WO2016174769A1 - 溶媒置換装置及び溶媒置換方法 - Google Patents

溶媒置換装置及び溶媒置換方法 Download PDF

Info

Publication number
WO2016174769A1
WO2016174769A1 PCT/JP2015/062986 JP2015062986W WO2016174769A1 WO 2016174769 A1 WO2016174769 A1 WO 2016174769A1 JP 2015062986 W JP2015062986 W JP 2015062986W WO 2016174769 A1 WO2016174769 A1 WO 2016174769A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
fine particle
particle holding
solvent
holding unit
Prior art date
Application number
PCT/JP2015/062986
Other languages
English (en)
French (fr)
Inventor
直己 万里
範人 久野
由花子 浅野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/062986 priority Critical patent/WO2016174769A1/ja
Publication of WO2016174769A1 publication Critical patent/WO2016174769A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus

Definitions

  • the present invention relates to a solvent replacement apparatus and a solvent replacement method mainly used for radiopharmaceutical synthesis.
  • PET PostronroEmission Tomography
  • PET can obtain physiological and biochemical function information of organs, and unlike conventional CT and MRI, which can form images of morphology, it can image the activity state of cells. . For this reason, it is used for identifying the cause of various diseases such as cancer, heart disease and brain disease and for diagnosing disease states.
  • positron nuclides used for PET diagnosis include 11 C, 13 N, 15 O, and 18 F. These positron nuclides have very short half-lives of 20.4 minutes, 9.97 minutes, 2.04 minutes, and 109.8 minutes, respectively. Therefore, radiopharmaceuticals containing them must be synthesized with high efficiency in a short time. Is required.
  • target water containing 18 F ⁇ is adsorbed and concentrated with an anion exchange column, and the eluate obtained by elution with a predetermined aqueous solution is heated. After evaporating to dryness, the mixture is reacted with a precursor dissolved in an organic solvent ( 18 F labeling reaction).
  • the evaporating and evaporating treatment of the eluate performed before the 18 F labeling reaction is for removing water that inhibits the reaction between 18 F ⁇ and the precursor from these reaction solutions to prevent a reduction in reaction efficiency. It is processing.
  • the evaporation to dryness treatment is performed by heating the glass vial reaction container to which the eluate from the anion exchange column has been transferred from the bottom.
  • the evaporation to dryness treatment is performed. Account for about 35% of the total synthesis time. For this reason, reduction of the processing time required for evaporation to dryness is required.
  • microreactor method ensures a wide surface area per unit volume, highly efficient evaporation to dryness is possible.
  • Patent Document 1 discloses a PET labeling compound that evaporates and dries by supplying a solution into a groove formed by microfabrication and passing an evaporation operation gas above the solution. A manufacturing method is disclosed.
  • the heating surface area per unit volume is narrow, so that the time required for evaporation to dryness becomes long.
  • a method of re-dissolving the solidified product by heat reflux is the mainstream.
  • 18 F ⁇ in the solidified product may remain in the container without being sufficiently re-dissolved.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a solvent replacement apparatus and a solvent replacement method that can efficiently dry and re-dissolve a solution.
  • a fine particle holding unit for holding fine particles
  • a solvent removing unit for removing the solvent from the solution held in the fine particle holding unit
  • evaporation drying in the fine particle holding unit e.g., a solvent replacement apparatus comprising: a solidified solution and a flow path for introducing a solution for dissolving a solidified product obtained by evaporation to dryness of the solution into the fine particle holding unit.
  • a step of introducing a solution to be evaporated and dried in a fine particle holding part for holding fine particles into the fine particle holding part, and the solution introduced into the fine particle holding part Removing the solvent contained in the solvent by a solvent removing unit and evaporating and drying the solution; introducing a solution for dissolving the solidified product obtained by evaporating and drying the solution into the fine particle holding unit; and It is a solvent substitution method characterized by having.
  • FIG. 1 is a diagram illustrating a configuration of a solvent replacement device according to the first embodiment.
  • the solvent replacement apparatus according to the first embodiment includes a container 9 as a fine particle holding unit for holding fine particles 10, and a solution 13 (hereinafter simply referred to as solution 13) to be evaporated and dried in the container 9. And a flow passage 23 for introducing a solution 15 for dissolving the solidified product in the container 9 obtained by evaporating and drying the solution 13 into the container 9.
  • the flow passage 23 has a first introduction path 1 connected via a valve 4 and a second introduction path 2 connected via a valve 5, and the first introduction path 1 is connected to the solution 13. Is introduced, and the solution 15 is introduced from the second introduction path 2.
  • solution discharge path 3 is connected to the flow path 23 via the valve 6, and the liquid in the container 9 is configured to be discharged from the solution discharge path 3.
  • the container 9 has a reduced hollow shape, and is configured such that the fine particles 10 are held at the center of the bottom.
  • a particle removal filter 7 for removing particles 10 and other foreign matters contained in the solution is provided at a position closer to the flow passage 23 than the valve 6.
  • the heating unit 11 is provided on the lower end side of the container 9 so as to surround the side surface of the reduced diameter portion of the container 9. Below the container 9 and the heating unit 11, a stirring unit 12 for stirring the fine particles 10 in the container 9 is provided.
  • the heating unit 11 is a heater that heats the container 9.
  • the solvent is removed from the solution 13 in the container 9 by the heating of the heater, and the solution 13 is evaporated to dryness.
  • the gas evaporated by the heating of the heating unit 11 is collected by the exhaust path 8 provided in the container 9.
  • the solution 15 is collected from above the container 9.
  • the entire inner peripheral surface of the container 9 becomes a heating region for the magnetic fine particles 10A, the solution 13 can be efficiently evaporated and dried.
  • the solution 15 is introduced into the container 9 once and collected from the solution discharge path 3.
  • the solution 15 is introduced into the container 9 a plurality of times, The solution 15 may be collected a plurality of times. This may improve the solute recovery rate.
  • liquid such as the solution 13 and the solution 15 can be sent using a pump.
  • liquid feeding can also be performed by other methods.
  • liquid feeding using nitrogen gas, liquid feeding by vacuuming, or the like is also possible.
  • the flow rate during liquid feeding needs to be adjusted appropriately in each step.
  • the flow rate when the solution 13 is sent to the container 9 is such that the evaporation and drying of the solution 13 is completed in parallel with the supply of the solution 13 in the region where the magnetic fine particles 10A in the container 9 exist. It is desirable to set the flow rate value to be obtained.
  • the magnetic fine particles 10A are used as the fine particles 10 (see FIG. 1). Therefore, when a stirrer is used as the stirring unit 12, the magnetic fine particles 10A are brought into close contact with the surface of the container 9. Can do. Thereby, when the magnetic fine particle 10A is heated, the heat from the heating unit 11 is efficiently transmitted to the magnetic fine particle 10A. Further, when the solution 15 is collected from the solution discharge path 3, the magnetic fine particles 10A are held on the surface of the container 9 by the magnetic force of the stirrer. For this reason, mixing of the magnetic fine particles 10A into the recovered solution 15 can be suppressed.
  • fine particles 10 in addition to magnetic fine particles made of iron, cobalt, nickel, or an alloy thereof as raw materials, metal fine particles made of gold, silver, copper, or an alloy containing these as main components are suitable. Can be used.
  • the fine particle surface may be coated with polytetrafluoroethylene (PTFE) or the like. Since all of these metals have high thermal conductivity, heat from the container 9 is easily transmitted and is efficiently heated, so that they are suitable for evaporating and drying the solution.
  • PTFE polytetrafluoroethylene
  • non-magnetic fine particles 10 can be used as long as they have resistance to heat treatment in the container 9 and liquid such as the solution 13 and the solution 15 supplied into the container 9. It is. That is, as the nonmagnetic fine particles 10, it is desirable to use a material having high thermal conductivity, high resistance to chemicals used (for example, acetonitrile) (chemical resistance), and excellent heat resistance (around 100 ° C.). As such nonmagnetic fine particles 10, for example, glass, ceramic hydroxyapatite, or the like can be used.
  • microparticles 10 of nonmagnetic described above for example 18 F - When adsorbing the heat resistance, excellent chemical resistance, and 18 F - coating the particle surface with such a low adsorption polytetrafluoroethylene (PTFE) May be.
  • PTFE polytetrafluoroethylene
  • the smaller the particle diameter, the larger the particle surface area, and the larger the heating surface area in the step (B) is preferable.
  • particles having a particle diameter of 5 mm or less are preferable, and particles having a particle diameter of 100 ⁇ m or more and 2 mm or less are more preferable.
  • the solution 13 is dropped onto the magnetic fine particles 10A at room temperature and brought into contact with the magnetic fine particles 10A.
  • the solution 13 may be heated before being dropped onto the magnetic fine particles 10A. Good (see FIG. 3).
  • the solution 13 passing through the inside of the flow path 23 is heated by the flow path heating unit 21 installed on the side surface of the flow path 23.
  • the time required for the solution 13 to evaporate and dry in the container 9 can be shortened.
  • the heating temperature by the flow path heating unit 21 is set to be equal to or lower than the boiling point of the solution 13.
  • the flow path in the container 9 is shown. 23 may be configured by a plurality of small-diameter flow paths. With the configuration shown in FIG. 4, the solution 13 can be dispersed and supplied onto the fine particles 10, and an improvement in evaporation efficiency is expected.
  • the heating unit 11 that is a heater, for example, a hot plate, a Peltier element, an oil bath can be used, and water vapor (FIG. 5A), light generation source (FIG. 5B), microwave generation source (FIG. 5C), super A sound wave source can be used.
  • a temperature sensor it is preferable to install a temperature sensor on the surface of the heating unit 11 or the container 9 so that the inside of the container 9 can be controlled to a desired temperature according to the use state of the user.
  • the heating unit 11 may not only simply heat but also install a mechanism for spraying nitrogen gas or the like, and spray the gas in parallel with the heating to promote the evaporation of the solution.
  • FIG. 2 a configuration using a stirrer as the stirring unit 12 is shown.
  • a method of stirring the fine particles 10 for example, ultrasonic irradiation is performed using an ultrasonic wave generation source (FIG. 6A) as the stirring unit 12. It is also possible to perform these, and it is also possible to use these together.
  • dissolution may be promoted by sucking and discharging the solution 15 containing the fine particles 10 through the flow passage 23 (FIG. 6B).
  • stirring can be performed using ultrasonic waves (FIG. 6A) or suction / discharge of the solution 15 (FIG. 6B).
  • this ultrasonic generation source when an ultrasonic generation source is installed in the vicinity of the container 9, this ultrasonic generation source can be used as the stirring unit 12 and also used as the heating unit 11. Is possible.
  • the example shown in FIG. 2 shows a method of recovering the solution 15 in the container 9 from the solution discharge path 3 provided above the container 9, but in this embodiment, for example, as shown in FIG.
  • the solution 15 may be collected from below the container 9. In this case, since the solution 15 is collected at the bottom of the container 9 by gravity, an improvement in the recovery rate of the solution 15 can be expected. At this time, the recovery amount can also be improved by extruding the solution 15 with nitrogen gas or the like.
  • the solution 13 and the solution 15 are introduced from separate introduction paths (first introduction path 1 and second introduction path 2).
  • the solution 15 may be introduced from the same introduction path by shifting the introduction timing.
  • the solution 13 is evaporated and dried on the surface of the fine particles 10 by heating the solution 13 to be evaporated and dried in the container 9 holding the fine particles 10. For this reason, compared with the case where it heats simply in the container 9, a heating surface area increases and the efficiency of the evaporation 13 of the solution 13 improves to that extent. For this reason, the evaporation and drying time of the solution 13 is shortened.
  • the solidified product after evaporation to dryness is widely dispersed and localized in the fine channel. Liquid was needed. In this case, the solidified product tends to remain in the fine flow path, and it is difficult to efficiently re-dissolve the obtained solidified product.
  • the solution 13 is supplied onto the fine particles 10 and evaporated to dryness, so that the solidified product 14 is concentrated on the surface of the fine particles 10 and the surrounding area.
  • the amount of the solution 15 required to redissolve the solidified product 14 can be greatly reduced.
  • the solidified product 14 in the case where the solidified product 14 is dissolved using a solution containing a precursor instead of the solution 15, the solidified product 14 can be dissolved with a smaller amount of solution than the conventional solution. The amount of precursor consumed can be reduced.
  • the amount of the solidified substance 14 that remains in the apparatus without being dissolved in the dissolving liquid 15 is reduced, the recovery efficiency of the target solute of the solution 13 is improved.
  • FIG. 8 is a diagram illustrating a configuration of a solvent replacement device according to the second embodiment.
  • a pair of filters 32 that form the fine particle holding portion 33 is installed in the flow passage 30, and between the pair of filters 32, Fine particles 10 are held.
  • the filter 32 a filter having a pore size that allows liquid to pass through and does not pass through the fine particles 10 is used.
  • the flow path 30 dissolves the solution 13 (hereinafter simply referred to as the solution 13) to be evaporated and dried in the particle holding unit 33, and the solidified product in the particle holding unit 33 obtained by evaporation and drying of the solution 13.
  • This is a flow path through which the solution 15 is introduced and introduced into the fine particle holding unit 33.
  • a first introduction path 1 for introducing the solution 13 into the fine particle holding unit 33 is connected via the valve 4 below the flow path 30 in FIG.
  • the solution discharge path 3 for discharging the liquid in the fine particle holding unit 33 is connected to the flow path 30 via the valve 6 so as to be parallel to the first introduction path 1.
  • a valve 31 is installed in the flow passage 30 on the side facing the first introduction path 1 and the solution discharge path 3 with the fine particle holding portion 33 interposed therebetween. 8 is connected.
  • a second introduction path 2 for introducing the solution 15 is connected to the branch path 35 provided in a region of the flow path 30 between the valve 31 and the fine particle holding portion 33 via the valve 5. .
  • the heating unit 11 is provided on both side surfaces of the fine particle holding unit 33.
  • the heating unit 11 is a heater that heats the fine particle holding unit 33. By the heating of the heater, the solvent is removed from the solution 13 in the fine particle holding unit 33, and the solution 13 is evaporated to dryness. The gas evaporated by the heating of the heating unit 11 is exhausted through the exhaust path 8 provided in the fine particle holding unit 33.
  • the dissolving liquid 15 passing through the fine particles 10 causes the fine particles 10 to stir and move in the fine particle holding portion 33, and the solidified material 14 attached to the surface of the fine particles 10 is dissolved in the dissolving liquid 15. At this time, the dissolution of the solidified product 14 may be promoted by heating the fine particle holding unit 33.
  • the solution 15 in which the solidified material 14 is dissolved is discharged from the solution discharge path 3.
  • the solution 15 is introduced into the particle existence region of the particle holding unit 33 once and collected from the solution discharge path 3, but the solution 15 is contained in the particle holding unit 33. It may be introduced a plurality of times, and the solution 15 in the fine particle holding unit 33 may be collected a plurality of times. This may improve the solute recovery rate. At this time, the solution recovery rate can also be improved by extruding the solution in the fine particle holding unit 33 with nitrogen gas or the like.
  • the liquid such as the solution 13 and the solution 15 can be fed using a pump.
  • liquid feeding it can also be performed by other methods, for example, liquid feeding using nitrogen gas, liquid feeding by vacuuming, or the like is also possible.
  • the flow rate when the solution 13 is fed to the fine particle holding unit 33 is such that the solidification of the solution is completed in parallel with the supply of the solution 13 in the fine particle existence region, and the upper part ( It is necessary to set the flow rate so that the liquid does not leak to the discharge port 8 side.
  • the fine particles 10 are heated through the inner wall of the flow passage 30 of the fine particle holding unit 33, it is preferable to use a material having high thermal conductivity.
  • a material having high thermal conductivity iron, cobalt, nickel, or Magnetic fine particles made from these alloys as raw materials, and metal fine particles made from gold, silver, copper, or alloys containing these as main components can be preferably used.
  • fine particles such as glass and ceramic hydroxyapatite can be used in addition to these metal fine particles.
  • the fine particle surface may be coated with polytetrafluoroethylene (PTFE) or the like.
  • the fine particles 10 are adhered to the inner wall of the fine particle holding portion 33 by installing a magnetic substance in the vicinity of the fine particle holding portion 33.
  • the heat from the heating unit 11 can be efficiently transmitted to the fine particles 10.
  • the installation of the filter 32 may be omitted.
  • the fine particles 10 are preferably those having a particle diameter of 5 mm or less, and more preferably 100 ⁇ m or more and 2 mm or less.
  • the solution 13 is supplied onto the fine particles 10 at room temperature, but the solution 13 may be heated before contacting the fine particles 10 (see FIG. 10).
  • the solution 13 passing through the inside of the flow path 30 is heated by the flow path heating unit 21 installed on the side surface of the flow path 30 on the valve 6 side of the particulate holding unit 33.
  • the heating temperature by the flow path heating unit 21 is set to be equal to or lower than the boiling point of the solution 13 in order to avoid solidification of the solution 13 in the flow passage 30 to the fine particle holding unit 33.
  • the heating unit 11 that is a heater, a hot plate, a Peltier element, an oil bath, water vapor, a light generation source, a microwave generation source, an ultrasonic generation source, and the like can be used as in the first embodiment. .
  • the temperature sensor is installed on the surface of the flow path where the heating unit 11 or the heating unit 11 is in contact, so that the inside of the fine particle holding unit 33 is used by the user. It is preferable because it can be controlled to a desired temperature according to the temperature.
  • the solution 15 when the solution 15 passes around the fine particles 10, the fine particles 10 are moved so as to promote the dissolution of the solidified material 14 attached to the surface of the fine particles 10 in the solution 15.
  • the solution 15 may be reciprocated in the flow passage 30 to pass through the fine particle holding portion 33 (region where the fine particles 10 are present) a plurality of times (FIG. 11A).
  • an ultrasonic wave generation source FIG. 11B
  • FIG. 11A and FIG. 11B By performing the stirring shown in FIG. 11A and FIG. 11B, improvement in dissolution efficiency of the solidified product 14 in the solution 15 can be expected.
  • the ultrasonic generation source when an ultrasonic generation source is installed in the vicinity of the fine particle holding unit 33, the ultrasonic generation source is used as the stirring unit 12 and used as the heating unit 11. It is also possible.
  • heating the solution 13 with the fine particles 10 held in the fine particle holding unit 33 increases the heating surface area as compared with the case where the solution 13 is simply heated in the flow path.
  • the efficiency of evaporation to dryness is improved. For this reason, the evaporation and drying time of the solution 13 is shortened.
  • the solidified product after evaporation to dryness is widely dispersed and localized in the fine channel. Liquid was needed. In this case, the solidified product tends to remain in the fine flow path, and it is difficult to efficiently re-dissolve the obtained solidified product.
  • the solidified product 14 is concentrated on the surface of the fine particles 10 and a narrow region around the fine particles 10. For this reason, the amount of the solution 15 required to redissolve the solidified product 14 can be greatly reduced. Moreover, since the quantity of the solidified substance 14 which does not melt
  • the fine particles 10 to which the solidified material 14 is attached are agitated as the dissolved solution 15 passes, the dissolution efficiency of the solidified material 14 in the dissolved solution 15 is improved, and the solute (solidified material) from the solution 13 is increased. Recovery efficiency is improved.
  • the configuration in which the heating unit 11 is provided as the solvent removal member is shown.
  • the solvent removal member the solution in the container 9 or the fine particle holding unit 33 may be used.
  • the heating unit 11 is not necessarily limited, and for example, a ventilation member that removes the solvent by allowing gas to pass through the container 9 or the fine particle holding unit 33 may be provided as the solvent removal member. .
  • the method of evaporating and drying the 18 F ⁇ -containing solution and re-dissolving are mainly shown, but other than this, for example, 11 C, 13 N, etc. It can be applied to solutions containing various positrons.
  • target water containing 18 F ⁇ is adsorbed and concentrated on an anion exchange column, and then eluted with a predetermined aqueous solution (for example, potassium carbonate / cryptofix-containing acetonitrile aqueous solution) (anion exchange).
  • a predetermined aqueous solution for example, potassium carbonate / cryptofix-containing acetonitrile aqueous solution
  • column purification the resulting solution was evaporated to dryness by heating (first dryness), then mixed with the precursor dissolved in an organic solvent (mannose triflate) which is reacted (18 F-labeled reaction).
  • This reaction solution is again evaporated to dryness (second evaporation to dryness), hydrolyzed with an aqueous HCl solution or aqueous NaOH solution (hydrolysis), and then synthesized through the purification process (final purification) as a final preparation.
  • the standard time required for each step described above is about 2 minutes for anion exchange column purification and about 1 time for evaporation to dryness for the first time. 7 minutes, 18 F labeling reaction is about 5.5 minutes, second evaporation to dryness is about 2.5 minutes, hydrolysis is about 5.5 minutes, and final purification is about 5 minutes. It took a minute.
  • the solvent replacement apparatus and the solvent replacement method according to each of the above-described embodiments for example, it can be applied to the first evaporation to dryness and the second evaporation to dryness in [ 18 F] FDG synthesis.
  • the time required for the evaporating and drying process is shortened, and the processing time required for the entire [ 18 F] FDG synthesis is shortened.
  • 18 F ⁇ is usually present in a very small amount (f to p mol level). Therefore, when the concentration of the precursor solution (eg, mannose triflate solution) is low, 18 F ⁇ and the precursor Reaction may not proceed sufficiently. For this reason, for example, as a mannose triflate solution, a high concentration solution of about 20 mg / mL is used. On the other hand, when the solidified product 14 containing 18 F ⁇ is dissolved in a large amount of the solution 15, when mixed with a precursor solution (for example, mannose triflate solution), the precursor concentration in the mixture becomes low. The reaction between the precursor and 18 F ⁇ may not proceed sufficiently.
  • the precursor solution eg, mannose triflate solution
  • the solidified product obtained by evaporation to dryness is concentrated in a narrow region around the fine particles, and the amount of the solution 15 is smaller than that of the conventional solution.
  • the solidified product 14 can be redissolved.
  • the precursor concentration is maintained at a high concentration, so that the reaction between the two can proceed well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

微粒子10を保持する容器9と、容器9内で蒸発乾固させる溶液13を容器9内に導入する第1の導入路1と、容器9内に保持されている溶液13から溶媒を除去して蒸発乾固させる加熱部11と、溶液13の蒸発乾固により得られた固化物14を溶解させる溶解液15を容器9内に導入する第2の導入路2と、を備えた溶媒置換装置である。

Description

溶媒置換装置及び溶媒置換方法
 本発明は、主に放射性薬剤合成に用いられる溶媒置換装置及び溶媒置換方法に関する。
 近年、Positron Emission Tomography(PET)を用いた画像診断や薬剤の体内動態評価が盛んに行われている。PETは、静脈注射又は吸入により、ポジトロンを放出する放射性同位体を含む薬剤(放射性薬剤)を体内に投与し、その体内分布を画像化して診断を行う技術である。
 PETは、臓器の生理的・生化学的機能情報を得られるものであり、従来のCTやMRIのような、形態を画像化する検査とは異なり、細胞の活動状態を画像化できるものである。このため、ガンや心臓病、脳疾患等の種々の病気の原因特定や病状診断に利用されている。
 PET診断に使われるポジトロン核種としては、例えば11C、13N、15O、18Fがある。これらポジトロン核種の半減期は、それぞれ20.4分、9.97分、2.04分、109.8分と非常に短いため、これらを含む放射性薬剤は、短時間で高効率に合成することが要求される。
 例えば、放射性薬剤として広く利用されている[18F]FDGでは、18-を含むターゲット水を陰イオン交換カラムで吸着・濃縮し、所定の水溶液で溶出して得られた溶出液を加熱により蒸発乾固した後、有機溶媒に溶解させた前駆体と混合して反応させている(18F標識反応)。
 18F標識反応前に行われる、溶出液の蒸発乾固処理は、18-と前駆体との反応を阻害する水を、これらの反応液から除去して反応効率の低下を防止するための処理である。
 従来、蒸発乾固処理は、陰イオン交換カラムからの溶出液が移送されたガラスバイアル反応容器を底面から加熱することで行われており、例えば[18F]FDG合成では、蒸発乾固処理は、合成時間全体の約35%の割合を占めている。このため蒸発乾固に要する処理時間の短縮が求められている。
 そこで近年、マイクロリアクター法の適用が検討されている。マイクロリアクター法は、単位体積当たりの表面積が広く確保されるため、高効率な蒸発乾固が可能である。
 マイクロリアクター法に関して、特許文献1には、微細加工により形成された溝内に溶液を供給し、さらにこの溶液の上側に蒸発操作用ガスを通過させることで、蒸発乾固を行うPET標識用化合物の製造方法が開示されている。
特開2010-260799号公報
 上記したガラスバイアルを用いたバッチ法では、単位体積当たりの加熱表面積が狭いことから、蒸発乾固に要する時間が長くなる。また、この方法では、固化物の再溶解を熱還流により行う方法が主流であり、この場合、固化物中の18-が充分に再溶解されずに容器内に残留する可能性がある。
 一方、特許文献1に記載の方法では、微細流路により単位体積当たりの加熱表面積が広く確保されることから、効率的な蒸発乾固が可能である。しかしながら、微細流路で蒸発乾固を実施した場合、固化物は流路内に広く分散・局在しているため、流路内の固化物を効率よく再溶解させることが困難である。
 本発明は、上記した問題に鑑みてなされたものであり、溶液の乾固及び再溶解を、効率的に行うことができる溶媒置換装置及び溶媒置換方法を提供することを目的とする。
 本発明に係る溶媒置換装置の好ましい実施形態としては、微粒子を保持する微粒子保持部と、前記微粒子保持部に保持されている溶液から溶媒を除去する溶媒除去部と、前記微粒子保持部内で蒸発乾固させる溶液及び該溶液の蒸発乾固により得られた固化物を溶解させる溶解液を前記微粒子保持部内に導入する流通路と、を備えたことを特徴とする溶媒置換装置である。
 また、本発明に係る溶媒置換方法の好ましい実施形態としては、微粒子を保持する微粒子保持部内で蒸発乾固させる溶液を該微粒子保持部内に導入する工程と、前記微粒子保持部内に導入された前記溶液に含まれる溶媒を溶媒除去部により除去して該溶液を蒸発乾固させる工程と、前記溶液の蒸発乾固により得られた固化物を溶解させる溶解液を前記微粒子保持部内に導入する工程と、を有することを特徴とする溶媒置換方法である。
 本発明によれば、溶液の乾固及び再溶解を、効率的に行うことができる溶媒置換装置及び溶媒置換方法を実現することができる。
第1の実施形態に係る溶媒置換装置の構成を示す図である。 図1に示す溶媒置換装置を用いた溶媒置換方法のフローを説明する図である。 流路加熱部を備えた第1の実施形態に係る溶媒置換装置の構成例を示す図である。 複数の流路からなる流通路を備えた第1の実施形態に係る溶媒置換装置の構成を示す図である。 第1の実施形態に係る溶媒置換装置に設けられた加熱部の構成例を示す図であり、水蒸気による加熱部(A)、光による加熱部(B)、マイクロ波による加熱部(C)を示す。 第1の実施形態に係る溶媒置換装置における、溶解液の攪拌形態を示す図であり、超音波による攪拌(A)、溶液の吸引・吐出による攪拌(B)を示す。 第1の実施形態に係る溶媒置換装置の構成例を、溶解液の回収時の形態において示す図である。 第2の実施形態に係る溶媒置換装置の構成を示す図である。 図8に示す溶媒置換装置を用いた溶媒置換方法のフローを説明する図である。 流路加熱部を備えた第2の実施形態に係る溶媒置換装置の構成例を示す図である。 第2の実施形態に係る溶媒置換装置における、溶解液の攪拌形態を示す図であり、溶液の往復動による攪拌(A)、超音波による攪拌(B)を示す。
 以下、図面を参照して、本発明の実施の形態を説明する。
 (第1の実施形態)
 図1は、第1の実施形態に係る溶媒置換装置の構成を示す図である。 
 図1に示すように、第1の実施形態に係る溶媒置換装置は、微粒子10を保持する微粒子保持部としての容器9と、容器9内で蒸発乾固させる溶液13(以下、単に溶液13と示す。)及び溶液13の蒸発乾固により得られた容器9内の固化物を溶解させる溶解液15を容器9内に導入する流通路23と、を備えている。
 流通路23は、バルブ4を介して接続された第1の導入路1、及びバルブ5を介して接続された第2の導入路2を有しており、第1の導入路1から溶液13が導入され、第2の導入路2から溶解液15が導入されるように構成されている。
 さらに、流通路23には、バルブ6を介して溶解液排出路3が接続されており、容器9内の液体が、溶解液排出路3から排出されるように構成されている。
 容器9は、縮径した中空形状とされており、その底部中央に微粒子10が保持されるように構成されている。溶解液排出路3には、溶解液中に含まれる微粒子10やその他異物を除去する微粒子除去フィルター7が、バルブ6よりも流通路23側の位置に設けられている。
 容器9の下端側には、容器9の縮径部の側面を囲むように、加熱部11が設けられている。容器9及び加熱部11の下方には、容器9内の微粒子10を攪拌する撹拌部12が設けられている。
 加熱部11は、容器9を加熱するヒータである。ヒータの加熱によって、容器9内の溶液13から溶媒が除去され、溶液13が蒸発乾固される。加熱部11の加熱により蒸発した気体は、容器9に設けられた排気路8により回収される。
 次に、図1に示す装置を用いた蒸発乾固及び再溶解の方法について、図2を用いて説明する。以下の説明では、微粒子10として磁性微粒子10Aを用いた場合の例について説明する。
 (A)バルブ4、バルブ5、バルブ6を閉止した状態で、磁性微粒子10Aが収容された容器9を加熱部11により加熱する。加熱された容器9を介して、磁性微粒子10Aが加熱される(図2A)。
 (B)バルブ4を開放し、容器9内で蒸発乾固させる溶液13を第1の導入路1から流通路23を通過させて容器9に導入する。溶液13は、バルブ4を経由し、容器9の上方から、加熱された磁性微粒子10Aの表面に滴下される(図2B)。溶液13は、磁性微粒子10Aに接触して沸点以上まで加熱され、溶媒が気化して排気口8から排出される。
 図2には示していないが、溶液13として、放射性物質含有溶液を容器9内に導入する場合には、外部環境への汚染を防止し、また放射性薬剤への外部環境からの汚染を抑制するため、排気口8にフィルター等を設けることが望ましい。
 (C)溶液13は、溶媒の気化により蒸発乾固され、溶液13に含まれる溶質が磁性微粒子10Aの表面で固化する。これにより、磁性微粒子10Aの周辺に固化物14が生成する(図2C)。
 (D)次に、バルブ4を閉止し、バルブ5を開放した後、第2の導入路2から流通路23を通過させて、容器9内に溶解液15を導入する(図2D)。
 (E)次に、バルブ5を閉止した後、攪拌部12(図2ではスターラー。)を動作させて、溶解液15中の磁性微粒子10Aを攪拌運動させ、固化物14を溶解液15に溶解させる(図2E)。このとき、加熱部11を併せて動作させて、容器9を加熱しながら磁性微粒子10Aを攪拌させてもよい。
 なお、本実施形態は、第2の導入路2から溶解液15を単独で容器9に導入する例を示したが、溶解液15の代わりに、前駆体を含む溶液を第2の導入路2から容器9内に導入し、固化物14を、当該前駆体を含む溶液に溶解させながら前駆体と反応させてもよい。
 (F)次に、バルブ6を開放し、固化物14が溶解した溶解液15を溶解液排出路3へ導入し、回収する(図2F)。溶解液15に混入している磁性微粒子10Aは、微粒子除去フィルター7により除去され、回収される溶解液15への磁性微粒子10Aの混入が防止される。
 図2に示す形態では、容器9の上方から溶解液15を回収する構成としている。この形態の場合、容器9の内周面全体が、磁性微粒子10Aの加熱領域となるため、溶液13の蒸発乾固を効率的に行うことができる。
 本実施形態では、溶解液15の容器9への導入を一回行って、溶解液排出路3から回収するようにしているが、溶解液15を容器9内に複数回導入し、容器9内の溶解液15の回収を複数回行うようにしてもよい。これにより、溶質の回収率が向上する可能性がある。
 本実施形態の上記した各工程において、溶液13や溶解液15等の液体の送液は、ポンプを用いて行うことが可能である。なお、送液が可能であれば、その他の方法で行うことも可能であり、例えば窒素ガスを用いた送液や真空引きによる送液等も可能である。送液時の流量は、各工程において適宜調整して行うことが必要である。例えば工程(B)において、溶液13を容器9に送液する時の流量は、容器9内の磁性微粒子10Aの存在領域において、溶液13の供給と並行して溶液13の蒸発乾固が完了し得る流量値に設定することが望ましい。
 図2に示す形態では、微粒子10(図1参照。)として磁性微粒子10Aを使用しているため、撹拌部12としてスターラーを使用した場合には、容器9の表面に磁性微粒子10Aを密着させることができる。これにより、磁性微粒子10Aを加熱する際に、加熱部11からの熱が効率よく磁性微粒子10Aに伝達される。 また、溶解液15を溶解液排出路3から回収する際には、磁性微粒子10Aがスターラーの磁力により容器9の表面に保持される。このため、回収される溶解液15への磁性微粒子10Aの混入を抑制することができる。
 本実施形態において、微粒子10としては、鉄、コバルト、ニッケル、又はそれらの合金を原料とする磁性微粒子のほか、金、銀、銅又はこれらを主成分として含む合金を原料とする金属微粒子を好適に用いることができる。
 正帯電した金属微粒子(磁性微粒子を含む。)表面と18-との電気的な結合による吸着が危惧される場合は、微粒子表面をポリテトラフルオロエチレン(PTFE)等で被覆してもよい。これらの金属は、いずれも熱伝導率が高いため、容器9からの熱が伝わりやすく、効率的に加熱されるため、溶液の蒸発乾固に適している。
 また、微粒子10としては、容器9内における加熱処理や、容器9内に供給される溶液13や溶解液15等の液体に対する耐性を有するものであれば、非磁性の微粒子10を用いることも可能である。すなわち、非磁性の微粒子10としても、熱伝導率が高く、かつ使用薬品(例えばアセトニトリル)に対する耐性(耐薬品性)が高く、耐熱性(100℃前後)に優れた材質を用いることが望ましく、このような非磁性の微粒子10として、例えばガラスやセラミックハイドロキシアパタイトなどを使用することができる。
 上記した非磁性の微粒子10上に、例えば18-を吸着させる場合は、耐熱性、耐薬品性に優れ、かつ18-低吸着であるポリテトラフルオロエチレン(PTFE)等で微粒子表面を被覆してもよい。
 微粒子10としては、粒径が小さいものほど、粒子表面積が大きく、上記工程(B)において加熱表面積が大きく確保されるため好ましい。微粒子10としては、具体的には、例えば粒子径が5mm以下のものを用いることが好ましく、100μm以上2mm以下のものを用いることがより好ましい。
 図2に示す例では、溶液13を磁性微粒子10A上に常温で滴下して、磁性微粒子10Aと接触させているが、溶液13は、磁性微粒子10A上に滴下する前に加熱するようにしてもよい(図3参照。)。
 図3に示す例では、流通路23の側面に設置した流路加熱部21により、流通路23内部を通過する溶液13を加熱する。これにより、容器9内で溶液13が蒸発乾固するのに要する時間を短縮することができる。ただしこの場合、流通路23内での溶液13の固化を避けるため、流路加熱部21による加熱温度は、溶液13の沸点以下に設定する。
 また、図2に示す例では、単一の流路からなる流通路23により、溶液13を容器9内に導入する形態を示したが、例えば図4に示すように、容器9内の流通路23を、細径の複数の流路で構成するようにしてもよい。図4に示す形態とすることで、溶液13を微粒子10上に分散させて供給することが可能となり、蒸発効率の向上が期待される。
 ヒータである加熱部11としては、例えばホットプレート、ペルチェ素子、オイルバスを用いることができ、また、水蒸気(図5A)、光発生源(図5B)、マイクロ波発生源(図5C)、超音波発生源を使用することができる。図2には示していないが、加熱部11又は容器9の表面に温度センサーを設置することで、容器9内を、ユーザーの使用状況に応じた所望の温度になるよう制御できるため好ましい。
 加熱部11は、単に加熱するだけでなく、窒素ガス等を噴霧する機構を別途設置し、加熱と平行してガスの噴霧を行うことで、溶液の蒸発を促すようにしてもよい。
 図2に示す形態では、攪拌部12としてスターラーを用いた構成を示したが、微粒子10を攪拌する方法としては、例えば、攪拌部12として超音波発生源(図6A)を用いて超音波照射を行うことも可能であり、これらを併用することも可能である。さらに別の攪拌方法として、微粒子10を含む溶解液15を、流通路23により吸引・吐出することにより溶解を促すようにしてもよい(図6B)。
 例えば、微粒子10として非磁性の微粒子を用いる場合には、超音波(図6A)や溶解液15の吸引・吐出(図6B)を用いて攪拌を行うことが可能である。
 なお、図6(A)に示すように、容器9の近傍に超音波発生源を設置した場合には、この超音波発生源を撹拌部12として使用するとともに、加熱部11として使用することも可能である。
 図2に示す例では、容器9内の溶解液15を、容器9の上方に設けた溶解液排出路3から回収する方法を示しているが、本実施形態では、例えば図7に示すように、溶解液15を、容器9の下方から回収するようにしてもよい。この場合、溶解液15は、重力により容器9底部に集まるため、溶解液15の回収率向上を期待できる。この際、さらに窒素ガス等により溶解液15を押し出すことによっても、回収量の向上が期待できる。
 また、図2に示す例では、溶液13と溶解液15とを、別々の導入路(第1の導入路1、第2の導入路2)から導入する形態を示したが、これらの溶液13及び溶解液15を、導入するタイミングをずらして、同じ導入路から導入するようにしてもよい。
 本実施形態によれば、蒸発乾固させる溶液13を、微粒子10を保持した容器9内で加熱することで、溶液13は、微粒子10の表面で蒸発乾固される。このため、容器9内で単に加熱する場合と比較して加熱表面積が増大し、その分、溶液13の蒸発乾固の効率が向上する。このため、溶液13の蒸発乾固時間が短縮される。
 また、微細流路内で溶液を蒸発乾固する従来の方法では、蒸発乾固後の固化物が微細流路内に広く分散・局在するため、固化物を再溶解させる際に大量の溶解液が必要であった。またこの場合、微細流路中に固化物が残留し易く、得られた固化物の効率的な再溶解が困難であった。
 これに対し、本実施形態では、微粒子10上に溶液13を供給して蒸発乾固させることで、固化物14は、微粒子10表面及びその周辺の、狭い領域に集中して生成する。このため、微細流路内で溶液を蒸発乾固する従来の方法と比較して、固化物14を再溶解させるのに要する溶解液15の量を、大幅に低減することができる。特に、溶解液15の代わりに、前駆体を含む溶液を使用して固化物14を溶解させる場合には、従来よりも少量の溶液で固化物14を溶解させることができるため、その分、高価な前駆体の消費量を低減することができる。また、溶解液15に溶解せずに装置内に残留する固化物14の量が低減するため、目的物である、溶液13の溶質の回収効率が向上する。
 またさらに、固化物14が付着した微粒子10を、溶解液15内で撹拌運動させることで、固化物14の溶解液15への溶解効率が向上し、溶液13からの溶質(固化物14)の回収効率が向上する。
 (第2の実施形態)
 図8は、第2の実施形態に係る溶媒置換装置の構成を示す図である。図8に示すように、第2の実施形態に係る溶媒置換装置は、流通路30内に、微粒子保持部33を形成する一対のフィルター32が設置されており、一対のフィルター32間には、微粒子10が保持されている。フィルター32としては、液体が通過し、かつ微粒子10が通過しない大きさの細孔径を有するものを使用する。
 流通路30は、微粒子保持部33内で蒸発乾固させる溶液13(以下、単に溶液13と示す。)、及び溶液13の蒸発乾固により得られた微粒子保持部33内の固化物を溶解させる溶解液15を通過させて微粒子保持部33に導入する流路である。
 流通路30の図8中下方には、バルブ4を介して、溶液13を微粒子保持部33内に導入する第1の導入路1が接続されている。また、流通路30には、微粒子保持部33内の液体を排出する溶解液排出路3が、第1の導入路1と並行するように、バルブ6を介して接続されている。
 また、流通路30には、微粒子保持部33を挟んで、第1の導入路1及び溶解液排出路3と対向する側にバルブ31が設置されており、このバルブ31を介して、排気口8が接続されている。
 流通路30の、バルブ31と微粒子保持部33との間の領域に設けられた分岐路35には、バルブ5を介して、溶解液15を導入する第2の導入路2が接続されている。
 微粒子保持部33の両側面には、加熱部11が設けられている。加熱部11は、微粒子保持部33を加熱するヒータである。ヒータの加熱によって、微粒子保持部33内の溶液13から溶媒が除去され、溶液13が蒸発乾固される。加熱部11の加熱により蒸発した気体は、微粒子保持部33に設けられた排気路8により排出される。
 次に、図8に示す装置を用いた蒸発乾固及び再溶解の方法について、図9を用いて説明する。
 (A)バルブ4、バルブ5、バルブ6を閉止し、バルブ31を開放した状態で、加熱部11により、微粒子保持部33に保持されている微粒子10を加熱する(図9A)。
 (B)バルブ4を開放し、微粒子保持部33内で蒸発乾固させる溶液13を、第1の導入路1により、微粒子保持部33の下方から導入する(図9B)。溶液13は、微粒子10表面に接触して沸点以上まで加熱され、溶媒が気化して排気口8から排出される。図9には示していないが、第2の実施形態においても、溶液13として、放射性物質含有溶液を微粒子保持部33内に導入する場合には、外部環境への汚染を防止し、また放射性薬剤への外部環境からの汚染を抑制するため、排気口8にフィルター等を設けることが望ましい。
 (C)溶液13は、溶媒の気化により蒸発乾固され、溶液13に含まれる溶質が微粒子10の表面で固化する。これにより、微粒子10の周辺に固化物14が生成する(図9C)。図9に示す形態では、微粒子保持部33の下方側から溶液13を導入しているため、固化物14は、微粒子10の存在領域の下方側に局在して生成する。
 (D)次に、バルブ4、バルブ31を閉止し、バルブ5、バルブ6を開放した状態で、溶解液15を、第2の導入路2から微粒子保持部33に導入する。微粒子保持部33に導入された溶解液15は、微粒子10の存在領域を通過する(図9D)。
 微粒子10を通過する溶解液15により、微粒子保持部33内で微粒子10が攪拌運動し、微粒子10表面に付着した固化物14が溶解液15に溶解される。この際、微粒子保持部33を加熱することにより、固化物14の溶解を促進させるようにしてもよい。固化物14が溶解された溶解液15は、溶解液排出路3から排出される。
 図9に示す形態では、溶解液15を、微粒子保持部33の上方から導入しているため、微粒子存在領域の下方に局在している固化物14は、効率よく溶解液排出路3へ排出される。
 本実施形態では、微粒子保持部33の微粒子存在領域への溶解液15の導入を一回行って、溶解液排出路3から回収するようにしているが、溶解液15を微粒子保持部33内に複数回導入し、微粒子保持部33内の溶解液15の回収を複数回行うようにしてもよい。これにより、溶質の回収率が向上する可能性がある。さらにこの際、窒素ガス等により微粒子保持部33内の溶液を押し出すことによっても、溶液回収率の向上が期待できる。
 本実施形態の上記した各工程において、溶液13や溶解液15等の各液の送液は、ポンプを用いて行うことが可能である。なお、送液が可能であればその他の方法で行うことも可能であり、例えば窒素ガスを用いた送液や真空引きによる送液等も可能である。
 送液時の流量は、各工程において適宜調整して行うことが必要である。例えば工程(B)において、溶液13を微粒子保持部33に送液する時の流量は、微粒子存在領域において、溶液13の供給と並行して溶液の固化が完了し、微粒子保持部33の上方(排出口8側)に液体が漏洩しない流量値に設定する必要がある。
 微粒子10としては、微粒子保持部33の流通路30の内壁を介して加熱されるため、熱伝導率が高い材質を用いることが好ましく、第1の実施形態と同様、鉄、コバルト、ニッケル、又はそれらの合金を原料とする磁性微粒子や、金、銀、銅、又はこれらを主成分として含む合金を原料とする金属微粒子を好適に用いることができる。また本実施形態においても、これらの金属微粒子の他、ガラスやセラミックハイドロキシアパタイト等の微粒子を使用可能である。
 正帯電した金属微粒子(磁性微粒子を含む。)表面と18-との電気的な結合による吸着が危惧される場合は、微粒子表面をポリテトラフルオロエチレン(PTFE)等で被覆してもよい。
 これらの中でも、微粒子10として、鉄、コバルト、ニッケル等の磁性微粒子を用いた場合には、微粒子保持部33の近傍に磁性体を設置することで、微粒子10を微粒子保持部33の内壁に密着させることができ、加熱部11からの熱を効率よく微粒子10に伝達することができる。また、この場合、微粒子10と微粒子保持部33の内壁との密着力が強固である場合には、フィルター32の設置を省略できる場合もある。
 第2の実施形態においても、微粒子10としては、5mm以下の粒子径のものを用いることが好ましく、100μm以上2mm以下のものを用いることがより好ましい。
 図9に示す例では、溶液13を、微粒子10上に常温で供給しているが、溶液13は、微粒子10と接触させる前に加熱するようにしてもよい(図10参照。)。図10に示す例では、微粒子保持部33のバルブ6側の流通路30側面に設置した流路加熱部21により、流通路30内部を通過する溶液13を加熱する。これにより、微粒子保持部33内で溶液13が蒸発乾固するのに要する時間を短縮することができる。ただし、この場合、微粒子保持部33までの流通路30内における、溶液13の固化を避けるため、流路加熱部21による加熱温度は、溶液13の沸点以下に設定する。
 ヒータである加熱部11としては、第1の実施形態と同様、ホットプレート、ペルチェ素子、オイルバス、水蒸気、光発生源、マイクロ波発生源、超音波発生源等を使用することが可能である。
 第2の実施形態においても、図示していないが、加熱部11、又は加熱部11が接触している流路表面に温度センサーを設置することで、微粒子保持部33内を、ユーザーの使用状況に応じた所望の温度になるよう制御できるため好ましい。
 図9に示す形態では、溶解液15が微粒子10の周りを通過する際に、微粒子10を運動させることで、微粒子10の表面に付着した固化物14の溶解液15への溶解を促進するようにしたが、例えば、溶解液15を、流通路30内で往復させて、微粒子保持部33内(微粒子10が存在する領域)を複数回通過させるようにしてもよい(図11A)。また、攪拌部12として超音波発生源(図11B)を用い、超音波照射を併せて行うようにしてもよい。図11Aや図11Bに示す攪拌を行うことにより、固化物14の、溶解液15への溶解効率の向上が期待できる。
 なお、図11(B)に示すように、微粒子保持部33の近傍に超音波発生源を設置した場合には、この超音波発生源を撹拌部12として使用するとともに、加熱部11として使用することも可能である。
 本実施形態によれば、溶液13を、微粒子保持部33内に保持された微粒子10により加熱することで、溶液13を単に流通路内で加熱した場合と比較して加熱表面積が増大し、その分、蒸発乾固の効率が向上する。このため、溶液13の蒸発乾固時間が短縮される。
 また、微細流路内で溶液を蒸発乾固する従来の方法では、蒸発乾固後の固化物が微細流路内に広く分散・局在するため、固化物を再溶解させる際に大量の溶解液が必要であった。またこの場合、微細流路中に固化物が残留し易く、得られた固化物の効率的な再溶解が困難であった。
 これに対し、本実施形態では、溶液13を、微粒子10を用いて蒸発乾固しているため、固化物14は、微粒子10表面及び微粒子10周辺の狭い領域に集中して生成する。このため、固化物14を再溶解させるのに要する溶解液15の量を、大幅に低減することができる。また、これにより、溶解液15に溶解せずに装置内に残留する固化物14の量が低減するため、目的物である、溶液13の溶質の回収効率が向上する。
 さらに、溶解液15の通過に伴い、固化物14が付着した微粒子10が撹拌運動することで、溶解液15への固化物14の溶解効率が向上し、溶液13からの溶質(固化物)の回収効率が向上する。
 第1の実施形態及び第2の実施形態のいずれにおいても、溶媒除去部材として加熱部11を設けた構成を示しているが、溶媒除去部材としては、容器9や微粒子保持部33内の溶液の溶媒を除去できるものであれば、必ずしも加熱部11に限られず、例えば容器9や微粒子保持部33内にガスを通気させて溶媒を除去する通気部材を、溶媒除去部材として設けることも可能である。
 以上説明した実施形態に係る溶媒置換装置及び溶媒置換方法では、主に18-含有溶液の蒸発乾固、及び再溶解の方法を示したが、この他にも、例えば11C、13Nなどのポジトロン各種を含む溶液に適用可能である。
 例えば[18F]FDG合成は、18-を含むターゲット水を、陰イオン交換カラムで吸着・濃縮した後、所定の水溶液(例えば炭酸カリウム/クリプトフィックス含有アセトニトリル水溶液)で溶出し(陰イオン交換カラム精製)、得られた溶液を加熱により蒸発乾固した後(1回目の蒸発乾固)、有機溶媒に溶解させた前駆体(マンノーストリフレート)と混合して反応させている(18F標識反応)。この反応液を再度蒸発乾固し(2回目の蒸発乾固)、HCl水溶液やNaOH水溶液で加水分解した後(加水分解)、精製過程(最終精製)を経て最終製剤として合成される。
 蒸発乾固工程を、従来のガラスバイアル反応容器を用いた方法で行う場合、上記した各工程に要する標準的な時間は、陰イオン交換カラム精製が約2分、1回目の蒸発乾固が約7分、18F標識反応が約5.5分、2回目の蒸発乾固が約2.5分、加水分解が約5.5分、最終精製が約5分であり、概ね計27.5分を要していた。
 上記した各実施形態に係る溶媒置換装置及び溶媒置換方法によれば、例えば、[18F]FDG合成における1回目の蒸発乾固及び2回目の蒸発乾固に適用することが可能である。この場合、蒸発乾固の工程に要する時間が短縮され、[18F]FDG合成全体に要する処理時間が短縮される。
 また、18F標識反応では、通常、18-が極微量(f~pモルレベル)しか存在しないため、前駆体溶液(例えばマンノーストリフレート溶液)が低濃度であると、18-と前駆体との反応が十分に進行しないことがある。このため、例えばマンノーストリフレート溶液では、約20mg/mL程度の高濃度溶液が使用されている。一方、18-を含む固化物14が、大量の溶解液15で溶解された場合には、前駆体溶液(例えばマンノーストリフレート溶液)と混合したときに、混合液における前駆体濃度が低くなり、前駆体と18-との反応が十分に進行しないおそれがある。
 上記した各実施形態の溶媒置換装置及び溶媒置換方法によれば、蒸発乾固により得られた固化物が、微粒子周辺の狭い領域に集中して生成しており、従来よりも少量の溶解液15で、固化物14を再溶解させることができる。このため、固化物14を溶解させた溶解液15と前駆体との混合液において、前駆体濃度が高濃度に維持されるため、両者の反応を良好に進行させることが可能となる。
1…第1の導入路、2…第2の導入路、3…溶解液排出路、4~6…バルブ、
7…微粒子除去フィルター、8…排気路、9…容器、10…微粒子、10A…磁性微粒子、11…加熱部、12…撹拌部、13…溶液、14…固化物、15…溶解液、21…流路加熱部、23、30…流通路、31…バルブ、32…フィルター、33…微粒子保持部、35…分岐路

Claims (14)

  1.  微粒子を保持する微粒子保持部と、
     前記微粒子保持部に保持されている溶液から溶媒を除去する溶媒除去部と、
     前記微粒子保持部内で蒸発乾固させる溶液及び該溶液の蒸発乾固により得られた固化物を溶解させる溶解液を前記微粒子保持部内に導入する流通路と、を備えたことを特徴とする溶媒置換装置。
  2.  前記微粒子保持部が、中空の容器で構成されていることを特徴とする請求項1に記載の溶媒置換装置。
  3.  前記微粒子保持部が、前記溶液及び前記溶解液を通過させる前記流通路の一部に形成されていることを特徴とする請求項1に記載の溶媒置換装置。
  4.  前記微粒子保持部は、鉄、コバルト、ニッケル、金、銀、銅、ガラス及びセラミックハイドロキシアパタイトからなる群から選択される少なくとも一つを主体とする微粒子を保持することを特徴とする請求項1に記載の溶媒置換装置。
  5.  前記溶媒除去部が、前記微粒子保持部を加熱する加熱部であることを特徴とする請求項1に記載の溶媒置換装置。
  6.  前記加熱部は、ペルチェ素子、超音波発生源、マイクロ波発生源、光発生源、ホットプレート、オイルバス又は水蒸気から選択される少なくとも一つであることを特徴とする請求項5に記載の溶媒置換装置。
  7.  前記微粒子保持部は、該微粒子保持部に保持されている前記微粒子を撹拌する撹拌部を有していることを特徴とする請求項1に記載の溶媒置換装置。
  8.  前記攪拌部は、スターラー又は超音波発生源から選択される少なくとも一つを備えることを特徴とする請求項7に記載の溶媒置換装置。
  9.  前記流通路は、前記微粒子保持部内で蒸発乾固させる溶液を該微粒子保持部内に導入する第1の導入路及び前記溶液の蒸発乾固により得られた固化物を溶解させる溶解液を前記微粒子保持部内に導入する第2の導入路を有して構成されていることを特徴とする請求項1に記載の溶媒置換装置。
  10.  前記流通路には、前記微粒子保持部と前記第1の導入路との間の領域を加熱する流路加熱部が設けられていることを特徴とする請求項1に記載の溶媒置換装置。
  11.  前記流通路には、前記微粒子保持部内の液体を排出する溶液排出路が接続されていることを特徴とする請求項1に記載の溶媒置換装置。
  12.  微粒子を保持する微粒子保持部内で蒸発乾固させる溶液を該微粒子保持部内に導入する工程と、
     前記微粒子保持部内に導入された前記溶液に含まれる溶媒を溶媒除去部により除去して該溶液を蒸発乾固させる工程と、
     前記溶液の蒸発乾固により得られた固化物を溶解させる溶解液を前記微粒子保持部内に導入する工程と、を有することを特徴とする溶媒置換方法。
  13.  前記微粒子保持部内に保持された微粒子を予め加熱しておき、
     加熱された前記微粒子を保持する前記微粒子保持部内に前記溶液を導入し、該微粒子に前記溶液を接触させつつ蒸発乾固させて、前記微粒子の表面に固化物を生成させた後、
     前記固化物が付着した前記微粒子を保持する前記微粒子保持部内に前記溶解液を導入し、前記固化物が溶解された前記溶解液を、前記微粒子保持部から溶液排出路により排出することを特徴とする請求項12に記載の溶媒置換方法。
  14.  前記固化物が付着した前記微粒子を保持する前記微粒子保持部内に、前記溶解液を導入し、
     前記溶解液と混合された前記微粒子を前記微粒子保持部内で撹拌して、前記固化物を前記溶解液に溶解させることを特徴とする請求項13に記載の溶媒置換方法。
PCT/JP2015/062986 2015-04-30 2015-04-30 溶媒置換装置及び溶媒置換方法 WO2016174769A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062986 WO2016174769A1 (ja) 2015-04-30 2015-04-30 溶媒置換装置及び溶媒置換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062986 WO2016174769A1 (ja) 2015-04-30 2015-04-30 溶媒置換装置及び溶媒置換方法

Publications (1)

Publication Number Publication Date
WO2016174769A1 true WO2016174769A1 (ja) 2016-11-03

Family

ID=57198266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062986 WO2016174769A1 (ja) 2015-04-30 2015-04-30 溶媒置換装置及び溶媒置換方法

Country Status (1)

Country Link
WO (1) WO2016174769A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150401A (ja) * 1982-02-27 1983-09-07 Chuo Kakoki Kk 液状体物質の濃縮乾燥方法
JPH09122401A (ja) * 1995-10-31 1997-05-13 Nara Kikai Seisakusho:Kk 液状物質中の固形成分の乾燥回収方法
JPH11128726A (ja) * 1997-11-04 1999-05-18 Nippon Sanso Kk ジャケット付き容器
JP2004117237A (ja) * 2002-09-27 2004-04-15 Showa Engineering Co Ltd トリチウム及びアルカリ性化合物を含有する重水からアルカリ性化合物と重水を分離する方法
WO2009057693A1 (ja) * 2007-11-01 2009-05-07 Jfe Engineering Corporation マイクロチップ、マイクロチップデバイス及びマイクロチップを用いた蒸発操作方法
JP2010260799A (ja) * 2009-04-30 2010-11-18 Jfe Engineering Corp マイクロチップを用いたpet用標識化合物の製造方法及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150401A (ja) * 1982-02-27 1983-09-07 Chuo Kakoki Kk 液状体物質の濃縮乾燥方法
JPH09122401A (ja) * 1995-10-31 1997-05-13 Nara Kikai Seisakusho:Kk 液状物質中の固形成分の乾燥回収方法
JPH11128726A (ja) * 1997-11-04 1999-05-18 Nippon Sanso Kk ジャケット付き容器
JP2004117237A (ja) * 2002-09-27 2004-04-15 Showa Engineering Co Ltd トリチウム及びアルカリ性化合物を含有する重水からアルカリ性化合物と重水を分離する方法
WO2009057693A1 (ja) * 2007-11-01 2009-05-07 Jfe Engineering Corporation マイクロチップ、マイクロチップデバイス及びマイクロチップを用いた蒸発操作方法
JP2010260799A (ja) * 2009-04-30 2010-11-18 Jfe Engineering Corp マイクロチップを用いたpet用標識化合物の製造方法及び装置

Similar Documents

Publication Publication Date Title
JP2022063838A (ja) テクネチウム-99mのサイクロトロン生産のためのプロセス、システム、及び装置
US5932178A (en) FDG synthesizer using columns
JP6496726B2 (ja) 18f標識組成物を合成するための二重使用カセット
CA2613212C (en) System for production of radioisotopes having an electrolytic cell integrated with an irradiation unit
Zhang et al. A simple microfluidic platform for rapid and efficient production of the radiotracer [18 F] fallypride
JP6737782B2 (ja) フッ化物を捕捉する配置
Chao et al. Automated concentration of [18F] fluoride into microliter volumes
KR101487345B1 (ko) 방사성동위원소 취급장치용 카세트, 방사성동위원소 취급장치, 및 방사성동위원소 취급시스템
JP2010525931A (ja) 分離法
He et al. Advances in processes for PET radiotracer synthesis: separation of [18F] fluoride from enriched [18O] water
George et al. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons
WO2016174769A1 (ja) 溶媒置換装置及び溶媒置換方法
US20080199370A1 (en) Efficient infrared-based reaction vessel
JP6726665B2 (ja) Petトレーサー精製システム
WO2020202726A1 (ja) 放射性標識化合物の製造方法、製造装置、放射性標識化合物及び放射性同位体製造装置
JP5237880B2 (ja) マイクロチップを用いたpet用標識化合物の製造方法及び装置
EP1670519B1 (en) Radiolabeled thymidine solid-phase extraction purification method
CN107223071A (zh) 整料体
JP5431764B2 (ja) マイクロチップを用いたフッ素f−18標識化合物の製造方法及び装置
EP3210211A1 (en) Radioisotope recovery
WO2016194586A1 (ja) 放射性標識化合物の製造装置及び製造方法
JP6770837B2 (ja) 放射性フッ素標識有機化合物を製造する方法
JP3133252B2 (ja) 三方切り替え活栓を組み込んだfdg合成装置
KR101745879B1 (ko) 방사성 의약품 제조 카세트의 내부 순환 반응용기 및 그를 이용한 방사성 의약품 제조방법
JPH09263592A (ja) 使い捨てカートリッジを使用するfdg合成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP