WO2016169352A1 - 反馈方法、装置和计算机存储介质 - Google Patents

反馈方法、装置和计算机存储介质 Download PDF

Info

Publication number
WO2016169352A1
WO2016169352A1 PCT/CN2016/076119 CN2016076119W WO2016169352A1 WO 2016169352 A1 WO2016169352 A1 WO 2016169352A1 CN 2016076119 W CN2016076119 W CN 2016076119W WO 2016169352 A1 WO2016169352 A1 WO 2016169352A1
Authority
WO
WIPO (PCT)
Prior art keywords
data block
feedback
terminal
resource
data
Prior art date
Application number
PCT/CN2016/076119
Other languages
English (en)
French (fr)
Inventor
刘文豪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016169352A1 publication Critical patent/WO2016169352A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a feedback method, apparatus, and computer storage medium.
  • the general view is that the feedback delay of the system will be reduced to 1/10-1/5 of the current LTE (Long Term Evolution) system.
  • LTE Long Term Evolution
  • the feedback of the terminal decoded data feeds back the demodulation of the service data according to a fixed timing relationship.
  • This will generate time overhead in two parts: 1) a fixed time after demodulation of a data packet and then feedback the demodulation of the service data; 2) a complete data packet must be demodulated to feedback the data, if it is large
  • the packet demodulation takes up extra time. Therefore, the feedback delay of the terminal feedback data in the existing communication system is large.
  • Embodiments of the present invention are directed to providing a feedback method and apparatus that can reduce feedback delay.
  • An embodiment of the present invention provides a feedback method, which is applied to a base station, and includes the following steps:
  • Corresponding data transmission processing is performed based on the demodulation result.
  • the relationship between the first data block and the second data block includes at least one of the following:
  • the modulation order of the first data block is equal to or higher than the modulation order of the second data block
  • the original number of bits of the first data block is less than or equal to the original number of bits of the second data block
  • the duration of the first data block is less than or equal to the duration of the second data block.
  • the method further includes:
  • the transport data block comprises a first data block and a second data block.
  • the step of performing corresponding data transmission processing according to the demodulation result includes:
  • the step of retransmitting the first data block and the second data block includes:
  • the first data block and the second data block are retransmitted at a next scheduling unit.
  • the step of allocating a feedback resource for the terminal to demodulate the first data block by the terminal includes:
  • the feedback resource is allocated to the terminal according to the determined location.
  • the step of determining a location of the feedback resource of the first data block demodulation result by the terminal includes:
  • the method before the sending the data block to the terminal by using the data transmission resource, the method further includes:
  • first resource indication information indicating a location of the data transmission resource and second resource indication information indicating a location of the feedback resource
  • the step of sending the first resource indication information and the second resource indication information to the terminal includes:
  • the first resource indication information and the second resource indication information are sent to the terminal by using a high frequency band carrier or a low frequency band carrier.
  • the present invention provides another feedback method, which is applied to the terminal, and includes the following steps:
  • a transport data block sent by a base station receives, in a scheduling unit, a transport data block sent by a base station, where the transport data block includes: a first data block and a second data block;
  • the feedback method before the receiving the first transmission data block sent by the base station, the feedback method further includes:
  • the learned transport data block includes: the first data block and the second data block.
  • the feedback method before the receiving the data block sent by the base station, the feedback method further includes:
  • first resource indication information receives, by the base station, first resource indication information and second resource indication information, where the first resource is The source indication information is used to indicate a location of the data transmission resource of the transport data block, and the second resource indication information is used to indicate a location of the feedback resource;
  • the step of receiving the transport data block sent by the base station includes:
  • the step of feeding back the demodulation result of the first data block to the base station by using the feedback resource allocated by the base station includes:
  • the feedback method further includes:
  • the second data block is continuously demodulated.
  • the method further includes:
  • the base station is triggered to retransmit the transport data block by using a layer above the MAC layer or the MAC, or the sub base station of the base station is notified to perform the transport data block. Retransmission.
  • the method further includes:
  • the embodiment of the present invention further provides a feedback apparatus, which is applied to a base station, and includes: a dividing module, a resource allocation module, a sending module, a receiving module, and a processing module;
  • the dividing module is configured to divide one transport data block into a first data block and a second data block;
  • the resource allocation module is configured to allocate, to the terminal, a feedback resource for feeding back the first data block demodulation result, and allocate a data transmission resource for the transmission data block;
  • the sending module is configured to send the transport data block to the terminal by using the data transmission resource in a scheduling unit;
  • the receiving module is configured to receive a demodulation result of the first data block that is sent by the terminal through the feedback resource;
  • the processing module is configured to perform corresponding data transmission processing according to the demodulation result.
  • the relationship between the first data block and the second data block includes at least one of the following:
  • the modulation order of the first data block is equal to or higher than the modulation order of the second data block
  • the original number of bits of the first data block is less than or equal to the original number of bits of the second data block
  • the duration of the first data block is less than or equal to the duration of the second data block.
  • the feedback device further includes: an indication information acquiring module;
  • the indication information acquiring module is configured to acquire first resource indication information for indicating a location of the data transmission resource and second resource indication information for indicating a location of the feedback resource;
  • the sending module is further configured to send the first resource indication information and the second resource indication information to the terminal in one scheduling unit before sending the transport data block to the terminal.
  • the embodiment of the invention further provides another feedback device, which is applied to the terminal, and includes: a receiving module and a demodulation feedback module;
  • the receiving module is configured to receive, in a scheduling unit, a transport data block sent by the base station,
  • the transport data block includes: a first data block and a second data block;
  • the demodulation feedback module is configured to demodulate the first data block, and feed back a demodulation result of the first data block to the base station by using a feedback resource allocated by the base station.
  • the method further includes: the feedback device further includes: a processing module;
  • the processing module is configured to continue demodulating the second data block when the first data block is successfully demodulated, and to continue to perform the demodulation when the first data block fails to be demodulated Demodulating the second data block, if the second data block fails to be demodulated, triggering, by the MAC layer or a layer above the MAC, the base station to retransmit the transport data block, or notifying the base station of the base station Retransmitting the transport data block.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to perform the feedback method of any of the foregoing.
  • the embodiment of the present invention provides a feedback method, a device, and a computer storage medium.
  • the feedback method is applied to a base station, including: dividing a transport data block into a first data block and a second data block; Deriving a feedback resource of the first data block demodulation result, and allocating a data transmission resource for the transmission data block; transmitting the transmission data block to the terminal by using the data transmission resource in a scheduling unit; a demodulation result of the first data block fed back by the feedback resource by the terminal; performing corresponding data transmission processing according to the demodulation result; the feedback method of the present invention may divide one transmission data block into two data Blocking, selecting one of the transport data blocks as a demodulation reference data block (specifically, the first data block), and allocating a feedback resource that feeds back the demodulation result of the demodulation reference data block, so that the terminal is in the demodulation reference data block After demodulation, the demodulation result of the demodulation reference data block can be immediately fed back through the feedback resource
  • the feedback delay can be shortened, and further, the feedback delay can be shortened, the speed of transmitting data by the base station can be improved, the time from the debugging system to the stable transmission of the data is shortened, and the system is improved. Huff and puff the amount.
  • FIG. 1 is a schematic flowchart diagram of a feedback method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of transmission of service data transmission and feedback using a high frequency band for both a service data transmission carrier and a feedback carrier according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart diagram of another feedback method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic flowchart of a feedback method according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another feedback method according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of transmission of service data transmission and feedback according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of another service data transmission and feedback transmission according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of a feedback apparatus according to Embodiment 7 of the present invention.
  • FIG. 9 is a schematic structural diagram of another feedback apparatus according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic structural diagram of a feedback apparatus according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic structural diagram of another feedback apparatus according to Embodiment 8 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a feedback method, which is applied to the base station, as shown in FIG. 1 , and includes the following steps:
  • Step 101 Divide a transport data block into a first data block and a second data block.
  • a complete service transmission data block may be divided into a first data block and a second data block.
  • the second data block may be composed of one or more sub data blocks, and the same
  • the first data block in the sample embodiment may also consist of one or more sub-blocks.
  • first data block and the second data may be independently encoded.
  • the relationship between the first data block and the second data may include at least one of the following:
  • the modulation order of the first data block is equal to or higher than the modulation order of the second data block
  • the original number of bits of the first data block is less than or equal to the original number of bits of the second data block
  • the duration of the first data block is less than or equal to the duration of the second data block.
  • the first data block is substantially a demodulation reference data block, and the data block functions as a detection terminal.
  • the first data block in this embodiment may also be CRC (cyclic redundancy check), so that the terminal can judge the first through the CRC. Whether the data block is demodulated successfully.
  • CRC cyclic redundancy check
  • Step 102 Allocate a feedback resource for feeding back the first data block demodulation result to the terminal, and allocate a data transmission resource for the transmission data block.
  • the base station In order to enable the terminal to feedback the demodulation result of the first data block, the base station needs to allocate a corresponding feedback resource (for example, ACK/NACK resource) to the terminal, in order to be able to transmit the transmission data block, for example, the service data block, to the terminal.
  • a corresponding feedback resource for example, ACK/NACK resource
  • the base station also needs to allocate data transmission resources for the transport data block.
  • the method in this embodiment may first determine the location of the feedback resource, and by determining the location of the suitable feedback resource, the terminal may be in the first data block. After the demodulation, the corresponding feedback resource is obtained in time; therefore, the process of allocating the feedback resource for the terminal to demodulate the first data block by the terminal in the embodiment may include:
  • the feedback resource is allocated to the terminal according to the determined location.
  • determining, by the terminal, a feedback of the demodulation result of the first data block can include:
  • the base station may estimate the propagation delay between the base station and the terminal according to the received sounding signal or the access signal; the base station may also receive the terminal pair data reported by the terminal. Demodulation processing capability.
  • the demodulation processing capability reported by the terminal in this embodiment includes: demodulating the demodulation overhead time of the first data block and the time overhead of the demodulation result group packet (for example, ACK/NACK group packet).
  • the base station learns the propagation delay of the terminal in the connected state, and the terminal reports the demodulation processing capability.
  • the base station determines the time for the reference data packet to complete demodulation based on the propagation delay and the demodulation processing capability of the terminal, according to this time. It allocates a resource location for transmitting the reference packet corresponding to the ACK/NACK.
  • the base station receives the demodulation capability level fed back by the terminal, and the base station determines the propagation delay between the base station and the terminal according to the signal or channel sent by the terminal.
  • the base station determines (estimates) the time required for the terminal to demodulate the first data block based on the demodulation capability level of the terminal feedback, and the base station determines, according to the propagation delay and the time required for the terminal to demodulate the first data block, the terminal to report the first data block demodulation result.
  • the preferred timing is based on which the terminal allocates resources for feedback; in FIG. 2, the scheduling information of the service data (ie, the indication information of the data transmission resource) and the indication information of the feedback resource are all carried on the high frequency carrier.
  • Step 103 Send the first data block and the second data block to the terminal in sequence through the data transmission resource in a scheduling unit.
  • the transmission data block is sent to the terminal according to the high frequency carrier corresponding to the data transmission resource.
  • the data block transmission timing in one scheduling unit is: first transmitting the first data block and then transmitting the second data block.
  • the scheduling unit is a duration of 1 subframe or a microframe or a plurality of symbols in time, and is an integer multiple of one subcarrier in the frequency domain.
  • the terminal in order to enable the terminal to know that the current transmission data block is divided into the first data block and the second data block, the terminal is prevented from using the traditional feedback mechanism to feed back the demodulation result; between step 101 and step 103, The method includes: notifying the terminal that the transport data block is divided into a first data block and a second data block.
  • the transport data block can be divided into a first data block and a second data block by the terminal, for example, by broadcast, control channel, higher layer signaling or by an agreed manner.
  • the broadcast of this embodiment may be carried on a low frequency carrier (for example, a conventional 3G, 4G carrier) or on a high frequency carrier.
  • the embodiment may further include: step 101 and step 103, further comprising: notifying the terminal, when the first data block demodulation fails, the data transmission mechanism or strategy of the base station side; for example, when the first data block is solved When the adjustment fails, the subsequent data block is continuously transmitted in the current scheduling unit, and the transmission data block is retransmitted in the next scheduling unit.
  • the data transmission mechanism or policy of the terminal when the first data demodulation fails may be notified by the broadcast, the control channel, the high layer signaling, or the agreed manner.
  • the terminal may further determine that the first data block is repeatedly sent. Demodulation of the first data fails or succeeds. On the terminal side, a plurality of repeated first data blocks are demodulated, and then the demodulation result is compared to determine whether the demodulation succeeds or fails.
  • Step 104 Receive a demodulation result of the first data block that is sent by the terminal by using the feedback resource.
  • the demodulation result of the first data block is fed back by the feedback resource allocated by the base station (success or failure, that is, the demodulation succeeds by sending ACK/NACK) Or failure).
  • the demodulation result of the first data block fed back by the terminal may be received in the process of transmitting the transport data block; for example, the base station first sends the first data block and then retransmits the second data block, and after sending the first data block After the second data block is sent, the demodulation result of the first data block fed back by the terminal is received;
  • the method of this embodiment may further receive a demodulation result of the first data block fed back by the terminal after transmitting the transport data block (the first data block and the second data block).
  • the time when the base station receives the demodulation result fed back by the terminal is related to the demodulation capability and the propagation delay of the first data block by the terminal. If the demodulation capability of the terminal is strong and the propagation delay is small, the demodulation result of the first data block is fed back when the base station has not transmitted the second data block; if the terminal has weak demodulation capability and the propagation delay is If the base station is likely to send the second data block, that is, after transmitting the complete transmission data block, the demodulation result fed back by the terminal is received.
  • Step 105 Perform corresponding data transmission processing according to the demodulation result.
  • the step may include: retransmitting the first data block and the second data block when the terminal fails to demodulate the first data block.
  • the base station may retransmit the first data block and the second data block; specifically, maintaining the current data block
  • the transmission mode of the subsequent transmission data block in the secondary scheduling unit is unchanged, that is, the subsequent transmission data block is continuously transmitted in the current scheduling unit, and the first data block and the second data block are retransmitted in the next scheduling unit.
  • the first data block and the second data block may be retransmitted if there is a transmission resource in the next scheduling unit.
  • the base station when the terminal demodulates the first data block successfully, for example, when the base station receives the ACK that the terminal feeds back through the feedback resource, the base station considers that the terminal demodulates the subsequent data block should be a large probability of success. The base station continues to schedule subsequent data blocks of the terminal.
  • the relationship between the first data block and the second data block is defined to ensure that the demodulation success rate of the second data block and the subsequent data block is successful when the terminal demodulates the first data block successfully; that is, the terminal ensures the first data.
  • block demodulation succeeds, it is very likely to demodulate the success rate of subsequent data blocks such as the second data block.
  • the base station when the base station receives the ACK of the first data block demodulation by the terminal, the base station considers that the subsequent demodulated data block should be a large probability of occurrence of an ACK, and the adjustment transmission mechanism is that the base station continues to schedule the subsequent operation of the terminal. data block.
  • the base station needs to combine the traditional feedback mechanism to determine whether retransmission is needed.
  • One of the forms is to perform traditional feedback on the traditional carrier.
  • the base station receives the ACK of the first data block and the NACK of the complete transport data block for retransmission.
  • the base station When the base station receives the ACK of the first data to determine whether to refer to the traditional feedback result, if yes, if the demodulation result of the complete transport data block fed back by the traditional feedback mode is NACK, the data block is retransmitted.
  • the feedback method of this embodiment may divide one transport data block into two data blocks, select one of the transport data blocks as a demodulation reference data block (specifically, the first data block), and allocate feedback to the demodulation reference data block.
  • the feedback resource of the demodulation result enables the terminal to immediately demodulate the demodulated reference data block by feedback resource after demodulating the demodulation reference data block; it is not necessary to wait until the entire transmission data block is demodulated
  • the feedback demodulation result can shorten the feedback delay, and further shorten the feedback delay, thereby improving the speed of transmitting data by the base station, shortening the time from the debugging system to the stable transmission of data, and improving the throughput of the system. the amount.
  • the embodiment further includes:
  • first resource indication information indicating a location of the data transmission resource and second resource indication information indicating a location of the feedback resource
  • the first resource indication information and the second indication information may be generated by the base station itself or obtained by the base station from other devices.
  • the terminal may determine the data transmission resource location of the transmission data block according to the first resource indication information, and determine the location of the feedback resource according to the second resource indication information.
  • the first resource indication information and the second resource indication information may be sent to the terminal by using a high frequency band carrier (for example, a frequency band such as a millimeter wave) or a low frequency band carrier (a frequency band carrier such as 2 GHz).
  • a high frequency band carrier for example, a frequency band such as a millimeter wave
  • a low frequency band carrier a frequency band carrier such as 2 GHz
  • this embodiment further provides another feedback method, where the application base station includes the following steps:
  • Step 301 Divide a transport data block into a first data block and a second data block.
  • Step 302 Allocate a feedback resource for feeding back the first data block demodulation result to the terminal, and allocate a data transmission resource for the transmission data block.
  • the base station learns the propagation delay of the terminal in the connected state, and the terminal reports the demodulation processing capability, and the base station determines the time for the first data packet to complete demodulation based on the propagation delay and the demodulation processing capability of the terminal, according to the time.
  • the location of the ACK/NACK resource is determined, and an ACK/NACK resource is allocated according to the location.
  • the analyzed feedback resources may be located on a low frequency carrier, such as an LTE carrier, or on a high frequency carrier.
  • Step 303 Acquire first resource indication information indicating a location of the data transmission resource and second resource indication information used to indicate a location of the feedback resource.
  • the first resource indication information in this embodiment may be control information used to indicate the arrival of the transport data block.
  • Step 304 Notifying the terminal that the transport data block is divided into a first data block and a second data block.
  • the terminal notifies the terminal that the transport data block includes a first data block and a second data block by using a broadcast, a control channel, a high layer signaling, or an agreed manner, where the broadcast may be carried on a high frequency carrier or a low frequency carrier.
  • Step 305 Send the first resource indication information and the second resource indication information to the terminal in a scheduling unit.
  • the first resource indication information and the second resource indication information may be sent by using a high frequency band carrier or a low frequency band carrier.
  • Step 306 Send the first data block and the second data block to the terminal in sequence by the data transmission resource in the scheduling unit.
  • the transport data block may be sent to the terminal by using a high frequency carrier corresponding to the data transmission resource.
  • Step 307 Receive a demodulation result of the first data block that is sent by the terminal through the feedback resource.
  • the ACK/NACK that the terminal feeds back through the feedback resource may be received.
  • the ACK/NACK fed back by the terminal is received during the process of transmitting the second data block.
  • Step 308 Retransmit the first data block and the second data block when the terminal fails to demodulate the first data block; when the terminal demodulates the first data block successfully And scheduling subsequent transmission data blocks of the terminal.
  • the base station When the base station receives the demodulation feedback of the first data block as an ACK, the base station considers that the subsequent demodulated data block should be a large probability of occurrence of an ACK, and the adjustment transmission mechanism is that the base station continues to schedule subsequent data blocks of the terminal;
  • the feedback received by the base station to the demodulation reference data block is NACK, and the adjustment transmission mechanism of the base station is: maintaining the transmission mode of the subsequent demodulated data block of the current transmission unchanged, if the next scheduling unit has The transmission resource immediately retransmits the data block of this scheduling.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this embodiment provides a feedback method, which is applied to a terminal, and includes the following steps:
  • Step 401 Receive, in a scheduling unit, a first data block and a second data block that are sent by a base station, where the first data block and the second data block are obtained by dividing, by the base station, a transport data block. Data block.
  • the method of this embodiment may further include: learning that the transport data block comprises: the first data block and the second data block, that is, the transport data block is divided into a first data block and a second data block.
  • Step 402 Demodulate the first data block, and feed back a demodulation result of the first data block to the base station by using a feedback resource allocated by the base station.
  • the terminal after the terminal demodulates the first data block in the data block, the terminal immediately reports the demodulation result to the base station through the feedback resource, and does not need to wait for the demodulation result after the entire transmission data block is demodulated. , shortening the feedback delay and increasing the rate of data transmission.
  • the method of the embodiment may further include: receiving, by the base station, first resource indication information and second resource indication information, where the first resource indication information is used to indicate a location of the data transmission resource of the transport data block.
  • the second resource indication information is used to indicate a location of the feedback resource;
  • the step of receiving the transport data block sent by the base station in the above step 401 includes:
  • the step of feeding back the demodulation result of the first data block to the base station by using the feedback resource allocated by the base station includes:
  • the demodulation result of the first data block is fed back to the base station.
  • the method in this embodiment may further include:
  • the second data block is continuously demodulated.
  • the base station when demodulating the first data block successfully and demodulating the second data block, triggering, by the MAC layer or a layer above the MAC, the base station to retransmit the transport data block;
  • this embodiment provides another feedback method, which is applied to a terminal, and includes the following steps:
  • Step 501 Obtain that the transport data block is divided into the first data block and the second data block.
  • the transport data block is learned to include the first data block and the second data block by using a broadcast channel, a control channel, or an agreed manner.
  • Step 502 Receive first resource indication information and second resource indication information sent by the base station, where the first resource indication information is used to indicate a location of a data transmission resource of the transport data block, and the second resource indication information is used. Indicates the location of the feedback resource.
  • the first resource indication information in this embodiment may be control information used to indicate the arrival of data.
  • Step 503 Determine a location of the data transmission resource of the transport data block according to the first resource indication information, and determine a location of the feedback resource according to the second resource indication information.
  • Step 504 Acquire, according to the determined location of the data transmission resource, the first data block and the second data block sent by the base station in sequence from the corresponding data transmission resource.
  • Step 505 Demodulate the first data block, obtain a corresponding feedback resource according to the determined location of the feedback resource, and feed back the demodulation result of the first data block to the base station by using the feedback resource.
  • Step 506 Continue demodulating the second data block when the first data block is successfully demodulated or failed.
  • the second data block is continuously demodulated, and the base station pair is triggered by a layer above the MAC layer or the MAC.
  • the transport data block is retransmitted, or the sub base station of the base station is notified to retransmit the transport data block.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment introduces the feedback method of the present invention by taking the broadcast mode notification terminal that the data block includes the first data block and the second data block and the feedback resource is located on the high frequency band carrier.
  • the base station informs the terminal through the broadcast channel that the transport data block includes the first data block and the second data block on the LTE carrier.
  • the first data block demodulates the result to be NACK
  • the second data block subsequent transmission mechanism after receiving the NACK is unchanged. And retransmitting the first data block and the second data block in the next scheduling unit.
  • the base station transmits control information for indicating the arrival of the data through the LTE carrier, and the base station indicates the resource for feedback through the control information of the LTE carrier, wherein the feedback resource is located in the high frequency carrier.
  • the terminal sends a sounding signal or an access signal to the base station, and the base station estimates the propagation time between the base station and the terminal according to the received sounding signal or the access signal;
  • the terminal reports to the base station the demodulation of the first data block and the packet time overhead of the ACK/NACK.
  • the base station determines the time difference between the allocated service data and the feedback resource according to the first data block demodulation time and the ACK/NACK group packet time reported by the terminal; as shown in FIG. 6, the feedback resource allocation is at a high frequency.
  • control information indicating data arrival and feedback resource allocation ie, indication information indicating the location of the data transmission resource and the feedback resource
  • a legacy carrier such as an LTE carrier
  • the base station receives a demodulation capability level fed back by the terminal.
  • the base station determines a propagation delay between the base station and the terminal according to the signal or channel sent by the terminal, and the base station determines (estimates) the time required for the terminal to demodulate the first data block based on the demodulation capability level fed back by the terminal, and the base station according to the propagation delay and the terminal
  • the time required to demodulate the first data block determines the preferred timing at which the terminal reports the demodulation result of the first data block, and accordingly allocates resources for feedback to the terminal; in FIG. 6, Create Ack msg indicates the time at which the ACK message is created.
  • the terminal in the connected state reads the broadcast channel of the base station and learns that when the feedback result of the first data block is NACK, the subsequent part of the second data block does not change the transmission scheme, and the terminal detects the control information on the LTE carrier, and learns from the control information.
  • the base station receives the NACK of the first data feedback, and considers that the data block of the current transmission fails to be correctly demodulated.
  • the base station does not change the data transmission mechanism during the current data scheduling time, and the base station retransmits the data block in the adjacent data transmission unit. .
  • Control information for indicating the arrival of data and control information for allocating feedback resources during retransmission are still transmitted on the LTE carrier.
  • the subsequent data demodulation of the current transmission unit is continued, and the result of the current demodulation is buffered.
  • the terminal detects the control channel in the adjacent scheduling unit, determines the resource allocation of the retransmitted data block and the resource used for feedback by reading the control channel, and the terminal retransmits the previously buffered data with the current demodulated data.
  • the terminal enters the retransmission and the final data block demodulation result is ACK, and the terminal sends an ACK at the feedback resource location to complete the transmission of the current data block.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the feedback method of the present invention is introduced by using a high-level signaling manner to notify the terminal that the data block includes the first data block and the second data block and the feedback resource is located on the LTE carrier.
  • the base station informs the terminal through the high layer signaling on the LTE carrier that the transport data block contains the first data. And the second data block, when the demodulation result of the first data block is NACK, the subsequent transmission mechanism of the second data block after receiving the NACK is unchanged, and the first data block and the second data block are retransmitted in the next scheduling unit. .
  • the base station transmits control information indicating the arrival of the data through the LTE carrier, and the base station indicates, by the control information of the LTE carrier, the feedback resource, where the feedback resource is located on the LTE carrier.
  • the terminal sends a sounding signal or an access signal to the base station, and the base station estimates the propagation time between the base station and the terminal according to the received sounding signal or the access signal;
  • the terminal reports to the base station the demodulation time of the first data block and the packet time of the ACK/NACK.
  • the base station determines the time difference between the allocated service data and the feedback resource according to the first data block demodulation time, the ACK/NACK group packet time, and the propagation delay reported by the terminal.
  • the feedback resource is allocated on the LTE carrier, specifically And the base station allocates, on the LTE uplink carrier, a demodulation result that satisfies the propagation time, the demodulation, and the ACK packet time overhead requirement resource for the first data block; as shown in FIG. 7, the control information indicating the data arrival and the feedback resource allocation (ie, The indication information indicating the location of the data transmission resource and the feedback resource is carried on a legacy carrier, for example, the LTE carrier; the base station shown in FIG.
  • the base station 7 receives the demodulation capability level fed back by the terminal, and the base station determines the base station and the terminal according to the signal or channel sent by the terminal.
  • the propagation delay of the base station determines (estimates) the time required for the terminal to demodulate the first data block based on the demodulation capability level of the terminal feedback, and the base station determines the terminal to report the first according to the propagation delay and the time required for the terminal to demodulate the first data block.
  • the terminal in the connected state reads the broadcast channel of the base station to learn that when the feedback result of the first data block is NACK, the subsequent part of the second data block does not change the transmission scheme, the terminal detects the control information on the LTE carrier, and learns the service from the control information. A message arriving at the data and a feedback resource for feeding back the demodulation result, wherein the resource for feedback is on the LTE carrier.
  • the terminal receives the service data from the high frequency carrier, and the first data block of the terminal demodulation service data determines that the demodulation result is NACK, and A NACK is sent on the wave feedback resource.
  • the base station receives the NACK of the first data feedback, and considers that the data block transmitted this time is not correctly demodulated by the terminal, and the base station does not change the data transmission mechanism in the current data transmission unit, and the base station retransmits the data in the adjacent data transmission unit. data block.
  • the control information for indicating the arrival of the data and the control information for indicating the feedback resource during the retransmission are still transmitted on the LTE carrier.
  • the subsequent data demodulation of the current transmission unit is continued, and the result of the demodulation is buffered.
  • the terminal detects the control channel in the adjacent scheduling unit, determines the resource allocation of the retransmitted data block and the resource used for feedback by reading the control channel, and the terminal retransmits the previously buffered data with the current demodulated data.
  • the terminal enters the retransmission and the final data block demodulation result is ACK, and the terminal sends an ACK at the feedback resource location to complete the transmission of the current data block.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the feedback method of the present invention is introduced by informing the terminal that the data block includes the first data block and the second data block and the feedback resource is located on the high frequency band carrier by way of a control channel.
  • control message Notifying, by the control message, that one transport data block includes the first data block and the second data block, and the subsequent transmission mechanism of the second data block is unchanged when the first data block demodulation result is NACK, and is retransmitted in the next scheduling unit.
  • the control message informs the service data of the arrival and the resources used for the feedback, and the control message is carried on the LTE carrier.
  • the downlink service data is transmitted through the high-band carrier, and the ACK/NACK of the service data is fed back through the high-frequency carrier.
  • the terminal sends a sounding signal or an access signal to the base station, and the base station estimates the propagation time between the base station and the terminal according to the received sounding signal or the access signal;
  • the terminal reports to the base station the demodulation time of the first data block and the packet time of the ACK/NACK.
  • the base station determines the time difference between the allocated service data and the feedback resource according to the first data block demodulation time, the ACK/NACK group packet time, and the propagation delay reported by the terminal, as shown in FIG.
  • control information indicating data arrival and feedback resource allocation ie, indication information indicating the location of the data transmission resource and the feedback resource
  • a legacy carrier such as an LTE carrier
  • the base station determines the propagation delay between the base station and the terminal according to the signal or channel sent by the terminal, and the base station determines (estimates) the time required for the terminal to demodulate the first data block based on the demodulation capability level of the terminal feedback, and the base station according to the propagation time.
  • the delay time required for the terminal to demodulate the first data block determines a preferred timing at which the terminal reports the demodulation result of the first data block, and accordingly allocates resources for feedback to the terminal.
  • the terminal detects the control information on the LTE carrier, and the terminal detection control message in the connected state knows that when the feedback result of the first data block is NACK, the subsequent part of the second data block does not change the transmission scheme, and the service data arrives from the control information.
  • a feedback resource for feedback demodulation results wherein the resources for feedback are on a high frequency carrier.
  • the terminal receives the service data from the high frequency carrier, and the first data block of the terminal demodulation service data determines that the demodulation result is NACK, and sends a NACK on the resource for feedback corresponding to the high frequency carrier.
  • the base station receives the NACK of the first data feedback, and considers that the data block transmitted this time is not correctly demodulated by the terminal, and the base station does not change the data transmission mechanism in the current data transmission unit, and the base station retransmits the data in the adjacent data transmission unit. data block.
  • the control information for indicating the arrival of the data and the control information for indicating the feedback resource during the retransmission are still transmitted on the LTE carrier.
  • the subsequent data demodulation of the current transmission unit is continued, and the result of the demodulation is buffered.
  • the terminal detects the control channel in the adjacent scheduling unit, determines the resource allocation of the retransmitted data block and the resource used for feedback by reading the control channel, and the terminal retransmits the previously buffered data with the current demodulated data.
  • the terminal enters the retransmission and the final data block demodulation result is ACK, and the terminal sends an ACK at the feedback resource location to complete the transmission of the current data block.
  • This embodiment introduces the feedback method of the present invention by informing the terminal that the transmission data block includes the first data block and the second data block and the feedback resource is located on the high frequency band carrier by way of an agreed manner.
  • one transport data block includes a first data block and a second data block.
  • the first data block demodulation result is NACK
  • the subsequent transmission mechanism of the second data block does not change, and the next scheduling unit retransmits the first transmission unit.
  • the control message notifies the service data to arrive at the location of the feedback resource, and the control message is carried on the LTE carrier.
  • the downlink service data is transmitted through the high-band carrier, and the ACK/NACK of the service data is fed back through the high-frequency carrier.
  • the terminal sends a sounding signal or an access signal to the base station, and the base station estimates the propagation time between the base station and the terminal according to the received sounding signal or the access signal;
  • the terminal reports to the base station the demodulation time of the first data block and the packet time of the ACK/NACK.
  • the base station determines the time difference between the allocated service data and the feedback resource according to the first data block demodulation time, the ACK/NACK group packet time, and the propagation delay reported by the terminal, as shown in FIG. 6 (the feedback resource is allocated on the high frequency carrier, indicating data.
  • the control information of the arrival and feedback resources is carried on the LTE carrier).
  • the terminal detects the control information on the LTE carrier, and the terminal in the connected state learns the arrival of the service data and the feedback resource for feeding back the demodulation result from the control information, wherein the resource used for feedback is on the high frequency carrier.
  • the terminal receives the service data from the high frequency carrier, and the first data block of the terminal demodulation service data determines that the demodulation result is NACK, and sends a NACK on the resource where the high frequency carrier is located.
  • the base station receives the NACK of the first data feedback, and considers that the data block transmitted this time is not correctly demodulated by the terminal, and the base station does not change the data transmission mechanism in the current data transmission unit, and the base station retransmits the data in the adjacent data transmission unit. data block.
  • the control information for indicating the arrival of the data and the control information for indicating the feedback resource during the retransmission are still transmitted on the LTE carrier.
  • the subsequent data demodulation of the current transmission unit is continued, and the result of the demodulation is buffered.
  • the terminal detects the control channel in the adjacent scheduling unit, determines the resource allocation of the retransmitted data block and the resource used for feedback by reading the control channel, and the terminal retransmits the previously buffered data with the current demodulated data.
  • the terminal enters the retransmission and the final data block demodulation result is ACK, and the terminal sends an ACK at the feedback resource location to complete the transmission of the current data block.
  • the broadcast message at this time is the same processing method for all terminals in the cell;
  • the feedback method in this embodiment is used to indicate the demodulation of the first data block.
  • the terminal When the terminal can correctly demodulate the data of the first data block, the terminal will demodulate the subsequent data with a high probability, so the ACK is performed with a large probability.
  • Fast feedback when the terminal demodulates the first data block to NACK and continues the current transmission mechanism, the data transmission unit retransmits the data to improve the demodulation SINR of the data.
  • the embodiment provides a feedback apparatus, which is applied to a base station, and includes: a dividing module, a resource allocation module, a sending module, a receiving module, and a processing module;
  • the dividing module is configured to divide one transport data block into a first data block and a second data block;
  • the resource allocation module is configured to allocate, to the terminal, a feedback resource for feeding back the first data block demodulation result, and allocate a data transmission resource for the transmission data block;
  • the sending module is configured to, in a scheduling unit, sequentially send the first data block and the second data block to the terminal by using the data transmission resource;
  • the receiving module is configured to receive a demodulation result of the first data block that is sent by the terminal through the feedback resource;
  • the processing module is configured to perform corresponding data transmission processing according to the demodulation result.
  • the receiving module and the sending module correspond to a communication interface for performing data interaction between the base station and the terminal, for example, various air interfaces disposed on the base station.
  • the processing module and the resource allocation module can correspond to a processor or processing circuit in a base station.
  • the processor can include a central processing unit, a microprocessor, a digital signal processor or a programmable array, and the like.
  • the processing circuit can include an application specific integrated circuit.
  • the relationship between the first data block and the second data block includes at least one of the following:
  • the modulation order of the first data block is equal to or higher than the modulation order of the second data block
  • the original number of bits of the first data block is less than or equal to the original number of bits of the second data block
  • the duration of the first data block is less than or equal to the duration of the second data block.
  • the feedback device further includes: an indication information acquiring module;
  • the indication information acquiring module is configured to acquire first resource indication information for indicating a location of the data transmission resource and second resource indication information for indicating a location of the feedback resource;
  • the sending module is further configured to send the first resource indication information and the second resource indication information to the terminal in one scheduling unit before sending the transport data block to the terminal.
  • the feedback device of the implementation can shorten the system feedback delay and improve the data transmission speed.
  • this embodiment provides a feedback apparatus, which is applied to a terminal, and includes: a receiving module and a demodulation feedback module;
  • the receiving module is configured to sequentially receive the first data block and the second data block sent by the base station in a scheduling unit, where the first data block and the second data block are the base station pair Transmitting a data block to obtain a data block after division;
  • the demodulation feedback module is configured to demodulate the first data block, and feed back a demodulation result of the first data block to the base station by using a feedback resource allocated by the base station.
  • the receiving module may correspond to a receiving antenna that performs information interaction between the terminal and the base station
  • the demodulation feedback module may correspond to a transmitting antenna
  • the feedback apparatus of this embodiment may further include: a processing module;
  • the processing module is configured to continue demodulating the second data block when the first data block is successfully demodulated, and to continue to perform the demodulation when the first data block fails to be demodulated Demodulating the second data block, if the second data block fails to be demodulated, triggering, by the MAC layer or a layer above the MAC, the base station to retransmit the transport data block, or notifying the base station of the base station Retransmitting the transport data block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种反馈方法和装置。应用于基站的反馈方法包括:将一个传输数据块划分第一数据块和第二数据块;为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;在一个调度单元中通过所述数据传输资源将所述传输数据块发送给所述终端;接收所述终端通过所述反馈资源反馈的对所述第一数据块的解调结果;根据所述解调结果进行对应的数据发送处理。本发明实施例还同时提供了一种计算机存储介质。

Description

反馈方法、装置和计算机存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种反馈方法、装置和计算机存储介质。
背景技术
随着无线电技术的不断进步、各种智能终端普及和数据业务增长,移动通信移动业务的日益丰富,对未来5G***提出了更高的技术需求,其中包括更大的通信容量,更小的时延,更大量的通信设备连接。
关于数据反馈时延的减少量普遍的观点是***的反馈时延会降低为目前LTE(Long Term Evolution)***的1/10-1/5,降低反馈时延的途径有两个:1)设计更短的帧和子帧;2)改进调度反馈流程。
以LTE下行数据传输流程为例,终端解码数据的反馈按照固定的定时关系反馈业务数据的解***况。这样会在两个环节产生时间开销:1)一个数据包解调完之后等一个固定的时间然后反馈业务数据的解***况;2)必须解调一个完整的数据包才能反馈数据,如果是大的数据包解调占用额外的时间。因此,现有通信***中终端反馈数据的反馈时延较大。
发明内容
本发明实施例期望提供一种反馈方法和装置,能够降低反馈延时。
本发明实施例提供一种反馈方法,应用于基站,包括如下步骤:
将一个传输数据块划分第一数据块和第二数据块;
为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;
在一个调度单元中通过所述数据传输资源将所述传输数据块发送给所述终端;
接收所述终端通过所述反馈资源反馈的所述第一数据块的解调结果;
根据所述解调结果进行对应的数据发送处理。
可选地,所述第一数据块与所述第二数据块的关系包括如下至少一种:
第一数据块的调制阶数等于或高于第二数据块的调制阶数;
第一数据块的原始比特数小于或等于第二数据块原始比特数;
第一数据块的持续时间小于或等于第二数据块的持续时间。
可选地,在通过所述数据传输资源将所述传输数据块发送给所述终端之前,将一个传输数据块划分第一数据块和第二数据块之后,所述方法还包括:
通知所述终端所述传输数据块包括第一数据块和第二数据块。
可选地,所述根据所述解调结果进行对应的数据发送处理的步骤包括:
当所述终端对所述第一数据块解调失败时,对所述第一数据块和第二数据块进行重传;
当所述终端对所述第一数据块解调成功时,调度所述终端的后续传输数据块。
可选地,所述对所述第一数据块和第二数据块进行重传的步骤包括:
在下一个调度单元对所述第一数据块和第二数据块进行重传。
可选地,所述为终端分配用于所述终端对所述第一数据块解调结果的反馈资源的步骤包括:
确定所述终端对所述第一数据块解调结果的反馈资源的位置;
根据确定的位置为所述终端分配所述反馈资源。
可选地,所述确定所述终端对所述第一数据块解调结果的反馈资源的位置的步骤包括:
获取所述终端的传播时延和所述终端对数据的解调处理能力;
根据所述传播时延和所述解调处理能力确定所述终端对所述第一数据块解调结果的反馈资源的位置。
可选地,在通过所述数据传输资源将所述传输数据块发送给所述终端之前,所述方法还包括:
获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息;
在一个所述调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
可选地,所述将第一资源指示信息和第二资源指示信息发送给所述终端的步骤包括:
通过高频段载波或者低频段载波将发送第一资源指示信息和第二资源指示信息给所述终端。
同样为了解决上述的技术问题,本发明还提供了另一种反馈方法,应用于终端,包括如下步骤:
在一个调度单元中接收基站发送的传输数据块,所述传输数据块包括:第一数据块和第二数据块;
对所述第一数据块进行解调,通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站。
可选地,在所述接收基站发送的第传输数据块之前,所述反馈方法还包括:
获知传输数据块包括:所述第一数据块和所述第二数据块。
可选地,在所述接收基站发送的传输数据块之前,所述反馈方法还包括:
接收基站发送的第一资源指示信息和第二资源指示信息,所述第一资 源指示信息用于指示所述传输数据块的数据传输资源的位置,所述第二资源指示信息用于指示所述反馈资源的位置;
根据所述第一资源指示信息确定所述传输数据块的数据传输资源的位置,根据所述第二资源指示信息确定所述反馈资源的位置;
所述接收基站发送的传输数据块的步骤包括:
根据确定的数据传输资源的位置从对应的数据传输资源获取基站发送的传输数据块;
所述通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站的步骤包括:
根据确定的反馈资源的位置获取对应的反馈资源,通过该反馈资源将所述第一数据块的解调结果反馈给所述基站。
可选地,所述反馈方法还包括:
当对所述第一数据块解调成功或者失败时,继续对所述第二数据块进行解调。
可选地,当对第一数据解调成功时,在继续对所述第二数据块进行解调之后,所述方法还包括:
如果对所述第二数据块解调失败,则通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传,或者通知所述基站的子基站对所述传输数据块进行重传。
可选地,当对所述第一数据块解调失败时,在继续对所述第二数据块进行解调之后,所述方法还包括:
存储解调后的传输数据;
在下一个调度单元中对基站重传的所述第一数据块和第二数据块进行解调,若成功,则将解调后的传输数据与之前存储的解调后的传输数据合并。
本发明实施例还提供一种反馈装置,应用于基站,包括:划分模块、资源分配模块、发送模块、接收模块和处理模块;
所述划分模块,配置为将一个传输数据块划分第一数据块和第二数据块;
所述资源分配模块,配置为为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;
所述发送模块,配置为在一个调度单元中通过所述数据传输资源将所述传输数据块发送给所述终端;
所述接收模块,配置为接收所述终端通过所述反馈资源反馈的所述第一数据块的解调结果;
所述处理模块,配置为根据所述解调结果进行对应的数据发送处理。
可选地,所述第一数据块与所述第二数据块的关系包括如下至少一种:
第一数据块的调制阶数等于或高于第二数据块的调制阶数;
第一数据块的原始比特数小于或等于第二数据块原始比特数;
第一数据块的持续时间小于或等于第二数据块的持续时间。
可选地,所述反馈装置还包括:指示信息获取模块;
所述指示信息获取模块,配置为获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息;
所述发送模块,还配置为在发送传输数据块给所述终端之前,在一个所述调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
本发明实施例还提供了另一种反馈装置,应用于终端,包括:接收模块和解调反馈模块;
所述接收模块,配置为在一个调度单元中接收基站发送的传输数据块, 所述传输数据块包括:第一数据块和第二数据块;
所述解调反馈模块,配置为于对所述第一数据块进行解调,通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站。
可选地,还包括:所述反馈装置还包括:处理模块;
所述处理模块,配置为当对所述第一数据块解调成功时,继续对所述第二数据块进行解调;当对所述第一数据块解调失败时,继续对所述第二数据块进行解调,如果对所述第二数据块解调失败,则通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传,或者通知所述基站的子基站对所述传输数据块进行重传。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述任一项所述反馈方法。
本发明实施例提供了一种反馈方法、装置和计算机存储介质,所述反馈方法,应用于基站,包括:将一个传输数据块划分第一数据块和第二数据块;为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;在一个调度单元中通过所述数据传输资源将所述传输数据块发送给所述终端;接收所述终端通过所述反馈资源反馈的对所述第一数据块的解调结果;根据所述解调结果进行对应的数据发送处理;本发明的反馈方法可以将一个传输数据块划分为两个数据块,选取其中一个传输数据块作为解调参考数据块(具体地为第一数据块),并分配反馈该解调参考数据块的解调结果的反馈资源,使得终端在对解调参考数据块解调后可以立即通过反馈资源反馈对该解调参考数据块的解调结果;不需要等到整个传输数据块解调完后在反馈解调结果,与现有技术相比,可以缩短反馈时延,进一步由于缩短了反馈时延,可以提升基站传输数据的速度,缩短了调试***至数据稳定发送的时间,提升了***的吞吐 量。
附图说明
图1为本发明实施例一提供的一种反馈方法的流程示意图;
图2为本发明实施例一提供的业务数据传输载波和反馈载波都使用高频段的业务数据发送和反馈的传输示意图;
图3为本发明实施例一提供的另一种反馈方法的流程示意图;
图4为本发明实施例二提供的一种反馈方法的流程示意图;
图5为本发明实施例二提供的另一种反馈方法的流程示意图;
图6为本发明实施例三提供的一种业务数据发送和反馈的传输示意图;
图7为本发明实施例四提供的另一种业务数据发送和反馈的传输示意图;
图8为本发明实施例七提供的一种反馈装置的结构示意图;
图9为本发明实施例七提供的另一种反馈装置的结构示意图;
图10为本发明实施例八提供的一种反馈装置的结构示意图;
图11为本发明实施例八提供的另一种反馈装置的结构示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细说明,应当理解,下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
考虑到现有通信***中终端反馈数据的反馈时延较大的技术问题,本实施例提供了一种反馈方法,应用于基站,如图1所示,包括如下步骤:
步骤101:将一个传输数据块划分第一数据块和第二数据块。
具体地,可以将一个完整的业务传输数据块划分为第一数据块和第二数据块。在本实施例中第二数据块可以由一个或者多个子数据块组成,同 样本实施例中第一数据块也可以由一个或者多个子数据块组成。
在本实施例中所述第一数据块和第二数据均可独立编码,本实施例中第一数据块和第二数据的关系可以包括下至少一种:
第一数据块的调制阶数等于或高于第二数据块的调制阶数;
第一数据块的原始比特数小于或等于第二数据块原始比特数;
第一数据块的持续时间小于或等于第二数据块的持续时间。
在本实施例中第一数据块实质上一个解调参考数据块,该数据块的作用为检测终端。
为了能够使终端判断对第一数据块是否解调成功,本实施例中第一数据块还可以CRC(cyclic redundancy check,循环冗余码校验),这样终端即可通过CRC来判断对第一数据块是否解调成功。
步骤102:为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源。
为能够使得终端反馈对第一数据块的解调结果,本实施例中基站需要为终端分配对应的反馈资源(例如ACK/NACK资源),为了能够将传输数据块例如业务数据块传输给终端,本实施例中基站还需要为传输数据块分配数据传输资源。
考虑到使终端在对第一数据块解调之后能够获取对应的反馈资源,本实施例方法可以首先确定反馈资源的位置,通过确定合适的反馈资源的位置,可以使得终端在对第一数据块解调之后及时获取对应的反馈资源;因此,本实施例中所述为终端分配用于所述终端对所述第一数据块解调结果的反馈资源的过程可以包括:
确定所述终端对所述第一数据块解调结果的反馈资源的位置;
根据确定的位置为所述终端分配所述反馈资源。
可选地,本实例中确定所述终端对所述第一数据块解调结果的反馈资 源的位置的过程可以包括:
获取所述终端的传播时延和所述终端对数据的解调处理能力;
根据所述传播时延和所述解调处理能力确定所述终端对所述第一数据块解调结果的反馈资源的位置。
具体地,基站在接收到终端发送的探测信号或接入信号后,可以根据接收到的探测信号或接入信号估计基站和终端之间的传播时延;基站还可以接收终端上报的终端对数据的解调处理能力。本实施例中终端上报的解调处理能力包括:终端解调第一数据块的解调开销时间和解调结果组包(例如ACK/NACK组包)时间开销。
在实际应用中,基站获知处于连接态终端的传播时延,终端上报解调处理能力,基站基于传播时延和终端的解调处理能力确定参考数据包完成解调的时间,根据这一时间为其分配用于传输参考数据包对应ACK/NACK的资源位置,如图2所示,基站接收终端反馈的解调能力等级,基站根据终端发送的信号或信道确定基站和终端间的传播时延,基站基于终端反馈的解调能力等级确定(估算)终端解调第一数据块所需时间,基站根据传播时延和终端解调第一数据块所需时间确定终端上报第一数据块解调结果的优选时机,据此为终端分配用于反馈的资源;在图2中业务数据的调度信息(即数据传输资源的指示信息)和反馈资源的指示信息均承载于高频载波上。
步骤103:在一个调度单元中通过所述数据传输资源依次将所述第一数据块和所述第二数据块发送给所述终端。
具体地,当数据传输资源位于高频段载波时,根据与所述数据传输资源对应的高频载波将传输数据块发送给所述终端。
具体地,本实施例中在一个调度单元中数据块发送时序为:先发第一数据块然后在发送第二数据块。
可选地,本实施例中所述调度单元在时间上为1个子帧或微帧或若干个符号的持续时间,频域上为一个子载波的整数倍。
本实施例方法中为了能够使得终端知晓本次传输数据块被划分为第一数据块和第二数据块,避免终端采用传统反馈机制来反馈解调结果;在步骤101和步骤103之间,还包括:通知所述终端所述传输数据块被划分成第一数据块和第二数据块。
例如可通过广播、控制信道、高层信令或者与约定的方式来通过所述终端所述传输数据块被划分成第一数据块和第二数据块。
本实施例的广播可以承载于低频段载波(例如传统的3G、4G载波),或者承载于高频段载波。
另外,本实施例还可以在步骤101和步骤103之间,还可以包括:通知所述终端当第一数据块解调失败时,基站侧的数据传输机制或者策略;例如当第一数据块解调失败时,在本次调度单元中继续传输后续数据块,在下一个调度单元对所述传输数据块进行重传。具体地,可以通过广播、控制信道、高层信令或者约定的方式来通知所述终端当第一数据解调失败时,站侧的数据传输机制或者策略。
在本实施例中,为能够使终端可以判断对第一数据块解调失败还是成功,除了上述采用循环冗余码校验的方式,还可以通过重复发送第一数据块的方式使终端可以判断对第一数据解调失败还是成功,在终端侧,对多个重复的第一数据块进行解调,然后对比解调结果来判断是否解调成功或者失败。
步骤104:接收所述终端通过所述反馈资源反馈的对所述第一数据块的解调结果。
在终端对第一数据块进行解调后,通过基站分配的反馈资源反馈第一数据块的解调结果(成功或者失败,即通过发送ACK/NACK来表示解调成功 或者失败)。本实施例方法可以在发送传输数据块的过程中接收终端反馈的对第一数据块的解调结果;例如基站先发第一数据块接着再发第二数据块,在发送完第一数据块之后发送第二数据块的过程中,就会接收到终端反馈的对第一数据块的解调结果;
本实施例方法还可以在发送完传输数据块(第一数据块和第二数据块)后接收终端反馈的对第一数据块的解调结果。
本实施例中基站接收终端反馈的解调结果的时间与终端对第一数据块解调能力和传播时延相关。如果终端解调能力较强和传播时延小,那么在基站还未发送完第二数据块时就反馈了对第一数据块的解调结果;如果终端解调能力较弱且传播时延较大,那么在基站有可能发送完第二数据块即发送完整个传输数据块之后才接收到终端反馈的解调结果。
步骤105:根据所述解调结果进行对应的数据发送处理。
本步骤可以包括:当所述终端对所述第一数据块解调失败时,对所述第一数据块和第二数据块进行重传。
在所述终端对所述第一数据块解调失败时,例如基站接收到终端通过反馈资源反馈的NACK时,基站可以对第一数据块和第二数据块进行重传;具体地,保持本次调度单元中后续传输数据块的传输方式不变,即在本次调度单元中继续传输后续传输数据块,在下一个调度单元中对第一数据块和第二数据块进行重传。可选地,可以在下一个调度单元中若有传输资源则重传第一数据块和第二数据块。
当所述终端对所述第一数据块解调成功时,调度所述终端的后续传输数据块。
在本实施例中当终端对第一数据块解调成功时,例如基站接收到终端通过反馈资源反馈的ACK时,则基站认为终端对后续数据块解调应当是大概率的出现成功,此时基站继续调度所述终端的后续数据块。
而上述限定第一数据块与第二数据块的关系是为了保证在终端对第一数据块解调成功时对第二数据块等后续数据块的解调成功率;即保证终端对第一数据块解调成功时那么很大可能对第二数据块等后续数据块的解调成功率。
例如,当基站接收到终端反馈对第一数据块解调的结构是ACK时,则基站认为后续解调数据块应当是大概率的出现ACK,所述调整传输机制为基站继续调度本终端的后续数据块。
为保证反馈的可靠性,当终端对第一数据块解调成功后,基站还需要结合传统的反馈机制来判断是否需要重传;其中一种形式是在传统载波上进行传统的反馈方式,当基站收到第一数据块的ACK和完整传输数据块的NACK则进行重传。
当基站收到第一数据的ACK判断是否参考传统反馈结果,若是,则如果传统反馈方式反馈的完整传输数据块的解调结果是NACK则重传本数据块。
本实施例的反馈方法可以将一个传输数据块划分为两个数据块,选取其中一个传输数据块作为解调参考数据块(具体地为第一数据块),并分配反馈该解调参考数据块的解调结果的反馈资源,使得终端在对解调参考数据块解调后可以立即通过反馈资源反馈对该解调参考数据块的解调结果;不需要等到整个传输数据块解调完后在反馈解调结果,与现有技术相比,可以缩短反馈时延,进一步由于缩短了反馈时延,可以提升基站传输数据的速度,缩短了调试***至数据稳定发送的时间,提升了***的吞吐量。
考虑到为了能够让终端可知晓业务数据的数据传输资源和反馈资源的位置,从而快速进行反馈,本实施例在上述步骤103之前,还包括:
获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息;
在一个所述调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
本实施例中第一资源指示信息和第二指示信息可以由基站自身生成或者基站从其他设备获取。
在终端侧,终端接收到第一资源指示信息和第二资源指示信息后,可以根据第一资源指示信息确定传输数据块的数据传输资源位置,根据第二资源指示信息确定反馈资源的位置。
本实施例中可以通过高频段载波(例如毫米波等频段)或者低频段载波(2GHz等频段载波)将发送第一资源指示信息和第二资源指示信息给所述终端。
如图3所示,本实施例还提供了另一种反馈方法,应用基站,包括如下步骤:
步骤301:将一个传输数据块划分第一数据块和第二数据块。
步骤302:为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源。
例如在实际应用中,基站获知处于连接态终端的传播时延,终端上报解调处理能力,基站基于传播时延和终端的解调处理能力确定第一数据包完成解调的时间,根据该时间确定ACK/NACK资源的位置,根据该位置分配ACK/NACK资源。
其中,分析的反馈资源可位于低频段载波上例如LTE载波上,或者位于高频段载波上。
步骤303:获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息。
具体地本实施例中第一资源指示信息可以为用于指示传输数据块到达的控制信息。
步骤304:通知所述终端所述传输数据块被划分成第一数据块和第二数据块。
具体通过广播、控制信道、高层信令或者约定方式来通知终端所述传输数据块包含第一数据块和第二数据块,其中广播可以承载于高频段载波或者低频段载波。
步骤305:在一个调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
具体地,可通过高频段载波或者低频段载波来发送第一资源指示信息和第二资源指示信息。
步骤306:在所述调度单元中通过所述数据传输资源依次将所述第一数据块和所述第二数据块发送给所述终端。
具体地,可通过数据传输资源对应的高频载波将传输数据块发送给所述终端。
步骤307:接收所述终端通过所述反馈资源反馈的所述第一数据块的解调结果。
具体地可以接收终端通过反馈资源反馈的ACK/NACK。例如在发送第二数据块的过程中接收终端反馈的ACK/NACK。
步骤308:当所述终端对所述第一数据块解调失败时,对所述第一数据块和第二数据块进行重传;当所述终端对所述第一数据块解调成功时,调度所述终端的后续传输数据块。
当基站接收到第一数据块的解调反馈是ACK,则基站认为后续解调数据块应当是大概率的出现ACK,所述调整传输机制为基站继续调度本终端的后续数据块;
基站接收到解调参考数据块的反馈是NACK,则基站所述调整传输机制为:保持本次传输的后续解调数据块的传输方式不变,下个调度单元若有 传输资源则立即重传本次调度的数据块。
实施例二:
如图4所示,本实施例提供了一种反馈方法,应用于终端,包括如下步骤:
步骤401:在一个调度单元中依次接收基站发送的第一数据块和所述第二数据块,所述第一数据块和所述第二数据块为所述基站对传输数据块进行划分后得到的数据块。
在本步骤之前,本实施例方法还可以包括:获知传输数据块包括:所述第一数据块和所述第二数据块,即传输数据块被划分成第一数据块和第二数据块。
步骤402:对所述第一数据块进行解调,通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站。
本实施例反馈方法可以终端对传输数据块中的第一数据块解调后,立即通过反馈资源上报解调结果给基站,不需要等待整个传输数据块解调完成后隔一段时间上报解调结果,缩短了反馈时延,提升了数据传输的速率。
在步骤401之前,本实施例方法还可以包括:接收基站发送的第一资源指示信息和第二资源指示信息,所述第一资源指示信息用于指示所述传输数据块的数据传输资源的位置,所述第二资源指示信息用于指示所述反馈资源的位置;
在此情况下上述步骤401中收基站发送的传输数据块的步骤包括:
根据确定的数据传输资源的位置从对应的数据传输资源依次获取基站发送的第一数据块和第二数据块;
上述步骤402中,所述通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站的步骤包括:
根据确定的反馈资源的位置获取对应的反馈资源,通过该反馈资源将 所述第一数据块的解调结果反馈给所述基站。
在上述方法基础上,本实施例方法还可以包括:
当对所述第一数据块解调成功或者失败时,继续对所述第二数据块进行解调。
可选地,当对所述第一数据块解调成功且对所述第二数据块解调失败时,通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传;
或者
通知所述基站的子基站对所述传输数据块进行重传。
如图5所示,本实施例提供了另一种反馈方法,应用于终端,包括如下步骤:
步骤501:获知传输数据块被划分成第一数据块和第二数据块。
具体地,通过广播信道、控制信道或者约定方式获知传输数据块包括第一数据块和第二数据块。
步骤502:接收基站发送的第一资源指示信息和第二资源指示信息,所述第一资源指示信息用于指示所述传输数据块的数据传输资源的位置,所述第二资源指示信息用于指示所述反馈资源的位置。
具体地,本实施例的第一资源指示信息可以为用于指示数据到达的控制信息。
步骤503:根据所述第一资源指示信息确定所述传输数据块的数据传输资源的位置,根据所述第二资源指示信息确定所述反馈资源的位置。
步骤504:根据确定的数据传输资源的位置从对应的数据传输资源依次获取基站发送的所述第一数据块和所述第二数据块。
步骤505:对所述第一数据块进行解调,根据确定的反馈资源的位置获取对应的反馈资源,通过该反馈资源将所述第一数据块的解调结果反馈给所述基站。
步骤506:当对所述第一数据块解调成功或失败时,继续对所述第二数据块进行解调。
当对所述第一数据块解调成功且对所述第二数据块解调失败时,继续对所述第二数据块进行解调,且通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传,或者通知所述基站的子基站对所述传输数据块进行重传。
当对所述第一数据块解调失败时,继续对第二数据块解调,存储解调后的传输数据块;
在下一个调度单元中对基站重传的所述第一数据块和第二数据块进行解调,若成功,则将解调后的传输数据与之前存储的解调后的传输数据合并。
实施例三:
本实施例以在广播方式通知终端传输数据块包括第一数据块和第二数据块且反馈资源位于高频段载波上为例来介绍本发明的反馈方法。
基站在lte载波上通过广播信道通知终端一个传输数据块包含第一数据块和第二数据块,当第一数据块解调结果为NACK则收到NACK后的第二数据块后续传输机制不变,在下一个调度单元重传本次第一数据块和第二数据块。基站通过lte载波传输用于指示数据到达的控制信息,基站通过lte载波的控制信息指示用反馈的资源,其中反馈资源位于高频段载波。
终端向基站发送探测信号或接入信号,基站根据接收到的探测信号或接入信号估计基站和终端之间的传播时间;
终端向基站上报终端解调第一数据块的解调和ACK/NACK的组包时间开销。
基站根据终端上报的第一数据块解调时间和ACK/NACK组包时间确定分配的业务数据和反馈资源的时间差;如图6所示,反馈资源分配在高频载 波上,指示数据到达和反馈资源分配的控制信息(即指示数据传输资源和反馈资源的位置的指示信息)承载于传统载波上例如lte载波上;图6中基站接收终端反馈的解调能力等级,基站根据终端发送的信号或信道确定基站和终端间的传播时延,基站基于终端反馈的解调能力等级确定(估算)终端解调第一数据块所需时间,基站根据传播时延和终端解调第一数据块所需时间确定终端上报第一数据块解调结果的优选时机,据此为终端分配用于反馈的资源;图6中,Create Ack msg表示创建ACK消息的时间。
处于连接态的终端读取基站的广播信道了解到当第一数据块的反馈结果为NACK时第二数据块的后续部分不会更改传输方案,终端在lte载波上检测控制信息,从控制信息获知业务数据到达的消息和用于反馈解调结果的反馈资源,并从高频载波上接收业务数据,解调业务数据的第一数据块判断解调结果为NACK,终端在对应数据块的反馈资源上反馈NACK。
基站接收到第一数据反馈的NACK,认为本次传输的数据块未能正确解调,基站在本次数据调度时间内不改变数据传输机制,基站在相邻的数据传输单元重新传输本数据块。重传过程中用于指示数据到达的控制信息和用于分配反馈资源的控制信息仍然在lte载波上传输。
终端反馈NACK之后继续本次传输单元的后续数据解调,并将本次解调的结果进行缓存。终端在相邻的调度单元检测控制信道,通过读取控制信道确定重传数据块的资源分配和用于反馈的资源,终端将上次缓存的数据同本次解调数据做重传合并。终端进过重传合并最终的数据块解调结果为ACK,终端在反馈资源位置上发送ACK,完成本次数据块的传输。
实施例四:
本实施例以通过高层信令方式通知终端传输数据块包括第一数据块和第二数据块且反馈资源位于lte载波上为例来介绍本发明的反馈方法。
基站在lte载波上通过高层信令通知终端一个传输数据块包含第一数据 块和第二数据块,当第一数据块解调结果为NACK则收到NACK后的第二数据块后续传输机制不变,在下一个调度单元重传本次第一数据块和第二数据块。基站通过lte载波传输用于指示数据到达的控制信息,基站通过lte载波的控制信息指示用于反馈资源,其中反馈资源位于lte载波。
终端向基站发送探测信号或接入信号,基站根据接收到的探测信号或接入信号估计基站和终端之间的传播时间;
终端向基站上报终端解调第一数据块的解调时间和ACK/NACK的组包时间。
基站根据终端上报的第一数据块解调时间、ACK/NACK组包时间和传播时延确定分配的业务数据和反馈资源的时间差,如图7所示,反馈资源分配在lte载波上,具体地,基站在lte上行载波上分配满足传播时间、解调和ACK组包时间开销要求资源用于第一数据块的解调结果;图7所示,指示数据到达和反馈资源分配的控制信息(即指示数据传输资源和反馈资源的位置的指示信息)承载于传统载波上例如lte载波上;图7所示基站接收终端反馈的解调能力等级,基站根据终端发送的信号或信道确定基站和终端间的传播时延,基站基于终端反馈的解调能力等级确定(估算)终端解调第一数据块所需时间,基站根据传播时延和终端解调第一数据块所需时间确定终端上报第一数据块解调结果的优选时机,据此为终端分配用于反馈的资源;图7中Decode&create ACK&propagation latency表示解调第一数据块的时间、创建ACK的时间和传播时延之和。
处于连接态的终端读取基站的广播信道获知当第一数据块的反馈结果为NACK时第二数据块的后续部分不会更改传输方案,终端在lte载波上检测控制信息,从控制信息获知业务数据到达的消息和用于反馈解调结果的反馈资源,其中用于反馈的资源在lte载波上。终端从高频载波上接收业务数据,终端解调业务数据的第一数据块判断解调结果为NACK,在lte载 波反馈资源上发送NACK。
基站接收到第一数据反馈的NACK,认为本次传输的数据块未能被终端正确解调,基站在本次数据传输单元内不改变数据传输机制,基站在相邻的数据传输单元重新传输本数据块。重传过程中用于指示数据到达的控制信息和用于指示反馈资源的控制信息仍然在lte载波上传输。
终端反馈NACK后继续本次传输单元的后续数据解调,并将本次解调的结果进行缓存。终端在相邻的调度单元检测控制信道,通过读取控制信道确定重传数据块的资源分配和用于反馈的资源,终端将上次缓存的数据同本次解调数据做重传合并。终端进过重传合并最终的数据块解调结果为ACK,终端在反馈资源位置上发送ACK,完成本次数据块的传输。
实施例五:
本实施例以通过控制信道的方式通知终端传输数据块包括第一数据块和第二数据块且反馈资源位于高频段载波上为例来介绍本发明的反馈方法。
通过控制消息通知终端一个传输数据块包含第一数据块和第二数据块,当第一数据块解调结果为NACK时第二数据块的后续传输机制不变,在下一个调度单元重传本次传输单元的第一数据块和第二数据块。控制消息通知业务数据到达和用于反馈的资源,控制消息承载于lte载波。下行业务数据通过高频段载波传输,业务数据的ACK/NACK通过高频载波反馈。
终端向基站发送探测信号或接入信号,基站根据接收到的探测信号或接入信号估计基站和终端之间的传播时间;
终端向基站上报终端解调第一数据块的解调时间和ACK/NACK的组包时间。
基站根据终端上报的第一数据块解调时间、ACK/NACK组包时间和传播时延确定分配的业务数据和反馈资源的时间差,如图6所示,反馈资源分配 在高频载波上,指示数据到达和反馈资源分配的控制信息(即指示数据传输资源和反馈资源的位置的指示信息)承载于传统载波上例如lte载波上;图6中基站接收终端反馈的解调能力等级,基站根据终端发送的信号或信道确定基站和终端间的传播时延,基站基于终端反馈的解调能力等级确定(估算)终端解调第一数据块所需时间,基站根据传播时延和终端解调第一数据块所需时间确定终端上报第一数据块解调结果的优选时机,据此为终端分配用于反馈的资源。
终端在lte载波上检测控制信息,处于连接态的终端检测控制消息获知当第一数据块的反馈结果为NACK时第二数据块的后续部分不会更改传输方案,从控制信息获知业务数据到达和用于反馈解调结果的反馈资源,其中用于反馈的资源在高频载波上。终端从高频载波上接收业务数据,终端解调业务数据的第一数据块判断解调结果为NACK,在高频载波对应的用于反馈的资源上发送NACK。
基站接收到第一数据反馈的NACK,认为本次传输的数据块未能被终端正确解调,基站在本次数据传输单元内不改变数据传输机制,基站在相邻的数据传输单元重新传输本数据块。重传过程中用于指示数据到达的控制信息和用于指示反馈资源的控制信息仍然在lte载波上传输。
终端反馈NACK后继续本次传输单元的后续数据解调,并将本次解调的结果进行缓存。终端在相邻的调度单元检测控制信道,通过读取控制信道确定重传数据块的资源分配和用于反馈的资源,终端将上次缓存的数据同本次解调数据做重传合并。终端进过重传合并最终的数据块解调结果为ACK,终端在反馈资源位置上发送ACK,完成本次数据块的传输。
实施例六:
本实施例以通过约定的方式通知终端传输数据块包括第一数据块和第二数据块且反馈资源位于高频段载波上为例来介绍本发明的反馈方法。
约定一个传输数据块包含第一数据块和第二数据块,当第一数据块解调结果为NACK时第二数据块的后续传输机制不变,在下一个调度单元重传本次传输单元的第一数据块和第二数据块。控制消息通知业务数据到达反馈资源所在位置,控制消息承载于lte载波。下行业务数据通过高频段载波传输,业务数据的ACK/NACK通过高频载波反馈。
终端向基站发送探测信号或接入信号,基站根据接收到的探测信号或接入信号估计基站和终端之间的传播时间;
终端向基站上报终端解调第一数据块的解调时间和ACK/NACK的组包时间。
基站根据终端上报的第一数据块解调时间、ACK/NACK组包时间和传播时延确定分配的业务数据和反馈资源的时间差,如附图6(反馈资源分配在高频载波上,指示数据到达和反馈资源的控制信息承载于lte载波上)。
终端在lte载波上检测控制信息,处于连接态的终端从控制信息获知业务数据到达和用于反馈解调结果的反馈资源,其中用于反馈的资源在高频载波上。终端从高频载波上接收业务数据,终端解调业务数据的第一数据块判断解调结果为NACK,在高频载波所在资源上发送NACK。
基站接收到第一数据反馈的NACK,认为本次传输的数据块未能被终端正确解调,基站在本次数据传输单元内不改变数据传输机制,基站在相邻的数据传输单元重新传输本数据块。重传过程中用于指示数据到达的控制信息和用于指示反馈资源的控制信息仍然在lte载波上传输。
终端反馈NACK后继续本次传输单元的后续数据解调,并将本次解调的结果进行缓存。终端在相邻的调度单元检测控制信道,通过读取控制信道确定重传数据块的资源分配和用于反馈的资源,终端将上次缓存的数据同本次解调数据做重传合并。终端进过重传合并最终的数据块解调结果为ACK,终端在反馈资源位置上发送ACK,完成本次数据块的传输。
所述终端和基站对第一数据块的解调结果的理解在实施例中体现为:
1)通过广播的方式通知,此时的广播消息对小区内的所有终端来说都是相同的处理方式;
2)通过控制信道的方式通知,这是一个小区内的不同终端发送第一数据块的解调数据后,基站针对不同终端会进行不同的处理方式;
3)通过高层信令的方式通知,如果终端的业务类型或传输场景适合进行快速反馈通过高层信令通知。这种方式相比于广播其开销较小,仅需一次通知,而且是与特定终端相关的。
本实施例的反馈方法用以指示第一数据块的解***况,当终端能够正确解调第一数据块的数据时则终端将会以大概率解调后续数据,因此以大的概率进行ACK快速反馈;当终端解调第一数据块为NACK后继续当前的传输机制,在后续的数据传输单元重传数据以提升数据的解调SINR。
实施例七:
如图8所示,本实施例提供了一种反馈装置,应用于基站,包括:划分模块、资源分配模块、发送模块、接收模块和处理模块;
所述划分模块,配置为将一个传输数据块划分第一数据块和第二数据块;
所述资源分配模块,配置为为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;
所述发送模块,配置为在一个调度单元中通过所述数据传输资源依次将所述第一数据块和所述第二数据块发送给所述终端;
所述接收模块,配置为接收所述终端通过所述反馈资源反馈的所述第一数据块的解调结果;
所述处理模块,配置为根据所述解调结果进行对应的数据发送处理。
在本实施例中接收模块和发送模块对应着基站与终端进行数据交互的通信接口,例如设置在基站上的各种空口。所述处理模块和所述资源分配模块可对应于基站中的处理器或处理电路。所述处理器可包括中央处理器、微处理器、数字信号处理器或可编程阵列等。所述处理电路可包括专用集成电路。
可选地,所述第一数据块与所述第二数据块的关系包括如下至少一种:
第一数据块的调制阶数等于或高于第二数据块的调制阶数;
第一数据块的原始比特数小于或等于第二数据块原始比特数;
第一数据块的持续时间小于或等于第二数据块的持续时间。
如图9所示,在上述基础上,所述反馈装置还包括:指示信息获取模块;
所述指示信息获取模块,配置为获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息;
所述发送模块,还配置为在发送传输数据块给所述终端之前,在一个所述调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
本实施反馈装置可以缩短***反馈时延,提升数据传输速度。
实施例八:
如图10所示,本实施例提供了一种反馈装置,应用于终端,包括:接收模块和解调反馈模块;
所述接收模块,配置为在一个调度单元中依次接收基站发送的第一数据块和所述第二数据块,所述第一数据块和所述第二数据块为所述基站对 传输数据块进行划分后得到的数据块;
所述解调反馈模块,配置为对所述第一数据块进行解调,通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站。
在本实施例中所述接收模块可对应于终端与基站进行信息交互的接收天线,所述解调反馈模块可对应于发送天线。
可选地,如图11所示,本实施例的反馈装置还可以包括:处理模块;
所述处理模块,配置为当对所述第一数据块解调成功时,继续对所述第二数据块进行解调;当对所述第一数据块解调失败时,继续对所述第二数据块进行解调,如果对所述第二数据块解调失败,则通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传,或者通知所述基站的子基站对所述传输数据块进行重传。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (21)

  1. 一种反馈方法,应用于基站,包括:
    将一个传输数据块划分第一数据块和第二数据块;
    为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;
    在一个调度单元中通过所述数据传输资源依次将所述第一数据块和所述第二数据块发送给所述终端;
    接收所述终端通过所述反馈资源反馈的所述第一数据块的解调结果;
    根据所述解调结果进行对应的数据发送处理。
  2. 如权利要求1所述的反馈方法,其中,所述第一数据块与所述第二数据块的关系包括如下至少一种:
    第一数据块的调制阶数等于或高于第二数据块的调制阶数;
    第一数据块的原始比特数小于或等于第二数据块原始比特数;
    第一数据块的持续时间小于或等于第二数据块的持续时间。
  3. 如权利要求1所述的反馈方法,其中,在通过所述数据传输资源将所述传输数据块发送给所述终端之前,将一个传输数据块划分第一数据块和第二数据块之后,所述方法还包括:
    通知所述终端所述传输数据块被划分成第一数据块和第二数据块。
  4. 如权利要求1至3任一项所述的反馈方法,其中,所述根据所述解调结果进行对应的数据发送处理,包括:
    当所述终端对所述第一数据块解调失败时,对所述第一数据块和第二数据块进行重传;
    当所述终端对所述第一数据块解调成功时,调度所述终端的后续传输数据块。
  5. 如权利要求4所述的反馈方法,其中,所述对所述第一数据块和第 二数据块进行重传的步骤包括:
    在下一个调度单元对所述第一数据块和第二数据块进行重传。
  6. 如权利要求1所述的反馈方法,其中,所述为终端分配用于所述终端对所述第一数据块解调结果的反馈资源的步骤包括:
    确定所述终端对所述第一数据块解调结果的反馈资源的位置;
    根据确定的位置为所述终端分配所述反馈资源。
  7. 如权利要求5所述的反馈方法,其中,所述确定所述终端对所述第一数据块解调结果的反馈资源的位置的步骤包括:
    获取所述终端的传播时延和所述终端对数据的解调处理能力;
    根据所述传播时延和所述解调处理能力确定所述终端对所述第一数据块解调结果的反馈资源的位置。
  8. 如权利要求1至3任一项所述的反馈方法,其中,在通过所述数据传输资源将所述传输数据块发送给所述终端之前,所述方法还包括:
    获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息;
    在一个所述调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
  9. 如权利要求8所述的方法,其中,所述将第一资源指示信息和第二资源指示信息发送给所述终端的步骤包括:
    通过高频段载波或者低频段载波将发送第一资源指示信息和第二资源指示信息给所述终端。
  10. 一种反馈方法,应用于终端,包括:
    在一个调度单元中依次接收基站发送的第一数据块和所述第二数据块,所述第一数据块和所述第二数据块为所述基站对传输数据块进行划分后得到的数据块;
    对所述第一数据块进行解调,通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站。
  11. 如权利要求10所述的反馈方法,其中,在所述接收基站发送的传输数据块之前,所述反馈方法还包括:
    获知传输数据块被划分成所述第一数据块和所述第二数据块。
  12. 如权利要求10所述的反馈方法,其中,在所述接收基站发送的传输数据块之前,所述反馈方法还包括:
    接收基站发送的第一资源指示信息和第二资源指示信息,所述第一资源指示信息用于指示所述传输数据块的数据传输资源的位置,所述第二资源指示信息用于指示所述反馈资源的位置;
    根据所述第一资源指示信息确定所述传输数据块的数据传输资源的位置,根据所述第二资源指示信息确定所述反馈资源的位置;
    所述在一个调度单元中依次接收基站发送的第一数据块和所述第二数据块的步骤包括:
    根据确定的数据传输资源的位置从对应的数据传输资源依次获取基站发送的所述第一数据块和所述第二数据块;
    所述通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站的步骤包括:
    根据确定的反馈资源的位置获取对应的反馈资源,通过该反馈资源将所述第一数据块的解调结果反馈给所述基站。
  13. 如权利要求10至12任一项所述的反馈方法,其中,所述反馈方法还包括:
    当对所述第一数据块解调成功或者失败时,继续对所述第二数据块进行解调。
  14. 如权利要求13所述的反馈方法,其中,当对第一数据解调成功时, 在继续对所述第二数据块进行解调之后,所述方法还包括:
    如果对所述第二数据块解调失败,则通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传,或者通知所述基站的子基站对所述传输数据块进行重传。
  15. 如权利要求13所述的反馈方法,其中,当对所述第一数据块解调失败时,在继续对所述第二数据块进行解调之后,所述方法还包括:
    存储解调后的传输数据;
    在下一个调度单元中对基站重传的所述第一数据块和第二数据块进行解调,若成功,则将解调后的传输数据与之前存储的解调后的传输数据合并。
  16. 一种反馈装置,应用于基站,包括:划分模块、资源分配模块、发送模块、接收模块和处理模块;
    所述划分模块,配置为将一个传输数据块划分第一数据块和第二数据块;
    所述资源分配模块,配置为为终端分配用于反馈所述第一数据块解调结果的反馈资源,并为所述传输数据块分配数据传输资源;
    所述发送模块,配置为在一个调度单元中通过所述数据传输资源依次将所述第一数据块和所述第二数据块发送给所述终端;
    所述接收模块,配置为接收所述终端通过所述反馈资源反馈的所述第一数据块的解调结果;
    所述处理模块,配置为于根据所述解调结果进行对应的数据发送处理。
  17. 如权利要求16所述的反馈装置,其中,所述第一数据块与所述第二数据块的关系包括如下至少一种:
    第一数据块的调制阶数等于或高于第二数据块的调制阶数;
    第一数据块的原始比特数小于或等于第二数据块原始比特数;
    第一数据块的持续时间小于或等于第二数据块的持续时间。
  18. 如权利要求16或17所述的反馈装置,其中,所述反馈装置还包括:指示信息获取模块;
    所述指示信息获取模块,配置为获取用于指示所述数据传输资源的位置的第一资源指示信息和用于指示所述反馈资源的位置的第二资源指示信息;
    所述发送模块,还配置为在发送传输数据块给所述终端之前,在一个所述调度单元中将所述第一资源指示信息和第二资源指示信息发送给所述终端。
  19. 一种反馈装置,应用于终端,包括:接收模块和解调反馈模块;
    所述接收模块,配置为在一个调度单元中依次接收基站发送的第一数据块和所述第二数据块,所述第一数据块和所述第二数据块为所述基站对传输数据块进行划分后得到的数据块;
    所述解调反馈模块,配置为对所述第一数据块进行解调,通过所述基站分配的反馈资源将所述第一数据块的解调结果反馈给所述基站。
  20. 如权利要求19所述的反馈装置,其中,还包括:处理模块;
    所述处理模块,配置为当对所述第一数据块解调成功时,继续对所述第二数据块进行解调;当对所述第一数据块解调失败时,继续对所述第二数据块进行解调,如果对所述第二数据块解调失败,则通过MAC层或MAC以上的层触发所述基站对所述传输数据块进行重传,或者通知所述基站的子基站对所述传输数据块进行重传。
  21. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至10任一项所述反馈方法。
PCT/CN2016/076119 2015-04-24 2016-03-11 反馈方法、装置和计算机存储介质 WO2016169352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510200681.0A CN106162614B (zh) 2015-04-24 2015-04-24 一种反馈方法和装置
CN201510200681.0 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016169352A1 true WO2016169352A1 (zh) 2016-10-27

Family

ID=57143663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076119 WO2016169352A1 (zh) 2015-04-24 2016-03-11 反馈方法、装置和计算机存储介质

Country Status (2)

Country Link
CN (1) CN106162614B (zh)
WO (1) WO2016169352A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430106B (zh) * 2017-01-03 2021-01-05 华为技术有限公司 无线通信的方法和装置
CN109547169B (zh) * 2017-09-22 2021-12-21 珠海市魅族科技有限公司 数据重传请求方法、请求装置、站点设备和接入点设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690746B1 (en) * 1999-06-11 2004-02-10 Southwest Research Institute Signal recognizer for communications signals
CN101047589A (zh) * 2006-06-13 2007-10-03 华为技术有限公司 总线通信***和方法
WO2007123812A1 (en) * 2006-04-19 2007-11-01 Wherenet Corp Receiver for object locating and tracking systems and related methods
CN101902777A (zh) * 2009-05-26 2010-12-01 中兴通讯股份有限公司 一种混合自动请求重传方法及基站设备
CN102769591A (zh) * 2012-06-21 2012-11-07 天地融科技股份有限公司 音频通信调制方式自适应的方法、***、装置、电子签名工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101018101A (zh) * 2006-02-10 2007-08-15 华为技术有限公司 数据传输方法和***及数据发送和接收装置
CN101018108A (zh) * 2006-02-10 2007-08-15 华为技术有限公司 数据传输方法和***及数据发送和接收装置
KR101615231B1 (ko) * 2008-03-17 2016-04-25 엘지전자 주식회사 그룹 ack/nack 전송방법
CN101651525B (zh) * 2008-08-15 2012-08-22 富士通株式会社 响应信号的传送资源分配方法、反馈方法和处理方法
JP5572527B2 (ja) * 2010-11-09 2014-08-13 パナソニック株式会社 通信処理装置及び通信処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690746B1 (en) * 1999-06-11 2004-02-10 Southwest Research Institute Signal recognizer for communications signals
WO2007123812A1 (en) * 2006-04-19 2007-11-01 Wherenet Corp Receiver for object locating and tracking systems and related methods
CN101047589A (zh) * 2006-06-13 2007-10-03 华为技术有限公司 总线通信***和方法
CN101902777A (zh) * 2009-05-26 2010-12-01 中兴通讯股份有限公司 一种混合自动请求重传方法及基站设备
CN102769591A (zh) * 2012-06-21 2012-11-07 天地融科技股份有限公司 音频通信调制方式自适应的方法、***、装置、电子签名工具

Also Published As

Publication number Publication date
CN106162614A (zh) 2016-11-23
CN106162614B (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
US11838130B2 (en) Method for partial retransmission
US11700612B2 (en) CBG-based NOMA transmission for a wireless network
US10135517B2 (en) Relay link HARQ operation
US11677513B2 (en) Retransmission for punctured signals
CN107925543B (zh) 用于ecc中的多传输时间区间准予支持的重复下行链路准予设计
US10972228B2 (en) Base station device, user equipment, wireless communication system, and communication method
US9451604B2 (en) Signaling and channel designs for D2D communications
WO2019192285A1 (zh) 上行传输、通信方法、装置及基站、终端、存储介质
US11425755B2 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
US9510368B2 (en) Method and arrangement for acknowledgement of contention-based uplink transmissions in a telecommunication system
US20210184797A1 (en) Configuring puncture bundles of data for a first service in a transmission of a second service
RU2710991C1 (ru) Узел радиосети, устройство беспроводной связи и осуществляемые в них способы
CN110447283B (zh) 无线通信网络中的网络节点和方法
TWI702815B (zh) 高效混合自動重傳請求運作方法及其使用者設備
US10624087B2 (en) Radio-network node, wireless device and methods for feedback-based retransmission
KR20180108035A (ko) 무선 통신 시스템에서 데이터의 송수신 장치 및 방법
KR20180039504A (ko) 무선 셀룰라 통신 시스템에서 다중 타이밍 전송 기술의 송수신 방법 및 장치
KR20190073565A (ko) 제어 정보 송신 방법 및 장치, 및 제어 정보 수신 방법 및 장치
CN115843419A (zh) 跨不同解码级别的分层混合自动重复请求
WO2016169352A1 (zh) 反馈方法、装置和计算机存储介质
WO2015104738A1 (en) A signalling method
KR20110081926A (ko) 통신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782500

Country of ref document: EP

Kind code of ref document: A1