WO2016167204A1 - Optical probe - Google Patents

Optical probe Download PDF

Info

Publication number
WO2016167204A1
WO2016167204A1 PCT/JP2016/061648 JP2016061648W WO2016167204A1 WO 2016167204 A1 WO2016167204 A1 WO 2016167204A1 JP 2016061648 W JP2016061648 W JP 2016061648W WO 2016167204 A1 WO2016167204 A1 WO 2016167204A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
optical
optical fiber
mold
observation light
Prior art date
Application number
PCT/JP2016/061648
Other languages
French (fr)
Japanese (ja)
Inventor
大 佐々木
芳享 為國
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015155591A external-priority patent/JP2016202866A/en
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/566,148 priority Critical patent/US20180087893A1/en
Priority to EP16779995.6A priority patent/EP3284387A4/en
Publication of WO2016167204A1 publication Critical patent/WO2016167204A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to an optical probe used in optical coherence tomography (OCT).
  • OCT optical coherence tomography
  • OCT optical coherence tomography
  • OCT measurement an optical probe is inserted in the vicinity of an object, and observation light is irradiated from the optical probe. Observation light reflected back from the object is acquired by the optical probe.
  • the optical probe is a sheath that transmits the observation light, an optical fiber that is disposed in the sheath and guides the observation light between the proximal end and the distal end of the optical probe, and deflects the observation light to the side of the optical probe.
  • a deflection optical system is provided.
  • the observation light deflected by the deflection optical system passes through the side wall of the sheath.
  • the sheath is cylindrical, the side wall has a shape having no curvature in the longitudinal direction, but has a curvature in a direction perpendicular to the longitudinal direction.
  • JP2004-223269 Patent Document 1
  • JP2011-519692 Patent Document 2
  • JP2009-523581 Patent Document 3
  • JP2008-514383 Patent Document 4
  • WO2008 / 081653 Patent Document 5
  • An object of the present invention is to provide an optical probe that can be easily manufactured and can acquire a high-resolution tomographic image.
  • a proximal end connected to the measurement unit of the OCT apparatus, and a distal end that irradiates observation light, an optical fiber, a condensing optical system, a deflection optical system, a sheath,
  • An optical probe of the present invention including a compensation unit is provided.
  • the optical fiber transmits observation light between the proximal end and the distal end.
  • the condensing optical system is optically connected to the optical fiber at the distal end, and condenses the observation light emitted from the optical fiber.
  • the deflecting optical system is optically connected to the condensing optical system at the distal end, and deflects the observation light emitted from the optical fiber.
  • the sheath extends along the first direction, accommodates the optical fiber, the condensing optical system, and the deflection optical system along the first direction, and has a curved surface portion having a curvature in a cross section orthogonal to the first direction.
  • the observation light deflected by the deflecting optical system is transmitted through the curved surface portion in the second direction intersecting the first direction, and the observation light is emitted from the distal end.
  • the compensation unit is housed in the sheath and extends along the first direction over a range including a part of the optical fiber, the condensing optical system, and the deflection optical system, and is generated when the observation light passes through the curved surface unit. Compensates for optical aberrations.
  • the compensator is configured integrally with the optical fiber, the condensing optical system, and the deflecting optical system by covering a part of the optical fiber, the outer periphery of the condensing optical system, and the deflecting optical system.
  • the compensator is integrated with the optical fiber, the condensing optical system, and the deflecting optical system by covering the outer periphery of the glass fiber, the condensing optical system, and the deflecting optical system that are exposed after the coating is removed from the optical fiber.
  • the condensing optical system is a Grin lens having a diameter larger than that of the glass fiber and smaller than that of the covering portion. It is.
  • the outer edge of the compensating part is located inside the outer edge of the covering part. Is preferred.
  • the refractive index of the compensation unit is larger than the refractive index of the medium filling the space between the compensation unit and the sheath, and the curvature of the portion through which the observation light passes through the compensation unit is transmitted by the observation light through the compensation unit. It is preferable that the curvature is smaller than the curvature of the portion other than the portion to be performed.
  • the compensation unit faces the first mold part including a part extending in the first direction and transmitting the observation light, and the part extending in the first direction and transmitting the observation light.
  • a second mold part that does not include a transparent part, and the first mold part and the second mold part are perpendicular to a plane extending between the first direction and the second direction, and are parallel to the first direction.
  • the center of the optical fiber may be on the second mold part side of the boundary surface within the cross section orthogonal to the first direction.
  • the compensation unit may include a convex part that protrudes from the outer periphery of the compensation unit toward the sheath in part along the first direction.
  • a method for producing the optical probe of the present invention is provided.
  • a first mold that forms a first mold part including a part that extends in the first direction and transmits observation light in the compensation part is opposed to the first mold part adjacent to the first mold part.
  • a space is determined by combining a second mold that forms a second mold part that does not include a portion through which light is transmitted, and a part of the optical fiber, a condensing optical system, and a deflecting optical system are disposed inside the space,
  • Each step includes filling the resin inside the space and curing.
  • the first mold is so arranged that the center of the optical fiber is on the second mold side of the boundary surface between the first mold part and the second mold part in the cross section orthogonal to the first direction.
  • the second mold may be divided.
  • an optical probe that is easy to manufacture and that can acquire a high-resolution tomographic image.
  • FIG. 1 is a conceptual diagram of an OCT apparatus including an optical probe according to an embodiment of the present invention.
  • FIG. 2A is a YZ sectional view of the distal end of the optical probe in FIG. 2B is a front view of the glass fiber, the covering portion, the mold portion, and the Grind lens viewed from the Z direction at the distal end of the optical probe in FIG.
  • FIG. 3 is a perspective view showing a YZ section of the distal end of the optical probe of FIG.
  • FIG. 4 is a conceptual diagram illustrating the operation of the optical probe of FIG.
  • FIG. 5 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light according to the comparative example.
  • FIG. 6 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light according to the embodiment of the present invention.
  • FIG. 7 is an XZ sectional view of an optical probe according to a modification of the embodiment of the present invention.
  • FIG. 8 is a view for explaining the method of manufacturing the optical probe according to the embodiment of the present invention, and is a front view of the optical fiber and the Grind lens arranged in the mold as viewed from the front end side of the optical fiber.
  • FIG. 9 is a view for explaining an optical probe manufacturing method according to another embodiment of the present invention, and is a front view of an optical fiber and a Grind lens arranged in a mold as viewed from the front end side of the optical fiber. .
  • FIG. 10 is a diagram for explaining an optical probe manufacturing method according to a modification of the embodiment of the present invention, and is a front view of an optical fiber and a Grind lens arranged in a mold as viewed from the front end side of the optical fiber. is there.
  • FIG. 1 is a conceptual diagram of an OCT apparatus 1 including an optical probe 10 according to an embodiment of the present invention.
  • the OCT apparatus 1 includes an optical probe 10 and a measurement unit 30 and acquires an optical coherence tomographic image of the object 3.
  • the optical probe 10 includes a proximal end 10a and a distal end 10b, and a hand piece 16 therebetween.
  • the optical fiber 11 extends from the proximal end 10 a toward the distal end 10 b and is inserted into a through hole 16 ⁇ / b> A in the handpiece 16.
  • the optical probe 10 can grasp the handpiece 16 and insert the distal end 10b into a living body to be observed, and can place the tip of the distal end 10b near the site to be observed.
  • the eyelid measuring unit 30 includes a light source 31, a branching unit 32, a detecting unit 33, a terminal 34, a reflecting mirror 35, an analyzing unit 36, and an output port 37.
  • the light output from the light source 31 is branched into observation light and reference light at the branching section 32.
  • the observation light is output to the proximal end 10a of the optical probe 10, propagates through the optical fiber 11, and is irradiated onto the object 3 from the distal end 10b.
  • the back reflection light generated in response to the observation light irradiation on the eyelid object 3 is incident on the optical fiber 11 again from the distal end 10b and is input to the branching portion 32 from the proximal end 10a.
  • the reference light is emitted from the terminal 34 to the reflecting mirror 35, enters the terminal 34 again, and is input to the branching unit 32.
  • the observation light and the reference light incident on the branch part 32 interfere with each other by being combined at the branch part 32, and the interference light is detected by the detection part 33.
  • the spectrum of the interference light is analyzed by the analysis unit 36, and the distribution of the back reflection efficiency at each point on the internal cross section of the object 3 is calculated. Based on the calculation result, a tomographic image of the object 3 is calculated, and an image signal is output from the output port 37.
  • the mechanism in which the observation light returns to the distal end 10b again via the object 3 includes reflection, refraction, and scattering. However, since these differences are not essential to the present invention, these are collectively referred to as back reflection in this specification for the sake of brevity.
  • the optical fiber 11 includes an optical connector 12 on the proximal end 10 a side, and is optically connected to the measurement unit 30 via the optical connector 12.
  • the OCT apparatus 1 acquires an optical coherence tomographic image of a predetermined range of the object 3 by rotating the optical fiber 11 by rotating the optical connector 12 and scanning the observation light in the circumferential direction.
  • the fluorescent probe 10 includes a support tube 14 that covers the outer periphery of the optical fiber 11 and a jacket tube 15 that covers the outer periphery of the support tube 14 on the proximal end 10 a side from the handpiece 16.
  • the optical fiber 11 and the support tube 14 are fixed to the optical connector 12 and are rotatable with respect to the jacket tube 15.
  • the heel support tube 14 is a metal hollow member, and may be a thin tubular pipe member, or may be a tube formed by twisting fibrous metal to adjust flexibility.
  • the support tube 14 has an inner diameter of, for example, 0.4 to 0.6 mm, and can pass a coated single mode optical fiber having an outer diameter of 0.25 mm.
  • the thickness of the support tube 14 is preferably about 0.3 mm to 0.7 mm. Accordingly, the outer diameter of the support tube is about 1 to 2 mm.
  • the handpiece 16 has a through hole 16A through which the optical fiber 11 is inserted, and the through hole 16A has a first portion 16a, a second portion 16b, and a third portion in order from the proximal end 10a side to the distal end side 10b.
  • a portion 16c and a fourth portion 16d are provided.
  • the first portion 16 a is a portion that fixes the jacket tube 15.
  • the second portion 16b accommodates the optical fiber 11 and the support tube 14 rotatably.
  • the third portion 16c accommodates the optical fiber 11 rotatably.
  • the fourth portion 16d fixes the distal end 10b (a metal tube 17 and a sheath 18 described later) and accommodates the optical fiber 11 in a rotatable manner.
  • FIG. 2A is a YZ sectional view of the distal end 10b of the optical probe 10.
  • FIG. 3 is a perspective view showing a YZ section of the distal end 10b of the optical probe 10.
  • an XYZ orthogonal coordinate system that is set so that the direction in which the optical fiber extends coincides with the Z direction is shown.
  • the distal end 10 b includes an optical fiber 11, a Grin lens 13 optically connected to the optical fiber 11, and a metal tube 17 that covers the optical fiber 11 and the Grin lens 13.
  • a resin sheath 18 covering the metal tube 17 is provided.
  • the optical fiber 11 and the Grin lens 13 are integrated by a mold part 19.
  • the mold part 19 includes a compensation part 19b on the lower surface from which the observation light L is emitted. The configuration and operation of the compensation unit 19b will be described later.
  • the scissors sheath 18 hermetically seals the internal space SP.
  • the internal space SP may be a space or may be filled with a fluid.
  • the outer diameter d1 of the sheath 18 is 1 mm or less, and is preferably smaller than the outer diameter of the support tube 14.
  • the metal tube 17 has a slit SL formed by cutting away from the end in the Z direction.
  • the optical fiber 11 is a single-mode optical fiber, and covers a glass fiber 11a composed of a high refractive index core (not shown) that propagates light and a low refractive index clad (not shown) that surrounds the core, and the glass fiber 11a.
  • a coating 11b is provided.
  • the coating 11 b is removed by a predetermined length at the end on the distal end 10 b side to expose the glass fiber 11 a, and a Grin lens 13 is fused and connected to the tip of the optical fiber 11.
  • the glass fiber 11a and the Grin lens 13 are surrounded by the mold part 19, and the optical fiber 11, the Grin lens 13, and the mold part 19 are integrally configured.
  • the diameters of the glass fiber 11a and the Grin lens 13 in the XY section perpendicular to the optical axis may be equal, or the diameter of the Grin lens is slightly increased (about 1.02 to 1.10 times the diameter of the glass fiber 11a). You can leave it. By providing a difference in diameter, the boundary between the Grin lens 13 and the glass fiber 11a can be easily recognized, so that the length of the Grin lens 13 can be easily managed.
  • the heel mold part 19 is formed by fusing the glass fiber 11a and the Grin lens 13, and then placing the optical fiber 11 in a mold, filling it with resin, and curing it.
  • the outer diameter of the mold part 19 is preferably equal to each other in the outer peripheral part of the glass fiber 11 a and the outer peripheral part of the Grin lens 13. Thereby, the difference of the outer diameter of the glass fiber 11a and the Grind lens 13 is comprised so that it may be absorbed in the mold part 19.
  • FIG. Therefore, the structure of the optical fiber 11, the Grin lens 13, and the mold part 19 that are integrally formed is a structure having good symmetry with respect to the Z direction.
  • the mold part 19 may be made of a resin that transmits the observation light L, or a glass fiber 11a and a Grind lens inside a pipe-shaped member made of a material that transmits the observation light L such as a glass capillary. 13 may be inserted and fixed by bonding.
  • the outer diameter d2 of the mold part 19 is set to be equal to or smaller than the diameter of the covering part 11b.
  • the diameter of the glass fiber 11a is about 0.125 mm
  • the diameter of the covering portion 11b is about 0.25 mm
  • the outer diameter d2 of the mold portion 19 is 0.125 mm.
  • the inner diameter d3 of the metal tube 17 is preferably about 0.3 to 0.5 mm.
  • the mold part 19 is comprised with resin with a small friction coefficient, such as a fluororesin.
  • the 2 (b) is a front view of the glass fiber 11a, the coating 11b, the mold part 19, and the Grin lens 13 at the distal end of the optical probe 10 as viewed from the Z direction.
  • the Grin lens which is a condensing optical system and a deflecting optical system, has a shape that fits within the cross section of the coating.
  • the mold part 19 and the compensation part 19a, which is a part of the mold part 19, are shaped to fit within the cross section of the coating. Thereby, the optical fiber 11, the mold part 19, and the Grin lens 13 which rotate within the far end part 10b have a tapered shape as a whole.
  • the rotational torque when the rotational torque is transmitted to the distal end 10b via the optical fiber 11, it is possible to prevent the tip of the optical fiber 11 from moving out of the Z axis as the rotation axis in the sheath 18, and to efficiently operate.
  • the rotational torque can be transmitted to the deflection optical system.
  • FIG. 4 is a conceptual diagram for explaining the operation of the optical probe 10.
  • the end surface of the Grin lens 13 includes a reflecting surface 13a inclined at an angle ⁇ with respect to the Z axis.
  • the light can be totally reflected and deflected by the refractive index difference between the Grin lens 13 and the internal space SP. Therefore, the Grin lens 13 has a function as a deflection optical system of the present invention.
  • the Grin lens 13 also has a function as a condensing optical system of the present invention, and condenses and emits the light emitted from the core of the optical fiber 11.
  • the Grin lens 13 has a refractive index distribution in which the refractive index n gradually decreases as the distance r from the optical axis extending in the Z direction increases, and the refractive index n is expressed by a quadratic function of the distance r.
  • the refractive index of the Grin lens is rotationally symmetric about the central axis.
  • the light propagated in the fundamental mode of the optical fiber 11 and emitted from the core at the end face and diverged is converged while propagating substantially parallel to the Z direction inside, and deflected by the reflecting surface 13a in the middle of the convergence.
  • the light can be condensed in the vicinity of a certain point outside.
  • the Grin lens 13 that functions as a condensing optical system and a deflecting optical system is used.
  • both functions may be separated into different members. That is, the Grin lens 13 has an end surface orthogonal to the Z axis so as not to have the reflecting surface 13a, and has only a function as a condensing optical system. Then, a member having a function as a deflecting optical system such as a prism having the reflecting surface 13a on the end face may be fixed.
  • the metal pipe 17 has a slit SL formed by cutting out from the end in the Z direction.
  • the sheath 18 and the mold part 19 are made of a material that transmits the observation light L propagating through the optical fiber 11. Thereby, the observation light L propagating through the optical fiber 11 is condensed by the Grin lens 13 and deflected in the Y direction by the reflecting surface 13a, and then the distal end through the internal space SP, the slit SL, and the sheath 18. It enters the object 3 existing on the side of 10b.
  • the angle ⁇ formed by the reflecting surface 13a with respect to the central axis is preferably set to 20 ° or more and less than 45 ° so that the observation light L is emitted with a slight inclination in the Z direction with respect to the Y direction.
  • the fluorescent probe 10 can rotate the optical fiber 11 and the support tube 14 in the jacket tube 15 by rotating the optical connector 12. Further, the rotational torque of the support tube 14 and the optical fiber 11 is transmitted to the optical fiber 11 in the distal end 10 b via the optical fiber 11 held in the through hole of the handpiece 16. Therefore, by rotating the optical connector 12, the optical fiber 11 and the Grin lens 13 can be rotated around the Z axis in the metal tube 17 and the sheath 18 at the distal end 10b.
  • the optical probe 10 can rotate the optical fiber 11 in the metal tube 17 having the slit SL.
  • the observation light scanned onto the object on the side of the optical probe 10 is limited to the opening range R around the Z axis of the slit SL. Thereby, it can suppress that the observation light L is irradiated except the area
  • FIG. 5 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light L according to the comparative example
  • FIG. 6 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light L in this embodiment.
  • the present embodiment is different from the comparative example in that the mold unit 19 includes a compensation unit 19b.
  • the refractive index of the Grinn lens 13 is about 1.45
  • the refractive index of the mold part 19 is about 1.45
  • the refractive index of the internal space SP is about 1.00
  • the refractive index of the sheath 18 is about 1.64
  • the refractive index outside the optical probe 10 is about 1.30.
  • the inclination angle of the reflecting surface 13a is, for example, 35 °.
  • the observation light L is condensed while the beam diameter is enlarged in the process of propagating through the Grin lens 13, and the reflection surface 13a is slightly inclined from the Y direction to the Z direction. Deflected. Further, the light is emitted to the side of the distal end 10 b through the internal space SP, the slit SL, and the sheath 18. Since the Grin lens 13 and the mold part 19 have substantially the same refractive index, the observation light L is hardly refracted at the interface between them.
  • the interface between the mold part 19 and the internal space SP which is an interface having a large refractive index difference
  • the interface between the internal space SP and the sheath 18, and the interface between the sheath 18 and the outside of the optical probe 10 The light is emitted in a direction slightly inclined in the Z direction.
  • the fluorescent fiber 11 and the Grin lens are cylindrical, and the mold part 19 and the sheath 18 are cylindrical.
  • the sheath 18 extends along the Z direction, and has a curved surface portion 18a having a curvature in an XY cross section (a cross section orthogonal to the first direction).
  • the observation light L deflected by the reflecting surface 13a is emitted from the side of the distal end 10b by passing through the curved surface portion 18a. Therefore, in the YZ cross section, the interface between the mold part 19 and the internal space SP, the interface between the internal space SP and the sheath 18, and the interface between the sheath 18 and the outside of the optical probe 10 have no curvature.
  • the focal length dy in the Y direction may be different from the focal length dx in the X direction.
  • the observation light L of the comparative example is condensed at the cross-section arc-shaped interface between the mold portion 19 and the internal space SP, and is diverged at the cross-section arc-shaped interface between the internal space SP and the sheath 18.
  • Light is collected at the interface of the cross-section arc shape with the outside of the optical probe 10.
  • the condensing angle in the XY plane is larger than the condensing angle in the YZ plane, dy> dx
  • the beam shape of the observation light L at the focal position in the Y direction has a long axis in the Z direction. It has an ellipse.
  • the observation light L causes an optical aberration, which causes a reduction in the resolution of a tomographic image by OCT measurement.
  • the mold unit 19 includes a compensation unit 19b.
  • the compensation part 19b is a part including a part through which the observation light L is transmitted in the mold part 19, and the curvature of the compensation part 19b is made smaller than the curvature of the part other than the compensation part 19b.
  • the observation light L is gently condensed at the interface between the compensation unit 19b and the internal space SP in the XY plane, and is diverged at the cross-sectional arc-shaped interface between the internal space SP and the sheath 18, and the sheath 18 and the optical probe 10 is condensed at an interface having a circular arc cross section with the outside.
  • the shape of the compensation unit 19b is not limited to the spherical lens shape, and an aspheric lens shape may be adopted. Moreover, the part which has several different curvature may be included in the compensation part 19b.
  • the compensation unit 19b extends along the Z direction over a range including the glass fiber 11a exposed from the optical fiber 11 and the Grin lens 13. As shown in FIG. In the techniques described in Patent Documents 1 to 5, since a lens structure is provided in the deflecting optical system, there are problems that the processing of the deflecting optical system is costly and alignment with an optical fiber is difficult. By configuring the compensation portion as a structure provided over a wide range, the compensation portion 19b can be formed in the mold portion 19 by an easy processing method such as resin molding or glass capillary adhesion.
  • the optical fiber 11 and the Grin lens 13 are integrally formed by covering the outer periphery of the glass fiber 11a and the Grin lens 13 with the mold unit 19 including the compensation unit 19b.
  • the compensation unit 19b can be positioned with high accuracy with respect to the optical fiber 11 and the Grind lens 13.
  • the mold part 19 covers only the glass fiber 11a, the diameter of the mold part 19 can be prevented from increasing, and consequently the sheath 18 can be prevented from increasing in diameter.
  • the mold part 19 is formed of a glass capillary, the clearance between the optical fiber 11 or the Grind lens and the glass capillary can be reduced. Thereby, it becomes easy to arrange
  • FIG. 7 is an XY sectional view of the distal end 10b of the optical probe according to the modification of the present embodiment.
  • This modification is different from the above-described embodiment in that the mold part 19 includes a convex part 19a.
  • the convex portion 19 a is provided on a part of the mold portion 19 along the Z direction so as to protrude from the outer periphery toward the sheath 18.
  • the convex portion 19 a is preferably formed integrally with the same resin as the mold portion 19 when the mold portion 19 is provided on the outer periphery of the optical fiber 11 and the Grind lens 13.
  • the optical fiber 11 can be disposed at the center position of the sheath 18 by the ridges 19a. That is, when the optical fiber 11 is rotated in the sheath 18 when the optical fiber 11 is rotated about the Z axis, the convex portion 19a remains on the inner periphery of the sheath 18 (the inner periphery of the metal tube 17). ) To restrict the movement of the optical fiber 11. Therefore, the rotational torque can be efficiently transmitted to the deflection optical system.
  • a plurality of ridges 19a are preferably provided in a cross section perpendicular to the axis of the mold part 19.
  • four ridges 19a are provided at intervals of 90 ° or three at intervals of 120 ° in the circumferential direction.
  • it is preferable that a plurality are provided along the Z direction.
  • the optical fiber 11 and the Grind lens 13 can be easily arranged at the center position of the cylindrical sheath 18 by making the heights of the convex portions 19a equal.
  • the height of the convex portion 19 a is preferably set so that the top portion is higher than the coating 11 b and has a slight clearance between the inner diameter of the molded metal tube 17.
  • FIG. 8 is a diagram for explaining an example of a method of manufacturing an optical probe according to the present invention, in which an optical fiber and a Grin lens arranged in a mold are moved in the first direction from the tip of the optical fiber 11 (Grin lens 13). It is the front view seen along (Z direction).
  • a mold part 19 covering a part of the optical fiber or the condensing optical system and the deflection optical system includes a first mold part 19c including a part (compensation part 19b) extending in the first direction and transmitting observation light,
  • a part and the Grin lens 13 are arranged, and a resin is filled into the space around the lens and cured. After that, by removing from the mold, it is possible to obtain the one in which the compensation portion is formed so as to integrally cover a part of the optical fiber 11 and the periphery of the Grin lens 13.
  • the resin is preferably an ultraviolet curable resin, but is not limited thereto. In the method of manufacturing the optical probe according to this example, a discontinuous point is not formed in the compensation unit, and an optical probe that can accurately measure the observation light can be obtained.
  • the size of the compensation unit 19b must be reduced accordingly.
  • the compensation unit 19b by changing the position where the two molds are separated.
  • a line segment connecting the boundary between the first mold part 19c and the second mold part 19d is the optical fiber 11 (Grin) in this cross section.
  • the center of the optical fiber is on the second mold part side of the boundary surface between the first mold part and the second mold part in the cross section orthogonal to the first direction.
  • the compensation part 19b The size (corresponding to the width in the X direction in FIG. 9) can be further increased.
  • the first mold 20a and the second mold 20b are symmetrical with respect to an axis that passes through the center position of the optical fiber 11 (Grin lens 13) and is parallel to the Y axis.
  • the division surface 19e is set, the present invention is not limited to this, and it is sufficient that the division surface does not even cross the compensation unit 19b.
  • the mold for forming the second mold part 19d that does not include the compensation part 19b does not need to be formed as one mold, and may be further divided into two or more.
  • FIG. 10 is a front view of another optical probe viewed along the first direction (Z direction).
  • the difference from the example of FIG. 9 is that a step 19f is formed at the boundary between the first mold part 19c and the second mold part 19d on the outer surface of the compensation part. This step extends along the first direction (Z direction).
  • the oblique surface of the tip of the optical fiber 11 (Grin lens 13) (for example, the portion 13a in FIG. 6) requires high angular accuracy, and therefore measurement of whether a desired angle is obtained. (Inspection) itself is required to be performed with high accuracy. In order to measure with high accuracy, it is important that the reference plane and the reference line that are marks when observed from the outside are easily detected.
  • Such a step is preferably 5 ⁇ m to 30 ⁇ m on one side. This is because if it is too large, the thickness of the second mold part 19d will be too thin as a result, and if it is too small, it will be difficult to recognize it as the reference position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

This optical probe, which can be easily produced and is capable of obtaining high-resolution tomographic images, is equipped with a proximal end connected to an OCT device and a distal end for emitting observation light, and is further equipped with: an optical fiber; a GRIN lens that functions as a light-collecting optical system and as a deflecting optical system and is optically connected to the optical fiber at the distal end; a sheath that has a curved-surface section extending in a first direction and exhibiting curvature in a cross-section perpendicular to the first direction, houses the optical fiber and the GRIN lens in the first direction, and laterally emits the deflected observation light through the curved-surface section; and a compensation unit that is housed in the sheath, extends in the first direction throughout a range including the GRIN lens and part of the optical fiber, and compensates for the optical aberration produced when transmitting the observation light through the curved-surface section.

Description

光プローブOptical probe
  本発明は、光干渉断層撮像(Optical Coherence Tomography:OCT)で使用される光プローブに関するものである。 The present invention relates to an optical probe used in optical coherence tomography (OCT).
  生体等の対象物の断層構造を測定する手法として、光干渉断層撮像(OCT)が知られている。OCT測定では対象物の近傍に光プローブが挿入され、当該光プローブから観察光が照射される。対象物において後方反射された観察光は当該光プローブで取得される。 Optical coherence tomography (OCT) is known as a technique for measuring the tomographic structure of an object such as a living body. In OCT measurement, an optical probe is inserted in the vicinity of an object, and observation light is irradiated from the optical probe. Observation light reflected back from the object is acquired by the optical probe.
  光プローブは、観察光を透過するシースと、シース内に配置され、観察光を光プローブの近位端と遠位端の間で導く光ファイバと、観察光を光プローブの側方に偏向させる偏向光学系を備える。この場合、偏向光学系で偏向された観察光は、シースの側壁を透過する。シースが円筒形状の場合には、当該側壁は長手方向には曲率を有さない形状であるが、長手方向に直交する方向においては曲率を有する。この時、観察光がシースの曲率を有する部分でレンズ効果を受け、観察光のビーム形状が楕円形となってしまい、取得される断層画像の分解能が低下するという問題がある。この問題に対処するために、JP2004-223269(特許文献1)、JP2011-519692(特許文献2)、JP2009-523581(特許文献3)、JP2008-514383(特許文献4)、WO2008/081653(特許文献5)には、偏向光学系にシースにおけるレンズ効果をキャンセルするレンズ構造を設ける技術が開示されている。 The optical probe is a sheath that transmits the observation light, an optical fiber that is disposed in the sheath and guides the observation light between the proximal end and the distal end of the optical probe, and deflects the observation light to the side of the optical probe. A deflection optical system is provided. In this case, the observation light deflected by the deflection optical system passes through the side wall of the sheath. When the sheath is cylindrical, the side wall has a shape having no curvature in the longitudinal direction, but has a curvature in a direction perpendicular to the longitudinal direction. At this time, there is a problem that the observation light receives a lens effect at a portion having the curvature of the sheath, the beam shape of the observation light becomes elliptical, and the resolution of the acquired tomographic image is lowered. To cope with this problem, JP2004-223269 (Patent Document 1), JP2011-519692 (Patent Document 2), JP2009-523581 (Patent Document 3), JP2008-514383 (Patent Document 4), WO2008 / 081653 (Patent Document) 5) discloses a technique in which a lens structure that cancels the lens effect in the sheath is provided in the deflection optical system.
  本発明は、製造が容易で、高分解能な断層画像を取得可能とする光プローブを提供することを目的とする。 An object of the present invention is to provide an optical probe that can be easily manufactured and can acquire a high-resolution tomographic image.
  課題を解決するため、OCT装置の測定部に接続される近位端と、観察光を照射する遠位端とを有し、光ファイバと、集光光学系と、偏向光学系と、シースと、補償部を含む本発明の光プローブが提供される。本発明の光プローブにおいて、光ファイバは、近位端と遠位端との間で観察光を伝送する。集光光学系は、遠位端で光ファイバと光学的に接続されており、光ファイバから出射される観察光を集光する。偏向光学系は、遠位端で集光光学系と光学的に接続されており、光ファイバから出射される観察光を偏向する。シースは、第1方向に沿って延在し、光ファイバと、集光光学系と、偏向光学系を第1方向に沿って収容し、第1方向と直交する断面で曲率を有する曲面部を有し、偏向光学系で偏向された観察光を、第1方向と交差する第2方向に向けて、曲面部を介して透過することによって遠位端から観察光を出射する。補償部は、シースに収容され、光ファイバの一部と集光光学系と偏向光学系を含む範囲に亘って第1方向に沿って延在し、観察光が曲面部を透過する際に生じる光学的収差を補償する。 In order to solve the problem, a proximal end connected to the measurement unit of the OCT apparatus, and a distal end that irradiates observation light, an optical fiber, a condensing optical system, a deflection optical system, a sheath, An optical probe of the present invention including a compensation unit is provided. In the optical probe of the present invention, the optical fiber transmits observation light between the proximal end and the distal end. The condensing optical system is optically connected to the optical fiber at the distal end, and condenses the observation light emitted from the optical fiber. The deflecting optical system is optically connected to the condensing optical system at the distal end, and deflects the observation light emitted from the optical fiber. The sheath extends along the first direction, accommodates the optical fiber, the condensing optical system, and the deflection optical system along the first direction, and has a curved surface portion having a curvature in a cross section orthogonal to the first direction. The observation light deflected by the deflecting optical system is transmitted through the curved surface portion in the second direction intersecting the first direction, and the observation light is emitted from the distal end. The compensation unit is housed in the sheath and extends along the first direction over a range including a part of the optical fiber, the condensing optical system, and the deflection optical system, and is generated when the observation light passes through the curved surface unit. Compensates for optical aberrations.
 本発明の光プローブにおいて、補償部は、光ファイバの一部と集光光学系と偏向光学系の外周を覆うことによって、光ファイバと集光光学系と偏向光学系と一体に構成されていてもよい。この場合、補償部は、光ファイバのうち被覆が除去されて露出したガラスファイバと集光光学系と偏向光学系の外周を覆うことによって、光ファイバと集光光学系と偏向光学系と一体に構成されていてもよい。さらに、集光光学系は、ガラスファイバより大径で、被覆部より小径のGrinレンズであり、補償部の外径は、ガラスファイバの外周と集光光学系の外周において、互いに等しいのが好適である。また、一体化された光ファイバと集光光学系と偏向光学系を偏向光学系側から第1方向に沿って見たとき、補償部の外縁は、被覆部の外縁の内側に位置しているのが好適である。 In the optical probe of the present invention, the compensator is configured integrally with the optical fiber, the condensing optical system, and the deflecting optical system by covering a part of the optical fiber, the outer periphery of the condensing optical system, and the deflecting optical system. Also good. In this case, the compensator is integrated with the optical fiber, the condensing optical system, and the deflecting optical system by covering the outer periphery of the glass fiber, the condensing optical system, and the deflecting optical system that are exposed after the coating is removed from the optical fiber. It may be configured. Further, the condensing optical system is a Grin lens having a diameter larger than that of the glass fiber and smaller than that of the covering portion. It is. Further, when the integrated optical fiber, the condensing optical system, and the deflecting optical system are viewed along the first direction from the deflecting optical system side, the outer edge of the compensating part is located inside the outer edge of the covering part. Is preferred.
 上述の形態のいずれにおいても、補償部の屈折率は、補償部とシースの間を満たす媒質の屈折率より大きく、補償部における観察光が透過する部分の曲率は、補償部における観察光が透過する部分以外の部分の曲率よりも小さいのが好適である。この場合、補償部は、第1方向に延在して観察光が透過する部分を含む第1モールド部と、第1方向に延在して観察光が透過する部分に対向し、観察光が透過する部分を含まない第2モールド部とを備え、第1モールド部と第2モールド部は前記第1方向と前記第2方向とが張る平面に垂直で、前記第1方向に平行な補償部の最大の断面である境界面を挟んで隣接しており、第1方向と直交する断面内において、境界面の第2モールド部側に光ファイバ中心があってもよい。加えて、第1モールド部と第2モールド部との境界部の外面に段差があってもよい。 In any of the above embodiments, the refractive index of the compensation unit is larger than the refractive index of the medium filling the space between the compensation unit and the sheath, and the curvature of the portion through which the observation light passes through the compensation unit is transmitted by the observation light through the compensation unit. It is preferable that the curvature is smaller than the curvature of the portion other than the portion to be performed. In this case, the compensation unit faces the first mold part including a part extending in the first direction and transmitting the observation light, and the part extending in the first direction and transmitting the observation light. A second mold part that does not include a transparent part, and the first mold part and the second mold part are perpendicular to a plane extending between the first direction and the second direction, and are parallel to the first direction. And the center of the optical fiber may be on the second mold part side of the boundary surface within the cross section orthogonal to the first direction. In addition, there may be a step on the outer surface of the boundary between the first mold part and the second mold part.
 さらに、上述の形態いずれにおいても、補償部は、第1方向に沿った一部に、補償部の外周からシースに向けて突出する凸部を備えてもよい。 Furthermore, in any of the above-described embodiments, the compensation unit may include a convex part that protrudes from the outer periphery of the compensation unit toward the sheath in part along the first direction.
 本発明の別の態様として、本発明の光プローブを製造する方法が提供される。この製造方法は、補償部のうち第1方向に延在して観察光が透過する部分を含む第1モールド部を形成する第一金型と、第1モールド部に隣接して対向し、観察光が透過する部分を含まない第2モールド部を形成する第二金型とを組み合わせて空間を確定し、この空間内部に光ファイバの一部と集光光学系と偏向光学系を配置し、空間内部に樹脂を充填し硬化する各工程を含む。 As another aspect of the present invention, a method for producing the optical probe of the present invention is provided. In this manufacturing method, a first mold that forms a first mold part including a part that extends in the first direction and transmits observation light in the compensation part is opposed to the first mold part adjacent to the first mold part. A space is determined by combining a second mold that forms a second mold part that does not include a portion through which light is transmitted, and a part of the optical fiber, a condensing optical system, and a deflecting optical system are disposed inside the space, Each step includes filling the resin inside the space and curing.
 本発明の光プローブの製造方法において、第1方向と直交する断面内において、第1モールド部と第2モールド部との境界面の第2モールド側に光ファイバ中心があるよう、第1金型と、第2金型を分割してもよい。 In the method for manufacturing an optical probe of the present invention, the first mold is so arranged that the center of the optical fiber is on the second mold side of the boundary surface between the first mold part and the second mold part in the cross section orthogonal to the first direction. The second mold may be divided.
  本発明によれば、製造が容易で、高分解能な断層画像を取得可能とする光プローブを提供できる。 According to the present invention, it is possible to provide an optical probe that is easy to manufacture and that can acquire a high-resolution tomographic image.
図1は、本発明の実施形態に係る光プローブを含むOCT装置の概念図である。FIG. 1 is a conceptual diagram of an OCT apparatus including an optical probe according to an embodiment of the present invention.
図2の(a)領域は、図1の光プローブの遠位端のYZ断面図である。図2の(b)領域は、図1の光プローブの遠位端におけるガラスファイバ、被覆部、及び、モールド部、GrinレンズのZ方向から見た正面図である。2A is a YZ sectional view of the distal end of the optical probe in FIG. 2B is a front view of the glass fiber, the covering portion, the mold portion, and the Grind lens viewed from the Z direction at the distal end of the optical probe in FIG.
図3は、図1の光プローブの遠位端のYZ断面を示す斜視図である。FIG. 3 is a perspective view showing a YZ section of the distal end of the optical probe of FIG.
図4は、図1の光プローブの作用を説明する概念図である。FIG. 4 is a conceptual diagram illustrating the operation of the optical probe of FIG.
図5は、比較例に係る観察光の光路を説明するYZ断面図及びXY断面図である。FIG. 5 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light according to the comparative example.
図6は、本発明の実施形態に係る観察光の光路を説明するYZ断面図及びXY断面図である。FIG. 6 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light according to the embodiment of the present invention.
図7は、本発明の実施形態の変形例に係る光プローブのXZ断面図である。FIG. 7 is an XZ sectional view of an optical probe according to a modification of the embodiment of the present invention.
図8は、本発明の実施形態に係る光プローブの製造方法を説明する図であり、金型内に配置された光ファイバとGrinレンズを、光ファイバ先端側から見た正面図である。FIG. 8 is a view for explaining the method of manufacturing the optical probe according to the embodiment of the present invention, and is a front view of the optical fiber and the Grind lens arranged in the mold as viewed from the front end side of the optical fiber.
図9は、本発明の他の実施形態に係る光プローブの製造方法を説明する図であり、金型内に配置された光ファイバとGrinレンズを、光ファイバ先端側から見た正面図である。FIG. 9 is a view for explaining an optical probe manufacturing method according to another embodiment of the present invention, and is a front view of an optical fiber and a Grind lens arranged in a mold as viewed from the front end side of the optical fiber. .
図10は、本発明の実施形態の変形例に係る光プローブの製造方法を説明する図であり、金型内に配置された光ファイバとGrinレンズを、光ファイバ先端側から見た正面図である。FIG. 10 is a diagram for explaining an optical probe manufacturing method according to a modification of the embodiment of the present invention, and is a front view of an optical fiber and a Grind lens arranged in a mold as viewed from the front end side of the optical fiber. is there.
  本発明の実施形態に係る光プローブの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Specific examples of the optical probe according to the embodiment of the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included. In the following description, the same reference numerals are given to the same elements in the description of the drawings, and redundant descriptions are omitted.
  図1は、本発明の実施形態に係る光プローブ10を備えるOCT装置1の概念図である。OCT装置1は光プローブ10と測定部30を備え、対象物3の光干渉断層画像を取得する。光プローブ10は近位端10aと遠位端10bを備え、その中間にハンドピース16を備える。光ファイバ11は近位端10aから遠位端10bに向けて延在し、ハンドピース16内の貫通穴16Aに挿通されている。光プローブ10は、ハンドピース16を把持して遠位端10bを観察対象である生体内に挿入し、遠位端10bの先端を観察対象部位の近くに配置することができる。 FIG. 1 is a conceptual diagram of an OCT apparatus 1 including an optical probe 10 according to an embodiment of the present invention. The OCT apparatus 1 includes an optical probe 10 and a measurement unit 30 and acquires an optical coherence tomographic image of the object 3. The optical probe 10 includes a proximal end 10a and a distal end 10b, and a hand piece 16 therebetween. The optical fiber 11 extends from the proximal end 10 a toward the distal end 10 b and is inserted into a through hole 16 </ b> A in the handpiece 16. The optical probe 10 can grasp the handpiece 16 and insert the distal end 10b into a living body to be observed, and can place the tip of the distal end 10b near the site to be observed.
  測定部30は、光源31と、分岐部32と、検出部33と、端末34と、反射鏡35と、分析部36と、出力ポート37を備える。光源31から出力された光は、分岐部32において観察光と参照光に分岐される。観察光は光プローブ10の近位端10aに出力され、光ファイバ11を伝搬して遠位端10bから対象物3へ照射される。 The eyelid measuring unit 30 includes a light source 31, a branching unit 32, a detecting unit 33, a terminal 34, a reflecting mirror 35, an analyzing unit 36, and an output port 37. The light output from the light source 31 is branched into observation light and reference light at the branching section 32. The observation light is output to the proximal end 10a of the optical probe 10, propagates through the optical fiber 11, and is irradiated onto the object 3 from the distal end 10b.
  対象物3への観察光の照射に応じて生じた後方反射光は遠位端10bから再び光ファイバ11に入射し、近位端10aから分岐部32へ入力される。参照光は端末34から反射鏡35へ出射され、再び端末34に入射し、分岐部32へ入力される。分岐部32に入射した観察光と参照光は分岐部32において結合されることによって干渉し、干渉光が検出部33で検出される。分析部36で干渉光のスペクトルが解析され、対象物3の内部断面の各点における後方反射効率の分布が計算される。その計算結果に基づいて、対象物3の断層画像が計算され、画像信号が出力ポート37から出力される。 The back reflection light generated in response to the observation light irradiation on the eyelid object 3 is incident on the optical fiber 11 again from the distal end 10b and is input to the branching portion 32 from the proximal end 10a. The reference light is emitted from the terminal 34 to the reflecting mirror 35, enters the terminal 34 again, and is input to the branching unit 32. The observation light and the reference light incident on the branch part 32 interfere with each other by being combined at the branch part 32, and the interference light is detected by the detection part 33. The spectrum of the interference light is analyzed by the analysis unit 36, and the distribution of the back reflection efficiency at each point on the internal cross section of the object 3 is calculated. Based on the calculation result, a tomographic image of the object 3 is calculated, and an image signal is output from the output port 37.
  なお、観察光が対象物3を経由して再び遠位端10bに戻るメカニズムとしては、厳密には反射や屈折や散乱がある。しかし、それらの違いは本発明にとっては本質的でないので、簡潔化のために本明細書ではこれらを総称して後方反射と呼ぶ。 Note that strictly speaking, the mechanism in which the observation light returns to the distal end 10b again via the object 3 includes reflection, refraction, and scattering. However, since these differences are not essential to the present invention, these are collectively referred to as back reflection in this specification for the sake of brevity.
  光ファイバ11は近位端10a側に光コネクタ12を備え、光コネクタ12を介して測定部30と光学的に接続されている。OCT装置1は、光コネクタ12を回転させることによって光ファイバ11を回転させ、観察光を周方向に走査することによって、対象物3の所定範囲の光干渉断層画像を取得する。 The optical fiber 11 includes an optical connector 12 on the proximal end 10 a side, and is optically connected to the measurement unit 30 via the optical connector 12. The OCT apparatus 1 acquires an optical coherence tomographic image of a predetermined range of the object 3 by rotating the optical fiber 11 by rotating the optical connector 12 and scanning the observation light in the circumferential direction.
  光プローブ10は、ハンドピース16より近位端10a側において、光ファイバ11の外周を覆うサポートチューブ14と、サポートチューブ14の外周を覆うジャケットチューブ15を備える。光ファイバ11とサポートチューブ14は光コネクタ12に対して固定され、ジャケットチューブ15に対して回転自在にされている。 The fluorescent probe 10 includes a support tube 14 that covers the outer periphery of the optical fiber 11 and a jacket tube 15 that covers the outer periphery of the support tube 14 on the proximal end 10 a side from the handpiece 16. The optical fiber 11 and the support tube 14 are fixed to the optical connector 12 and are rotatable with respect to the jacket tube 15.
  サポートチューブ14は、金属製の中空部材であり、管状の薄いパイプ部材であっても良いし、繊維状の金属を撚りあわせて柔軟性を調整して管状に構成したものであっても良い。サポートチューブ14は、内直径が例えば0.4~0.6mmであり、外直径0.25mmの被覆されたシングルモード光ファイバを内部に挿通可能である。また、光コネクタ12の回転トルクを効率的に遠位端10bに伝達するために、サポートチューブ14の厚みは0.3mm~0.7mm程度であることが好ましい。従って、サポートチューブの外直径は1~2mm程度である。 The heel support tube 14 is a metal hollow member, and may be a thin tubular pipe member, or may be a tube formed by twisting fibrous metal to adjust flexibility. The support tube 14 has an inner diameter of, for example, 0.4 to 0.6 mm, and can pass a coated single mode optical fiber having an outer diameter of 0.25 mm. In order to efficiently transmit the rotational torque of the optical connector 12 to the distal end 10b, the thickness of the support tube 14 is preferably about 0.3 mm to 0.7 mm. Accordingly, the outer diameter of the support tube is about 1 to 2 mm.
  ハンドピース16は光ファイバ11を挿通する貫通穴16Aを有し、貫通穴16Aは近位端10a側から遠位端側10bに向かって順に第1部分16aと、第2部分16bと、第3部分16cと、第4部分16dを備える。第1部分16aは、ジャケットチューブ15を固定する部分である。第2部分16bは、光ファイバ11及びサポートチューブ14を回転自在に収容する。第3部分16cは光ファイバ11を回転自在に収容する。第4部分16dは遠位端10b(後述する金属管17及びシース18)を固定するとともに、光ファイバ11を回転自在に収容する。 The handpiece 16 has a through hole 16A through which the optical fiber 11 is inserted, and the through hole 16A has a first portion 16a, a second portion 16b, and a third portion in order from the proximal end 10a side to the distal end side 10b. A portion 16c and a fourth portion 16d are provided. The first portion 16 a is a portion that fixes the jacket tube 15. The second portion 16b accommodates the optical fiber 11 and the support tube 14 rotatably. The third portion 16c accommodates the optical fiber 11 rotatably. The fourth portion 16d fixes the distal end 10b (a metal tube 17 and a sheath 18 described later) and accommodates the optical fiber 11 in a rotatable manner.
 図2の(a)領域は光プローブ10の遠位端10bのYZ断面図である。図3は光プローブ10の遠位端10bのYZ断面を示す斜視図である。図2の(a)領域、図2の(b)領域、図3中には、光ファイバが延在する方向とZ方向が一致するように設定されたXYZ直交座標系が示されている。 2A is a YZ sectional view of the distal end 10b of the optical probe 10. FIG. 3 is a perspective view showing a YZ section of the distal end 10b of the optical probe 10. As shown in FIG. 2 (a), FIG. 2 (b), and FIG. 3, an XYZ orthogonal coordinate system that is set so that the direction in which the optical fiber extends coincides with the Z direction is shown.
  図2の(a)領域に示すように、遠位端10bは光ファイバ11と、光ファイバ11と光学的に接続されたGrinレンズ13と、光ファイバ11及びGrinレンズ13を覆う金属管17と、金属管17を覆う樹脂製のシース18を備える。光ファイバ11及びGrinレンズ13は、モールド部19によって一体とされている。モールド部19は、観察光Lが出射される下面に、補償部19bを含む。補償部19bの構成及び作用については後述する。 As shown in the region (a) of FIG. 2, the distal end 10 b includes an optical fiber 11, a Grin lens 13 optically connected to the optical fiber 11, and a metal tube 17 that covers the optical fiber 11 and the Grin lens 13. A resin sheath 18 covering the metal tube 17 is provided. The optical fiber 11 and the Grin lens 13 are integrated by a mold part 19. The mold part 19 includes a compensation part 19b on the lower surface from which the observation light L is emitted. The configuration and operation of the compensation unit 19b will be described later.
  シース18は内部空間SPを気密に封止する。内部空間SPは空間とされても良いし、流体が充填されていてもよい。シース18の外径d1は1mm以下とされ、サポートチューブ14の外径よりも小さくされていることが好ましい。金属管17は、端部からZ方向に切り欠かれて形成されたスリットSLを有する。 The scissors sheath 18 hermetically seals the internal space SP. The internal space SP may be a space or may be filled with a fluid. The outer diameter d1 of the sheath 18 is 1 mm or less, and is preferably smaller than the outer diameter of the support tube 14. The metal tube 17 has a slit SL formed by cutting away from the end in the Z direction.
  光ファイバ11はシングルモード光ファイバであり、光を伝搬する高屈折率のコア(図示しない)及びコアを包囲する低屈折率のクラッド(図示しない)からなるガラスファイバ11aと、ガラスファイバ11aを覆う被覆11bを備える。光ファイバ11は、遠位端10b側の端部において被覆11bが所定長さだけ除去されガラスファイバ11aが露出しており、その先端にGrinレンズ13が融着接続されている。ガラスファイバ11aとGrinレンズ13は、モールド部19に包囲されており、光ファイバ11、Grinレンズ13及びモールド部19は一体に構成されている。 The optical fiber 11 is a single-mode optical fiber, and covers a glass fiber 11a composed of a high refractive index core (not shown) that propagates light and a low refractive index clad (not shown) that surrounds the core, and the glass fiber 11a. A coating 11b is provided. In the optical fiber 11, the coating 11 b is removed by a predetermined length at the end on the distal end 10 b side to expose the glass fiber 11 a, and a Grin lens 13 is fused and connected to the tip of the optical fiber 11. The glass fiber 11a and the Grin lens 13 are surrounded by the mold part 19, and the optical fiber 11, the Grin lens 13, and the mold part 19 are integrally configured.
  ガラスファイバ11aとGrinレンズ13の光軸に垂直なXY断面における直径は等しくても良いし、Grinレンズの直径を若干大きく(ガラスファイバ11aの直径の1.02~1.10倍程度)しておいても良い。直径に差を持たせることにより、Grinレンズ13とガラスファイバ11aの境界を容易に認識できるため、Grinレンズ13の長さを容易に管理できる。 The diameters of the glass fiber 11a and the Grin lens 13 in the XY section perpendicular to the optical axis may be equal, or the diameter of the Grin lens is slightly increased (about 1.02 to 1.10 times the diameter of the glass fiber 11a). You can leave it. By providing a difference in diameter, the boundary between the Grin lens 13 and the glass fiber 11a can be easily recognized, so that the length of the Grin lens 13 can be easily managed.
  モールド部19は、ガラスファイバ11aとGrinレンズ13を融着した後、光ファイバ11を金型内に配置して樹脂を充填し、硬化することによって形成される。モールド部19の外径はガラスファイバ11aの外周部分とGrinレンズ13の外周部分において、互いに等しいことが好ましい。これにより、ガラスファイバ11aとGrinレンズ13の外径の差異が、モールド部19において吸収されるように構成される。従って、一体に構成された光ファイバ11、Grinレンズ13、及びモールド部19の構造が、Z方向を軸として対称性の良い構造となる。これにより、光ファイバにZ方向を軸とする回転が加えられた場合に、効率よく回転トルクを遠位端10bまで伝達することができる。なお、モールド部19は観察光Lを透過する樹脂で構成しても良いし、ガラスキャピラリ等の観察光Lを透過する材料で構成されたパイプ状の部材の内部に、ガラスファイバ11aとGrinレンズ13を挿通して接着固定して構成しても良い。 The heel mold part 19 is formed by fusing the glass fiber 11a and the Grin lens 13, and then placing the optical fiber 11 in a mold, filling it with resin, and curing it. The outer diameter of the mold part 19 is preferably equal to each other in the outer peripheral part of the glass fiber 11 a and the outer peripheral part of the Grin lens 13. Thereby, the difference of the outer diameter of the glass fiber 11a and the Grind lens 13 is comprised so that it may be absorbed in the mold part 19. FIG. Therefore, the structure of the optical fiber 11, the Grin lens 13, and the mold part 19 that are integrally formed is a structure having good symmetry with respect to the Z direction. As a result, when rotation about the Z direction is applied to the optical fiber, the rotational torque can be efficiently transmitted to the distal end 10b. The mold part 19 may be made of a resin that transmits the observation light L, or a glass fiber 11a and a Grind lens inside a pipe-shaped member made of a material that transmits the observation light L such as a glass capillary. 13 may be inserted and fixed by bonding.
  金属管17の内部で光ファイバ11を効率よく回転させるためには、モールド部19の外径d2は、被覆部11bの直径以下にされていることが好ましい。光ファイバがシングルモード光ファイバである場合には、ガラスファイバ11aの直径は約0.125mmであり、被覆部11bの直径は約0.25mmであり、モールド部19の外径d2は0.125mm~0.25mm程度である。この場合には、金属管17の内径d3が0.3~0.5mm程度であることが好ましい。また、モールド部19はフッ素樹脂といった摩擦係数の小さい樹脂で構成されていることが好ましい。 In order to efficiently rotate the optical fiber 11 inside the metal tube 17, it is preferable that the outer diameter d2 of the mold part 19 is set to be equal to or smaller than the diameter of the covering part 11b. When the optical fiber is a single mode optical fiber, the diameter of the glass fiber 11a is about 0.125 mm, the diameter of the covering portion 11b is about 0.25 mm, and the outer diameter d2 of the mold portion 19 is 0.125 mm. About 0.25 mm. In this case, the inner diameter d3 of the metal tube 17 is preferably about 0.3 to 0.5 mm. Moreover, it is preferable that the mold part 19 is comprised with resin with a small friction coefficient, such as a fluororesin.
  図2の(b)領域は、光プローブ10の遠位端におけるガラスファイバ11a、被覆11b、モールド部19、Grinレンズ13のZ方向から見た正面図である。集光光学系及び偏向光学系であるGrinレンズは被覆の断面内に収まる形状とされている。モールド部19とその一部である補償部19aは被覆の断面内に収まる形状とされている。これにより、遠端部10b内で回転する光ファイバ11、モールド部19、Grinレンズ13が全体として先細りの形状となっている。従って、回転トルクが光ファイバ11を介して遠位端10bに伝わった際に、シース18内で光ファイバ11の先端が回転軸であるZ軸から外れて暴れるのを防ぐことができ、効率よく回転トルクを偏向光学系まで伝達することができる。 2 (b) is a front view of the glass fiber 11a, the coating 11b, the mold part 19, and the Grin lens 13 at the distal end of the optical probe 10 as viewed from the Z direction. The Grin lens, which is a condensing optical system and a deflecting optical system, has a shape that fits within the cross section of the coating. The mold part 19 and the compensation part 19a, which is a part of the mold part 19, are shaped to fit within the cross section of the coating. Thereby, the optical fiber 11, the mold part 19, and the Grin lens 13 which rotate within the far end part 10b have a tapered shape as a whole. Therefore, when the rotational torque is transmitted to the distal end 10b via the optical fiber 11, it is possible to prevent the tip of the optical fiber 11 from moving out of the Z axis as the rotation axis in the sheath 18, and to efficiently operate. The rotational torque can be transmitted to the deflection optical system.
  図4は光プローブ10の作用を説明する概念図である。遠位端10bにおいて、Grinレンズ13の端面はZ軸に対して角度θで傾斜した反射面13aを備える。Grinレンズ13の屈折率と内部空間SPの屈折率差により、光を全反射して偏向させることができる。従って、Grinレンズ13は本発明の偏向光学系としての機能を有する。 FIG. 4 is a conceptual diagram for explaining the operation of the optical probe 10. At the distal end 10b, the end surface of the Grin lens 13 includes a reflecting surface 13a inclined at an angle θ with respect to the Z axis. The light can be totally reflected and deflected by the refractive index difference between the Grin lens 13 and the internal space SP. Therefore, the Grin lens 13 has a function as a deflection optical system of the present invention.
  Grinレンズ13は本発明の集光光学系としての機能をも有し、光ファイバ11のコアから出射された光を集光して出射する。Grinレンズ13はZ方向に延びる光軸からの距離rが長いほど屈折率nが次第に小さくなる屈折率分布を有しており、屈折率nは距離rの2次関数で表される。Grinレンズの屈折率は中心軸の周りで回転対称である。これにより、光ファイバ11の基底モードで伝搬され、端面においてコアから出射されて発散された光を、内部でZ方向とほぼ平行に伝搬させながら収斂させ、その収斂の途中で反射面13aによって偏向することで、外部のある点の近傍に集光することができる。 The Grin lens 13 also has a function as a condensing optical system of the present invention, and condenses and emits the light emitted from the core of the optical fiber 11. The Grin lens 13 has a refractive index distribution in which the refractive index n gradually decreases as the distance r from the optical axis extending in the Z direction increases, and the refractive index n is expressed by a quadratic function of the distance r. The refractive index of the Grin lens is rotationally symmetric about the central axis. As a result, the light propagated in the fundamental mode of the optical fiber 11 and emitted from the core at the end face and diverged is converged while propagating substantially parallel to the Z direction inside, and deflected by the reflecting surface 13a in the middle of the convergence. By doing so, the light can be condensed in the vicinity of a certain point outside.
  なお、本実施形態では、集光光学系と偏向光学系の機能を兼ねるGrinレンズ13を用いているが、両機能を異なる部材に分離させても良い。即ち、Grinレンズ13は反射面13aを有しないようにZ軸に直交する端面を有することとし、集光光学系としての機能のみを有することとする。そして、この端面に反射面13aを有するプリズム等の偏向光学系としての機能を有する部材を固定しても良い。 In the present embodiment, the Grin lens 13 that functions as a condensing optical system and a deflecting optical system is used. However, both functions may be separated into different members. That is, the Grin lens 13 has an end surface orthogonal to the Z axis so as not to have the reflecting surface 13a, and has only a function as a condensing optical system. Then, a member having a function as a deflecting optical system such as a prism having the reflecting surface 13a on the end face may be fixed.
  金属管17は、端部からZ方向に切り欠かれて形成されたスリットSLを有する。シース18及びモールド部19は光ファイバ11を伝搬する観察光Lを透過させる材料で構成される。これにより、光ファイバ11を伝搬する観察光Lは、Grinレンズ13で集光しつつ反射面13aでY方向へ偏向された後、内部空間SP、スリットSL、シース18を介して、遠位端10bの側方に存在する対象物3へ入射する。反射面13aが中心軸となす角度θは、20°以上45°未満に設定し、観察光LがY方向に対してZ方向にやや傾斜して出射するようにすることが好ましい。 The metal pipe 17 has a slit SL formed by cutting out from the end in the Z direction. The sheath 18 and the mold part 19 are made of a material that transmits the observation light L propagating through the optical fiber 11. Thereby, the observation light L propagating through the optical fiber 11 is condensed by the Grin lens 13 and deflected in the Y direction by the reflecting surface 13a, and then the distal end through the internal space SP, the slit SL, and the sheath 18. It enters the object 3 existing on the side of 10b. The angle θ formed by the reflecting surface 13a with respect to the central axis is preferably set to 20 ° or more and less than 45 ° so that the observation light L is emitted with a slight inclination in the Z direction with respect to the Y direction.
  光プローブ10は、光コネクタ12を回転させることにより、光ファイバ11とサポートチューブ14をジャケットチューブ15内で軸回転させることができる。また、サポートチューブ14及び光ファイバ11の回転トルクは、ハンドピース16の貫通穴内に保持された光ファイバ11を介して、遠位端10b内の光ファイバ11に伝達される。従って、光コネクタ12を回転させることにより、遠位端10bの金属管17及びシース18内で、光ファイバ11及びGrinレンズ13をZ軸を回転軸として回転させることができる。 The fluorescent probe 10 can rotate the optical fiber 11 and the support tube 14 in the jacket tube 15 by rotating the optical connector 12. Further, the rotational torque of the support tube 14 and the optical fiber 11 is transmitted to the optical fiber 11 in the distal end 10 b via the optical fiber 11 held in the through hole of the handpiece 16. Therefore, by rotating the optical connector 12, the optical fiber 11 and the Grin lens 13 can be rotated around the Z axis in the metal tube 17 and the sheath 18 at the distal end 10b.
  また、光プローブ10はスリットSLを有する金属管17内で、光ファイバ11を軸回転させることができる。これにより、外力がハンドピース16を介してシース18に伝わった際に、シース18が変形して遠位端が回転軸から外方へ暴れるような挙動を示すことを好適に防止できる。また、光プローブ10の側方の対象物へ走査される観察光は、スリットSLのZ軸周りにおける開口範囲Rに限定される。これにより、対象物3の観察したい領域以外に観察光Lが照射されることを抑制でき、予期せぬ部位に損傷が加わることを防止できる。 In addition, the optical probe 10 can rotate the optical fiber 11 in the metal tube 17 having the slit SL. Thereby, when an external force is transmitted to the sheath 18 through the handpiece 16, it is possible to suitably prevent the sheath 18 from being deformed and exhibiting a behavior in which the distal end is exposed outward from the rotation axis. Further, the observation light scanned onto the object on the side of the optical probe 10 is limited to the opening range R around the Z axis of the slit SL. Thereby, it can suppress that the observation light L is irradiated except the area | region which wants to observe the target object 3, and can prevent that an unexpected site | part is damaged.
  図5は比較例に係る観察光Lの光路を説明するYZ断面図及びXY断面図であり、図6は本実施形態における観察光Lの光路を説明するYZ断面図及びXY断面図である。本実施形態では、モールド部19が補償部19bを備える点において、比較例と相違する。その他の構成は共通であり、Grinレンズ13の屈折率は約1.45であり、モールド部19の屈折率は約1.45であり、内部空間SPの屈折率は約1.00であり、シース18の屈折率は約1.64であり、光プローブ10の外部の屈折率は約1.30である。反射面13aの傾斜角は例えば35°である。 FIG. 5 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light L according to the comparative example, and FIG. 6 is a YZ sectional view and an XY sectional view for explaining the optical path of the observation light L in this embodiment. The present embodiment is different from the comparative example in that the mold unit 19 includes a compensation unit 19b. Other configurations are common, the refractive index of the Grinn lens 13 is about 1.45, the refractive index of the mold part 19 is about 1.45, and the refractive index of the internal space SP is about 1.00, The refractive index of the sheath 18 is about 1.64, and the refractive index outside the optical probe 10 is about 1.30. The inclination angle of the reflecting surface 13a is, for example, 35 °.
  図5,6のYZ断面図に示すように、観察光LはGrinレンズ13を伝搬する過程でビーム径が拡大しつつ集光され、反射面13aでY方向からややZ方向に傾斜した方向へ偏向される。更に、内部空間SP、スリットSL、シース18を介して、遠位端10bの側方に出射される。Grinレンズ13とモールド部19の屈折率がほぼ等しいので、両者の界面では観察光Lはほとんど屈折しない。一方、屈折率差の大きい界面であるモールド部19と内部空間SPの界面、及び、内部空間SPとシース18の界面、シース18と光プローブ10の外部との界面で屈折されつつ、Y方向からややZ方向に傾斜した方向へ出射される。 As shown in the YZ cross-sectional views of FIGS. 5 and 6, the observation light L is condensed while the beam diameter is enlarged in the process of propagating through the Grin lens 13, and the reflection surface 13a is slightly inclined from the Y direction to the Z direction. Deflected. Further, the light is emitted to the side of the distal end 10 b through the internal space SP, the slit SL, and the sheath 18. Since the Grin lens 13 and the mold part 19 have substantially the same refractive index, the observation light L is hardly refracted at the interface between them. On the other hand, while being refracted at the interface between the mold part 19 and the internal space SP, which is an interface having a large refractive index difference, the interface between the internal space SP and the sheath 18, and the interface between the sheath 18 and the outside of the optical probe 10, The light is emitted in a direction slightly inclined in the Z direction.
  光ファイバ11、Grinレンズは円柱形状であり、モールド部19、シース18は円筒形である。特に、シース18はZ方向に沿って延在しており、XY断面(第1方向と直交する断面)で曲率を有する曲面部18aを有する。反射面13aで偏向された観察光Lは、曲面部18aを透過することによって遠位端10bの側方から出射される。従って、YZ断面においては、モールド部19と内部空間SPの界面、及び、内部空間SPとシース18の界面、シース18と光プローブ10の外部との界面は曲率を有していない。一方、XY断面においては、モールド部19と内部空間SPの界面、及び、内部空間SPとシース18(曲面部18a)の界面、シース18(曲面部18a)と光プローブ10の外部との界面は曲率を有する。従って、Y方向における焦点距離dyと、X方向における焦点距離dxとが異なることがある。 The fluorescent fiber 11 and the Grin lens are cylindrical, and the mold part 19 and the sheath 18 are cylindrical. In particular, the sheath 18 extends along the Z direction, and has a curved surface portion 18a having a curvature in an XY cross section (a cross section orthogonal to the first direction). The observation light L deflected by the reflecting surface 13a is emitted from the side of the distal end 10b by passing through the curved surface portion 18a. Therefore, in the YZ cross section, the interface between the mold part 19 and the internal space SP, the interface between the internal space SP and the sheath 18, and the interface between the sheath 18 and the outside of the optical probe 10 have no curvature. On the other hand, in the XY cross section, the interface between the mold part 19 and the internal space SP, the interface between the internal space SP and the sheath 18 (curved surface part 18a), and the interface between the sheath 18 (curved surface part 18a) and the outside of the optical probe 10 are Has curvature. Therefore, the focal length dy in the Y direction may be different from the focal length dx in the X direction.
  比較例の観察光Lは、XY面内において、モールド部19と内部空間SPの断面円弧状の界面で集光され、内部空間SPとシース18の断面円弧状の界面で発散され、シース18と光プローブ10の外部との断面円弧状の界面で集光される。この時、XY面内の集光角がYZ面内の集光角より大きいため、dy>dxとなってしまい、Y方向の焦点位置における観察光Lのビーム形状は、Z方向に長軸を有する楕円となる。このように非対称な屈折力を有する経路を通過することによって観察光Lは光学的収差を生じ、OCT測定による断層画像の分解能が低下する要因となる。 In the XY plane, the observation light L of the comparative example is condensed at the cross-section arc-shaped interface between the mold portion 19 and the internal space SP, and is diverged at the cross-section arc-shaped interface between the internal space SP and the sheath 18. Light is collected at the interface of the cross-section arc shape with the outside of the optical probe 10. At this time, since the condensing angle in the XY plane is larger than the condensing angle in the YZ plane, dy> dx, and the beam shape of the observation light L at the focal position in the Y direction has a long axis in the Z direction. It has an ellipse. By passing through a path having an asymmetric refractive power in this way, the observation light L causes an optical aberration, which causes a reduction in the resolution of a tomographic image by OCT measurement.
  本実施形態では、モールド部19が補償部19bを備える。補償部19bはモールド部19のうち観察光Lが透過する部分を含む部分であり、補償部19bの曲率は、補償部19b以外の部分の曲率よりも小さくされている。この場合、観察光Lは、XY面内において、補償部19bと内部空間SPの界面で緩やかに集光され、内部空間SPとシース18の断面円弧状の界面で発散され、シース18と光プローブ10の外部との断面円弧状の界面で集光される。このように、補償部19bの曲率を小さくすることによってdy=dxとなるように観察光Lの焦点位置が調整され、シース18の曲面部18aを透過する際に生じる光学的収差が補償される。従って、XY焦点位置において真円度の高い観察光Lが得られる。なお、補償部19bの形状は球面レンズ形状に限られず、非球面レンズ形状を採用しても良い。また、補償部19b内に複数の異なる曲率を有する部分を含んでいても良い。 In the present embodiment, the mold unit 19 includes a compensation unit 19b. The compensation part 19b is a part including a part through which the observation light L is transmitted in the mold part 19, and the curvature of the compensation part 19b is made smaller than the curvature of the part other than the compensation part 19b. In this case, the observation light L is gently condensed at the interface between the compensation unit 19b and the internal space SP in the XY plane, and is diverged at the cross-sectional arc-shaped interface between the internal space SP and the sheath 18, and the sheath 18 and the optical probe 10 is condensed at an interface having a circular arc cross section with the outside. In this way, the focal position of the observation light L is adjusted so that dy = dx by reducing the curvature of the compensation unit 19b, and optical aberrations that occur when passing through the curved surface portion 18a of the sheath 18 are compensated. . Therefore, the observation light L having a high roundness can be obtained at the XY focal position. The shape of the compensation unit 19b is not limited to the spherical lens shape, and an aspheric lens shape may be adopted. Moreover, the part which has several different curvature may be included in the compensation part 19b.
  また、図2の(a)領域に示すように、補償部19bは光ファイバ11から露出したガラスファイバ11aとGrinレンズ13を含む範囲に亘ってZ方向に沿って延在している。特許文献1~5に記載の技術では、偏向光学系にレンズ構造を設けるので、偏向光学系の加工にコストがかかる他、光ファイバとの位置合わせが難しいという問題があったが、このように広範囲に亘って設けられた構造物として補償部を構成することで、例えば樹脂成形やガラスキャピラリの接着といった、加工の容易な方法によってモールド部19に補償部19bを形成することができる。 2A and 2B, the compensation unit 19b extends along the Z direction over a range including the glass fiber 11a exposed from the optical fiber 11 and the Grin lens 13. As shown in FIG. In the techniques described in Patent Documents 1 to 5, since a lens structure is provided in the deflecting optical system, there are problems that the processing of the deflecting optical system is costly and alignment with an optical fiber is difficult. By configuring the compensation portion as a structure provided over a wide range, the compensation portion 19b can be formed in the mold portion 19 by an easy processing method such as resin molding or glass capillary adhesion.
  本実施形態では特に、補償部19bを含むモールド部19がガラスファイバ11aとGrinレンズ13の外周を覆うことによって、光ファイバ11とGrinレンズ13を一体に構成している。これにより、補償部19bを光ファイバ11やGrinレンズ13に対して高精度に位置決めすることができる。また、モールド部19がガラスファイバ11aのみを覆うことにより、モールド部19の大径化を防ぐことができ、ひいてはシース18の大径化を防ぐことができる。また、例えばモールド部19をガラスキャピラリで構成する場合には、光ファイバ11やGrinレンズとガラスキャピラリの間のクリアランスを小さくできる。これにより、光ファイバ11やGrinレンズをZ軸に沿って直線上に配置することが容易となる。
(変形例)
In the present embodiment, in particular, the optical fiber 11 and the Grin lens 13 are integrally formed by covering the outer periphery of the glass fiber 11a and the Grin lens 13 with the mold unit 19 including the compensation unit 19b. Thereby, the compensation unit 19b can be positioned with high accuracy with respect to the optical fiber 11 and the Grind lens 13. Moreover, since the mold part 19 covers only the glass fiber 11a, the diameter of the mold part 19 can be prevented from increasing, and consequently the sheath 18 can be prevented from increasing in diameter. For example, when the mold part 19 is formed of a glass capillary, the clearance between the optical fiber 11 or the Grind lens and the glass capillary can be reduced. Thereby, it becomes easy to arrange | position the optical fiber 11 and a Grin lens on a straight line along a Z-axis.
(Modification)
  図7は、本実施形態の変形例に係る光プローブの遠位端10bのXY断面図である。本変形例では、モールド部19が凸部19aを備える点で上述の実施形態と相違する。凸部19aはモールド部19のZ方向に沿った一部に、外周からシース18に向けて突出するように設けられている。凸部19aは、光ファイバ11とGrinレンズ13の外周にモールド部19を設ける際に、モールド部19と同じ樹脂で一体に形成することが好ましい。 FIG. 7 is an XY sectional view of the distal end 10b of the optical probe according to the modification of the present embodiment. This modification is different from the above-described embodiment in that the mold part 19 includes a convex part 19a. The convex portion 19 a is provided on a part of the mold portion 19 along the Z direction so as to protrude from the outer periphery toward the sheath 18. The convex portion 19 a is preferably formed integrally with the same resin as the mold portion 19 when the mold portion 19 is provided on the outer periphery of the optical fiber 11 and the Grind lens 13.
  凸部19aによって光ファイバ11をシース18の中心位置に配置することができる。即ち、光ファイバ11にZ軸を回転軸とする回転が加えられた場合に、シース18内で光ファイバ11が暴れたとしても、凸部19aがシース18の内周(金属管17の内周)に当接して光ファイバ11の動きを規制することができる。従って、効率よく回転トルクを偏向光学系まで伝達することができる。 The optical fiber 11 can be disposed at the center position of the sheath 18 by the ridges 19a. That is, when the optical fiber 11 is rotated in the sheath 18 when the optical fiber 11 is rotated about the Z axis, the convex portion 19a remains on the inner periphery of the sheath 18 (the inner periphery of the metal tube 17). ) To restrict the movement of the optical fiber 11. Therefore, the rotational torque can be efficiently transmitted to the deflection optical system.
  凸部19aはモールド部19の軸に垂直な断面内に複数設けられていることが好ましく、例えば周方向に90°間隔で4つ、または、120°間隔で3つ設けられている。また、Z方向に沿って複数設けられていることが好ましい。この場合に、凸部19aの高さを等しくしておくことにより、光ファイバ11やGrinレンズ13を円筒形のシース18の中心位置に容易に配置できる。凸部19aの高さは、頂部が被覆11bより高く、かつ、モールド金属管17の内径との間に僅かにクリアランスを有するように設定されることが好ましい。 A plurality of ridges 19a are preferably provided in a cross section perpendicular to the axis of the mold part 19. For example, four ridges 19a are provided at intervals of 90 ° or three at intervals of 120 ° in the circumferential direction. Moreover, it is preferable that a plurality are provided along the Z direction. In this case, the optical fiber 11 and the Grind lens 13 can be easily arranged at the center position of the cylindrical sheath 18 by making the heights of the convex portions 19a equal. The height of the convex portion 19 a is preferably set so that the top portion is higher than the coating 11 b and has a slight clearance between the inner diameter of the molded metal tube 17.
  図8は、本発明に係る光プローブの製造方法の一例について説明する図であり、金型内に配置された光ファイバとGrinレンズを、光ファイバ11先端(Grinレンズ13)側から第1方向(Z方向)に沿って見た正面図である。光ファイバの一部或いは集光光学系、偏向光学系を覆うモールド部19は、第1方向に延在して観察光が透過する部分(補償部19b)を含む第1モールド部19cと、第1方向に延在して補償部19bに対向し、補償部19bを含まない第2モールド部19dとを備える。 FIG. 8 is a diagram for explaining an example of a method of manufacturing an optical probe according to the present invention, in which an optical fiber and a Grin lens arranged in a mold are moved in the first direction from the tip of the optical fiber 11 (Grin lens 13). It is the front view seen along (Z direction). A mold part 19 covering a part of the optical fiber or the condensing optical system and the deflection optical system includes a first mold part 19c including a part (compensation part 19b) extending in the first direction and transmitting observation light, A second mold portion 19d that extends in one direction, faces the compensation portion 19b, and does not include the compensation portion 19b.
  第1モールド部19cを形成する第1金型(下型)20aと、第2モールド部19dを形成する第2金型(上型)20bを組み合わせて画定される空間部に、光ファイバ11の一部とGrinレンズ13を配置し、その周囲の空間内部に樹脂を充填し硬化させる。その後、型から取り外すことで、光ファイバ11の一部とGrinレンズ13の周囲を一体的に覆うように補償部が形成されたものが得られる。樹脂としては紫外線硬化型のものが好ましいが、これに限られるものではない。本例による光プローブの製造方法では、補償部に不連続点が形成されることがなく、観察光について正確な測定を行うことができる光プローブを得ることができる。 In the space defined by combining the first mold (lower mold) 20a that forms the first mold part 19c and the second mold (upper mold) 20b that forms the second mold part 19d, A part and the Grin lens 13 are arranged, and a resin is filled into the space around the lens and cured. After that, by removing from the mold, it is possible to obtain the one in which the compensation portion is formed so as to integrally cover a part of the optical fiber 11 and the periphery of the Grin lens 13. The resin is preferably an ultraviolet curable resin, but is not limited thereto. In the method of manufacturing the optical probe according to this example, a discontinuous point is not formed in the compensation unit, and an optical probe that can accurately measure the observation light can be obtained.
  樹脂が硬化した後に型から取り外す際、これを容易に行うためには、金型開口部の周辺部分を先広がりにしておくことが必要となる。本願発明に係る光プローブのように最外径に制限がある場合には、その分、補償部19bの大きさを小さくせざるを得ない。 When removing from the mold after the glazing resin is cured, it is necessary to make the peripheral portion of the mold opening widen in order to easily do this. When the outermost diameter is limited as in the optical probe according to the present invention, the size of the compensation unit 19b must be reduced accordingly.
  このとき2つの型を区切る位置を変えることにより、補償部19bの大きさをより大きくすることが可能となる。図9に示すように、第1方向(Z方向)と直交する断面内において第1モールド部19cと第2モールド部19dとの境界部を結ぶ線分が、この断面内における光ファイバ11(Grinレンズ13)中心に相当する位置よりも、補償部19bを含む第1モールド部19cに近い側を通るように、第1金型20aと第2金型20bの分割面19eを設定することで、第2モールド部19d側に比べて第1モールド部19c側のテーパ部を短くすることができる。(この場合、光ファイバ中心は、第1方向と直交する断面内において、第1モールド部と第2モールド部の間の境界面の第2モールド部側にある。)その結果、補償部19bの大きさ(図9ではX方向の幅に対応)をより大きくすることができる。 At this time, it is possible to further increase the size of the compensation unit 19b by changing the position where the two molds are separated. As shown in FIG. 9, in the cross section orthogonal to the first direction (Z direction), a line segment connecting the boundary between the first mold part 19c and the second mold part 19d is the optical fiber 11 (Grin) in this cross section. By setting the dividing surface 19e of the first mold 20a and the second mold 20b so as to pass through the side closer to the first mold part 19c including the compensation part 19b than the position corresponding to the center of the lens 13), The tapered part on the first mold part 19c side can be shortened compared to the second mold part 19d side. (In this case, the center of the optical fiber is on the second mold part side of the boundary surface between the first mold part and the second mold part in the cross section orthogonal to the first direction.) As a result, the compensation part 19b The size (corresponding to the width in the X direction in FIG. 9) can be further increased.
  なお上記の例では、図9中、光ファイバ11(Grinレンズ13)中心位置を通りY軸に平行な軸に対して左右対称となるように第1金型20aと第2金型20bとの分割面19eを設定したが、これに限られるものではなく、分割面が補償部19bを横切りさえしなければよい。また、補償部19bを含まない第2モールド部19d形成用の型は一つの型で形成する必要はなく、更に2つ以上に分割されていても良い。 In the above example, in FIG. 9, the first mold 20a and the second mold 20b are symmetrical with respect to an axis that passes through the center position of the optical fiber 11 (Grin lens 13) and is parallel to the Y axis. Although the division surface 19e is set, the present invention is not limited to this, and it is sufficient that the division surface does not even cross the compensation unit 19b. Further, the mold for forming the second mold part 19d that does not include the compensation part 19b does not need to be formed as one mold, and may be further divided into two or more.
  更に変形例について説明する。図10は第1方向(Z方向)に沿って見た他の光プローブの正面図である。図9の例との違いは、補償部の外面において、第1モールド部19cと第2モールド部19dの境界部分に段差19fが形成されている点である。この段差は第1方向(Z方向)に沿って延在する。  補償部19bに対し、光ファイバ11先端(Grinレンズ13)の斜め面(例えば図6の13aの部分)は高い角度精度が必要であり、そのため、所望の角度が得られているか否かの測定(検査)自体も高い精度で行うことが要求される。高精度で測定するためには、外部から観察した際の目印となる基準面や基準線が検出し易いことが重要である。外面における第1モールド部19cと第2モールド部19dの境界部分に段差19fがあることで、測定(検査)の際の基準線として容易に用いることができ、惹いては測定(検査)精度を上げることができる。 A further modification will be described. FIG. 10 is a front view of another optical probe viewed along the first direction (Z direction). The difference from the example of FIG. 9 is that a step 19f is formed at the boundary between the first mold part 19c and the second mold part 19d on the outer surface of the compensation part. This step extends along the first direction (Z direction). With respect to the compensator 19b, the oblique surface of the tip of the optical fiber 11 (Grin lens 13) (for example, the portion 13a in FIG. 6) requires high angular accuracy, and therefore measurement of whether a desired angle is obtained. (Inspection) itself is required to be performed with high accuracy. In order to measure with high accuracy, it is important that the reference plane and the reference line that are marks when observed from the outside are easily detected. Since there is a step 19f at the boundary between the first mold part 19c and the second mold part 19d on the outer surface, it can be easily used as a reference line for measurement (inspection), and consequently the measurement (inspection) accuracy is improved. Can be raised.
  このような段差は片側5μm~30μmであることが好ましい。大きすぎると結果的に第2モールド部19dの厚みが薄くなりすぎてしまい、小さすぎると基準位置として認識することが困難となるからである。 段 差 Such a step is preferably 5 μm to 30 μm on one side. This is because if it is too large, the thickness of the second mold part 19d will be too thin as a result, and if it is too small, it will be difficult to recognize it as the reference position.

Claims (11)

  1.   OCT装置の測定部に接続される近位端と、観察光を照射する遠位端と、を備える光プローブであって、
      前記近位端と前記遠位端との間で観察光を伝送する光ファイバと、
      前記遠位端で前記光ファイバと光学的に接続されており、前記光ファイバから出射される前記観察光を集光する集光光学系と、
      前記遠位端で前記集光光学系と光学的に接続されており、前記光ファイバから出射される前記観察光を偏向する偏向光学系と、
      第1方向に沿って延在し、前記光ファイバと、前記集光光学系と、前記偏向光学系とを前記第1方向に沿って収容するシースであって、前記第1方向と直交する断面で曲率を有する曲面部を有し、前記偏向光学系で偏向された前記観察光を、前記第1方向と交差する第2方向に向けて、前記曲面部を介して透過することによって前記遠位端から前記観察光を出射するシースと、
      前記シースに収容され、前記光ファイバの一部と前記集光光学系と前記偏向光学系を含む範囲に亘って前記第1方向に沿って延在し、前記観察光が前記曲面部を透過する際に生じる光学的収差を補償する補償部と、
      を備える光プローブ。
    An optical probe comprising a proximal end connected to a measurement unit of an OCT apparatus and a distal end that irradiates observation light,
    An optical fiber for transmitting observation light between the proximal end and the distal end;
    A condensing optical system that is optically connected to the optical fiber at the distal end and collects the observation light emitted from the optical fiber;
    A deflection optical system optically connected to the condensing optical system at the distal end and deflecting the observation light emitted from the optical fiber;
    A sheath extending along the first direction and accommodating the optical fiber, the condensing optical system, and the deflection optical system along the first direction, and a cross section orthogonal to the first direction The distal end of the observation light deflected by the deflection optical system through the curved surface portion in a second direction intersecting the first direction. A sheath for emitting the observation light from the end;
    The observation light is accommodated in the sheath and extends along the first direction over a range including a part of the optical fiber, the condensing optical system, and the deflection optical system, and the observation light passes through the curved surface portion. A compensation unit that compensates for optical aberrations that occur at the time,
    An optical probe.
  2.   前記補償部は、前記光ファイバの一部と前記集光光学系と前記偏向光学系の外周を覆うことによって、前記光ファイバと前記集光光学系と前記偏向光学系と一体に構成されている、
    請求項1に記載の光プローブ。
    The compensation unit is configured integrally with the optical fiber, the condensing optical system, and the deflection optical system by covering a part of the optical fiber, the outer periphery of the condensing optical system, and the deflection optical system. ,
    The optical probe according to claim 1.
  3.   前記光ファイバは、前記シース内において、被覆部と、被覆が除去され露出したガラスファイバを含み、
      前記補償部は、前記ガラスファイバと前記集光光学系と前記偏向光学系の外周を覆うことによって、前記光ファイバと前記集光光学系と前記偏向光学系と一体に構成されている、
    請求項2に記載の光プローブ。
    The optical fiber includes a coating portion and a glass fiber exposed by removing the coating in the sheath,
    The compensation unit is configured integrally with the optical fiber, the condensing optical system, and the deflection optical system by covering the outer periphery of the glass fiber, the condensing optical system, and the deflection optical system.
    The optical probe according to claim 2.
  4.   前記集光光学系は、前記ガラスファイバより大径で、前記被覆部より小径のGrinレンズであり、
      前記補償部の外径は、前記ガラスファイバの外周と前記集光光学系の外周において、互いに等しい、
    請求項3に記載の光プローブ。
    The condensing optical system is a Grin lens having a diameter larger than that of the glass fiber and smaller than that of the covering portion.
    The outer diameter of the compensation unit is equal to each other on the outer periphery of the glass fiber and the outer periphery of the condensing optical system,
    The optical probe according to claim 3.
  5.   一体化された前記光ファイバと前記集光光学系と前記偏向光学系を前記偏向光学系側から前記第1方向に沿って見たとき、
      前記補償部の外縁は、前記被覆部の外縁の内側に位置している、
    請求項3または4に記載の光プローブ。
    When the integrated optical fiber, the condensing optical system, and the deflection optical system are viewed along the first direction from the deflection optical system side,
    The outer edge of the compensation part is located inside the outer edge of the covering part,
    The optical probe according to claim 3 or 4.
  6.   前記補償部の屈折率は、前記補償部と前記シースの間を満たす媒質の屈折率より大きく、  前記補償部における前記観察光が透過する部分の曲率は、
      前記補償部における前記観察光が透過する部分以外の部分の曲率よりも小さい、
    請求項1~5のいずれか一項に記載の光プローブ。
    The refractive index of the compensation unit is larger than the refractive index of the medium filling the space between the compensation unit and the sheath, and the curvature of the portion through which the observation light passes in the compensation unit is
    Smaller than the curvature of the portion other than the portion through which the observation light passes in the compensation unit,
    The optical probe according to any one of claims 1 to 5.
  7.   前記補償部は、前記第1方向に延在して前記観察光が透過する部分を含む第1モールド部と、前記第1方向に延在して前記観察光が透過する部分に対向し、前記観察光が透過する部分を含まない第2モールド部とを備え、
      前記第1モールド部と前記第2モールド部は、前記第1方向と前記第2方向とが張る平面に垂直で、前記第1方向に平行な前記補償部の最大の断面である境界面を挟んで隣接しており、
      前記第1方向と直交する断面内において、前記境界面の第2モールド部側に前記光ファイバ中心がある、請求項6に記載の光プローブ。
    The compensation portion is opposed to a first mold portion including a portion that extends in the first direction and transmits the observation light, and a portion that extends in the first direction and transmits the observation light, A second mold part that does not include a part through which the observation light is transmitted;
    The first mold part and the second mold part sandwich a boundary surface that is perpendicular to a plane extending between the first direction and the second direction and is the largest cross section of the compensation part parallel to the first direction. Are adjacent to each other,
    The optical probe according to claim 6, wherein the center of the optical fiber is on the second mold part side of the boundary surface in a cross section orthogonal to the first direction.
  8.   前記第1モールド部と前記第2モールド部との境界部の外面に段差がある、
    請求項7に記載の光プローブ。
    There is a step on the outer surface of the boundary between the first mold part and the second mold part,
    The optical probe according to claim 7.
  9.   前記補償部は、前記第1方向に沿った一部に、前記補償部の外周から前記シースに向けて突出する凸部を備える、請求項1~8のいずれか一項に記載の光プローブ。 The optical probe according to any one of claims 1 to 8, wherein the compensation portion includes a convex portion protruding from an outer periphery of the compensation portion toward the sheath at a part along the first direction.
  10.   請求項1に記載の光プローブの製造方法であって、
      前記補償部のうち前記第1方向に延在して前記観察光が透過する部分を含む第1モールド部を形成する第1金型と、前記第1モールド部に隣接して対向し、前記観察光が透過する部分を含まない第2モールド部を形成する第2金型とを組み合わせて空間を画定し、
     前記空間内部に前記光ファイバの一部と前記集光光学系と前記偏向光学系を配置し、
      前記空間内部に樹脂を充填し硬化する
    光プローブの製造方法。
    It is a manufacturing method of the optical probe according to claim 1,
    A first mold that forms a first mold part that includes a portion of the compensation part that extends in the first direction and transmits the observation light, and is adjacent to the first mold part so as to face the observation part. A space is defined by combining with a second mold that forms a second mold part that does not include a portion that transmits light,
    Arranging a part of the optical fiber, the condensing optical system and the deflecting optical system inside the space,
    A method of manufacturing an optical probe in which a resin is filled inside the space and cured.
  11.   前記第1方向と直交する断面内において、前記第1モールド部と前記第2モールド部との境界面の前記第2モールド側に前記光ファイバ中心があるよう、前記第1金型と、前記第2金型を分割する、
    請求項10に記載の光プローブの製造方法。
    In the cross section orthogonal to the first direction, the first mold and the first mold so that the optical fiber center is on the second mold side of the boundary surface between the first mold portion and the second mold portion. Divide two molds,
    The manufacturing method of the optical probe of Claim 10.
PCT/JP2016/061648 2015-04-16 2016-04-11 Optical probe WO2016167204A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/566,148 US20180087893A1 (en) 2015-04-16 2016-04-11 Optical probe
EP16779995.6A EP3284387A4 (en) 2015-04-16 2016-04-11 Optical probe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015083897 2015-04-16
JP2015-083897 2015-04-16
JP2015-155591 2015-08-06
JP2015155591A JP2016202866A (en) 2015-04-16 2015-08-06 Optical probe

Publications (1)

Publication Number Publication Date
WO2016167204A1 true WO2016167204A1 (en) 2016-10-20

Family

ID=57126583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061648 WO2016167204A1 (en) 2015-04-16 2016-04-11 Optical probe

Country Status (1)

Country Link
WO (1) WO2016167204A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209995A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Irradiation probe system and irradiation probe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262461A (en) * 1999-02-04 2000-09-26 Univ Hospital Of Cleveland Optical imaging device
JP2008067889A (en) * 2006-09-14 2008-03-27 Pentax Corp Optical coherence tomography probe for linear-scanning endoscope
JP2009510451A (en) * 2005-09-29 2009-03-12 ザ ジェネラル ホスピタル コーポレイション Optical imaging method and apparatus by spectral coding
JP2012229976A (en) * 2011-04-26 2012-11-22 Hoya Corp Optical scanning probe
JP2013202295A (en) * 2012-03-29 2013-10-07 Sumitomo Electric Ind Ltd Optical probe
US20130266259A1 (en) * 2012-03-28 2013-10-10 Corning Incorporated Monolithic beam-shaping optical systems and methods for an oct probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262461A (en) * 1999-02-04 2000-09-26 Univ Hospital Of Cleveland Optical imaging device
JP2009510451A (en) * 2005-09-29 2009-03-12 ザ ジェネラル ホスピタル コーポレイション Optical imaging method and apparatus by spectral coding
JP2008067889A (en) * 2006-09-14 2008-03-27 Pentax Corp Optical coherence tomography probe for linear-scanning endoscope
JP2012229976A (en) * 2011-04-26 2012-11-22 Hoya Corp Optical scanning probe
US20130266259A1 (en) * 2012-03-28 2013-10-10 Corning Incorporated Monolithic beam-shaping optical systems and methods for an oct probe
JP2013202295A (en) * 2012-03-29 2013-10-07 Sumitomo Electric Ind Ltd Optical probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3284387A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209995A1 (en) * 2021-03-30 2022-10-06 古河電気工業株式会社 Irradiation probe system and irradiation probe

Similar Documents

Publication Publication Date Title
JP7202341B2 (en) Optical coherence tomography system
US8967885B2 (en) Stub lens assemblies for use in optical coherence tomography systems
US10816789B2 (en) Optical probes that include optical-correction components for astigmatism correction
US9131850B2 (en) High spatial resolution optical coherence tomography rotation catheter
US8861900B2 (en) Probe optical assemblies and probes for optical coherence tomography
US10234676B1 (en) Optical probes with reflecting components for astigmatism correction
US10606064B2 (en) Optical probes with astigmatism correction
US8857220B2 (en) Methods of making a stub lens element and assemblies using same for optical coherence tomography applications
US20140153864A1 (en) Low cost extended depth of field optical probes
US10806329B2 (en) Optical probes with optical-correction components
US20180177404A1 (en) Gradient Index Lens Assembly-Based Imaging Apparatus, Systems and Methods
US10426326B2 (en) Fiber optic correction of astigmatism
US10162114B2 (en) Reflective optical coherence tomography probe
EP2706388A1 (en) Optical probe
WO2015072309A1 (en) Optical probe for optical coherence tomography and manufacturing method therefor
JP2016202866A (en) Optical probe
US20180112965A1 (en) Optical probe
JP2014094121A (en) Light transmission device, and optical element
WO2016167204A1 (en) Optical probe
JP2014094123A (en) Light transmission device, and optical element
WO2013126485A1 (en) Methods of making a stub lense element and assemblies using same for optical coherence tomography applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15566148

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE