WO2016163612A1 - 세포 외 기질이 코팅된 골 재생용 지지체 - Google Patents

세포 외 기질이 코팅된 골 재생용 지지체 Download PDF

Info

Publication number
WO2016163612A1
WO2016163612A1 PCT/KR2015/011408 KR2015011408W WO2016163612A1 WO 2016163612 A1 WO2016163612 A1 WO 2016163612A1 KR 2015011408 W KR2015011408 W KR 2015011408W WO 2016163612 A1 WO2016163612 A1 WO 2016163612A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
support
bdecm
plga
pcl
Prior art date
Application number
PCT/KR2015/011408
Other languages
English (en)
French (fr)
Inventor
양희석
조동우
장진아
김병수
이민석
나완근
Original Assignee
단국대학교 천안캠퍼스 산학협력단
포항공과대학교 산학협력단
주식회사 티앤알바이오팹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단, 포항공과대학교 산학협력단, 주식회사 티앤알바이오팹 filed Critical 단국대학교 천안캠퍼스 산학협력단
Publication of WO2016163612A1 publication Critical patent/WO2016163612A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances

Definitions

  • the present invention comprises a first layer comprising polycaprolactone (PCL), poly (D, L-lactic-co-glycolic acid) (PLGA), and tricalcium phosphate ( ⁇ -TCP); And a second layer comprising a demineralized and decellularized bone extracellular matrix (bdECM), the second layer surrounding the first layer, and a support for bone regeneration and a method of manufacturing the same.
  • PCL polycaprolactone
  • PLGA poly (D, L-lactic-co-glycolic acid)
  • ⁇ -TCP tricalcium phosphate
  • bdECM demineralized and decellularized bone extracellular matrix
  • Bone tissue is an important tissue that maintains the human skeleton, and bone graft materials for bone tissue replacement and regeneration of various materials and forms have been researched and developed for bone tissue regeneration.
  • Bone grafts can be classified into bone forming materials, bone conducting materials, and bone inducible materials according to the bone healing mechanism, and autografts, allografts, and other types of bone grafts can be classified according to the implants used for bone transplantation or implantation. Transplantation and other methods are mainly used.
  • the method of minimizing the immune response is an autograft, and when transplanted to a bone injury site using autologous bone, the immune response is minimized, and thus stable bone tissue regeneration is possible.
  • the immune response is minimized, and thus stable bone tissue regeneration is possible.
  • there are inconveniences such as secondary bone loss and long recovery period due to the extraction of autologous bone, and the amount of autologous bone that can be collected is very limited.
  • transplants that use other people's bones to compensate for this, but unlike autologous bones, they cause a lot of immune reactions, and the price is very expensive. Therefore, a lot of bone tissue engineering researches to manufacture and transplant synthetic bone to be used by many people while minimizing the immune response.
  • Scaffolds for application in bone tissue engineering must meet several key conditions for tissue formation optimized for host tissue. These conditions include cell affinity, adequate porosity for nutrient and oxygen permeation, interfacial activity to promote cell adhesion and differentiation, and the like. In addition, ideally the support should be continuously degraded and replaced by the host cell. Synthetic degradable plastics, such as polycarprolactone (PCL), poly (D, L-lactic-co-glycolic acid) (PLGA), and copolymers thereof, are more accurate and more economical than clinically occurring materials and are more economical There is an advantage that it can.
  • PCL polycarprolactone
  • PLGA L-lactic-co-glycolic acid
  • biodegradable polymers used in the production of implants known to date have disadvantages of poor fusion with surrounding bone tissue-derived cells, low cell adhesion, and induction of bone differentiation of stem cells. This is due to the surface properties of the polymer, so that if the fusion with the bone tissue around the affected area does not occur immediately, the biodegradable polymer may be degraded and the bone regeneration of the intended form may not occur.
  • the present inventors mixed the conventional ⁇ -TCP and PCL / PLGA support (PCL / PLGA / ⁇ -TCP) applied to the rabbit skull injury model, the PCL / PLGA / ⁇ -TCP support is somewhat effective in bone regeneration
  • the scaffold had poor cell adhesion rate and did not obtain satisfactory effects on new bone formation and bone density (Tissue Eng. Part A 2012, 19, 317).
  • the present inventors have prepared a porous scaffold (PCL / PLGA / ⁇ -TCP) including PCL, PLGA, and ⁇ -TCP, and produced ECM derived from actual bone tissue.
  • Demineralized bone matrix (DBM) was extracted and subjected to decellularization (bdECM, demineralized and decellularized bone extracellular matrix) in order to suppress the immune response during transplantation.
  • bdECM demineralized and decellularized bone extracellular matrix
  • One object of the present invention is a first layer comprising polycaprolactone (PCL), poly (D, L-lactic-co-glycolic acid) (PLGA), and tricalcium phosphate ( ⁇ -TCP); And a second layer comprising a demineralized and decellularized bone extracellular matrix (bdECM), wherein the second layer surrounds the first layer.
  • PCL polycaprolactone
  • PLGA poly (D, L-lactic-co-glycolic acid)
  • ⁇ -TCP tricalcium phosphate
  • bdECM demineralized and decellularized bone extracellular matrix
  • Another object of the present invention is to prepare a support by mixing (a) polycaprolactone (PCL), poly (D, L-lactic-co-glycolic acid) (PLGA), and tricalcium phosphate ( ⁇ -TCP); And (b) to provide a support for bone regeneration support comprising the step of coating the support with a demineralized and decellularized bone extracellular matrix (bdECM).
  • PCL polycaprolactone
  • PLGA poly (D, L-lactic-co-glycolic acid)
  • ⁇ -TCP tricalcium phosphate
  • bdECM demineralized and decellularized bone extracellular matrix
  • the support for bone regeneration coated with the extracellular matrix of the present invention is capable of producing a support that has a shape exactly matched to a damaged bone through a 3D printer. Proliferation and bone differentiation are improved, so a faster bone regeneration effect can be expected. In addition, since a step such as cell transplantation is not necessary, faster recovery can be expected by implanting a support into a bone injury patient in a short time.
  • Figure 1 shows the process of manufacturing bdECM.
  • FIG. 1 schematically shows the overall experimental process.
  • FIG. 3 is a SEM photograph of a support prepared by 3D printing technology according to an embodiment of the present invention.
  • Figures 4a and 4b confirms the attachment, form and proliferation of osteoblasts on a support according to an embodiment of the present invention.
  • FIGS 5a and 5b shows the ALP activity of osteoblasts in the support according to an embodiment of the present invention. (a) ALP expression of osteoblasts on support at day 14 of culture and (b) quantitative analysis of ALP activity.
  • Figures 6a to 6c shows bone mineralization of osteoblasts in the support according to an embodiment of the present invention.
  • 6D is quantification of bone differentiation mRNA expression (right: OC, left: COL1A1) by qRT-PCR.
  • FIG. 7A and 7B show in vivo bone regeneration in a support according to one embodiment of the invention.
  • the mouse cranial damage model was treated with each support alone or with osteoblasts with or without osteoblasts.
  • the photo above shows only the support without osteoblasts, and the photo below shows the treatment of osteoblasts with the support.
  • Scale bar 4 mm.
  • the present invention provides, in one embodiment, a first layer comprising polycaprolactone (PCL), poly (D, L-lactic-co-glycolic acid) (PLGA), and tricalcium phosphate ( ⁇ -TCP); And a second layer comprising a demineralized and decellularized bone extracellular matrix (bdECM), the second layer surrounding the first layer to provide a support for bone regeneration.
  • PCL polycaprolactone
  • PLGA poly (D, L-lactic-co-glycolic acid)
  • ⁇ -TCP tricalcium phosphate
  • bdECM demineralized and decellularized bone extracellular matrix
  • the present invention provides a method for preparing a support by mixing (a) polycaprolactone (PCL), poly (D, L-lactic-co-glycolic acid) (PLGA), and tricalcium phosphate ( ⁇ -TCP). ; And (b) coating the support with a demineralized and decellularized bone extracellular matrix (bdECM).
  • PCL polycaprolactone
  • PLGA poly (D, L-lactic-co-glycolic acid)
  • ⁇ -TCP tricalcium phosphate
  • bdECM demineralized and decellularized bone extracellular matrix
  • the term “scaffold” may refer to a substance that replaces a part of an organ or tissue damaged in vivo and may complement or replace a function thereof.
  • the polymer support may include a biodegradable polymer material, which may be maintained until the support sufficiently performs its function and role, and then completely decomposed in vivo.
  • PCL polycaprolactone
  • PLGA poly (D, L-lactic-co-glycolic acid)
  • Specific manufacturing method of the support for bone regeneration of the present invention is as follows.
  • First step (a) is a step of preparing a support (PCL / PLGA / ⁇ -TCP) by mixing PCL, PLGA and ⁇ -TCP, the mixing and manufacturing process is not limited to this, in particular using 3D printing technology It may be performed by.
  • 3D printing is a term commonly used in the same sense as the rapid prototyping technology (RP, Rapid Prototype). It is a technology that can produce 3D models in a short time.
  • the PCL / PLGA / ⁇ -TCP support is not limited thereto, but may include PCL: PLGA: ⁇ -TCP in a weight ratio of 1.5 to 2.5: 1.5 to 2.5: 0.5 to 1.5.
  • PCL, PLGA and ⁇ -TCP were mixed in a weight ratio of 2: 2: 1 and transferred to a syringe of a 3D printer and sprayed through a precision nozzle to prepare a PCL / PLGA / ⁇ -TCP support ( 3a).
  • Step (b) is a step of coating the prepared PCL / PLGA / ⁇ -TCP support with bdECM.
  • Step (b) is not limited thereto, but specifically, the first step of dipping and centrifuging a PCL / PLGA / ⁇ -TCP support in bdECM; A second step of keeping the support submerged in bdECM; And a third step of drying the support.
  • the second step may be to maintain the support to be immersed in bdECM for 5 to 30 minutes.
  • BdECM demineralized and decellularized bone extracellular matrix
  • DBM demineralized bone matrix
  • trypsin-EDTA trypsin-EDTA
  • the DBM refers to demineralized bone matrix, and was developed to reproduce a microenvironment including growth factors, collagen and non-collagenous protein (NCP). It is a semi-transparent, flexible rubber-like substance that contains bone morphogenetic protein (BMP) that promotes bone growth. Since the protein is not modified by the acid, such as hydrochloric acid and citric acid, DBM left after demineralization can effectively promote bone regeneration, including BMP.
  • BMP bone morphogenetic protein
  • the term "demineralization” refers to extracting minerals from a biological tissue containing minerals such as calcium using a chelating agent, and the like and remaining in the solution remaining after separating DBM from bone tissue. It contains a large amount of minerals such as calcium phosphate that make up the human bone.
  • a biological tissue containing minerals such as calcium using a chelating agent, and the like and remaining in the solution remaining after separating DBM from bone tissue. It contains a large amount of minerals such as calcium phosphate that make up the human bone.
  • EDTA ethylenediaminetetraacetic acid
  • formic acid citric acid
  • acetic acid nitric acid
  • nitrous acid It is possible by using a variety of acid solutions such as nitrous acid, and may be made by stirring the bone fragments in hydrochloric acid, in particular, but is not limited thereto.
  • the coating is a process in which the PCL / PLGA / ⁇ -TCP support prepared in step (a) is dipped in the prepared bdECM and dried, thereby forming a first layer including the PCL / PLGA / ⁇ -TCP support.
  • the second layer containing bdECM is enclosed.
  • the support may be immersed in bdECM and centrifuged to subside the material between the pores, followed by incubation and drying.
  • the present invention is not limited thereto, but the process of submerging the material between the pores by centrifugation may be performed by centrifugation for 30 seconds to 5 minutes at 1000 to 2000 rpm at 1 to 10 ° C., and the process may be performed once to 5 times. Can be performed repeatedly.
  • the incubation may be in particular incubated for 5 to 30 minutes at 30 to 40 °C, the drying may be performed for 5 to 30 minutes, but is not limited thereto.
  • Step (b) may be performed repeatedly once to five times.
  • the solution containing bdECM of step (b) may be a solution of bdECM dissolved in distilled water at 5 to 20 mg / ml.
  • bdECM was dissolved in distilled water at 10 mg / ml to prepare a coating solution, and the PCL / PLGA / ⁇ -TCP support prepared by 3D printing was dipped in the coating solution for 20 minutes. After drying, a PCL / PLGA / ⁇ -TCP support (PCL / PLGA / ⁇ -TCP / bdECM) coated with bdECM was prepared.
  • bone regeneration may mean any phenomenon of treating, alleviating, or ameliorating bone damage through a process in which bone cells multiply damaged or osteoblasts differentiate into bone cells.
  • the bone regeneration may be by promoting bone differentiation.
  • the term "support for bone regeneration” does not necessarily correspond to the shape of the bone injury site to be transplanted, regardless of its shape, and it is sufficient if the shape is processed to a similar shape.
  • the shape of the bone injury site of the transplant target may be grasped in advance, and a shape suitable for the graft may be prepared, and the shape of the membrane or the strip may be preformed so as to be generally applicable to various situations.
  • various materials for increasing the moldability of the support for bone regeneration may be further added. That is, a linear material, a tubular material, a particulate material, an amorphous material, and the like, which are excellent in biocompatibility, may be further added to improve physical properties of the support for bone regeneration.
  • This type of material may be selected from materials such as collagen, carboxymethylcellulose (CMC) or animal-derived gelatin, and there is no particular limitation as long as it does not cause an immune response to the transplant target.
  • the PCL / PLGA / ⁇ -TCP / bdECM support was observed with a scanning electron microscope (SEM) to confirm that pores and interconnections were present (FIG. 3), not coated. Or it was confirmed that the cell adhesion rate is superior to the support with the collagen coating (Fig. 4).
  • the PCL / PLGA / ⁇ -TCP / bdECM scaffold when implanted together with osteoblasts or the scaffold alone in a bone damaged mouse model, the new bone volume and bone density increase.
  • the PCL / PLGA / ⁇ -TCP / bdECM support of the present invention has an excellent effect as a composition for bone regeneration. This effect is also significantly superior to the PCL / PLGA / ⁇ -TCP support or the PCL / PLGA / ⁇ -TCP / Col support.
  • the PCL / PLGA / ⁇ -TCP / bdECM scaffold of the present invention is coated with bdECM prepared by decellularizing DBM and has bone regeneration effect without transplantation with osteoblasts. It can be used to improve the adhesion of bone cells and promote bone differentiation, which is excellent as a support for bone regeneration.
  • Example One bdECM (demineralized and decellularized bone extracellular manufacturing of matrix
  • Tibia were isolated from calves 12 to 24 months old. The bone was divided into pieces and divided into cancellous and cortical groups, and then the spongy group was used. Phosphate-buffered saline (PBS) containing 0.1% (w / v) gentamycin (Gentamicin, Invitrogen, Carlsbad, Calif., USA) was used to remove and wash the residual tissue of the spongy flakes. The pieces were then frozen in liquid nitrogen and cut into sections up to 4 x 4 x 4 mm. The sections were washed with distilled water, immersed in liquid nitrogen, and ground in a coffee mill (Kordia Co., Daegu, Gyeongbuk, Korea) and ground.
  • PBS Phosphate-buffered saline
  • Gentamicin Gentamicin, Invitrogen, Carlsbad, Calif., USA
  • the bone was demineralized by stirring (300 rpm) in 0.5 N HCl (25 mL / g g) at room temperature for 24 hours. After demineralization, the result (hereinafter referred to as 'bDBM') was filtered under vacuum and rinsed with distilled water. The lipids in the demineralized powder were then extracted for 1 hour in chloroform (fisher Scientific, Loughborough, UK) and methanol (Fisher Scientific) 1: 1 mixtures and rinsed first with methanol and then with distilled water. The bDBM was snap frozen, lyophilized overnight under reduced pressure and stored at -20 ° C.
  • the bDBM was then rinsed with distilled water and evacuated with continuous stirring for 24 hours at 37 ° C. and 5% CO 2 in 0.05% trypsin (Sigma-Aldrich) and 0.02% ethylenediamine tetraacetic acid (Sigma-Aldrich) mixed solution. Saturated.
  • the result (hereinafter referred to as 'bdECM') was rinsed with PBS containing 1% (w / v) penicillin / streptomycin for 24 hours at 4 ° C. continuously to remove residual cellular material. It was then frozen immediately, lyophilized overnight under reduced pressure and stored at -20 ° C.
  • a support comprising PCL, PLGA, and ⁇ -TCP was prepared using 3D printing technology, and coated with the prepared bdECM to support bone regeneration (PCL / PLGA / ⁇ -). TCP / bdECM).
  • the support alone PCL / PLGA / ⁇ -TCP
  • the support was collagen
  • bdECM PCL / PLGA / ⁇ -TCP / In vivo and ex vivo bone regeneration effect of the support coated with bdECM
  • the coating solution was prepared by dissolving bdECM at distilled water at 10 mg / ml, and as a control, atelocollagen solution (Koken, Shizuoka, Japan) was prepared at a concentration of 10 mg / ml.
  • the PCL / PLGA / TCP support was coated with the prepared coating solution.
  • the support was immersed in a bdECM solution and centrifuged at 1,500 rpm for 1 minute at 4 ° C. to fill the pores of the pores.
  • the support filled with pores was incubated at 37 ° C. for 20 minutes and then dried under sterile conditions for 20 minutes. This process was repeated three times.
  • the shape of the support was observed at 10 kV with a scanning electron microscope (JSM-5300, JEOL, Tokyo, Japan).
  • the support was coated with platinum for 120 seconds with a sputter-coater and the surface morphology of the PCL / PLGA / ⁇ -TCP support was compared with the PCL / PLGA support.
  • Uncoated PCL / PLGA / ⁇ -TCP support was used as a control in all experiments.
  • the degree of bdECM or collagen coating on the support was confirmed by spectra of X-ray photoelectron spectroscopy (XPS) for nitrogen (N), oxygen (O), and carbon (ESCALAB 220iXL; VG Scientific, East Grinstead, Westshire , UK).
  • XPS X-ray photoelectron spectroscopy
  • PCL / PLGA / ⁇ -TCP supports have a rough surface because they contain ⁇ -TCP powders (FIG. 3A), and collagen or bdECM coated supports have been found to have smooth surfaces without blocking pores (FIGS. 3B and 3C). ).
  • the smooth surface of the support means that the collagen and bdECM have been successfully coated.
  • the supports all maintained well interconnected, which is important for bone regeneration because it allows the movement of host cells from the bone marrow and the movement of surrounding osteoblasts.
  • the degree of the collagen or bdECM coated on the support was quantified by XPS analysis, shown in Table 1 below.
  • Example 3 confirm the cell proliferation effect according to the support
  • isolated primary osteoblasts were seeded at 1 x 10 4 cells in each support.
  • Calvarial osteoblasts were isolated from the cranial canal of Sprague-Dawley rat embryos (SLC, Tokyo, Japan).
  • the scaffolds inoculated with cells for one day for cell adhesion were immersed in growth medium, and then the culture medium was incubated with 50 mM ascorbic acid-2-phosphate (Sigma-Aldrich), 10 mM to induce osteogenic function of osteoblasts. It was replaced with complete ⁇ MEM containing ⁇ -glycerophosphate (Sigma-Aldrich), and 100 nM dexamethasone (Sigma-Aldrich). The medium was changed daily.
  • Osteoblast proliferation assay was performed on the support using Cell Count Kit-8 (CCK-8, Dojindo, Kumamoto, Japan).
  • the support was immersed in CCK-8 solution (1:10 ratio) diluted with growth medium and incubated at 37 ° C. for 2 hours.
  • the solution was then extracted and absorbance was measured at 450 nm using a microplate reader (Asys UVM 340; Biochrom, Cambridge, UK).
  • the support was washed with PBS and incubated again with fresh culture medium.
  • the bdECM coating reduced the pore size of the support by about 30% (FIG. 3), but further increased osteoblast adhesion. This result means that the pores of the support are not filled with bdECM, so osteoblasts can migrate inside the support.
  • the collagen coating showed a lower cell adhesion rate compared to the bdECM coating, and the bdECM can provide a better environment than the collagen coating.
  • the cells of surrounding tissues can effectively grow along the pores of the support.
  • ALP most widely known as a biochemical marker of osteoblast activity in cells inoculated to each support
  • the support incubating osteoblasts in bone production medium was washed with PBS and fixed with 4% paraformaldehyde solution on day 14.
  • PBS containing 2% BSA to prevent nonspecific binding
  • immunostained with anti-ALP antibody (1: 200; Santa Cruz Biotechnology, Santa Cruz, CA, USA) followed by Alex Fluor 488 goat anti-rabbit Incubated with antibody (1: 100; Invitrogen). All samples were counterstained with DAPI (1: 100; Sigma-Aldrich) and observed with a laser scanning confocal microscope (Olympus FluoView TM FV1000, Tokyo, Japan).
  • ALP activity was quantified by p-NPP (p-nitrophenyl phosphate, Sigma-Aldrich) at 14 days. Osteoblasts inoculated on the support were lysed with RIPA Lysis Buffer (Millipore, billerica, Mass., USA) and the lysates were incubated at 37 ° C. for 30 minutes with ALP substrate buffer containing 5 mM pNPP. The enzyme activity of ALP was measured at 405 nm using a microplate reader.
  • the calcium accumulation region was observed by digital microscope (Dino lite, New Taipei, Taiwan), and calcium accumulation was quantified by extracting Alizarin Red from cells using DMSO (dimethyl sulfoxide, Sigma-Aldrich). The extract was measured at 570 nm using a microplate reader.
  • DMSO dimethyl sulfoxide
  • osteoblasts on the support coated with collagen or bdECM contained calcium minerals that were visible to the naked eye after 21 days.
  • more calcium mineral amount was observed in the bdECM coated support compared to the collagen coated support (FIG. 6A).
  • Colorimetric analysis results were also in agreement with the staining results (FIG. 6B).
  • the calcium content of the bdECM-coated PCL / PLGA / TCP support showed a significantly higher calcium content than the other groups, in particular, it was confirmed that the continual increase over time (Fig. 6c).
  • osteoblasts cultured on bdECM-coated PCL / PLGA / TCP scaffolds exhibit significantly enhanced in vitro osteogenic activity compared to other groups, which may be due to the biomolecules present in bdECM.
  • bdECM contains osteogenic biomolecules such as bone morphogenetic protein-2 (BMP-2), BMP-7 and other unknown factors. These bone-induced biomolecules affect bone differentiation and mineralization of osteoblasts.
  • osteoblasts cultured in PCL / PLGA / TCP / bdECM showed the highest cell adhesion rates. This means that various cell attachment sites have been provided by the bdECM bioactive factor.
  • a mouse cranial canal injury model was used to confirm the in vivo bone regeneration effect of PCL / PLGA / ⁇ -TCP / bdECM scaffolds. In vivo bone formation was achieved by implanting each scaffold with or without osteoblasts. The efficiency was confirmed. Specific experimental methods and contents are as follows.
  • mice Six-week-old mice obtained from the Institute of Cancer Research (Koatech, Sungnam, Kyunggi-do, South Korea) were anesthetized with xylazine (20 mg / kg) and ketamine (100 mg / kg). The hair of the mouse head was pushed, the center of the skull was inverted vertically from the nasal bone to the back of the nape, and the periosteum was lifted to expose the parietal bone surface.
  • Surgical trephine burrs Ace Surgical Supply Co., Brockton, Mass., USA
  • low-speed micromoters were used to create two circular bone injuries (4 mm in diameter) in the skull. The damage size was lethal to the mouse skull injury model. The drill site was washed with saline and the bleeding site was electrically built. Five mice (10 injuries) were used for each group.
  • samples were prepared for histological and histomorphometric analysis. Samples were immersed in 10% (v / v) buffered formalin solution, dehydrated in increased concentration of alcohol solution, cleared with xylene, and embedded with paraffin. One thalamus and one anterior section were obtained from two samples per mouse using microcutting and grinding techniques. The sections were stained with Goldner's trichrome stain.
  • the bone formation area was determined by calculating the percentage of newly formed mineralized bone using Adobe Photoshop software (Adobe Systems, Inc., San Jose, Calif., USA). The percentage of bone formation area at the site of injury was calculated as (new bone area / bone injury area) ⁇ 100. Bone density was calculated as [new bone area / (new bone area + fibrous tissue area + remaining biomass area)] ⁇ 100.
  • PCL / PLGA / TCP / bdECM scaffold transplantation further improved bone regeneration compared to other scaffold implants (FIG. 7A).
  • PCL / PLGA / TCP / bdECM scaffolds were found to improve bone regeneration and increase regenerated bone volume to levels similar to those with osteoblasts even without osteoblasts. This means that the PCL / PLGA / TCP / bdECM scaffold of the present invention can bring about a bone regeneration effect only by implanting the scaffold alone without mixing with other cells such as osteoblasts.
  • PCL / PLGA / TCP / bdECM transplantation improved bone regeneration efficiency (FIG. 8A).
  • PCL / PLGA / TCP / bdECM successfully filled the regenerated bone, including the newly formed bone marrow at the site of injury.
  • implantation of the PCL / PLGA / TCP and PCL / PLGA / TCP / Col scaffolds showed only fibrous tissue at the site of injury.
  • the support prepared by the 3D printing technology of the present invention can be used in other kinds of bone tissue engineering because it can control the microstructure and interconnected pore structure that can improve the growth of patient tissue into the support implanted at the bone injury site.
  • the PCL / PLGA / TCP / bdECM of the present invention can allow cells of a host such as MSC and osteoblasts to grow inside, and the cells migrated into the support can be differentiated into bone in contact with the biomolecules contained in the bdECM. .
  • Supports prepared by uncoated 3D printing made of synthetic artificial materials (PCL / PLGA / TCP) lack bone-specific bioactive signals that induce bone regeneration.
  • the collagen-coated PCL / PLGA / TCP / Col scaffold did not effectively treat bone damage alone without osteoblasts. This is due to the lack of bone-generating biomolecules compared to PCL / PLGA / TCP / bdECM. Poor collagen inferior cell adhesion rate and osteogenic activity may have influenced these results.
  • PCL / PLGA / TCP / bdECM showed no difference in the condition with or without osteoblasts.
  • PCL / PLGA / TCP / Col. PCL / PLGA / TCP / Col.
  • PCL / PLGA / TCP / Col. did not require osteoblasts cultured in vitro for the treatment of bone damage
  • bdECM was prepared by decellularizing DBM
  • the scaffold of the present invention is an immune response caused by cell transplantation. Can reduce side effects and reduce the cost and time for cell culture.
  • the support for bone regeneration coated with bdECM of the present invention promotes bone cell proliferation, improves bone differentiation, and thus has an excellent bone regeneration effect, and thus can be used as a support for bone regeneration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)

Abstract

본 발명은 PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)를 포함하는 제1층; 및 bdECM(demineralized and decellularized bone extracellular matrix)을 포함하는 제2층을 포함하며, 상기 제2층은 상기 제1층을 둘러싸는, 골 재생용 지지체 및 이의 제조방법에 관한 것이다. 본 발명의 세포 외 기질이 코팅된 골 재생용 지지체는 3D 프린터를 통하여 골 손상이 일어난 환부와 정확히 일치하는 모양의 지지체 제작이 가능하며, 기존 지지체보다 빠르게 환부와 결합하고 주변 골 조직 세포의 부착, 증식 및 골 분화가 향상되어 보다 빠른 골 재생 효과를 기대할 수 있다. 또한 세포 이식 등의 단계가 필요치 않으므로 골 손상 환자에게 빠른 시간 내에 지지체를 이식함으로써 보다 빠른 회복을 기대할 수 있다.

Description

세포 외 기질이 코팅된 골 재생용 지지체
본 발명은 PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)를 포함하는 제1층; 및 bdECM(demineralized and decellularized bone extracellular matrix)을 포함하는 제2층을 포함하며, 상기 제2층은 상기 제1층을 둘러싸는, 골 재생용 지지체 및 이의 제조방법에 관한 것이다.
골 조직은 인체의 골격을 유지시키는 중요 조직으로 골 조직 재생을 위해서 다양한 재료와 형태의 골 조직 대체용, 재생용 골 이식재가 연구 개발되고 있다. 골 이식재의 경우 골 치유기전에 따라 골 형성 재료, 골 전도성 재료, 골 유도성 재료로 분류할 수 있으며, 골 이식(transplataion)이나 매식(implantation)에 사용되는 이식재에 따라 자가이식, 동종이식, 타종이식 등의 방법을 주로 사용하고 있다.
이 중 면역반응을 최소화할 수 있는 방법은 자가이식으로서, 자가골을 이용하여 골 손상부위에 이식을 할 경우 면역반응이 최소화되어 안정적인 골 조직 재생이 가능한 장점이 있다. 그러나, 자가골의 채취로 인한 다른 부위의 2차 골 손실과 긴 회복기간 등의 불편을 가지고 있으며 채취할 수 있는 자가골의 양이 매우 한정되어 있다는 단점이 있다. 이를 보완하기 위하여 다른 사람의 골을 사용하는 타종이식이 있으나, 이는 자가골과 달리 많은 면역반응을 일으키고, 가격도 매우 비싸다는 단점이 있다. 따라서, 면역반응을 최소화하면서 많은 사람들에게 이용되기 위해 합성골을 제조하여 이식하고자 하는 골 조직 공학 연구가 많이 진행되고 있다.
골 조직 공학에 적용하기 위한 지지체는 숙주 조직에 최적화된 조직 형성을 위해 핵심적인 몇 가지 조건을 만족해야 한다. 이 조건은 세포 친화력, 영양분과 산소가 투과하기 위한 적절한 공극률, 세포 부착 및 분화를 촉진시키기 위한 계면 활성 등을 포함한다. 또한, 이상적으로 지지체는 연속적으로 분해되어 숙주 세포에 의해 대체되어야 한다. PCL(polycarprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)) 및 이의 공중합체와 같은 합성 분해성 플라스틱은 자연발생 물질에 비하여 정확한 가공이 가능하고, 보다 경제적이어서 임상적으로 널리 사용할 수 있다는 장점이 있다.
특히, 3D 프린팅 기술이 개발됨에 따라 환자의 환부와 정확히 일치하는 임플란트를 제작할 수 있게 되었다. 또한, 이러한 3D 프린팅 기술은 반복 가능한 재현성을 가진다. 다만, 현재까지 알려진 임플란트 제작에 사용되는 생분해성 고분자는 주변 골 조직 유래 세포와의 융합이 잘 이루어지지 않고, 세포 부착성이 낮으며 줄기세포의 골 분화를 잘 유도하지 못하는 단점이 있다. 이는 고분자의 표면 특성에서 기인하는 것으로, 이로 인하여 환부 주변의 골 조직과의 융합이 바로 일어나지 않을 경우 생분해성 고분자는 분해되어 원래 의도했던 형태의 골 재생이 일어나지 않을 수 있다.
한편, 본 발명자들은 종래 β-TCP와 PCL/PLGA 지지체를 혼합(PCL/PLGA/β-TCP)하여 래빗 두개골 손상 모델에 적용한 결과 상기 PCL/PLGA/β-TCP 지지체가 골 재생에 다소 효과가 있음을 확인하였으나, 상기 지지체는 세포 부착률이 떨어지고 신생 골 형성 및 골 밀도에 있어서 만족할만한 효과를 얻지는 못하였다(Tissue Eng. Part A 2012, 19, 317).
본 발명자들은 골 재생 효과가 우수한 지지체를 개발하기 위해 예의 노력한 결과, PCL, PLGA 및 β-TCP를 포함하는 다공성 지지체(PCL/PLGA/β-TCP)를 제조하는 한편, 실제 골조직에서 유래한 ECM을 추출하여 탈미네랄화된 골 기질(DBM)을 제조하고, 이식시 면역반응을 억제하기 위해 탈세포화 과정을 거친 뒤(bdECM, demineralized and decellularized bone extracellular matrix) 이를 상기 제조한 지지체에 코팅하였으며, 이에 따라 상기 bdECM이 코팅된 지지체가 골 세포의 부착 및 분화를 향상시켜 골 재생을 촉진하는 것을 확인하여 본 발명을 완성하였다.
본 발명의 하나의 목적은 PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)를 포함하는 제1층; 및 bdECM(demineralized and decellularized bone extracellular matrix)을 포함하는 제2층을 포함하며, 상기 제2층은 상기 제1층을 둘러싸는, 골 재생용 지지체를 제공하는 것이다.
본 발명의 다른 하나의 목적은 (a) PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)을 혼합하여 지지체를 제조하는 단계; 및 (b) 상기 지지체를 bdECM(demineralized and decellularized bone extracellular matrix)으로 코팅하는 단계를 포함하는 골 재생용 지지체 제조방법을 제공하는 것이다.
본 발명의 세포 외 기질이 코팅된 골 재생용 지지체는 3D 프린터를 통하여 골 손상이 일어난 환부와 정확히 일치하는 모양의 지지체 제작이 가능하며, 기존 지지체보다 빠르게 환부와 결합하고 주변 골 조직 세포의 부착,증식 및 골 분화가 향상되어 보다 빠른 골 재생 효과를 기대할 수 있다. 또한 세포 이식 등의 단계가 필요치 않으므로 골 손상 환자에게 빠른 시간 내에 지지체를 이식함으로써 보다 빠른 회복을 기대할 수 있다.
도 1은 bdECM을 제조하는 과정을 나타낸 것이다.
도 2는 전체적인 실험 과정을 개략적으로 도시한 것이다.
도 3은 본 발명의 일 실시예에 따라 3D 프린팅 기술로 제조한 지지체의 SEM 사진이다. (a) PCL/PLGA/β-TCP 지지체, 및 (b) 콜라겐 또는 (c) bdECM을 코팅한 PCL/PLGA/β-TCP 지지체.
도 4a 및 4b는 본 발명의 일 실시예에 따라 지지체 위에서 골아세포의 부착, 형태 및 증식을 확인한 것이다. (a) 각 지지체에 부착된 세포의 배양 1일 또는 14일째의 SEM 사진, 및 (b) 각 지지체에서 세포의 생존 및 증식 경향.
도 5a 및 5b는 본 발명의 일 실시예에 따라 지지체에서 골아세포의 ALP 활성을 나타낸 것이다. (a) 배양 14일째에 지지체에서 골아세포의 ALP 발현 및 (b) ALP 활성의 정량분석.
도 6a 내지 6c는 본 발명의 일 실시예에 따라 지지체에서 골아세포의 골 미네랄화를 나타낸 것이다. (a) 21일째에 지지체에서 칼슘 축적 마커인 Alizarin Red S 염색, (b) 21일째에 축적된 Alizarin Red S 용액의 정량분석, 및 (c) 7, 14 및 21일째에 칼슘 함량. 도 6d는 골 분화 mRNA 발현(우측: OC, 좌측: COL1A1)을 qRT-PCR로 정량화한 것이다.
도 7a 및 7b는 본 발명의 일 실시예에 따라 지지체에서 생체 내 골 재생을 나타낸 것이다. 마우스 두개골 손상 모델에 각 지지체와 골아세포를 함께 또는 골아세포 없이 각 지지체를 단독으로 처리한 것이다. (a) micro-CT로 골 재생 평가. 마우스 두개골의 대표적 micro-CT 사진이다. 손상 부위를 PCL/PLGA/β-TCP, PCL/PLGA/β-TCP/Col, 또는 PCL/PLGA/β-TCP/bdECM으로 처리하였다. 상단의 사진은 골아세포 없이 지지체만 처리한 것이며, 하단의 사진은 지지체와 함께 골아세포를 처리한 것이다. 스케일바 = 4 mm. (b) 신생 골로 채워진 손상 부위 부피를 micro-CT 분석 프로그램으로 측정하였다(n = 10, 그룹 당 손상 수). PCL/PLGA/TCP 그룹과 비교하여 *p<0.05, PCL/PLGA/TCP/Col 그룹과 비교하여 #p<0.05이다.
도 8a는 마우스 두개골 손상 부위에 Goldner's trichrome 염색한 것을 조직학적으로 분석하여 골 재생을 평가한 것이다. 화살표는 손상 부위 경계를 나타낸다. 스케일바 = 2 mm. 모든 사진은 40x 배율이다. 도 8b 및 8c는 조직형태계측학적 분석으로 신생 골 면적 및 골 밀도를 확인한 것이다(n = 10, 손상 수). PCL/PLGA/β-TCP 그룹과 비교하여 *p<0.05, PCL/PLGA/β-TCP/Col 그룹과 비교하여 #p<0.05이다.
본 발명은 하나의 양태로서 PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)를 포함하는 제1층; 및 bdECM(demineralized and decellularized bone extracellular matrix)을 포함하는 제2층을 포함하며, 상기 제2층은 상기 제1층을 둘러싸는, 골 재생용 지지체를 제공한다.
본 발명은 다른 하나의 양태로서, (a) PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)을 혼합하여 지지체를 제조하는 단계; 및 (b) 상기 지지체를 bdECM(demineralized and decellularized bone extracellular matrix)으로 코팅하는 단계를 포함하는 골 재생용 지지체 제조방법을 제공한다.
본 발명에서 사용되는 용어, "지지체(scaffold)"는, 생체 내에서 손상된 장기나 조직의 일부를 대체하며 이들의 기능을 보완 또는 대신할 수 있는 물질을 의미할 수 있다. 특히 상기 고분자 지지체는 생분해성 고분자 소재를 포함할 수 있으며, 이로 인해 지지체가 기능과 역할을 충분히 수행할 때까지 유지된 후 생체 내에서 완전히 분해되어 없어질 수 있다. 본 발명에서는 상기 지지체의 고분자 소재로 PCL(polycaprolactone) 및 PLGA(poly(D,L-lactic-co-glycolic acid))와 함께 바이오 세라믹 중 가장 광범위한 골 재구성 능력을 보이며 대상체 골 조직과 단단한 결합을 형성하여 골 생성이 일어나도록 하는 것으로 알려져 있는 β-TCP(tricalcium phosphate)를 혼합하여 사용하였다.
본 발명의 골 재생용 지지체의 구체적인 제조방법은 다음과 같다.
먼저 (a) 단계는 PCL, PLGA 및 β-TCP를 혼합하여 지지체(PCL/PLGA/β-TCP)를 제조하는 단계로서, 상기 혼합 및 제조과정은 이에 제한되는 것은 아니나, 특히 3D 프린팅 기술을 이용하여 수행된 것일 수 있다.
본 발명에서 사용되는 용어, "3D 프린팅"이란 쾌속조형기술(RP, Rapid Prototype)과 같은 의미로 통용되는 용어로, 3차원 영상자료의 2차원 단면화를 통해서 재료를 체계적으로 한 층씩 적층함으로써 실제 3차원 모델을 빠른 시간 안에 제작할 수 있는 기술을 일컫는다.
특히 상기 PCL/PLGA/β-TCP 지지체는 이에 제한되는 것은 아니나 PCL : PLGA : β-TCP를 1.5 내지 2.5 : 1.5 내지 2.5 : 0.5 내지 1.5의 중량비로 포함하는 것일 수 있다.
본 발명의 구체적인 일 실시예에서는 PCL, PLGA 및 β-TCP를 2 : 2 : 1의 중량비로 혼합하고 3D 프린터의 주사기로 옮겨 정밀 노즐을 통해 분사함으로써 PCL/PLGA/β-TCP 지지체를 제조하였다(도 3a).
다음으로 (b) 단계는 상기 제조된 PCL/PLGA/β-TCP 지지체를 bdECM으로 코팅하는 단계이다. 상기 (b) 단계는 이에 제한되는 것은 아니나, 구체적으로 PCL/PLGA/β-TCP 지지체를 bdECM에 담그고 원심분리하는 제1단계; 상기 지지체를 bdECM에 잠기도록 유지시키는 제2단계; 및 상기 지지체를 건조시키는 제3단계를 포함하는 것일 수 있다. 상기 제2단계는 상기 지지체를 bdECM에 5 내지 30분 동안 잠기도록 유지시키는 것일 수 있다.
본 발명에서 용어, "bdECM(demineralized and decellularized bone extracellular matrix)"은 개체에 이식시 면역반응을 감소시키기 위하여 DBM(demineralized bone matrix)을 탈세포화시킨 것으로, 탈세포화 과정은 트립신-EDTA를 이용하여 수행된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 DBM은 탈미네랄화 된 골 기질을 의미하는 것으로, 성장인자, 콜라겐 및 NCP(non-collagenous protein)를 포함하는 미세 환경을 재현하기 위해 개발된 것이다. 반투명하고 유연한 고무형태의 물질로서 골 성장을 촉진하는 골 형성 단백질(BMP, bone morphogenetic protein)이 내재되어 있다. 상기 단백질은 염산, 구연산 등 산에 의해서도 그 본연의 구조가 변형되지 않기 때문에 탈미네랄화 처리 후 남겨진 DBM은 BMP를 포함하여 효과적으로 골 재생을 촉진할 수 있다.
본 발명에서 용어, "탈미네랄화(demineralization)"는 칼슘 등의 무기질을 포함하는 생체 조직에서 킬레이트제 등을 사용하여 무기질을 추출하는 것을 의미하며, 뼈 조직으로부터 DBM을 분리해낸 후 남아있는 용액에는 인체뼈를 구성하고 있는 인산칼슘 등의 무기질 성분이 다량 포함되어 있다. 뼈 조직을 탈미네랄화하기 위해서 여러 가지 방법이 사용될 수 있는데, 염산, EDTA(ethylenediaminetetraacetic acid), 포름산(formic acid), 시트르산(citric acid), 아세트산(acetic acid), 질산(nitric acid), 아질산(nitrous acid) 등 다양한 산성 용액을 사용함으로써 가능하며, 특히 골 조각을 염산에서 교반하여 이루어지는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 코팅은 (a) 단계에서 제조된 PCL/PLGA/β-TCP 지지체를 상기 제조된 bdECM에 담근 뒤 건조시키는 과정으로, 이러한 과정을 통해 PCL/PLGA/β-TCP 지지체를 포함하는 제1층을 bdECM을 포함하는 제2층이 둘러싸게 된다. 구체적으로 상기 지지체를 bdECM에 담그고 원심분리하여 공극 사이의 재료를 가라앉히는 과정을 거친 후 인큐베이션하고 건조시키는 과정을 포함할 수 있다.
특히, 이에 제한되는 것은 아니나, 상기 원심분리하여 공극 사이의 재료를 가라앉히는 과정은 1 내지 10℃에서 1000 내지 2000 rpm으로 30초 내지 5분간 원심분리하는 것일 수 있고, 이러한 과정은 1회 내지 5회 반복하여 수행될 수 있다. 또한, 상기 인큐베이션은 특히 30 내지 40℃에서 5 분 내지 30 분 인큐베이션하는 것일 수 있고, 상기 건조는 5분 내지 30분간 수행되는 것일 수 있으나, 이에 제한되지 않는다. 상기 단계 (b)는 1회 내지 5회 반복하여 수행될 수 있다.
또한, 상기 단계 (b)의 bdECM을 포함하는 용액은 bdECM이 증류수에 5 내지 20 mg/㎖로 용해된 것일 수 있다.
본 발명의 구체적인 일 실시예에서는 bdECM을 증류수에 10 mg/㎖로 용해시켜 코팅 용액을 제조하고, 3D 프린팅을 이용하여 제조한 PCL/PLGA/β-TCP 지지체를 상기 제조한 코팅 용액에 20 분간 담근 뒤 건조시켜, bdECM으로 코팅된 PCL/PLGA/β-TCP 지지체(PCL/PLGA/β-TCP/bdECM)를 제조하였다.
본 발명에서 용어, "골 재생"은 손상된 골 조직을 골 세포가 증식하거나 또는 골아세포가 골 세포로 분화하는 등의 과정을 거쳐 골 손상을 치료, 완화, 개선시키는 모든 현상을 의미할 수 있으며, 이에 제한되지는 않으나, 특히 상기 골 재생은 골 분화를 촉진하는 것에 의한 것일 수 있다.
본 발명에서 용어, "골 재생용 지지체"는 그 형태와 상관없이 이식의 대상이 되는 골 손상 부위의 형태와 반드시 일치할 필요는 없고, 유사한 형태로 성형이 가공한 정도의 상태이면 족하다. 그러나, 필요에 따라서는 이식 대상의 골 손상 부위의 형태를 미리 파악하여 이에 맞는 모양을 제조할 수도 있으며, 다양한 상황에 일반적으로 적용될 수 있도록 막의 구조 또는 띠의 구조 등으로 미리 형상화시킨 것일 수도 있다.
이를 위해서는 상기의 골 재생용 지지체의 성형성을 증가시키기 위한 다양한 재료가 더 첨가될 수 있다. 즉, 생체적합성이 뛰어난 선형의 소재, 튜브형의 소재, 입자형의 소재 및 부정형의 소재 등이 더 첨가되어 상기 골 재생용 지지체의 물리적 특성을 향상시킬 수 있다. 이러한 형태의 소재들은 콜라겐, 카르복시메틸셀룰로오스(CMC, carboxymethylcellulose) 또는 동물 유래 젤라틴 등의 소재로부터 선택될 수 있으며, 이식 대상에 면역반응을 유발하지 않는다면 특별한 제한은 없다.
본 발명의 구체적인 일 실시예에서는, 상기 PCL/PLGA/β-TCP/bdECM 지지체를 SEM(scanning electron microscope)으로 관찰하여 기공 및 상호연결이 존재하도록 제조된 것을 확인하였으며(도 3), 코팅을 하지 않거나 콜라겐 코팅을 한 지지체에 비하여 세포 부착률이 우수함을 확인하였다(도 4).
또한, 본 발명의 다른 구체적인 일 실시예에서는, 상기 PCL/PLGA/β-TCP/bdECM 지지체에 골아세포를 접종하고 골 분화 배지에서 배양하였을 때, ALP 발현, 칼슘 축적, 및 OCN 및 COL1A1과 같은 골 분화 관련 mRNA의 발현이 증가된 것을 확인하여 골 분화 유도 기능이 우수함을 확인하였다(도 5 및 도 6).
나아가, 본 발명의 또 다른 구체적인 일 실시예에서는, 상기 PCL/PLGA/β-TCP/bdECM 지지체를 골아세포와 함께 또는 지지체 단독으로 골 손상 마우스 모델에 이식하였을 때, 신생 골 부피 및 골 밀도가 증가하여 손상 부위가 회복되는 것을 확인함으로써(도 7 및 도 8), 본 발명의 PCL/PLGA/β-TCP/bdECM 지지체가 골 재생용 조성물로서 우수한 효과가 있음을 알 수 있었다. 또한, 이러한 효과는 PCL/PLGA/β-TCP 지지체 또는 PCL/PLGA/β-TCP/Col 지지체에 비하여 현저히 우수한 것이다.
결론적으로 본 발명의 PCL/PLGA/β-TCP/bdECM 지지체는 DBM을 탈세포화시켜 제조한 bdECM으로 코팅한 것이며 골아세포와 함께 이식하지 않아도 골 재생 효과를 가지는바 이식시 면역반응과 같은 부작용의 우려가 없고, 골 세포 부착이 향상되고 골 분화를 촉진시킬 수 있어, 골 재생용 지지체로 우수한 효과가 있다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1 : bdECM (demineralized and decellularized bone extracellular matrix)의 제조
골 재생 효과가 우수한 지지체를 제조하기 위하여 지지체를 코팅하기 위한 용도로 사용될 bdECM을 제조하였다. 그 구체적인 제조과정은 하기와 같으며, 전체적인 과정은 도 1에 나타내었다.
(1) 골 가공
12 내지 24 개월 된 송아지에서 경골(tibiae)을 분리하였다. 상기 골을 조각으로 나누고 해면질(cancellous)과 피질(cortical) 그룹으로 나눈 뒤, 상기 해면질 그룹을 사용하였다. 0.1%(w/v) 젠타마이신(Gentamicin, Invitrogen, Carlsbad, CA, USA)을 함유한 PBS(phosphate-buffered saline)로 상기 해면질 조각의 잔 조직을 제거하고 세척하였다. 그 다음 상기 조각을 액체 질소에 얼리고 4 x 4 x 4 mm 이하의 절편으로 잘랐다. 상기 절편을 증류수로 세척하고, 액체 질소에 담그고 커피 밀(coffee mill, Kordia Co., Daegu, Gyeongbuk, Korea)에 두고 빻았다.
(2) 탈미네랄화 및 탈세포화
상온에서 24시간 동안 0.5 N HCl(25 ㎖/골 g)에서 골을 교반(300 rpm)하여 탈미네랄화 시켰다. 탈미네랄화 후, 결과물(이하 'bDBM'이라 함)을 진공상태로 필터하고 증류수로 헹구었다. 그 다음 탈미네랄화된 분말에서 지질을 클로로포름(chloroform, Fisher Scientific, Loughborough, UK) 및 메탄올(Fisher Scientific) 1 : 1 혼합용액에서 1시간 동안 추출하고 먼저 메탄올로, 그 다음에 증류수로 헹구었다. 상기 bDBM을 순간 동결(snap frozen)시키고, 밤새 감압하에 동결 건조한 뒤 -20 ℃에서 보관하였다.
그 다음 상기 bDBM을 증류수로 헹구고, 0.05 % 트립신(Sigma-Aldrich) 및 0.02 % EDTA(ethylenediamine tetraacetic acid, Sigma-Aldrich) 혼합 용액에서 37 ℃, 5% CO2 조건으로 24시간 동안 계속적으로 교반하면서 탈세포화 시켰다. 잔여 세포 물질을 제거하기 위해 상기 결과물(이하 'bdECM'이라 함)을 1 % (w/v) 페니실린/스트렙토마이신을 함유하는 PBS로 4℃에서 24시간 동안 계속적으로 교반하여 헹구었다. 그 다음 순간 동결시키고, 밤새 감압하에 동결건조한 뒤 -20℃에서 보관하였다.
실시예 2 : bdECM으로 코팅된 지지체의 제조 및 특성 분석
3D 프린팅 기술을 이용하여 PCL, PLGA, 및 β-TCP를 포함하는 지지체(PCL/PLGA/β-TCP)를 제조하고, 이를 상기 제조한 bdECM으로 코팅하여 골 재생용 지지체(PCL/PLGA/β-TCP/bdECM)를 완성하였다. 완성된 지지체의 골 재생 효과를 확인하여 위하여 상기 지지체 단독(PCL/PLGA/β-TCP) 또는 상기 지지체를 콜라겐(PCL/PLGA/β-TCP/Col) 또는 bdECM(PCL/PLGA/β-TCP/bdECM)으로 코팅한 지지체의 생체 내 및 생체 외 골 재생 효과를 확인하였다(도 2). 구체적인 제조 과정은 하기와 같다.
(1) 3D 프린팅 기술을 이용한 PCL/PLGA/β-TCP 지지체의 제조
PCL(MW 43,000-50,000; Polysciences Inc.,Warrington, PA, USA) 0.4 g 및 PLGA(MW 50,000-75,000; Sigma-Aldrich, St. Louis, MO, USA) 0.4 g을 130℃에서 10분간 유리 콘테이너에 두었다. 상기 과정으로 녹은 중합체들을 최종 농도 20 중량%가 되도록 β-TCP(Sigma-Aldrich) 분말 0.2 g과 혼합하였다. 상기 혼합물을 MHDS의 10 ㎖ 주사기로 옮기고 650 kPa, 140 ℃에서 정밀 노즐(precision nozzle)을 통해 분사하였다. 프린트된 스캐폴드를 70% 에탄올에서 30분간 살균하고 코팅 단계에 앞서 밤새 UV에 노출시켰다.
(2) PCL/PLGA/β-TCP 지지체에 코팅
코팅 용액은 bdECM을 증류수에 10 mg/㎖로 용해시켜 제조하였고, 대조군으로 아텔로콜라겐 용액(Koken, Shizuoka, Japan)을 10 mg/㎖ 농도로 제조하였다. 상기 제조된 코팅 용액으로 PCL/PLGA/TCP 지지체를 코팅하였다. 지지체의 기공 부분에 공극을 채우기 위해, 상기 지지체를 bdECM 용액에 침지하여 4 ℃에서 1분간 1,500 rpm으로 원심분리하는 과정을 두 차례 실시하여 기공의 공극을 채웠다. 기공이 채워진 상기 지지체를 37℃에서 20분간 인큐베이션 한 뒤 멸균 조건에서 20분 동안 건조시켰다. 이러한 과정을 3회 반복하였다.
(3) 제조된 지지체의 특성 분석
상기 제조된 지지체의 특성을 분석하기 위해 SEM(scanning electron microscope, JSM-5300, JEOL, Tokyo, Japan)으로 10 kV에서 지지체의 형태를 관찰하였다. 상기 지지체를 sputter-coater로 120초 동안 백금으로 코팅하고, PCL/PLGA/β-TCP 지지체의 표면 형태를 PCL/PLGA 지지체와 비교하였다. 코팅을 하지 않은 PCL/PLGA/β-TCP 지지체를 모든 실험에서 대조군으로 사용하였다. 지지체에 bdECM 또는 콜라겐 코팅 정도를 질소(N), 산소(O), 및 탄소(C)에 대한 XPS(X-ray photoelectron spectroscopy)의 스펙트럼으로 확인하였다(ESCALAB 220iXL; VG Scientific, East Grinstead, West Sussex, UK).
SEM으로 지지체를 관찰한 결과, 상기 지지체는 직경 4 mm, 높이 1 mm이고, 줄 두께는 약 200 ㎛, 기공 크기는 약 300 ㎛이었다. PCL/PLGA/β-TCP 지지체는 β-TCP 분말을 포함하기 때문에 거친 표면을 가지며(도 3a), 콜라겐 또는 bdECM이 코팅된 지지체는 기공을 막지 않고 매끈한 표면을 가지는 것을 확인하였다(도 3b 및 3c). 상기 지지체의 매끈한 표면은 콜라겐 및 bdECM이 성공적으로 코팅되었다는 것을 의미한다. 또한 상기 지지체들은 모두 상호 연결을 잘 유지하였는데, 이러한 상호 연결은 골수로부터 숙주 세포의 이동 및 주변의 골아세포가 이동할 수 있도록 하므로 골 재생에 있어 매우 중요하다.
한편, 지지체에 콜라겐 또는 bdECM이 코팅된 정도는 XPS 분석을 통해 정량화하고, 하기 표 1로 나타내었다.
원소 PCL/PLGA/β-TCP PCL/PLGA/β-TCP/Col PCL/PLGA/β-TCP/bdECM
C 74.7% 63.6% 64.7%
N 0% 11.8% 10.6%
O 25.3% 24.6% 24.7%
실시예 3 : 지지체에 따른 세포 증식 효과 확인
(1) 세포 배양
생체 외 세포 행동을 분석하기 위해, 분리된 초대 골아세포를 각 지지체에 1 x 104 세포 수로 접종하였다. 두개관(calvarial) 골아세포를 Sprague-Dawley 래트 태아(SLC, Tokyo, japan)의 두개관으로부터 분리하였다. 세포 부착을 위해 하루 동안 세포를 접종한 지지체를 성장 배지에 담가 배양하였고, 그 다음 골아세포의 골 생성 기능을 유도하기 위해 배양 배지를 50 mM ascorbic acid-2-phosphate(Sigma-Aldrich), 10 mM β-glycerophosphate(Sigma-Aldrich), 및 100 nM dexamethasone(Sigma-Aldrich)을 함유하는 complete αMEM으로 교체하였다. 상기 배지는 매일 교체하였다.
(2) 골아세포 형태 관찰
SEM 분석을 통해 골아세포를 접종한지 1일 또는 14일 된 지지체의 세포 형태를 관찰하였다. 지지체를 0.05M sodium cacodylate buffer(SC 완충액, pH 7.2; Sigma-Aldrich)에 2 % 파라포름알데히드 및 2 % 글루타르알데하이드를 함유하는 변형된 Karnovsky's 고정액으로 4℃에서 4시간 동안 고정시켰다. 상기 일차 고정된 지지체를 0.05 M SC 완충액으로 4℃에서 3회 세척하고, 1 % osmium tetroxid(Sigma-Aldrich)를 함유한 0.05 M SC 완충액에 4 ℃에서 2시간 동안 담그었다. 그 다음 순차적으로 탈수시키고 헥사메틸디실라잔(hexamethyldisilazane, Sigma-Aldrich)으로 15분 동안 건조시켰다. 지지체 및 지지체 위의 세포 형태는 FE-SEM(JEOL)을 이용하여 15 kV에서 확인하였다. 모든 표본은 탄소 테이프에 올리고 sputter coater를 이용하여 60초 동안 백금으로 코팅하였다.
(3) 세포 증식 분석
Cell Count Kit-8(CCK-8, Dojindo, Kumamoto, Japan)을 이용하여 지지체에서 골아세포 증식 분석을 수행하였다. 지지체를 성장 배지로 희석시킨 CCK-8 용액(1:10 비율)에 담그고 37 ℃에서 2시간 동안 인큐베이션하였다. 그 다음 상기 용액을 추출하고, microplate reader(Asys UVM 340; Biochrom, Cambridge, UK)를 이용해 450 nm에서 흡광도를 측정하였다. 상기 지지체를 PBS로 세척하고 새 배양 배지로 다시 인큐베이션하였다.
세포를 접종하고 지지체의 형태를 SEM으로 확인한 결과, 1일째에는 세포들이 지지체 위에 부착된 것을 확인하였고, 부착된 세포들은 시간이 지나면서(14일) 지지체의 기공을 통해 자라는 것을 확인할 수 있었다(도 4a). 특히, PCL/PLGA/β-TCP/bdECM 지지체의 세포들은 콜라겐 기질의 비등방성 형상에 가까운 더욱 정렬된 형태를 보였다. 상기와 같은 형태는 골 조직의 기계적 특성에 영향을 주는 것으로 알려져 있다.
나아가, 세포 증식 분석에서 흡광도를 측정한 결과, 코팅을 하지 않은 지지체에 비해 콜라겐 또는 bdECM을 코팅한 지지체 위에서 골아세포가 더욱 잘 부착되는 것을 확인하였고, 이로부터 단백질을 코팅한 지지체가 세포 부착률을 향상시킨다는 것을 알 수 있었다. 상기 세 그룹의 골아세포 증식률은 서로 유사한 경향을 보였다(도 4b).
상기 bdECM 코팅은 지지체의 기공 크기를 약 30% 감소시켰으나(도 3), 골아세포 부착을 더욱 증가시켰다. 이러한 결과는 지지체의 기공이 bdECM으로 가득 채워지지 않았다는 것을 의미하며, 따라서 골아세포는 지지체 내부로 이동할 수 있다. 한편, 콜라겐 코팅은 bdECM 코팅과 비교하여 낮은 세포 부착률을 보였는바, 상기 bdECM은 콜라겐 코팅보다 더 나은 환경을 제공할 수 있다.
결론적으로 상기 실험과정을 통해 본 발명의 bdECM을 코팅한 골 재생용 지지체가 실제 인체에 이식 되었을 경우에도 지지체의 공극을 따라서 주변 조직의 세포들이 효과적으로 증식할 수 있음을 알 수 있다.
실시예 4 : 래트 유래 골아세포의 골 분화 향상 효과 확인
(1) ALP 발현 확인
본 발명의 지지체가 골 분화를 향상시키는 효과가 있는지 확인하기 위하여, 래트 유래 골아세포를 지지체 위에서 배양하면서 골 분화 양상을 관찰하였다. 먼저 각 지지체에 접종된 세포에서 골아세포 활성의 생화학적 마커로 가장 널리 알려져 있는 ALP의 발현을 면역형광 염색 방법으로 확인하였다. 골 생성 배지에서 골아세포를 배양한 지지체를 PBS로 세척하고 14일째에 4 % 파라포름알데히드 용액으로 고정시켰다. 그 다음 비특이적 결합을 막기 위해 2 % BSA를 함유하는 PBS를 처리하고, 항-ALP 항체(1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA)로 면역 염색한 뒤 Alex Fluor 488 염소 항-토끼 항체(1:100; Invitrogen)로 인큐베이션하였다. 모든 표본은 DAPI(1:100; Sigma-Aldrich)로 카운터 염색하였고 laser scanning confocal microscope(Olympus FluoViewTM FV1000, Tokyo, Japan)으로 관찰하였다.
또한, ALP 활성은 14일째에 p-NPP(p-nitrophenyl phosphate, Sigma-Aldrich)로 정량화하였다. 지지체에 접종한 골아세포를 RIPA 용해 완충액(Millipore, billerica, MA, USA)으로 용해시키고, 용해물을 5 mM pNPP를 함유하는 ALP 기질 완충액으로 37 ℃에서 30분 동안 인큐베이션하였다. ALP의 효소 활성은 microplate reader를 이용하여 405 nm에서 측정하였다.
그 결과, 지지체 전체적으로 골아세포에 의해 발현되는 ALP 마커 발현이 확인되었는데, 이는 골아세포 활성이 지지체 위에서 매우 높다는 것을 의미한다(도 5a). 이 중 bdECM을 코팅한 지지체 위의 세포는 1일 째에 SEM 분석에서와 같이 정렬된 형태를 보였다. 정량적으로 측정된 ALP 활성은 bdECM을 코팅한 지지체로부터 분리된 용해물에서 가장 높은 활성을 가짐을 나타낸다(도 5b).
(2) 칼슘 축적 확인
골 아세포를 지지체 위에서 골 분화 배지로 배양한 경우 골 미네랄화 정도를 칼슘 축적을 통해 확인하였다. 용해물에서 Ca2 + 농도는 Calcium Detection Kit(Abcam, Cambridge, MA, UK)를 이용하여 제조사의 지침에 따라 분광광도계로 측정하였다. 21일째에, 칼슘 축적을 염색하기 위해 세포를 접종한 지지체를 4 % 파라포름알데히드로 고정하였다. 그 다음 세포를 2 % Alizarin Red S(Sigma-Aldrich) 용액(pH 4.3)으로 상온에서 20분 동안 염색하였다. 칼슘 축적 지역은 디지털 현미경(Dino lite, New Taipei, Taiwan)으로 관찰하였고, 칼슘 축적량은 DMSO(dimethyl sulfoxide, Sigma-Aldrich)를 이용하여 세포에서 Alizarin Red를 추출하여 정량화하였다. 상기 추출물을 microplate reader를 이용해 570 nm에서 측정하였다.
그 결과 콜라겐 또는 bdECM을 코팅한 지지체 위의 골아세포가 21일 경과 후 육안으로 식별 가능한 수준의 칼슘 미네랄을 함유하고 있다는 것을 확인할 수 있었다. 다만, 콜라겐 코팅 지지체에 비해 bdECM 코팅 지지체에서 더 많은 칼슘 미네랄 양이 관찰되었다(도 6a). 비색분석(colorimetric analysis) 결과 역시 상기 염색 결과와 일치하였다(도 6b). 칼슘 함량은 bdECM을 코팅한 PCL/PLGA/TCP 지지체에서 다른 그룹에 비해 상당히 높은 칼슘 함량을 보였는데, 특히 시간이 지나면서 지속적으로 증가하는 것을 확인할 수 있었다(도 6c).
(3) 골 분화 관련 mRNA 발현 확인
배양된 골아세포의 골 분화 관련 mRNA 발현은 qRT-PCR을 통해 분석하였다. 분화 배지에서 배양 21일째에 제조사의 지침에 따라 RNAiso 시약(Takara, Japan)으로 세포에서 RNA를 분리하였다. RNA 농도는 Nanodrop(ThermoScientific, USA)을 이용하여 측정하였고, 역전사는 amfiRivert cDNA synthesis platinum master mix kit(GenDEPOT, USA)로 수행하였다. 유전자 발현은 LightCycler 480 Real-Time PCR 장비(Roche Biochemicals, IN, USA)를 이용하여 LightCycler SYBR Green I Master mix로 분석하였다. 프라이머 서열은 NCBI 및 PubMed 데이터베이스를 이용하여 제작하였고 서열번호를 하기 표 2에 나타내었다.
유전자 프라이머 서열
GAPDH 센스(Sense)안티센스(Antisense) 5'- GGC ACA GTC AAG GCT GAG AAT G -3' (서열번호 1)5'- ATG GTG GTG AAG ACG CCA GTA -3' (서열번호 2)
OCN 센스(Sense)안티센스(Antisense) 5'- GGT GCA GAC CTA GCA GAC ACC A -3' (서열번호 3)5'- AGG TAG CGC CGG AGT CTA TTC A -3' (서열번호 4)
COL1A1 센스(Sense)안티센스(Antisense) 5'- ACG TCC TGG TGA AGT TGG TC -3' (서열번호 5)5'- CAG GGA AGC CTC TTT CTC CT -3' (서열번호 6)
그 결과, 오스테오칼신(osteocalcin, OCN) 및 타입 I 콜라겐(COL1A1)을 포함하는 골 생성과 관련된 mRNA 발현도 bdECM을 코팅한 PCL/PLGA/TCP 지지체 그룹에서 더 높게 확인되었다. 이러한 결과는 또한 미네랄화 뿐만 아니라 조직 성숙에 있어서도 bdECM을 코팅한 지지체의 골 조직 재생 능력이 뛰어나다는 것을 시사한다(도 6d).
상기 실험 결과를 종합하면 bdECM을 코팅한 PCL/PLGA/TCP 지지체에서 배양한 골아세포는 다른 그룹에 비해 상당히 향상된 생체 외 골 생성 활성을 보여준다는 것을 알 수 있으며, 이는 bdECM에 존재하는 생분자 때문일 수 있다. bdECM은 BMP-2(bone morphogenetic protein-2), BMP-7 및 다른 알려지지 않은 인자들과 같은 골분화성 생분자를 함유하고 있다. 이러한 골 유도 생분자는 골아세포의 골 분화와 미네랄화에 영향을 미친다. 또한, PCL/PLGA/TCP/bdECM에서 배양된 골아세포는 가장 높은 세포 부착률을 보였다. 이는 bdECM 생활성 인자에 의해 다양한 세포 부착 부위가 제공되었다는 것을 의미한다.
결론적으로, ALP 발현, Alizarin Red S 염색 및 OCN과 COL1A1의 qRT-PCR 결과를 통해 본 발명의 bdECM을 코팅한 골 재생용 지지체가 골 분화를 촉진한다는 것을 알 수 있었다.
실시예 5 : 지지체의 생체 내 골 재생 효과 확인
PCL/PLGA/β-TCP/bdECM 지지체의 생체 내 골 재생 효과를 확인하기 위해 마우스 두개관 손상 모델을 사용하였으며, 상기 마우스에 골아세포와 함께 또는 골아세포 없이 각각의 지지체를 이식하여 생체 내 골 형성 효율을 확인하였다. 구체적인 실험 방법 및 내용은 하기와 같다.
(1) 골 재생을 평가하기 위한 마우스 두개관 손상 모델
Institute of Cancer Research(Koatech, Sungnam, Kyunggi-do, South Korea)로부터 얻은 6주령 마우스를 자일라진(xylazine, 20 mg/kg) 및 케타민(ketamine, 100 mg/kg)으로 마취시켰다. 마우스 머리 털을 밀고, 코뼈에서부터 목덜미 뒤쪽까지 두개골 중앙을 세로로 절개하고, 두정골(parietal bone) 표면을 노출시키기 위해 골막을 들어올렸다. surgical trephine burr(Ace Surgical Supply Co., Brockton, MA, USA) 및 low-speed micromoter를 이용하여, 두개골에 2개의 원형 골 손상(직경 4 mm)를 만들었다. 손상 크기는 마우스 두개골 손상 모델에 대하여 치명적인 크기로 하였다. 드릴 부위는 살린으로 세척하였고, 출혈 부위는 전기로 지졌다. 각 그룹 당 다섯 마리의 마우스(10 손상)를 사용하였다.
(2) micro-CT 분석
이식 8주 후, 마우스를 CO2로 안락사 시키고, 분석을 위해 두개골을 회수하였다. 골 형성은 micro-CT 스캔(그룹 당 n=7)으로 평가하였다. micro-CT 사진은 micro-CT 스캐너(SkyScan-1172, Skyscan, Kontich, Belgium)로 얻었다. 신생 골 부피는 CT 분석 프로그램(CT-An, Skyscan)을 이용하여 확인하였다.
(3) 조직학적 분석
micro-CT 촬영 후, 조직학적 및 조직형태계측학적(histomorphometric) 분석을 위해 검체를 제조하였다. 검체를 10 %(v/v) 완충 포르말린 용액에 담그고, 증가된 농도의 알콜 용액에서 탈수시키고, 자일렌(xylene)으로 투명하게 하고, 파라핀으로 포매시켰다. 마이크로커팅 및 그라인딩 기술을 이용하여 마우스 한 마리 당 각각 두 개의 검체로부터 하나의 시상 및 하나의 전면부 절편을 얻었다. 상기 절편을 Goldner's trichrome stain으로 염색하였다. 골 형성 지역은 Adobe Photoshop software(Adobe Systems, Inc., San Jose, CA, USA)를 이용하여 새로 형성된 미네랄화된 뼈의 백분율을 계산함으로써 결정하였다. 손상 부위에서 골 형성 지역의 백분율은 (신생 골 지역/골 손상 지역) x 100으로 계산하였다. 골 밀도는 [신생 골 지역/(신생 골 지역 + 섬유 조직 지역 + 나머지 생물질 지역)] x 100으로 계산하였다.
그 결과, micro-CT(microcomputed tophography) 사진을 통해 다른 지지체 이식과 비교하여 PCL/PLGA/TCP/bdECM 지지체 이식이 골 재생을 더욱 향상시킨다는 것알 수 있었다(도 7a). 또한, PCL/PLGA/TCP/bdECM 지지체는 다른 지지체에 비해 재생된 골 부피를 상당히 증가시켰다(도 7b). 특히 PCL/PLGA/TCP/bdECM 지지체는 골아세포가 없는 경우에도 골아세포가 있는 경우와 유사한 수준으로 골 재생을 향상시키고 재생된 골 부피를 증가시키는 것을 확인할 수 있었다. 이는 본 발명의 PCL/PLGA/TCP/bdECM 지지체는 골아세포 등 기타 세포와 혼합할 필요 없이 지지체 단독을 이식하는 것 만으로도 골 재생 효과를 가져올 수 있음을 의미한다.
나아가, Goldner's trichrome 염색을 이용한 조직학적 분석으로 PCL/PLGA/TCP/bdECM 이식이 골 재생 효율을 향상시켰다는 것을 다시 확인하였다(도 8a). PCL/PLGA/TCP/bdECM은 손상 부위에 새로이 형성된 골수를 포함하여 재생된 뼈를 성공적으로 채워주었다. 반면, PCL/PLGA/TCP 및 PCL/PLGA/TCP/Col 지지체의 이식은 손상 부위에서 오직 섬유 조직만을 보여주었다.
아울러, 골아세포와 함께 PCL/PLGA/TCP/Col 지지체를 이식한 경우 골아세포가 없는 경우에 비해 골 형성 면적 및 골 밀도를 상당히 향상시켰다(도 8b 및 8c). 또한, 골아세포와 함께 PCL/PLGA/TCP/bdECM을 이식한 경우는 PCL/PLGA/TCP/Col 지지체를 이식한 경우보다도 골 형성 면적 및 골 밀도가 더욱 향상되었다. 하지만, 골아세포와 함께 PCL/PLGA/TCP를 이식한 경우에는 골아세포가 없이 이식한 경우와 유사하게 오직 섬유 조직만 형성된 것을 확인하였다.
본 발명의 3D 프린팅 기술로 제조한 지지체는 골 손상 부위에 이식된 지지체 내로 환자 조직의 성장을 향상시킬 수 있는 미세 구조 및 상호 연결된 기공 구조를 조절할 수 있기 때문에, 다른 종류의 골 조직 공학에도 사용될 수 있다. 본 발명의 PCL/PLGA/TCP/bdECM은 MSC 및 골아세포와 같은 숙주의 세포가 내부에서 자라도록 할 수 있으며, 지지체 내부로 이동한 세포는 bdECM이 함유하는 생분자와 접촉하여 골로 분화될 수 있다.
합성 인공 물질로 만들어진 코팅되지 않은 3D 프린팅으로 제조한 지지체(PCL/PLGA/TCP)는 골 재생을 유도하는 골-특이적 생활성 신호가 결여되어 있다. 또한, 콜라겐을 코팅한 PCL/PLGA/TCP/Col 지지체는 골아세포가 없이 단독으로는 골 손상을 효과적으로 치료하지 못하였다. 이는 PCL/PLGA/TCP/bdECM과 비교하여 골 생성 생분자가 결여되어있기 때문이다. 콜라겐이 생체 외 세포 부착률 및 골 생성 활성이 떨어지는 것도 이러한 결과에 영향을 주었을 것이다. 한편, PCL/PLGA/TCP/bdECM은 골아세포가 있거나 없는 조건에서 별 다른 차이를 보이지 않았다. 이는 PCL/PLGA/TCP/Col과 비교하여 상당한 양의 숙주 세포가 이동했기 때문일 것이다. 따라서, PCL/PLGA/TCP/bdECM은 골 손상 치료에 있어서 체외 배양된 골아세포를 필요로 하지 않고, bdECM은 DBM을 탈세포화하여 제조한 것으로, 본 발명의 지지체는 세포 이식으로 야기되는 면역반응 등의 부작용을 감소시킬 수 있으며, 세포 배양에 들어가는 비용 및 시간도 줄일 수 있다.
결론적으로 본 발명의 bdECM을 코팅한 골 재생용 지지체는 골 세포 증식을 촉진하고, 골 분화를 향상시켜 우수한 골 재생 효과를 가지므로, 골 재생용 지지체로 사용될 수 있다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (11)

  1. PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)를 포함하는 제1층; 및
    bdECM(demineralized and decellularized bone extracellular matrix)을 포함하는 제2층을 포함하며, 상기 제2층은 상기 제1층을 둘러싸는, 골 재생용 지지체.
  2. 제1항에 있어서, 상기 제1층은 PCL : PLGA : β-TCP를 1.5 내지 2.5 : 1.5 내지 2.5 : 0.5 내지 1.5의 중량비로 포함하는 것인, 골 재생용 지지체.
  3. 제1항에 있어서, 상기 제2층은 증류수에 bdECM이 5 내지 20 mg/㎖로 용해된 코팅 용액으로 제1층을 코팅하여 형성된 것인, 골 재생용 지지체.
  4. 제1항에 있어서, 상기 골 재생은 골 분화 촉진에 의한 것인, 골 재생용 지지체.
  5. (a) PCL(polycaprolactone), PLGA(poly(D,L-lactic-co-glycolic acid)), 및 β-TCP(tricalcium phosphate)를 혼합하여 지지체를 제조하는 단계; 및
    (b) 상기 지지체를 bdECM(demineralized and decellularized bone extracellular matrix)을 포함하는 용액으로 코팅하는 단계를 포함하는 골 재생용 지지체 제조방법.
  6. 제5항에 있어서, 상기 단계 (a)는 PCL : PLGA : β-TCP를 1.5 내지 2.5 : 1.5 내지 2.5 : 0.5 내지 1.5의 중량비로 혼합하는 것인, 골 재생용 지지체 제조방법.
  7. 제5항에 있어서, 상기 단계 (b)는
    PCL/PLGA/β-TCP 지지체를 bdECM에 담그고 원심분리하는 제1단계;
    상기 지지체를 bdECM에 잠기도록 유지시키는 제2단계; 및
    상기 지지체를 건조시키는 제3단계를 포함하는 것인, 골 재생용 지지체 제조방법.
  8. 제7항에 있어서, 상기 제2단계는 상기 지지체를 bdECM에 5 내지 30 분 동안 잠기도록 유지시키는 것인, 골 재생용 지지체 제조방법.
  9. 제5항에 있어서, 상기 단계 (b)의 bdECM을 포함하는 용액은 bdECM이 증류수에 5 내지 20 mg/㎖로 용해된 것인, 골 재생용 지지체 제조방법.
  10. 제5항에 있어서, 상기 단계 (a)는 3D 프린터를 이용하여 수행되는 것인, 골 재생용 지지체 제조방법.
  11. 제5항에 있어서, 상기 골 재생은 골 분화 촉진에 의한 것인, 골 재생용 지지체 제조방법.
PCT/KR2015/011408 2015-04-10 2015-10-28 세포 외 기질이 코팅된 골 재생용 지지체 WO2016163612A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0050930 2015-04-10
KR1020150050930A KR101733662B1 (ko) 2015-04-10 2015-04-10 세포 외 기질이 코팅된 골 재생용 지지체

Publications (1)

Publication Number Publication Date
WO2016163612A1 true WO2016163612A1 (ko) 2016-10-13

Family

ID=57072756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011408 WO2016163612A1 (ko) 2015-04-10 2015-10-28 세포 외 기질이 코팅된 골 재생용 지지체

Country Status (2)

Country Link
KR (1) KR101733662B1 (ko)
WO (1) WO2016163612A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107281554A (zh) * 2017-05-09 2017-10-24 西南交通大学 一种机械活化制备适合3d打印的磷酸钙基复合材料的方法
CN110433334A (zh) * 2019-08-27 2019-11-12 扬州大学 3d打印气管c形支架与杂化型支架的制备方法
EP4166112A4 (en) * 2021-08-27 2024-03-06 Nanobiosystem Co., Ltd. SCAFFOLD FOR BONE REGENERATION AND CONSTRUCTION METHOD THEREOF

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037324A (ko) * 2011-10-06 2013-04-16 주식회사 본셀바이오텍 조직재생용 스캐폴드 제조를 위한 3차원 프린팅 적층용 조성물과 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080281431A1 (en) * 2007-05-10 2008-11-13 Biomet Manufacturing Corp. Resorbable bone graft materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037324A (ko) * 2011-10-06 2013-04-16 주식회사 본셀바이오텍 조직재생용 스캐폴드 제조를 위한 3차원 프린팅 적층용 조성물과 그 제조방법

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATI, F. ET AL.: "Ornamenting 3D Printed Scaffolds with Cell -Laid Extracellular Matrix for Bone Tissue Regeneration", BIOMATERIALS, vol. 37, October 2014 (2014-10-01), pages 230 - 241, XP055308116 *
RENTSCH, C. ET AL.: "ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration", BIOMED RESEARCH INTERNATIONAL, vol. 2014, June 2014 (2014-06-01), XP055308116 *
SAWKINS, M. J. ET AL.: "Hydrogels derived from Demineralized and Decellularized. Bone Extracellular Matrix", ACTA BIOMATERIALIA, vol. 9, no. 8, 2013, pages 7865 - 7873, XP055308116 *
SHIM, J. ET AL.: "Fabrication of Blended Polycaprolactone/Poly(lactic-co-glycolic acid)/beta-Tricalcium Phosphate Thin Membrane using Solid Freeform Fabrication Technology for Guided Bone Regeneration", TISSUE ENGINEERING: PART A, vol. 19, no. 3-4, 2013, pages 317 - 328, XP055308116 *
THIBAULT, R. A. ET AL.: "Scaffold/Extracellular Matrix Hybrid Constructs for Bone- Tissue Engineering", ADVANCED HEALTHCARE MATER, vol. 2, no. 1, 2013, pages 13 - 24, XP055308116 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107281554A (zh) * 2017-05-09 2017-10-24 西南交通大学 一种机械活化制备适合3d打印的磷酸钙基复合材料的方法
CN107281554B (zh) * 2017-05-09 2020-03-13 西南交通大学 一种机械活化制备适合3d打印的磷酸钙基复合材料的方法
CN110433334A (zh) * 2019-08-27 2019-11-12 扬州大学 3d打印气管c形支架与杂化型支架的制备方法
CN110433334B (zh) * 2019-08-27 2021-12-14 扬州大学 3d打印气管c形支架与杂化型支架的制备方法
EP4166112A4 (en) * 2021-08-27 2024-03-06 Nanobiosystem Co., Ltd. SCAFFOLD FOR BONE REGENERATION AND CONSTRUCTION METHOD THEREOF

Also Published As

Publication number Publication date
KR20160121726A (ko) 2016-10-20
KR101733662B1 (ko) 2017-05-10

Similar Documents

Publication Publication Date Title
Kim et al. Synergistic effects of beta tri‐calcium phosphate and porcine‐derived decellularized bone extracellular matrix in 3D‐printed polycaprolactone scaffold on bone regeneration
Wang et al. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits
Caterson et al. Three‐dimensional cartilage formation by bone marrow‐derived cells seeded in polylactide/alginate amalgam
Oliveira et al. An improved collagen scaffold for skeletal regeneration
Mandal et al. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds
Fu et al. In vivo evaluation of 13‐93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model
Tsigkou et al. Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements
US20030012805A1 (en) Implant for cartilage tissue regeneration
KR100920951B1 (ko) 미분화 인간 지방조직 유래 줄기세포를 포함하는 골 재생용복합 지지체
WO2016163612A1 (ko) 세포 외 기질이 코팅된 골 재생용 지지체
Huang et al. The use of fluorescence-labeled mesenchymal stem cells in poly (lactide-co-glycolide)/hydroxyapatite/collagen hybrid graft as a bone substitute for posterolateral spinal fusion
WO2015008877A1 (ko) 단일공정에 의한 이중층 스캐폴드의 제조방법 및 상기 제조방법에 의해 얻어진 이중층 스캐폴드를 이용한 조직 재생방법
WO2010036009A2 (ko) 유도 조직 재생을 위한 다공성 지지체 및 그의 제조방법
KR101098073B1 (ko) 이식용 연골세포의 제법
Dong et al. Application of low-pressure system to sustain in vivo bone formation in osteoblast/porous hydroxyapatite composite
Liu et al. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo
Turhani et al. Analysis of cell-seeded 3-dimensional bone constructs manufactured in vitro with hydroxyapatite granules obtained from red algae
Bi et al. Bone mesenchymal stem cells contribute to ligament regeneration and graft–bone healing after anterior cruciate ligament reconstruction with silk–collagen scaffold
KR101851019B1 (ko) 양성 연골종양세포를 이용하여 제조한 연골기질 및 이의 제조방법
WO2021040249A1 (ko) 유공충 유래의 골 이식재
KR20130033826A (ko) 치과용 차폐막
US20220340867A1 (en) Method for fabrication of extracellular matrix-induced self-assembly and fabrication of artificial tissue using same
WO2022055355A1 (en) Engineered devitalized cartilaginous tissue for bone regeneration
KR20160121727A (ko) 골 유래 세포 외 기질이 코팅된 골 재생용 지지체
WO2020116954A2 (ko) 중공형 케이지를 포함하는 생체적합 구조체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888597

Country of ref document: EP

Kind code of ref document: A1