WO2016165269A1 - 一种物体光学特性测量装置 - Google Patents

一种物体光学特性测量装置 Download PDF

Info

Publication number
WO2016165269A1
WO2016165269A1 PCT/CN2015/089377 CN2015089377W WO2016165269A1 WO 2016165269 A1 WO2016165269 A1 WO 2016165269A1 CN 2015089377 W CN2015089377 W CN 2015089377W WO 2016165269 A1 WO2016165269 A1 WO 2016165269A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
led
light
electrical parameter
measuring device
Prior art date
Application number
PCT/CN2015/089377
Other languages
English (en)
French (fr)
Inventor
潘建根
黄英
Original Assignee
杭州远方光电信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510170696.7A external-priority patent/CN104792710B/zh
Priority claimed from CN201520216703.8U external-priority patent/CN204924913U/zh
Application filed by 杭州远方光电信息股份有限公司 filed Critical 杭州远方光电信息股份有限公司
Publication of WO2016165269A1 publication Critical patent/WO2016165269A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the invention relates to the field of object optical property detection, and in particular to an object reflectivity, transmittance and color measuring device.
  • Optical properties measurement is widely used in the quality control of chemical, food, plastic, paint, construction and other industries.
  • Traditional optical characteristics measurement such as color control, is judged by visual observation of the sample by the operator.
  • the judgment result is strongly subjective, and the evaluation result may also vary with time, environment or personnel, resulting in evaluation. There is a greater risk of inaccuracy.
  • the modernization of science and technology has also led to the continuous improvement of the level of optical property measurement. From the previous relying on visual judgment to modern color management with specific instruments, the evaluation results have gradually transitioned from subjective to objective, optical property evaluation. Reliability has been greatly improved.
  • the general object optical characteristic measuring instrument on the market usually adopts a spectrometer as a light measuring device, and the spectral or self-photometric characteristics of the light after the sample is applied are measured by a spectrometer, and the tristimulus values of the object are calculated by using the spectral test data.
  • a spectrometer as a light measuring device
  • the spectral or self-photometric characteristics of the light after the sample is applied are measured by a spectrometer, and the tristimulus values of the object are calculated by using the spectral test data.
  • there are two main types of color measuring devices the first one, which uses two spectrometers, one of which acts as a light measuring device to receive light from the sample, and the other as a monitoring device. The light is reflected and the source changes are monitored to correct the measurement.
  • the light emitted by the sample and the light directly emitted by the light source can be measured through two optical paths, respectively, without interfering with each other.
  • the cost of using two spectrometers is excessive.
  • the instrument is bulky and affects the convenience of measurement.
  • Another common color measuring device uses only one spectrometer, which reduces the cost and reduces the size of the instrument.
  • the present invention aims to provide an optical property measuring device for an object, which can complete the optical characteristic measurement of the sample to be tested only by configuring one light measuring device, and monitor the light source by setting a light source electrical parameter monitoring device.
  • the electrical parameters are changed, and after the light source is stably illuminated, the appropriate time window is selected to turn on the light measuring device for signal acquisition and measurement, and the monitoring result of the light source electrical parameter monitoring device is used to correct the measurement result of the light measuring device.
  • the invention improves the accuracy of measurement while reducing the cost.
  • an optical property measuring device for an object comprising: a light source group, a light measuring device, and a light source electrical parameter monitoring device, wherein the light source group emits light of a specific spectrum and is irradiated to be On the sample, the light measuring device receives the light from the light source group and acts on the sample to be tested, and the light source electrical parameter monitoring device monitors The operating electrical parameters of the light source in the light source group.
  • the invention provides a light source electrical parameter monitoring device for monitoring the variation of electrical parameters during the working process of the light source.
  • the LED light source as an example, in actual measurement, due to thermal drift, voltage or current fluctuation, mechanical vibration or pressure difference, the LED light source characteristics will be attenuated with time, which affects the repeatability or consistency of the test results.
  • the junction temperature of the LED has a significant effect on the light output.
  • the invention can not only monitor the stability of the light source luminescence spectrum, but also use the data obtained by the monitoring to correct the spectral data measured by the measuring device, thereby improving the accuracy of the measurement.
  • the cost since only one light measuring device is provided, the cost can be greatly reduced.
  • the light source group includes at least one LED light source.
  • the existing object optical characteristic measuring device uses a flash lamp, that is, a pulse light source, as a test light source, and performs sampling measurement in one or more pulse time windows by setting a flash or a pulse number before the test, due to the flash measurement process.
  • the pulse width is small and the measurement time is short, so the measurement accuracy cannot be guaranteed very well.
  • the invention selects the LED light source as the test light source, and adopts the direct current drive for the LED light source. In the initial stage of the power supply, the output performance of the LED will change significantly. After a period of time, the output performance change will tend to be stable.
  • a suitable time window turns on the signal acquisition measurement work, which ensures that the measurement is performed in a long time window, which improves the accuracy of the test.
  • the light source group includes at least one LED white light source and one LED independent compensation light source, and the LED white light source and the LED independent light source are combined to emit light to form a desired light to be irradiated onto the sample to be tested.
  • the LED white light source has a full spectrum distribution in the 380-780 nm band, and has the characteristics of high luminous efficiency, rich spectrum, small volume, and easy control and driving. It should be pointed out that for a sample with obvious color selection characteristics, the spectral power distribution of a particular light source cannot match the color characteristics of the measured object, resulting in the measured optical characteristics not conforming to the actual perception of the human eye. That is, it cannot accurately reflect the characteristics of gloss, transmission, reflection, etc.
  • the light source is combined with the white light source to obtain a light source closer to the optical characteristics of the sample to be tested, thereby improving the test accuracy.
  • the spectral sensitivity of the purple region is increased by adding a violet light source while the white light source is irradiated, and the complementary violet light is compared with the sample to be measured under the white light source alone.
  • the light source can more significantly present the optical characteristics of the sample to be tested, thereby obtaining high-accuracy optical characteristic parameters.
  • the complementary light band of the independent complementary light source should cover a band with a lower spectral sensitivity in the independent white light source, so as to achieve the purpose of improving the spectral responsivity of the light to be supplemented.
  • said set of light sources comprises more than one independent narrow wave source, said one or more independent narrow wave sources emitting discrete narrowband spectra, and the combined band spectra of the set of light sources are corrected using narrow band spectra.
  • a combination of a white LED light source and a violet LED light source is selected as the light source group for illumination.
  • the violet light source is used as the illumination source.
  • the spectral response rate outside the remaining bands is zero.
  • Noise or stray light can be considered in these bands. Therefore, when the combination of the white light source and the violet light source is subsequently used as the incident light source, the error caused by the partial noise other than the violet light should be removed from the measured optical characteristic magnitude of the object, thereby further improving the measurement accuracy.
  • the light source group and the corresponding measuring device and the sample to be tested form a d/8 or 8/d or d/0 or 0/d or 45/0 or 0/45 object reflection color measurement geometric condition
  • the transmission color measurement geometry of objects such as d/0 or 0/d or 0/0 to meet the actual measurement needs at present international and domestic.
  • the method further includes a temperature control device disposed on the light source group, and the temperature control device controls the operating temperature of the LED light source according to the relationship between the junction voltage of the LED light source and the junction temperature. Due to the stability factor of the LED light source itself, changes in voltage or frequency, local humidity or other environmental conditions will have a significant impact on the output characteristics of the light source. Therefore, by setting the temperature control device, the junction voltage and junction temperature of the LED light source are utilized. Correlation relationship to achieve control of the operating temperature of the LED light source. It should be noted that the temperature control device can also be used to compensate and adjust the influence of the environmental state change on the junction temperature of the LED.
  • the light source electrical parameter monitoring device is electrically connected to the temperature control device, and the temperature control device controls the operating temperature of the light source by means of cooling or heating according to the light source electrical parameter information measured by the light source electrical parameter monitoring device.
  • the light source electrical parameter monitoring device is electrically connected with the temperature control device, and through the mutual feedback of the two, a stable light source output characteristic can be obtained.
  • the specific method is: a constant current is introduced into the light source group, and the light source electrical parameter monitoring device monitors the light source group.
  • the electrical parameter fluctuations, the light source electrical parameter monitoring device feeds back the measured electrical parameter information to the temperature control device, and the temperature control device adjusts the operating temperature of the light source in the light source group according to the measured result in a cooling or heating manner, and the light source electrical parameter monitoring device monitors again.
  • the electrical parameters of the light source in the light source group fluctuate.
  • the electrical parameter fluctuation of the light source in the light source group tends to be stable, that is, the operating temperature of the LED light source. It tends to be stable, and then the light measuring device is turned on to measure the optical characteristics of the sample to be tested.
  • the feedback adjustment method utilizes the relationship between the junction temperature of the LED and the junction voltage.
  • the data measured by the light measuring device is the optical characteristic measurement data of the object under the steady state of the LED light source. .
  • the optical measurement device can be corrected without using the data measured by the light source electrical parameter monitoring device.
  • the light measuring device turns on the signal acquisition measurement work after the light source of the light source group is lit and stabilized. Since the output performance of the LED is not stable during the initial stage of power-on, after a short period of time, the output performance will tend to be stable. At this time, select a suitable time window in the stationary phase and turn on the light measuring device for signal. Collect measurement work.
  • the invention has an essential difference from the traditional pulse light source measurement.
  • the pulse light source measurement is performed by setting the number of pulses before the test, and the measurement is completed in one or more pulse time windows. Since the pulse width during the measurement is small, the actual measurement time is It is short, so the measurement accuracy cannot be guaranteed very well.
  • the invention can ensure that the measurement is carried out in a long time window, and the test precision is further improved.
  • the light measuring device is a spectroradiometer or a spectroradiometric module, and can measure the spectral information of the sample to be tested, and obtain color information related to the spectral information according to the obtained spectral information, such as the spectrum of the sample to be tested. Reflectance, transmittance, color coordinates, and the like.
  • the light source electrical parameter monitoring device monitors electrical parameters of the light source in the light source group, and derives the actual light emission spectrum of the light source according to the dependence of the light source electrical parameter on the light source emission spectrum, and corrects the measurement of the light measuring device. result.
  • the monitoring parameters of the light source electrical parameter monitoring device also change: when the light source is an LED, the light source electrical parameter monitoring device monitors the current or voltage of the LED; when other types of light sources, such as tungsten lamps, are used The light source electrical parameter monitoring device monitors the electrical power.
  • the light source electrical parameter monitoring device monitors the electrical parameter fluctuation of the light source group, and the electrical parameter obtained by the monitoring can be converted into an optical parameter by using the dependence of the light source electrical parameter on the light source luminescence spectrum, thereby deriving the actual illuminating spectrum of the light source;
  • the device measures the spectrum of the light source after the sample is applied, and the latter is corrected by the former to obtain more accurate measurement results.
  • the light source electrical parameter monitoring device monitors the working electrical parameters of the LED light source in the light source group, according to the LED light source electrical parameter and the LED light source junction temperature and the LED light source.
  • the dependence of the spectrum the actual luminescence spectrum of the LED light source is estimated, and the measurement results of the light measuring device are corrected.
  • the junction temperature and the electrical parameters there is a close relationship between the junction temperature and the electrical parameters.
  • the present invention utilizes a combined LED light source as a light source for detection.
  • the electric parameter electric parameter monitoring device is configured to monitor the fluctuation of the electrical parameters of the detecting light source, and the light source is stabilized. After illuminating, select the appropriate time window to open the signal acquisition and measurement work, and use the monitoring result to correct the data measured by the light measuring device.
  • it can also cooperate with the temperature control device to realize the feedback adjustment mechanism of the temperature control device and the light source electrical parameter control device. Stable output to the LED light source to improve test accuracy. It can be widely applied to the measurement of optical properties of various objects, and has the characteristics of convenient operation, wide application range and high measurement accuracy.
  • Figure 1 is a temperature dependent characteristic curve of white high power LED luminous flux and CCT
  • FIG. 2 is a schematic view of Embodiment 1;
  • Figure 5 is a schematic view of Embodiment 3.
  • Figure 6 is a schematic view of Embodiment 4.
  • Figure 7 is a schematic view of Example 5.
  • 1-light source group 11-LED white light source; 12-LED supplement light source; 2-light measuring device; 3-light source electric parameter monitoring device; Sample to be tested; 5-temperature control device.
  • this embodiment discloses a working principle diagram of an optical property measuring device for an object, which includes a light source group 1, a light measuring device 2, and a light source electrical parameter monitoring device 3.
  • the light source group 1 includes an LED light source, and Constant current drive.
  • a constant current is introduced into the light source group 1, and the light source electrical parameter monitoring device 3 monitors the voltage fluctuation of the light source group 1.
  • the output performance of the LED increases significantly, after a short period of time, The output performance change will tend to be stable.
  • a suitable time window in the smooth phase is selected to turn on the light measuring device 3 to perform signal acquisition and measurement work.
  • the spectral data measured by the light measuring device 2 is corrected by using the data obtained by the monitoring.
  • this embodiment further includes a temperature control device 5.
  • an optical property measuring device for an object includes a light source group 1, a light measuring device 2, a light source electrical parameter monitoring device 3, an integrating sphere and a light trap, and the light source group 1 is composed of four independent light sources.
  • the composition is respectively three independent light sources 12 such as an LED white light source 11, a red LED, a green LED and a blue LED, and the light source group 1 is located in an incident direction with an angle of 8° from the normal of the sample 4 to be tested.
  • the light measuring device 2 is located on the horizontal exit opening of the integrating sphere, and the light source group 1 and the measuring device 2 and the sample 4 to be tested constitute a color measurement geometric condition of 8/d; the light measuring device 2 is a spectral radiometer.
  • the LED white light source 11 in the light source group 1 is turned on separately, or the LED white light source 11 and one or more independent LED supplement light sources 12 are simultaneously turned on, and irradiated onto the sample 4 to be tested, and the reflected light of the sample 4 to be tested is passed through the integrating sphere. After sufficient diffuse reflection, it is received and measured by the light measuring device 2, wherein the specularly reflected light of the sample 4 to be tested is absorbed by a light trap located symmetrically with the direction of the light source group 1 to eliminate the influence of specular reflection.
  • the embodiment further includes a light source electrical parameter monitoring device 3 for monitoring fluctuations in electrical parameters of the individual light sources in the light source group 1. After the measurement is completed, the spectral data measured by the measurement device can be corrected by using the data obtained by the monitoring.
  • the system structure of the embodiment is simple, Compact, test results repeatability and consistency, fast measurement, suitable for industrial production lines and on-site rapid and laboratory measurements.
  • the utility model comprises a light source group 1, a light measuring device 2, a light source electrical parameter monitoring device 3, an integrating sphere and a measured transmission sample 4.
  • the light source group 1 is located at an incident direction of 90° with the horizontal light exit opening of the integrating sphere, and the measured transmission is transmitted.
  • the sample 4 is located on the horizontal exit opening of the integrating sphere, and the light measuring device 2 is located on the optical path after the transmitted sample 4 is measured.
  • the light source electrical parameter monitoring device 3 is arranged to monitor the electrical parameter fluctuation of each independent light source in the light source group 1.
  • this embodiment realizes color measurement of 45/0, and the light source group 1 is composed of one LED white light source 11 and one purple LED supplement light source 12.
  • the light source group 1 is located. In the incident direction with an angle of 45° from the normal of the sample 4, the emitted light is reflected by the sample 4 to be measured and then received by the light measuring device 2 on the normal line of the sample 4 (ie, 0°). measuring.
  • the sample to be tested mainly selects the reflected violet light.
  • the spectral sensitivity of the violet region is increased by supplementing the violet light supplement source 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种物体光学特性测量装置,通过配置光源电参数监测装置(3),监测光源电参数的波动情况,测试时,待光源稳定发光后选择合适的时间窗口开启光测量装置(2)进行信号采集测量工作,并可利用监测结果修正光测量装置(2)测得的数据;同时还可配合温度控制装置(5),通过温度控制装置(5)与光源电参数监测装置(3)的反馈调节机制实现对光源的稳定输出,在降低成本的同时,提高了测试精确度,适用于测量各种物体光学特性。

Description

一种物体光学特性测量装置 【技术领域】
本发明涉及物体光学特性检测领域,具体涉及一种物体反射率、透射率和颜色测量装置。
【背景技术】
日常生产、生活的需要,使得人们常常需要对物体的光学特性进行测量和评估,光学特性测量广泛应用于化工、食品、塑料、涂料、建筑等行业产品的质量控制环节。传统的光学特性测量,如颜色控制是通过操作人员对样本进行目测观察后作出判断,其判断结果带有强烈的主观性,评价结果也会随时间、环境或人员的变动而产生差异,导致评估存在较大的不准确性风险。科学技术的现代化发展,也带动了光学特性测量的水平的不断提高,从以往的依靠目测判断到借助特定的仪器进行现代化的色彩管理,评价结果也从主观性逐渐过渡到客观,光学特性评估的可靠性得到很大的提高。
目前,市场上一般的物体光学特性测量仪器通常采用光谱仪作为光测量装置,通过光谱仪测得经样品作用后光线的光谱或自身光度特性,利用这些光谱测试数据计算求得物体的三刺激值。根据所用光谱仪的数量,常见的颜色测量装置主要有以下两种类型:第一种,采用两个光谱仪,其中一个光谱仪作为光测量装置接收经样品作用后的光线,另一个光谱仪作为监测装置接收光源的光线,并监测光源变动以修正测量结果。通过设置两个光谱仪,经样品作用的光线和光源直接发出的光线通过两个光路分别得以测量,彼此不会干扰,此种装置虽然可获得较高的测量精度,但使用两个光谱仪的成本过高,同时造成仪器的体积庞大,影响测量的便捷性;另一种常见的颜色测量装置只采用一个光谱仪,减少了成本,同时仪器的体积得以缩小,但需通过在光谱仪的内部设置两个光接收通道,这两个光接收通道在一定程度上不可避免的会相互干扰,进而影响测量的准确性。
【发明内容】
针对上述现有技术的不足,本发明旨在提供一种物体光学特性测量装置,仅需配置一个光测量装置即可完成对被测样品的光学特性测量,通过设置光源电参数监控装置,监控光源在工作过程中电参数的变动,并在光源稳定发光后选择合适的时间窗口开启光测量装置进行信号采集测量工作,利用光源电参数监控装置的监测结果以修正光测量装置的测量结果。本发明在降低成本的同时,提高了测量的准确性。
本发明是通过以下技术方案实现的:一种物体光学特性测量装置,其特征在于,包括光源组、光测量装置和光源电参数监测装置,所述的光源组发出特定光谱的光线并照射到被测样品上,光测量装置接收来自光源组并经被测样品作用后的光线,光源电参数监测装置监测 光源组中光源的工作电参数。
本发明通过设置光源电参数监控装置用以监控光源工作过程中电参数的变动。以LED光源为例,在实际测量中,由于热漂移、电压或电流波动、机械振动或气压差异,都会造成LED光源特性随时间发生衰减,影响测试结果的重复性或一致性。从图1中可以看出,LED的结温对光输出有着显著的影响。本发明通过配置光源电参数监控装置,不仅可以监测光源发光光谱的稳定性,还可以利用监测获得的数据校正测量装置测得的光谱数据,提高测量的准确度。此外由于仅配置一个光测量装置,可大幅降低成本。
本发明还可通过以下技术方案进一步限定和完善:
作为一种技术方案,所述的光源组中至少包括一个LED光源。现有的物体光学特性测量设备,多采用闪光灯,也即脉冲光源,作为测试用光源,测试前通过设置闪光或者脉冲次数,在一个或多个脉冲时间窗口内完成采样测量,由于闪光测量过程中的脉冲宽度小,测量时间较短,因而测量精度不能得到很好的保证。本发明选用LED光源作为测试用光源,对LED光源采用直流驱动,在通电的初始阶段,LED的输出性能会显著变化,经过一段时间后,输出性能变化将趋于平稳,此时选择平稳阶段中一个合适的时间窗口开启信号采集测量工作,可保证测量在较长的时间窗口内进行,提高了测试的准确度。
作为一种技术方案,所述的光源组至少包含一个LED白光源和一个LED独立补光源,所述的LED白光源和LED独立补光源组合发光形成所需的光线照射至被测样品上。LED白光源在380-780nm波段内具有全光谱分布,且具有发光效率高、光谱丰富、体积小、易控制驱动等特点。需要指出的是,对于具有明显颜色选择特性的被测样品,某一特定光源的光谱功率分布存在无法与被测物体颜色特性相匹配的情况,导致测得的光学特性与人眼实际感知不相符,即无法准确反映被测样品的光泽、透射、反射等特性,造成测量误差。因此,利用补光源配合白光源发光,获得更接近被测样品光学特性的光源,提高测试准确度。例如选择反射紫光为主的被测样品,测试时,在白光源照射的同时,通过补加紫光光源来增加紫光区域的光谱灵敏度,相比于仅白光源照射下的被测样品,补充的紫光光源可更显著地呈现被测样品的光学特性,从而获得高准确度的光学特性参数。作为优选,所述的独立补光源的补光波段应覆盖独立白光源中光谱灵敏度较低的波段,以实现提高待补光波段光谱响应度的目的。
作为优选,所述的光源组包括一个以上独立窄波源,所述的一个以上独立窄波源发出分立的窄波段光谱,利用窄波段光谱校正光源组的组合波段光谱。例如,选用白光LED光源和紫光LED光源组合作为光源组发光,测量时,首先仅用紫光光源作为发光光源,此时可以认为除紫光光源所在波段,其余波段外的光谱响应率为零,若此时其他波段存在光谱响应率, 则可认为这些波段中存在噪声或杂散光。因而在后续使用白光光源和紫光光源组合作为入射光源时,此时应从测得的物体光学特性量值中除去此紫光以外部分噪声造成的误差,从而进一步提高了测量准确度。
作为优选,所述的光源组和对应的测量装置与被测样品之间构成d/8或8/d或d/0或0/d或45/0或者0/45的物体反射颜色测量几何条件,以及d/0或0/d或0/0等物体透射颜色测量几何条件,以满足目前国际国内的实际测量需求。
作为一种技术方案,还包括温度控制装置,所述的温度控制装置设置在光源组上,所述的温度控制装置根据LED光源结电压与结温的关联关系控制LED光源的工作温度。由于LED光源本身的稳定性因素,电压或频率的变化、局部湿度或其他环境状态的改变都会对光源的输出特性造成明显的影响,因此通过设置温度控制装置,利用LED光源结电压与结温的关联关系,实现对LED光源工作温度的控制。需要指出的是,温度控制装置还可用以补偿和调节由于环境状态变化对LED结温造成的影响。
作为一种技术方案,所述的光源电参数监测装置与温度控制装置电连接,温度控制装置根据光源电参数监测装置测得的光源电参数信息通过制冷或者加热的方式控制光源的工作温度。将光源电参数监测装置与温度控制装置电连接,通过两者的相互反馈,可获得稳定的光源输出特性,具体做法是:向光源组中通入恒流电流,光源电参数监测装置监测光源组的电参数波动,光源电参数监测装置将实测电参数信息反馈至温度控制装置,温度控制装置根据实测结果以制冷或者加热的方式调节光源组中开启光源的工作温度,光源电参数监测装置再次监测调整温度后光源组中光源的电参数波动情况,经过光源电参数监测装置与温度控制装置的多次反馈与调节后,光源组中光源的电参数波动趋于稳定,也即LED光源的工作温度趋于稳定,此时再开启光测量装置对被测样品进行光学特性测量。以LED光源为例,此种反馈调节方式利用的是LED结温与结电压的关联关系,当光源稳定后,光测量装置测得的数据即是LED光源稳定状态照射下的物体光学特性测量数据。相比未设置温度控制装置,此时无需再利用光源电参数监测装置测得的数据对光测量装置进行校正,即可实现准确测量。
作为一种技术方案,所述的光测量装置在待光源组的光源点亮且稳定后开启信号采集测量工作。由于在通电的初始阶段,LED的输出性能不太稳定,经过一段较短的时间后,其输出性能变化将趋于平稳,此时选择平稳阶段中一个合适的时间窗口,开启光测量装置进行信号采集测量工作。本发明与传统的脉冲光源测量有着本质的区别,脉冲光源测量是通过在测试前设置脉冲次数,在一个或多个脉冲时间窗口内完成测量,由于测量过程中的脉冲宽度小,实际测量的时间较短,因而测量精度不能得到很好的保证。本发明可保证测量在较长的时间窗口内进行,测试精度得到进一步的提升。
作为优选,所述的光测量装置为光谱辐射计或者光谱辐射测量模块,可测得被测样品的光谱信息,并根据获得的光谱信息得到与光谱信息相关的颜色信息,如被测样品的光谱反射率、透射率、色坐标等。
作为一种技术方案,所述的光源电参数监测装置监测光源组中光源的电参数,根据光源电参数与光源发光光谱的依赖关系,推算出光源的实际发光光谱,并修正光测量装置的测量结果。所用光源不同时,光源电参数监测装置的监测参数也随之变化:当光源为LED时,光源电参数监测装置的监测的是LED的电流或电压;当采用其他类型的光源,如钨丝灯,光源电参数监测装置的监测的是电功率。光源电参数监测装置监测的是光源组的电参数波动,利用光源电参数与光源发光光谱的依赖关系可将监测获得的电参数转换为光学参数,进而推算出光源的实际发光光谱;而光测量装置测量的是经被测样品作用后的光源的光谱,利用前者对后者进行修正,可获得更为精确的测量结果。
作为优选,当所述的光源组采用LED光源作为检测用光源,所述的光源电参数监测装置监测光源组中LED光源的工作电参数,根据LED光源电参数与LED光源结温以及LED光源发光光谱的依赖关系,推算LED光源的实际发光光谱,并修正光测量装置的测量结果。鉴于LED光源的输出特性,其结温与电参数之间有着密切的联系,通过电参数与光学参数的转换,可推算出LED光源的实际发光光谱,修正光测量装置的测量结果。
综上所述,本发明利用组合LED光源作为检测用光源,在仅设置一个光谱仪作为光测量装置的情况下,通过配置光源电参数监测装置,监测检测用光源的电参数波动情况,待光源稳定发光后选择合适的时间窗口开启信号采集测量工作,并可利用监测结果修正光测量装置测得的数据,同时还可配合温度控制装置,通过温度控制装置与光源电参数控制装置的反馈调节机制实现对LED光源的稳定输出,提高测试精度。可广泛适用于各种物体光学特性的测量,具有操作便捷、应用范围广、测量精度高等特点。
【附图说明】
附图1是白色大功率LED光通量与CCT的温度依赖特性曲线;
附图2是实施例1的示意图;
附图3、4是实施例2的示意图;
附图5是实施例3的示意图;
附图6是实施例4的示意图;
附图7是实施例5的示意图。
1-光源组;11-LED白光源;12-LED补光源;2-光测量装置;3-光源电参数监测装置;4- 被测样品;5-温度控制装置。
【具体实施方式】
实施例1
如图1所示,本实施例公开了一种物体光学特性测量装置的工作原理示意图,包括光源组1、光测量装置2、光源电参数监测装置3,光源组1中包括LED光源,且由恒流驱动。工作时,向光源组1中通入恒流电流,光源电参数监测装置3监测光源组1的电压波动,在通电的初始阶段,LED的输出性能会显著上升,经过一段较短的时间后,输出性能变化将趋于平稳,此时选择平稳阶段中一个合适的时间窗口开启光测量装置3进行信号采集测量工作,测量结束后,利用监测获得的数据修正光测量装置2测得的光谱数据。
实施例2
与实施例1不同的是,本实施例还包括温度控制装置5。如图3和4所示,工作时,向光源组1中通入恒流电流,光源电参数监测装置3监测光源组1的电压波动,并将实测电压信息反馈至温度控制装置5,温度控制装置5根据实测结果调节(加热或制冷)光源组1中开启光源的温度,光源电参数监测装置3再次监测调整温度后光源组1中开启光源的电压波动情况,经过光源电参数监测装置3与温度控制装置5的多次反馈与调节后,光源组1中开启光源的电压波动趋于稳定(VF=VF(0)),此时开启光测量装置2对被测样品4进行光学特性测量。
实施例3
如图5所示,本实施例中公开了一种物体光学特性测量装置,包括光源组1、光测量装置2、光源电参数监测装置3、积分球和光陷阱,光源组1由四个独立光源组成,分别为一个LED白光源11、红色LED、绿色LED和蓝色LED等三个独立补光源12,光源组1位于与被测样品4法线之间夹角为8°的入射方向上,光测量装置2位于积分球的水平出射口上,光源组1和测量装置2与被测样品4构成8/d的颜色测量几何条件;光测量装置2为光谱辐射计。
测量时,单独开启光源组1中LED白光源11,或同时开启LED白光源11和一个或者多个独立LED补光源12,照射到被测样品4上,被测样品4的反射光线经积分球充分漫反射后,被光测量装置2接收、测量,其中被测样品4的镜面反射光线被位于与光源组1所在方向对称的光陷阱吸收,以消除镜面反射的影响。
本实施例还包括用以监测光源组1中各个独立光源电参数波动的光源电参数监测装置3,测量结束后可以利用监测获得的数据校正测量装置测得的光谱数据。本实施例***结构简单、 紧凑,测试结果重复性和一致性高,测量速度快,适用于工业产线及现场快速和实验室测量。实施例4
如图6所示,本实施实现d/0的透射测量。包括光源组1、光测量装置2、光源电参数监测装置3、积分球和被测透射样品4,测量时,光源组1位于与积分球水平出光口呈90°的入射方向上,被测透射样品4位于积分球的水平出射口上,光测量装置2位于被测透射样品4之后的光路上,光源电参数监测装置3设置用以监测光源组1中各个独立光源的电参数波动。实施例5
如图7所示,与实施例4不同的是,本实施例实现45/0的颜色测量,光源组1由一个LED白光源11与一个紫色LED补光源12组成,测量时,光源组1位于与被测样品4法线之间夹角为45°的入射方向上,发出的光线经被测样品4反射后被设置被测样品4法线上(即0°)的光测量装置2接收和测量。
本实施例中,被测样品主要选择反射紫光,测试时,在开启LED白光源11照射的同时,通过补加紫光补光源12来增加紫光区域的光谱灵敏度。
需要强调的是,以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (11)

  1. 一种物体光学特性测量装置,其特征在于,包括光源组(1)、光测量装置(2)和光源电参数监测装置(3),所述的光源组(1)发出特定光谱的光线并照射到被测样品(4)上,光测量装置(2)接收来自光源组(1)并经被测样品(4)作用后的光线,光源电参数监测装置(3)监测光源组(1)中光源的工作电参数。
  2. 如权利要求1所述的物体光学特性测量装置,其特征在于,所述的光源组(1)中至少包括一个LED光源。
  3. 如权利要求2所述的物体光学特性测量装置,其特征在于,所述的光源组(1)至少包含一个LED白光源(11)和一个LED独立补光源(12),所述的LED白光源(11)和LED独立补光源(12)组合发光形成所需的光线照射至被测样品(4)上。
  4. 如权利要求2所述的物体光学特性测量装置,其特征在于,所述的光源组(1)包括一个以上独立窄波源,所述的一个以上独立窄波源发出分立的窄波段光谱,利用窄波段光谱校正光源组(1)的组合波段光谱。
  5. 如权利要求2或3或4所述的物体光学特性测量装置,其特征在于,所述的光源组(1)中的LED光源采用恒流驱动。
  6. 如权利要求1所述的物体光学特性测量装置,其特征在于,还包括温度控制装置(5),所述的温度控制装置(5)设置在光源组(1)上,所述的温度控制装置(5)利用LED光源结电压与结温的关联关系控制LED光源的工作温度。
  7. 如权利要求6所述的物体光学特性测量装置,其特征在于,所述的光源电参数监测装置(3)与温度控制装置(5)电连接,温度控制装置(5)根据光源电参数监测装置(3)测得的光源电参数信息以制冷或者加热的方式控制光源的工作温度。
  8. 如权利要求1所述的物体光学特性测量装置,其特征在于,所述的光测量装置(2)在待光源组(1)的光源点亮且稳定后开启信号采集测量工作。
  9. 如权利要求1所述的物体光学特性测量装置,其特征在于,所述的光测量装置(2)为光谱辐射计或者光谱辐射测量模块。
  10. 如权利要求1所述的物体光学特性测量装置,其特征在于,所述的光源电参数监测装置(3)监测光源组(1)中光源的工作电参数,根据光源电参数与光源发光光谱的依赖关系,推算出光源的实际发光光谱,并修正光测量装置(2)的测量结果。
  11. 如权利要求2或10所述的物体光学特性测量装置,其特征在于,所述的光源电参数监测装置(3)监测光源组(1)中LED光源的工作电参数,根据LED光源电参数与LED光源结温以及LED光源发光光谱的依赖关系,推算LED光源的实际发光光谱,并修正光测量装置(2)的测量结果。
PCT/CN2015/089377 2015-04-13 2015-09-10 一种物体光学特性测量装置 WO2016165269A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510170696.7A CN104792710B (zh) 2015-04-13 2015-04-13 一种物体光学特性测量装置
CN201520216703.8U CN204924913U (zh) 2015-04-13 2015-04-13 一种物体光学特性测量装置
CN201520216703.8 2015-04-13
CN201510170696.7 2015-04-13

Publications (1)

Publication Number Publication Date
WO2016165269A1 true WO2016165269A1 (zh) 2016-10-20

Family

ID=57126948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089377 WO2016165269A1 (zh) 2015-04-13 2015-09-10 一种物体光学特性测量装置

Country Status (1)

Country Link
WO (1) WO2016165269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108648A (zh) * 2019-04-30 2019-08-09 深圳市太赫兹科技创新研究院有限公司 一种陈皮的鉴别方法和鉴别***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111333A1 (en) * 1999-06-29 2001-06-27 Omron Corporation Light source device, spectroscope comprising the light source device, and film thickness sensor
CN1738507A (zh) * 2005-07-26 2006-02-22 潘建根 一种led光源结点温度的控制方法及制得的led校准光源
US20070195318A1 (en) * 2006-02-17 2007-08-23 Yokogawa Electric Corporation Wavelength calibration method and wavelength calibration apparatus
CN101587079A (zh) * 2009-05-08 2009-11-25 清华大学 纺织原料中异性杂质的多光谱色偏振检测方法及其装置
JP2012149938A (ja) * 2011-01-18 2012-08-09 Konica Minolta Advanced Layers Inc 分光測定装置
CN202854290U (zh) * 2012-10-23 2013-04-03 杭州远方光电信息股份有限公司 一种热电性能测量装置
CN104792710A (zh) * 2015-04-13 2015-07-22 杭州远方光电信息股份有限公司 一种物体光学特性测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111333A1 (en) * 1999-06-29 2001-06-27 Omron Corporation Light source device, spectroscope comprising the light source device, and film thickness sensor
CN1738507A (zh) * 2005-07-26 2006-02-22 潘建根 一种led光源结点温度的控制方法及制得的led校准光源
US20070195318A1 (en) * 2006-02-17 2007-08-23 Yokogawa Electric Corporation Wavelength calibration method and wavelength calibration apparatus
CN101587079A (zh) * 2009-05-08 2009-11-25 清华大学 纺织原料中异性杂质的多光谱色偏振检测方法及其装置
JP2012149938A (ja) * 2011-01-18 2012-08-09 Konica Minolta Advanced Layers Inc 分光測定装置
CN202854290U (zh) * 2012-10-23 2013-04-03 杭州远方光电信息股份有限公司 一种热电性能测量装置
CN104792710A (zh) * 2015-04-13 2015-07-22 杭州远方光电信息股份有限公司 一种物体光学特性测量装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108648A (zh) * 2019-04-30 2019-08-09 深圳市太赫兹科技创新研究院有限公司 一种陈皮的鉴别方法和鉴别***
CN110108648B (zh) * 2019-04-30 2022-01-14 深圳市太赫兹科技创新研究院有限公司 一种陈皮的鉴别方法和鉴别***

Similar Documents

Publication Publication Date Title
EP3376187B1 (en) Color testing method using standard illuminant color matching box
CN103267588B (zh) 基于led相对光谱随温度变化的结温测试方法
US9243953B1 (en) Spectrophotometric colorimeter based on LED light source and method for realizing the same
EP3324160B1 (en) Standard illuminant color matching box
US8723426B2 (en) Systems and methods for sampling light produced from an LED array
CN104792710B (zh) 一种物体光学特性测量装置
CN103344613B (zh) 一种材料反射特性测量装置及方法
CN103411702B (zh) 利用峰值波长移位法非接触测量白光led结温的装置
CN102707212A (zh) Led寿命实时检测装置
CN101799357A (zh) 光源试验方法及其装置
CN105938016A (zh) 一种颜色测量装置
CN101718586B (zh) 棉花色泽仪标准色板的标定方法和***
CN104122213A (zh) 一种测量水质色度的方法
CN101191770B (zh) 发光二极管荧光粉发射光谱测量方法
WO2016165269A1 (zh) 一种物体光学特性测量装置
CN204924913U (zh) 一种物体光学特性测量装置
TWI779266B (zh) 光譜儀
CN202710183U (zh) 一种物体色度测量***
CN203376143U (zh) Led灯温度特性检测装置
CN103900695A (zh) 一种基于法布里-珀罗干涉器的光谱测色仪
CN201600237U (zh) 一种光源试验装置
CN204924914U (zh) 一种光谱反馈调光比色灯箱
CN201069388Y (zh) 一种光谱仪
CN109029933A (zh) 一种表征荧光粉转换型led光效的装置及方法
KR101841931B1 (ko) 태양전지의 양자효율측정장치와 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888969

Country of ref document: EP

Kind code of ref document: A1