WO2016173111A1 - Graphene dispersing agent and preparation method therefor - Google Patents

Graphene dispersing agent and preparation method therefor Download PDF

Info

Publication number
WO2016173111A1
WO2016173111A1 PCT/CN2015/082577 CN2015082577W WO2016173111A1 WO 2016173111 A1 WO2016173111 A1 WO 2016173111A1 CN 2015082577 W CN2015082577 W CN 2015082577W WO 2016173111 A1 WO2016173111 A1 WO 2016173111A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
rod
segment
ball
sodium
Prior art date
Application number
PCT/CN2015/082577
Other languages
French (fr)
Chinese (zh)
Inventor
朱英
王建峰
滕超
江雷
Original Assignee
北京天恒盛通科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天恒盛通科技发展有限公司 filed Critical 北京天恒盛通科技发展有限公司
Publication of WO2016173111A1 publication Critical patent/WO2016173111A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment

Definitions

  • the present invention belongs to the field of nano material technology, and particularly relates to a high dispersion, high stability, high concentration, high yield graphene dispersion, and a method for preparing a graphene dispersion by using a ball or rod or a segment as a medium grinding device.
  • Graphene has a specific surface area of up to 2630 m 2 /g, which is twice that of single-walled carbon nanotubes; electron mobility at room temperature exceeds 200,000 cm 2 /Vs, which is higher than that of single crystal silicon; thermal conductivity is as high as 5300 W/nvK, high In diamond; resistivity is only 10 6
  • graphene sheets are prone to aggregation and affect the performance of graphene. Therefore, graphene is usually dispersed in an organic solvent or an aqueous solution of a surfactant, and solvent molecules or surfactant molecules are adsorbed on graphite. On the surface of the olefin, monolayer dispersion of graphene is achieved by means of intermolecular forces or electrostatic repulsion forces. Uniform and stable graphene dispersions have important applications in many fields of research, but the concentration of graphene dispersions reported so far is low, which limits the industrialization of graphene.
  • the main methods of the existing graphene dispersion are: directly dispersing graphite or graphite and a surface active mixture under ultrasonic water bath conditions.
  • researchers such as JN Coleman (U. Khan, , A. O'Neill, M. Lotya, S. De, JN Coleman, Small, 6, 864-871.) Disperse the flake graphite into the solvent NMP and use ultrasonic sonication for 460 h to obtain a graphene concentration of 3.3 mg L -i.
  • the graphene dispersion obtained by the method has a low concentration and a long inter-electron length, which severely limits industrial production and demand.
  • Dispersion-reduced graphene oxide Dan Li et al.
  • Graphite oxide 3 ⁇ 47_ solution It is reduced by a certain amount of hydrazine hydrate and ammonia solution at 95 ° C for 1 h to obtain a graphene dispersion with a concentration of 0.5 mg-L -i.
  • the graphene dispersion obtained by this method has a low concentration and poor stability and cannot meet the industrial requirements.
  • the existing graphene dispersion is mainly prepared by using graphene as a raw material and dispersing graphene in a solvent.
  • the preparation cost of the graphene dispersion is high, which restricts the industrialization process of graphene.
  • the graphene sheets in the existing commercial graphene dispersions are all in a multilayer structure, and it is difficult to obtain the graphene dispersion of the oligo layer.
  • an object of the present invention is to provide a highly dispersed, highly stable, high-concentration, high-yield oligo-layer graphene dispersion.
  • concentration of the graphene dispersion is: l mg/mL to 100 mg/mL, wherein the dispersant content is 0-6 wt%; the length of the graphene sheet is 100-6000 nm.
  • Another object of the present invention is to provide a method for preparing a highly dispersed, highly stable, high concentration, high yield graphene dispersion, the steps comprising: mixing a graphite raw material, a dispersing agent, and water or various solvents. After the solution, the agglomerated graphite is separated by mechanical shearing force formed by a grinding device of a ball or a rod or a segment to form a large amount of dispersed graphene dispersion.
  • the present invention is achieved by the following technical solutions.
  • a graphene dispersion comprising graphene, a dispersant and a solvent, wherein the graphene dispersion concentration is: 1 mg/mL to 60 mg/mL, wherein the dispersant content is 0 to 6 ⁇ 3 ⁇ 4 (by weight); The length of the graphene sheet is 100 to 6000 nm.
  • the graphene is an oligo-layer graphene.
  • the dispersing agent is: sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium p-styrenesulfonate, sodium polypyristate, sodium lignosulfonate , sodium lauryl sulfate, polyvinylpyrrolidone One or two of sodium cholate, polystyrene, cetyltrimethylammonium bromide, polyvinyl alcohol, and Tween 80.
  • the solvent is water, cyclopentanone, cyclohexanone, piperidine-1-carbaldehyde, vinyl pyrrolidone, 1,3-dimethyl-2-imidazoline, bromobenzene, cyanobenzene , benzyl benzoic acid, hydrazine, hydrazine-dimethylpropenyl ketone, hydrazine-ethyl-2-pyrrolidone, hydrazine-methylpyrrolidone, dimethylacetamide, cyclohexylpyrrolidone, benzyl ether, isopropanol, hydrazine - octylpyrrolidone, dioxolane, ethyl acetate, 1-nitrogen naphthalene, benzoin, ethanolamine, diethyl phthalate, decyl-dodecylpyrrolidone, pyridine, dimethyl
  • the above mixed solution is added to a grinding apparatus using a ball or a rod or a segment as a medium, and the grinding crucible is 1 to 100 hours to obtain a graphene dispersion.
  • the agglomerated graphite is peeled off by mechanical shearing force formed by a grinding apparatus using a ball or a rod or a segment as a medium to form an oligo-layer graphene.
  • the graphene is an oligo-layer graphene.
  • the graphite raw material is flake graphite
  • the graphite raw material is expandable graphite.
  • the graphite raw material is primary expanded graphite.
  • the grinding device with a ball or a rod or a segment as a medium is: a ball mill, a gravel mill, a sand mill
  • One or more of a rod mill, and the like are provided.
  • the type of the ball or rod or segment is gravel, pebbles, porcelain balls, agate balls, alloy balls, iron oxide balls, steel balls, steel rods, copper oxide balls, zirconia balls, alumina
  • a ball an alloy rod, an iron oxide rod, a copper oxide rod, a zirconia rod, an alumina rod, a steel segment, an alloy segment, a copper oxide segment, an alumina segment, an iron oxide segment, and a zirconia segment.
  • the ball has a diameter of 0.01 mm to 100 mm.
  • the rod has a diameter of 0.01 mm to 200 mm and a length of 0.1 mm to 200 mm.
  • the segment has a diameter of 0.01 mm to 100 mm.
  • the graphene dispersion obtained by the method has the advantages of high concentration, strong stability, simple preparation process, low cost, and favorable industrial production.
  • the obtained graphene dispersion has potential practical application value in the fields of light and electric materials.
  • Example 1 is an optical photograph of a graphene dispersion obtained in Example 1.
  • Example 2 is a transmission electron micrograph of the graphene sheet obtained in Example 1.
  • the raw materials are: graphite, expandable graphite, primary expanded graphite.
  • the dispersing agent is: sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium p-styrenesulfonate, sodium polypyristate, sodium lignosulfonate, twelve One or both of sodium alkyl sulfate, polyvinylpyrrolidone, sodium cholate, polystyrene, cetyltrimethylammonium bromide, polyvinyl alcohol, Tween 80;
  • the solvent is water, cyclopentanone, cyclohexanone, piperidine-1-carbaldehyde, vinyl pyrrolidone, 1,3-dimethyl- 2- imidazoline, bromobenzene, cyanobenzene, benzo Kean acid, hydrazine, hydrazine-dimethylpropenyl ketone, hydrazine-ethyl-2-pyrrolidone, hydrazine-methylpyrrolidone, dimethylacetamide, cyclohexylpyrrolidone, benzyl ether, isopropanol, oxime-octyl Pyrrolidone, dioxolane, ethyl acetate, 1-nitrogen naphthalene, benzoin, ethanolamine, bismuth citrate Ester, N-dodecylpyrrolidone, pyridine, dimethyl decanoate, ethanol, acetone, vinyl pyrroli
  • the grinding device using a ball or a rod or a segment as a medium is one or more of a ball mill, a gravel mill, a sand mill, a rod mill, and the like.
  • the type of the ball or rod or segment is gravel, pebbles, porcelain balls, agate balls, alloy balls, iron oxide balls, steel balls, steel rods, copper oxide balls, zirconia balls, alumina balls, alloys.
  • the diameter of the ball is 0.01 mm to 100 mm.
  • the rod has a diameter of 0.01 mm to 200 mm and a length of 0.1 mm to 200 mm.
  • the segment has a diameter of 0.01 mm to 100 mm.
  • FIG. 1 An optical photograph of the obtained graphene dispersion liquid is shown in Fig. 1, and a transmission electron micrograph of the obtained graphene sheet is shown in Fig. 2.

Abstract

Provided are a graphene dispersing agent and a preparation method therefor. The concentration of the graphene dispersing agent is 1 mg/mL to 60 mg/mL, wherein the content of the dispersing agent is 0 to 6% (by weight), and the length of a graphene sheet is 100 nm to 6000 nm. The method for preparing the graphene dispersing agent comprises: providing a graphene material; adding a dispersing agent into a solvent to form a solution; mixing the graphene material with the solution to form a uniform solution; and adding the mixed solution to a grinding device using balls, bars or sections as mediums, performing grinding for 1 h to 100 h, so as to obtain a graphene dispersing agent. The obtained graphene dispersing agent has good stability and a high dispersion concentration.

Description

说明书 一种石墨烯分散液及其制备方法  Graphene dispersion liquid and preparation method thereof
技术领域 Technical field
[0001] 本发明属于纳米材料技术领域, 尤其涉及高分散、 高稳定、 高浓度、 高产率的 石墨烯分散液, 以及以球或棒或段为介质的研磨设备制备石墨烯分散液的方法 背景技术  [0001] The present invention belongs to the field of nano material technology, and particularly relates to a high dispersion, high stability, high concentration, high yield graphene dispersion, and a method for preparing a graphene dispersion by using a ball or rod or a segment as a medium grinding device. Technology
[0002] 2004年, 英国曼彻斯特大学物理学家安德烈 ·海姆和康斯坦丁,诺沃肖洛夫, 在 实验中成功地从石墨中分离出石墨烯, 而证实它可以单独存在, 由于两人在"二 维石墨烯材料的幵创性实验", 共同获得 2010年诺贝尔物理学奖, 拉幵了石墨烯 制备的序幕。 石墨烯是继富勒烯和碳纳米管后又一重要的碳材料。 石墨烯是由 单层碳原子排列形成的蜂窝状六角平面二维晶体, 碳原子是以 sp 2形式杂化。 石 墨烯的比表面积高达 2630 m 2/g, 是单壁纳米碳管的两倍; 常温下电子迁移率超 过 200000 cm 2/V.s, 比单晶硅都高; 导热系数高达 5300 W/nvK, 高于金刚石; 电 阻率只有 10 6 [0002] In 2004, Physicist Andrei Heim and Konstantin of the University of Manchester in the United Kingdom, Novoselov, successfully separated graphene from graphite in experiments, and confirmed that it can exist alone, due to The two men won the 2010 Nobel Prize in Physics for the "Invasive Experiment of Two-Dimensional Graphene Materials" and pulled the prelude to the preparation of graphene. Graphene is another important carbon material after fullerenes and carbon nanotubes. Graphene is a honeycomb hexagonal planar two-dimensional crystal formed by arranging a single layer of carbon atoms, and the carbon atoms are hybridized in the form of sp 2 . Graphene has a specific surface area of up to 2630 m 2 /g, which is twice that of single-walled carbon nanotubes; electron mobility at room temperature exceeds 200,000 cm 2 /Vs, which is higher than that of single crystal silicon; thermal conductivity is as high as 5300 W/nvK, high In diamond; resistivity is only 10 6
Q cm, 与银类似; 单层石墨烯几乎是完全透明的, 每层只吸收 2.3%的光; 石墨 烯是目前世界上最薄, 而且最强的纳米材料, 它的强度可达 1000 GPa, 是钢的 2 00倍。 石墨烯这些优异的特性使其在气体传感器、 光电子器件、 化学能源 (太 阳能电池、 锂离子电池) 、 催化剂、 抗静电等领域具有巨大的潜在应用。  Q cm, similar to silver; single-layer graphene is almost completely transparent, each layer only absorbs 2.3% of light; graphene is currently the thinnest and strongest nanomaterial in the world, and its intensity can reach 1000 GPa. It is 200 times that of steel. These excellent properties of graphene make it a potential application in gas sensors, optoelectronic devices, chemical energy (solar cells, lithium-ion batteries), catalysts, antistatic and other fields.
[0003] 在实际的应用中, 石墨烯片层容易发生聚集, 影响石墨烯性能的发挥, 因此通 常将石墨烯分散在有机溶剂或表面活性剂水溶液中, 溶剂分子或表面活性剂分 子吸附在石墨烯的表面上, 依靠分子间作用力或静电排斥力, 实现石墨烯的单 层分散。 均一、 稳定的石墨烯分散液在众多研究领域中具有重要的应用, 但目 前报道的石墨烯分散液的浓度都较低, 限制了石墨烯的产业化发展。  [0003] In practical applications, graphene sheets are prone to aggregation and affect the performance of graphene. Therefore, graphene is usually dispersed in an organic solvent or an aqueous solution of a surfactant, and solvent molecules or surfactant molecules are adsorbed on graphite. On the surface of the olefin, monolayer dispersion of graphene is achieved by means of intermolecular forces or electrostatic repulsion forces. Uniform and stable graphene dispersions have important applications in many fields of research, but the concentration of graphene dispersions reported so far is low, which limits the industrialization of graphene.
[0004] 现有的石墨烯分散液的主要方法有: 直接将石墨或石墨与表面活性的混合液在 超声波的水浴条件下超声分散。 例如 J. N. Coleman等研究者 (U. Khan, , A. O'Neill, M. Lotya, S. De, J. N. Coleman, Small, 6, 864-871.)将片状的石墨分散到溶剂 NMP 中, 利用超声波超声 460 h, 得到石墨烯的浓度是 3.3 mg L -i .这种方法得到的石墨 烯分散液浓度低, 超声吋间长, 严重限制了工业生产和需求。 分散还原氧化石 墨烯, Dan Li等研究者 (Dan Li, Marc B. Muller, Scott Gilje, Richard B. Kaner, Gordon G. Wallace. Nature Nanotechnology, 2008, 3, 101-105.) 将氧化石墨 ¾7_ 溶 液用一定量的水合肼和氨水溶液 95°C还原 lh, 得到浓度是 0.5 mg-L -i的石墨烯分 散液, 这种方法得到的石墨烯分散液浓度低且稳定性很差, 不能满足工业的各 种需求。 此外, 现有石墨烯分散液的制备主要以石墨烯为原料, 将石墨烯分散 在溶剂中, 因此石墨烯分散液的制备成本较高, 制约了石墨烯的产业化进程。 此外, 由于石墨烯片层的聚集作用, 现有商业化的石墨烯分散液中石墨烯片层 均为多层结构存在, 难以获得寡层的石墨烯分散液。 [0004] The main methods of the existing graphene dispersion are: directly dispersing graphite or graphite and a surface active mixture under ultrasonic water bath conditions. For example, researchers such as JN Coleman (U. Khan, , A. O'Neill, M. Lotya, S. De, JN Coleman, Small, 6, 864-871.) Disperse the flake graphite into the solvent NMP and use ultrasonic sonication for 460 h to obtain a graphene concentration of 3.3 mg L -i. The graphene dispersion obtained by the method has a low concentration and a long inter-electron length, which severely limits industrial production and demand. Dispersion-reduced graphene oxide, Dan Li et al. (Dan Li, Marc B. Muller, Scott Gilje, Richard B. Kaner, Gordon G. Wallace. Nature Nanotechnology, 2008, 3, 101-105.) Graphite oxide 3⁄47_ solution It is reduced by a certain amount of hydrazine hydrate and ammonia solution at 95 ° C for 1 h to obtain a graphene dispersion with a concentration of 0.5 mg-L -i. The graphene dispersion obtained by this method has a low concentration and poor stability and cannot meet the industrial requirements. Various needs. In addition, the existing graphene dispersion is mainly prepared by using graphene as a raw material and dispersing graphene in a solvent. Therefore, the preparation cost of the graphene dispersion is high, which restricts the industrialization process of graphene. In addition, due to the aggregation of the graphene sheets, the graphene sheets in the existing commercial graphene dispersions are all in a multilayer structure, and it is difficult to obtain the graphene dispersion of the oligo layer.
技术问题  technical problem
[0005] 因此, 针对上述技术问题, 本发明的目的在于提供一种高分散、 高稳定、 高浓 度、 高产率的寡层石墨烯分散液。 所述的石墨烯分散液浓度是: l mg/mL~100 mg/mL, 其中分散剂含量 0~6 % (重量); 石墨烯片的长度是 100-6000 nm。  Accordingly, in view of the above technical problems, an object of the present invention is to provide a highly dispersed, highly stable, high-concentration, high-yield oligo-layer graphene dispersion. The concentration of the graphene dispersion is: l mg/mL to 100 mg/mL, wherein the dispersant content is 0-6 wt%; the length of the graphene sheet is 100-6000 nm.
[0006] 本发明的另一目的在于提出一种制备高分散、 高稳定、 高浓度、 高产率的石墨 烯分散液的方法, 步骤包括: 将石墨原料、 分散剂及水或者各种溶剂形成混合 溶液后, 通过以球或棒或段为介质的研磨设备所形成的机械剪切力将团聚的石 墨进行分离, 形成大量分散的石墨烯分散液。  Another object of the present invention is to provide a method for preparing a highly dispersed, highly stable, high concentration, high yield graphene dispersion, the steps comprising: mixing a graphite raw material, a dispersing agent, and water or various solvents. After the solution, the agglomerated graphite is separated by mechanical shearing force formed by a grinding device of a ball or a rod or a segment to form a large amount of dispersed graphene dispersion.
问题的解决方案  Problem solution
技术解决方案  Technical solution
[0007] 本发明通过以下技术方案实现。 The present invention is achieved by the following technical solutions.
[0008] 一种石墨烯分散液, 包括石墨烯、 分散剂和溶剂, 其特征在于, 所述的石墨烯 分散液浓度是: 1 mg/mL〜60 mg/mL, 其中分散剂含量 0〜6 <¾ (重量); 石墨烯片 的长度是 100〜6000 nm。  [0008] A graphene dispersion comprising graphene, a dispersant and a solvent, wherein the graphene dispersion concentration is: 1 mg/mL to 60 mg/mL, wherein the dispersant content is 0 to 6 <3⁄4 (by weight); The length of the graphene sheet is 100 to 6000 nm.
[0009] 优选地, 所述石墨烯为寡层石墨烯。  [0009] Preferably, the graphene is an oligo-layer graphene.
[0010] 优选地, 所述的分散剂为: 十二烷基苯磺酸钠、 十二烷基磺酸钠、 对苯乙烯磺 酸钠、 聚对苯乙烯磺酸钠、 木质素磺酸钠、 十二烷基硫酸钠、 聚乙烯吡咯烷酮 、 胆酸钠、 聚苯乙烯、 十六烷基三甲基溴化铵、 聚乙烯醇、 吐温 80中的一种或 两种。 [0010] Preferably, the dispersing agent is: sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium p-styrenesulfonate, sodium polypyristate, sodium lignosulfonate , sodium lauryl sulfate, polyvinylpyrrolidone One or two of sodium cholate, polystyrene, cetyltrimethylammonium bromide, polyvinyl alcohol, and Tween 80.
[0011] 优选地, 所述的溶剂为水、 环戊酮、 环己酮、 哌啶 -1-甲醛、 乙烯基吡咯烷酮、 1,3-二甲基 -2-咪唑啉、 溴苯、 氰苯、 苯甲基安息香酸、 Ν,Ν-二甲基丙烯基脲酮、 Ν-乙基 -2-吡咯烷酮、 Ν-甲基吡咯烷酮、 二甲乙酰胺、 环己基吡咯烷酮、 苄醚、 异丙醇、 Ν-辛基吡咯烷酮、 二氧戊环、 乙酸乙酯、 1-氮萘、 安息香醛、 乙醇胺、 酞酸二乙酯、 Ν-十二烷基吡咯烷酮、 吡啶、 酞酸二甲酯、 乙醇、 丙酮、 乙酸乙 烯酯、 乙二醇、 甲苯、 庚院、 戊烷、 己烷、 甲酰胺、 二甲基甲酰胺、 二甲基亚 砜、 二氯代苯、 氯仿、 四氢呋喃的一种或多种。  [0011] Preferably, the solvent is water, cyclopentanone, cyclohexanone, piperidine-1-carbaldehyde, vinyl pyrrolidone, 1,3-dimethyl-2-imidazoline, bromobenzene, cyanobenzene , benzyl benzoic acid, hydrazine, hydrazine-dimethylpropenyl ketone, hydrazine-ethyl-2-pyrrolidone, hydrazine-methylpyrrolidone, dimethylacetamide, cyclohexylpyrrolidone, benzyl ether, isopropanol, hydrazine - octylpyrrolidone, dioxolane, ethyl acetate, 1-nitrogen naphthalene, benzoin, ethanolamine, diethyl phthalate, decyl-dodecylpyrrolidone, pyridine, dimethyl decanoate, ethanol, acetone, One or more of vinyl acetate, ethylene glycol, toluene, gemamine, pentane, hexane, formamide, dimethylformamide, dimethyl sulfoxide, dichlorobenzene, chloroform, tetrahydrofuran.
[0012] 一种制备根据以上技术方案中任一项所述的石墨烯分散液的方法, 所述方法的 步骤包括:  [0012] A method of preparing a graphene dispersion according to any one of the preceding claims, wherein the method comprises the steps of:
[0013] 将石墨原料、 分散剂及溶剂形成混合溶液;  [0013] forming a graphite raw material, a dispersing agent and a solvent into a mixed solution;
[0014] 将上述混合溶液加入到以球或棒或段为介质的研磨设备中, 研磨吋间为 1〜100 h, 得到石墨烯分散液。  [0014] The above mixed solution is added to a grinding apparatus using a ball or a rod or a segment as a medium, and the grinding crucible is 1 to 100 hours to obtain a graphene dispersion.
[0015] 通过以球或棒或段为介质的研磨设备所形成的机械剪切力将团聚的石墨进行剥 离, 形成寡层石墨烯。 [0015] The agglomerated graphite is peeled off by mechanical shearing force formed by a grinding apparatus using a ball or a rod or a segment as a medium to form an oligo-layer graphene.
[0016] 优选地, 所述石墨烯为寡层石墨烯。  [0016] Preferably, the graphene is an oligo-layer graphene.
[0017] 优选地, 所述的石墨原料为鳞片石墨  [0017] Preferably, the graphite raw material is flake graphite
[0018] 优选地, 所述的石墨原料为可膨胀石墨。  [0018] Preferably, the graphite raw material is expandable graphite.
[0019] 优选地, 所述的石墨原料为一次膨胀石墨。  [0019] Preferably, the graphite raw material is primary expanded graphite.
[0020] 优选地, 所述的以球或棒或段为介质的研磨设备为: 球磨机、 砾磨机、 砂磨机 [0020] Preferably, the grinding device with a ball or a rod or a segment as a medium is: a ball mill, a gravel mill, a sand mill
、 棒磨机等中的一种或多种。 One or more of a rod mill, and the like.
[0021] 优选地, 所述的球或棒或段的种类为砾石、 卵石、 瓷球、 玛瑙球、 合金球、 氧 化铁球、 钢球、 钢棒、 氧化铜球、 氧化锆球、 氧化铝球、 合金棒、 氧化铁棒、 氧化铜棒、 氧化锆棒、 氧化铝棒、 钢段、 合金段、 氧化铜段、 氧化铝段、 氧化 铁段、 氧化锆段中的一种或几种。  [0021] Preferably, the type of the ball or rod or segment is gravel, pebbles, porcelain balls, agate balls, alloy balls, iron oxide balls, steel balls, steel rods, copper oxide balls, zirconia balls, alumina One or more of a ball, an alloy rod, an iron oxide rod, a copper oxide rod, a zirconia rod, an alumina rod, a steel segment, an alloy segment, a copper oxide segment, an alumina segment, an iron oxide segment, and a zirconia segment.
[0022] 优选地, 所述球的直径为 0.01mm〜100 mm。  [0022] Preferably, the ball has a diameter of 0.01 mm to 100 mm.
[0023] 优选地, 所述棒的直径为 0.01 mm— 200 mm,长度为 0.1 mm— 200 mm。 [0024] 优选地, 所述的段的直径为 0.01 mm〜100 mm。 [0023] Preferably, the rod has a diameter of 0.01 mm to 200 mm and a length of 0.1 mm to 200 mm. [0024] Preferably, the segment has a diameter of 0.01 mm to 100 mm.
发明的有益效果  Advantageous effects of the invention
有益效果  Beneficial effect
[0025] 该方法得到的石墨烯分散液浓度高、 稳定性强、 制备工艺简单、 成本低以及有 利于产业化生产等优点。 该获得的石墨烯分散液在光、 电材料等领域具有潜在 的实际应用价值。  [0025] The graphene dispersion obtained by the method has the advantages of high concentration, strong stability, simple preparation process, low cost, and favorable industrial production. The obtained graphene dispersion has potential practical application value in the fields of light and electric materials.
对附图的简要说明  Brief description of the drawing
附图说明  DRAWINGS
[0026] 图 1为实施例 1中所得到的石墨烯分散液光学照片。  1 is an optical photograph of a graphene dispersion obtained in Example 1.
[0027] 图 2为实施例 1中获得的石墨烯片的透射电镜照片。 2 is a transmission electron micrograph of the graphene sheet obtained in Example 1.
本发明的实施方式 Embodiments of the invention
[0028] 实施例 1 Embodiment 1
[0029] ( 1) 取 10 g制备石墨粉的原料。  [0029] (1) Take 10 g of a raw material for preparing graphite powder.
[0030] (2) 取 0.5 g的对苯乙烯磺酸钠加入到 180 mL的 N-甲基吡咯烷酮里, 搅拌 15 min至完全溶解。  [0030] (2) 0.5 g of sodium p-styrenesulfonate was added to 180 mL of N-methylpyrrolidone and stirred for 15 min until completely dissolved.
[0031] (3) 将步骤 1中的石墨粉原料与步骤 2中的溶液混合, 形成均匀的混合物。  (3) The graphite powder raw material in the step 1 is mixed with the solution in the step 2 to form a homogeneous mixture.
[0032] (4) 取步骤 (3) 的混合液加入到以球或棒或段为介质的研磨设备中, 研磨 10 h, 即可以得到浓度 50 mg/mL的寡层石墨烯。 [0032] (4) The mixture of the step (3) is added to a grinding apparatus using a ball or a rod or a segment as a medium, and after grinding for 10 hours, an oligo-layer graphene having a concentration of 50 mg/mL can be obtained.
[0033] 所述的原料为: 石墨、 可膨胀石墨、 一次膨胀石墨。 [0033] The raw materials are: graphite, expandable graphite, primary expanded graphite.
[0034] 所述的分散剂为: 十二烷基苯磺酸钠、 十二烷基磺酸钠、 对苯乙烯磺酸钠、 聚 对苯乙烯磺酸钠、 木质素磺酸钠、 十二烷基硫酸钠、 聚乙烯吡咯烷酮、 胆酸钠 、 聚苯乙烯、 十六烷基三甲基溴化铵、 聚乙烯醇、 吐温 80的一种或两种;  [0034] The dispersing agent is: sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium p-styrenesulfonate, sodium polypyristate, sodium lignosulfonate, twelve One or both of sodium alkyl sulfate, polyvinylpyrrolidone, sodium cholate, polystyrene, cetyltrimethylammonium bromide, polyvinyl alcohol, Tween 80;
[0035] 所述的溶剂为水、 环戊酮、 环己酮、 哌啶 -1-甲醛、 乙烯基吡咯烷酮、 1,3-二甲 基 _2_咪唑啉、 溴苯、 氰苯、 苯甲基安息香酸、 Ν,Ν-二甲基丙烯基脲酮、 Ν-乙基- 2-吡咯烷酮、 Ν-甲基吡咯烷酮、 二甲乙酰胺、 环己基吡咯烷酮、 苄醚、 异丙醇、 Ν-辛基吡咯烷酮、 二氧戊环、 乙酸乙酯、 1-氮萘、 安息香醛、 乙醇胺、 酞酸二乙 酯、 N-十二烷基吡咯烷酮、 吡啶、 酞酸二甲酯、 乙醇、 丙酮、 乙酸乙烯酯、 乙 二醇、 甲苯、 庚院、 戊烷、 己烷、 甲酰胺、 二甲基甲酰胺、 二甲基亚砜、 二氯 代苯、 氯仿、 四氢呋喃的一种或多种; [0035] The solvent is water, cyclopentanone, cyclohexanone, piperidine-1-carbaldehyde, vinyl pyrrolidone, 1,3-dimethyl- 2- imidazoline, bromobenzene, cyanobenzene, benzo Kean acid, hydrazine, hydrazine-dimethylpropenyl ketone, hydrazine-ethyl-2-pyrrolidone, hydrazine-methylpyrrolidone, dimethylacetamide, cyclohexylpyrrolidone, benzyl ether, isopropanol, oxime-octyl Pyrrolidone, dioxolane, ethyl acetate, 1-nitrogen naphthalene, benzoin, ethanolamine, bismuth citrate Ester, N-dodecylpyrrolidone, pyridine, dimethyl decanoate, ethanol, acetone, vinyl acetate, ethylene glycol, toluene, gamma, pentane, hexane, formamide, dimethylformamide, One or more of dimethyl sulfoxide, dichlorobenzene, chloroform, tetrahydrofuran;
[0036] 所述的以球或棒或段为介质的研磨设备为: 球磨机、 砾磨机、 砂磨机、 棒磨机 等中的一种或多种。 [0036] The grinding device using a ball or a rod or a segment as a medium is one or more of a ball mill, a gravel mill, a sand mill, a rod mill, and the like.
[0037] 所述的球或棒或段的种类为砾石、 卵石、 瓷球、 玛瑙球、 合金球、 氧化铁球、 钢球、 钢棒、 氧化铜球、 氧化锆球、 氧化铝球、 合金棒、 氧化铁棒、 氧化铜棒 、 氧化锆棒、 氧化铝棒、 钢段、 合金段、 氧化铜段、 氧化铝段、 氧化铁段、 氧 化锆段中的一种或几种。  [0037] The type of the ball or rod or segment is gravel, pebbles, porcelain balls, agate balls, alloy balls, iron oxide balls, steel balls, steel rods, copper oxide balls, zirconia balls, alumina balls, alloys. One or more of a rod, an iron oxide rod, a copper oxide rod, a zirconia rod, an alumina rod, a steel segment, an alloy segment, a copper oxide segment, an alumina segment, an iron oxide segment, and a zirconia segment.
[0038] 所述球的直径为 0.01mm〜100 mm。  [0038] The diameter of the ball is 0.01 mm to 100 mm.
[0039] 所述棒的直径为 0.01 mm〜200 mm,长度为 0.1 mm〜200 mm。  [0039] The rod has a diameter of 0.01 mm to 200 mm and a length of 0.1 mm to 200 mm.
[0040] 所述的段的直径为 0.01 mm〜100 mm。 [0040] The segment has a diameter of 0.01 mm to 100 mm.
[0041] 所得到的石墨烯分散液光学照片如图 1所示, 获得的石墨烯片的透射电镜照片 如图 2所示。  [0041] An optical photograph of the obtained graphene dispersion liquid is shown in Fig. 1, and a transmission electron micrograph of the obtained graphene sheet is shown in Fig. 2.
[0042] 以上所述的实施例, 只是本发明较优选的具体实施方式的一种, 本领域的技术 人员在本发明技术方案范围内进行的变化和替换都应包含在本发明的保护范围 内。  The above-mentioned embodiments are only one of the more preferred embodiments of the present invention, and variations and substitutions made by those skilled in the art within the scope of the technical solutions of the present invention are included in the protection scope of the present invention. .

Claims

权利要求书 Claim
一种石墨烯分散液, 包括石墨烯、 分散剂和溶剂, 其特征在于, 所述 的石墨烯分散液浓度是: l mg/mL〜60 mg/mL, 其中分散剂含量 0〜6 % (重量); 石墨烯片的长度是 100〜6000 nm。 A graphene dispersion comprising graphene, a dispersant and a solvent, wherein the graphene dispersion has a concentration of: l mg/mL to 60 mg/mL, wherein the dispersant content is 0 to 6 % (weight) The length of the graphene sheet is 100 to 6000 nm.
根据权利要求 1所述的石墨烯分散液, 其特征在于, 所述石墨烯为寡 层石墨烯。 The graphene dispersion according to claim 1, wherein the graphene is an oligo Graphene.
根据权利要求 1或 2所述的石墨烯分散液, 其特征在于, 所述的分散剂 为: 十二烷基苯磺酸钠、 十二烷基磺酸钠、 对苯乙烯磺酸钠、 聚对苯 乙烯磺酸钠、 木质素磺酸钠、 十二烷基硫酸钠、 聚乙烯吡咯烷酮、 胆 酸钠、 聚苯乙烯、 十六烷基三甲基溴化铵、 聚乙烯醇、 吐温 80中的一 种或两种。 The graphene dispersion according to claim 1 or 2, wherein the dispersing agent is: sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, sodium p-styrenesulfonate, poly Sodium p-styrene sulfonate, sodium lignosulfonate, sodium lauryl sulfate, polyvinylpyrrolidone, sodium cholate, polystyrene, cetyltrimethylammonium bromide, polyvinyl alcohol, Tween 80 One or two of them.
根据权利要求 1或 2所述的石墨烯分散液, 其特征在于, 所述的溶剂为 水、 环戊酮、 环己酮、 哌啶 -1-甲醛、 乙烯基吡咯烷酮、 1, The graphene dispersion according to claim 1 or 2, wherein the solvent is water, cyclopentanone, cyclohexanone, piperidine-1-carbaldehyde, vinylpyrrolidone, 1,
3-二甲基 -2-咪唑啉、 溴苯、 氰苯、 苯甲基安息香酸、 Ν, Ν-二甲基丙 烯基脲酮、 Ν-乙基 -2-吡咯烷酮、 Ν-甲基吡咯烷酮、 二甲乙酰胺、 环 己基吡咯烷酮、 苄醚、 异丙醇、 Ν-辛基吡咯烷酮、 二氧戊环、 乙酸乙 酯、 1-氮萘、 安息香醛、 乙醇胺、 酞酸二乙酯、 Ν-十二烷基吡咯烷酮 、 吡啶、 酞酸二甲酯、 乙醇、 丙酮、 乙酸乙烯酯、 乙二醇、 甲苯、 庚 院、 戊烷、 己烷、 甲酰胺、 二甲基甲酰胺、 二甲基亚砜、 二氯代苯、 氯仿、 四氢呋喃的一种或多种。 3-dimethyl-2-imidazoline, bromobenzene, cyanobenzene, benzyl benzoic acid, hydrazine, hydrazine-dimethylpropenyl ketone, hydrazine-ethyl-2-pyrrolidone, hydrazine-methylpyrrolidone, Dimethylacetamide, cyclohexylpyrrolidone, benzyl ether, isopropanol, decyl-octylpyrrolidone, dioxolane, ethyl acetate, 1-nitrogen naphthalene, benzoin, ethanolamine, diethyl citrate, cesium-tweldium Alkyl pyrrolidone, pyridine, dimethyl decanoate, ethanol, acetone, vinyl acetate, ethylene glycol, toluene, gamma, pentane, hexane, formamide, dimethylformamide, dimethyl sulfoxide, One or more of dichlorobenzene, chloroform, and tetrahydrofuran.
一种制备根据权利要求 1-4中任一项所述的石墨烯分散液的方法, 所 述方法的步骤包括: A method of preparing a graphene dispersion according to any one of claims 1 to 4, the steps of the method comprising:
提供石墨原料; Providing graphite raw materials;
将分散剂加入到溶剂中形成溶液; Adding a dispersing agent to the solvent to form a solution;
将石墨原料与所述溶液混合, 形成均匀的混合液; Mixing the graphite raw material with the solution to form a uniform mixed liquid;
将所述混合液加入到以球或棒或段为介质的研磨设备中, 研磨吋间为Adding the mixture to a grinding device using a ball or rod or a segment as a medium, grinding the crucible
1-100 h, 得到石墨烯分散液。 1-100 h, a graphene dispersion was obtained.
根据权利要求 5所述的方法, 其特征在于, 所述石墨烯为寡层石墨烯 [权利要求 7] 根据权利要求 5所述的方法, 其特征在于, 所述的石墨原料为鳞片石 墨或可膨胀石墨。 The method according to claim 5, wherein the graphene is an oligo-graphene [Clave 7] The method according to claim 5, wherein the graphite raw material is flake graphite or expandable graphite.
[权利要求 8] 根据权利要求 5所述的方法, 其特征在于, 所述的石墨原料为一次膨 胀石墨。  [Claim 8] The method according to claim 5, wherein the graphite raw material is primary expanded graphite.
[权利要求 9] 根据权利要求 5所述的方法, 其特征在于, 所述的以球或棒或段为介 质的研磨设备为: 球磨机、 砾磨机、 砂磨机、 棒磨机中的一种或多种  [Claim 9] The method according to claim 5, wherein the grinding device using a ball or a rod or a segment as a medium is: one of a ball mill, a gravel mill, a sand mill, and a rod mill Kind or more
[权利要求 10] 根据权利要求 5-9任一项所述的方法, 其特征在于, 所述的球或棒或 段的种类为砾石、 卵石、 瓷球、 玛瑙球、 合金球、 氧化铁球、 钢球、 钢棒、 氧化铜球、 氧化锆球、 氧化铝球、 合金棒、 氧化铁棒、 氧化铜 棒、 氧化锆棒、 氧化铝棒、 钢段、 合金段、 氧化铜段、 氧化铝段、 氧 化铁段、 氧化锆段中的一种或多种。 [Claim 10] The method according to any one of claims 5-9, wherein the type of the ball or the rod or the segment is gravel, pebbles, porcelain balls, agate balls, alloy balls, iron oxide balls , steel ball, steel rod, copper oxide ball, zirconia ball, alumina ball, alloy rod, iron oxide rod, copper oxide rod, zirconia rod, alumina rod, steel segment, alloy segment, copper oxide segment, alumina One or more of a segment, an iron oxide segment, and a zirconia segment.
PCT/CN2015/082577 2015-04-29 2015-06-26 Graphene dispersing agent and preparation method therefor WO2016173111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510214408.3A CN104959050A (en) 2015-04-29 2015-04-29 Highly dispersed highly stable high concentration and high yield graphene dispersion liquid and preparation method thereof
CN201510214408.3 2015-04-29

Publications (1)

Publication Number Publication Date
WO2016173111A1 true WO2016173111A1 (en) 2016-11-03

Family

ID=54213236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082577 WO2016173111A1 (en) 2015-04-29 2015-06-26 Graphene dispersing agent and preparation method therefor

Country Status (2)

Country Link
CN (1) CN104959050A (en)
WO (1) WO2016173111A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200538A (en) * 2021-04-07 2021-08-03 北京化工大学 Method for preparing graphene aqueous phase dispersion liquid through mechanical stripping and prepared graphene aqueous phase dispersion liquid
CN113248951A (en) * 2021-06-30 2021-08-13 成都新柯力化工科技有限公司 Water-based environment-friendly graphene heat dissipation coating and preparation method thereof
CN114631202A (en) * 2019-11-15 2022-06-14 东丽株式会社 Graphene dispersion liquid and positive electrode paste
CN114855019A (en) * 2022-05-12 2022-08-05 深圳市金石三维打印科技有限公司 Method for preparing graphene reinforced aluminum matrix composite material through metal 3D printing

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180967A (en) * 2016-03-09 2017-09-19 东丽先端材料研究开发(中国)有限公司 A kind of graphene dispersion constituent, preparation method and lithium ion battery electrode sizing agent
CN106115676B (en) * 2016-06-28 2018-11-20 常州第六元素材料科技股份有限公司 A kind of graphene organic ink and preparation method thereof
CN106118843A (en) * 2016-07-08 2016-11-16 上海应用技术学院 A kind of method that polyvinyl pyrrolidon modified Graphene increases water-base cutting fluid lubricity and heat conductivity
CN106276883B (en) * 2016-08-31 2018-09-04 无锡东恒新能源科技有限公司 A kind of rotary type graphene slurry preparation system and preparation method thereof
CN106519091B (en) * 2016-10-31 2018-10-19 无锡云亭石墨烯技术有限公司 A kind of oiliness modified graphene slurry and application thereof
CN106744875A (en) * 2016-12-12 2017-05-31 广东纳路纳米科技有限公司 A kind of method that ball milling peels off white graphite alkene
CN108660547B (en) * 2017-03-31 2021-03-09 山东圣泉新材料股份有限公司 Lignin-based carbon nanofiber, preparation method thereof and carbon fiber electrode
CN109082728B (en) * 2017-06-13 2021-03-12 山东圣泉新材料股份有限公司 Graphene-containing plant protein nanofiber and preparation method thereof
CN109205603A (en) * 2017-06-30 2019-01-15 中国科学院宁波材料技术与工程研究所 The dispersing method of graphene
CN107325686A (en) * 2017-08-07 2017-11-07 百氏高涂料(苏州)有限公司 Binary polymerization graphene nano anticorrosive paint and technology of preparing
CN107603724B (en) * 2017-09-22 2021-03-05 广西大学 Graphene synergistic emission-free environment-friendly water-based cutting fluid and preparation method thereof
CN109904451A (en) * 2017-12-11 2019-06-18 中国科学院化学研究所 A kind of graphene composite material and its preparation method and application
CN109896521A (en) * 2017-12-11 2019-06-18 中国科学院化学研究所 A kind of stable graphene dispersing solution and the preparation method and application thereof
CN109957380A (en) * 2017-12-14 2019-07-02 深圳先进技术研究院 A kind of graphene-based thermal interfacial material and preparation method thereof
CN108075125A (en) * 2017-12-15 2018-05-25 南京根广化学有限公司 A kind of graphene/silicon anode composite and its preparation method and application
CN109928386A (en) * 2017-12-18 2019-06-25 深圳先进技术研究院 A kind of graphene aqueous dispersions and preparation method thereof
CN108165069B (en) * 2017-12-22 2020-09-01 明光科迪新材料有限公司 High-content aqueous graphene dispersion liquid and preparation method thereof
CN110117376A (en) * 2018-02-06 2019-08-13 中国科学院深圳先进技术研究院 Compound cutan and preparation method thereof
CN110872380B (en) * 2018-08-30 2021-01-26 中国科学院化学研究所 graphene/MC nylon nano composite material and preparation method thereof
CN109455715B (en) * 2018-11-14 2022-07-05 中山火炬职业技术学院 Preparation method of graphene modified hydrophobic activated carbon
CN109553095A (en) * 2019-01-12 2019-04-02 福建师范大学 A kind of preparation method of high concentration aqueous's graphene dispersing solution
CN110015655A (en) * 2019-01-22 2019-07-16 复旦大学 A kind of ultra-high throughput stripping means of graphene
CN109941992A (en) * 2019-04-09 2019-06-28 广东墨睿科技有限公司 A kind of Mechanical Method removing graphene of coating and preparation method thereof
CN110203917B (en) * 2019-05-29 2021-04-02 常熟理工学院 Graphene hyperdispersant, preparation method thereof and application thereof in graphene
CN111003729A (en) * 2020-01-03 2020-04-14 青岛科技大学 Ultra-high concentration tungsten disulfide nano paste and preparation method thereof
CN111099657A (en) * 2020-01-03 2020-05-05 青岛科技大学 Ultrahigh-concentration molybdenum disulfide nano paste and preparation method thereof
CN111115591A (en) * 2020-01-03 2020-05-08 青岛科技大学 Ultra-high concentration boron nitride nano paste and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407998A (en) * 2013-07-19 2013-11-27 华侨大学 Preparation method of high concentration and small flake diameter graphene dispersion
CN103466603A (en) * 2013-08-09 2013-12-25 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of graphene dispersion liquid, and preparation method of graphene film
CN103922323A (en) * 2014-04-10 2014-07-16 华侨大学 Method for preparing small-diameter graphene
CN104495826A (en) * 2014-12-25 2015-04-08 北京航空航天大学 Single-layer graphene dispersion liquid and preparation method thereof
CN104538086A (en) * 2014-12-05 2015-04-22 北京航空航天大学 Water-based conductive polymer and graphene dispersion liquid and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103407998A (en) * 2013-07-19 2013-11-27 华侨大学 Preparation method of high concentration and small flake diameter graphene dispersion
CN103466603A (en) * 2013-08-09 2013-12-25 中国科学院苏州纳米技术与纳米仿生研究所 Preparation method of graphene dispersion liquid, and preparation method of graphene film
CN103922323A (en) * 2014-04-10 2014-07-16 华侨大学 Method for preparing small-diameter graphene
CN104538086A (en) * 2014-12-05 2015-04-22 北京航空航天大学 Water-based conductive polymer and graphene dispersion liquid and preparation method thereof
CN104495826A (en) * 2014-12-25 2015-04-08 北京航空航天大学 Single-layer graphene dispersion liquid and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114631202A (en) * 2019-11-15 2022-06-14 东丽株式会社 Graphene dispersion liquid and positive electrode paste
CN113200538A (en) * 2021-04-07 2021-08-03 北京化工大学 Method for preparing graphene aqueous phase dispersion liquid through mechanical stripping and prepared graphene aqueous phase dispersion liquid
CN113248951A (en) * 2021-06-30 2021-08-13 成都新柯力化工科技有限公司 Water-based environment-friendly graphene heat dissipation coating and preparation method thereof
CN113248951B (en) * 2021-06-30 2022-04-05 浙江科优佳新材料科技有限公司 Water-based environment-friendly graphene heat dissipation coating and preparation method thereof
CN114855019A (en) * 2022-05-12 2022-08-05 深圳市金石三维打印科技有限公司 Method for preparing graphene reinforced aluminum matrix composite material through metal 3D printing

Also Published As

Publication number Publication date
CN104959050A (en) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2016173111A1 (en) Graphene dispersing agent and preparation method therefor
CN104495826B (en) Single-layer graphene dispersion liquid and preparation method thereof
Miao et al. A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red
Gu et al. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene
CN103787328B (en) A kind of preparation method of modified graphene
Li et al. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods
Jiang Chemical preparation of graphene‐based nanomaterials and their applications in chemical and biological sensors
WO2016101208A1 (en) Single-layer graphene dispersion liquid and preparation method therefor
Li et al. Directed growth and microwave absorption property of crossed ZnO netlike micro-/nanostructures
US8771630B2 (en) Method for the preparation of graphene
TWI529126B (en) Approach of single-walled carbon nanotubes uniformly dispersed
Du et al. Pristine graphene for advanced electrochemical energy applications
US20180354806A1 (en) Method of preparing metal diboride dispersions and films
CN104973590B (en) Method of preparing high-heat-conductive and high-electric-conductive thin film through dispersion of high-quality graphite powder and graphene with graphene oxide
CN104445153A (en) Method for macroscopic quantity preparation of carbon nano coil from graphene
CN106629641B (en) A kind of black phosphorus carbon nano tube compound material and its preparation method and application
Zhang et al. A simple one-pot strategy for the synthesis of ternary reduced graphite oxide/SnO2/Au hybrid nanomaterials
KR101670260B1 (en) Method of manufacturing for graphene/carbon nanotube composite membrane
CN109353997B (en) Method for macroscopic quantity preparation of hexagonal boron nitride nano roll
CN107055521A (en) The method and the graphene microballoon of prepare with scale height rule spherical graphite alkene microballoon
Li et al. Direct synthesis of graphene/carbon nanotube hybrid films from multiwalled carbon nanotubes on copper
Zhang et al. Mono-dispersion decorated ultra-long single-walled carbon nanotube/aramid nanofiber for high-strength electromagnetic interference shielding film with Joule heating properties
Chen et al. All-aqueous directed assembly strategy for forming high-capacity, stable silicon/carbon anodes for lithium-ion batteries
CN108314027B (en) Preparation method of high-conductivity hydroxyl/epoxy externally-modified graphene transparent conductive film
TW201206824A (en) Separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890490

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15890490

Country of ref document: EP

Kind code of ref document: A1