WO2016165131A1 - 一种信息反馈的方法、设备和*** - Google Patents

一种信息反馈的方法、设备和*** Download PDF

Info

Publication number
WO2016165131A1
WO2016165131A1 PCT/CN2015/076885 CN2015076885W WO2016165131A1 WO 2016165131 A1 WO2016165131 A1 WO 2016165131A1 CN 2015076885 W CN2015076885 W CN 2015076885W WO 2016165131 A1 WO2016165131 A1 WO 2016165131A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
symbol
uplink
downlink
response message
Prior art date
Application number
PCT/CN2015/076885
Other languages
English (en)
French (fr)
Inventor
李元杰
薛丽霞
周永行
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15888836.2A priority Critical patent/EP3276864B1/en
Priority to CN201580069883.4A priority patent/CN107113117B/zh
Priority to PCT/CN2015/076885 priority patent/WO2016165131A1/zh
Publication of WO2016165131A1 publication Critical patent/WO2016165131A1/zh
Priority to US15/786,009 priority patent/US20180041312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/50Circuit switching systems, i.e. systems in which the path is physically permanent during the communication
    • H04L12/52Circuit switching systems, i.e. systems in which the path is physically permanent during the communication using time division techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for information feedback.
  • Hybrid automatic repeat request is a technique that combines feedforward error correction and automatic retransmission request.
  • the HARQ retransmission is based on an acknowledgement (ACK, acknowledgement) or a negative acknowledgement (NACK, negative acknowledgement).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the HARQ round-trip time difference is defined as the minimum value of the time interval between the retransmitted data and the same data as the previous transmission. For example, in a long term evolution (LTE) frequency division duplexing (FDD) system, a HARQ round-trip time difference is 8 ms; in a LTE time division duplexing (TDD) system, a HARQ It takes longer to travel to and from the time difference.
  • LTE long term evolution
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the transmission delay is as low as possible.
  • the industry requires end-to-end transmission delays of no more than 1 ms; in autopilot technology, end-to-end delays are required to be less than 5 ms.
  • the HARQ round-trip time difference that can be achieved in the prior art cannot meet the above requirements.
  • the embodiments of the present invention provide a method, device, and system for information feedback, so as to achieve the purpose of reducing communication transmission delay as much as possible.
  • an embodiment of the present invention provides a method for information feedback, which is applied to a time division duplex TDD system, where a user equipment UE detects downlink transmission data in a received subframe, and the UE sends the downlink transmission data to the access network device.
  • Sending a response message for the downlink transmission data where the response message is sent by the UE on an uplink symbol in a Kth subframe after the received subframe, where the K is for any of the TDD systems
  • the seed frame arrangement is the same; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe
  • the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • the embodiment of the present invention provides a user equipment, where the user equipment is applied to a time division duplex TDD system, including: a detecting unit, configured to detect downlink transmission data in a received subframe; and a sending unit, Transmitting, to the access network device, a response message for the downlink transmission data, where the response message is sent by the user equipment on an uplink symbol in a Kth subframe after the received subframe.
  • K is the same for any seed frame arrangement in a TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • the uplink symbol in the Kth subframe is located before the downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe
  • the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • an embodiment of the present invention provides a user equipment, which is applied to a time division duplex TDD system.
  • the user equipment includes: a receiver, a processor, a bus, a memory, and a transmitter; the processor acquires an instruction in the memory through the bus, for detecting a downlink transmission in the received subframe Data, the transmitter, configured to send, to the access network device, a response message for the downlink transmission data, where the response message is the Kth subframe of the receiver after the received subframe Transmitted on the upstream symbol, the K is the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • the uplink symbol in the Kth subframe is located before the downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe
  • the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • an embodiment of the present invention provides a chip system for a time division duplex TDD system, including: at least one processor, a memory, an input and output portion, and a bus; and the at least one processor acquires the An instruction in the memory for detecting downlink transmission data in the received subframe; the input and output portion, configured to send, to the access network device, a response message for the downlink transmission data, the response message Transmitting, for the input and output portion, an uplink symbol in a Kth subframe after the received subframe, the K being the same for any seed frame arrangement in the TDD system; wherein K is a positive integer;
  • the response message is a hybrid automatic repeat request response message.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe
  • the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • the embodiment of the present invention provides another method for information feedback, which is applied to a time division duplex TDD system, where the method includes: the access network device sends a subframe to the user equipment UE, and the subframe carries the downlink. Transmitting data; the access network device receives a response message of the UE for the downlink transmission data, where the response message is an uplink symbol in the Kth subframe after the access network device sends the subframe Transmitted, the K is the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • the uplink symbol in the Kth subframe is located before the downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe, and the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • a sixth aspect of the present invention provides an access network device, where the access network device is applied to a time division duplex TDD system, and includes: a sending unit, configured to send a subframe to the user equipment UE, where the subframe is in the subframe Carrying downlink transmission data; receiving unit, configured to receive a response message of the UE for the downlink transmission data, where the response message is an uplink of the access network device in a Kth subframe after sending the subframe Transmitted on the symbol, the K is the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • the uplink symbol in the Kth subframe is located before the downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe, and the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • a seventh aspect of the present invention provides an access network device, which is applied to a time division duplex TDD system, where the access network device includes: a receiver, a processor, a bus, a memory, and a transmitter; the transmitter, For transmitting a subframe to the user equipment UE, the subframe carries downlink transmission data; the receiver is configured to receive a response message of the UE for the downlink transmission data, where the response message is the transmitter Transmitted on an uplink symbol in the Kth subframe after transmitting the subframe, the K being the same for any seed frame arrangement in the TDD system; wherein K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • the uplink symbol in the Kth subframe is located before the downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe
  • the response message is carried on any one of the uplink symbols after the guard interval, or after the guard interval At least two upstream symbols.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • an embodiment of the present invention provides a chip system, which is applied to a time division duplex TDD system, including: at least one processor, a memory, an input and output part, and a bus; and the input and output part is configured to send to a user equipment UE.
  • a subframe the downlink transmission data is carried in the subframe; and is further configured to receive a response message of the UE for the downlink transmission data, where the response message is the Kth after the input and output part sends the subframe
  • the uplink symbol in the subframe is transmitted, and the K is the same for any seed frame arrangement in the TDD system; wherein K is a positive integer; the response message is a hybrid automatic repeat request response message.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • the uplink symbol in the Kth subframe is located before the downlink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe
  • the number of uplink symbols is multiple, and there is a guard time interval between the downlink symbol and the uplink symbol in the subframe, and the response message is carried on any one of the uplink symbols after the guard interval, or At least two upstream symbols after the guard interval.
  • the downlink symbol in the Kth subframe is located before an uplink symbol in the subframe, and in the subframe The number of uplink symbols is one, and there is a guard interval between the downlink symbol and the uplink symbol in the subframe.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • the embodiment of the present invention provides a method for information feedback, which is applied to a time division duplex TDD system, where the method includes: the user equipment UE, which is used by the access network device, according to the downlink control signaling, is used for uplink transmission of data. a subframe for detecting uplink transmission data in the subframe; the access network device transmitting, to the UE, a response message for the uplink transmission data, where the response message is detected by the access network device Transmitted on the downlink symbols in the Kth subframe after the sub-frame, the K is the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and in the subframe The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or on at least two downlink symbols after the uplink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, and the downlink in the subframe There is a guard interval between the symbol and the upstream symbol.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • a tenth aspect of the present invention provides another access network device, where the access network device is applied to a time division duplex TDD system, and includes: a detecting unit, configured to be used by a user equipment UE indicated by downlink control signaling. Detecting, in a subframe in which the data is transmitted in the uplink, the uplink transmission data in the subframe; the sending unit, configured to send, to the UE, a response message for the uplink transmission data, where the response message is detected by the access network device
  • the downlink symbol is transmitted on the downlink symbol in the Kth subframe after the subframe, and the K is the same for any seed frame arrangement in the TDD system; wherein K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and in the subframe The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or on at least two downlink symbols after the uplink symbol in the subframe.
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, and the downlink in the subframe There is a guard interval between the symbol and the upstream symbol.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • an embodiment of the present invention provides another access network device, which is applied to a time division duplex TDD system, where the access network device includes: a receiver, a processor, a bus, a memory, and a transmitter;
  • the processor acquires, by using the bus, an instruction in the memory, to detect uplink transmission data in the subframe according to a subframe that is used by the user equipment UE for uplink transmission of data indicated by the downlink control signaling; And sending, to the UE, a response message for the uplink transmission data, where the response message is sent on a downlink symbol in a Kth subframe after the subframe detected by the processor, where the K Any seed frame arrangement in the TDD system is the same; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and the subframe is The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or at least two downlink symbols after the uplink symbol in the subframe .
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, in the subframe There is a guard interval between the downlink symbol and the upstream symbol.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • an embodiment of the present invention provides a chip system, which is applied to a time division duplex TDD system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor obtains through the bus
  • the instruction in the memory is used to detect uplink transmission data in the subframe according to a subframe used by the user equipment UE for uplink transmission of data indicated by the downlink control signaling; and the input and output part is used for Transmitting, by the UE, a response message for the uplink transmission data, where the response message is sent on a downlink symbol in a Kth subframe after the subframe detected by the processor, where the K is for any of the TDD systems
  • One subframe arrangement is the same; wherein K is a positive integer; the response message is a hybrid automatic repeat request response message.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and the subframe is The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or at least two downlink symbols after the uplink symbol in the subframe .
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, in the subframe There is a guard interval between the downlink symbol and the upstream symbol.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • the embodiment of the present invention provides a method for information feedback, which is applied to a time division duplex TDD system, where the method includes: the user equipment UE sends a subframe to the access network device according to downlink control signaling. Carrying uplink transmission data in the subframe; the UE receives a response message of the access network device for the uplink transmission data, where the response message is in the Kth subframe after the UE sends the subframe Transmitted on the downlink symbol, the K is the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and the subframe is The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or at least two downlink symbols after the uplink symbol in the subframe .
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, in the subframe There is a guard interval between the downlink symbol and the upstream symbol.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement NACK message.
  • the embodiment of the present invention provides another user equipment, where the user equipment is applied to a time division duplex TDD system, and includes: a sending unit, configured to send a subframe to an access network device according to downlink control signaling.
  • the receiving frame is configured to receive the uplink transmission data
  • the receiving unit is configured to receive the response message of the access network device for the uplink transmission data, where the response message is after the user equipment sends the subframe Transmitted on the downlink symbols in the Kth subframe, the K being the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and the subframe is The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or at least two downlink symbols after the uplink symbol in the subframe .
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, in the subframe There is a guard interval between the downlink symbol and the upstream symbol.
  • the response message is an acknowledgement acknowledgement ACK message or a negative acknowledgement acknowledgement message.
  • the embodiment of the present invention provides another user equipment, which is applied to a time division duplex TDD system, where the user equipment includes: a receiver, a processor, a bus, a memory, and a transmitter; the transmitter, For transmitting, according to the downlink control signaling, a subframe to the access network device, where the subframe carries the uplink transmission data, and the receiver is configured to receive the response message of the access network device for the uplink transmission data.
  • the response message is in the Kth subframe after the transmitter sends the subframe Transmitted on the downlink symbol, the K is the same for any seed frame arrangement in the TDD system; where K is a positive integer.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and the subframe is The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or at least two downlink symbols after the uplink symbol in the subframe .
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, in the subframe There is a guard interval between the downlink symbol and the upstream symbol.
  • the response message is an acknowledgement response ACK message or a negative acknowledgement NACK message.
  • the embodiment of the present invention provides another chip system, which is applied to a time division duplex TDD system, including: at least one processor, a memory, an input part and an output part, and a bus; the input part and the output part are used by Transmitting, according to the downlink control signaling, a subframe to the access network device, where the subframe carries uplink transmission data, and is further configured to receive a response message of the access network device for the uplink transmission data, where the response message is Transmitting, for the input portion and the output portion, downlink symbols in a Kth subframe after transmitting the subframe, the K being the same for any seed frame arrangement in the TDD system; wherein K is a positive integer;
  • the response message is a hybrid automatic repeat request response message.
  • the Kth subframe includes an uplink symbol and a downlink symbol.
  • an uplink symbol in the Kth subframe is located before a downlink symbol in the subframe, and the subframe is The number of downlink symbols is multiple, and the response message is carried on the first downlink symbol after the uplink symbol in the subframe, or at least two downlink symbols after the uplink symbol in the subframe .
  • the downlink symbol in the Kth subframe is located before the uplink symbol in the subframe, in the subframe There is a guard interval between the downlink symbol and the upstream symbol.
  • the response message is an acknowledgement response ACK message or a negative acknowledgement NACK message.
  • a seventeenth aspect of the present invention provides a communication system, where the communication system includes a user equipment, and an access network device; the user equipment is the user equipment according to any one of the second aspect or the third aspect;
  • the access network device is the access network device according to any one of the sixth aspect or the seventh aspect.
  • the embodiment of the present invention provides another communication system, where the communication system includes a user equipment, and an access network device, where the access network device is as described in the tenth aspect or the eleventh aspect.
  • the access network device; the user equipment is the user equipment as described in the fourteenth aspect or the fifteenth aspect.
  • K in the foregoing first to eighth aspects may be 1, 2, 3 or 4; and the subframe arrangement is a ratio of subframe types in a configuration mode.
  • the technical solution provided by the embodiment of the present invention reduces the complexity of the HARQ feedback by transmitting a feedback message in the Kth subframe after the subframe in which the data is transmitted in the TDD system, and shortens the ACK by setting K.
  • the feedback time of the NACK greatly reduces the HARQ delay, thereby meeting the ultra-low latency transmission requirement.
  • by further improving the structure of the sub-frame it is possible to maintain a short feedback delay while increasing the processing time of the data receiver, and therefore, it has a good beneficial effect.
  • FIG. 1 is a structural diagram of a subframe according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for information feedback according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a modified first type of subframe structure according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another access network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another access network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another access network device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal frequency-division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA network may implement wireless technologies such as universal terrestrial radio access (UTRA), CDMA2000, and the like.
  • UTRA can include variants of CDMA (WCDMA) and other CDMA.
  • CDMA2000 can cover the Interim Standard (IS) 2000 (IS-2000), IS-95 and IS-856 standards.
  • An OFDMA network may implement wireless technologies such as evolved universal radio access (E-UTRA), ultra mobile broadband (UMB), and Flash OFDMA.
  • E-UTRA and E-UTRA are UMTS and UMTS evolved versions.
  • 3GPP In long term evolution (LTE) and LTE Advanced (LTE-A) are new versions of UMTS that use E-UTRA.
  • LTE, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in the documentation of the 3GPP standards organization.
  • CDMA2000 and UMB are described in the documentation of the 3GPP2 standards organization.
  • the technology described in the embodiments of the present invention can also be applied to the wireless network and the wireless technology described above.
  • a communication system provided by an embodiment of the present invention includes an access network device and a user equipment (UE).
  • the access network device and the UE may be used to implement the method provided by the embodiments of the present invention described below.
  • the access network device may provide communication coverage of a specific physical area, and provide wireless access for the UE to enable the UE to access the network and perform communication.
  • the access network device may be a base station or the like, and may be a macro base station or a small base station.
  • the access network device may be an eNodeB, or may be a small base station such as a home eNodeB (HeNB, home eNodeB), an AP, a micro base station, or a pico base station. .
  • the access network device may include a Node B and a Radio Network Controller (RNC).
  • RNC Radio Network Controller
  • the access network device may include a base station controller (BSC), a base transceiver station (BTS), and the like.
  • BSC base station controller
  • BTS base transceiver station
  • the UEs may be distributed throughout the wireless network, and each UE may be static or mobile.
  • a UE may be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • the UE can be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld, a laptop computer, a cordless phone (cordless) Phone), wireless local loop (WLL) station, etc.
  • PDA personal digital assistant
  • WLL wireless local loop
  • the feedback mechanism of the LTE TDD system HARQ is very complicated, and different uplink and downlink ratios correspond to different HARQ delays (because, except for a few special subframes, each subframe cannot have both an uplink channel and a downlink channel) And each sub-frame has a length of 1 ms, so the minimum delay also reaches 4 ms. This is clearly not ideal for the increasingly stringent low transmission delay indicators in communication systems.
  • the technical solution provided by the embodiment of the present invention reduces the complexity of the HARQ feedback by transmitting a feedback message in the Kth subframe after the subframe in which the data is transmitted in the TDD system, and shortens the ACK by setting K. Or the feedback time of the NACK greatly reduces the HARQ delay, thereby meeting the ultra-low latency transmission requirement.
  • the technical solution provided by the embodiments of the present invention is mainly applied to a TDD system, and is particularly suitable for a system for data transmission using the subframe structure described in FIG. 1.
  • the technical solution can be applied to a single carrier system, a multi-carrier system, and can also be applied to a high frequency (for example, higher than 6 GHz band) communication system and a low frequency (for example, lower than 6 GHz band) communication system.
  • Figure 1 shows two types of subframe structures which differ from the existing TDD subframe structure in that the two types of subframe structures contain an up symbol and a down symbol in each subframe. That is, it is possible to perform uplink transmission, downlink transmission, or simultaneous uplink and downlink transmission in any one subframe; these two types of subframe structures can shorten the length of each subframe, for example, each subframe can be only 0.2 ms. . These two frame structures provide the possibility of reducing the HARQ delay.
  • the uplink symbol and the downlink symbol are orthogonal frequency division multiplexing (OFDM) symbols or single carrier frequency division multiplex access (SC-FDMA) symbols.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiplex access
  • the physical uplink control channel (PUCCH)
  • the physical downlink control channel (PDCCH) and the physical downlink shared channel (PDSCH) are composed of downlink symbols.
  • the first type of subframe may include a PUCCH, a PDCCH, a PDSCH, and a guard time interval.
  • the chronological order of PUCCH, PDCCH, PDSCH, and GP from left to right can be as shown in FIG. 1(a), and each block can represent the time of one symbol.
  • FIG. 1(b) is a second type of subframe, and the second type of subframe may include a PDCCH, a GP, a PUCCH, and a PUSCH.
  • the chronological order of PDCCH, GP, PUCCH, and PUSCH from left to right may be as shown in FIG. 1(b), and each block may represent the time of one symbol.
  • the uplink symbol, the downlink symbol, and the GP of the subframe may be arranged in different chronological order.
  • the uplink symbol and the downlink symbol are present in each subframe, there is no limitation here.
  • the number of consecutive uplink symbols in the subframe, the number of consecutive downlink symbols in the subframe, and the number of symbols occupied by the GP in the subframe are also not limited.
  • the method is applicable to the downlink data transmission, and the downlink transmission data is sent by the access network device side, and the UE side feedbacks whether the response message of the downlink transmission data needs to be retransmitted, including:
  • the S201 access network device sends a subframe to the user equipment UE, where the downlink transmission data is carried in the subframe.
  • the UE detects downlink transmission data in the received subframe.
  • the UE sends a response message to the downlink transmission data to the access network device.
  • the response message is sent by the UE on an uplink symbol in the Kth subframe after the received subframe, the K being the same for any seed frame arrangement in the TDD system.
  • the access network device receives the response message sent by the UE.
  • signaling transmission or data transmission between an access network device and a UE is expressed in units of time units in units of time.
  • the data exchange mode between the access network device and the UE may be: when the access network device needs to transmit data to the UE in the downlink, the downlink control signaling and the downlink transmission data are sent in the subframe at the nth time.
  • the downlink control signaling is used to notify the UE that the access network device has downlink data to be transmitted.
  • the downlink control signaling includes a downlink grant (DL Grant), which is used to indicate a time when the UE receives the downlink transmission data, that is, a subframe where the downlink transmission data is located, and a specific frequency of the downlink transmission data. Information or modulation coding, etc.
  • the UE attempts to receive the downlink transmission data according to the downlink control signaling.
  • the UE correctly receives the downlink transmission data
  • the UE needs to feed back the ACK to the access network device. Otherwise, the NACK needs to be fed back to the access network device, and the ACK or the NACK is Correctly receive the response message for the transmitted data.
  • the sending time of the response message is sent by the access network device after transmitting the downlink transmission data, and is sent in a fixed period, for example, as described above, when the access network device sends the downlink in the subframe at the nth time.
  • the control signaling and the downlink transmitted data then, the UE may uplink the response message in the subframe at the (n+K)th time.
  • K is a positive integer.
  • the technical solution provided by the embodiment of the present invention is intended to shorten the feedback time of the response message. Therefore, the shorter the fixed period, the better, that is, the smaller the value of K, the better. In practical applications, K can take 1, 2, 3 or 4.
  • the response message may be carried in the uplink symbol of the subframe.
  • the UE may use the two types of subframes in FIG. 1 to feed back a response message to the access network device.
  • the response message may be carried on the first symbol of the first type of subframe, that is, sent to the access network device through the PUCCH.
  • the response message may also be correspondingly carried on the plurality of uplink symbols.
  • the response message may be carried on any one of the uplink symbols after the guard interval in the second type of subframe, or on at least two uplink symbols after the guard interval.
  • the response message may be carried on the first uplink symbol after the GP of the second type of subframe, that is, sent to the access network device by using the PUCCH; or the response message may be carried in the second type.
  • the UE may use all uplink symbols in a frequency division manner, that is, send the response message to the access network device through a partial frequency band set of all uplink symbols, Sharing with other channels on the uplink, and increasing the coverage of the response message by the accumulation of energy; or the response message may be carried in the PUSCH of the second type of subframe, in which case the UE may use the PUSCH in a frequency division manner
  • the acknowledgment message is sent to the access network device by using a partial frequency band set of the PUSCH.
  • the cell edge user can use the manner to carry the response message, and the central user can use the PUCCH to carry the response message. In this way, the resource conflict between different UEs in the same cell is reduced; or it can be carried on the last uplink symbol. UE processing time plus the data.
  • FIG. 3 is an improved structure of the first type of subframe. As shown in FIG.
  • the PUCCH which is originally arranged in chronological order, is placed after the GP, and a subframe structure in which chronological order from left to right is PDCCH, PDSCH, GP, and PUCCH is formed, so that when the UE needs
  • the first type of subframe needs to be fed back on the PUCCH at the beginning of the subframe, and the improved first type subframe may be in the
  • the PDCCH, PDSCH, and GP of the subframe process the downlink transmission data, and perform feedback on the last PUCCH. Therefore, the processing time of the UE is appropriately increased, but the feedback delay can be kept unchanged.
  • the access network device may decide whether to retransmit the downlink data to the UE according to a specific situation.
  • subframe arrangement described in S203 is a ratio of subframes in a configuration mode, that is, a sequence of different subframes in a configuration cycle in chronological order.
  • the technical solution provided by the embodiment of the present invention reduces the complexity of the HARQ feedback by transmitting a feedback message in the Kth subframe after the subframe in which the data is transmitted in the TDD system, and shortens the ACK by setting K.
  • the feedback time of the NACK greatly reduces the HARQ delay, thereby meeting the ultra-low latency transmission requirement.
  • by further improving the structure of the sub-frame it is possible to maintain a short feedback delay while increasing the processing time of the data receiver, and therefore, it has a good beneficial effect.
  • the method is applicable to the uplink data transmission, and the UE sends the uplink transmission data according to the downlink control signaling of the access network device, and the access network device feeds back whether the response message of the uplink transmission data needs to be retransmitted, including:
  • the UE sends a subframe to the access network device according to the downlink control signaling, where the uplink transmission data is carried in the subframe.
  • the access network device detects uplink transmission data in the subframe according to the subframe that is used by the UE to transmit data according to the downlink control signaling.
  • the access network device sends, to the UE, a response message for the uplink transmission data, where the response message is sent on a downlink symbol in a Kth subframe after the subframe detected by the access network device.
  • the K is the same for any seed frame arrangement in the TDD system.
  • the UE receives the response message.
  • signaling transmission or data transmission between an access network device and a UE is expressed in units of time units in units of time.
  • the data exchange mode between the access network device and the UE may be: when the UE needs to transmit data to the access network device, the UE may first send scheduling request signaling to the access network device. Optionally, the UE may forward through the PUCCH. The network access device sends scheduling request signaling.
  • the scheduling request signaling may be a scheduling request indication (SRI), and the access network device is notified that the UE has data to be transmitted, and allocates channel resources for the uplink transmission request.
  • SRI scheduling request indication
  • the access network device can send the downlink control signaling to the UE, where the downlink control signaling is used to notify the UE to send the uplink data.
  • the downlink control signaling includes an uplink grant (UL grant) for indicating a time when the UE sends the uplink transmission data, that is, a subframe where the uplink transmission data is located, and specific frequency information or modulation of the uplink transmission data. Encoding method and so on.
  • the UE sends uplink transmission data to the access network device in the subframe at the nth time according to the downlink control signaling.
  • the access network device attempts to receive the uplink transmission data.
  • the access network device correctly receives the uplink transmission data, it needs to feed back the ACK to the UE. Otherwise, the UE needs to feed back the NACK, and the ACK or the NACK is whether the transmission data is correctly received. Reply message.
  • the response message is sent by the UE in the Kth subframe after the subframe in which the downlink control signaling is sent to carry the uplink transmission data.
  • the access network device may downlink the response message in the subframe at the (n+K)th time.
  • K is a positive integer.
  • the technical solution provided by the embodiment of the present invention is intended to shorten the feedback time of the response message. Therefore, the shorter the fixed period, the better, that is, the smaller the value of K, the better. In practice, K can take 1, 2, 3 or 4.
  • the response message may be carried in the downlink symbol of the subframe.
  • the access network device may use the two types of subframes in FIG. 1 to feed back a response message to the UE.
  • the response message may be carried on the second symbol (the first downlink symbol) of the first type of subframe, that is, sent to the UE through the PDCCH; or the response message may be carried in the first uplink of the first type of subframe. At least two downstream symbols after the symbol.
  • the response message may be carried on all downlink symbols in the second type of subframe.
  • the access network device may use all downlink symbols in a frequency division manner, that is, a partial frequency band set through all downlink symbols.
  • the response message is sent to the UE to implement sharing with other downlink channels, and the coverage of the response message is improved by the accumulation of energy.
  • the response message may be carried on the first symbol of the second type of subframe, that is, The PDCCH is sent to the access network device.
  • the response message may also be correspondingly carried on the consecutive multiple downlink symbols.
  • the UE may decide whether to re-transmit the uplink data to the access network device according to the specific situation.
  • subframe arrangement described in S403 is a ratio of subframes in a configuration mode, that is, a sequence of different subframes in a configuration cycle in chronological order.
  • the technical solution provided by the embodiment of the present invention reduces the complexity of the HARQ feedback by transmitting a feedback message in the Kth subframe after the subframe in which the data is transmitted in the TDD system, and shortens the ACK by setting K. Or the feedback time of the NACK greatly reduces the HARQ delay, thereby meeting the ultra-low latency transmission requirement.
  • a user equipment 500 and an access network device 600 are provided for downlink data transmission and uplink feedback response messages.
  • the user equipment includes a detecting unit 510 and a sending unit 520.
  • the access network device includes a sending unit 610 and a receiving unit 620.
  • the detecting unit 510 is configured to detect downlink transmission data in the received subframe.
  • the sending unit 520 is configured to send, to the access network device, a response message for the downlink transmission data, where the response message is an uplink symbol of the UE in the Kth subframe after the received subframe On the transmission, the K is the same for any seed frame arrangement in the TDD system.
  • the sending unit 610 is configured to send a subframe to the user equipment UE, where the downlink transmission data is carried in the subframe;
  • the receiving unit 620 is configured to receive a response message sent by the UE.
  • signaling transmission or data transmission between the access network device 600 and the UE 500 is expressed in units of time units in units of time.
  • the sending unit 610 may send the downlink control signaling and the downlink transmitted data in the subframe at the nth time.
  • the downlink control signaling is used to notify the UE that the access network device has downlink data to be transmitted.
  • the downlink control signaling includes a downlink grant (DL Grant), which is used to indicate a time when the UE receives the downlink transmission data, that is, a subframe where the downlink transmission data is located, and a specific frequency of the downlink transmission data.
  • DL Grant downlink grant
  • the UE 500 attempts to receive the downlink transmission data according to the downlink control signaling.
  • the detection unit 510 of the UE 500 detects the downlink transmission data and correctly receives the downlink transmission data
  • the sending unit 510 needs to feed back the ACK to the access network device 600, otherwise,
  • the NACK is fed back to the access network device 600, and the ACK or NACK is a response message for correctly receiving the transmission data.
  • the sending time of the response message is sent by the sending unit 610 after transmitting the downlink transmission data, and is sent in a fixed period, for example, as described above, when the access network device 600 sends the unit 610 at the nth time.
  • the downlink control signaling and the downlink transmitted data are sent, and then the sending unit 520 of the UE 500 may uplink the response message in the subframe of the (n+K)th time.
  • K is a positive integer.
  • the technical solution provided by the embodiment of the present invention is intended to shorten the feedback time of the response message. Therefore, the shorter the fixed period, the better, that is, the smaller the value of K, the better. In practical applications, K can Take 1, 2, 3 or 4.
  • the response message may be carried on the uplink symbol of the subframe.
  • the UE 500 may feed back the response message to the access network device 600 by using the two types of subframes in FIG. 1 .
  • the specific implementation has been elaborated in the embodiment of the invention of FIG. 2 and can be referred to. I will not repeat them here.
  • the receiving unit 620 of the access network device 600 After the receiving unit 620 of the access network device 600 receives the response message fed back by the sending unit 520 of the UE 500, it may decide whether to downlink the data to the UE according to a specific situation.
  • the subframe arrangement described in this embodiment is a ratio of subframes in a configuration mode, that is, a sequence of different subframes in a configuration cycle in chronological order.
  • the functions of the access network device 600 and the UE 700 provided by the embodiments of the present invention may be implemented by using a processor and a transceiver.
  • the technical solution provided by the embodiment of the present invention reduces the complexity of the HARQ feedback by transmitting a feedback message in the Kth subframe after the subframe in which the data is transmitted in the TDD system, and shortens the ACK by setting K.
  • the feedback time of the NACK greatly reduces the HARQ delay, thereby meeting the ultra-low latency transmission requirement.
  • by further improving the structure of the sub-frame it is possible to maintain a short feedback delay while increasing the processing time of the data receiver, and therefore, it has a good beneficial effect.
  • another access network device 700 and user equipment 800 provided by the embodiments of the present invention are used for uplink data transmission and downlink feedback response messages.
  • the access network device 700 includes a detecting unit 710 and a sending unit 720.
  • the user equipment 800 includes a sending unit 810 and a receiving unit 820.
  • the detecting unit 710 is configured to detect uplink transmission data in the subframe according to the subframe used for uplink transmission data indicated by the downlink control signaling.
  • the sending unit 720 is configured to send, to the UE, a response message for the uplink transmission data, where the response message is sent on a downlink symbol in a Kth subframe after the subframe detected by the access network device.
  • the K is the same for any seed frame arrangement in the TDD system.
  • the sending unit 810 is configured to send, according to the downlink control signaling, a subframe to the access network device, where the uplink transmission data is carried in the subframe.
  • the receiving unit 820 is configured to receive a response message.
  • signaling transmission or data transmission between the UE 800 and the access network device 700 is expressed in units of time slots.
  • the sending unit 810 may first send scheduling request signaling to the access network device.
  • the sending unit 810 may send scheduling request signaling to the access network device by using the PUCCH.
  • the scheduling request signaling may be a scheduling request indication (SRI), and the access network device is notified that the UE has data to be transmitted, and allocates channel resources for the uplink transmission request.
  • SRI scheduling request indication
  • the access network device 700 can send the downlink control signaling to the UE, where the downlink control signaling is used to notify the UE to send the uplink data.
  • the downlink control signaling includes an uplink grant (UL grant) for indicating a time when the UE sends the uplink transmission data, that is, a subframe where the uplink transmission data is located, and specific frequency information or modulation of the uplink transmission data. Encoding method and so on.
  • the sending unit 810 of the UE 800 sends the access network to the subframe at the nth time according to the downlink control signaling.
  • the device 700 transmits uplink transmission data.
  • the access network device 700 attempts to receive the uplink transmission data.
  • the detecting unit 710 of the access network device 700 detects the uplink transmission data and correctly receives the uplink transmission data
  • the sending unit 720 needs to feed back an ACK to the UE 800, otherwise, it needs to
  • the UE 800 feeds back NACK, ACK or NACK, which is a response message for correctly receiving the transmission data.
  • the response message is sent by the UE in the Kth subframe after the subframe in which the downlink control signaling is sent to carry the uplink transmission data.
  • the transmitting unit 720 of the access network device 700 may be in the subframe at the (n+K)th time.
  • Downstream feedback response message Where K is a positive integer.
  • the technical solution provided by the embodiment of the present invention is intended to shorten the feedback time of the response message. Therefore, the shorter the fixed period, the better, that is, the smaller the value of K, the better. In practice, K can take 1, 2, 3 or 4.
  • the response message may be carried in the downlink symbol of the subframe.
  • the access network device 700 may feed back the response message to the UE 800 by using two types of subframes in FIG. 1 .
  • the specific implementation has been elaborated in the embodiment of the invention of FIG. 4 and can be referred to. I will not repeat them here.
  • the UE 800 After the UE 800 receives the response message of the downlink data of the access network device, it is determined whether to retransmit the uplink data to the access network device 700 according to the specific situation.
  • the subframe arrangement described in this embodiment is a ratio of subframes in a configuration mode, that is, a sequence of different subframes in a configuration cycle in chronological order.
  • the functions of the access network device 700 and the UE 800 provided by the embodiments of the present invention may pass The processor and the transceiver are implemented together.
  • the technical solution provided by the embodiment of the present invention reduces the complexity of the HARQ feedback by transmitting a feedback message in the Kth subframe after the subframe in which the data is transmitted in the TDD system, and shortens the ACK by setting K. Or the feedback time of the NACK greatly reduces the HARQ delay, thereby meeting the ultra-low latency transmission requirement.
  • FIG. 9 is a schematic structural diagram of another user equipment 900 according to an embodiment of the present invention.
  • mobility management device 900 includes a processor 910, a memory 920, a communication interface 930, and a bus 940, the memory 920 storing execution instructions, the processor 910 and the memory when the device is running 920 communicates via a bus 940, the processor 910 receives information via the communication interface 930, and performs the steps of the method disclosed in the method embodiment provided by the embodiment of the present invention in accordance with the computer instructions stored in the memory 920.
  • FIG. 10 is a schematic structural diagram of another access network device 1000 according to an embodiment of the present invention.
  • the mobility management device 1000 includes a processor 1010, a memory 1020, a communication interface 1030, and a bus 1040 that stores execution instructions that, when the device is running, the processor 1010 and the memory 1020 communicates through the bus 1040, the processor 1010 receives information through the communication interface 1030, and performs the steps of the method disclosed in the method embodiment provided by the embodiment of the present invention according to the computer instructions stored in the memory 1020.
  • FIG. 11 is a schematic structural diagram of another access network device 1100 according to an embodiment of the present invention.
  • the mobility management device 1100 includes a processor 1110, a memory 1120, a communication interface 1130, and a bus 1140, the memory 1120 storing execution instructions, the processor 1110 and the memory when the device is running 1120 communicates via a bus 1140, the processor 1110
  • the communication interface 1130 receives the information and performs the steps of the method disclosed in the method embodiment provided by the embodiment of the present invention in accordance with the computer instructions stored in the memory 1120.
  • FIG. 12 is a schematic structural diagram of another UE 1200 according to an embodiment of the present invention.
  • the mobility management device 1200 includes a processor 1210, a memory 1220, a communication interface 1230, and a bus 1240 that stores execution instructions that, when the device is running, the processor 1210 and the memory
  • the 1220 communicates through the bus 1240.
  • the processor 1210 receives information through the communication interface 1230, and performs the steps of the method disclosed in the method embodiment provided by the embodiment of the present invention according to the computer instructions stored in the memory 1220.
  • the processor described in FIG. 9 to FIG. 12 may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, and a discrete gate. Or transistor logic devices, discrete hardware components.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the computer instructions can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and, in conjunction with its hardware, performs the steps of the methods of the various embodiments.
  • the “first”, “second”, and the like only represent different objects, such as different types of subframes, and do not have substantial limitations in themselves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明实施列提供了一种信息反馈的方法。用户设备UE检测接收到的子帧中的下行传输数据;所述UE向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述UE在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。本发明实施列应用在TDD***中,降低了ACK或者NACK的反馈时间,从而大大降低了HARQ时延,从而能够满足超低时延传输需求。

Description

一种信息反馈的方法、设备和*** 技术领域
本发明涉及通信技术领域,具体涉及一种信息反馈的方法、设备和***。
背景技术
混合自动重传请求(HARQ,hybrid automatic repeat request)是一种结合前馈错误修正和自动重传请求的技术。HARQ的重传基于确认应答(ACK,acknowledgement)或者否认应答(NACK,negative acknowledgement)。HARQ往返时差定义为重传的数据与上一次传输同样的数据之间的时间间隔的最小值。例如,在长期演进(LTE,long term evolution)频分双工(FDD,frequency division duplexing)***中,一个HARQ往返时差为8ms;在LTE时分双工(TDD,time division duplexing)***当中,一个HARQ往返时差所需要的时间更长。
随着无线通信技术的演进,要求尽可能低的传输时延。例如,工业界要求端到端的传输时延不超过1ms;自动驾驶技术中,要求端到端时延小于5ms。显然,现有技术中可以实现的HARQ往返时差无法满足以上的需求。
发明内容
有鉴于此,本发明实施例提供一种信息反馈的方法、设备和***,以达到尽可能降低通信传输时延的目的。
第一方面,本发明实施例提供了一种信息反馈的方法,应用于时分双工TDD***,用户设备UE检测接收到的子帧中的下行传输数据;所述UE向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述UE在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第一方面,在第一方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第一方面及其上述实现方式,在第一方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第一方面及其上述实现方式,在第一方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的 上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第一方面及其上述实现方式,在第一方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第一方面及其上述实现方式,在第一方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第二方面,本发明实施例提供了一种用户设备,所述用户设备应用于时分双工TDD***,包括:检测单元,用于检测接收到的子帧中的下行传输数据;发送单元,用于向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述用户设备在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第二方面,在第二方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第二方面及其上述实现方式,在第二方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第二方面及其上述实现方式,在第二方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第二方面及其上述实现方式,在第二方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第二方面及其上述实现方式,在第二方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第三方面,本发明实施例提供了一种用户设备,应用于时分双工TDD系 统,所述用户设备包括:接收器,处理器,总线,存储器和发送器;所述处理器通过所述总线获取所述存储器中的指令,以用于检测接收到的子帧中的下行传输数据;所述发送器,用于向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述接收器在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第三方面,在第三方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第三方面及其上述实现方式,在第三方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第三方面及其上述实现方式,在第三方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第三方面及其上述实现方式,在第三方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第三方面及其上述实现方式,在第三方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第四方面,本发明实施例提供了一个芯片***,应用于时分双工TDD***,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于检测接收到的子帧中的下行传输数据;所述输入输出部分,用于向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述输入输出部分在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
结合第四方面,在第四方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第四方面及其上述实现方式,在第四方面的第一种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第四方面及其上述实现方式,在第四方面的第二种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第四方面及其上述实现方式,在第四方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第四方面及其上述实现方式,在第四方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第五方面,本发明实施例提供了另一种信息反馈的方法,应用于时分双工TDD***,所述方法包括:接入网设备向用户设备UE发送子帧,所述子帧中承载下行传输数据;所述接入网设备接收所述UE针对所述下行传输数据的应答消息,所述应答消息为所述接入网设备在发送所述子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第五方面,在第五方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第五方面及其上述实现方式,在第五方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第五方面及其上述实现方式,在第五方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第五方面及其上述实现方式,在第五方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的 上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第五方面及其上述实现方式,在第五方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第六方面本发明实施例提供了一种接入网设备,所述接入网设备应用于时分双工TDD***,包括:发送单元,用于向用户设备UE发送子帧,所述子帧中承载下行传输数据;接收单元,用于接收所述UE针对所述下行传输数据的应答消息,所述应答消息为所述接入网设备在发送所述子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第六方面,在第六方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第六方面及其上述实现方式,在第六方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第六方面及其上述实现方式,在第六方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第六方面及其上述实现方式,在第六方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第六方面及其上述实现方式,在第六方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第七方面本发明实施例提供了一种接入网设备,应用于时分双工TDD***,所述接入网设备包括:接收器,处理器,总线,存储器和发送器;所述发送器,用于向用户设备UE发送子帧,所述子帧中承载下行传输数据;所述接收器,用于接收所述UE针对所述下行传输数据的应答消息,所述应答消息为所述发送器在发送所述子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第七方面,在第七方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第七方面及其上述实现方式,在第七方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第七方面及其上述实现方式,在第七方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
结合第七方面及其上述实现方式,在第七方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第七方面及其上述实现方式,在第七方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第八方面,本发明实施例提供了一个芯片***,应用于时分双工TDD***,包括:至少一个处理器,存储器,输入输出部分和总线;所述输入输出部分,用于向用户设备UE发送子帧,所述子帧中承载下行传输数据;还用于接收所述UE针对所述下行传输数据的应答消息,所述应答消息为所述输入输出部分在发送所述子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
结合第八方面,在第八方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第八方面及其上述实现方式,在第八方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
结合第八方面及其上述实现方式,在第八方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述 保护间隔之后的至少两个上行符号上。
结合第八方面及其上述实现方式,在第八方面的第四种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
结合第八方面及其上述实现方式,在第八方面的第五种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第九方面,本发明实施例提供了一种信息反馈的方法,应用于时分双工TDD***,所述方法包括:接入网设备根据下行控制信令所指示的用户设备UE用于上行传输数据的子帧,检测所述子帧中的上行传输数据;所述接入网设备向所述UE发送针对所述上行传输数据的应答消息,所述应答消息为所述接入网设备检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第九方面,在第九方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第九方面及其上述实现方式,在第九方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第九方面及其上述实现方式,在第九方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第九方面及其上述实现方式,在第九方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十方面本发明实施例提供了另一种接入网设备,所述接入网设备应用于时分双工TDD***,包括:检测单元,用于根据下行控制信令所指示的用户设备UE用于上行传输数据的子帧,检测所述子帧中上行传输数据;发送单元,用于向所述UE发送针对所述上行传输数据的应答消息,所述应答消息为所述接入网设备检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第十方面,在第十方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十方面及其上述实现方式,在第十方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十方面及其上述实现方式,在第十方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十方面及其上述实现方式,在第十方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十一方面,本发明实施例提供了另一种接入网设备,应用于时分双工TDD***,所述接入网设备包括:接收器,处理器,总线,存储器和发送器;所述处理器通过所述总线获取所述存储器中的指令,以用于根据下行控制信令所指示的用户设备UE用于上行传输数据的子帧,检测所述子帧中上行传输数据;所述发送器,用于向所述UE发送针对所述上行传输数据的应答消息,所述应答消息为所述处理器检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第十一方面,在第十一方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十一方面及其上述实现方式,在第十一方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十一方面及其上述实现方式,在第十一方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十一方面及其上述实现方式,在第十一方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十二方面,本发明实施例提供了一个芯片***,应用于时分双工TDD***,,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于根据下行控制信令所指示的用户设备UE用于上行传输数据的子帧,检测所述子帧中上行传输数据;所述输入输出部分,用于向所述UE发送针对所述上行传输数据的应答消息,所述应答消息为所述处理器检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
结合第十二方面,在第十二方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十二方面及其上述实现方式,在第十二方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十二方面及其上述实现方式,在第十二方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十二方面及其上述实现方式,在第十二方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十三方面,本发明实施例提供了一种信息反馈的方法,应用于时分双工TDD***,所述方法包括:用户设备UE根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据;所述UE接收所述接入网设备针对所述上行传输数据的应答消息,所述应答消息为所述UE在发送所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第十三方面,在第十三方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十三方面及其上述实现方式,在第十三方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧 中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十三方面及其上述实现方式,在第十三方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十三方面及其上述实现方式,在第十三方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十四方面,本发明实施例提供了另一种用户设备,所述用户设备应用于时分双工TDD***,包括:发送单元,用于根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据;接收单元,用于接收所述接入网设备针对所述上行传输数据的应答消息,所述应答消息为所述用户设备在发送所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第十四方面,在第十四方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十四方面及其上述实现方式,在第十四方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十四方面及其上述实现方式,在第十四方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十四方面及其上述实现方式,在第十四方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十五方面,本发明实施例提供了另一种用户设备,应用于时分双工TDD***,,所述用户设备包括:接收器,处理器,总线,存储器和发送器;所述发送器,用于根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据;所述接收器,用于接收所述接入网设备针对所述上行传输数据的应答消息,所述应答消息为所述发送器在发送所述子帧之后的第K个子帧中 的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数。
结合第十五方面,在第十五方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十五方面及其上述实现方式,在第十五方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十五方面及其上述实现方式,在第十五方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十五方面及其上述实现方式,在第十五方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十六方面,本发明实施例提供了另一个芯片***,应用于时分双工TDD***,包括:至少一个处理器,存储器,输入部分和输出部分和总线;所述输入部分和输出部分,用于根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据;还用于接收所述接入网设备针对所述上行传输数据的应答消息,所述应答消息为所述输入部分和输出部分在发送所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
结合第十六方面,在第十六方面的第一种实现方式中,所述第K个子帧中包含上行符号、下行符号。
结合第十六方面及其上述实现方式,在第十六方面的第二种实现方式中,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
结合第十六方面及其上述实现方式,在第十六方面的第三种实现方式中,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
结合第十六方面及其上述实现方式,在第十六方面的第四种实现方式中,所述应答消息为确认应答ACK消息或者否认应答NACK消息。
第十七方面本发明实施例提供一种通信***,所述通信***中包含用户设备,以及接入网设备;所述用户设备为第二方面或者三方面任一所述的用户设备;
所述接入网设备为第六方面或者第七方面任一所述的接入网设备。
第十八方面,本发明实施例提供另一种通信***,所述通信***中包含用户设备,以及接入网设备;所述接入网设备为如第十方面或者第十一方面一所述的接入网设备;所述用户设备为如第十四方面或者第十五方面所述的用户设备。
其中,上述第一方面至十八方面中所述的K的取值可以为1、2、3或者4;并且所述子帧安排即为一种配置方式下子帧类型的配比。
本发明实施例提供的技术方案,在TDD***中通过在传输数据的子帧后的第K个子帧中发送反馈消息,减小HARQ反馈的复杂度,又通过对K进行设定,缩短了ACK或者NACK的反馈时间,大大降低了HARQ时延,从而能够满足超低时延传输需求。同时,通过对子帧结构的进一步改进,可以在增加数据接收方处理时间的前提下,仍保持较短的反馈时延,因此,具有良好的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的子帧结构图;
图2是本发明实施例提供的一种信息反馈的方法的流程图;
图3是本发明实施例提供的一种改进的第一类型的子帧结构图;
图4是本发明实施例提供的另一种信息反馈的方法的流程图;
图5是本发明实施例提供的一种用户设备的结构示意图;
图6是本发明实施例提供的一种接入网设备的结构示意图;
图7是本发明实施例提供的另一种接入网设备的结构示意图;
图8是本发明实施例提供的另一种用户设备的结构示意图;
图9是本发明实施例提供的另一种用户设备的结构示意图;
图10是本发明实施例提供的另一种接入网设备的结构示意图;
图11是本发明实施例提供的另一种接入网设备的结构示意图;
图12是本发明实施例提供的另一种用户设备的结构示意图。
具体实施方式
为使本发明的技术方案更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整地描述,显然,以下实施例是本发明的一部分而非全部实施例。
本发明实施例提供的技术方案可以应用于各种无线通信网络,例如码分多址(Code Division Multiple Access,CDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它网络等。术语“网络”和“***”可以相互替换。CDMA网络可以实现例如通用无线陆地接入(universal terrestrial radio access,UTRA),CDMA2000等无线技术。UTRA可以包括CDMA(WCDMA)和其他CDMA的变形。CDMA2000可以覆盖临时标准(Interim Standard,IS)2000(IS-2000),IS-95和IS-856标准。OFDMA网络可以实现诸如演进通用无线陆地接入(evolved UTRA,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)、Flash OFDMA等无线技术。UTRA和E-UTRA是UMTS以及UMTS演进版本。3GPP 在长期演进(long term evolution,LTE)和LTE高级(LTE Advanced,LTE-A)是使用E-UTRA的UMTS的新版本。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在3GPP标准组织的文档中有记载描述。CDMA2000和UMB在3GPP2标准组织的文档中有记载描述。本发明实施例描述的技术也可以应用到上述所述的无线网络和无线技术中。
本发明实施例提供的一种通信***中,包括接入网设备和用户设备(UE,user equipment)。所述接入网设备和所述UE可以用于实现下述本发明实施例提供的方法。其中所述接入网设备可以提供特定物理区域的通信覆盖,用于为所述UE提供无线接入使得所述UE能够接入到网络中去,并进行通信。所述接入网设备可以为基站等设备,可以为宏基站,也可以为小基站。例如,在LTE***中,所述接入网设备可以为eNodeB,也可以为家庭型eNodeB(HeNB,home eNodeB)、AP、微基站(micro base station)、微微基站(pico base station)等小基站。在UMTS***中,所述接入网设备可以包括节点B(Node B)和无线网络控制器(RNC,Radio Network Controller)。在GSM***中,所述接入网设备可以包括基站控制器(BSC,base station controller)和基站收发台(BTS,base transceiver station)等等。所述UE可以分布于整个无线网络中,每个UE可以是静态的或移动的。UE可以称为终端(terminal),移动台(mobile station),用户单元(subscriber unit),站台(station)等。UE可以为蜂窝电话(cellular phone),个人数字助理(personal digital assistant,PDA),无线调制解调器(modem),无线通信设备,手持设备(handheld),膝上型电脑(laptop computer),无绳电话(cordless phone),无线本地环路(wireless local loop,WLL)台等。
现有技术中LTE TDD***HARQ的反馈机制十分复杂,不同的上下行配比对应了不同的HARQ时延(由于除了少数存在的特殊子帧,每个子帧不可能同时具备上行信道和下行信道),且每个子帧的长度为1ms,,因此最小时延也达到了4ms。对于通信***中日益严格的低传输时延指标,这显然是不理想的。
本发明实施例提供的技术方案,在TDD***中通过在传输数据的子帧后的第K个子帧中发送反馈消息,减小HARQ反馈的复杂度,又通过对K进行设定,缩短了ACK或者NACK的反馈时间,大大降低了HARQ时延,从而能够满足超低时延传输需求。
本发明实施列提供的技术方案主要应用于TDD***,特别适用于采用图1所述的子帧结构进行数据传输的***。该技术方案可以应用于单载波***、多载波***,亦可以应用于高频(比如,高于6GHZ频段)通信***和低频(比如,低于6GHZ频段)通信***。
图1示出了两种类型的子帧结构,它们和已有的TDD子帧结构的不同之处在于,这两种类型的子帧结构在每一个子帧中都包含有上行符号和下行符号,也即在任何一个子帧中都可能进行上行传输、下行传输或者同时进行上下行的传输;这两种类型的子帧结构可以缩短每个子帧的长度,例如,每个子帧可以只有0.2ms。这两种帧结构为降低HARQ时延提供了可能。
可选的,所述上行符号、下行符号为正交频分复用(OFDM,orthogonal frequency division multiplex)符号或者单载波频分多址(SC-FDMA,single carrier frequency division multiplex access)符号。
可以理解的是,物理上行控制信道(PUCCH,physical uplink control channel) 和物理上行共享信道(PUSCH,physical uplink shared channel)由上行符号组成;物理下行控制信道(PDCCH,physical downlink control channel)、物理下行共享信道(PDSCH,physical downlink shared channel)由下行符号组成。
如图1(a)所示为第一类型子帧,该第一类型子帧可以包括PUCCH、PDCCH、PDSCH以及保护时间(GP,guard period)间隔。PUCCH、PDCCH、PDSCH和GP按从左至右的时间先后顺序可以如图1(a),每个方块可以表示一个符号的时间。
如图1(b)为第二类型子帧,该第二类型子帧可以包括PDCCH、GP、PUCCH以及PUSCH。PDCCH、GP、PUCCH以及PUSCH按从左至右的时间先后顺序可以如图1(b),每个方块可以表示一个符号的时间。
当然,根据具体的***需求,可以对子帧的上行符号、下行符号以及GP按时间先后顺序进行不同排列,只要保证每个子帧都存在上行符号和下行符号即可,此处不做限制。
另外,在同一子帧中,子帧中上行符号连续的个数、子帧中下行符号连续的个数以及子帧中GP所占的符号数也都不作限制。
图2为本发明实施列提供的一种信息反馈方法的流程图。所述方法适用于下行数据传输,由接入网设备侧发送下行传输数据,UE侧反馈是否需要重新传输所述下行传输数据的应答消息,包括:
S201接入网设备向用户设备UE发送子帧,所述子帧中承载下行传输数据。
S202、UE检测接收到的子帧中的下行传输数据。
S203、UE向所述接入网设备发送针对所述下行传输数据的应答消息,所 述应答消息为所述UE在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同。
S204、接入网设备接收所述UE发送的应答消息。
通常,接入网设备和UE之间的信令传输或者数据传输以子帧为时间单位进行表述。
接入网设备和UE之间的数据交互方式可以是:接入网设备需要向UE下行传输数据时,在第n时刻的子帧中发送下行控制信令以及下行传输的数据。其中,下行控制信令用于通知UE接入网设备有下行数据需要传输。可选的,下行控制信令包括下行授权(DL Grant,downlink grant),用于指示UE接收所述下行传输数据的时间(即下行传输数据所在的子帧)、所述下行传输数据具体频点信息或调制编码方式等等。
UE根据下行控制信令尝试对下行传输数据进行接收,当UE正确接收到下行传输数据时,需要向接入网设备反馈ACK,否则则需要向接入网设备反馈NACK,ACK或者NACK即为是否正确接收传输数据的应答消息。
在本发明实施例中,应答消息的发送时间为接入网设备发送下行传输数据后经过固定的周期发送,例如,如前所述,当接入网设备在第n时刻的子帧中发送下行控制信令以及下行传输的数据,那么,UE可以在第(n+K)时刻的子帧中上行反馈应答消息。其中,K为正整数。由于本发明实施例提供的技术方案意在缩短应答消息的反馈时间,因此所述固定周期越短越好,也即K的取值越小越好。在实际应用时,K可以取1、2、3或者4。
当UE反馈应答消息时,可以将应答消息承载在子帧的上行符号当中。可选的,UE可以采用图1中的两种类型的子帧向接入网设备反馈应答消息。
1)采用第一类型的子帧反馈应答消息
所述应答消息可以承载在第一类型的子帧的第一个符号上,即通过PUCCH发送至接入网设备。
当此类型的子帧的PUCCH扩展到连续多个上行符号时,所述应答消息也可以相应的承载在所述多个上行符号上。
2)采用第二类型的子帧反馈应答消息
所述应答消息可以承载在第二类型的子帧中的保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。可选的,所述应答消息可以承载在第二类型的子帧的GP之后的第一个上行符号上,即通过PUCCH发送至接入网设备;或者所述应答消息可以承载在第二类型的子帧的GP之后所有的上行符号上,此时,所述UE可以以频分的方式使用所有上行符号,即通过所有上行符号的部分频带集合将所述应答消息发送至接入网设备,实现与上行其它信道的共享,并且通过能量的累积,提高应答消息的覆盖;或者所述应答消息可以承载在第二类型子帧的PUSCH中,此时,所述UE可以以频分的方式使用PUSCH,即通过PUSCH的部分频带集合将所述应答消息发送至接入网设备,进一步的,在同一小区中,小区边缘用户可以使用这种方式承载应答消息,而中心用户可以使用PUCCH承载应答消息,这样做,减少了同一小区不同UE间的资源冲突;或者可以承载在最后一个上行符号上,此时,可以增加UE的处理数据的时间。
在许多通信***中,由于硬件条件的限制,导致UE接收数据后所需的处理时间比较长,这样,UE可能无法在(n+K)时刻的子帧中上行反馈应答消息。如果选择在(n+K+1)子帧进行反馈,又增加了反馈时延。对此,进一步 的,可以对第一类型的子帧各个符号之间的时间顺序作出调整,例如,图3为一种改进的第一类型子帧的结构。如图3所示,将原本按时间顺序排列在最前面的PUCCH置于GP之后,形成按从左至右的时间先后顺序为PDCCH、PDSCH、GP以及PUCCH的子帧结构,这样,当UE需要在(n+K)个子帧上行反馈应答消息给接入网设备时,相比第一类型子帧需要在子帧的一开始的PUCCH上进行反馈,改进的第一类型子帧则可以在该子帧的PDCCH、PDSCH以及GP处理下行传输数据,在最后的PUCCH上进行反馈。从而适当增加了UE的处理时间,却仍可以保持反馈时延不变。
当接入网设备接收到UE上行反馈的应答消息后,就可以根据具体的情况决定是否向UE重新下行传输数据。
需要注意的是,S203中所述的子帧安排,即为一种配置方式下子帧的配比,也即一个配置周期内各种不同子帧按时间先后的排列顺序。
本发明实施例提供的技术方案,在TDD***中通过在传输数据的子帧后的第K个子帧中发送反馈消息,减小HARQ反馈的复杂度,又通过对K进行设定,缩短了ACK或者NACK的反馈时间,大大降低了HARQ时延,从而能够满足超低时延传输需求。同时,通过对子帧结构的进一步改进,可以在增加数据接收方处理时间的前提下,仍保持较短的反馈时延,因此,具有良好的有益效果。
图4为本发明实施列提供的另一种信息反馈方法的流程图。所述方法适用于上行数据传输,由UE根据接入网设备的下行控制信令发送上行传输数据,接入网设备反馈是否需要重新传输所述上行传输数据的应答消息,包括:
S401、UE根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据。
S402、接入网设备根据下行控制信令所指示的UE用于上行传输数据的子帧,检测所述子帧中上行传输数据。
S403、接入网设备向所述UE发送针对所述上行传输数据的应答消息,所述应答消息为所述接入网设备检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同。
S404、UE接收应答消息。
通常,接入网设备和UE之间的信令传输或者数据传输以子帧为时间单位进行表述。
接入网设备和UE之间的数据交互方式可以是:UE需要向接入网设备上行传输数据时,可以先向接入网设备发送调度请求信令,可选地,UE可以通过PUCCH向接入网设备发送调度请求信令。该调度请求信令可以是调度请求指示(SRI,scheduling request indication),通知接入网设备该UE有数据需要传输,为上行传输请求分配信道资源。
当信道资源可以满足UE的需求时,接入网设备可以向UE发送下行控制信令,其中,下行控制信令用于通知UE进行上行数据的发送。可选的,下行控制信令包括上行授权(UL Grant,uplink grant)用于指示UE发送上行传输数据的时间(即上行传输数据所在的子帧)、所述上行传输数据具体频点信息或调制编码方式等等。
UE根据下行控制信令在第n时刻的子帧中向接入网设备发送上行传输数据。
接入网设备尝试对上行传输数据进行接收,当接入网设备正确接收到上行传输数据时,需要向UE反馈ACK,否则则需要向UE反馈NACK,ACK或者NACK即为是否正确接收传输数据的应答消息。
在本发明实施例中,应答消息为UE根据所述下行控制信令发送承载上行传输数据的子帧后的第K个子帧中发送。例如,如前所述,当UE在第n时刻的子帧中发送上行传输的数据,那么,接入网设备可以在第(n+K)时刻的子帧中下行反馈应答消息。其中,K为正整数。由于本发明实施例提供的技术方案意在缩短应答消息的反馈时间,因此所述固定周期越短越好,也即K的取值越小越好。实际中,K可以取1、2、3或者4。
当接入网设备反馈应答消息时,可以将应答消息承载在子帧的下行符号当中。可选的,接入网设备可以采用图1中的两种类型的子帧向UE反馈应答消息。
1)采用第一类型的子帧反馈应答消息
所述应答消息可以承载在第一类型子帧的第二个符号(第一个下行符号)上,即通过PDCCH发送至UE;或者所述应答消息可以承载在第一类型子帧第一个上行符号之后的至少两个下行符号上。例如,所述应答消息可以承载在第二类型子帧中的所有下行符号上,此时,所述接入网设备可以以频分的方式使用所有下行符号,即通过所有下行符号的部分频带集合将所述应答消息发送至UE,实现与下行其它信道的共享,并且通过能量的累积,提高应答消息的覆盖。
2)采用第二类型的子帧反馈应答消息
所述应答消息可以承载在第二类型的子帧的第一个符号上,即通过 PDCCH发送至接入网设备。
当此类型的子帧的PDCCH扩展到连续多个下行符号时,所述应答消息也可以相应的承载在所述连续多个下行符号上。
当UE接收到接入网设备下行反馈的应答消息后,就可以根据具体的情况决定是否向接入网设备重新上行传输数据。
需要注意的是,S403中所述的子帧安排,即为一种配置方式下子帧的配比,也即一个配置周期内各种不同子帧按时间先后的排列顺序。
本发明实施例提供的技术方案,在TDD***中通过在传输数据的子帧后的第K个子帧中发送反馈消息,减小HARQ反馈的复杂度,又通过对K进行设定,缩短了ACK或者NACK的反馈时间,大大降低了HARQ时延,从而能够满足超低时延传输需求。
为了执行图2实施例提供的一种信息反馈的方法,本发明实施例提供的一种用户设备500和接入网设备600,用于下行数据传输、上行反馈应答消息。如图5所示,所述用户设备包括检测单元510和发送单元520,如图6所示,所述接入网设备包括发送单元610和接收单元620。
检测单元510,用于检测接收到的子帧中的下行传输数据;
发送单元520,用于向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述UE在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同。
发送单元610,用于向用户设备UE发送子帧,所述子帧中承载下行传输数据;
接收单元620,用于接收所述UE发送的应答消息。
通常,接入网设备600和UE500之间的信令传输或者数据传输以子帧为时间单位进行表述。
当接入网设备600需要向UE下行传输数据时,发送单元610可以在第n时刻的子帧中发送下行控制信令以及下行传输的数据。其中,下行控制信令用于通知UE接入网设备有下行数据需要传输。可选的,下行控制信令包括下行授权(DL Grant,downlink grant),用于指示UE接收所述下行传输数据的时间(即下行传输数据所在的子帧)、所述下行传输数据具体频点信息或调制编码方式等等。
UE500根据下行控制信令尝试对下行传输数据进行接收,当UE500的检测单元510检测到下行传输数据并正确接收到下行传输数据时,发送单元510需要向接入网设备600反馈ACK,否则则需要向接入网设备600反馈NACK,ACK或者NACK即为是否正确接收传输数据的应答消息。
在本发明实施例中,应答消息的发送时间为发送单元610发送下行传输数据后经过固定的周期发送,例如,如前所述,当接入网设备600发送单元610在第n时刻的子帧中发送下行控制信令以及下行传输的数据,那么,UE500的发送单元520可以在第(n+K)时刻的子帧中上行反馈应答消息。其中,K为正整数。由于本发明实施例提供的技术方案意在缩短应答消息的反馈时间,因此所述固定周期越短越好,也即K的取值越小越好。在实际应用,K可以 取1、2、3或者4。
当UE500反馈应答消息时,可以将应答消息承载在子帧的上行符号上。可选的,UE500可以采用图1中的两种类型的子帧向接入网设备600反馈应答消息。具体的实现方式在图2的发明实施例中已经详细阐述,可以参照。此处不再赘述。
当接入网设备600的接收单元620接收到UE500的发送单元520上行反馈的应答消息后,就可以根据具体的情况决定是否向UE重新下行传输数据。
需要注意的是,本实施例中所述的子帧安排,即为一种配置方式下子帧的配比,也即一个配置周期内各种不同子帧按时间先后的排列顺序。
可选地,本发明实施例提供的接入网设备600以及UE700的功能可以通过处理器、收发器配合实现。
本发明实施例提供的技术方案,在TDD***中通过在传输数据的子帧后的第K个子帧中发送反馈消息,减小HARQ反馈的复杂度,又通过对K进行设定,缩短了ACK或者NACK的反馈时间,大大降低了HARQ时延,从而能够满足超低时延传输需求。同时,通过对子帧结构的进一步改进,可以在增加数据接收方处理时间的前提下,仍保持较短的反馈时延,因此,具有良好的有益效果。
为了执行图4实施例提供的另一种信息反馈的方法,本发明实施例提供的另一种接入网设备700和用户设备800,用于上行数据传输,下行反馈应答消息。如图7所示,所述接入网设备700包括检测单元710和发送单元720,如图8所示,所述用户设备800包括发送单元810和接收单元820。
检测单元710,用于根据下行控制信令所指示的用于上行传输数据的子帧,检测所述子帧中上行传输数据。
发送单元720,用于向所述UE发送针对所述上行传输数据的应答消息,所述应答消息为所述接入网设备检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同。
发送单元810,用于根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据。
接收单元820,用于接收应答消息。
通常,UE800和接入网设备700之间的信令传输或者数据传输以子帧为时间单位进行表述。
当UE800需要向接入网设备700上行传输数据时,发送单元810可以先向接入网设备发送调度请求信令,可选地,发送单元810可以通过PUCCH向接入网设备发送调度请求信令。该调度请求信令可以是调度请求指示(SRI,scheduling request indication),通知接入网设备该UE有数据需要传输,为上行传输请求分配信道资源。
当信道资源可以满足UE800的需求时,接入网设备700可以向UE发送下行控制信令,其中,下行控制信令用于通知UE进行上行数据的发送。可选的,下行控制信令包括上行授权(UL Grant,uplink grant)用于指示UE发送上行传输数据的时间(即上行传输数据所在的子帧)、所述上行传输数据具体频点信息或调制编码方式等等。
UE800的发送单元810根据下行控制信令在第n时刻的子帧中向接入网 设备700发送上行传输数据。
接入网设备700尝试对上行传输数据进行接收,当接入网设备700的检测单元710检测到上行传输数据并正确接收到上行传输数据时,发送单元720需要向UE800反馈ACK,否则则需要向UE800反馈NACK,ACK或者NACK即为是否正确接收传输数据的应答消息。
在本发明实施例中,应答消息为UE根据所述下行控制信令发送承载上行传输数据的子帧后的第K个子帧中发送。例如,如前所述,当UE800发送单元810在第n时刻的子帧中发送上行传输的数据,那么,接入网设备700的发送单元720可以在第(n+K)时刻的子帧中下行反馈应答消息。其中,K为正整数。由于本发明实施例提供的技术方案意在缩短应答消息的反馈时间,因此所述固定周期越短越好,也即K的取值越小越好。实际中,K可以取1、2、3或者4。
当接入网设备700反馈应答消息时,可以将应答消息承载在子帧的下行符号当中。可选的,接入网设备700可以采用图1中的两种类型的子帧向UE800反馈应答消息。具体的实现方式在图4的发明实施例中已经详细阐述,可以参照。此处不再赘述。
当UE800接收到接入网设备下行反馈的是否需要重新传输下行数据的应答消息后,就可以根据具体的情况决定是否向接入网设备700重新上行传输数据。
需要注意的是,本实施例中所述的子帧安排,即为一种配置方式下子帧的配比,也即一个配置周期内各种不同子帧按时间先后的排列顺序。
可选地,本发明实施例提供的接入网设备700以及UE800的功能可以通过 处理器、收发器配合实现。
本发明实施例提供的技术方案,在TDD***中通过在传输数据的子帧后的第K个子帧中发送反馈消息,减小HARQ反馈的复杂度,又通过对K进行设定,缩短了ACK或者NACK的反馈时间,大大降低了HARQ时延,从而能够满足超低时延传输需求。
图9为本发明实施例另一种用户设备900的结构示意图。如图9所示,移动性管理设备900包括处理器910、存储器920、通信接口930和总线940,所述存储器920存储执行指令,当所述设备运行时,所述处理器910与所述存储器920之间通过总线940通信,所述处理器910通过所述通信接口930接收信息,并根据存储器920存储的计算机指令执行本发明实施例图2提供的方法实施例公开的方法的步骤。
图10为本发明实施例另一种接入网设备1000的结构示意图。如图10所示,移动性管理设备1000包括处理器1010、存储器1020、通信接口1030和总线1040,所述存储器1020存储执行指令,当所述设备运行时,所述处理器1010与所述存储器1020之间通过总线1040通信,所述处理器1010通过所述通信接口1030接收信息,并根据存储器1020存储的计算机指令执行本发明实施例图2提供的方法实施例公开的方法的步骤。
图11为本发明实施例另一种接入网设备1100的结构示意图。如图11所示,移动性管理设备1100包括处理器1110、存储器1120、通信接口1130和总线1140,所述存储器1120存储执行指令,当所述设备运行时,所述处理器1110与所述存储器1120之间通过总线1140通信,所述处理器1110通过所述 通信接口1130接收信息,并根据存储器1120存储的计算机指令执行本发明实施例图4提供的方法实施例公开的方法的步骤。
图12为本发明实施例另一种UE1200的结构示意图。如图12所示,移动性管理设备1200包括处理器1210、存储器1220、通信接口1230和总线1240,所述存储器1220存储执行指令,当所述设备运行时,所述处理器1210与所述存储器1220之间通过总线1240通信,所述处理器1210通过所述通信接口1230接收信息,并根据存储器1220存储的计算机指令执行本发明实施例图4提供的方法实施例公开的方法的步骤。
其中,图9至图12所述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。计算机指令可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成各实施例的方法的步骤。
本领域普通技术人员可以理解并实现上述各实施例中的全部流程。其都可以通过计算机程序指令配合相关的硬件实现。
在本发明实施例提供的方案中,所述“第一”“第二”等等仅表示区分不同的对象,如不同的类型的子帧,而本身并不具有实质性的限定。
以上各实施例中应用场景等的限定仅用以说明本发明的具体技术方案,而非对其进行限制。也即其可以对前述各实施例所记载的技术方案进行修改,或者对其中的技术特征进行等同替换,而这些修改和替换,并不影响其落入本发明的保护范围。

Claims (36)

  1. 一种信息反馈的方法,其特征在于,应用于时分双工TDD***,所述方法包括:
    用户设备UE检测接收到的子帧中的下行传输数据;
    所述UE向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述UE在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  2. 如权利要求1所述的方法,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  3. 如权利要求2所述的方法,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
  4. 如权利要求2所述的方法,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
  5. 如权利要求2所述的方法,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
  6. 一种用户设备,其特征在于,所述用户设备应用于时分双工TDD***,包括:
    检测单元,用于检测接收到的子帧中的下行传输数据;
    发送单元,用于向所述接入网设备发送针对所述下行传输数据的应答消息,所述应答消息为所述用户设备在所述接收到的子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  7. 如权利要求6所述的用户设备,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  8. 如权利要求7所述的用户设备,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
  9. 如权利要求7所述的用户设备,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
  10. 如权利要求7所述的用户设备,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
  11. 一种信息反馈的方法,其特征在于,应用于时分双工TDD***,所述方法包括:
    接入网设备向用户设备UE发送子帧,所述子帧中承载下行传输数据;
    所述接入网设备接收所述UE针对所述下行传输数据发送的应答消息,所述应答消息为所述接入网设备在发送所述子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  12. 如权利要求11所述的方法,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  13. 如权利要求12所述的方法,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
  14. 如权利要求12所述的方法,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
  15. 如权利要求12所述的方法,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
  16. 一种接入网设备,其特征在于,所述接入网设备应用于时分双工TDD***,包括:
    发送单元,用于向用户设备UE发送子帧,所述子帧中承载下行传输数据;
    接收单元,用于接收所述UE针对所述下行传输数据发送的应答消息,所述应答消息为所述接入网设备在发送所述子帧之后的第K个子帧中的上行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  17. 如权利要求16所述的接入网设备,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  18. 如权利要求17所述的接入网设备,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前。
  19. 如权利要求17所述的接入网设备,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为多个,所述子帧中的下行符号和上行符号之间存在保护时间间隔,所述应答消息承载在所述保护间隔之后的任意一个上行符号上,或者所述保护间隔之后的至少两个上行符号上。
  20. 如权利要求17所述的接入网设备,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,且所述子帧中的上行符号个数为一个,所述子帧中的下行符号和上行符号之间存在保护间隔。
  21. 一种信息反馈的方法,其特征在于,应用于时分双工TDD***,所述方法包括:
    接入网设备根据下行控制信令所指示的用户设备UE用于上行传输数据的子帧,检测所述子帧中的上行传输数据;
    所述接入网设备向所述UE发送针对所述上行传输数据的应答消息,所述应答消息在所述接入网设备检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  22. 如权利要求21所述的方法,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  23. 如权利要求22所述的方法,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
  24. 如权利要求22所述的方法,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
  25. 一种接入网设备,其特征在于,所述接入网设备应用于时分双工TDD***,包括:
    检测单元,用于根据下行控制信令所指示的用户设备UE用于上行传输数据的子帧,检测所述子帧中上行传输数据;
    发送单元,用于向所述UE发送针对所述上行传输数据的应答消息,所述应答消息在所述接入网设备检测的所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  26. 如权利要求25所述的接入网设备,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  27. 如权利要求26所述的接入网设备,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
  28. 如权利要求26所述的接入网设备,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
  29. 一种信息反馈的方法,其特征在于,应用于时分双工TDD***,所述方法包括:
    用户设备UE根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据;
    所述UE接收所述接入网设备针对所述上行传输数据发送的应答消息,所 述应答消息为所述UE在发送所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  30. 如权利要求29所述的方法,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  31. 如权利要求30所述的方法,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
  32. 如权利要求30所述的方法,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
  33. 一种用户设备,其特征在于,所述用户设备应用于时分双工TDD***,包括:
    发送单元,用于根据下行控制信令,向接入网设备发送子帧,所述子帧中承载上行传输数据;
    接收单元,用于接收所述接入网设备针对所述上行传输数据发送的应答消息,所述应答消息为所述用户设备在发送所述子帧之后的第K个子帧中的下行符号上发送,所述K对于TDD***中的任一种子帧安排都相同;
    其中,K为正整数;所述应答消息为混合自动重传请求应答消息。
  34. 如权利要求33所述的用户设备,其特征在于,所述第K个子帧中包含上行符号、下行符号。
  35. 如权利要求34所述的用户设备,其特征在于,所述第K个子帧中的上行符号位于所述子帧中的下行符号之前,且所述子帧中的下行符号个数为多个,所述应答消息承载在所述子帧中的上行符号之后的第一个下行符号上,或者所述子帧中的上行符号之后的至少两个下行符号上。
  36. 如权利要求34所述的用户设备,其特征在于,所述第K个子帧中的下行符号位于所述子帧中的上行符号之前,所述子帧中的下行符号和上行符号之间存在保护时间间隔。
PCT/CN2015/076885 2015-04-17 2015-04-17 一种信息反馈的方法、设备和*** WO2016165131A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15888836.2A EP3276864B1 (en) 2015-04-17 2015-04-17 Information feeback method, device, and system
CN201580069883.4A CN107113117B (zh) 2015-04-17 2015-04-17 一种信息反馈的方法、设备和***
PCT/CN2015/076885 WO2016165131A1 (zh) 2015-04-17 2015-04-17 一种信息反馈的方法、设备和***
US15/786,009 US20180041312A1 (en) 2015-04-17 2017-10-17 Information feedback method, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076885 WO2016165131A1 (zh) 2015-04-17 2015-04-17 一种信息反馈的方法、设备和***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/786,009 Continuation US20180041312A1 (en) 2015-04-17 2017-10-17 Information feedback method, device, and system

Publications (1)

Publication Number Publication Date
WO2016165131A1 true WO2016165131A1 (zh) 2016-10-20

Family

ID=57125615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076885 WO2016165131A1 (zh) 2015-04-17 2015-04-17 一种信息反馈的方法、设备和***

Country Status (4)

Country Link
US (1) US20180041312A1 (zh)
EP (1) EP3276864B1 (zh)
CN (1) CN107113117B (zh)
WO (1) WO2016165131A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983722A (zh) * 2016-12-07 2019-07-05 华为技术有限公司 混合自动重传请求反馈方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10075970B2 (en) * 2015-03-15 2018-09-11 Qualcomm Incorporated Mission critical data support in self-contained time division duplex (TDD) subframe structure
US10342012B2 (en) 2015-03-15 2019-07-02 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure
US9936519B2 (en) 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
US9814058B2 (en) 2015-05-15 2017-11-07 Qualcomm Incorporated Scaled symbols for a self-contained time division duplex (TDD) subframe structure
US9992790B2 (en) 2015-07-20 2018-06-05 Qualcomm Incorporated Time division duplex (TDD) subframe structure supporting single and multiple interlace modes
EP3340513B1 (en) 2015-09-15 2020-08-19 Huawei Technologies Co., Ltd. Information transmission apparatus, method, and system
CN107040347B (zh) * 2016-02-03 2021-05-25 电信科学技术研究院 一种上行传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1551526A (zh) * 2000-10-05 2004-12-01 ���ǵ�����ʽ���� 时分复用码分多址移动通信***的功率控制装置和方法
CN102342054A (zh) * 2009-03-04 2012-02-01 Lg电子株式会社 在多载波***中报告信道状态的方法和设备
EP2654234A2 (en) * 2010-12-15 2013-10-23 LG Electronics Inc. Method and apparatus for transmitting ack/nack in a tdd-based wireless communication system
WO2014109571A1 (ko) * 2013-01-09 2014-07-17 엘지전자 주식회사 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499895B (zh) * 2008-02-01 2011-04-20 大唐移动通信设备有限公司 一种时分双工***中的上行调度方法
CN101267284B (zh) * 2008-04-25 2013-01-16 中兴通讯股份有限公司 在物理上行共享信道进行确认信息反馈的方法
CN101267285B (zh) * 2008-04-25 2013-11-06 中兴通讯股份有限公司 确认信息反馈方法
CN101309522B (zh) * 2008-06-23 2012-07-04 中兴通讯股份有限公司 上行应答消息反馈方法以及移动终端
CN101753197B (zh) * 2008-12-17 2012-12-19 中兴通讯股份有限公司 一种lte***中配置下行中继子帧的方法
US20150103702A1 (en) * 2012-04-03 2015-04-16 Nokia Solutions And Networks Oy Frame format in communications
US10237020B2 (en) * 2013-07-19 2019-03-19 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1551526A (zh) * 2000-10-05 2004-12-01 ���ǵ�����ʽ���� 时分复用码分多址移动通信***的功率控制装置和方法
CN102342054A (zh) * 2009-03-04 2012-02-01 Lg电子株式会社 在多载波***中报告信道状态的方法和设备
EP2654234A2 (en) * 2010-12-15 2013-10-23 LG Electronics Inc. Method and apparatus for transmitting ack/nack in a tdd-based wireless communication system
WO2014109571A1 (ko) * 2013-01-09 2014-07-17 엘지전자 주식회사 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276864A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983722A (zh) * 2016-12-07 2019-07-05 华为技术有限公司 混合自动重传请求反馈方法及装置
CN109983722B (zh) * 2016-12-07 2020-09-11 华为技术有限公司 混合自动重传请求反馈方法及装置
US10841048B2 (en) 2016-12-07 2020-11-17 Huawei Technologies Co., Ltd. Hybrid automatic repeat request feedback method and apparatus

Also Published As

Publication number Publication date
CN107113117B (zh) 2021-04-20
CN107113117A (zh) 2017-08-29
EP3276864A4 (en) 2018-04-04
EP3276864B1 (en) 2021-10-27
US20180041312A1 (en) 2018-02-08
EP3276864A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
TWI767806B (zh) 無線通訊中的延遲降低技術
CN108476515B (zh) 非许可频谱中的动态harq-ack码本大小
CN110036586B (zh) 用于处理时间缩减信令的***和方法
JP6174810B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2016165131A1 (zh) 一种信息反馈的方法、设备和***
US10616911B2 (en) Two-step signaling of uplink scheduling assignments
CN109155698B (zh) 信道质量反馈与确收/否定确收反馈的解耦传输
CN109565422B (zh) 用于保持对共享射频谱带的接入的方法和设备
CN110463111B (zh) 用于无线通信的方法和装备
KR102035402B1 (ko) 자동 재송신 요청(arq) 피드백 정보를 처리하기 위한 네트워크 노드, 무선 장치 및 그 방법들
EP2835928B1 (en) Methods of handling communication operation
TWI811474B (zh) 用於低潛時傳輸的混合自動重傳請求回饋
EP3751914B1 (en) Communication method, communication apparatus and readable storage medium
WO2015196628A1 (zh) 通信***的载波聚合方法及装置
EP3446449A1 (en) Delaying transmission depending on transmission type and ue processing capabilities
JP2021044825A (ja) Tddサブフレーム構造における共通アップリンクバーストを使用してアップリンクレイテンシを分離するための方法および装置
WO2021062609A1 (zh) 通信方法和通信装置
WO2018028123A1 (zh) 数据传输方法、数据传输装置和通信***
WO2019096129A1 (zh) 一种波束配置方法和装置
WO2017055186A1 (en) Transmission of uplink control information in unlicensed spectrum
JP6585275B2 (ja) データ伝送方法、端末及び基地局
JP6532912B2 (ja) キャリアアグリゲーションを使用するharqフィードバック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE