WO2016169034A1 - 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用 - Google Patents

多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用 Download PDF

Info

Publication number
WO2016169034A1
WO2016169034A1 PCT/CN2015/077324 CN2015077324W WO2016169034A1 WO 2016169034 A1 WO2016169034 A1 WO 2016169034A1 CN 2015077324 W CN2015077324 W CN 2015077324W WO 2016169034 A1 WO2016169034 A1 WO 2016169034A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
composite material
carbon nanohorn
carbon
graphene oxide
Prior art date
Application number
PCT/CN2015/077324
Other languages
English (en)
French (fr)
Inventor
陶有胜
马来
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Priority to PCT/CN2015/077324 priority Critical patent/WO2016169034A1/zh
Publication of WO2016169034A1 publication Critical patent/WO2016169034A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a porous conductive graphene/carbon nano-angle composite material and a preparation method thereof, and belongs to the fields of materials, electrochemistry, energy storage and environmental protection.
  • carbon materials have good electrical conductivity, large specific surface area, good chemical and mechanical stability, and in the fields of electronics, chemical engineering, machinery, environmental protection, etc., especially in clean energy storage, such as electrochemical storage.
  • Energy such as lithium-ion batteries, super capacitors
  • carbon materials such as carbon fiber (CNFs), carbon nanotubes (CNTs), and graphene have broad application prospects in electrodes or as important additives in high-performance electrochemical energy storage devices.
  • capacitors containing metals and metal oxides not only have the disadvantages of unstable performance, low cycle number, and short service life, but also problems with toxic and environmental pollution.
  • the use of chemicals to disperse graphene and carbon nanotubes and the use of chemicals (such as hydrazine hydrate) to reduce graphene oxide are not only costly, but also have toxicity and environmental pollution problems.
  • the present invention is directed to solving the aforementioned problems of the prior art, and provides a simple and environmentally friendly production process and technology for synthesizing a conductive graphene/carbon nanohorn composite structural material having a porous structure.
  • the composite material is characterized in that carbon nanohorns are distributed on the surface of graphene sheets or on the surface of graphene sheets, which effectively prevents lamination and agglomeration of graphene sheets and forms a large number of hierarchical pores (including micropores and mesopores). And a large specific surface area; at the same time, graphene acts as a bridge between the carbon nanohorns to form a conductive network structure and increase its conductivity.
  • the material is used for electrode materials such as supercapacitors, lithium ion batteries, fuel cells or electrochemical energy storage devices, and has large capacity, fast charge and discharge speed, and increased cycle times.
  • a porous conductive graphene/carbon nanohorn composite material characterized in that the carbon nanohorns are distributed on the surface of the graphene sheets and/or on the surface of the graphene sheets.
  • the graphene is selected from the group consisting of graphene oxide, reduced graphene oxide, graphene or thin layer graphite.
  • the carbon nanohorn is selected from the group consisting of carbon nanohorns, carbon nanohorn particles, carbon nanohorn micelles, carbon nanohorn aggregates or carbon nanohorns containing nanopores, carbon nanohorn particles, carbon nanohorn rubber particles.
  • a carbon nanohorn aggregate; the carbon nanohorn is a single-walled carbon nanohorn or a multi-walled carbon nanohorn, preferably a single-walled carbon nanohorn.
  • the mass ratio of the graphene to the carbon nanohorn is from 20:1 to 1:1, preferably from 5:1 to 5:2.
  • the composite material has a porosity (pore volume) of more than 0.08 cm 3 /g, preferably more than 0.1 cm 3 /g.
  • the composite material has a hierarchical pore structure, which is preferably a microporous and mesoporous.
  • the mesopores have a pore diameter of from 2 to 50 nm, preferably from 2 to 20 nm, more preferably from 2 to 5 nm.
  • the pores have a pore size between 0.4 and 2 nm, preferably between 0.5 and 1 nm.
  • the composite material is a gel-like structure or a porous structure.
  • the composite material has a specific surface area greater than 100 m 2 /g, preferably greater than 180 m 2 /g.
  • the composite material is a conductive network structure.
  • the present invention also provides a method for preparing the above composite material, characterized in that graphene oxide (or reduced graphene oxide, or graphene, or thin layer graphite) and single-wall carbon nanohorn (or treated with concentrated nitric acid)
  • the single-walled carbon nanohorns are first dispersed in a solvent or water, and then hydrothermally reacted to synthesize a graphene/single-walled carbon nanohorn composite.
  • the solvent is selected from the group consisting of organic solvents, acids, water, and mixtures thereof, preferably acids, water, and mixtures thereof.
  • the organic solvent is selected from the group consisting of toluene, phenol or xylene.
  • the acid solvent is selected from concentrated nitric acid.
  • the single-walled carbon nanohorns are first treated with concentrated nitric acid.
  • the material dispersed in the solvent or water is subjected to ultrasonic dispersion or agitation dispersion treatment.
  • the treated graphene oxide and the single-walled carbon nanohorn form a uniform colloid or suspension.
  • the present invention also provides the use of the above composite material, characterized in that it is used as an electrode material for a supercapacitor, a lithium ion battery, a fuel cell or the like or as an additive for a supercapacitor, a lithium ion battery, a fuel cell or the like.
  • the material has a large capacitance, a high charge and discharge speed, and an increased number of cycles of use.
  • the current graphene (or synthetic graphene) is a two-layer or more layer structure, the distribution of single-walled carbon nano-horn or single-wall carbon nano-angle particles, single-wall carbon nano-horn rubber particles, and single-wall carbon nano-angle aggregates
  • the layering or agglomeration is effectively prevented or reduced between the graphene oxide (or graphene) layers or on the surface thereof, and the specific surface area is large and the void ratio (pore volume) is high. Since the graphene and the single-walled carbon nanohorn are in close contact to form a conductive network structure, the composite has porosity and high electrical conductivity.
  • the porous conductive graphene/single-wall carbon nano-angle composite material synthesized by the technical scheme is suitable for adsorption-desorption of ions, rapid diffusion and migration of ions, rapid diffusion and migration of electrolyte, thereby improving electrochemical performance thereof. It can be well used in energy storage devices such as high performance supercapacitors, lithium ion batteries, and fuel cells.
  • the nanocarbon composite material synthesized by this technology does not contain metal, nano metal or metal oxide, and does not add toxic and harmful chemical reagents during the synthesis process, so it is a non-toxic and harmless environment-friendly process and technology.
  • the above prepared 50 mg of graphene oxide and 10 mg of single-walled carbon nanohorns were dispersed in 30 mL of water at a weight ratio of 5:1, and ultrasonically dispersed for 3 hours to form graphene oxide and single-walled carbon nanohorns in water.
  • a uniform gel or suspension was then transferred to a hydrothermal reactor and hydrothermally reacted at 180 ° C for 18 hours. Reaction junction After the bundle, it is naturally cooled to room temperature.
  • the hydrogel-like product formed by the reaction is immersed in water, and after every 5 minutes, the water is removed, and the gel-like product is soaked in water, and the gel is similar after repeated several times.
  • the product was allowed to stand at room temperature overnight, allowed to dry naturally, to obtain a gel-like (gel) reaction product - graphene / single-wall carbon nano-angle composite. Finally, it is heated to 800 ° C in a tube furnace at a temperature increase rate of 5 ° C per minute under a nitrogen (or argon) flow, and held for 2 hours to obtain a porous conductive graphene / single-wall carbon nano-angle composite material. .
  • the results show that the composite has about 0.6 nm micropores and about 2-12 nm mesopores. It has a gel-like structure or a porous structure and has a nanopore volume of about 0.2 cm 3 /g.
  • the capacitance of the synthesized graphene/single-wall carbon nano-angle composite was as high as 244F/g in 1M KOH solution under rapid charge and discharge, and the composite has good rate performance and its electrochemical performance is special.
  • the above prepared 50 mg of graphene oxide and 20 mg of single-walled carbon nanohorns were dispersed in 30 mL of water at a weight ratio of 2.5:1, and ultrasonically dispersed for 3 hours to form graphene oxide and single-walled carbon nanohorns in water.
  • a uniform gel or suspension was then transferred to a hydrothermal reactor and hydrothermally reacted at 180 ° C for 18 hours. After the reaction was completed, it was naturally cooled to room temperature.
  • the hydrogel-like product formed by the reaction is immersed in water, and after every 5 minutes, the water is removed, and the hydrogel-like reaction product is soaked in water, and the reaction is repeated several times.
  • the resultant was allowed to stand overnight at room temperature and allowed to dry naturally to obtain a gel-like (single-gel) graphene/single-wall carbon nanohorn composite. Finally, it is heated to 800 ° C in a tube furnace at a temperature increase rate of 5 ° C per minute under a nitrogen (or argon) flow, and held for 2 hours to obtain a porous conductive graphene / single-wall carbon nano-angle composite material. .
  • the composite graphene/single-wall carbon nano-angle composite has a low capacitance ratio of about 133 F/g, and the composite has good rate performance, and its electrochemical performance such as electrochemical energy storage performance is superior to that of graphite oxide.
  • graphene oxide or graphite powder or graphite oxide to synthesize graphene oxide
  • reducing graphene oxide and 10-20mg single-wall carbon nanohorn ie, in a weight ratio of 5:1-2.5:1, dispersed in 30mL water, ultrasonic dispersion treatment, making graphene oxide or reducing graphene oxide and single-wall carbon
  • the nanohorns form a uniform colloid or suspension in the water.
  • the colloidal solution or suspension was then transferred to a hydrothermal reactor and hydrothermally reacted at 180 ° C for 18 hours. After the reaction was completed, it was naturally cooled to room temperature.
  • the hydrogel-like product formed by the reaction is immersed in water, and after every 5 minutes, the water is removed, and the hydrogel-like reaction product is soaked in water, and after repeated several times, the water is similar.
  • the reaction product of the gel was allowed to stand overnight at room temperature and allowed to naturally dry to obtain a gel-like (single-gel) graphene/single-wall carbon nanohorn composite. Finally, it is heated to 800 ° C in a tube furnace at a temperature increase rate of 5 ° C per minute under a nitrogen (or argon) flow, and held for 2 hours to obtain a porous conductive graphene / single-wall carbon nano-angle composite material. .

Abstract

提供一种多孔导电石墨烯/碳纳米角复合材料,所述碳纳米角分布于石墨烯片层间或石墨烯片层表面上。还提供所述复合材料的制备方法,及该材料用于超级电容器、锂离子电池等电池材料中的应用。

Description

多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用 技术领域
本发明涉及一种多孔导电石墨烯/碳纳米角复合材料及其制备方法,属于材料、电化学、储能、环保领域。
背景技术
在过去的几十年中,碳材料由于其本身导电性好,比表面积大,化学和机械稳定性好,在电子、化工、机械、环保等领域,尤其是在清洁储能,如电化学储能(如锂离子电池、超级电容器)等方面引起了广泛关注。其中,碳纤维(CNFs)、碳纳米管(CNTs)、石墨烯等碳材料在电极或作为高性能电化学能量存储装置中的重要添加剂方面有广阔的应用前景。例如,石墨烯和碳纳米管的理论比表面积虽然很大,但是,石墨烯的团聚、石墨烯片层叠或碳纳米管束结构堆积、团聚(由相邻层面的范德华力相互作用引起),大大地减少了这些碳材料的比表面积和微孔容积,使其电化学储能(如锂离子电池、超级电容器等)方面的性能降低。此外,在实际应用方面,石墨烯的负载量低,稳定性等也存在较多的问题。据文献报道,为了减少石墨烯片层叠、团聚现象,研究人员开发了褶皱的石墨烯或石墨烯溶胶、凝胶,其电容达180F/g;用碳纳米管支撑在石墨烯片层间或将碳纳米管置入石墨烯片层之间,能获得高达187F/g 的电容量。也有文献报道,将具有赝电容性能的金属以及金属氧化物嵌入石墨烯片层间,可以阻止石墨烯片层的层叠、增加其比表面积和孔容积,达到提高其电容量的目的。但是含有金属以及金属氧化物的电容器,不仅存在性能不稳定、循环次数低、使用寿命短的缺点,还存在有毒和环境污染方面的问题。另据文献报道,采用化学药品分散石墨烯和碳纳米管以及采用化学药品(如水合肼)还原氧化石墨烯,不仅合成成本高、还存在毒性和环境污染问题。
发明内容
本发明旨在解决现有技术的前述问题,提供一种方法简单、环境友好的生产工艺和技术,合成具有多孔的导电石墨烯/碳纳米角复合结构材料。所述复合材料的特征在于碳纳米角分布于石墨烯片层间或者石墨烯片层表面上,有效阻止石墨烯片层的层叠和团聚、形成大量的层次结构孔(包括微孔和介孔)和大比表面积;同时,石墨烯在碳纳米角间起到桥连作用,形成导电网络结构,增加其导电性。该材料用于超级电容器、锂离子电池、燃料电池等电极材料或电化学储能器件上,电容量大、充放电速度快,循环使用次数增多。
本发明通过如下技术方案实现:
一种具有多孔的导电石墨烯/碳纳米角复合材料,其特征在于,所述碳纳米角分布于石墨烯片层间和/或石墨烯片层表面上。
根据本发明,所述石墨烯选自氧化石墨烯、还原氧化石墨烯、石墨烯或薄层石墨。
根据本发明,所述碳纳米角选自碳纳米角、碳纳米角颗粒、碳纳米角胶粒、碳纳米角聚集体或含有纳米孔的碳纳米角、碳纳米角颗粒、碳纳米角胶粒、碳纳米角聚集体;所述碳纳米角为单壁碳纳米角或多壁碳纳米角,优选单壁碳纳米角。
根据本发明,所述石墨烯与碳纳米角的质量比为20:1-1:1,优选5:1-5:2。
根据本发明,所述复合材料的孔隙率(孔容积)为大于0.08cm3/g,优选为大于0.1cm3/g。
根据本发明,所述复合材料具有层次孔结构,所述孔结构优选微孔和介孔。
所述介孔的孔径在2-50nm,优选在2-20nm,更优选为2-5nm。
根据本发明,所述微孔的孔径在0.4-2nm,优选0.5-1nm之间。
根据本发明,所述复合材料为类似凝胶结构或多孔结构。
根据本发明,所述复合材料的比表面积大于100m2/g,优选为大于180m2/g。
根据本发明,所述复合材料为导电网络结构。
本发明还提供一种上述复合材料的制备方法,其特征在于,将氧化石墨烯(或还原氧化石墨烯、或石墨烯、或薄层石墨)和单壁碳纳米角(或经浓硝酸处理过的单壁碳纳米角)先分散在溶剂或水中,再通过水热反应,合成石墨烯/单壁碳纳米角复合材料。
根据本发明,所述溶剂选自有机溶剂、酸、水,及其混合物,优选酸、水,及其混合液。
根据本发明,所述有机溶剂选自甲苯,苯酚或二甲苯。
根据本发明,所述酸溶剂选自浓硝酸。优选地,先用浓硝酸对单壁碳纳米角进行处理。
根据本发明,对分散在溶剂或水中的材料进行超声波分散或搅拌分散处理。优选地,处理后的氧化石墨烯和单壁碳纳米角形成均匀的胶体或悬浮物。
本发明还提供上述复合材料的应用,其特征在于,所述采用用于超级电容器、锂离子电池、燃料电池等电极材料或作为超级电容器、锂离子电池、燃料电池等的添加剂应用。该材料的电容量大、充放电速度快,循环使用次数增多。
由于目前的石墨烯(或者合成石墨烯)为二层或更多层结构,因而单壁碳纳米角或单壁碳纳米角颗粒、单壁碳纳米角胶粒、单壁碳纳米角聚集体分布在氧化石墨烯(或石墨烯)层间或其表面上,有效阻止或减少其层叠、团聚,使其比表面积大、空隙率(孔容积)高。由于石墨烯和单壁碳纳米角紧密接触形成导电的网络结构,该复合材料具有多孔性和高导电性能。通过该技术方案合成的多孔导电性石墨烯/单壁碳纳米角复合材料,适合于离子的吸附-脱附、离子快速扩散和迁移、电解液的快速扩散和迁移,从而提高其电化学性能,可以很好地应用在高性能超级电容器、锂离子电池、燃料电池等储能器件中。该技术合成的纳米碳复合材料不含金属、纳米金属或金属氧化物、合成过程中也不添加有毒和有害的化学试剂,因此是一项无毒无害的环境友好工艺和技术。
附图说明:
图1.石墨烯/单壁碳纳米角复合材料的扫描电镜(SEM)图
图2.石墨烯/单壁碳纳米角复合材料的77K氮气吸附等温线
图3.石墨烯/单壁碳纳米角复合材料在1M KOH溶液中测得的电化学循环伏安曲线(CV)曲线。
具体实施方式
以下结合附图和实施例对本发明作进一步的详细说明。但本领域技术人员了解,本发明的保护范围不仅限于以下实施例。根据本发明公开的内容,本领域技术人员将认识到在不脱离本发明技术方案所给出的技术特征和范围的情况下,对以上所述实施例做出许多变化和修改都属于本发明的保护范围。
实施例1
将50mg单壁碳纳米角(Single wall carbon nanohorns)加入50mL浓硝酸中,在60℃温度下搅拌处理12小时后,分离、用水洗涤,再分离、再用水洗涤,重复2、3次或更多次后,在70℃烘箱中干燥后待用。
事先准备好氧化石墨烯(或石墨粉末或氧化石墨先合成氧化石墨烯)或还原氧化石墨烯待用。
将上述准备好的50mg氧化石墨烯和10mg单壁碳纳米角,即按5:1的重量比,分散在30mL水中,超声波分散处理3小时,使氧化石墨烯和单壁碳纳米角在水中形成均匀的胶体或悬浮物。再将该胶体溶液或悬浮液转入水热反应器中,在180℃温度下进行水热反应18小时。反应结 束后,自然冷却到室温。将反应生成的类似水凝胶(hydrogel)的生成物浸泡在水中,并每隔5分钟后,吸去水分,再加水浸泡该类似凝胶的生成物,重复几次后,将该类似凝胶的生成物在室温下放置一晚上,让其自然干燥,得到类似凝胶(冻胶)的反应生成物—石墨烯/单壁碳纳米角复合材料。最后,将其在氮气(或氩气)流下在管式炉中以每分钟5℃的升温速度,加热至800℃,并保持2小时,即得到多孔导电石墨烯/单壁碳纳米角复合材料。
我们通过水热法合成的多孔导电石墨烯/单壁碳纳米角复合材料,通过一系列结构表征和电化学性能研究,结果表明,该复合材料具有大约0.6nm微孔和大约2-12nm介孔的类似凝胶结构或多孔结构,且其纳米孔容积为大约0.2cm3/g。室温下,在1M KOH溶液中,快速充放电下,测得合成的石墨烯/单壁碳纳米角复合材料的电容高达244F/g,且该复合材料具有良好的倍率性能,其电化学性能特别是电化学储能性能优于氧化石墨烯、还原氧化石墨烯、单壁碳纳米角及其它单壁碳纳米角的复合材料。在10A/g的电流密度下进行恒流充放电,循环1000次还能保持99%的电容量,因此,在高能量密度的储能器件(如超级电容器)、锂离子电池、燃料电池等应用中具有广阔的应用前景。
实施例2
将50mg单壁碳纳米角(Single wall carbon nanohorns)加入50mL浓硝酸中,在60℃温度下搅拌处理12小时后,分离、用水洗涤,再分离、再用水洗涤,重复2、3次或更多次后,在70℃烘箱中干燥后待用。
事先准备好氧化石墨烯(或石墨粉末或氧化石墨先合成氧化石墨烯)或还原氧化石墨烯待用。
将上述准备好的50mg氧化石墨烯和20mg单壁碳纳米角,即按2.5:1的重量比,分散在30mL水中,超声波分散处理3小时,使氧化石墨烯和单壁碳纳米角在水中形成均匀的胶体或悬浮物。再将该胶体溶液或悬浮液转入水热反应器中,在180℃温度下进行水热反应18小时。反应结束后,自然冷却到室温。将反应生成的类似水凝胶(hydrogel)的生成物浸泡在水中,并每隔5分钟后,吸去水分,再加水浸泡该类似水凝胶的反应生成物,重复几次后,将该反应生成物在室温下放置一晚上,让其自然干燥,得到类似凝胶(冻胶)的石墨烯/单壁碳纳米角复合材料。最后,将其在氮气(或氩气)流下在管式炉中以每分钟5℃的升温速度,加热至800℃,并保持2小时,即得到多孔导电石墨烯/单壁碳纳米角复合材料。
我们通过水热法合成的多孔导电石墨烯/单壁碳纳米角复合材料,通过一系列结构表征和电化学性能研究,结果表明,室温下,在1M KOH溶液中,快速充放电下,测得合成的石墨烯/单壁碳纳米角复合材的电容比例1的复合材料低,约为133F/g,该复合材料具有良好的倍率性能,其电化学性能如电化学储能性能优于氧化石墨烯、还原氧化石墨烯、单壁碳纳米角及其它单壁碳纳米角的复合材料。
实施例3
将50mg氧化石墨烯(或石墨粉末或氧化石墨先合成氧化石墨烯) 或还原氧化石墨烯和10-20mg单壁碳纳米角,即按5:1-2.5:1的重量比,分散在30mL水中,超声波分散处理,使氧化石墨烯或还原氧化石墨烯和单壁碳纳米角在水中形成均匀的胶体或悬浮物。再将该胶体溶液或悬浮液转入水热反应器中,在180℃温度下进行水热反应18小时。反应结束后,自然冷却到室温。将反应生成的类似水凝胶(hydrogel)的生成物浸泡在水中,并每隔5分钟后,吸去水分,再加水浸泡该类似水凝胶的反应生成物,重复几次后,将类似水凝胶的反应产物在室温下放置一晚上,让其自然干燥,得到类似凝胶(冻胶)的石墨烯/单壁碳纳米角复合材料。最后,将其在氮气(或氩气)流下在管式炉中以每分钟5℃的升温速度,加热至800℃,并保持2小时,即得到多孔导电石墨烯/单壁碳纳米角复合材料。
我们对水热法合成的石墨烯/单壁碳纳米角复合材料,通过一系列结构表征和电化学性能研究,结果表明,室温下,在1M KOH溶液中,快速充放电下,测得合成的石墨烯/单壁碳纳米角复合材的电容比例1的复合材料低,但是该复合材料具有良好的倍率性能,其电化学性能如电化学储能性能优于氧化石墨烯、还原氧化石墨烯、单壁碳纳米角及其它单壁碳纳米角的复合材料。

Claims (8)

  1. 一种具有多孔的导电石墨烯/碳纳米角复合材料,其特征在于,所述碳纳米角分布于石墨烯片层间或石墨烯片层表面上。
  2. 根据权利要求1所述的复合材料,其中,所述石墨烯选自氧化石墨烯、还原氧化石墨烯、石墨烯、薄层石墨或薄层氧化石墨。
    优选地,所述碳纳米角选自碳纳米角、碳纳米角颗粒、碳纳米角胶粒、碳纳米角聚集体或含有纳米孔的碳纳米角、碳纳米角颗粒、碳纳米角胶粒、碳纳米角聚集体;所述碳纳米角为单壁碳纳米角或多壁碳纳米角,优选单壁碳纳米角。
  3. 根据权利要求1或2的复合材料,其中,所述石墨烯或氧化石墨烯与碳纳米角(或经浓硝酸处理过的碳纳米角)的质量比为20:1-1:1,优选5:1-5:2。
  4. 根据权利要求1-3任一项的复合材料,其特征在于,所述复合材料的孔隙率(孔容积)为大于0.08cm3/g,优选为大于0.1cm3/g。所述复合材料的比表面积为大于100m2/g,优选为大于180m2/g。
    优选地,所述复合材料带有层次结构孔,优选包括微孔和介孔。
    所述介孔的孔径在2-50nm,优选在2-20nm,更优选为2-5nm。
    更优选地,所述微孔的孔径在0.4-2nm,优选0.5-1nm之间。
    还更优选地,所述复合材料为类似凝胶结构或多孔结构。所述复合材料为导电网络结构。
  5. 一种权利要求1-4任一项所述的复合材料的制备方法,其特征在于,将氧化石墨烯(或还原氧化石墨烯、或石墨烯、或薄层石墨、或薄 层氧化石墨)和单壁碳纳米角(或经浓硝酸处理过的碳纳米角)先分散在溶剂或水中,再通过水热反应,合成石墨烯/单壁碳纳米角复合材料。
  6. 根据权利要求5的制备方法,其特征在于,所述溶剂选自有机溶剂、酸、水,及其混合物,优选酸、水,及其混合物。
    优选地,所述有机溶剂选自甲苯,苯酚,二甲苯。
    优选地,所述酸溶剂选自浓硝酸。
  7. 根据权利要求5或6的制备方法,其特征在于,对分散在溶剂或水中的材料进行超声波分散或搅拌分散处理。
    优选地,处理后的氧化石墨烯或还原氧化石墨烯或石墨烯和单壁碳纳米角(或经浓硝酸处理过的碳纳米角)在溶剂或水中形成均匀的胶体或悬浮物。
  8. 权利要求1-4任一项所述的复合材料的应用,其特征在于,所述应用用于超级电容器、锂离子电池、燃料电池等电极材料或超级电容器、锂离子电池、燃料电池的添加剂。
PCT/CN2015/077324 2015-04-23 2015-04-23 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用 WO2016169034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/077324 WO2016169034A1 (zh) 2015-04-23 2015-04-23 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/077324 WO2016169034A1 (zh) 2015-04-23 2015-04-23 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2016169034A1 true WO2016169034A1 (zh) 2016-10-27

Family

ID=57143732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077324 WO2016169034A1 (zh) 2015-04-23 2015-04-23 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用

Country Status (1)

Country Link
WO (1) WO2016169034A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311163A (zh) * 2017-07-05 2017-11-03 中国科学院宁波材料技术与工程研究所 一种石墨烯复合多孔炭的制备方法
GB2561911A (en) * 2017-04-28 2018-10-31 Zinergy UK Ltd Electrode comprising carbon additives
CN114639555A (zh) * 2022-02-24 2022-06-17 长春工业大学 一种多孔薄层还原氧化石墨烯、碳纤维柔性电极材料及其制备方法
CN115083794A (zh) * 2022-04-29 2022-09-20 武汉工程大学 一种石墨烯@m(oh)2/c-n超级电容器复合材料及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482076A (zh) * 2009-08-03 2012-05-30 仁济大学校产学协力团 新型结构的碳纳米复合体及其制造方法
CN103515627A (zh) * 2012-06-19 2014-01-15 北京大学 一种氮杂化碳纳米角-石墨纳米复合材料及其制备方法与应用
CN103508449A (zh) * 2012-06-29 2014-01-15 中国科学院合肥物质科学研究院 修饰有金属纳米粒子的石墨烯复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482076A (zh) * 2009-08-03 2012-05-30 仁济大学校产学协力团 新型结构的碳纳米复合体及其制造方法
CN103515627A (zh) * 2012-06-19 2014-01-15 北京大学 一种氮杂化碳纳米角-石墨纳米复合材料及其制备方法与应用
CN103508449A (zh) * 2012-06-29 2014-01-15 中国科学院合肥物质科学研究院 修饰有金属纳米粒子的石墨烯复合材料的制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561911A (en) * 2017-04-28 2018-10-31 Zinergy UK Ltd Electrode comprising carbon additives
CN107311163A (zh) * 2017-07-05 2017-11-03 中国科学院宁波材料技术与工程研究所 一种石墨烯复合多孔炭的制备方法
CN114639555A (zh) * 2022-02-24 2022-06-17 长春工业大学 一种多孔薄层还原氧化石墨烯、碳纤维柔性电极材料及其制备方法
CN114639555B (zh) * 2022-02-24 2023-12-08 长春工业大学 一种多孔薄层还原氧化石墨烯、碳纤维柔性电极材料及其制备方法
CN115083794A (zh) * 2022-04-29 2022-09-20 武汉工程大学 一种石墨烯@m(oh)2/c-n超级电容器复合材料及制备方法
CN115083794B (zh) * 2022-04-29 2024-03-26 武汉工程大学 一种石墨烯@m(oh)2/c-n超级电容器复合材料及制备方法

Similar Documents

Publication Publication Date Title
Zheng et al. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors
Xu et al. Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors
Fang et al. Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application
Chen et al. High-performance supercapacitors based on a graphene–activated carbon composite prepared by chemical activation
Peng et al. Nanoarchitectured graphene/CNT@ porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium‐sulfur batteries
Hao et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode
Fan et al. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors
CN104934233B (zh) 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用
Li et al. A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage
Li et al. A MnO2 nanosheet/single-wall carbon nanotube hybrid fiber for wearable solid-state supercapacitors
Wang et al. Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors
He et al. Biomass juncus derived nitrogen-doped porous carbon materials for supercapacitor and oxygen reduction reaction
An et al. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance
Liu et al. Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture
Wang et al. Highly electroconductive mesoporous activated carbon fibers and their performance in the ionic liquid-based electrical double-layer capacitors
Song et al. Cellulose-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitors
Zhang et al. High-performance supercapacitor of macroscopic graphene hydrogels by partial reduction and nitrogen doping of graphene oxide
Wang et al. Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors
Moussa et al. High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge
Huangfu et al. Covalent grafting of p-phenylenediamine molecules onto a “bubble-like” carbon surface for high performance asymmetric supercapacitors
Qian et al. Fabrication of three-dimensional porous graphene–manganese dioxide composites as electrode materials for supercapacitors
Mohapatra et al. Designing binder-free, flexible electrodes for high-performance supercapacitors based on pristine carbon nano-onions and their composite with CuO nanoparticles
WO2016169034A1 (zh) 多孔导电石墨烯/碳纳米角复合材料、制备方法及其应用
Han et al. Three-dimensionally hierarchical porous carbon creating high-performance electrochemical capacitors
Lu et al. Carbon nanotubes/graphitic carbon nitride nanocomposites for all-solid-state supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889523

Country of ref document: EP

Kind code of ref document: A1