的制作方法中,形成所述不透明显示元件和所述透明显示元件可以包括:在所述衬底上沉积导电材料,通过第一图案化 (patterning)工艺形成所述不透明显示元件的阳极和所述透明显示元件的阳极,其中所述透明显示元件的阳极是透明的;形成覆盖所述不透明显示元件的阳极和所述透明显示元件的阳极的第一层间电介质层,通过第二图案化工艺形成图案化的第一层间电介质层;沉积有机发光材料以形成所述不透明显示元件的有机发光层和所述透明显示元件的有机发光层;以及沉积透明导电材料,通过第三图案化工艺形成所述不透明显示元件的阴极和所述透明显示元件的阴极,其中所述不透明显示元件的阴极和所述透明显示元件的阴极相互断开。根据该实施例,在形成不透明显示元件期间形成透明显示元件,使得透明显示元件的制作工艺与不透明显示元件的制作工艺兼容,减少对不透明显示元件的制作工艺的变动。此外,根据该实施例,由于不透明显示元件和透明显示元件具有彼此孤立的阴极,因而可以独立地控制不透明显示元件和透明显示元件。
在本发明的制作方法中,所述第一层间电介质层可以至少包括像素限定层,所述像素限定层布置在所述不透光区域和所述透光区域的***以限定像素开口(pixel aperture),并且所述像素限定层在所述透光区域的***具有过孔。根据该实施例,可以同时形成所述不透明显示元件和所述透明显示元件的像素限定层,由此简化制作工艺。
在本发明的制作方法中,所述不透明显示元件可以为AMOLED显示元件,所述透明显示元件可以为PMOLED显示元件,所述制作方法还包括:在形成所述不透明显示元件的阳极和所述透明显示元件的阳极之前,在所述不透光区域中形成所述不透明显示元件的薄膜晶体管(thin film transistor,TFT);以及在所述衬底上沉积覆盖所述薄膜晶体管的钝化层,其中所述钝化层形成有露出所述薄膜晶体管的源极或漏极的过孔,并且所述不透明显示元件的阳极通过所述钝化层中的过孔与所述薄膜晶体管的源极或漏极电连接。根据该实施例,在所述透明显示装置的不透光区域中形成AMOLED显示元件。
本发明的制作方法还可以包括:在沉积所述钝化层之后,对所述钝化层进行第四图案化工艺,使得图案化的钝化层在所述不透光区域的厚度大于在所述透光区域的厚度。根据该实施例,由于钝化层在不透光区域和透光区域之间存在段差,后续形成的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
本发明的制作方法还可以包括:在形成所述不透明显示元件的阴极之前,在所述不透光区域中在图案化的第一层间电介质层上形成隔垫物。根据该实施例,由于不透明显示元件的阴极下方设置有隔垫物,而透明显示元件的阴极下方未设置有隔垫物,使得后续形成的不透明显示元件和透明显示元件的阴极之间可以彼此断开,即彼此孤立。
在本发明的制作方法中,形成所述不透明显示元件的阳极和所述透明显示元件的阳极可以包括:沉积包括第一透明电极层、反射电极层和第二透明电极层的叠层;以及对所述叠层进行第五图案化工艺,在所述不透光区域形成包括所述第一透明电极层、反射电极层和第二透明电极层的叠层作为所述不透明显示元件的阳极,并且在所述透光区域仅保留所述第一透明电极层作为所述透明显示元件的阳极,其中所述不透明显示元件的阳极和所述透明显示元件的阳极彼此断开。根据该实施例,在不透明显示元件独立工作时,单侧发光(顶发射),实现透明显示的功能,而在透明显示元件独立工作时,实现双面显示的功能。
在本发明的制作方法中,形成所述不透明显示元件的阳极和所述透明显示元件的阳极可以包括:在沉积包括第一透明电极层、反射电极层和第二透明电极层的所述叠层之后,利用半色调掩模(half stone mask)在所述叠层上方形成光致抗蚀剂层,其中所述不透光区域中的所述光致抗蚀剂层的厚度大于所述透光区域中的所述光致抗蚀剂层的厚度;通过蚀刻,移除位于所述不透光区域和所述透光区域之间的所述叠层;通过曝光,减薄所述不透光区域中的所述光致抗蚀剂层并且移除所述透光区域中的所述光致抗蚀剂层;通过蚀刻,移除所述透光区域中的所述反射电极层和第二透明电极层;以及通过曝光,移除所述不透光区域中的经减薄的光致抗蚀剂层。根据该实施例,可以在形成所述不透明显示元件的阳极的过程中形成所述透明显示元件的阳极,由此简化了所述阳极的制作工艺。
在本发明的制作方法中,所述第一透明电极层可以由多晶态的透明导电氧化物形成,所述反射电极层可以由反射金属形成,并且所述第二透明电极层可以由无定形的透明导电氧化物形成。例如,所述透明导电氧化物可以为ITO(氧化铟锡)、IZO(氧化铟锌)、IGZO(氧化铟镓锌)、InGaSnO(氧化铟镓锡)等。在优选实施例中,所述透明导电氧化物 为ITO。例如,所述反射金属可以为Ag、Mg/Ag合金等。根据该实施例,利用不同形态的透明导电氧化物对于蚀刻液的不同耐受性,可以在形成所述不透明显示元件的阳极的过程中形成所述透明显示元件的阳极,由此简化所述阳极的制作工艺。
本发明的制作方法还可以包括:形成电连接件以使任意两个相邻的透明显示元件的阴极彼此电连接。根据该实施例,由于任意两个相邻的透明显示元件的阴极通过电连接件互连,驱动电源的负极只需连接到多个阴极的其中之一,而无需连接到每个阴极,藉此可以简化驱动电路。
本发明的制作方法还可以包括:在所述衬底上沉积导电材料之后,通过所述第一图案化工艺同时形成所述透明显示元件的阳极和所述电连接件,其中所述透明显示元件的阳极和所述电连接件相互断开,并且所述电连接件通过所述像素限定层中的过孔与所述透明显示元件的阴极电连接。根据该实施例,由于所述电连接件和所述透明显示元件的阳极由同一材料层同时形成,可以简化制作工艺。
在本发明的第四个方面中,提供了一种显示设备,包括如上文所述的OLED像素单元,或者包括如上文所述的透明显示装置。根据该实施例的显示设备具有与上述OLED像素单元和/或透明显示装置相同或相似的技术效果,在此不再赘述。
附图说明
在下文中,结合附图参照实施例通过实例的方式对本发明进行详细的解释说明,在附图中:
图1为现有的透明显示装置的示意图;
图2为根据本发明一实施例的透明显示装置的示意图;
图3A为沿图2中AA线截取的透明显示装置的剖面图;
图3B为沿图2中BB线截取的透明显示装置的剖面图;
图4A、4B、4C、4D和4E为透明显示装置中的不透明显示元件和透明显示元件的阳极结构制作过程的剖面图;以及
图5为根据本发明一实施例的透明显示装置的制作方法的流程图。
具体实施方式
下述描述被给出以使得任何本领域技术人员能够达成和利用本发明,并且该描述是在具体应用及其要求的上下文中被提供。本领域技 术人员将容易想到对所公开实施例的各种调整,并且此处定义的一般原理可以应用于其它实施例和应用而不背离本发明的精神和范围。因而,本发明不限于所示出的各实施例,而应被给予与权利要求一致的最宽范围。
本发明所有实施例的附图均示意性地绘示出与发明点有关的结构和/或部件,而没有绘示或者仅仅部分地绘示与发明点无关的结构和/或部件。
附图标记:10、20透明显示装置(现有技术);100、200OLED像素单元;110、210不透光区域;120、220透光区域;111、211不透明显示元件;150、250栅线;160、260数据线;221透明显示元件;241电连接件;310衬底;320栅极;322栅极绝缘层;323有源区;324源极;325漏极;326钝化层;332像素限定层;334隔垫物;340、342阳极;350、352有机发光层;360、362阴极;380保护层;402第一透明电极层;404反射电极层;406第二透明电极层;412、412′、422光致抗蚀剂层。
在图1所示的现有透明显示装置10中,显示元件111和驱动电路等通常不透明。在布局设计时,这些不透明部件尽量集成在每个OLED像素单元100中的不透光区域110,从而提高OLED像素单元100的透光率,达到OLED显示装置10的透明显示效果。
根据驱动方式的不同,OLED显示元件可以分为AMOLED和PMOLED显示元件。AMOLED显示元件采用独立的薄膜晶体管控制显示功能。PMOLED显示元件结构简单,不采用晶体管驱动,而是在显示元件的两端直接加电压就可以实现显示功能。在本发明实施例中,通过在透明显示装置的透光区域中形成透明显示元件,不影响不透明显示元件的正常工作,充分利用现有透明显示装置中的透光区域,提高了透明显示装置的分辨率。
图2示意性示出根据本发明一实施例的透明显示装置20。如所示,该透明显示装置20包括按照矩阵方式布置的多个OLED像素单元200。相互交叉的栅线250和数据线260限定所述多个OLED像素单元200。在一示例性实施例中,每个OLED像素单元200包括并排设置的不透光区域210和透光区域220,所述不透光区域210包括不透明显示元件211,并且所述透光区域220包括至少一个透明显示元件221。根据本 发明,不透明显示元件211的数据线260可以布置在相邻透明显示元件221之间的缝隙,因此该数据线容易排布。
在一示例性实施例中,不透明显示元件211可以为AMOLED显示元件,并且透明显示元件221可以为PMOLED显示元件。PMOLED显示元件具有结构简单、驱动方式简单且成本较低的优点,因此在此被用作透明显示元件。本领域技术人员可以想到不透明显示元件211和透明显示元件221的其它示例,本发明对此不做限定。
在该实施例中,在AMOLED显示元件211独立发光时,PMOLED显示元件221不点亮,但是PMOLED显示元件221所在的区域仍然可以是透光区域,由此可以实现透明显示。当PMOLED显示元件221独立发光时,可以在透光区域220中提供额外显示。这样,在同一个透明显示装置20中,在不影响光透过率的情况下,可以实现AMOLED显示元件和PMOLED显示元件的独立点亮,并且可以提高透明显示装置的分辨率。
图3A为沿图2中AA线截取的透明显示装置的剖面图,并且图3B为沿图2中BB线截取的透明显示装置的剖面图。如所示,AMOLED显示元件211和PMOLED显示元件221形成于例如由玻璃或者透明树脂材料制成的衬底310上。
如图3A所示,AMOLED显示元件211布置在不透光区域210中,并且包括形成在衬底310上的薄膜晶体管,以及由该薄膜晶体管驱动的有机发光器件。该薄膜晶体管包括:形成在衬底310上的栅极320、形成在衬底310上以覆盖栅极320的栅极绝缘层322、形成在栅极绝缘层322上的有源区323、以及形成在有源区323上的源极324和漏极325。在栅极绝缘层322上形成覆盖薄膜晶体管相应部分的钝化层326。可选地,在不透光区域210中,在钝化层326上方形成平坦化层(PLN)层(未示出),从而为后续的有机发光器件提供平坦表面。该有机发光器件包括阳极340、有机发光层350和阴极360。阳极340形成在钝化层326上,并且通过形成在钝化层326中的过孔与该薄膜晶体管的源极324或漏极325电连接。在工作时,AMOLED显示元件211根据通过数据线260输入的像素发光灰阶和时间长短信息,经由供电线Vdd被驱动发光。
如图3A所示,PMOLED显示元件221布置在透光区域220中, 并且包括形成在衬底310上的有机发光器件。该有机发光器件包括阳极342、有机发光层352和阴极362。
在一示例性实施例中,所述不透光区域210和所述透光区域220的***设置有像素限定层332。所述像素限定层332通过图案化工艺被图案化以限定所述AMOLED显示元件211和所述PMOLED显示元件221的像素开口。
在一示例性实施例中,所述AMOLED显示元件211的阴极360和所述PMOLED显示元件221的阴极362可以由同一材料层同时形成并且相互断开。优选地,所述阴极360、362可以由Mg/Ag合金形成,并且厚度可以约为
Figure PCTCN2015090238-appb-000001
可选地,所述阴极360、362通过蒸镀的方式形成。由于AMOLED显示元件211和PMOLED显示元件221具有彼此孤立的阴极360、362,可以独立地控制AMOLED显示元件211和PMOLED显示元件221。
在一示例性实施例中,所述AMOLED显示元件211的阴极360和所述PMOLED显示元件221的阴极362下方的多层结构中的至少一个绝缘层在所述不透光区域210和所述透光区域220之间可以存在段差。具体而言,如图3A所示,阳极340、342下方的钝化层326在不透光区域210的厚度大于在透光区域220的厚度,由此增加不透光区域210和透光区域220之间的段差,进而有利于所述AMOLED显示元件211的阴极360和所述PMOLED显示元件221的阴极362彼此孤立。
在一示例性实施例中,所述AMOLED显示元件211的阴极360下方可以设置有隔垫物334,而PMOLED显示元件221的阴极362下方未设置有隔垫物。类似地,这也可以增加不透光区域210和透光区域220之间的段差,使得所述AMOLED显示元件211的阴极360和所述PMOLED显示元件221的阴极362彼此孤立。
在一示例性实施例中,所述AMOLED显示元件211和所述PMOLED显示元件221还包括覆盖阴极360、362的保护层380,并且可选地还包括位于保护层380上的平坦化层(未示出)。
本领域技术人员将理解,此处所述的栅极绝缘层322、钝化层326、平坦化层、像素限定层332、隔垫物334均为绝缘层。所述绝缘层可以由氧化硅、氮化硅或氮氧化硅材料形成。
在一示例性实施例中,所述AMOLED显示元件211的阳极340和 所述PMOLED显示元件221的阳极342可以同层设置。所述钝化层326形成有露出所述薄膜晶体管的源极324或漏极325的过孔,并且所述AMOLED显示元件211的阳极340通过该过孔电连接到所述源极324或漏极325。在该实施例中,可以在形成所述AMOLED显示元件211的阳极340的过程中形成所述PMOLED显示元件221的阳极342,由此简化了阳极342的制作工艺。
如图4E所示,所述AMOLED显示元件211的阳极340可以为第一透明电极层402、反射电极层404和第二透明电极层406的叠层,并且所述PMOLED显示元件221的阳极342仅包括所述第一透明电极层402。藉此,在AMOLED显示元件211独立工作时,单侧发光(顶发射),实现透明显示的功能,而在PMOLED显示元件221独立工作时,实现双面显示的功能。
在一示例性实施例中,所述第一透明电极层402可以由多晶态的透明导电氧化物形成,所述反射电极层404可以由反射金属形成,并且所述第二透明电极层406可以由无定形的透明导电氧化物形成。例如,所述透明导电氧化物可以为ITO(氧化铟锡)、IZO(氧化铟锌)、IGZO(氧化铟镓锌)、InGaSnO(氧化铟镓锡)等。例如,所述反射金属可以为Ag或Mg/Ag合金。例如,所述反射电极层404可以为Ag层,并且厚度约为
Figure PCTCN2015090238-appb-000002
例如,所述第一透明电极层402和所述第二透明电极层406可以为ITO层,并且厚度约为
Figure PCTCN2015090238-appb-000003
根据该实施例,利用不同形态的透明导电氧化物对于蚀刻液的不同耐受性,可以在形成所述不透明显示元件211的阳极340的过程中形成所述透明显示元件221的阳极342,由此简化所述阳极342的制作工艺。
如图2和图3B所示,电连接件241将任意两个相邻的PMOLED显示元件221的阴极362相互电连接。电连接件241由导电材料制成。优选地,所述电连接件241可以与所述PMOLED显示元件221的阳极342相同的材料层同时形成,并且相互断开。在PMOLED显示元件221独立工作时,阳极342和阴极362可以分别连接到驱动电源的正极和负极,使得所述PMOLED显示元件221被点亮。由于任意两个相邻的PMOLED显示元件221的阴极362通过电连接件241互连,驱动电源的负极只需连接到多个阴极的其中之一,而无需连接到每个阴极362,藉此可以简化驱动电路。此外,由于所述电连接件241和所述阳极342 可以由同一材料层同时形成,这可以简化制作工艺。
在上文描述的示例性实施例中,任意两个相邻的PMOLED显示元件221的阴极362通过电连接件241而相互电连接。然而,本发明不限于此。例如,各PMOLED显示元件221的阴极362可以由连续的导电膜形成。根据本发明的构思,AMOLED显示元件和PMOLED显示元件的阴极可以彼此孤立以实现AMOLED显示元件和PMOLED显示元件的独立驱动。即,PMOLED显示元件的阴极的实现方式不限于上文所描述的实施例。
以下结合图3A-3B、图4A-4E和图5详细解释根据本发明一实施例的透明显示装置的制作方法。图4A、4B、4C、4D和4E的剖面图示意性示出根据本发明一实施例的透明显示装置中的不透明显示元件和透明显示元件的阳极结构制作过程。图5示意性示出根据本发明一实施例的透明显示装置的制作方法的流程图。
如图5所示,在一示例性实施例中,透明显示装置的制作方法包括:步骤502,在不透光区域的衬底上形成不透明显示元件,以及步骤504,在透光区域的衬底上形成至少一个透明显示元件。
在下文描述中,仍然以所述不透明显示元件为AMOLED显示元件并且所述透明显示元件为PMOLED显示元件为例,阐述本发明的透明显示装置的制作方法。通常,所述步骤502可以包括:在不透光区域的衬底上形成薄膜晶体管,以及形成由该薄膜晶体管驱动的不透明显示元件的有机发光器件。另外,所述步骤504可以包括:在透光区域的衬底上形成透明显示元件的有机发光器件。在一示例性实施例中,在形成薄膜晶体管之后,同时形成不透明显示元件和透明显示元件的有机发光器件。根据本发明,通过在透明显示装置的透光区域中形成透明显示元件,可以实现AMOLED显示元件和PMOLED显示元件的独立驱动。
在一示例性实施例中,所述制作方法包括:在所述衬底310上沉积导电材料,通过第一图案化工艺形成所述不透明显示元件211的阳极340和所述透明显示元件221的阳极342,其中所述阳极342是透明的;形成覆盖所述阳极340、342的第一层间电介质层,通过第二图案化工艺形成图案化的第一层间电介质层;沉积有机发光材料以形成所述不透明显示元件211的有机发光层350和所述透明显示元件221的 有机发光层352;以及沉积透明导电材料,通过第三图案化工艺形成所述不透明显示元件211的阴极360和所述透明显示元件221的阴极362,其中所述阴极360、362相互断开。根据该实施例,在形成不透明显示元件211的有机发光器件期间形成透明显示元件221的有机发光器件,使得透明显示元件221的制作工艺与不透明显示元件211的制作工艺兼容,减少对现有制作工艺的变动。此外,由于不透明显示元件211和透明显示元件221具有彼此孤立的阴极360、362,因而可以独立地控制不透明显示元件211和透明显示元件221。
如本领域技术人员所知晓,图案化工艺通常包括,但不限于,衬底清洗、成膜、涂敷光致抗蚀剂、曝光、显影、蚀刻、剥离光刻胶等步骤。
在一示例性实施例中,有机发光层350、352可以通过采用高精度金属掩模板(Fine Metal Mask,FMM)的蒸镀来形成。FMM的最小定位误差约为±1微米。阴极360、362可以通过采用开放式掩模板(Open Mask)的蒸镀来形成。Open Mask的定位误差约为±10微米,对于透明显示装置这种低分辨率的显示结构来说是足够的。
在一示例性实施例中,所述第一层间电介质层可以至少包括像素限定层332,所述像素限定层布置在所述不透光区域210和所述透光区域220的***以限定不透明显示元件211和透明显示元件221的有机发光器件的像素开口。优选地,所述像素限定层332在所述透光区域220的***具有过孔。根据该实施例,可以同时形成所述不透明显示元件211和所述透明显示元件221的像素限定层332,由此简化制作工艺。
在一示例性实施例中,所述制作方法还可以包括:在形成所述阳极340、342之前,在所述不透光区域210中形成所述不透明显示元件211的薄膜晶体管;以及在所述衬底310上沉积覆盖所述薄膜晶体管的钝化层326,其中所述钝化层326形成有露出所述薄膜晶体管的源极324或漏极325的过孔,并且所述不透明显示元件211的阳极340通过所述钝化层326中的过孔与所述源极324或漏极325电连接。藉此,在所述不透光区域210中形成诸如AMOLED显示元件的不透明显示元件211。
在一示例性实施例中,所述制作方法还可以包括:在沉积所述钝化层326之后,对所述钝化层326进行第四图案化工艺,使得图案化 的钝化层326在所述不透光区域210的厚度大于在所述透光区域220的厚度。根据该实施例,由于钝化层326在不透光区域210和透光区域220之间存在段差,后续形成的所述不透明显示元件211和透明显示元件221的阴极360、362之间可以彼此孤立。
在一示例性实施例中,所述制作方法还可以包括:在形成所述不透明显示元件211的阴极360之前,在所述不透光区域210中在图案化的第一层间电介质层上形成隔垫物334。由于不透明显示元件211的阴极360下方设置有隔垫物334,而透明显示元件221的阴极362下方未设置有隔垫物,因此可以增加不透光区域210和透光区域220之间的段差,有利于形成彼此孤立的阴极360、362。
在一示例性实施例中,如图4A-4E所示,形成所述不透明显示元件211的阳极340和所述透明显示元件221的阳极342可以包括:沉积包括第一透明电极层402、反射电极层404和第二透明电极层406的叠层;以及对所述叠层进行第五图案化工艺,在所述不透光区域210形成包括所述第一透明电极层402、反射电极层404和第二透明电极层406的叠层作为所述不透明显示元件211的阳极340,并且在所述透光区域220仅保留所述第一透明电极层402作为所述透明显示元件221的阳极342。所述不透明显示元件211的阳极340和所述透明显示元件221的阳极342彼此断开。根据该实施例,在不透明显示元件211独立工作时,单侧发光(顶发射),实现透明显示的功能,而在透明显示元件221独立工作时,实现双面显示的功能。
在一示例性实施例中,形成所述不透明显示元件211的阳极340和所述透明显示元件221的阳极342可以包括:在沉积包括第一透明电极层402、反射电极层404和第二透明电极层406的叠层之后,利用半色调掩模在所述叠层上方形成光致抗蚀剂层412、422,其中所述不透光区域210中的所述光致抗蚀剂层412的厚度大于所述透光区域220中的所述光致抗蚀剂层422的厚度(图4A);通过蚀刻,移除位于所述不透光区域210和所述透光区域220之间的所述叠层(图4B);通过曝光,减薄所述不透光区域210中的所述光致抗蚀剂层412并且移除所述透光区域220中的所述光致抗蚀剂层422(图4C);通过蚀刻,移除所述透光区域220中的所述反射电极层404和第二透明电极层406(图4D);以及通过曝光,移除所述不透光区域210中的经减薄的光致抗蚀 剂层412′(图4E)。根据该实施例,可以在形成所述不透明显示元件211的阳极340的过程中形成所述透明显示元件221的阳极342,由此简化了所述阳极342的制作工艺。
在一示例性实施例中,所述第一透明电极层402可以由多晶态的透明导电氧化物形成,所述反射电极层404可以由反射金属形成,并且所述第二透明电极层406可以由无定形的透明导电氧化物形成。例如,所述透明导电氧化物可以为ITO(氧化铟锡)、IZO(氧化铟锌)、IGZO(氧化铟镓锌)、InGaSnO(氧化铟镓锡)等。例如,所述反射金属可以为Ag或Mg/Ag合金。例如,所述反射电极层404可以为Ag层,并且厚度约为
Figure PCTCN2015090238-appb-000004
例如,所述第一透明电极层402和所述第二透明电极层406可以为ITO层,并且厚度约为
Figure PCTCN2015090238-appb-000005
根据该实施例,利用不同形态的透明导电氧化物对于蚀刻液的不同耐受性,可以在形成所述不透明显示元件211的阳极340的过程中形成所述透明显示元件221的阳极342,由此简化所述阳极342的制作工艺。例如,在该实施例中,第一透明电极层402可以由多晶态的ITO形成,并且第二透明电极层406可以由无定形的ITO形成。在蚀刻移除透光区域220中的第二透明电极层406时(图4D),由于多晶态的ITO对用于蚀刻无定形的ITO的蚀刻液不敏感,由多晶态的ITO形成的第一透明电极层402不会被蚀刻。
在一示例性实施例中,如图3B所示,所述制作方法还可以包括:形成电连接件241以使任意两个相邻的透明显示元件221的阴极362彼此电连接。由于任意两个相邻的透明显示元件221的阴极362通过电连接件241互连,驱动电源的负极只需连接到多个阴极362的其中之一,而无需连接到每个阴极,藉此可以简化驱动电路。
在一示例性实施例中,如图3B所示,所述制作方法还可以包括:在所述衬底310上沉积导电材料之后,通过所述第一图案化工艺同时形成所述透明显示元件221的阳极342和所述电连接件241,其中所述透明显示元件221的阳极342和所述电连接件241相互断开,并且所述电连接件241通过所述像素限定层332中的过孔与所述透明显示元件221的阴极362电连接。由于所述电连接件241和所述透明显示元件221的阳极362由同一材料层同时形成,可以简化制作工艺。
本发明还提供了一种显示设备,该显示设备包括如上文所述的 OLED像素单元200,或者包括如上文所述的透明显示装置20。所述显示设备具有与OLED像素单元200和/或透明显示装置20相同或相似的技术效果,在此不再赘述。所述显示设备可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。
仅仅是出于图示和说明的目的而给出对本发明实施例的前述描述。它们不是旨在穷举或者限制本公开内容。因此,本领域技术人员将容易想到许多调整和变型。本发明的范围将由所附权利要求定义。

Claims (32)

  1. 一种OLED像素单元,包括并排设置的不透光区域和透光区域,所述不透光区域包括不透明显示元件,其中所述透光区域包括至少一个透明显示元件。
  2. 如权利要求1所述的OLED像素单元,其中所述不透明显示元件的阴极和所述透明显示元件的阴极由同一材料层同时形成并且相互断开。
  3. 如权利要求2所述的OLED像素单元,其中所述不透明显示元件的阴极和所述透明显示元件的阴极下方的多层结构中的至少一个绝缘层在所述不透光区域和所述透光区域之间存在段差。
  4. 如权利要求3所述的OLED像素单元,其中所述多层结构包括设置在所述不透明显示元件的阳极和所述透明显示元件的阳极下方的钝化层,所述钝化层在所述不透光区域的厚度大于在所述透光区域的厚度。
  5. 如权利要求3所述的OLED像素单元,其中所述不透明显示元件的所述阴极下方设置有隔垫物。
  6. 如权利要求1所述的OLED像素单元,其中所述不透明显示元件的阳极和所述透明显示元件的阳极同层设置。
  7. 如权利要求6所述的OLED像素单元,其中所述不透明显示元件的阳极为第一透明电极层、反射电极层和第二透明电极层的叠层,并且所述透明显示元件的阳极由所述第一透明电极层形成。
  8. 如权利要求7所述的OLED像素单元,其中所述第一透明电极层由多晶态的ITO形成,所述反射电极层由Ag形成,并且所述第二透明电极层由无定形的ITO形成。
  9. 如权利要求1所述的OLED像素单元,其中所述不透明显示元件为AMOLED显示元件,并且所述透明显示元件为PMOLED显示元件。
  10. 一种透明显示装置,包括按照矩阵方式布置的多个OLED像素单元,每个OLED像素单元包括并排设置的不透光区域和透光区域,所述不透光区域包括不透明显示元件,其中所述透光区域包括至少一个透明显示元件。
  11. 如权利要求10所述的透明显示装置,其中所述不透明显示元件的阴极和所述透明显示元件的阴极由同一材料层同时形成并且相互断开。
  12. 如权利要求11所述的透明显示装置,其中所述不透明显示元件的阴极和所述透明显示元件的阴极下方的多层结构中的至少一个绝缘层在所述不透光区域和所述透光区域之间存在段差。
  13. 如权利要求12所述的透明显示装置,其中所述多层结构包括设置在所述不透明显示元件的阳极和所述透明显示元件的阳极下方的钝化层,所述钝化层在所述不透光区域的厚度大于在所述透光区域的厚度。
  14. 如权利要求12所述的透明显示装置,其中所述不透明显示元件的所述阴极下方设置有隔垫物。
  15. 如权利要求10所述的透明显示装置,其中所述不透明显示元件的阳极和所述透明显示元件的阳极同层设置。
  16. 如权利要求15所述的透明显示装置,其中所述不透明显示元件的阳极为第一透明电极层、反射电极层和第二透明电极层的叠层,并且所述透明显示元件的阳极由所述第一透明电极层形成。
  17. 如权利要求16所述的透明显示装置,其中所述第一透明电极层由多晶态的ITO形成,所述反射电极层由Ag形成,并且所述第二透明电极层由无定形的ITO形成。
  18. 如权利要求10所述的透明显示装置,其中所述不透明显示元件为AMOLED显示元件,所述透明显示元件为PMOLED显示元件,并且所述多个OLED像素单元由栅线和数据线限定。
  19. 如权利要求10所述的透明显示装置,其中任意两个相邻的透明显示元件的阴极通过电连接件彼此电连接。
  20. 如权利要求19所述的透明显示装置,其中所述电连接件和所述透明显示元件的阳极由同一材料层同时形成并且相互断开。
  21. 一种透明显示装置的制作方法,所述透明显示装置包括按照矩阵方式布置的多个OLED像素单元,每个OLED像素单元包括并排设置的不透光区域和透光区域,所述不透光区域包括不透明显示元件,并且所述透光区域包括至少一个透明显示元件,所述制作方法包括:在所述不透光区域的衬底上形成不透明显示元件,并且在所述透光区 域的衬底上形成至少一个透明显示元件。
  22. 如权利要求21所述的制作方法,其中形成所述不透明显示元件和所述透明显示元件包括:
    在所述衬底上沉积导电材料,通过第一图案化工艺形成所述不透明显示元件的阳极和所述透明显示元件的阳极,其中所述透明显示元件的阳极是透明的;
    形成覆盖所述不透明显示元件的阳极和所述透明显示元件的阳极的第一层间电介质层,通过第二图案化工艺形成图案化的第一层间电介质层;
    沉积有机发光材料以形成所述不透明显示元件的有机发光层和所述透明显示元件的有机发光层;以及
    沉积透明导电材料,通过第三图案化工艺形成所述不透明显示元件的阴极和所述透明显示元件的阴极,其中所述不透明显示元件的阴极和所述透明显示元件的阴极相互断开。
  23. 如权利要求22所述的制作方法,其中所述第一层间电介质层至少包括像素限定层,所述像素限定层布置在所述不透光区域和所述透光区域的***以限定像素开口,并且所述像素限定层在所述透光区域的***具有过孔。
  24. 如权利要求22所述的制作方法,其中所述不透明显示元件为AMOLED显示元件,所述透明显示元件为PMOLED显示元件,所述制作方法还包括:
    在形成所述不透明显示元件的阳极和所述透明显示元件的阳极之前,在所述不透光区域中形成所述不透明显示元件的薄膜晶体管;以及
    在所述衬底上沉积覆盖所述薄膜晶体管的钝化层,其中所述钝化层形成有露出所述薄膜晶体管的源极或漏极的过孔,并且所述不透明显示元件的阳极通过所述钝化层中的过孔与所述薄膜晶体管的源极或漏极电连接。
  25. 如权利要求24所述的制作方法,其中所述制作方法还包括:
    在沉积所述钝化层之后,对所述钝化层进行第四图案化工艺,使得图案化的钝化层在所述不透光区域的厚度大于在所述透光区域的厚度。
  26. 如权利要求22所述的制作方法,其中所述制作方法还包括:
    在形成所述不透明显示元件的阴极之前,在所述不透光区域中在图案化的第一层间电介质层上形成隔垫物。
  27. 如权利要求22所述的制作方法,其中形成所述不透明显示元件的阳极和所述透明显示元件的阳极包括:
    沉积包括第一透明电极层、反射电极层和第二透明电极层的叠层;以及
    对所述叠层进行第五图案化工艺,在所述不透光区域形成包括所述第一透明电极层、反射电极层和第二透明电极层的叠层作为所述不透明显示元件的阳极,并且在所述透光区域仅保留所述第一透明电极层作为所述透明显示元件的阳极,
    其中所述不透明显示元件的阳极和所述透明显示元件的阳极彼此断开。
  28. 如权利要求27所述的制作方法,其中形成所述不透明显示元件的阳极和所述透明显示元件的阳极包括:
    在沉积包括第一透明电极层、反射电极层和第二透明电极层的所述叠层之后,利用半色调掩模在所述叠层上方形成光致抗蚀剂层,其中所述不透光区域中的所述光致抗蚀剂层的厚度大于所述透光区域中的所述光致抗蚀剂层的厚度;
    通过蚀刻,移除位于所述不透光区域和所述透光区域之间的所述叠层;
    通过曝光,减薄所述不透光区域中的所述光致抗蚀剂层并且移除所述透光区域中的所述光致抗蚀剂层;
    通过蚀刻,移除所述透光区域中的所述反射电极层和第二透明电极层;以及
    通过曝光,移除所述不透光区域中的经减薄的光致抗蚀剂层。
  29. 如权利要求28所述的制作方法,其中所述第一透明电极层由多晶态的ITO形成,所述反射电极层由Ag形成,并且所述第二透明电极层由无定形的ITO形成。
  30. 如权利要求23所述的制作方法,其中所述制作方法还包括:
    形成电连接件以使任意两个相邻的透明显示元件的阴极彼此电连接。
  31. 如权利要求30所述的制作方法,其中所述制作方法还包括:
    在所述衬底上沉积导电材料之后,通过所述第一图案化工艺同时形成所述透明显示元件的阳极和所述电连接件,
    其中所述透明显示元件的阳极和所述电连接件相互断开,并且所述电连接件通过所述像素限定层中的过孔与所述透明显示元件的阴极电连接。
  32. 一种显示设备,包括如权利要求1-9中任意一项所述的OLED像素单元,或者包括如权利要求10-20中任意一项所述的透明显示装置。
PCT/CN2015/090238 2015-05-12 2015-09-22 Oled像素单元、透明显示装置及制作方法、显示设备 WO2016179940A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15884172.6A EP3297027B1 (en) 2015-05-12 2015-09-22 Oled pixel unit, transparent display apparatus and manufacturing method, and display device
US15/126,564 US10002847B2 (en) 2015-05-12 2015-09-22 OLED pixel unit, transparent display device, method for fabricating the same, display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510238191.XA CN104795434B (zh) 2015-05-12 2015-05-12 Oled像素单元、透明显示装置及制作方法、显示设备
CN201510238191.X 2015-05-12

Publications (1)

Publication Number Publication Date
WO2016179940A1 true WO2016179940A1 (zh) 2016-11-17

Family

ID=53560116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090238 WO2016179940A1 (zh) 2015-05-12 2015-09-22 Oled像素单元、透明显示装置及制作方法、显示设备

Country Status (4)

Country Link
US (1) US10002847B2 (zh)
EP (1) EP3297027B1 (zh)
CN (1) CN104795434B (zh)
WO (1) WO2016179940A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795434B (zh) 2015-05-12 2019-01-29 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备
KR102435391B1 (ko) * 2015-09-25 2022-08-23 삼성디스플레이 주식회사 표시 장치
CN107065206B (zh) * 2017-03-21 2019-11-26 深圳市华星光电技术有限公司 一种裸眼三维显示装置
TWI624055B (zh) * 2017-03-24 2018-05-11 友達光電股份有限公司 顯示裝置以及畫素單元
CN106823927B (zh) 2017-03-24 2019-06-11 武汉华星光电技术有限公司 一种处理光阻沉积的搅拌装置及光阻桶
KR102384774B1 (ko) * 2017-03-27 2022-04-11 삼성디스플레이 주식회사 유기 발광 표시 장치
CN106997745A (zh) 2017-06-15 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN107359268B (zh) * 2017-06-15 2019-04-30 武汉华星光电半导体显示技术有限公司 透明oled显示面板及其制作方法
US10333098B2 (en) 2017-06-15 2019-06-25 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Transparent OLED display panel and manufacturing method thereof
CN107425040B (zh) * 2017-06-29 2019-10-18 京东方科技集团股份有限公司 一种电致发光显示面板及显示装置
TWI660533B (zh) 2017-09-15 2019-05-21 Industrial Technology Research Institute 發光元件及其透明電極
CN107768545B (zh) * 2017-09-28 2020-09-11 上海天马微电子有限公司 一种有机电致发光显示面板及显示装置
CN108389878B (zh) * 2017-09-30 2022-01-25 昆山国显光电有限公司 显示屏及显示装置
CN108281464B (zh) * 2018-01-02 2020-09-25 上海天马微电子有限公司 显示面板及显示装置
CN110060578B (zh) 2018-01-19 2021-09-14 华为技术有限公司 终端设备和显示方法
CN108565347B (zh) * 2018-04-24 2019-12-03 京东方科技集团股份有限公司 一种oled基板及其制备方法
CN110767678B (zh) * 2018-08-06 2024-03-29 云谷(固安)科技有限公司 显示面板、显示屏及显示终端
US10490164B2 (en) * 2018-10-10 2019-11-26 Intel Corporation Stretchable display with fixed pixel density
CN110767683B (zh) * 2018-10-31 2022-04-15 云谷(固安)科技有限公司 显示面板、掩膜版和显示终端
CN110767686B (zh) * 2018-10-31 2022-01-25 昆山国显光电有限公司 显示屏及显示终端
CN109801950B (zh) * 2019-01-31 2021-02-26 厦门天马微电子有限公司 显示面板、显示装置及显示面板的制作方法
CN110047879B (zh) * 2019-03-28 2021-03-16 武汉华星光电半导体显示技术有限公司 一种显示面板以及电子装置
CN109962096B (zh) * 2019-04-15 2021-02-23 京东方科技集团股份有限公司 显示背板及其制作方法、显示装置
CN111987120A (zh) * 2019-05-24 2020-11-24 北京小米移动软件有限公司 像素显示组件、屏幕显示组件、显示屏及终端
WO2021070236A1 (ja) * 2019-10-08 2021-04-15 シャープ株式会社 発光デバイス
KR20210070091A (ko) * 2019-12-04 2021-06-14 엘지디스플레이 주식회사 표시장치
WO2022054150A1 (ja) * 2020-09-09 2022-03-17 株式会社 東芝 透明電極、透明電極の製造方法、および電子デバイス
WO2023097506A1 (zh) * 2021-11-30 2023-06-08 京东方科技集团股份有限公司 显示装置、显示面板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127499A1 (en) * 2009-11-30 2011-06-02 Samsung Mobile Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN103500752A (zh) * 2013-09-27 2014-01-08 京东方科技集团股份有限公司 一种oled像素结构和oled显示装置
CN203480166U (zh) * 2013-09-25 2014-03-12 北京京东方光电科技有限公司 一种阵列基板和显示装置
CN104795434A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752818B2 (ja) * 2007-07-06 2011-08-17 ソニー株式会社 有機el表示装置、電子機器、有機el表示装置用の基板および有機el表示装置の製造方法
KR101518740B1 (ko) * 2008-08-04 2015-05-11 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101659953B1 (ko) * 2010-03-30 2016-09-27 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 이의 제조 방법
KR101391244B1 (ko) * 2010-12-20 2014-05-02 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6232655B2 (ja) * 2011-09-02 2017-11-22 株式会社Joled 有機el表示パネルおよびその製造方法
KR101275810B1 (ko) * 2012-01-20 2013-06-18 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102035496B1 (ko) * 2012-12-31 2019-10-23 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
KR102050480B1 (ko) * 2013-01-02 2019-12-02 삼성디스플레이 주식회사 유기 발광 표시 장치의 제조 방법
US9444068B2 (en) * 2013-03-12 2016-09-13 Ppg Industries Ohio, Inc. Transparent conductive oxide coatings for organic light emitting diodes and solar devices
TWI533448B (zh) * 2014-09-26 2016-05-11 友達光電股份有限公司 有機發光二極體的畫素結構
CN104393021B (zh) 2014-11-28 2018-07-17 京东方科技集团股份有限公司 像素结构、透明触摸显示屏及其制作方法、和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110127499A1 (en) * 2009-11-30 2011-06-02 Samsung Mobile Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN203480166U (zh) * 2013-09-25 2014-03-12 北京京东方光电科技有限公司 一种阵列基板和显示装置
CN103500752A (zh) * 2013-09-27 2014-01-08 京东方科技集团股份有限公司 一种oled像素结构和oled显示装置
CN104795434A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3297027A4 *

Also Published As

Publication number Publication date
CN104795434A (zh) 2015-07-22
US20170084572A1 (en) 2017-03-23
CN104795434B (zh) 2019-01-29
EP3297027B1 (en) 2022-01-05
US10002847B2 (en) 2018-06-19
EP3297027A1 (en) 2018-03-21
EP3297027A4 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
WO2016179940A1 (zh) Oled像素单元、透明显示装置及制作方法、显示设备
JP6348166B2 (ja) 有機発光表示装置及びその製造方法
US10446633B2 (en) Transparent OLED display with transparent storage capacitor and manufacturing method thereof
WO2019185011A1 (zh) 阵列基板及其制备方法、显示装置
WO2020200168A1 (zh) Amoled显示屏、显示设备及移动终端
WO2019223682A1 (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
US11665940B2 (en) Display substrate for avoiding breaks and preparation method thereof, bonding method of display panel and display apparatus
CN106997893B (zh) 有机发光显示装置及其制造方法
CN104681629B (zh) 薄膜晶体管、阵列基板及其各自的制备方法、显示装置
EP3139410A1 (en) Amoled array substrate and manufacturing method and display device
WO2015100898A1 (zh) 薄膜晶体管、tft阵列基板及其制造方法和显示装置
WO2017031940A1 (zh) 一种阵列基板、其制作方法及显示装置
CN102270656A (zh) 有机发光二极管显示器及其制造方法
US11043545B2 (en) Display substrate, fabricating method thereof, and display device
WO2019242600A1 (zh) 有机电致发光显示面板、其制作方法及显示装置
CN113241367B (zh) 显示基板及其制备方法
CN110400810A (zh) 显示基板及其制作方法、和显示装置
KR20140080235A (ko) 플렉서블 유기전계 발광소자 및 그 제조방법
CN111834292B (zh) 一种显示基板及其制作方法、显示面板及显示装置
US20220293704A1 (en) Display substrate and manufacturing method therefor, and display device
WO2015055039A1 (zh) 阵列基板及其制造方法、显示装置
CN110600507B (zh) 一种oled面板及制作方法
CN110890481B (zh) 一种显示基板及其制备方法、显示装置
KR20170107122A (ko) 표시장치의 제조 방법
US11895905B2 (en) Display substrate, preparation method thereof, and display apparatus

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015884172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15126564

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015884172

Country of ref document: EP