WO2016163830A1 - Heat dissipating coating composition and heat dissipating unit formed using same - Google Patents

Heat dissipating coating composition and heat dissipating unit formed using same Download PDF

Info

Publication number
WO2016163830A1
WO2016163830A1 PCT/KR2016/003745 KR2016003745W WO2016163830A1 WO 2016163830 A1 WO2016163830 A1 WO 2016163830A1 KR 2016003745 W KR2016003745 W KR 2016003745W WO 2016163830 A1 WO2016163830 A1 WO 2016163830A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
coating layer
coating composition
heat
carbon
Prior art date
Application number
PCT/KR2016/003745
Other languages
French (fr)
Korean (ko)
Inventor
황승재
김문회
황문영
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to US15/564,698 priority Critical patent/US11104108B2/en
Priority to CN201680019942.1A priority patent/CN107429107B/en
Priority to JP2017552955A priority patent/JP6625659B2/en
Priority claimed from KR1020160043710A external-priority patent/KR101837512B1/en
Publication of WO2016163830A1 publication Critical patent/WO2016163830A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a heat dissipation coating composition, and more particularly, after forming a heat dissipation coating layer, the heat dissipation coating composition exhibits excellent heat dissipation performance and at the same time excellent durability of the coating layer, adhesion to the coated surface, and surface quality of the coating layer. It relates to a heat dissipation unit coated with this
  • a heat radiating member is mounted to the component having heat.
  • Heat dissipation members such as heat sinks or heat sinks, are typically made of metals with high thermal conductivity so that heat within the device or components can be quickly released to the outside.
  • the heat sink is a plurality of heat dissipation fins that are uniformly protruded on the front surface by heating and melting aluminum, copper and its alloy material at a high temperature state, and then extrusion molding using a mold having a predetermined shape. Structure has been generally employed.
  • the heat sink of the metal material may have a high thermal conductivity, but the thermal radiation efficiency of radiating conducted heat into the air is very low.
  • the electronic device having the heat dissipation member made of metal is difficult to lighten due to the weight of the heat dissipation member, and there is a problem in that the mobile electronic device has a limitation in use.
  • the structure of the heat dissipation member such as reducing the number of heat dissipation fins is solved.
  • To simplify and to reduce the thickness of the heat radiation member has a problem that is difficult to achieve the desired level of heat radiation performance.
  • an object of the present invention is to provide a heat dissipation coating composition that can implement a heat dissipation coating layer that exhibits excellent heat dissipation performance as well as thermal conductivity.
  • the present invention is very excellent in adhesion to the surface to be coated, the peeling of the heat-dissipating coating layer is remarkably prevented during use, and after forming as a heat-dissipating coating layer to the physical and chemical stimuli such as external heat, organic solvent, moisture, impact
  • Another object is to provide a heat dissipation coating composition that can be maintained in durability.
  • the present invention has a further object to provide a heat dissipation coating composition formed surface is very smooth, excellent in smoothness and can implement a heat dissipation coating layer excellent in surface quality.
  • the coating layer forming component comprising a main resin; Carbon-based filler contained in 8 to 72 parts by weight based on 100 parts by weight of the main resin; It provides a heat dissipation coating composition comprising; and a physical property enhancing component for improving heat dissipation and adhesion.
  • the main resin is a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, a linear aliphatic type epoxy resin, a rubber-modified epoxy resin and their It may include any one or more epoxy resin selected from the group consisting of derivatives. At this time, it may preferably include a glycidyl ether type epoxy resin containing a bisphenol A epoxy resin, more preferably the epoxy equivalent may be 350 ⁇ 600 g / eq.
  • the coating layer forming component may further include a curing agent including any one or more components of an acid anhydride, amine, imidazole, polyamide and polycaptan.
  • the curing agent may include a polyamide-based component.
  • the polyamide-based component may be a polyamide-based component having an amine number of 180 to 300 mgKOH / g.
  • the curing agent including the polyamide-based component may be provided with 45 to 75 parts by weight based on 100 parts by weight of the bisphenol A epoxy resin.
  • the carbon-based filler may include any one or more of graphite and carbon black.
  • the carbon-based filler may be included in 17 to 42 parts by weight based on 100 parts by weight of the epoxy resin.
  • the carbon-based filler is carbon black, the average particle diameter may be 250nm or less, more preferably 50 to 250nm. In addition, the carbon-based filler may have a D90 of 260 nm or less.
  • the physical property enhancing component is 3- (N-aniyl-N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropylmethylethoxysilane, ⁇ -glycidoxycitrimethyldimethoxysilane, 3- Any one or more selected from the group consisting of glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethylmethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane It may include.
  • the physical property enhancing component may be included in 2 to 5 parts by weight based on 100 parts by weight of the main resin.
  • the coating layer-forming component may include a curing agent including a main resin and a polyamide-based component including a bisphenol A-type epoxy resin, and the carbon-based filler may include carbon black.
  • the present invention On the other hand, the present invention; And a heat dissipation coating composition coated on at least a portion of the outer surface of the substrate and cured heat dissipation coating layer according to the present invention.
  • the thickness of the heat dissipation coating layer may be 10 ⁇ 100 ⁇ m.
  • the heat dissipation coating layer may include a carbon-based filler 5 to 30% by weight based on the total weight of the heat dissipation coating layer.
  • the substrate may be molded of any one or more of a metal, a nonmetal, and a high molecular organic compound.
  • the heat dissipation coating composition of the present invention can realize a heat dissipation coating layer exhibiting excellent heat dissipation performance as well as thermal conductivity.
  • the heat dissipation coating layer implemented through this has excellent adhesion to the surface to be coated to prevent peeling of the heat dissipation coating layer during use, and after being formed as a heat dissipation coating layer, external heat, organic solvent, moisture, impact, etc.
  • the durability of the coating layer can be maintained even with chemical stimuli.
  • the surface of the formed heat dissipation coating layer is very smooth, the smoothness is excellent and the surface quality is excellent, the heat dissipation coating layer can be widely applied in the industry that requires heat dissipation.
  • 1 to 3 is a view showing a perspective view and a partial cross-sectional view of the heat dissipation unit according to an embodiment of the present invention.
  • FIGS. 4 to 5 are perspective views of a substrate according to an embodiment of the present invention.
  • the heat dissipation coating composition according to an embodiment of the present invention includes a coating layer-forming component including a main resin, a carbon-based filler and a physical property enhancing component for improving heat dissipation and adhesion, and a carbon-based filler based on 100 parts by weight of the main resin 8 to 72 parts by weight.
  • the coating layer forming component may include a main resin, and may further include a curing agent when the main resin is a curable resin, and may further include other curing accelerators and curing catalysts.
  • the main resin may be used without limitation in the case of components known in the art to form a coating layer.
  • the main resin is glycidyl ether type in order to simultaneously achieve the improvement of heat dissipation performance by improving the adhesiveness to the substrate to be coated, heat resistance which is not embrittled by heat of the heat generating substrate, mechanical strength and compatibility with the carbon-based filler.
  • Epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, linear aliphatic type epoxy resin, rubber-modified epoxy resin, and any one or more epoxy resin selected from the group consisting of derivatives thereof may be included.
  • the glycidyl ether type epoxy resin includes glycidyl ethers of phenols and glycidyl ethers of alcohols.
  • glycidyl ethers of the phenols bisphenol A type, bisphenol B type, bisphenol AD type, and bisphenol Bisphenol-based epoxys such as S-type, bisphenol-F and resorcinol, phenol novolac epoxy, aralkylphenol novolac, phenolic novolacs and terpene-phenol novolacs and o-cresolnovolac
  • cresol novolak-type epoxy resins such as epoxy, and these can be used individually or in combination of 2 or more types.
  • the glycidyl ester type epoxy resin may be an epoxy resin such as hydroxycarboxylic acid such as p-hydroxybenzoic acid or ⁇ -hydroxy naphthoic acid, and polycarboxylic acid such as phthalic acid or terephthalic acid. can do.
  • linear aliphatic epoxy resins examples include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerin, trimethylolethane, thirimethylolpropane, pentaerythritol, and dodecahydro bisphenol A.
  • glycidyl ethers based on dodecahydro bisphenol F ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and the like, and may be used alone or in combination of two or more thereof.
  • the rubber-modified epoxy resin is not particularly limited as long as it is an epoxy resin having rubber and / or polyether in its skeleton.
  • an epoxy resin CBN-modified compound
  • CBR-modified epoxy resins acrylonitrile-butadiene rubber-modified epoxy resins
  • silicone-modified epoxy resins such as silicone-modified epoxy resins, and may be used alone or in combination of two or more.
  • the main resin includes bisphenol-A epoxy resin in terms of heat dissipation characteristics, durability improvement of the coating layer, and surface quality improvement of the heat dissipation coating layer due to its excellent compatibility with carbon-based fillers, in particular, carbon black. It may be a glycidyl ether type epoxy resin.
  • the bisphenol A epoxy resin may have an epoxy equivalent of 350 to 600 g / eq. If the epoxy equivalent is less than 350g / eq there is a problem that the hardness of the coating layer is increased to be easily cracked or cracks, it can be easily peeled off particularly in the curved coating surface. In addition, if the epoxy equivalent exceeds 600g / eq there is a problem that the chemical resistance, adhesion and durability due to the occurrence of the uncured portion may be lowered.
  • the bisphenol A epoxy resin may have a viscosity of 10 to 200 cps. If the viscosity of the bisphenol A epoxy resin is less than 10 cps it may be difficult to produce a coating layer, there is a problem that the adhesive strength with the surface to be coated may be reduced even after the production, if it exceeds 200 cps is made of a thin coating layer The coating process may be difficult, and the coating process may not be easy. In particular, the coating process may be more difficult in the case of spraying coating. In addition, there is a problem that the dispersibility of the carbon black in the coating layer may be reduced.
  • the curing agent included in the coating layer forming component together with the epoxy resin of the above-mentioned main resin may be changed according to the specific type of the selected epoxy resin, the specific type may use a curing agent known in the art, Preferably, any one or more of an acid anhydride type, an amine type, an imidazole type, a polyamide type, and a polymercaptan type may be included.
  • the acid anhydride may be phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid, ethylene glycol bistrimellitate, glycerol tristrimellitate, maleic anhydride, tetrahydrophthalic anhydride, methyl Tetrahydrophthalic anhydride, endo methylene tetrahydro phthalic anhydride, methyl endo methylene tetrahydro phthalic anhydride, methyl butenyl tetrahydro phthalic anhydride, dodecenyl anhydrous succinic acid, hexahydro phthalic anhydride, methyl hexahydro phthalic anhydride, succinic anhydride, methylcyclohexene Dicarboxylic acid
  • the amine system may be aromatic amines, aliphatic amines, or modified substances thereof.
  • aromatic amines for example, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, azomethylphenol and the like may be used alone or in combination of two or more.
  • the aliphatic amines can be used alone or in combination of two or more diethylenetriamine, triethylenetetramine, for example.
  • the polyamides may be, for example, a reactant produced by condensation of a dimer acid and a polyamine having a fatty acid dimer, and may be a polyamideamine having a plurality of amino groups in a molecule and having at least one amide group.
  • the imidazole type is, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl imidazolium trimellitate and epoxyimidazole adduct. (adduct) and the like.
  • the polymercaptan-based may be, for example, a mercaptan group is present at the end of the polypropylene glycol chain, or a mercaptan group is present at the end of the polyethylene glycol chain.
  • a known curing agent such as a phenol resin, an amino resin, a polysulfide resin or the like may be included depending on the purpose instead of or in combination with the curing agent described above.
  • the coating layer forming component may further include a polyamide-based component as a curing agent, through which the carbon-based filler, Among them, it is very advantageous for improving compatibility with carbon black, and it is advantageous in all physical properties such as adhesion, durability, and surface quality of the coating layer.
  • the surface to which the heat-dissipating coating composition is applied is not flat but curved or stepped. In this case, there is an advantage of further preventing cracks from occurring or peeling off the heat-dissipating coating layer formed on the corresponding part.
  • the polyamide-based component may preferably have an amine number of 180 to 300 mgKOH / g, and more preferably 50,000 to 70,000 cps at 40 ° C.
  • the amine value of the polyamide-based curing agent is less than 180 mgKOH / g curing quality is lowered, all of the surface quality, durability, adhesion can be reduced, and the heat dissipation performance may also be reduced at the same time.
  • the amine value exceeds 300 mgKOH / g curing may proceed rapidly to cause agglomeration in the coating.
  • the viscosity of the polyamide-based curing agent is less than 50,000 cps, there is a problem of flowing down after coating, if it exceeds 70,000 cps, uniform coating is not applied during spray coating, the nozzle may be clogged and agglomeration may occur.
  • the coating layer forming component may include 45 to 75 parts by weight of the polyamide-based curing agent based on 100 parts by weight of the main resin provided, for example, the main resin is a bisphenol A-type epoxy resin. If the polyamide-based curing agent is provided in less than 45 parts by weight there is a problem of uncured, durability degradation. In addition, when the polyamide-based curing agent exceeds 75 parts by weight, there may be problems such as cracking due to excessive curing.
  • the above-described coating layer forming component may further include a curing accelerator in addition to the above-mentioned curing agent when the main resin and the main resin is a curable resin.
  • the curing accelerator plays a role for adjusting the curing rate, the properties of the cured product, etc., and may be used by selecting a known curing accelerator according to the type of curing agent selected, and as a non-limiting example, amines, imidazoles , Organic phosphines, Lewis acid curing accelerators.
  • the curing accelerator when using a polyamide-based curing agent may be used in combination with a curing accelerator of phenols and amines, for example, the addition amount may be appropriately changed in consideration of the equivalent of the epoxy resin.
  • the curing catalyst may be selected from the known curing catalyst in consideration of the type of the main resin, the type of curing agent, and the like, and the addition amount may be appropriately changed in consideration of the content of the main resin and the curing agent, epoxy equivalent, and curing temperature. Therefore, this invention does not specifically limit about this.
  • the carbon filler may be used without limitation in the case of including carbon in the material thereof, and a carbon material known in the art may be used.
  • the shape and size of the carbon-based fillers are not limited, and may also be porous or non-porous in structure, and may be differently selected according to the purpose.
  • carbon nanotubes such as single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, graphite, carbon black and carbon-metal composites include at least one can do.
  • it may preferably include any one or more of graphite and carbon black in terms of facilitating the achievement of the desired physical properties, such as excellent heat dissipation performance, ease of forming the coating layer, the surface quality of the coating layer, and improves the surface quality of the coating layer More preferably carbon black.
  • the carbon black may be used without limitation by selecting one or more kinds of known carbon blacks such as furnace black, lamp black and channel black.
  • the carbon black preferably has an average particle diameter of 250 nm or less, more preferably 50 to 250 nm. If the average particle diameter exceeds 250nm, there may be a problem of the uniformity of the surface, and if the average particle diameter is less than 50nm, there is a fear that the cost of the product increases, and the amount of carbon black buried on the surface after being implemented as a coating layer This increases and there is a problem that the heat dissipation performance can be reduced.
  • the carbon black provided for the surface quality may have a D90 of 260 nm or less in a volume accumulation particle size distribution.
  • the D90 refers to the particle diameter of the carbon black particles when the cumulative degree is 90% in the volume accumulation particle size distribution. Specifically, in the graph (volume-based particle size distribution) from the side with the smallest particle diameter on the horizontal axis and the smallest particle diameter on the vertical axis, the volume% from the smallest particle size is obtained from the smallest particle size with respect to the volume accumulation value (100%) of all particles.
  • the particle size of the particle with a cumulative value of 90% corresponds to D90.
  • the volume cumulative particle size distribution of the carbon black can be measured using a laser diffraction scattering particle size distribution device.
  • the carbon-based filler a carbon-based filler whose surface is modified with a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group may be used, wherein the functional group may be directly bonded to the surface of the carbon-based filler. Or may be indirectly bonded to the carbon-based filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms.
  • the carbon-based material may be a core or a shell, and the heterogeneous material may be a core-shell filler comprising the shell or the core.
  • the carbon-based filler may be included in an amount of 8 to 72 parts by weight based on 100 parts by weight of the above-described main resin, and may be included in an amount of 17 to 42 parts by weight for further improved physical properties.
  • the carbon-based filler is included in less than 8 parts by weight based on 100 parts by weight of the main resin, there is a problem that may not express the desired level of heat dissipation performance.
  • the carbon-based filler exceeds 72 parts by weight, the adhesion of the implemented coating layer is weakened, so that peeling occurs easily, and the hardness of the coating layer increases, so that it may be easily broken or crushed by physical impact.
  • the surface roughness may increase, thereby decreasing the surface quality of the coating layer.
  • the degree of improvement in heat dissipation performance may be insignificant.
  • the carbon-based filler may be provided in 42 parts by weight or less, if provided in excess of 42 parts by weight in the process of applying a heat-dissipating coating composition to the surface to be coated to achieve a thin coating layer
  • coating for example, by spraying
  • the physical property enhancing component is responsible for improving the durability by expressing improved heat dissipation and at the same time excellent adhesiveness when the heat dissipation coating composition according to the present invention is coated on the surface to be coated.
  • the physical property enhancing component may be a silane-based compound, and may be used without limitation in the case of known silane-based compounds employed in the art, but when used together with carbon black among the main resin and carbon-based filler of the above-described coating layer forming component,
  • the silane-based compound was added to 3- (N-anyl-N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropylmethyl to cause synergistic properties of one physical property and to express remarkable durability and heat dissipation.
  • the physical property enhancing component may preferably be included in 2 to 5 parts by weight based on 100 parts by weight of the main resin. If the physical property enhancing component is provided in less than 2 parts by weight, there may be a problem in that the desired physical properties such as heat dissipation and adhesion improvement through the physical property enhancing component are not simultaneously achieved to the desired level. In addition, when provided in excess of 5 parts by weight may have a problem of weakening the adhesion with the surface to be coated.
  • the above-mentioned heat-dissipating coating composition may further include a dispersant and a solvent for improving the dispersibility of the carbon-based filler.
  • the dispersant may be a known component employed in the art as a dispersant of the carbon-based filler.
  • polyester-based dispersant polyphenylene ether-based dispersant
  • Polyolefin dispersant acrylonitrile-butadiene-styrene copolymer dispersant, polyarylate dispersant, polyamide dispersant, polyamideimide dispersant, polyarylsulfone dispersant, polyetherimide dispersant, polyethersulfone dispersant, poly Phenylene sulfide dispersants, polyimide dispersants
  • Polyetherketone Dispersant Polybenzoxazole Dispersant, Polyoxadiazole Dispersant, Polybenzothiazole Dispersant, Polybenzimidazole Dispersant, Polypyridine Dispersant, Polytriazole Dispersant, Polypyrrolidine Dispersant, Polydibenzofuran
  • a system dispersing agent a polysulfone dispersing agent, a polyure
  • a reactant in which a urea component and an aldehyde component such as isobutylaldehyde can be used as a dispersant.
  • the solvent may be selected according to the selected main resin, the curing agent and the like, and the present invention is not particularly limited thereto, and the solvent may be used any solvent that enables the proper dissolution of each component,
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent
  • One or more selected species may be used.
  • the above-mentioned heat-dissipating coating composition may be a leveling agent, a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic agent, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a dehydrating agent, a flame retardant, an antistatic agent.
  • the heat dissipation coating composition according to the embodiment of the present invention described above may have a viscosity of 50 to 250 cps at 25 °C. If the viscosity of the heat-dissipating coating composition is less than 50 cps, it may be difficult to produce a coating layer due to the flow of the composition, and even after the production, the adhesive strength with the coated surface may be weakened. It is difficult to prepare a coating layer of the, even if the surface may not be uniform, the coating process may not be easy, especially in the case of spraying coating may be more difficult coating process. In addition, there is a problem that the dispersibility of the carbon black in the coating layer may be reduced.
  • the present invention is a heat dissipation unit including a heat dissipation coating layer (10b) is applied to the substrate 10a and the heat dissipation coating composition according to the invention on at least a portion of the outer surface of the substrate 10a as shown in FIG. 100.
  • the substrate 10a may be employed without limitation if the substrate 10a has a mechanical strength enough to form a coating layer after the heat-dissipating coating composition according to the present invention is applied regardless of whether there is a heat dissipation characteristic.
  • the substrate 10a may be at least one of a metal, a nonmetal, and a polymer organic compound.
  • the metal may be molded of any one metal material selected from the group consisting of aluminum, copper, zinc, silver, gold, iron, oxides thereof, and alloys of the metals.
  • the base metal may be a component commonly referred to as aluminum oxide, commonly ceramic.
  • the polymer organic compound is polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-styrene resin (AN), methacryl resin (PMMA), polyamide, Polyacetal, polycarbonate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT).
  • the shape of the substrate 10a is not limited.
  • the substrate 10a may have a structure having a plurality of peaked heat dissipation fins 10a 1 as shown in FIG. 1 to widen a surface area for radiating heat to the outside.
  • the substrate 10a may have a structure having a plate-shaped heat dissipation fin 10a 2 .
  • both side ends of the bottom plate may be bent upward to face each other, and thus may be a substrate 12a having a function of performing a heat radiation fin.
  • the heat dissipation coating layers 10b, 11b, and 12b formed of the heat dissipation coating composition according to the embodiment of the present invention exhibit improved heat dissipation performance, so that the heat dissipation unit 100 ′′ as shown in FIG. 3 is the number of heat dissipation fins of the substrate 12a. 1 is less than Figs. 1 and 2, the heat dissipation performance of the heat dissipation coating layer is not superior to that of the heat dissipation substrate having only the shape as shown in Figs. As shown in FIG. 1 and FIG. 2, even if the substrates 10a and 11a of the structure which are difficult to be molded structurally and the manufacturing time and the manufacturing cost are increased, there is an advantage of achieving a desired level of heat dissipation performance.
  • the outer surface is bent or stepped due to excellent adhesiveness of the heat dissipation coating layer. Even the heat dissipation coating layer may be peeled off or cracks do not occur.
  • the thickness, length, width, etc. of the substrates 10a, 11a, 12a may be variously changed according to the size and location of the application where the heat dissipation units 100, 100 ', 100 "are provided. It is not limited.
  • the substrate 12a may further include a functional layer 12c between the outer surface and the heat dissipation coating layer 12b, and the functional layer may be used to improve adhesion of the heat dissipation coating layer 12b. It may be a separate primer layer or an oxide film formed by surface modification such as anodizing the outer surface of the substrate 12a to improve heat dissipation performance.
  • the heat dissipation coating composition according to the present invention is coated on at least one region of the above-described substrate (10a, 11a, 12a) to form a heat dissipation coating layer, and unlike the Figures 1 to 3, the heat dissipation coating layer only on a portion of the substrate (10a, 11a, 12a) This can be formed. This is because the area covered in some coating may vary depending on the desired level of heat dissipation performance, so the present invention is not particularly limited thereto.
  • the heat dissipation coating layer (10b, 11b, 12b) is formed by curing the heat dissipation coating composition according to the present invention on the outer surface of the substrate.
  • Specific methods for forming the heat dissipation coating layer (10b, 11b, 12b) can be used by selecting a known method for coating the heat dissipation coating composition on the substrate, non-limiting examples of spray, dip coating, silk screen, roll It may be prepared by coating on various substrates by a method such as coating, dip coating or spin coating.
  • the coating resin may be implemented as a coating layer by treating heat and / or light according to the type of the main resin of the coating layer forming component used for curing after the coating, and the type of the curing agent provided with the curable main resin.
  • the temperature of heat applied and / or the light intensity and treatment time may vary depending on the type of main resin used, the type of curing agent, their content, coating thickness, and the like.
  • the bisphenol-A epoxy resin described above is included as the main resin, and the polyamide curing agent is provided, the bisphenol A epoxy resin may be treated for 10 to 120 minutes at a temperature of 60 ° C to 300 ° C, which is below the strain point of the substrate.
  • the treatment temperature is less than 60 °C, it is difficult to coat the heat dissipation coating composition on the substrate, if the treatment temperature exceeds 300 °C there is a problem that the deformation of the substrate or the manufacturing cost is increased.
  • the heat treatment time is less than 10 minutes, it is difficult to coat the heat dissipation coating composition on the substrate, and when the heat treatment time exceeds 120 minutes, the heat dissipation device is unnecessary because the manufacturing time of the heat dissipation device is unnecessarily increased. It is preferable that the surface treatment process is performed for 10 to 120 minutes.
  • the heat-dissipating coating composition used in the present invention is exposed to air after contact with a solid substrate, in particular a metal substrate to form a film that quickly cures without stickiness in moisture at room temperature or below 50 ° C. It is less likely to be contaminated by and the like, and the final curing can be performed at a relatively low temperature, so that the workability is excellent and the deformation of the metal substrate can be prevented during the curing.
  • the formed heat dissipation coating layers 10b, 11b, and 12b may have a thickness of 10 to 100 ⁇ m, and more preferably 15 to 50 ⁇ m. If the thickness exceeds 100 ⁇ m may have a problem such as boiling phenomenon occurs on the coating surface, if the thickness is less than 10 ⁇ m may have a problem of deterioration of heat radiation characteristics.
  • the heat dissipation coating layer (10b, 11b, 12b) may include a carbon-based filler 5 to 30% by weight based on the total weight of the heat dissipation coating layer. If the carbon-based filler is provided in less than 5% by weight in the implemented heat dissipation coating layer there is a problem that can not express the desired level of heat dissipation performance. In addition, if the carbon-based filler exceeds 30% by weight, the adhesion of the coating layer is weakened and peeling easily occurs, and the hardness of the coating layer is increased so that it may be easily broken or crushed by physical impact.
  • the surface roughness may increase, thereby decreasing the surface quality of the coating layer.
  • the degree of improvement in heat dissipation performance may be insignificant.
  • the heat dissipation coating composition forming the heat dissipation coating layer of the present invention can substantially increase the bending strength of the coating layer, excellent adhesion between the coating layer and the substrate, improved moisture resistance and weather resistance, and wettability of the carbon-based filler, and lower the viscosity during compounding. And increasing the surface ductility of the substrate on which the heat dissipation coating layer is formed.
  • excellent heat dissipation, excellent solvent resistance to the organic solvent, there is no discoloration during curing, and the heat dissipation unit including the heat dissipation coating layer implemented as it is easy to control the heat conduction can continuously express improved physical properties.
  • lighting devices such as LED lamps, energy charging devices, heater devices, display devices, power devices such as engines and motors, energy storage devices such as batteries, electrical and electronic devices such as heat exchangers, condensers and evaporators, automobiles, energy, and aviation Widely applicable to heat dissipation units or housings throughout the aerospace industry.
  • the coating layer forming component is a main resin and 65 parts by weight of a polyamide curing agent (Kukdo Chemical, G-5022) based on 100 parts by weight of a bisphenol A epoxy resin (Kukdo Chemical, YD-011) having an epoxy equivalent of 550 g / eq. 22 parts by weight of carbon black having an average particle diameter of 150 nm and D90 of 190 nm, 3 parts by weight of a physical property enhancing component (Shanghai Tech Polymer Technology, Tech-7130), which is an epoxy silane compound, and a dispersant (isobutylaldehyde and urea).
  • the heat-dissipating coating composition prepared in Example and Comparative Example is made of aluminum material (Al 1050) of which both ends are bent upwards as shown in FIG. 4, and the thickness is 1.5 mm, the width x the length x the height 35 mm x 34 mm x After spraying and coating the entire surface of the substrate with a final thickness of 25 ⁇ m at a thickness of 8.12 g of 12 mm, a heat dissipation unit having a heat dissipation coating layer was formed at a temperature of 150 ° C. for 10 minutes, and then evaluated by the following physical properties. Shown in
  • a test specimen was prepared by attaching a heat source (copper block combined with a ceramic heater) to the heat dissipation unit by using a TIM (thermally conductive tape: 1W / mk). Heat was generated by applying a constant current to the heat source of the prepared specimen, and maintained for 1 hour to evaluate the thermal emissivity by measuring the temperature of the heat radiation unit. Specifically, the thermal emissivity was calculated according to the following equation on the basis of the temperature measured under the same conditions for the substrate having no heat-dissipating coating layer.
  • Thermal emissivity (%) ⁇ 1- (temperature of test specimen (°C) / temperature of uncoated substrate (°C)) ⁇ ⁇ 100
  • Example 13 and Comparative Example 2 it was determined that the durability and adhesion evaluation results in poor, and radioactive evaluation was omitted.
  • the height of the chamber and the temperature of the heat dissipation unit were adjusted to 25 ⁇ 0.2 ° C.
  • a heat source having a diameter of 15 mm, a thickness of 1.5 mm, and a temperature of 115 ° C. is directly contacted with the center of the bottom surface of the bottom plate of the heat dissipation unit.
  • the standard deviation for the time required for the four points was calculated. The smaller the standard deviation, the more uniform the heat dissipation performance, and it can be interpreted that the carbon-based filler dispersibility of the heat dissipation coating layer is high.
  • the surface state of the heat dissipation unit was visually evaluated after 480 hours.
  • cracks and peeling (floating) of the heat-dissipating coating layer were checked for no abnormality, and the abnormality was indicated by ⁇ .
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G
  • Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-136) / 310/100 BPA (YD-012H) / 650/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (
  • Example 15 Example 16
  • Example 17 Example 18
  • Example 20 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPF (YDF-2001) / 480/100 Rubber modified epoxy (KR-202C) / 380/100 DCPD (KDCP-150) / 280/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 Amidoamine (G-A0533) / 330/65 Alicyclic amine (KH-825) / 275/65 Phenalcarmine (KMH-121X80) / 200/65 Carbon filler Type / content
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 filler Type / content (part by weight) Carbon black / 5 Carbon black / 75 Titanium Dioxide / 22 Carbon black / 22 Average particle diameter (nm) / D90 (nm) 150/192 150/192 208/255 150/190 Properties Enhancement Ingredients 3 3 3 Not included Heat dissip
  • Examples 1, 4 and 5 in which the content of the carbon-based fillers are within the preferred range of the present invention can be confirmed that thermal radiation and adhesiveness are simultaneously achieved as compared with Examples 2, 3, 6 and 7.
  • thermal radiation and adhesiveness are simultaneously achieved as compared with Examples 2, 3, 6 and 7.
  • the degree of improvement in thermal radiation properties is insignificant, rather it can be seen that the adhesiveness is lowered.
  • the uniformity of the radioactivity is also reduced.
  • Example 1 In Example 1, Examples 8 to 12, in which carbon black is provided in the same amount, in Example 11 having an average particle diameter of more than 250 nm, it can be seen that surface quality is lowered and radiation performance uniformity is lowered.
  • Example 12 in which D90 of the carbon black exceeds 260 nm, the surface quality was markedly lowered, and the adhesiveness was also decreased simultaneously.
  • Example 13 where the epoxy equivalent of the epoxy resin of the main resin is less than the preferred range, it can be seen that the adhesion and durability is not very good.
  • Example 14 in which the epoxy equivalent of the epoxy resin which is the main resin exceeds the preferable range, it can be seen that the adhesiveness is significantly lowered, and the uniformity of the radioactivity is also lowered.
  • Comparative Example 1 in which the content of the carbon-based filler is out of the range according to the present invention, it can be confirmed that the thermal radiation property is not significantly better than that in the embodiment.
  • Comparative Example 2 it can be seen that the durability and adhesion, the surface properties are very poor.
  • Comparative Example 3 equipped with a type of filler titanium dioxide, the adhesiveness and durability was excellent, but the degree of thermal radiation is Example 2 level, the filler content of Example 2 is less than 1/2 of Comparative Example 3 Considering that the carbon black can be expected to have a much better heat dissipation performance than titanium dioxide.
  • Example 4 which does not include a physical property enhancing component, it can be seen that the radioactivity, radioactivity uniformity, adhesiveness and durability all decrease.
  • the height of the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ⁇ 0.2 ° C. Thereafter, a ceramic heating element having a diameter of 15 mm and a thickness of 1.5 mm was directly contacted with the bottom center of the bottom surface of the heat dissipation unit, and then a power of 620 kV and 5.2 V was applied, and the temperature of the heat source was measured after 2 hours.
  • the height of the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ⁇ 0.2 ° C. Thereafter, a ceramic heating element having a diameter of 15 mm and a thickness of 1.5 mm was directly contacted with the bottom center of the bottom surface of the heat dissipation unit, and then a power of 620 kV and 5.2 V was applied, and after 2 hours, the temperature inside the chamber was measured.

Abstract

A heat dissipating coating composition is provided. A heat dissipating coating composition according to an embodiment of the present invention comprises: a coating layer forming component including a main resin; a carbon-based filler including 8 to 72 parts by weight with respect to 100 parts by weight of the main resin; and a physical property enhancing component for improving heat dissipating and adhering properties. Accordingly, a heat dissipating coating layer having excellent heat dissipating performance can be realized by having not only good heat conductivity but also good heat radiation. In addition, a heat dissipating coating layer formed as above has very good adhesion to the surface to be coated so as to significantly prevent peeling of the heat dissipating coating layer during use, and after the heat dissipating coating layer is formed, the durability of the coating layer can be maintained despite external physical and chemical stimuli such as heat, organic solvents, moisture, and shock. Furthermore, because the surface of the formed heat dissipating coating layer is very smooth and has good evenness, the surface quality is excellent, enabling the composition to be widely used in all industries requiring heat dissipation.

Description

방열 코팅조성물 및 이를 통해 형성된 방열유닛Heat dissipation coating composition and heat dissipation unit formed through
본 발명은 방열 코팅조성물에 관한 것으로, 더욱 상세하게는 방열코팅층을 형성한 후 우수한 방열성능을 발현하는 동시에 코팅층의 내구성, 피코팅면과의 부착성 및 코팅층의 표면품질이 매우 뛰어난 방열 코팅 조성물 및 이로 피복된 방열유닛에 관한 것이다The present invention relates to a heat dissipation coating composition, and more particularly, after forming a heat dissipation coating layer, the heat dissipation coating composition exhibits excellent heat dissipation performance and at the same time excellent durability of the coating layer, adhesion to the coated surface, and surface quality of the coating layer. It relates to a heat dissipation unit coated with this
일반적으로 전자장치의 사용 중에 장치내 구비되는 각종 부품에서 발생하는 열에 의한 오작동을 방지하기 위하여 발열이 있는 부품에는 방열부재를 장착한다. 방열판이나 히트싱크 등의 방열부재는 통상적으로 열전도율이 높은 금속을 사용하여 장치나 부품 내의 열을 외부로 빠르게 방출될 수 있도록 한다. 일예로, 상기 히트싱크는 알루미늄, 구리 및 그 합금소재를 고온의 상태로 가열, 용융시킨 후, 일정한 형상을 갖는 금형을 이용하여 압출 성형하는 방법을 통해 전면에 일정하게 돌출되는 다수의 방열핀이 배열되는 구조가 일반적으로 채용되어 왔다. In general, in order to prevent malfunction due to heat generated from various components provided in the apparatus during use of the electronic apparatus, a heat radiating member is mounted to the component having heat. Heat dissipation members, such as heat sinks or heat sinks, are typically made of metals with high thermal conductivity so that heat within the device or components can be quickly released to the outside. For example, the heat sink is a plurality of heat dissipation fins that are uniformly protruded on the front surface by heating and melting aluminum, copper and its alloy material at a high temperature state, and then extrusion molding using a mold having a predetermined shape. Structure has been generally employed.
그러나 다수의 방열핀이 배열된 히트싱크를 금형에 압출 성형하는 방법으로 제조하는 것은 제조 공정이 까다롭고, 다양한 형태를 갖는 히트 싱크를 제조하기 위해 그에 상응하는 별도의 금형을 구비해야 하기 때문에 가공비가 상승하는 문제점이 있다. 또한, 금속재질의 히트싱크는 열전도율은 높을 수 있으나, 전도된 열을 공기중으로 방사시키는 열방사효율은 매우 낮은 문제가 있다. 이를 해결하고자 금속재질의 히트싱크 표면을 아노다이징 처리 등을 통하여 산화피막을 형성시켜 방열성을 향상시키려는 시도들이 있었으나, 생성된 산화피막으로 목적하는 수준의 방열성능을 발현하기 어렵고 사용중에 산화피막이 벗겨져 방열성능을 지속시킬 수 없는 문제가 있다. 나아가, 금속재질의 방열부재를 구비한 전자장치는 방열부재의 무게로 인하여 경량화가 어렵고, 이동성 전자장치에는 사용에 제한이 있는 문제가 있는데, 이를 해결하고자 방열핀의 개수를 줄이는 등의 방열부재의 구조를 단순화하고, 방열부재의 두께를 줄일 경우 목적하는 수준의 방열성능을 달성하기 어려운 문제가 있다. However, manufacturing a heat sink in which a plurality of heat sink fins are arranged by extrusion molding is difficult, and the processing cost is increased because a separate mold is required to manufacture a heat sink having various shapes. There is a problem. In addition, the heat sink of the metal material may have a high thermal conductivity, but the thermal radiation efficiency of radiating conducted heat into the air is very low. In order to solve this problem, there have been attempts to improve heat dissipation by forming an oxide film on the heat sink surface of metal material through anodizing, etc., but it is difficult to express the desired heat dissipation performance with the produced oxide film, and the oxide film is peeled off during use. There is a problem that cannot be sustained. In addition, the electronic device having the heat dissipation member made of metal is difficult to lighten due to the weight of the heat dissipation member, and there is a problem in that the mobile electronic device has a limitation in use. To solve this problem, the structure of the heat dissipation member such as reducing the number of heat dissipation fins is solved. To simplify and to reduce the thickness of the heat radiation member has a problem that is difficult to achieve the desired level of heat radiation performance.
이를 해결하고자 최근에는 방열부재에 방열코팅층을 형성시켜 방열성능의 향상을 도모하는 시도들이 있으나, 방열코팅층의 내구성, 방열성능, 피코팅면과의 접착력 등의 물성을 동시에 달성하기 어렵고, 방열코팅층의 표면이 울퉁불퉁하거나 방열필러가 표면에 돌출되는 등 방열코팅층의 표면품질이 매우 좋지 않은 문제가 있다. Recently, attempts have been made to improve the heat dissipation performance by forming a heat dissipation coating layer on the heat dissipation member. However, it is difficult to simultaneously achieve physical properties such as durability of the heat dissipation layer, heat dissipation performance, and adhesion to the coated surface. There is a problem that the surface quality of the heat dissipation coating layer is very poor, such as uneven surface or the heat dissipation filler protrudes on the surface.
이에 피코팅면과의 부착력이 우수하고, 열/수분/유기용제 등의 외부의 물리적, 화학적 자극에 내구성이 뛰어나며, 코팅층의 표면품질이 우수하고, 방열성능을 현저히 향상시킬 수 있는 방열코팅층을 구현 가능한 방열코팅층 형성 조성물에 대한 연구가 시급한 실정이다.It has excellent adhesion to the surface to be coated, excellent durability against external physical and chemical stimuli such as heat / moisture / organic solvents, excellent surface quality of the coating layer, and a heat-dissipating coating layer that can significantly improve heat dissipation performance. There is an urgent need for studies on possible heat-dissipating layer-forming compositions.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 열전도성뿐만 아니라 열방사성까지 우수하여 뛰어난 방열성능을 발현하는 방열코팅층을 구현할 수 있는 방열 코팅조성물을 제공하는데 목적이 있다.The present invention has been made to solve the above problems, an object of the present invention is to provide a heat dissipation coating composition that can implement a heat dissipation coating layer that exhibits excellent heat dissipation performance as well as thermal conductivity.
또한, 본 발명은 피코팅면과의 접착성이 매우 우수하여 사용 중 방열코팅층의 박리가 현저히 방지되며, 방열코팅층으로 형성된 후 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 코팅층의 내구성이 유지될 수 있는 방열 코팅조성물을 제공하는데 다른 목적이 있다.In addition, the present invention is very excellent in adhesion to the surface to be coated, the peeling of the heat-dissipating coating layer is remarkably prevented during use, and after forming as a heat-dissipating coating layer to the physical and chemical stimuli such as external heat, organic solvent, moisture, impact Another object is to provide a heat dissipation coating composition that can be maintained in durability.
또한, 본 발명은 형성된 방열코팅층이 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어난 방열코팅층을 구현할 수 있는 방열 코팅조성물을 제공하는데 또 다른 목적이 있다.In addition, the present invention has a further object to provide a heat dissipation coating composition formed surface is very smooth, excellent in smoothness and can implement a heat dissipation coating layer excellent in surface quality.
상술한 과제를 해결하기 위해 본 발명은, 주제수지를 포함하는 코팅층 형성성분; 상기 주제수지 100 중량부에 대하여 8 ~ 72 중량부로 포함되는 카본계 필러; 및 방열성 및 부착성 향상을 위한 물성증진성분;을 포함하는 방열 코팅조성물 을 제공한다.The present invention to solve the above problems, the coating layer forming component comprising a main resin; Carbon-based filler contained in 8 to 72 parts by weight based on 100 parts by weight of the main resin; It provides a heat dissipation coating composition comprising; and a physical property enhancing component for improving heat dissipation and adhesion.
본 발명의 일 실시예에 의하면, 상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시수지, 글리시딜에스테르형 에폭시 수지, 선형지방족형 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어지는 군으로부터 선택되는 어느 하나 이상의 에폭시 수지를 포함할 수 있다. 이때, 바람직하게는 비스페놀 A형 에폭시 수지를 포함하는 글리시딜에테르형 에폭시 수지를 포함할 수 있으며, 보다 바람직하게는 에폭시 당량이 350 ~ 600 g/eq 일 수 있다.According to an embodiment of the present invention, the main resin is a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, a linear aliphatic type epoxy resin, a rubber-modified epoxy resin and their It may include any one or more epoxy resin selected from the group consisting of derivatives. At this time, it may preferably include a glycidyl ether type epoxy resin containing a bisphenol A epoxy resin, more preferably the epoxy equivalent may be 350 ~ 600 g / eq.
또한, 상기 코팅층 형성성분은 산무수물계, 아민계, 이미다졸계, 폴리아미드계 및 폴리메르캅탄계 중 어느 하나 이상의 성분을 포함하는 경화제를 더 포함할 수 있다. 상기 주제수지가 비스페놀 A형 에폭시 수지를 포함하는 경우 상기 경화제는 폴리아미드계 성분을 포함할 수 있다. 이때, 상기 폴리아미드계 성분은 아민가가 180 ~ 300 mgKOH/g 인 폴리아마이드계 성분일 수 있다. In addition, the coating layer forming component may further include a curing agent including any one or more components of an acid anhydride, amine, imidazole, polyamide and polycaptan. When the main resin includes a bisphenol A epoxy resin, the curing agent may include a polyamide-based component. In this case, the polyamide-based component may be a polyamide-based component having an amine number of 180 to 300 mgKOH / g.
또한, 상기 폴리아미드계 성분을 포함하는 경화제는 상기 비스페놀 A형 에폭시 수지 100 중량부에 대하여 45 ~ 75 중량부로 구비될 수 있다.In addition, the curing agent including the polyamide-based component may be provided with 45 to 75 parts by weight based on 100 parts by weight of the bisphenol A epoxy resin.
또한, 상기 카본계 필러는 그라파이트 및 카본블랙 중 어느 하나 이상을 포함할 수 있다. In addition, the carbon-based filler may include any one or more of graphite and carbon black.
또한, 상기 카본계 필러는 상기 에폭시 수지 100 중량부에 대하여 17 ~ 42 중량부로 포함될 수 있다.In addition, the carbon-based filler may be included in 17 to 42 parts by weight based on 100 parts by weight of the epoxy resin.
또한, 상기 카본계 필러는 카본블랙이며, 평균입경이 250㎚ 이하일 수 있고, 보다 바람직하게는 50 ~ 250㎚일 수 있다. 또한, 상기 카본계 필러는 D90이 260㎚ 이하일 수 있다.In addition, the carbon-based filler is carbon black, the average particle diameter may be 250nm or less, more preferably 50 to 250nm. In addition, the carbon-based filler may have a D90 of 260 nm or less.
또한, 상기 물성증진성분은 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-글리시독시프로필메틸에톡시실란, γ-글리시독시트리메틸디메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸메톡시실란 및 3-글리시독시프로필메틸디메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. In addition, the physical property enhancing component is 3- (N-aniyl-N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropylmethylethoxysilane, γ-glycidoxycitrimethyldimethoxysilane, 3- Any one or more selected from the group consisting of glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethylmethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane It may include.
또한, 상기 물성증진성분은 주제수지 100 중량부에 대하여 2 ~ 5 중량부로 포함될 수 있다.In addition, the physical property enhancing component may be included in 2 to 5 parts by weight based on 100 parts by weight of the main resin.
또한, 상기 코팅층 형성성성분은 비스페놀 A 형 에폭시 수지를 포함하는 주제수지 및 폴리아미드계 성분을 포함하는 경화제를 구비하고, 상기 카본계 필러는 카본블랙을 포함할 수 있다. In addition, the coating layer-forming component may include a curing agent including a main resin and a polyamide-based component including a bisphenol A-type epoxy resin, and the carbon-based filler may include carbon black.
한편, 본 발명은 기재; 및 본 발명에 따른 방열 코팅조성물이 상기 기재 외부면의 적어도 일부분에 도포되어 경화된 방열 코팅층;을 포함하는 방열유닛을 제공한다.On the other hand, the present invention; And a heat dissipation coating composition coated on at least a portion of the outer surface of the substrate and cured heat dissipation coating layer according to the present invention.
본 발명의 일 실시예에 의하면, 상기 방열코팅층의 두께는 10 ~ 100㎛일 수 있다. According to one embodiment of the invention, the thickness of the heat dissipation coating layer may be 10 ~ 100㎛.
또한, 상기 방열 코팅층은 방열코팅층 전체 중량에 대하여 카본계 필러를 5 ~ 30 중량%로 포함할 수 있다.In addition, the heat dissipation coating layer may include a carbon-based filler 5 to 30% by weight based on the total weight of the heat dissipation coating layer.
또한, 상기 기재는 금속, 비금속 및 고분자 유기화합물 중 어느 하나 이상의 재질로 성형된 것일 수 있다.In addition, the substrate may be molded of any one or more of a metal, a nonmetal, and a high molecular organic compound.
본 발명의 방열 코팅조성물은 열전도성뿐만 아니라 열방사성까지 우수하여 뛰어난 방열성능을 발현하는 방열코팅층을 구현할 수 있다. 또한, 이를 통해 구현된 방열코팅층은 피코팅면과의 접착성이 매우 우수하여 사용 중 방열코팅층의 박리가 현저히 방지되며, 방열코팅층으로 형성된 후 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 코팅층의 내구성이 유지될 수 있다. 나아가, 형성된 방열코팅층의 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어남에 따라서, 방열이 요구되는 산업 전반에 널리 응용될 수 있다.The heat dissipation coating composition of the present invention can realize a heat dissipation coating layer exhibiting excellent heat dissipation performance as well as thermal conductivity. In addition, the heat dissipation coating layer implemented through this has excellent adhesion to the surface to be coated to prevent peeling of the heat dissipation coating layer during use, and after being formed as a heat dissipation coating layer, external heat, organic solvent, moisture, impact, etc. The durability of the coating layer can be maintained even with chemical stimuli. Furthermore, as the surface of the formed heat dissipation coating layer is very smooth, the smoothness is excellent and the surface quality is excellent, the heat dissipation coating layer can be widely applied in the industry that requires heat dissipation.
도 1 내지 도 3은 본 발명의 일실시예에 따른 방열유닛의 사시도 및 부분단면도를 나타낸 도면, 그리고1 to 3 is a view showing a perspective view and a partial cross-sectional view of the heat dissipation unit according to an embodiment of the present invention, and
도 4 내지 도 5는 본 발명의 일실시예에 따른 기재의 사시도이다.4 to 5 are perspective views of a substrate according to an embodiment of the present invention.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 실시예에 따른 방열 코팅조성물은 주제수지를 포함하는 코팅층 형성성분, 카본계 필러 및 방열성 및 부착성 향상을 위한 물성증진성분을 포함하고, 상기 주제수지 100 중량부에 대하여 카본계 필러를 8 ~ 72 중량부로 포함한다.The heat dissipation coating composition according to an embodiment of the present invention includes a coating layer-forming component including a main resin, a carbon-based filler and a physical property enhancing component for improving heat dissipation and adhesion, and a carbon-based filler based on 100 parts by weight of the main resin 8 to 72 parts by weight.
먼저, 코팅층 형성성분에 대하여 설명한다.First, the coating layer forming component will be described.
상기 코팅층 형성성분은 주제수지를 포함하고, 상기 주제수지가 경화형 수지일 경우 경화제를 더 포함할 수 있고, 기타 경화촉진제, 경화촉매를 더 포함할 수 있다. The coating layer forming component may include a main resin, and may further include a curing agent when the main resin is a curable resin, and may further include other curing accelerators and curing catalysts.
상기 주제수지는 코팅층을 형성할 수 있는 것으로 당업계에 공지된 성분의 경우 제한 없이 사용될 수 있다. 다만, 피코팅 기재와의 접착성, 발열 기재의 열에 의해 취화 되지 않는 내열성, 기계적 강도 및 카본계 필러와의 상용성 개선에 따른 방열성능 향상을 동시에 달성하기 위하여 상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어지는 군으로부터 선택되는 어느 하나 이상의 에폭시 수지를 포함할 수 있다.The main resin may be used without limitation in the case of components known in the art to form a coating layer. However, the main resin is glycidyl ether type in order to simultaneously achieve the improvement of heat dissipation performance by improving the adhesiveness to the substrate to be coated, heat resistance which is not embrittled by heat of the heat generating substrate, mechanical strength and compatibility with the carbon-based filler. Epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, linear aliphatic type epoxy resin, rubber-modified epoxy resin, and any one or more epoxy resin selected from the group consisting of derivatives thereof may be included.
구체적으로 상기 글리시딜에테르형 에폭시 수지는 페놀류의 글리시딜에테르와 알코올류의 글리시딜에테르를 포함하며, 상기 페놀류의 글리시딜 에테르로 비스페놀 A형, 비스페놀 B형, 비스페놀AD형, 비스페놀 S형, 비스페놀 F형 및 레조르시놀 등과 같은 비스페놀계 에폭시, 페놀 노볼락(Phenol novolac) 에폭시, 아르알킬페놀 노볼락, 테르펜페놀 노볼락과 같은 페놀계 노볼락 및 o-크레졸 노볼락(Cresolnovolac) 에폭시와 같은 크레졸 노볼락계 에폭시 수지 등이 있고, 이들을 단독 또는 2 종 이상 병용할 수 있다. Specifically, the glycidyl ether type epoxy resin includes glycidyl ethers of phenols and glycidyl ethers of alcohols. As glycidyl ethers of the phenols, bisphenol A type, bisphenol B type, bisphenol AD type, and bisphenol Bisphenol-based epoxys such as S-type, bisphenol-F and resorcinol, phenol novolac epoxy, aralkylphenol novolac, phenolic novolacs and terpene-phenol novolacs and o-cresolnovolac There are cresol novolak-type epoxy resins, such as epoxy, and these can be used individually or in combination of 2 or more types.
상기 글리시딜 아민형 에폭시 수지로 디글리시딜아닐린, 테트라글리시딜디아미노디페닐메탄, N,N,N',N'-테트라글리시딜-m-크실릴렌디아민, 1,3-비스(디글리시딜아미노메틸)시클로헥산, 글리시딜에테르와 글리시딜아민의 양구조를 겸비한 트리글리시딜-m-아미노페놀, 트리글리시딜-p-아미노페놀 등이 있으며, 단독 또는 2 종 이상 병용할 수 있다. Diglycidyl aniline, tetraglycidyl diaminodiphenylmethane, N, N, N ', N'- tetraglycidyl-m-xylylenediamine as said glycidyl amine type epoxy resin, 1,3 -Bis (diglycidylaminomethyl) cyclohexane, triglycidyl-m-aminophenol and triglycidyl-p-aminophenol having both structures of glycidyl ether and glycidyl amine, and the like or alone 2 or more types can be used together.
상기 글리시딜에스테르형 에폭시수지로 p-하이드록시벤조산, β-하이드록시나프토에산과 같은 하이드록시카본산과 프탈산, 테레프탈산과 같은 폴리카본산 등에 의한 에폭시 수지일 수 있으며, 단독 또는 2 종 이상 병용할 수 있다. The glycidyl ester type epoxy resin may be an epoxy resin such as hydroxycarboxylic acid such as p-hydroxybenzoic acid or β-hydroxy naphthoic acid, and polycarboxylic acid such as phthalic acid or terephthalic acid. can do.
상기 선형 지방족형 에폭시 수지로 1,4-부탄디올, 1,6-헥산디올, 네오펜틸글리콜, 시클로헥산디메탄올, 글리세린, 트리메틸올에탄, 티리메틸올프로판, 펜타에리트리롤, 도데카히드로 비스페놀 A, 도데카히드로 비스페놀 F, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜 등에 의한 글리시딜 에테르일 수 있으며, 단독 또는 2 종 이상 병용할 수 있다.Examples of the linear aliphatic epoxy resins include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerin, trimethylolethane, thirimethylolpropane, pentaerythritol, and dodecahydro bisphenol A. And glycidyl ethers based on dodecahydro bisphenol F, ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and the like, and may be used alone or in combination of two or more thereof.
상기 고무변성 에폭시 수지는 골격에 고무 및/또는 폴리에테르를 갖는 에폭시 수지이면 특별히 한정되지 않으며, 일예로, 카르복시기 변성 부타다이엔-아크릴로나이트릴 엘라스토머와 분자 내에서 화학적으로 결합한 에폭시 수지(CTBN 변성 에폭시 수지), 아크릴로나이트릴-부타다이엔 고무 변성 에폭시 수지(NBR 변성 에폭시수지), 우레탄 변성 에폭시 수지, 실리콘 변성 에폭시 수지 등의 고무 변성 에폭시 수지일 수 있으며, 단독 또는 2종 이상 병용할 수 있다. The rubber-modified epoxy resin is not particularly limited as long as it is an epoxy resin having rubber and / or polyether in its skeleton. For example, an epoxy resin (CTBN-modified compound) chemically bonded in a molecule with a carboxy-group-modified butadiene-acrylonitrile elastomer Epoxy resins), acrylonitrile-butadiene rubber-modified epoxy resins (NBR-modified epoxy resins), urethane-modified epoxy resins, and silicone-modified epoxy resins such as silicone-modified epoxy resins, and may be used alone or in combination of two or more. have.
다만, 후술하는 카본계 필러, 특히 그 중에서도 카본블랙과의 상용성이 매우 뛰어나 방열특성, 코팅층의 내구성 향상 측면 및 방열 코팅층의 표면품질 향상의 측면에서 상기 주제수지는 비스페놀 A형 에폭시 수지를 포함하는 글리시딜에테르형 에폭시 수지일 수 있다.However, the main resin includes bisphenol-A epoxy resin in terms of heat dissipation characteristics, durability improvement of the coating layer, and surface quality improvement of the heat dissipation coating layer due to its excellent compatibility with carbon-based fillers, in particular, carbon black. It may be a glycidyl ether type epoxy resin.
상기 비스페놀 A형 에폭시 수지는 에폭시 당량이 350 ~ 600 g/eq일 수 있다. 만일 에폭시 당량이 350g/eq 미만일 경우 코팅층의 경도가 증가해 쉽게 깨지거나 크랙이 발생할 수 있고, 굴곡진 피코팅면에서 특히 쉽게 박리될 수 있는 문제가 있다. 또한, 만일 에폭시 당량이 600g/eq을 초과하는 경우 미경화된 부분의 발생으로 인한 내화학성, 접착력 및 내구성이 저하될 수 있는 문제가 있다. The bisphenol A epoxy resin may have an epoxy equivalent of 350 to 600 g / eq. If the epoxy equivalent is less than 350g / eq there is a problem that the hardness of the coating layer is increased to be easily cracked or cracks, it can be easily peeled off particularly in the curved coating surface. In addition, if the epoxy equivalent exceeds 600g / eq there is a problem that the chemical resistance, adhesion and durability due to the occurrence of the uncured portion may be lowered.
또한, 상기 비스페놀 A형 에폭시 수지는 점도가 10 ~ 200 cps일 수 있다. 만일 비스페놀 A형 에폭시 수지의 점도가 10 cps 미만일 경우 코팅층의 생성이 어려울 수 있고, 생성 후에도 피코팅면과의 접착력이 저하될 수 있는 문제점이 있고, 200 cps를 초과할 경우 얇은 두께의 코팅층으로 제조하기 어렵고, 코팅공정이 용이하지 않을 수 있으며, 특히 스프레잉 방식의 코팅일 경우 더욱 코팅공정이 어려울 수 있다. 또한, 코팅층 내 카본블랙의 분산성이 저하될 수 있는 문제가 있다In addition, the bisphenol A epoxy resin may have a viscosity of 10 to 200 cps. If the viscosity of the bisphenol A epoxy resin is less than 10 cps it may be difficult to produce a coating layer, there is a problem that the adhesive strength with the surface to be coated may be reduced even after the production, if it exceeds 200 cps is made of a thin coating layer The coating process may be difficult, and the coating process may not be easy. In particular, the coating process may be more difficult in the case of spraying coating. In addition, there is a problem that the dispersibility of the carbon black in the coating layer may be reduced.
또한, 상술한 주제수지인 에폭시 수지와 함께 코팅층 형성성분에 포함되는 경화제는 선택되는 에폭시 수지의 구체적인 종류에 따라 그 종류를 달리 할 수 있으며, 구체적인 종류는 당업계에 공지된 경화제를 사용할 수 있고, 바람직하게는 산무수물계, 아민계, 이미다졸계, 폴리아미드계 및 폴리메르캅탄계 중 어느 하나 이상의 성분을 포함할 수 있다. In addition, the curing agent included in the coating layer forming component together with the epoxy resin of the above-mentioned main resin may be changed according to the specific type of the selected epoxy resin, the specific type may use a curing agent known in the art, Preferably, any one or more of an acid anhydride type, an amine type, an imidazole type, a polyamide type, and a polymercaptan type may be included.
구체적으로 상기 산무수물계의 경우 일 분자 중에 복수의 카르복실기를 갖는 화합물의 무수물이 바람직하다. 일예로, 상기 산무수물은 무수프탈산, 무수트리멜리트산, 무수피로멜리트산, 무수벤조페논테트라카르본산, 에틸렌글리콜비스트리멜리테이트, 글리세롤트리스트리멜리테이트, 무수말레산, 테트라하이드로무수프탈산, 메틸테트라하이드로무수프탈산, 엔도메틸렌테트라하이드로무수프탈산, 메틸엔도메틸렌테트라하이드로무수프탈산, 메틸부테닐테트라하이드로무수프탈산, 도데세닐무수숙신산, 헥사하이드로무수프탈산, 메틸헥사하이드로무수프탈산, 무수숙신산, 메틸시클로헥센디카르본산 무수물, 클로렌드산 무수물 등을 단독 또는 2종 이상 병용할 수 있다.Specifically, in the case of the acid anhydride type, anhydrides of compounds having a plurality of carboxyl groups in one molecule are preferable. For example, the acid anhydride may be phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid, ethylene glycol bistrimellitate, glycerol tristrimellitate, maleic anhydride, tetrahydrophthalic anhydride, methyl Tetrahydrophthalic anhydride, endo methylene tetrahydro phthalic anhydride, methyl endo methylene tetrahydro phthalic anhydride, methyl butenyl tetrahydro phthalic anhydride, dodecenyl anhydrous succinic acid, hexahydro phthalic anhydride, methyl hexahydro phthalic anhydride, succinic anhydride, methylcyclohexene Dicarboxylic acid anhydride, chloric anhydride, etc. can be used individually or in combination of 2 or more types.
또한, 상기 아민계는 방향족 아민류, 지방족 아민류, 또는 이들의 변성물일 수 있다. 상기 방향족 아민류는 일 예로써, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐술폰, 아조메틸페놀 등을 단독 또는 2종 이상 병용할 수 있다. 또한, 상기 지방족 아민류는 일예로써, 디에틸렌트리아민, 트리에틸렌테트라민 등을 단독 또는 2종 이상 병용할 수 있다. In addition, the amine system may be aromatic amines, aliphatic amines, or modified substances thereof. As the aromatic amines, for example, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, azomethylphenol and the like may be used alone or in combination of two or more. In addition, the aliphatic amines can be used alone or in combination of two or more diethylenetriamine, triethylenetetramine, for example.
또한, 상기 폴리아미드류는 일예로, 지방산이 이량체인 다이머산과 폴리아민의 축합에 의해 생성된 반응물로 분자 중 복수의 아미노기를 갖고, 아미드기를 1개 이상 갖는 폴리아미드아민일 수 있다.In addition, the polyamides may be, for example, a reactant produced by condensation of a dimer acid and a polyamine having a fatty acid dimer, and may be a polyamideamine having a plurality of amino groups in a molecule and having at least one amide group.
또한, 상기 이미다졸계는 일예로, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-시아노에틸-2-운데실이미다졸리움트리멜리테이트 및 에폭시이미다졸 어덕트(adduct) 등일 수 있다.In addition, the imidazole type is, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl imidazolium trimellitate and epoxyimidazole adduct. (adduct) and the like.
또한, 상기 폴리메르캅탄계는 일예로, 폴리프로필렌글리콜쇄의 말단에 메르캅탄기가 존재하거나, 폴리에틸렌글리콜쇄의 말단에 메르캅탄기가 존재하는 것일 수 있다.In addition, the polymercaptan-based may be, for example, a mercaptan group is present at the end of the polypropylene glycol chain, or a mercaptan group is present at the end of the polyethylene glycol chain.
또한, 상술한 경화제 대신 또는 이와 병용하여 페놀 수지, 아미노수지, 폴리설파이드 수지 등의 공지된 경화제를 목적에 따라 포함할 수 있다. In addition, a known curing agent such as a phenol resin, an amino resin, a polysulfide resin or the like may be included depending on the purpose instead of or in combination with the curing agent described above.
한편, 본 발명의 일 실시예에 의하면, 상기 주제수지로 비스페놀 A형 에폭시 수지를 포함할 경우 상기 코팅층 형성성분은 경화제로써 폴리아미드계 성분을 더 포함할 수 있고, 이를 통해 후술하는 카본계 필러, 그 중에서도 카본블랙과의 상용성 향상에 매우 유리하고, 코팅층의 접착성, 내구성, 표면품질 등 모든 물성에 있어서 유리하며, 더불어 방열 코팅조성물이 적용될 피착면이 평활한 평면이 아닌 굴곡지거나 단차가 형성된 경우에 해당 부분에 형성된 방열코팅층에 크랙이 발생하거나 박리되는 것을 더욱 방지하는 이점이 있다. 또한, 보다 향상된 물성을 발현하기 위하여 바람직하게는 상기 폴리아미드계 성분은 아민가가 180 ~ 300 mgKOH/g 일 수 있고, 더욱 바람직하게는 40℃에서 점도가 50,000 ~ 70,000 cps일 수 있다. On the other hand, according to one embodiment of the present invention, when the bisphenol A epoxy resin as the main resin, the coating layer forming component may further include a polyamide-based component as a curing agent, through which the carbon-based filler, Among them, it is very advantageous for improving compatibility with carbon black, and it is advantageous in all physical properties such as adhesion, durability, and surface quality of the coating layer. In addition, the surface to which the heat-dissipating coating composition is applied is not flat but curved or stepped. In this case, there is an advantage of further preventing cracks from occurring or peeling off the heat-dissipating coating layer formed on the corresponding part. Also, in order to express more improved physical properties, the polyamide-based component may preferably have an amine number of 180 to 300 mgKOH / g, and more preferably 50,000 to 70,000 cps at 40 ° C.
만일 폴리아미드계 경화제의 아민가가 180 mgKOH/g 미만일 경우 경화품질이 저하되어 표면품질, 내구성, 접착성이 모두 저하될 수 있으며, 방열성능도 동시에 저하될 수 있다. 또한, 만일 아민가가 300 mgKOH/g을 초과하는 경우 경화가 급속히 진행되어 코팅 중 뭉치는 현상이 발생할 수 있다. 또한, 폴리아미드계 경화제의 점도가 50,000 cps 미만일 경우 코팅 후 흘러내림의 문제가 있으며, 70,000 cps 를 초과할 경우 스프레이 코팅시 균일 도포가 안되며, 노즐이 막히고 뭉치는 문제가 발생을 할 수 있다. If the amine value of the polyamide-based curing agent is less than 180 mgKOH / g curing quality is lowered, all of the surface quality, durability, adhesion can be reduced, and the heat dissipation performance may also be reduced at the same time. In addition, if the amine value exceeds 300 mgKOH / g curing may proceed rapidly to cause agglomeration in the coating. In addition, if the viscosity of the polyamide-based curing agent is less than 50,000 cps, there is a problem of flowing down after coating, if it exceeds 70,000 cps, uniform coating is not applied during spray coating, the nozzle may be clogged and agglomeration may occur.
또한, 상기 코팅층 형성성분은 구비되는 주제수지, 일예로 주제수지가 비스페놀 A형 에폭시 수지일 경우 비스페놀 A형 에폭시 수지 100 중량부에 대하여 상기 폴리아미드계 경화제를 45 ~ 75 중량부로 구비할 수 있다. 만일 폴리아미드계 경화제가 45 중량부 미만으로 구비되는 경우 미경화 문제, 내구성 저하의 문제점이 있다. 또한, 폴리아미드계 경화제가 75 중량부를 초과할 경우 지나친 경화로 깨짐 현상 등의 문제점이 있을 수 있다. In addition, the coating layer forming component may include 45 to 75 parts by weight of the polyamide-based curing agent based on 100 parts by weight of the main resin provided, for example, the main resin is a bisphenol A-type epoxy resin. If the polyamide-based curing agent is provided in less than 45 parts by weight there is a problem of uncured, durability degradation. In addition, when the polyamide-based curing agent exceeds 75 parts by weight, there may be problems such as cracking due to excessive curing.
한편, 상술한 코팅층 형성성분은 주제수지, 상기 주제수지가 경화형 수지일경우 상술한 경화제 이외에 경화촉진제를 더 포함할 수 있다. 상기 경화촉진제는 경화 속도나 경화물의 물성 등을 조정하기 위한 역할을 하며, 선택되는 경화제의 종류에 맞추어 공지된 경화촉진제를 선택하여 사용할 수 있고, 이에 대한 비제한적인 예로써, 아민류, 이미다졸류, 유기 포스핀류, 루이스산 경화촉진제 일 수 있다. 경화촉진제의 사용 일예는, 폴리아미드계 경화제를 사용할 경우 예를 들면 페놀류나 아민류의 경화 촉진제가 병용될 수 있고, 이때, 첨가량은 에폭시 수지의 당량 등을 고려하여 적절히 변경될 수 있다. 또한, 경화촉매 역시 선택되는 주제수지의 종류, 경화제의 종류 등을 고려하여 공지된 경화촉매를 선택할 수 있으며, 첨가량은 주제수지와 경화제의 함량, 에폭시 당량, 경화온도 등을 고려하여 적절히 변경될 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.Meanwhile, the above-described coating layer forming component may further include a curing accelerator in addition to the above-mentioned curing agent when the main resin and the main resin is a curable resin. The curing accelerator plays a role for adjusting the curing rate, the properties of the cured product, etc., and may be used by selecting a known curing accelerator according to the type of curing agent selected, and as a non-limiting example, amines, imidazoles , Organic phosphines, Lewis acid curing accelerators. One example of the use of the curing accelerator, when using a polyamide-based curing agent may be used in combination with a curing accelerator of phenols and amines, for example, the addition amount may be appropriately changed in consideration of the equivalent of the epoxy resin. In addition, the curing catalyst may be selected from the known curing catalyst in consideration of the type of the main resin, the type of curing agent, and the like, and the addition amount may be appropriately changed in consideration of the content of the main resin and the curing agent, epoxy equivalent, and curing temperature. Therefore, this invention does not specifically limit about this.
다음으로, 방열성능을 향상시키는 카본계 필러에 대하여 설명한다.Next, the carbon filler which improves heat dissipation performance is demonstrated.
상기 카본계 필러는 그 재질에 있어 카본을 포함하는 경우에는 제한 없이 사용할 수 있고, 당업계에 공지된 카본계 물질을 사용할 수 있다. 또한, 상기 카본계 필러의 형상, 크기는 제한이 없으며, 구조에 있어서도 다공질이거나 비다공질일 수 있고, 목적에 따라 달리 선택할 수 있는 바 본 발명에서 이를 특별히 한정하지 않는다. 일예로, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브와 같은 탄소나노튜브, 그래핀, 그래핀 옥사이드, 그라파이트, 카본블랙 및 탄소-금속 복합체로 이루어진 군에서 1종 이상을 포함할 수 있다. 다만, 바람직하게는 우수한 방열성능, 코팅층의 형성용이성, 코팅층의 표면품질 등 목적하는 물성의 달성을 용이하게 하는 측면에서 그라파이트 및 카본블랙 중 어느 하나 이상을 포함할 수 있고, 코팅층의 표면품질 향상 측면에서 보다 바람직하게는 카본블랙일 수 있다. The carbon filler may be used without limitation in the case of including carbon in the material thereof, and a carbon material known in the art may be used. In addition, the shape and size of the carbon-based fillers are not limited, and may also be porous or non-porous in structure, and may be differently selected according to the purpose. For example, carbon nanotubes, such as single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, graphite, carbon black and carbon-metal composites include at least one can do. However, it may preferably include any one or more of graphite and carbon black in terms of facilitating the achievement of the desired physical properties, such as excellent heat dissipation performance, ease of forming the coating layer, the surface quality of the coating layer, and improves the surface quality of the coating layer More preferably carbon black.
상기 카본블랙은 퍼니스블랙, 램프블랙, 채널블랙 등 공지된 카본블랙의 종류 중 1 종 이상을 선택하여 제한 없이 사용할 수 있다. 다만, 상기 카본블랙은 평균입경이 250㎚ 이하인 것이 바람직하고, 보다 바람직하게는 50 ~ 250㎚일 수 있다. 만일 평균입경이 250㎚를 초과하는 경우 표면의 균일성 저하의 문제점이 있을 수 있고, 평균입경이 50 ㎚미만일 경우 제품단가의 상승 우려가 있고, 코팅층으로 구현된 후 표면에 묻어 나오는 카본블랙의 양이 증가하여 방열성능이 저하될 수 있는 문제가 있다. 특히 표면품질을 위하여 구비되는 카본블랙은 체적누적입도분포에서 D90이 260㎚ 이하일 수 있다. 만일 D90이 260㎚를 초과하는 경우 코팅층의 표면거칠기가 증가하는 등 코팅층의 표면품질이 특히 저하될 수 있다. 상기 D90은 체적누적입도 분포에서 누적도 90%일 때의 카본블랙 입자의 입경을 의미한다. 구체적으로 가로축에 입경, 세로축에 입경이 제일 작은 측으로부터의 체적 누적 빈도를 취한 그래프(체적 기준의 입경 분포)에 있어서, 전체 입자의 체적 누적값(100%)에 대하여, 제일 작은 입경으로부터 체적%의 누적값이 90%에 해당되는 입자의 입경이 D90에 해당한다. 상기 카본블랙의 체적누적입도분포는 레이저 회절 산란 입도 분포 장치를 사용하여 측정할 수 있다.The carbon black may be used without limitation by selecting one or more kinds of known carbon blacks such as furnace black, lamp black and channel black. However, the carbon black preferably has an average particle diameter of 250 nm or less, more preferably 50 to 250 nm. If the average particle diameter exceeds 250nm, there may be a problem of the uniformity of the surface, and if the average particle diameter is less than 50nm, there is a fear that the cost of the product increases, and the amount of carbon black buried on the surface after being implemented as a coating layer This increases and there is a problem that the heat dissipation performance can be reduced. In particular, the carbon black provided for the surface quality may have a D90 of 260 nm or less in a volume accumulation particle size distribution. If D90 exceeds 260 nm, the surface quality of the coating layer may be particularly degraded, such as an increase in the surface roughness of the coating layer. The D90 refers to the particle diameter of the carbon black particles when the cumulative degree is 90% in the volume accumulation particle size distribution. Specifically, in the graph (volume-based particle size distribution) from the side with the smallest particle diameter on the horizontal axis and the smallest particle diameter on the vertical axis, the volume% from the smallest particle size is obtained from the smallest particle size with respect to the volume accumulation value (100%) of all particles. The particle size of the particle with a cumulative value of 90% corresponds to D90. The volume cumulative particle size distribution of the carbon black can be measured using a laser diffraction scattering particle size distribution device.
또한, 상기 카본계 필러의 경우 표면이 실란기, 아미노기, 아민기, 히드록시기, 카르복실기 등의 관능기로 개질시킨 카본계 필러를 사용할 수 있고, 이때, 상기 관능기는 직접 카본계 필러의 표면에 결합되어 있을 수 있고 또는 탄소수 1 ~ 20개의 치환 또는 비치환의 지방족 탄화수소나 탄소수 6 ~ 14개의 치환 또는 비치환의 방향족 탄화수소를 매개로 카본계 필러에 간접적으로 결합되어 있을 수 있다. 또한, 상기 카본계 물질을 코어 또는 쉘로 하고, 이종의 물질이 쉘 또는 코어를 구성하는 코어쉘 타입의 필러일 수도 있다. In the case of the carbon-based filler, a carbon-based filler whose surface is modified with a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group may be used, wherein the functional group may be directly bonded to the surface of the carbon-based filler. Or may be indirectly bonded to the carbon-based filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms. In addition, the carbon-based material may be a core or a shell, and the heterogeneous material may be a core-shell filler comprising the shell or the core.
상기 카본계 필러는 상술한 주제수지 100 중량부에 대하여 8 ~ 72 중량부로 포함되며, 더욱 향상된 물성의 발현을 위하여 바람직하게는 17 ~ 42 중량부로 포함될 수 있다. The carbon-based filler may be included in an amount of 8 to 72 parts by weight based on 100 parts by weight of the above-described main resin, and may be included in an amount of 17 to 42 parts by weight for further improved physical properties.
만일 카본계 필러가 주제수지 100 중량부에 대하여 8 중량부 미만으로 포함되는 경우 목적하는 수준의 방열성능을 발현하지 못할 수 있는 문제가 있다. 또한, 만일 카본계 필러가 72 중량부를 초과할 경우 구현된 코팅층의 접착력이 약화되어 박리가 쉽게 발생하고, 코팅층의 경도가 커져 물리적 충격에 쉽게 깨지거나 부스러질 수 있다. 또한, 코팅층의 표면에 돌출된 카본계 필러가 많아짐에 따라서 표면거칠기가 증가하여 코팅층의 표면품질이 저하될 수 있다. 더불어 카본계 필러가 더 구비되더라도 방열성능의 향상정도는 미미할 수 있다.If the carbon-based filler is included in less than 8 parts by weight based on 100 parts by weight of the main resin, there is a problem that may not express the desired level of heat dissipation performance. In addition, if the carbon-based filler exceeds 72 parts by weight, the adhesion of the implemented coating layer is weakened, so that peeling occurs easily, and the hardness of the coating layer increases, so that it may be easily broken or crushed by physical impact. In addition, as the number of carbon-based fillers protruding from the surface of the coating layer increases, the surface roughness may increase, thereby decreasing the surface quality of the coating layer. In addition, even if the carbon-based filler is further provided, the degree of improvement in heat dissipation performance may be insignificant.
한편, 바람직하게는 상기 카본계 필러가 42 중량부 이하로 구비될 수 있는데, 만일 42 중량부를 초과하여 구비될 경우 얇은 두께의 코팅층을 구현하기 위하여 방열 코팅조성물을 피코팅면에 도포하는 과정에서 일부 코팅방법, 예를 들어 스프레잉 방식으로 코팅 시 조성물이 균일하게 피코팅면을 도포하기 어렵고, 조성물 내 분산된 카본계 필러의 분산성이 저하되어 피코팅면에 조성물이 도포되더라도 카본계 필러가 비균일하게 분산하여 배치되는 문제가 있을 수 있고, 이로 인해 코팅층 표면 전체적으로 균일한 방열성능의 발현이 어려울 수 있는 문제가 있다.On the other hand, preferably, the carbon-based filler may be provided in 42 parts by weight or less, if provided in excess of 42 parts by weight in the process of applying a heat-dissipating coating composition to the surface to be coated to achieve a thin coating layer When coating, for example, by spraying, it is difficult for the composition to apply the coated surface uniformly, and the dispersibility of the dispersed carbon-based filler in the composition is reduced, so that the carbon-based filler may not be applied even if the composition is applied to the coated surface. There may be a problem in that it is arranged to be uniformly distributed, thereby causing a problem that it may be difficult to express a uniform heat dissipation performance on the entire surface of the coating layer.
다음으로 방열 코팅 조성물에 포함되는 물성증진성분에 대해 설명한다. Next, the physical property enhancing component contained in the heat dissipation coating composition will be described.
상기 물성증진성분은 본 발명에 따른 방열 코팅 조성물이 피코팅면에 코팅되었을 때 보다 향상된 방열성을 발현시키고 동시에 뛰어난 접착성을 발현시켜 내구성을 향상시키는 기능을 담당한다. The physical property enhancing component is responsible for improving the durability by expressing improved heat dissipation and at the same time excellent adhesiveness when the heat dissipation coating composition according to the present invention is coated on the surface to be coated.
상기 물성증진성분은 실란계 화합물일 수 있으며, 당업계에 채용하는 공지된 실란계 화합물의 경우 제한 없이 사용할 수 있으나, 상술한 코팅층 형성성분의 주제수지, 카본계 필러중에서도 카본블랙과 함께 사용될 경우 목적한 물성의 상승작용을 일으켜 현저한 내구성과 방열성을 발현할 수 있도록, 상기 실란계 화합물은 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-글리시독시프로필메틸에톡시실란, γ-글리시독시트리메틸디메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸메톡시실란 및 3-글리시독시프로필메틸디메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.The physical property enhancing component may be a silane-based compound, and may be used without limitation in the case of known silane-based compounds employed in the art, but when used together with carbon black among the main resin and carbon-based filler of the above-described coating layer forming component, The silane-based compound was added to 3- (N-anyl-N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropylmethyl to cause synergistic properties of one physical property and to express remarkable durability and heat dissipation. Methoxysilane, γ-glycidoxycitrimethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethylmethoxysilane and 3-glyci It may include any one or more selected from the group consisting of doxypropyl methyl dimethoxy silane.
또한, 상기 물성증진성분은 바람직하게는 주제수지 100 중량부에 대하여 2 ~ 5 중량부로 포함될 수 있다. 만일 물성증진성분이 2 중량부 미만으로 구비되는 경우 물성증진성분을 통한 방열성 및 접착성 향상 등 목적하는 물성을 동시에 목적하는 수준까지 달성하지 못하는 문제점이 있을 수 있다. 또한, 5 중량부를 초과하여 구비되는 경우 피코팅면과의 부착력 약화의 문제가 있을 수 있다.In addition, the physical property enhancing component may preferably be included in 2 to 5 parts by weight based on 100 parts by weight of the main resin. If the physical property enhancing component is provided in less than 2 parts by weight, there may be a problem in that the desired physical properties such as heat dissipation and adhesion improvement through the physical property enhancing component are not simultaneously achieved to the desired level. In addition, when provided in excess of 5 parts by weight may have a problem of weakening the adhesion with the surface to be coated.
한편, 상술한 방열 코팅조성물은 카본계 필러의 분산성을 향상시키기 위한 분산제, 용매를 더 포함할 수 있다. On the other hand, the above-mentioned heat-dissipating coating composition may further include a dispersant and a solvent for improving the dispersibility of the carbon-based filler.
상기 분산제는 카본계 필러의 분산제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로 폴리에스테르계 분산제, 폴리페닐렌에테르계 분산제; 폴리올레핀계 분산제, 아크릴로니트릴-부타디엔-스티렌 공중합체 분산제, 폴리아릴레이트계 분산제, 폴리아미드계 분산제, 폴리아미드이미드계 분산제, 폴리아릴설폰계 분산제, 폴리에테르이미드계 분산제, 폴리에테르설폰계 분산제, 폴리페닐렌 설피드계 분산제, 폴리이미드계 분산제; 폴리에테르케톤계분산제, 폴리벤족사졸계 분산제, 폴리옥사디아졸계 분산제, 폴리벤조티아졸계 분산제, 폴리벤즈이미다졸계 분산제, 폴리피리딘계 분산제, 폴리트리아졸계 분산제, 폴리피롤리딘계 분산제, 폴리디벤조퓨란계 분산제, 폴리설폰계 분산제, 폴리우레아계 분산제, 폴리우레탄계 분산제, 또는 폴리포스파젠계 분산제, 등을 들 수 있으며, 이들의 단독 또는 이들 중에 선택된 2종 이상의 혼합물 또는 공중합체를 사용할 수도 있다. 또한, 일예로, 우레아 성분과 알데하이드 성분, 예를들어 이소부틸알데하이드가 축합된 반응물을 분산제로 사용할 수 있다.The dispersant may be a known component employed in the art as a dispersant of the carbon-based filler. For example, polyester-based dispersant, polyphenylene ether-based dispersant; Polyolefin dispersant, acrylonitrile-butadiene-styrene copolymer dispersant, polyarylate dispersant, polyamide dispersant, polyamideimide dispersant, polyarylsulfone dispersant, polyetherimide dispersant, polyethersulfone dispersant, poly Phenylene sulfide dispersants, polyimide dispersants; Polyetherketone Dispersant, Polybenzoxazole Dispersant, Polyoxadiazole Dispersant, Polybenzothiazole Dispersant, Polybenzimidazole Dispersant, Polypyridine Dispersant, Polytriazole Dispersant, Polypyrrolidine Dispersant, Polydibenzofuran A system dispersing agent, a polysulfone dispersing agent, a polyurea dispersing agent, a polyurethane dispersing agent, or a polyphosphazene dispersing agent, etc. are mentioned, Two or more types or mixtures or copolymers selected from these can also be used. Also, as an example, a reactant in which a urea component and an aldehyde component such as isobutylaldehyde can be used as a dispersant.
또한, 상기 용매는 선택되는 주제수지, 경화제 등에 따라 이에 맞는 용매를 선택할 수 있어 본 발명에서는 이를 특별히 한정하는 것은 아니며, 상기 용매로는 각 성분의 적절한 용해를 가능케 하는 임의의 용매를 사용할 수 있고, 예를 들어, 물 등의 수계 용매, 알코올계 용매, 케톤계 용매, 아민계 용매, 아민계 용매, 에스테르계 용매, 아미드계 용매, 할로겐화 탄화수소계 용매, 에테르계 용매 및 퓨란계 용매로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.In addition, the solvent may be selected according to the selected main resin, the curing agent and the like, and the present invention is not particularly limited thereto, and the solvent may be used any solvent that enables the proper dissolution of each component, For example, in the group consisting of an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent One or more selected species may be used.
또한, 상술한 방열 코팅조성물은 레벨링제, pH 조절제, 이온포착제, 점도조정제, 요변성(搖變性) 부여제, 산화방지제, 열안정제, 광안정제, 자외선흡수제, 착색제, 탈수제, 난연제, 대전방지제, 방미제(防黴劑), 방부제, 등의 각종 첨가제의 1 종류 또는 2 종류 이상이 첨가될 수도 있다. 상기 기재된 각종 첨가제는 당업계에 공지된 것을 사용할 수 있어 본 발명에서 특별히 한정하지 않는다. In addition, the above-mentioned heat-dissipating coating composition may be a leveling agent, a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic agent, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a dehydrating agent, a flame retardant, an antistatic agent. One kind or two or more kinds of various additives such as a preservative, a preservative, and the like may be added. The various additives described above may use those known in the art and are not particularly limited in the present invention.
상술한 본 발명의 일 실시예에 따른 방열 코팅조성물은 점도가 25℃에서 50 ~ 250 cps일 수 있다. 만일 방열 코팅조성물의 점도가 50 cps 미만일 경우 조성물의 흘러내림 등으로 코팅층의 생성이 어려울 수 있고, 생성 후에도 피코팅면과의 접착력이 약화될 수 있는 문제점이 있고, 250 cps를 초과할 경우 얇은 두께의 코팅층으로 제조하기 어렵고, 제조되더라도 표면의 균일하지 않을 수 있으며, 코팅공정이 용이하지 않을 수 있고, 특히 스프레잉 방식의 코팅일 경우 더욱 코팅공정이 어려울 수 있다. 또한, 코팅층 내 카본블랙의 분산성이 저하될 수 있는 문제가 있다. The heat dissipation coating composition according to the embodiment of the present invention described above may have a viscosity of 50 to 250 cps at 25 ℃. If the viscosity of the heat-dissipating coating composition is less than 50 cps, it may be difficult to produce a coating layer due to the flow of the composition, and even after the production, the adhesive strength with the coated surface may be weakened. It is difficult to prepare a coating layer of the, even if the surface may not be uniform, the coating process may not be easy, especially in the case of spraying coating may be more difficult coating process. In addition, there is a problem that the dispersibility of the carbon black in the coating layer may be reduced.
한편, 본 발명은 도 1에 도시된 것과 같이 기재(10a) 및 상기 기재(10a)의 외부면 적어도 일부분에 본 발명에 따른 방열 코팅조성물이 도포되어 경화된 방열 코팅층(10b)을 포함하는 방열유닛(100)을 포함한다. On the other hand, the present invention is a heat dissipation unit including a heat dissipation coating layer (10b) is applied to the substrate 10a and the heat dissipation coating composition according to the invention on at least a portion of the outer surface of the substrate 10a as shown in FIG. 100.
상기 기재(10a)는 기능적으로 방열특성의 유무와 관계없이 본 발명에 따른 방열 코팅조성물이 도포된 후 코팅층을 형성할 수 있을 정도의 기계적 강도를 갖는 경우 제한 없이 채용될 수 있다. 이에 재질적으로 상기 기재(10a)는 금속, 비금속 및 고분자 유기화합물 중 어느 하나 이상일 수 있다. 상기 금속의 경우 알루미늄, 구리, 아연, 은, 금, 철, 이들의 산화물 및 상기 금속들의 합금으로 이루어진 군으로부터 선택된 어느 하나의 금속 재질로 성형된 것일 수 있다. 또한, 상기 비금속은 산화알루미늄, 통상적으로 세라믹으로 통칭되는 성분일 수 있다. 또한, 상기 고분자 유기화합물은 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 아크릴로니트릴-부타디엔-스티렌 수지(ABS), 아크릴로니트릴-스티렌 수지(AN), 메타크릴수지(PMMA), 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT). 불소수지, 페녹시 수지, 페놀수지(PE), 유레아 수지(UF), 멜라민수지(MF), 불포화 폴리에스테르 수지(UP), 에폭시 수지, 폴리우레탄 수지와 같은 통상적으로 플라스틱으로 통칭되는 고분자 유기화합물일 수 있다. The substrate 10a may be employed without limitation if the substrate 10a has a mechanical strength enough to form a coating layer after the heat-dissipating coating composition according to the present invention is applied regardless of whether there is a heat dissipation characteristic. In this regard, the substrate 10a may be at least one of a metal, a nonmetal, and a polymer organic compound. The metal may be molded of any one metal material selected from the group consisting of aluminum, copper, zinc, silver, gold, iron, oxides thereof, and alloys of the metals. In addition, the base metal may be a component commonly referred to as aluminum oxide, commonly ceramic. In addition, the polymer organic compound is polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-styrene resin (AN), methacryl resin (PMMA), polyamide, Polyacetal, polycarbonate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT). Polymer organic compounds commonly referred to as plastics, such as fluororesins, phenoxy resins, phenolic resins (PE), urea resins (UF), melamine resins (MF), unsaturated polyester resins (UP), epoxy resins, polyurethane resins Can be.
상기 기재(10a)의 형상은 제한이 없다. 상기 기재(10a)가 방열특성을 갖는 기재일 경우 외부로 열의 방사시키기 위한 표면적을 넓히기 위하여 도 1과 같이 다수개의 첨상의 방열핀(10a1)이 구비된 구조일 수 있다. 또는 도 2와 같이 기재(10a)는 판상의 방열핀(10a2)이 구비된 구조일 수도 있다. 또는, 도 3과 같이 밑판의 양 측단이 서로 대향하도록 상부로 절곡되어 방열핀의 기능을 수행하는 구조의 기재(12a)일 수 있다. 한편, 본 발명의 일 실시예에 의한 방열 코팅조성물로 형성된 방열코팅층(10b,11b,12b)은 향상된 방열성능을 발현함에 따라서 도 3과 같은 방열유닛(100")은 기재(12a)의 방열핀 개수가 도 1 및 도 2보다 적음에도 불구하고, 방열코팅층이 구비되지 않은 채로 구조적으로 표면적이 증가된 도 1이나 도 2와 같은 형상만을 갖는 방열기재보다도 방열성능에서 월등히 우수할 수 있다. 이에 따라서 도 1 및 도 2와 같이 구조적으로 성형하기 어렵고, 제조시간과 제조단가가 상승할 수 있는 구조의 기재(10a,11a)를 채용하지 않더라도 목적하는 수준의 방열성능을 달성할 수 있는 이점이 있다. The shape of the substrate 10a is not limited. When the substrate 10a is a substrate having a heat dissipation property, the substrate 10a may have a structure having a plurality of peaked heat dissipation fins 10a 1 as shown in FIG. 1 to widen a surface area for radiating heat to the outside. Alternatively, as shown in FIG. 2, the substrate 10a may have a structure having a plate-shaped heat dissipation fin 10a 2 . Alternatively, as shown in FIG. 3, both side ends of the bottom plate may be bent upward to face each other, and thus may be a substrate 12a having a function of performing a heat radiation fin. Meanwhile, the heat dissipation coating layers 10b, 11b, and 12b formed of the heat dissipation coating composition according to the embodiment of the present invention exhibit improved heat dissipation performance, so that the heat dissipation unit 100 ″ as shown in FIG. 3 is the number of heat dissipation fins of the substrate 12a. 1 is less than Figs. 1 and 2, the heat dissipation performance of the heat dissipation coating layer is not superior to that of the heat dissipation substrate having only the shape as shown in Figs. As shown in FIG. 1 and FIG. 2, even if the substrates 10a and 11a of the structure which are difficult to be molded structurally and the manufacturing time and the manufacturing cost are increased, there is an advantage of achieving a desired level of heat dissipation performance.
또한, 도 1이나 도 2와 같이 기재(10a,11a)가 다수개의 방열핀(10a1,11a1)을 구비하는 복잡한 형상의 경우에도 방열 코팅층의 접착성이 우수함에 따라서 구부러지거나 단차가 형성된 외부면에도 방열코팅층이 박리되거나 크랙이 발생하지 않을 수 있다.In addition, as shown in FIG. 1 and FIG. 2, even when the substrate 10a or 11a has a complicated shape having a plurality of heat dissipation fins 10a 1 and 11a 1 , the outer surface is bent or stepped due to excellent adhesiveness of the heat dissipation coating layer. Even the heat dissipation coating layer may be peeled off or cracks do not occur.
상기 기재(10a,11a,12a)의 두께, 길이, 폭 등은 방열유닛(100,100',100")이 구비되는 적용처의 크기, 위치에 따라서 다양하게 변경될 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.The thickness, length, width, etc. of the substrates 10a, 11a, 12a may be variously changed according to the size and location of the application where the heat dissipation units 100, 100 ', 100 "are provided. It is not limited.
한편, 도 3과 같이 상기 기재(12a)는 외부면과 방열코팅층(12b) 사이에 기능층(12c)을 더 구비할 수 있고, 상기 기능층은 방열코팅층(12b)의 접착성을 향상시키기 위한 별도의 프라이머층이거나 또는 방열성능의 향상을 위하여 기재(12a)의 외부면을 아노다이징 등의 표면 개질시켜 형성된 산화피막일 수 있다.Meanwhile, as shown in FIG. 3, the substrate 12a may further include a functional layer 12c between the outer surface and the heat dissipation coating layer 12b, and the functional layer may be used to improve adhesion of the heat dissipation coating layer 12b. It may be a separate primer layer or an oxide film formed by surface modification such as anodizing the outer surface of the substrate 12a to improve heat dissipation performance.
본 발명에 따른 방열 코팅 조성물은 상술한 기재(10a,11a,12a)의 적어도 일영역에 피복되어 방열 코팅층을 형성하며, 도 1 내지 도 3과 다르게 기재(10a,11a,12a) 일부분에만 방열코팅층이 형성될 수 있다. 이는 일부 피복시 피복되는 면적은 목적하는 수준의 방열성능에 따라 달라질 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.The heat dissipation coating composition according to the present invention is coated on at least one region of the above-described substrate (10a, 11a, 12a) to form a heat dissipation coating layer, and unlike the Figures 1 to 3, the heat dissipation coating layer only on a portion of the substrate (10a, 11a, 12a) This can be formed. This is because the area covered in some coating may vary depending on the desired level of heat dissipation performance, so the present invention is not particularly limited thereto.
상기 방열코팅층(10b,11b,12b)은 본 발명에 따른 방열코팅조성물이 기재의 외부면 상에서 경화되어 형성된다. 상기 방열코팅층(10b,11b,12b)을 형성시키는 구체적인 방법은 방열 코팅조성물을 기재에 코팅시키는 공지된 방법을 선택하여 사용할 수 있고, 이에 대한 비제한적인 예로써 스프레이, 딥 코팅, 실크 스크린, 롤 코팅, 침적 코팅 또는 스핀 코팅 등의 방법으로 다양한 기재 위에 도포하여 제조할 수 있다.The heat dissipation coating layer (10b, 11b, 12b) is formed by curing the heat dissipation coating composition according to the present invention on the outer surface of the substrate. Specific methods for forming the heat dissipation coating layer (10b, 11b, 12b) can be used by selecting a known method for coating the heat dissipation coating composition on the substrate, non-limiting examples of spray, dip coating, silk screen, roll It may be prepared by coating on various substrates by a method such as coating, dip coating or spin coating.
상기 코팅 후 경화시 사용되는 코팅층 형성성분의 주제수지 종류, 경화형 주제 수지일 경우 함께 구비되는 경화제의 종류에 따라서 열 및/또는 광을 처리하여 코팅조성물을 코팅층으로 구현시킬 수 있다. 가해지는 열의 온도 및/또는 광의 세기와 처리 시간 등은 사용되는 주제수지 종류, 경화제의 종류, 이들의 함량, 도막두께 등에 따라 차이가 있을 수 있다. 일예로, 상술한 비스페놀 A형 에폭시 수지를 주제수지로 포함하고, 폴리아미드 경화제를 구비하는 경우 기재의 변형점 미만의 온도인 60℃ 내지 300℃의 온도 하에서 10분 내지 120분간 처리될 수 있다. 만일 처리온도가 60℃ 미만일 경우, 방열 코팅 조성물이 기재상에 피복되기 어렵고, 처리온도가 300℃를 초과할 경우 기재의 변형이나 제조단가가 상승되는 문제가 있다. 또한, 처리 공정시간이 10분 미만일 경우 역시 기재상에 방열 코팅 조성물이 피복되기 어렵고, 표면처리 공정시간이 120분을 초과할 경우, 상기 방열장치의 제조시간이 불필요하게 증가하기 때문에 상기 방열장치는 10분 내지 120분간 표면처리 공정이 진행되는 것이 바람직하다. The coating resin may be implemented as a coating layer by treating heat and / or light according to the type of the main resin of the coating layer forming component used for curing after the coating, and the type of the curing agent provided with the curable main resin. The temperature of heat applied and / or the light intensity and treatment time may vary depending on the type of main resin used, the type of curing agent, their content, coating thickness, and the like. For example, when the bisphenol-A epoxy resin described above is included as the main resin, and the polyamide curing agent is provided, the bisphenol A epoxy resin may be treated for 10 to 120 minutes at a temperature of 60 ° C to 300 ° C, which is below the strain point of the substrate. If the treatment temperature is less than 60 ℃, it is difficult to coat the heat dissipation coating composition on the substrate, if the treatment temperature exceeds 300 ℃ there is a problem that the deformation of the substrate or the manufacturing cost is increased. In addition, when the heat treatment time is less than 10 minutes, it is difficult to coat the heat dissipation coating composition on the substrate, and when the heat treatment time exceeds 120 minutes, the heat dissipation device is unnecessary because the manufacturing time of the heat dissipation device is unnecessarily increased. It is preferable that the surface treatment process is performed for 10 to 120 minutes.
또한, 본 발명에 사용되는 방열 코팅 조성물은 고체 기재, 특히 금속기재와 접촉시킨 후 공기 중에 노출시켜 상온 또는 50℃ 이하의 온도에서 수분 내에 끈적거림이 없이 신속하게 경화하는 피막을 형성함으로써 작업장에서 먼지 등에 의한 오염 가능성이 적고 최종 경화도 비교적 낮은 온도에서 수행할 수 있어 작업성이 우수할 뿐만 아니라 경화 중에 금속기재의 변형도 방지할 수 있다. In addition, the heat-dissipating coating composition used in the present invention is exposed to air after contact with a solid substrate, in particular a metal substrate to form a film that quickly cures without stickiness in moisture at room temperature or below 50 ° C. It is less likely to be contaminated by and the like, and the final curing can be performed at a relatively low temperature, so that the workability is excellent and the deformation of the metal substrate can be prevented during the curing.
형성된 방열 코팅층(10b,11b,12b)은 두께가 10 ~ 100㎛일 수 있고, 보다 바람직하게는 15 ~ 50㎛일 수 있다. 만일 두께가 100㎛를 초과하는 경우 코팅 표면에 끓음 현상 등이 발생하는 문제점이 있을 수 있고, 두께가 10㎛ 미만일 경우 방열 특성 저하 문제점이 있을 수 있다.The formed heat dissipation coating layers 10b, 11b, and 12b may have a thickness of 10 to 100 μm, and more preferably 15 to 50 μm. If the thickness exceeds 100㎛ may have a problem such as boiling phenomenon occurs on the coating surface, if the thickness is less than 10㎛ may have a problem of deterioration of heat radiation characteristics.
또한, 상기 방열 코팅층(10b,11b,12b)은 방열코팅층 전체 중량에 대하여 카본계 필러를 5 ~ 30 중량%로 포함할 수 있다. 구현된 방열코팅층 내에 카본계 필러가 5 중량% 미만으로 구비되는 경우 목적하는 수준의 방열성능을 발현하지 못할 수 있는 문제가 있다. 또한, 만일 카본계 필러가 30 중량%를 초과할 경우 코팅층의 접착력이 약화되어 박리가 쉽게 발생하고, 코팅층의 경도가 커져 물리적 충격에 쉽게 깨지거나 부스러질 수 있다. 또한, 코팅층의 표면에 돌출된 카본계 필러가 많아짐에 따라서 표면거칠기가 증가하여 코팅층의 표면품질이 저하될 수 있다. 더불어 카본계 필러가 더 구비되더라도 방열성능의 향상 정도는 미미할 수 있다.In addition, the heat dissipation coating layer (10b, 11b, 12b) may include a carbon-based filler 5 to 30% by weight based on the total weight of the heat dissipation coating layer. If the carbon-based filler is provided in less than 5% by weight in the implemented heat dissipation coating layer there is a problem that can not express the desired level of heat dissipation performance. In addition, if the carbon-based filler exceeds 30% by weight, the adhesion of the coating layer is weakened and peeling easily occurs, and the hardness of the coating layer is increased so that it may be easily broken or crushed by physical impact. In addition, as the number of carbon-based fillers protruding from the surface of the coating layer increases, the surface roughness may increase, thereby decreasing the surface quality of the coating layer. In addition, even if the carbon-based filler is further provided, the degree of improvement in heat dissipation performance may be insignificant.
한편, 본 발명의 방열 코팅층을 형성시키는 방열 코팅 조성물은 코팅층의 곡강도의 실질적인 증가, 코팅층과 기재간의 우수한 접착력, 향상된 내습성 및 내후성, 카본계 필러의 습윤성을 향상시킬 수 있으며, 컴파운딩 시 점도저하 및 방열 코팅층이 형성된 기재 표면 연성을 증가시킬 수 있다. 또한, 우수한 방열성, 유기용매에 대해 뛰어난 내용매성을 발현하며, 경화시 변색이 없고, 열전도의 조절이 용이함에 따라 이로 구현된 방열코팅층을 포함하는 방열유닛은 향상된 물성을 지속적으로 발현할 수 있다. 이에 따라서 LED 램프 등의 조명장치, 에너지 충전장치, 히터장치, 디스플레이 장치, 엔진, 모터 등의 동력장치, 배터리 등의 에너지 저장장치, 열교환기, 응축기, 증발기 등의 전기전자, 자동차, 에너지, 항공우주 산업 전반의 방열유닛이나 하우징에 널리 응용될 수 있다. Meanwhile, the heat dissipation coating composition forming the heat dissipation coating layer of the present invention can substantially increase the bending strength of the coating layer, excellent adhesion between the coating layer and the substrate, improved moisture resistance and weather resistance, and wettability of the carbon-based filler, and lower the viscosity during compounding. And increasing the surface ductility of the substrate on which the heat dissipation coating layer is formed. In addition, excellent heat dissipation, excellent solvent resistance to the organic solvent, there is no discoloration during curing, and the heat dissipation unit including the heat dissipation coating layer implemented as it is easy to control the heat conduction can continuously express improved physical properties. Accordingly, lighting devices such as LED lamps, energy charging devices, heater devices, display devices, power devices such as engines and motors, energy storage devices such as batteries, electrical and electronic devices such as heat exchangers, condensers and evaporators, automobiles, energy, and aviation Widely applicable to heat dissipation units or housings throughout the aerospace industry.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Although the present invention will be described in more detail with reference to the following examples, the following examples are not intended to limit the scope of the present invention, which will be construed as to aid the understanding of the present invention.
<실시예 1><Example 1>
코팅층형성성분은 주제수지로 에폭시 당량이 550 g/eq인 비스페놀A형 에폭시수지(국도화학, YD-011) 100 중량부에 대하여 폴리아미드계의 경화제(국도화학, G-5022)를 65 중량부, 평균입경이 150㎚이고, D90이 190㎚인 카본블랙을 22 중량부, 에폭시계 실란화합물인 물성증진성분(Shanghai Tech Polymer Technology, Tech-7130) 3 중량부, 분산제(이소부틸알데하이드와 우레아의 축합물) 18 중량부, 용매로 메틸에틸케톤 18 중량부, 톨루엔 28.8 중량부, 사이클로핵사논 285 중량부를 혼합하여 교반하였다. 교반 후 혼합물 내에 포함된 기포를 제거하였고, 최종 점도를 25℃ 기준 100 ~ 130 cps로 제조하여 하기 표 1과 같은 방열코팅조성물을 제조하였고, 이후 5℃에서 저장하였다.The coating layer forming component is a main resin and 65 parts by weight of a polyamide curing agent (Kukdo Chemical, G-5022) based on 100 parts by weight of a bisphenol A epoxy resin (Kukdo Chemical, YD-011) having an epoxy equivalent of 550 g / eq. 22 parts by weight of carbon black having an average particle diameter of 150 nm and D90 of 190 nm, 3 parts by weight of a physical property enhancing component (Shanghai Tech Polymer Technology, Tech-7130), which is an epoxy silane compound, and a dispersant (isobutylaldehyde and urea). 18 parts by weight of condensate), 18 parts by weight of methyl ethyl ketone, 28.8 parts by weight of toluene, and 285 parts by weight of cyclonucleanone were mixed and stirred. After stirring, bubbles contained in the mixture were removed, and the final viscosity was prepared at 100 to 130 cps based on 25 ° C to prepare a heat-dissipating coating composition as shown in Table 1 below, and then stored at 5 ° C.
<실시예 2 ~ 20><Examples 2 to 20>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 1, 표 2 또는 표 3과 같이 카본계 필러의 종류, 평균입경, 입도분포 및 코팅층 형성성분의 종류 등을 변경하여 표 1, 표 2 또는 표 3과 같은 방열코팅조성물을 제조하였다.Manufactured in the same manner as in Example 1, by changing the type, average particle size, particle size distribution and the type of the coating layer-forming components, such as Table 1, Table 2 or Table 3, Table 1, Table 2 or Table A heat dissipation coating composition such as 3 was prepared.
<비교예 1 ~ 4><Comparative Examples 1 to 4>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 4와 같이 카본계 필러의 함량, 방열필러의 종류를 변경하여 하기 표 4와 같은 방열코팅조성물을 제조하였다.Prepared in the same manner as in Example 1, by changing the content of the carbon-based filler, the type of heat dissipation filler as shown in Table 4 below to prepare a heat dissipation coating composition as shown in Table 4.
<실험예 1>Experimental Example 1
실시예 및 비교예에서 제조된 방열 코팅조성물을 도 4와 같은 양측단이 상부방향으로 절곡된 형상의 알루미늄 재질(Al 1050)로, 두께 1.5㎜, 가로×세로×높이 각각 35㎜×34㎜×12㎜의 무게 8.12g 기재 전면에 최종 두께가 25㎛가 되도록 스프레잉 코팅하여 도포 후 150℃ 온도로 10분간 열처리 방열코팅층이 형성된 방열유닛을 제조한 후 하기의 물성을 평가하여 표 1 내지 표 4에 나타내었다.The heat-dissipating coating composition prepared in Example and Comparative Example is made of aluminum material (Al 1050) of which both ends are bent upwards as shown in FIG. 4, and the thickness is 1.5 mm, the width x the length x the height 35 mm x 34 mm x After spraying and coating the entire surface of the substrate with a final thickness of 25 μm at a thickness of 8.12 g of 12 mm, a heat dissipation unit having a heat dissipation coating layer was formed at a temperature of 150 ° C. for 10 minutes, and then evaluated by the following physical properties. Shown in
1. 열방사성 평가1. Thermal radiation evaluation
가로, 세로, 높이 각각 30㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛에 열원(세라믹 heater가 결합된 구리블럭)을 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여 시험시편을 제조하였다. 제조된 시편의 열원에 일정 전류를 인가하여 열을 발생시키고, 1시간 유지한 후 방열유닛의 온도를 측정하여 열방사율을 평가하였다. 구체적으로 열방사율은 방열코팅층이 구비되지 않은 기재에 대해 동일 조건에서 측정한 온도를 기준으로 하여 하기 수학식에 따라서 계산하였다. After placing the heat dissipation unit in the center of the acrylic chamber of 30cm × 30cm × 30cm, respectively, the height of the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ± 0.2 ° C. Then, a test specimen was prepared by attaching a heat source (copper block combined with a ceramic heater) to the heat dissipation unit by using a TIM (thermally conductive tape: 1W / mk). Heat was generated by applying a constant current to the heat source of the prepared specimen, and maintained for 1 hour to evaluate the thermal emissivity by measuring the temperature of the heat radiation unit. Specifically, the thermal emissivity was calculated according to the following equation on the basis of the temperature measured under the same conditions for the substrate having no heat-dissipating coating layer.
[수학식][Equation]
열방사율(%)= {1-(시험시편의 온도(℃)/미코팅 기재의 온도(℃))}× 100Thermal emissivity (%) = {1- (temperature of test specimen (℃) / temperature of uncoated substrate (℃))} × 100
다만, 실시예 13, 비교예 2의 경우 내구성, 접착성 평가 결과 열악한 것으로 측정되어 방사성 평가를 생략하였다.However, in the case of Example 13 and Comparative Example 2, it was determined that the durability and adhesion evaluation results in poor, and radioactive evaluation was omitted.
2. 방열성능의 균일성 평가2. Evaluation of uniformity of heat dissipation performance
가로, 세로, 높이 각각 30㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛의 밑판 하부면 정중앙 지점에 직경이 15㎜, 두께 1.5㎜, 온도가 115℃인 열원을 직접 접촉시킨 후, 정중앙에서 대각선의 연장선 상에 있는 방열유닛 끝단의 절곡지점 4군데 지점의 온도를 계속 측정하였다. 이후, 상기 4군데 지점의 온도가 각각 10℃ 상승하는데 소요되는 시간을 초단위로 각각 측정한 후, 4군데 지점 소요시간들에 대한 표준편차를 계산하였다. 표준편차가 작을수록 방열성능이 균일하다고 볼 수 있고, 방열코팅층의 카본계필러 분산성이 높다고 해석할 수 있다.After placing the heat dissipation unit in the center of the acrylic chamber of 30cm × 30cm × 30cm, respectively, the height of the chamber and the temperature of the heat dissipation unit were adjusted to 25 ± 0.2 ° C. Thereafter, a heat source having a diameter of 15 mm, a thickness of 1.5 mm, and a temperature of 115 ° C. is directly contacted with the center of the bottom surface of the bottom plate of the heat dissipation unit. Was measured continuously. Then, after measuring the time taken for each temperature rises 10 ° C in each of the four points in seconds, the standard deviation for the time required for the four points was calculated. The smaller the standard deviation, the more uniform the heat dissipation performance, and it can be interpreted that the carbon-based filler dispersibility of the heat dissipation coating layer is high.
3. 내구성 평가3. Durability Rating
온도가 60℃, 상대습도가 90%인 챔버내 방열유닛을 배치한 후 480시간 경과 후 방열유닛의 표면상태를 육안으로 평가하였다. 평가결과 방열코팅층의 크랙, 박리(들뜸) 유무를 확인하여 이상이 없는 경우 ○, 이상이 발생한 경우 ×로 나타내었다.After placing the heat dissipation unit in a chamber having a temperature of 60 ° C. and a relative humidity of 90%, the surface state of the heat dissipation unit was visually evaluated after 480 hours. As a result of the evaluation, cracks and peeling (floating) of the heat-dissipating coating layer were checked for no abnormality, and the abnormality was indicated by ×.
4. 접착성 평가4. Adhesive Evaluation
내구성을 평가한 시편에 대하여 1㎜ 간격이 되도록 나이프로 크로스 컷팅을 했다. 이후 이후 컷팅된 면에 스카치테이프를 부착하고 60° 각도로 잡아당겨 코팅층이 박리되는 상태를 확인한다. 평가기준은 ISO 2409에 의거하여 평가했다. (5B: 0%, 4B: 5%이하, 3B: 5~15%, 2B: 15~35%, 1B: 35~65%, 0B: 65%이상)Crosscutting was performed with a knife so as to be 1 mm apart with respect to the specimen for which durability was evaluated. After that, after attaching the scotch tape to the cut surface and pulled at an angle of 60 ° to check the peeling state of the coating layer. Evaluation criteria were evaluated according to ISO 2409. (5B: 0%, 4B: 5% or less, 3B: 5-15%, 2B: 15-35%, 1B: 35-65%, 0B: 65% or more)
5. 표면품질평가5. Surface Quality Evaluation
방열유닛의 표면품질을 확인하기 위하여, 손으로 표면을 만져보아 울퉁불퉁하거나 거친 느낌이 있는지 확인하였다. 매끄러운 느낌이 있는 경우 5, 거친느낌이 있는 부분의 면적이 방열유닛 외부면 전체 면적 중 2% 이하일 경우 4, 2%초과 5% 이하의 면적일 경우 3, 5%초과 10% 이하의 면적일 경우 2, 10%초과 20% 이하의 면적일 경우 1, 20%초과의 면적일 경우 0으로 나타내었다.In order to check the surface quality of the heat dissipation unit, by touching the surface with a hand to check whether there is a bumpy or rough feeling. 5 for smooth feeling, 4% for 2% or less, 5% for less than 10% of the outer surface of the heat dissipation unit. 2, 10% or more and 20% or less of the area, 1, 20% or more are shown as 0.
실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7
코팅층형성성분Coating Layer Forming Ingredients 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부))Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100
경화제(종류/아민가(mgKOH/g)/함량(중량부))Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65
카본계필러Carbon filler 종류/함량(중량부)Type / content (part by weight) 카본블랙/22Carbon black / 22 카본블랙/10Carbon black / 10 카본블랙/15Carbon black / 15 카본블랙/18Carbon black / 18 카본블랙/40Carbon black / 40 카본블랙/45Carbon black / 45 카본블랙/68Carbon black / 68
평균입경(㎚)/D90(㎚)Average particle diameter (nm) / D90 (nm) 150/192150/192 150/192150/192 150/192150/192 150/192150/192 150/192150/192 150/192150/192 150/192150/192
물성증진성분(중량부)Properties Enhancement Ingredients 33 33 33 33 33 33 33
방열유닛Heat dissipation unit 코팅층두께(㎛)Coating layer thickness (㎛) 2525 2525 2525 2525 2525 2525 2525
열방사성(%)Thermal radioactivity (%) 14.5314.53 12.3512.35 13.5513.55 14.0414.04 14.5314.53 14.5314.53 14.6514.65
방사성능균일성Radioactivity Uniformity 0.070.07 0.070.07 0.080.08 0.080.08 0.090.09 0.160.16 0.230.23
접착성Adhesive 5B5B 5B5B 5B5B 5B5B 5B5B 4B4B 4B4B
내구성durability
표면품질Surface quality 55 55 55 55 55 55 33
실시예8Example 8 실시예9Example 9 실시예10Example 10 실시예11Example 11 실시예12Example 12 실시예13Example 13 실시예14Example 14
코팅층형성성분Coating Layer Forming Ingredients 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부))Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-136)/310/100BPA (YD-136) / 310/100 BPA(YD-012H)/650/100BPA (YD-012H) / 650/100
경화제(종류/아민가(mgKOH/g)/함량(중량부))Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65
카본계필러Carbon filler 종류/함량(중량부)Type / content (part by weight) 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22
평균입경(㎚)/D90(㎚)Average particle diameter (nm) / D90 (nm) 31/6431/64 58/6558/65 234/253234/253 261/280261/280 240/272240/272 150/192150/192 150/192150/192
물성증진성분(중량부)Properties Enhancement Ingredients 33 33 33 33 33 33 33
방열유닛Heat dissipation unit 코팅층두께(㎛)Coating layer thickness (㎛) 2525 2525 2525 2525 2525 2525 2525
열방사성(%)Thermal radioactivity (%) 14.5314.53 14.5314.53 14.5314.53 14.1514.15 14.0014.00 -- 12.9512.95
방사성능균일성Radioactivity Uniformity 0.060.06 0.060.06 0.080.08 0.120.12 0.080.08 -- 0.220.22
접착성Adhesive 5B5B 5B5B 5B5B 5B5B 4B4B 0B0B 2B2B
내구성durability ××
표면품질Surface quality 55 55 55 44 33 55 55
실시예15Example 15 실시예16Example 16 실시예17Example 17 실시예18Example 18 실시예19Example 19 실시예20Example 20
코팅층형성성분Coating Layer Forming Ingredients 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부))Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPF(YDF-2001)/480/100BPF (YDF-2001) / 480/100 고무변성에폭시(KR-202C)/380/100Rubber modified epoxy (KR-202C) / 380/100 DCPD(KDCP-150)/280/100DCPD (KDCP-150) / 280/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100
경화제(종류/아민가(mgKOH/g)/함량(중량부))Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 아미도아민(G-A0533)/330/65Amidoamine (G-A0533) / 330/65 지환족아민(KH-825)/275/65Alicyclic amine (KH-825) / 275/65 페날카민(KMH-121X80)/200/65Phenalcarmine (KMH-121X80) / 200/65
카본계필러Carbon filler 종류/함량(중량부)Type / content (part by weight) 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22 카본블랙/22Carbon black / 22
평균입경(㎚)/D90(㎚)Average particle diameter (nm) / D90 (nm) 150/192150/192 150/192150/192 150/192150/192 150/192150/192 150/192150/192 150/192150/192
물성증진성분(중량부)Properties Enhancement Ingredients 33 33 33 33 33 33
방열유닛Heat dissipation unit 코팅층두께(㎛)Coating layer thickness (㎛) 2525 2525 2525 2525 2525 2525
열방사성(%)Thermal radioactivity (%) -- 13.1613.16 13.7213.72 14.0514.05 14.1114.11 13.9813.98
방사성능균일성Radioactivity Uniformity -- 0.190.19 0.180.18 0.100.10 0.110.11 0.150.15
접착성Adhesive 0B0B 1B1B 1B1B 2B2B OBOB 0B0B
내구성durability ×× ×× ××
표면품질Surface quality 55 55 55 55 55 44
비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 비교예4Comparative Example 4
코팅층형성성분Coating Layer Forming Ingredients 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부))Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100 BPA(YD-011)/550/100BPA (YD-011) / 550/100
경화제(종류/아민가(mgKOH/g)/함량(중량부))Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65 PA(G-5022)/220/65PA (G-5022) / 220/65
필러filler 종류/함량(중량부)Type / content (part by weight) 카본블랙/5Carbon black / 5 카본블랙/75Carbon black / 75 이산화티타늄/22Titanium Dioxide / 22 카본블랙/22Carbon black / 22
평균입경(㎚)/D90(㎚)Average particle diameter (nm) / D90 (nm) 150/192150/192 150/192150/192 208/255208/255 150/190150/190
물성증진성분(중량부)Properties Enhancement Ingredients 33 33 33 불포함Not included
방열유닛Heat dissipation unit 코팅층두께(㎛)Coating layer thickness (㎛) 2525 2525 2525 2525
열방사성(%)Thermal radioactivity (%) 8.78.7 -- 12.3512.35 13.2513.25
방사성능균일성Radioactivity Uniformity 0.070.07 -- 0.130.13 0.280.28
접착성Adhesive 5B5B 0B0B 5B5B 2B2B
내구성durability ×× ××
표면품질Surface quality 55 22 55 55
먼저, 표 1에서 확인할 수 있듯이,First, as you can see in Table 1,
카본계 필러의 함량이 본 발명의 바람직한 범위내 있는 실시예 1, 4, 5의 경우가 실시예 2, 3, 6, 7에 비하여 열방사성 및 접착성이 동시에 달성되는 것을 확인할 수 있다. 특히, 실시예 6 및 7에서 확인할 수 있듯이, 카본계 필러의 함량이 증가해도 열방사성의 향상정도는 미미하고, 오히려 접착성이 저하되는 것을 확인할 수 있다. 또한, 방사성능의 균일성도 함께 저하되는 것을 확인할 수 있다.Examples 1, 4 and 5 in which the content of the carbon-based fillers are within the preferred range of the present invention can be confirmed that thermal radiation and adhesiveness are simultaneously achieved as compared with Examples 2, 3, 6 and 7. In particular, as can be seen in Examples 6 and 7, even if the content of the carbon-based filler increases, the degree of improvement in thermal radiation properties is insignificant, rather it can be seen that the adhesiveness is lowered. In addition, it can be seen that the uniformity of the radioactivity is also reduced.
다음으로 표 2에서 확인할 수 있듯이,Next, as you can see in Table 2,
카본블랙이 동일함량으로 구비되는 실시예 1, 실시예 8 내지 실시예 12에서 평균입경이 250㎚를 초과하는 실시예 11의 경우 표면품질이 저하, 방사성능 균일성이 저하되는 것을 확인할 수 있다. In Example 1, Examples 8 to 12, in which carbon black is provided in the same amount, in Example 11 having an average particle diameter of more than 250 nm, it can be seen that surface quality is lowered and radiation performance uniformity is lowered.
또한, 카본블랙의 D90이 260㎚를 초과하는 실시예 12의 경우 표면품질의 현저히 저하되었고, 접착성도 동시에 저하된 것을 확인할 수 있다.In addition, in the case of Example 12 in which D90 of the carbon black exceeds 260 nm, the surface quality was markedly lowered, and the adhesiveness was also decreased simultaneously.
한편, 주제수지인 에폭시 수지의 에폭시 당량이 바람직한 범위 미만인 실시예 13의 경우 접착성 및 내구성이 현저히 좋지 않은 것을 확인할 수 있다. 또한, 주제수지인 에폭시 수지의 에폭시 당량이 바람직한 범위를 초과하는 실시예 14의 경우 접착성이 현저히 저하되고, 방사성능의 균일성도 저하된 것을 알 수 있다.On the other hand, in the case of Example 13 where the epoxy equivalent of the epoxy resin of the main resin is less than the preferred range, it can be seen that the adhesion and durability is not very good. In addition, in the case of Example 14 in which the epoxy equivalent of the epoxy resin which is the main resin exceeds the preferable range, it can be seen that the adhesiveness is significantly lowered, and the uniformity of the radioactivity is also lowered.
다음으로 표 3에서 확인할 수 있듯이,Next, as you can see in Table 3,
주제수지의 종류가 비스페놀A형 에폭시가 아닌 다른 종류의 에폭시 수지를 사용한 실시예 15 내지 실시예 17의 경우 열방사성, 접착성, 내구성 및 방사균일성 중 2개 이상의 물성이 저하된 것을 확인할 수 있고, 이를 통해 모든 물성을 달성하기에 적합하지 않음을 알 수 있다.In the case of Examples 15 to 17 in which the main resin is a type of epoxy resin other than bisphenol-A epoxy, at least two physical properties of thermal radiation, adhesiveness, durability, and radiation uniformity are deteriorated. As a result, it can be seen that it is not suitable to achieve all the physical properties.
또한, 경화제로 폴리아미드계가 아닌 다른 종류를 사용한 실시예 18 내지 실시예 20의 경우 방사성능이 실시예 1보다 저하되었고, 접착성과 내구성이 현저히 저하되었으며, 실시예 20의 경우 표면특성도 저하된 것을 확인할 수 있다.In addition, in the case of Examples 18 to 20 using a kind other than polyamide as a curing agent, the radioactivity was lower than that of Example 1, the adhesiveness and durability was significantly lowered, and in the case of Example 20 surface properties were also reduced You can check it.
다음으로 표 4에서 확인할 수 있듯이,Next, as you can see in Table 4,
카본계 필러의 함량이 본 발명에 따른 범위를 벗어나는 비교예 1의 경우 열방사성이 실시에에 비해 현저히 좋지 않음을 확인할 수 있다. 또한, 비교예 2의 경우 내구성과 접착성, 표면특성이 매우 조악한 것을 확인할 수 있다.In the case of Comparative Example 1 in which the content of the carbon-based filler is out of the range according to the present invention, it can be confirmed that the thermal radiation property is not significantly better than that in the embodiment. In addition, in Comparative Example 2 it can be seen that the durability and adhesion, the surface properties are very poor.
또한, 필러의 종류를 이산화티타늄으로 구비한 비교예 3의 경우 접착성, 내구성이 우수했으나, 열방사성의 정도는 실시예 2수준으로써, 실시예 2의 필러함량이 비교예 3보다 1/2 미만임을 고려할 때 카본블랙이 이산화티타늄보다 방열성능이 매우 뛰어난 것을 예상할 수 있다.In addition, in the case of Comparative Example 3 equipped with a type of filler titanium dioxide, the adhesiveness and durability was excellent, but the degree of thermal radiation is Example 2 level, the filler content of Example 2 is less than 1/2 of Comparative Example 3 Considering that the carbon black can be expected to have a much better heat dissipation performance than titanium dioxide.
또한, 물성증진성분을 포함하지 않은 실시예4의 경우 방사성, 방사성능 균일성, 접착성 및 내구성이 모두 저하되는 것을 확인할 수 있다. In addition, in the case of Example 4, which does not include a physical property enhancing component, it can be seen that the radioactivity, radioactivity uniformity, adhesiveness and durability all decrease.
<실험예 2>Experimental Example 2
실험예 1에서 제조된 방열유닛 중 실시예 1의 조성물을 통해 제조된 방열유닛(제조예4)과 방열코팅층이 처리되지 않은 도 4와 같은 방열기재(비교제조예5) 및 도 5와 같은 구조의 알루미늄 재질(Al 6063)로, 두께 2㎜, 가로×세로×높이 각각 35㎜×34㎜×12㎜의 무게 24.33g의 방열기재(비교제조예6) 간에 대하여 하기의 물성을 평가하여 하기 표 5에 나타내었다.The heat dissipation unit (Comparative Example 4) and the heat dissipation unit (Comparative Example 5) of FIG. Aluminum material (Al 6063), and the following physical properties were evaluated for the heat dissipation base material (Comparative Manufacturing Example 6) having a thickness of 2 mm, width x length x height, respectively 35 mm x 34 mm x 12 mm, and weighing 24.33 g. 5 is shown.
1. 열원의 온도변화1. Temperature change of heat source
가로, 세로, 높이 각각 30㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛의 밑판 하부면 정중앙 지점에 직경이 15㎜, 두께 1.5㎜인 세라믹 발열체를 직접 접촉시킨 후 620㎃, 5.2V의 전원을 인가하고, 2시간 경과 한 뒤의 열원의 온도를 측정하였다.After placing the heat dissipation unit in the center of the acrylic chamber of 30cm × 30cm × 30cm, respectively, the height of the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ± 0.2 ° C. Thereafter, a ceramic heating element having a diameter of 15 mm and a thickness of 1.5 mm was directly contacted with the bottom center of the bottom surface of the heat dissipation unit, and then a power of 620 kV and 5.2 V was applied, and the temperature of the heat source was measured after 2 hours.
2. 챔버 내부 온도변화2. Temperature change inside the chamber
가로, 세로, 높이 각각 30㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛의 밑판 하부면 정중앙 지점에 직경이 15㎜, 두께 1.5㎜인 세라믹 발열체를 직접 접촉시킨 후 620㎃, 5.2V의 전원을 인가하고, 2시간 경과 한 뒤 챔버내부의 온도를 측정하였다.After placing the heat dissipation unit in the center of the acrylic chamber of 30cm × 30cm × 30cm, respectively, the height of the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ± 0.2 ° C. Thereafter, a ceramic heating element having a diameter of 15 mm and a thickness of 1.5 mm was directly contacted with the bottom center of the bottom surface of the heat dissipation unit, and then a power of 620 kV and 5.2 V was applied, and after 2 hours, the temperature inside the chamber was measured.
제조예4Preparation Example 4 비교제조예5Comparative Production Example 5 비교제조예6Comparative Production Example 6
방열유닛Heat dissipation unit 코팅층 유무Coating layer ○(실시예4)○ (Example 4) ×× ××
열원온도(℃)Heat source temperature (℃) 70.670.6 82.682.6 79.079.0
챔버내부온도(℃)Chamber internal temperature (℃) 26.526.5 26.226.2 26.226.2
상기 표 5에서 확인할 수 있듯이, As can be seen in Table 5 above,
표면적이 큰 비교 제조예 6의 방열기재가 비교 제조예 5의 방열기재에 비해 방열성능이 다소 높은 것을 확인할 수 있다.It can be seen that the heat dissipation base material of Comparative Preparation Example 6 having a large surface area is somewhat higher in heat dissipation performance than the heat dissipation base material of Comparative Preparation Example 5.
한편, 표면적이 작은 비교 제조예 5의 방열기재에 본 발명의 일실시예에 따른 코팅조성물로 구현된 방열코팅층을 갖는 제조예 4의 경우 방열기재 자체의 표면적이 낮음에도 불구하고 비교제조예 6보다 약 10% 정도 방열성능이 향상된 것을 확인할 수 있다. On the other hand, in the case of Preparation Example 4 having a heat dissipation coating layer implemented in the coating composition according to an embodiment of the present invention in the heat dissipation base material of Comparative Preparation Example 5 having a small surface area than the comparative manufacturing example 6 in spite of the low surface area of the heat dissipation base material itself It can be seen that the heat dissipation performance improved by about 10%.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, etc., but this will also be within the scope of the present invention.

Claims (19)

  1. 주제수지를 포함하는 코팅층 형성성분; A coating layer forming component comprising a main resin;
    상기 주제수지 100 중량부에 대하여 8 ~ 72 중량부로 포함되는 카본계 필러; 및 Carbon-based filler contained in 8 to 72 parts by weight based on 100 parts by weight of the main resin; And
    방열성 및 부착성 향상을 위한 물성증진성분;을 포함하는 방열 코팅조성물.Heat dissipation coating composition comprising; physical property enhancing component for improving heat dissipation and adhesion.
  2. 제1항에 있어서,The method of claim 1,
    상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형(linear Aliphatic) 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어지는 군으로부터 선택되는 어느 하나 이상의 에폭시 수지를 포함하는 방열 코팅조성물.The main resin is selected from the group consisting of glycidyl ether type epoxy resins, glycidylamine type epoxy resins, glycidyl ester type epoxy resins, linear aliphatic epoxy resins, rubber modified epoxy resins and derivatives thereof A heat dissipation coating composition comprising any one or more epoxy resins selected.
  3. 제1항에 있어서,The method of claim 1,
    상기 카본계 필러는 그라파이트 및 카본블랙 중 어느 하나 이상을 포함하는 방열 코팅조성물.The carbon-based filler is a heat dissipation coating composition comprising any one or more of graphite and carbon black.
  4. 제1항에 있어서,The method of claim 1,
    상기 코팅층 형성성분은 산무수물계, 아민계, 이미다졸계, 폴리아미드계 및 폴리메르캅탄계 중 어느 하나 이상의 성분을 포함하는 경화제를 더 포함하는 방열 코팅조성물.The coating layer forming component further comprises a curing agent comprising any one or more components of the acid anhydride-based, amine-based, imidazole-based, polyamide-based and polymercaptan-based.
  5. 제2항에 있어서,The method of claim 2,
    상기 주제수지는 비스페놀 A형 에폭시 수지를 포함하는 글리시딜에테르형 에폭시 수지인 방열 코팅조성물.The main resin is a heat dissipation coating composition of a glycidyl ether type epoxy resin containing a bisphenol A epoxy resin.
  6. 제5항에 있어서, The method of claim 5,
    상기 비스페놀 A형 에폭시 수지는 에폭시 당량이 350 ~ 600 g/eq 인 방열 코팅조성물.The bisphenol A epoxy resin is an epoxy equivalent heat radiation coating composition of 350 ~ 600 g / eq.
  7. 제1항에 있어서,The method of claim 1,
    상기 코팅층 형성성분은 주제수지로 비스페놀 A형 에폭시 수지를 포함하고, 경화제로 폴리아미드계 성분을 더 포함하는 방열 코팅조성물.The coating layer forming component includes a bisphenol A epoxy resin as the main resin, and further comprises a polyamide-based component as a curing agent.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리아미드계 성분은 아민가가 180 ~ 300 mgKOH/g 인 폴리아마이드계 성분인 방열 코팅조성물.The polyamide-based component is a heat-dissipating coating composition of the polyamide-based component having an amine value of 180 ~ 300 mgKOH / g.
  9. 제1항에 있어서,The method of claim 1,
    상기 물성증진성분은 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-글리시독시프로필메틸에톡시실란, γ-글리시독시트리메틸디메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸메톡시실란 및 3-글리시독시프로필메틸디메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하는 방열 코팅조성물.The physical property-enhancing component is 3- (N-anyl-N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxypropylmethylethoxysilane, γ-glycidoxycitylmethyldimethoxysilane, 3-glycid At least one selected from the group consisting of doxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethylmethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane Heat-resistant coating composition.
  10. 제3항에 있어서,The method of claim 3,
    상기 카본계 필러는 평균입경이 250㎚ 이하인 카본블랙인 방열 코팅조성물.The carbon filler is a heat-dissipating coating composition of carbon black having an average particle diameter of 250 nm or less.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 폴리아미드계 성분을 포함하는 경화제는 상기 비스페놀 A형 에폭시 수지 100 중량부에 대하여 45 ~ 75 중량부로 구비되는 방열 코팅조성물.A curing agent comprising the polyamide-based component is a heat-dissipating coating composition is provided with 45 to 75 parts by weight based on 100 parts by weight of the bisphenol A epoxy resin.
  12. 제1항에 있어서, The method of claim 1,
    상기 카본계 필러는 상기 주제수지 100 중량부에 대하여 17 ~ 42 중량부로 포함되는 방열 코팅 조성물.The carbon-based filler is a heat dissipation coating composition containing 17 to 42 parts by weight based on 100 parts by weight of the main resin.
  13. 제9항에 있어서,The method of claim 9,
    상기 물성증진성분은 주제수지 100 중량부에 대하여 2 ~ 5 중량부로 포함되는 방열 코팅조성물.The physical property enhancing component is a heat-dissipating coating composition containing 2 to 5 parts by weight based on 100 parts by weight of the main resin.
  14. 제1항에 있어서, The method of claim 1,
    상기 방열 코팅조성물은 점도가 10 ~ 200 cps인 방열 코팅조성물.The heat dissipation coating composition has a viscosity of 10 ~ 200 cps heat dissipation coating composition.
  15. 제1항에 있어서, The method of claim 1,
    상기 코팅층 형성성성분은 비스페놀 A 형 에폭시 수지를 포함하는 주제수지 및 폴리아미드계 성분을 포함하는 경화제를 구비하고, 상기 카본계 필러는 카본블랙을 포함하는 방열 코팅조성물.The coating layer forming component is provided with a hardener comprising a main resin and a polyamide-based component comprising a bisphenol A-type epoxy resin, wherein the carbon-based filler comprises a carbon black.
  16. 제10항에 있어서,The method of claim 10,
    상기 카본계 필러는 D90이 260㎚ 이하인 방열 코팅조성물.The carbon filler is a heat dissipation coating composition having a D90 of 260 nm or less.
  17. 기재; 및materials; And
    제1항 내지 제16항 중 어느 한 항에 따른 방열 코팅조성물이 상기 기재 외부면의 적어도 일부분에 도포되어 경화된 방열 코팅층;을 포함하는 방열유닛.The heat dissipation unit comprising a heat dissipation coating composition according to any one of claims 1 to 16 is applied to at least a portion of the outer surface of the substrate and cured.
  18. 제17항에 있어서,The method of claim 17,
    상기 방열코팅층의 두께는 10 ~ 100㎛인 방열유닛.The heat dissipation unit of the heat dissipation coating layer is 10 ~ 100㎛.
  19. 제17항에 있어서, The method of claim 17,
    상기 방열 코팅층은 방열코팅층 전체 중량에 대하여 카본계 필러를 5 ~ 30 중량%로 포함하는 방열유닛.The heat dissipation coating layer is a heat dissipation unit comprising 5 to 30% by weight of a carbon-based filler relative to the total weight of the heat dissipation coating layer.
PCT/KR2016/003745 2015-04-08 2016-04-08 Heat dissipating coating composition and heat dissipating unit formed using same WO2016163830A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/564,698 US11104108B2 (en) 2015-04-08 2016-04-08 Heat dissipating coating composition and heat dissipating unit formed using same
CN201680019942.1A CN107429107B (en) 2015-04-08 2016-04-08 Heat-dissipating coating composition and heat-dissipating unit formed by using the same
JP2017552955A JP6625659B2 (en) 2015-04-08 2016-04-08 Thermal radiation coating composition and thermal radiation unit formed using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2015-0049915 2015-04-08
KR20150049915 2015-04-08
KR20150063316 2015-05-06
KR10-2015-0063316 2015-05-06
KR10-2016-0043710 2016-04-08
KR1020160043710A KR101837512B1 (en) 2015-04-08 2016-04-08 Heat radiation coating composite and heat radiator coated with the same

Publications (1)

Publication Number Publication Date
WO2016163830A1 true WO2016163830A1 (en) 2016-10-13

Family

ID=57072252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003745 WO2016163830A1 (en) 2015-04-08 2016-04-08 Heat dissipating coating composition and heat dissipating unit formed using same

Country Status (1)

Country Link
WO (1) WO2016163830A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266008A (en) * 2018-09-28 2019-01-25 桐城市双港森科塑料厂 A kind of thermally conductive new material
JP2020507910A (en) * 2017-09-18 2020-03-12 エルジー・ケム・リミテッド Battery pack manufacturing method
CN115725104A (en) * 2022-12-09 2023-03-03 合肥乐凯科技产业有限公司 Anti-static film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100079046A (en) * 2008-12-30 2010-07-08 남동진 Heat-dissipating resin composition comprising siloxane compounds
KR20120076881A (en) * 2010-12-30 2012-07-10 박영수 Pigment composition for radiating heat and sheet for radiating heat using the same
KR20130008855A (en) * 2011-07-13 2013-01-23 주식회사 포스코 Resin composition for surface treatment and steel sheet coated by the same
KR20140043031A (en) * 2012-09-28 2014-04-08 한화케미칼 주식회사 Heat radiant paint composition and heat radiant structure
JP2015007214A (en) * 2013-05-27 2015-01-15 Dic株式会社 Curable resin composition, cured product of the same, and heat-conductive adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100079046A (en) * 2008-12-30 2010-07-08 남동진 Heat-dissipating resin composition comprising siloxane compounds
KR20120076881A (en) * 2010-12-30 2012-07-10 박영수 Pigment composition for radiating heat and sheet for radiating heat using the same
KR20130008855A (en) * 2011-07-13 2013-01-23 주식회사 포스코 Resin composition for surface treatment and steel sheet coated by the same
KR20140043031A (en) * 2012-09-28 2014-04-08 한화케미칼 주식회사 Heat radiant paint composition and heat radiant structure
JP2015007214A (en) * 2013-05-27 2015-01-15 Dic株式会社 Curable resin composition, cured product of the same, and heat-conductive adhesive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507910A (en) * 2017-09-18 2020-03-12 エルジー・ケム・リミテッド Battery pack manufacturing method
CN109266008A (en) * 2018-09-28 2019-01-25 桐城市双港森科塑料厂 A kind of thermally conductive new material
CN115725104A (en) * 2022-12-09 2023-03-03 合肥乐凯科技产业有限公司 Anti-static film
CN115725104B (en) * 2022-12-09 2023-08-08 合肥乐凯科技产业有限公司 Antistatic film

Similar Documents

Publication Publication Date Title
WO2017204565A1 (en) Insulating and heat dissipating coating composition, and insulating and heat dissipating unit formed thereby
EP3567083B1 (en) Insulating and heat-radiating coating composition, and insulating and heat-radiating product implemented therewith
WO2017200310A1 (en) Wireless power transmission apparatus for vehicle
KR101837512B1 (en) Heat radiation coating composite and heat radiator coated with the same
WO2018110929A1 (en) Transparent, insulating, heat-radiating coating composition, heat-radiating unit formed therewith, and heat-radiating circuit board
WO2017171392A1 (en) Ptc unit for vehicle heater, ptc heater including same, and air conditioning device for vehicle
CN107429107B (en) Heat-dissipating coating composition and heat-dissipating unit formed by using the same
KR102076194B1 (en) Heat dissipation composite material and method for manufacturing thereof
WO2016163830A1 (en) Heat dissipating coating composition and heat dissipating unit formed using same
WO2013100502A1 (en) Insulating adhesive composition for metal-based copper clad laminate (mccl), coated metal plate using same, and method for manufacturing same
US10856423B2 (en) Prepreg, printed circuit board, semiconductor package, and method for producing printed circuit board
WO2018084518A1 (en) Epoxy paste composition including silver-coated copper nanowires having core-shell structure, and conductive film including same
KR20150132010A (en) Inorganic filler-containing epoxy resin cured product and laminate including the same
WO2018212611A1 (en) Heat dissipation composite and manufacturing method therefor
JP2015061720A (en) Method of manufacturing component sealing film
KR102611441B1 (en) Electrically insulated and heat radiated coating composition and electrically insulated and heat radiated commodities with the same
WO2020262980A1 (en) Adhesive composition, coverlay film comprising same, and printed circuit board
KR102063667B1 (en) Heat sink for display apparatus and display apparatus comprising the same
KR101996605B1 (en) Epoxy paste using silver coated-copper nanowire of core-shell structure and conductive film including the same
KR101866855B1 (en) Conductive composition and conductive melded article
KR102285579B1 (en) Heat Radiating Coating Composition and LED Lamp Using Thereof
WO2018164492A1 (en) Auxiliary heater for vehicle
WO2023003297A1 (en) Electromagnetic shielding composition containing morphologically different metals
JP2023018665A (en) Conductive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15564698

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017552955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776933

Country of ref document: EP

Kind code of ref document: A1