WO2016165090A1 - 气液双相泵 - Google Patents

气液双相泵 Download PDF

Info

Publication number
WO2016165090A1
WO2016165090A1 PCT/CN2015/076689 CN2015076689W WO2016165090A1 WO 2016165090 A1 WO2016165090 A1 WO 2016165090A1 CN 2015076689 W CN2015076689 W CN 2015076689W WO 2016165090 A1 WO2016165090 A1 WO 2016165090A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
rotating body
pump
gas
pipe
Prior art date
Application number
PCT/CN2015/076689
Other languages
English (en)
French (fr)
Inventor
刘时章
Original Assignee
威海凌云流体传动科技有限公司
刘时章
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海凌云流体传动科技有限公司, 刘时章 filed Critical 威海凌云流体传动科技有限公司
Priority to PCT/CN2015/076689 priority Critical patent/WO2016165090A1/zh
Publication of WO2016165090A1 publication Critical patent/WO2016165090A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous

Definitions

  • the present invention relates to a pump, and more particularly to a gas-liquid two-phase pump.
  • the pump especially the centrifugal pump, is very sensitive to the gas in the working pipeline.
  • the bubble will cause the pump efficiency to drop significantly.
  • the gas-liquid ratio reaches a certain value, the pump performance is basically lost. Therefore, the centrifugal pump can only work in the gas-liquid two-phase.
  • the flow is relatively small, the gas-liquid two-phase flow is still a big challenge for the existing pump.
  • the existing pump rotates in the liquid, the energy loss caused by the friction of all the opposite rotating surfaces except the flow path and the working liquid is very large, which reduces the efficiency of the pump; at the same time, the water flow passes through the water guiding component, The hydraulic loss caused by the overcurrent components such as the water guiding member, the runner and the draft tube is 5 to 40%, which further reduces the efficiency of the pump.
  • the invention aims at the technical problem that the existing pump generates cavitation, cannot realize the gas-liquid two-phase flow and has low efficiency, and provides a gas-liquid two-phase pump which does not generate cavitation, realizes gas-liquid two-phase flow and high efficiency.
  • the present invention is provided with a pump body, a base, a rotating body, a rotating body cover and an input shaft.
  • the pump body is arranged on the base, the rotating body is located in the pump body, the input shaft is fixedly connected with the rotating body, and the rotating body is fixed to the rotating body cover.
  • the rotating body is provided with a liquid inlet, a liquid passage and an opening, the liquid passage is provided with a front end and an end, the front end of the liquid passage is connected with the liquid inlet, and the end is connected with the opening;
  • the gas-liquid two-phase pump is further provided with a bearing, a bearing seat and a row.
  • the gas pipe and the liquid discharge pipe are fixedly connected with the pump body, and the rotating body, the rotating body cover and the bearing seat form a pump chamber together, and the exhaust pipe and the liquid discharging pipe pass through the bearing seat to enter the pump room, and the exhaust pipe And the drain pipe is provided with an end, and the distance between the end of the exhaust pipe and the maximum outer diameter of the rotating body is greater than the distance between the end of the drain pipe and the maximum outer diameter of the rotating body.
  • the pump body is provided with an inlet pipe, and a water seal is arranged between the inlet pipe and the rotating body; and a rotating hole is further provided on the rotating body at a later position of the inlet port.
  • both the exhaust pipe and the drain pipe are in active connection with the bearing housing.
  • the inlet tube is provided with a flow area adjustment device.
  • the flow area adjusting device is annular and is provided with a flow area adjustment hole.
  • vent holes are provided in 6 to 12.
  • the exhaust pipe and the drain pipe are in active connection with the bearing seat, so that the depth of the drain pipe inserted into the pump chamber is adjustable, and the flow area adjusting device can control the flow rate and pressure of the liquid inlet port. This reduces the turbulence loss of the drain pipe, which in turn greatly increases the pump's operating efficiency.
  • the structure of the pump of the present invention is almost negligible in terms of hydraulic loss, and the disk loss is reduced by about 800 times compared with the existing pump, which greatly improves the efficiency of the pump.
  • Figure 1 is a cross-sectional view of the present invention
  • Figure 2 is a schematic view showing the structure of the exhaust pipe and the drain pipe inserted into the pump chamber in the present invention
  • Figure 3 is a view of the A-A of Figure 2;
  • Figure 4 is a B-B view of Figure 2.
  • the pump body 1 is disposed on the base 2 and fixedly connected to the base 2.
  • the rotating body 3 is disposed in the pump body 1, and is provided with a liquid inlet 4, the pump body 1 is provided with a liquid inlet pipe 5, and the end of the liquid inlet pipe 5 is provided with a flow area adjusting device 6, and a flow area adjusting device 6 It is annular and has a flow area adjustment hole on it.
  • the flow area adjusting device 6 may have other shapes, and it is only necessary to be able to adjust the flow area of the liquid inlet 4.
  • the invention also provides an input shaft 7 which is connected to the bearing housing 8 via a plurality of bearings 17, which are fixedly connected to the pump body 1.
  • the end of the input shaft 7 is fixedly connected to the rotating body 3, and a water seal 16 is provided between the rotating body 3 and the inlet pipe 5.
  • the rotating body 3 has a hollow concave shape (which may also adopt other shapes having similar functions), and is provided with a liquid passage 9.
  • the front end of the liquid passage 9 communicates with the liquid inlet 4, and an opening 10 is formed at the end thereof, and the opening 10 has an annular shape.
  • the present invention is further provided with a rotating body cover 11 having one end connected to the bearing housing 8 and the other end being fixedly coupled to the rotating body 3.
  • the rotating body 3, the bearing housing 8 and the rotating body cover 11 together form the pump chamber 12.
  • Both the exhaust pipe 13 and the drain pipe 14 are movably connected with the bearing housing 8, and respectively extend through the bearing housing 8 into the pump chamber 12, as shown in FIG. 2, FIG. 3 and FIG.
  • the tube 13 is shorter than the drain tube 14, i.e., in the pump chamber 12, the distance between the end of the exhaust tube 13 and the maximum outer diameter of the rotating body 3 is greater than the distance between the end of the drain tube 14 and the maximum outer diameter of the rotating body 3.
  • the distance from the exhaust pipe 13 into the pump chamber 12 is shallower than the depth at which the drain pipe 14 enters the pump chamber 12. In Fig. 1, the exhaust pipe 13 is completely blocked by the drain pipe 14, so that it is not visible.
  • the vent hole 15 is provided in the rotating body at a later position of the liquid inlet 4, and the vent hole 15 can be provided in a different number depending on the size and the flow area, and is 6 to 12 in this embodiment.
  • the main body drives the input shaft 7 to rotate. Since the input shaft 7 is fixedly coupled to the rotating body 3 and the rotating body 3 is fixedly coupled to the rotating body cover 11, the rotating body 3 and the rotating body cover 11 rotate together following the input shaft 7. Due to the high-speed rotating centrifugal force, the gas in the liquid passage 9 is smashed toward the edge of the rotating body 3, and a vacuum is formed at the inlet port 4, and the liquid enters from the inlet pipe 3, passes through the inlet port 4, and enters. Into the liquid passage 9, further into the pump chamber 12 from the opening 10. Air bubbles generated at a later position of the liquid inlet 4 are discharged through the vent holes 15.
  • the liquid entering the pump chamber 12 is gradually increased in thickness from the edge of the rotating body 3 due to the centrifugal force, and the gas is concentrated toward the center of the pump chamber 12, so that the gas is discharged from the exhaust pipe 13.
  • the liquid is discharged from the drain tube 14 to truly achieve the gas-liquid two-phase flow of the pump.
  • the exhaust pipe 13 and the drain pipe 14 are movably connected with the bearing housing 8, and both of them can be pulled to adjust the depth of the pump chamber 12, and the end position of the drain pipe 14 is different when the rotational speed is constant.
  • the flow rate and pressure at the inlet 4 are also different. If the inlet flow rate is too large, the liquid level in the pump chamber 12 is too high, and the resistance of the liquid discharge pipe 14 becomes large, resulting in a decrease in efficiency.
  • the flow rate and pressure of the inlet port 4 can be easily adjusted, and the efficiency of the pump can be maximized on the basis of the protection pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种气液双相泵,其解决了现有泵产生汽蚀、不能实现气液两相流和效率低的技术问题,其旋转体设有进液口(4)、液体通道和开口(10),液体通道(9)前端与进液口(4)相通,末端与开口(10)相通;气液双相泵还设有轴承(17)、轴承座(8)、排气管(13)和排液管(14),泵体(1)与轴承座(8)固定连接,旋转体(3)、旋转体盖(11)和轴承座(8)共同形成泵室,排气管(13)和排液管(14)均穿过轴承座(8)进入到泵室中,排气管(13)末端与旋转体(3)最大外径之间的距离大于排液管(14)末端与旋转体(3)最大外径之间的距离,该气液双相泵可广泛应用于机械领域。

Description

气液双相泵 技术领域
本发明涉及一种泵,特别是涉及一种气液双相泵。
背景技术
液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,我们把这种产生气泡的现象称为汽蚀,在泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是泵中的汽蚀过程。泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
泵尤其是离心泵对工作管路中的气体很敏感,气泡会导致泵的效率明显下降,当气液比达到一定数值时,泵的效能基本丧失,因此离心泵只能工作在气液两相流比较小的时侯,气液两相流对现有的泵来说还是一个很大的挑战。
另外,现有泵因为叶轮处于液体中转动,流道以外的所有相对旋转表面与工作液体摩擦所引起的能量损失即圆盘损失非常大,使泵的效率降低;同时,水流要经过引水部件、导水部件、转轮和尾水管等过流部件时产生的水力损失为5~40%,进一步降低了泵的效率。
技术问题
本发明针对现有泵产生汽蚀、不能实现气液两相流和效率低的技术问题,提供一种不会产生汽蚀、实现了气液两相流和效率高的气液双相泵。
技术解决方案
为此,本发明设有泵体、底座、旋转体、旋转体盖和输入轴,泵体设于底座上,旋转***于泵体内,输入轴与旋转体固定连接,旋转体与旋转体盖固定连接;旋转体设有进液口、液体通道和开口,液体通道设有前端和末端,其前端与进液口相通,末端与开口相通;气液双相泵还设有轴承、轴承座、排气管和排液管,泵体与轴承座固定连接,旋转体、旋转体盖和轴承座共同形成泵室,排气管和排液管均穿过轴承座进入到泵室中,排气管和排液管均设有末端,排气管末端与旋转体最大外径之间的距离大于排液管末端与旋转体最大外径之间的距离。
优选地,泵体设有进液管,进液管与旋转体之间设有水封;进液口稍后位置的旋转体上还设有排气孔。
优选地,排气管和排液管均与轴承座之间为活动性连接。
优选地,进液管设有过流面积调节装置。
优选地,过流面积调节装置为圆环状,其设有过流面积调节孔。
优选地,排气孔设有6~12个。
有益效果
本发明的优点在于:
(1)通过泵室内排气管和排液管不同深度的设计,使现有的泵实现了气液两相流。
(2)通过在进液口稍后位置处设置排气孔,使液体汽化产生的气泡直接从排气孔排出,避免了汽蚀现象的产生,延长了泵的使用寿命。
(3)排气管和排液管与轴承座之间均为活动性连接,使得排液管***泵室内的深度可调,同时,过流面积调节装置可以控制进液口的流量和压力,这样就减少了排液管的扰流损失,进而大大提高了泵的工作效率。
(4)本发明泵的结构在水力损失方面几乎可以忽略不计,在圆盘损失方面要比现有泵减少了800倍左右,大大的提高了泵的效率。
附图说明
图1是本发明的剖视图;
图2是本发明中排气管和排液管***泵室的结构示意图;
图3是图2的A-A视图;
图4是图2的B-B视图。
图中符号说明:
1.泵体;2.底座;3.旋转体;4.进液口;5.进液管;6.过流面积调节装置;7.输入轴;8.轴承座;9.液体通道;10.开口;11.旋转体盖;12.泵室;13.排气管;14.排液管;15.排气孔;16.水封;17.轴承。
本发明的最佳实施方式
下面结合实施例对本发明做进一步描述。
如图1所示, 泵体1设于底座2上,并与底座2固定连接。旋转体3设于泵体1内,其设有进液口4,泵体1设有进液管5,进液管5的尾端设有过流面积调节装置6,过流面积调节装置6为圆环状,其上面设有过流面积调节孔。过流面积调节装置6也可以为其它形状,只需能够调节进液口4的过流面积即可。
本发明还设有输入轴7,其通过多个轴承17与轴承座8相连,轴承座8与泵体1固定连接。输入轴7的末端与旋转体3固定连接,旋转体3与进液管5之间设有水封16。当动力机带动输入轴7转动时,旋转体3就会跟随其一起转动。旋转体3呈中空凹字形(其也可以采用其它有相似功能的形状),其设有液体通道9。液体通道9的前端与进液口4相通,其末端设有开口10,开口10为圆环状。
本发明还设有旋转体盖11,其一端与轴承座8相连,另一端与旋转体3固定连接。这样,旋转体3、轴承座8和旋转体盖11就共同形成了泵室12。排气管13和排液管14均与轴承座8之间为活动性连接,它们分别穿过轴承座8伸入进泵室12中,如图2、图3和图4所示,排气管13比排液管14短,即在泵室12内,排气管13的末端与旋转体3最大外径之间的距离大于排液管14的末端与旋转体3最大外径之间的距离,排气管13进入泵室12的深度比排液管14进入泵室12的深度浅,图1中排气管13完全被排液管14挡住,故而看不见。
经过多次实验研究发现,泵在运转中,若其过流部分的局部区域(通常是进液口4稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经旋转体3内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击旋转体3表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将旋转体3击穿。因此,本发明在进液口4稍后位置的旋转体上设有排气孔15,排气孔15可根据其大小和过流面积设置不同的个数,本实施例为6~12个。这样,液体汽化产生的气泡由于负压的作用直接从排气孔15排出,避免了汽蚀现象的产生。
下面对本发明的工作过程加以说明。
主机带动输入轴7旋转,由于输入轴7与旋转体3固定连接、旋转体3与旋转体盖11固定连接,所以旋转体3和旋转体盖11一起跟随输入轴7旋转。由于高速旋转离心力的作用,液体通道9内的气体被甩向旋转体3的边缘,进液口4处便形成了真空,液体就会从进液管3处进入、通过进液口4并进入到液体通道9中,进一步从开口10处进入到泵室12中。在进液口4稍后位置处产生的气泡通过排气孔15排出。
进入到泵室12中的液体由于离心力的作用,液体的厚度逐渐从旋转体3的边缘处开始增加,而气体则向泵室12的中心位置聚集,这样气体会从排气管13中排出,液体会从排液管14中排出,真正实现了泵的气液两相流。
排气管13和排液管14与轴承座8之间为活动性连接,它们均可以拔动以调整进入泵室12的深浅,在转速一定的情况下,排液管14的末端位置不同,进液口4处的流量和压力也不同。如果进口流量过大会则导致泵室12内液位过高,排液管14阻力变大,导致效率降低。通过调节排液管14***泵室12内的深浅就可以轻松调节进液口4出的流量和压力,在保护泵的基础上最大程度的提高泵的效率。
惟以上所述者,仅为本发明的具体实施例而已,当不能以此限定本发明实施的范围,故其等同组件的置换,或依本发明专利保护范围所作的等同变化与修改,皆应仍属本发明权利要求书涵盖之范畴。

Claims (6)

  1. 一种气液双相泵,其设有泵体、底座、旋转体、旋转体盖和输入轴,所述泵体设于所述底座上,所述旋转***于所述泵体内,所述输入轴与所述旋转体固定连接,所述旋转体与所述旋转体盖固定连接,其特征是所述旋转体设有进液口、液体通道和开口,所述液体通道设有前端和末端,其前端与所述进液口相通,末端与所述开口相通;所述气液双相泵还设有轴承、轴承座、排气管和排液管,所述泵体与所述轴承座固定连接,所述旋转体、旋转体盖和所述轴承座共同形成泵室,所述排气管和所述排液管均穿过所述轴承座进入到所述泵室中,所述排气管和所述排液管均设有末端,所述排气管末端与所述旋转体最大外径之间的距离大于所述排液管末端与所述旋转体最大外径之间的距离。
  2. 据权利要求1所述的气液双相泵,其特征在于所述泵体设有进液管,所述进液管与所述旋转体之间设有水封;所述进液口稍后位置的旋转体上还设有排气孔。
  3. 根据权利要求2所述的气液双相泵,其特征在于所述排气管和所述排液管均与所述轴承座之间为活动性连接。
  4. 根据权利要求3所述的气液双相泵,其特征在所述进液管设有过流面积调节装置。
  5. 根据权利要求4所述的气液双相泵,其特征在所述过流面积调节装置为圆环状,其设有过流面积调节孔。
  6. 据权利要求5所述的气液双相泵,其特征在于排气孔设有6~12个。
PCT/CN2015/076689 2015-04-16 2015-04-16 气液双相泵 WO2016165090A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076689 WO2016165090A1 (zh) 2015-04-16 2015-04-16 气液双相泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076689 WO2016165090A1 (zh) 2015-04-16 2015-04-16 气液双相泵

Publications (1)

Publication Number Publication Date
WO2016165090A1 true WO2016165090A1 (zh) 2016-10-20

Family

ID=57125586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076689 WO2016165090A1 (zh) 2015-04-16 2015-04-16 气液双相泵

Country Status (1)

Country Link
WO (1) WO2016165090A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111184459A (zh) * 2020-02-25 2020-05-22 小熊电器股份有限公司 一种应用于气液两相泵上的流道控制装置
CN111207230A (zh) * 2020-02-25 2020-05-29 小熊电器股份有限公司 一种应用于气液两相泵上的多流道控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445356A (en) * 1972-12-28 1976-08-11 Leipzig Chemieanlagen Centrifugal pump
US4921400A (en) * 1987-07-06 1990-05-01 A. Ahlstrom Corporation Pump and a method of separating gas by such from a fluid to be pumped
US4981413A (en) * 1989-04-27 1991-01-01 Ahlstrom Corporation Pump for and method of separating gas from a fluid to be pumped
CN1112371A (zh) * 1993-07-16 1995-11-22 马丁·斯塔尔 离心泵
WO2010149455A1 (de) * 2009-06-24 2010-12-29 Schröder Maschinenbau KG Umwälzsystem für lebensmittelverträgliche flüssigkeiten
CN203067359U (zh) * 2013-03-06 2013-07-17 新昌德力石化设备有限公司 内排气液环式自吸离心泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445356A (en) * 1972-12-28 1976-08-11 Leipzig Chemieanlagen Centrifugal pump
US4921400A (en) * 1987-07-06 1990-05-01 A. Ahlstrom Corporation Pump and a method of separating gas by such from a fluid to be pumped
US4981413A (en) * 1989-04-27 1991-01-01 Ahlstrom Corporation Pump for and method of separating gas from a fluid to be pumped
CN1112371A (zh) * 1993-07-16 1995-11-22 马丁·斯塔尔 离心泵
WO2010149455A1 (de) * 2009-06-24 2010-12-29 Schröder Maschinenbau KG Umwälzsystem für lebensmittelverträgliche flüssigkeiten
CN203067359U (zh) * 2013-03-06 2013-07-17 新昌德力石化设备有限公司 内排气液环式自吸离心泵

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111184459A (zh) * 2020-02-25 2020-05-22 小熊电器股份有限公司 一种应用于气液两相泵上的流道控制装置
CN111207230A (zh) * 2020-02-25 2020-05-29 小熊电器股份有限公司 一种应用于气液两相泵上的多流道控制装置

Similar Documents

Publication Publication Date Title
CN100451345C (zh) 具有抽气和射流机匣结构的离心压气机
WO2016165090A1 (zh) 气液双相泵
KR101452744B1 (ko) 회전공구
US7234921B2 (en) Method for increasing operating efficiency of the rotor blade of an aerogenerator (variants)
CN101968064A (zh) 防汽蚀离心泵
CA2478859A1 (en) Extracting power from a fluid flow
US20130189124A1 (en) Vertical self-priming pump
CN212360314U (zh) 一种离心式/混流式水泵的自循环防汽蚀机匣
CN205243867U (zh) 一种旋流泵
CN206608372U (zh) 降噪音旋涡泵
JP5912347B2 (ja) 推力増進装置
RU49608U1 (ru) Кавитационный реактор
KR20090084546A (ko) 배수펌프용 임펠러
CN209724807U (zh) 一种带平衡离心泵轴向力机构的离心泵
CN207960968U (zh) 防困气水泵
CN219932561U (zh) 一种抗汽蚀的离心叶轮泵
CN208534753U (zh) 一种真空泵
JP3905371B2 (ja) 脱気装置
CN217713690U (zh) 一种防刺节流阀
CN114709154B (zh) 一种真空发生机构、真空发生组件及抽气装置
KR102318667B1 (ko) 펌프
JP3680974B2 (ja) 自吸式ポンプの排水弁構造
TWI704289B (zh) 具有平衡孔的排水葉輪
CN214464422U (zh) 一种涡轮排气装置的壳体结构
CN116641896B (zh) 一种安全防爆渣浆泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888795

Country of ref document: EP

Kind code of ref document: A1