WO2016161962A1 - 一种信道信息反馈方法及装置 - Google Patents

一种信道信息反馈方法及装置 Download PDF

Info

Publication number
WO2016161962A1
WO2016161962A1 PCT/CN2016/078799 CN2016078799W WO2016161962A1 WO 2016161962 A1 WO2016161962 A1 WO 2016161962A1 CN 2016078799 W CN2016078799 W CN 2016078799W WO 2016161962 A1 WO2016161962 A1 WO 2016161962A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
vertical dimension
matrix set
base station
precoding
Prior art date
Application number
PCT/CN2016/078799
Other languages
English (en)
French (fr)
Inventor
王飞
童辉
王启星
侯雪颖
金婧
Original Assignee
***通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ***通信集团公司 filed Critical ***通信集团公司
Publication of WO2016161962A1 publication Critical patent/WO2016161962A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a channel information feedback method and apparatus.
  • the antennas of the base station are generally deployed in a horizontal arrangement, and the number is relatively small.
  • LTE Long Term Evolution
  • the number of base station antenna ports is now 1, 2, 4 or 8.
  • MIMO multiple-input multiple-output
  • a base station can use multiple antenna ports to perform data transmission with a user equipment (User Equipment, UE).
  • UE User Equipment
  • the base station needs to perform downlink data scheduling based on the downlink channel information fed back by the UE. Therefore, the UE needs to perform channel measurement and feed back downlink channel information, including channel indicator (RI) information and codebook index indication (Precoding Matrix Indicator, PMI) information and channel quality indicator (CQI) information; in order to feed back the PMI, the UE needs to know the codebook set including multiple available precoding matrices, and selects in the codebook set according to the result of the channel estimation. The best precoding matrix for system performance.
  • RI channel indicator
  • PMI Precoding Matrix Indicator
  • CQI channel quality indicator
  • the base station can inform the UE of the precoding matrix that can be used by indicating to the UE the number of antenna ports for MIMO transmission.
  • the antenna array will be enhanced from the current one-dimensional antenna array to the two-dimensional antenna array, and the number of antennas of the base station will increase sharply, for example, to 16, 32, 64, 128, or even more.
  • the MIMO based on one-dimensional antenna array evolves into a three-dimensional MIMO (3D-MIMO) method based on two-dimensional antenna array.
  • 3D-MIMO three-dimensional MIMO
  • the measurement and feedback of codebook and channel information in the traditional MIMO scheme will not meet the requirements of 3D-MIMO.
  • a mainstream design codebook is a codebook divided into horizontal and vertical codebook the codebook W H W V, and then synthesized by a Kronecker (Kronecher) calculates the product of the codebook Among them, the horizontal codebook can use the existing codebook based on the one-dimensional horizontal antenna array, but the vertical codebook cannot use the existing codebook.
  • the embodiments of the present disclosure provide a channel information feedback method and apparatus, which are used to solve the problem that the UE cannot obtain the available vertical codebook in the related art, and the downlink channel information cannot be fed back in 3D-MIMO.
  • An embodiment of the present disclosure provides a channel information feedback method, including:
  • the base station sends the configuration information to the UE, where the UE performs downlink channel information feedback based on the configuration information.
  • the determining, by the base station, configuration information of a precoding matrix set of the UE in a vertical dimension including:
  • the base station determines an angular range of a signal direction of the UE in a vertical dimension
  • the base station determines configuration information of the precoding matrix set of the UE in a vertical dimension based on the determined range of angles.
  • the base station determines an angular range of the signal direction of the UE in a vertical dimension, including:
  • the base station determines an angular range of the signal direction of the UE in a vertical dimension based on the determined uplink channel information.
  • the determining, by the base station, configuration information of a precoding matrix set of the UE in a vertical dimension including:
  • the base station determines configuration information of the same precoding matrix set in the vertical dimension for all UEs in the cell.
  • the method further includes:
  • the base station Receiving, by the base station, downlink channel information that is fed back by the UE, where the downlink channel information includes a codebook index indicating PMI of a vertical dimension;
  • the configuration information includes one or more of the following information:
  • the parameter information includes: an oversampling factor ⁇ related to a size range of a signal direction of the UE in a vertical dimension; and/or N v positive integers m, wherein each m value and a signal of the UE The angles have a corresponding relationship in the angle range of the vertical dimension, and each m value is used to determine one precoding matrix in the precoding matrix set, and N v is the number of precoding matrices in the precoding matrix set.
  • the base station determines each precoding matrix in the precoding matrix set according to the following formula:
  • N v is the number of precoding matrices in the precoding matrix set
  • is the oversampling factor ⁇ related to the angular extent of the signal direction of the UE in the vertical dimension
  • m is a positive integer
  • 0 ⁇ m ⁇ ⁇ N v -1 different precoding matrices in the precoding matrix set correspond to different m.
  • the oversampling is due to Where ⁇ is the angular extent of the signal direction of the UE in the vertical dimension.
  • Another embodiment of the present disclosure provides a channel information feedback method, including:
  • the user equipment UE determines a precoding matrix set in a vertical dimension
  • the UE performs downlink channel information feedback based on the precoding matrix set.
  • the UE performs downlink channel information feedback based on the precoding matrix set, including:
  • the UE selects a precoding matrix of a vertical dimension in the precoding matrix set according to the result of performing channel estimation on the base station, and feeds back a codebook index indicating PMI corresponding to the precoding matrix.
  • the UE determines a precoding matrix set in a vertical dimension, including:
  • the UE determines a precoding matrix set in a vertical dimension based on the configuration information.
  • An embodiment of the present disclosure provides a channel information feedback apparatus, including:
  • a determining module configured to determine configuration information of a precoding matrix set of the user equipment UE in a vertical dimension
  • a sending module configured to send the configuration information to the UE, so that the UE performs downlink channel information feedback based on the configuration information.
  • Another embodiment of the present disclosure provides a channel information feedback apparatus, including:
  • a determining module for determining a set of precoding matrices in a vertical dimension
  • a sending module configured to perform downlink channel information feedback based on the precoding matrix set.
  • the base station may determine configuration information of the precoding matrix set of the user equipment UE in the vertical dimension, and send the configuration information to the UE, where the UE may determine a precoding matrix in a vertical dimension based on the configuration information.
  • Set that is, know the precoding matrix available in the vertical dimension, from Downstream channel information feedback in 3D-MIMO can be implemented.
  • FIG. 1 is a flowchart of a channel information feedback method according to some embodiments of the present disclosure
  • FIG. 2 is a flowchart of a channel information feedback method according to some embodiments of the present disclosure
  • FIG. 3 is a flowchart of a channel information feedback method according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of a UE transmitting an uplink signal
  • FIG. 5 is a flowchart of a channel information feedback method according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of a UE transmitting an uplink signal
  • FIG. 7 is a schematic structural diagram of a channel information feedback apparatus according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a channel information feedback apparatus according to some embodiments of the present disclosure.
  • the base station may determine configuration information of the precoding matrix set of the user equipment UE in the vertical dimension, and send the configuration information to the UE, where the UE may determine a precoding matrix in a vertical dimension based on the configuration information.
  • the set that is, the precoding matrix available in the vertical dimension, is known, so that downlink channel information feedback in 3D-MIMO can be implemented.
  • a flowchart of a channel information feedback method includes the following steps:
  • the base station determines configuration information of the precoding matrix set of the user equipment UE in the vertical dimension.
  • the base station sends the configuration information to the UE, where the UE performs downlink channel information feedback based on the configuration information.
  • the method further includes:
  • the base station Receiving, by the base station, downlink channel information that is fed back by the UE, where the downlink channel information includes a codebook index indicating PMI of a vertical dimension;
  • the base station is based on the PMI, and each precoding matrix in the set of precoding matrices Corresponding relationship of PMI, selecting a pre-coding matrix of a vertical dimension for precoding the signal transmitted to the UE.
  • the base station configures a precoding matrix set in the vertical dimension for the UE, and sends configuration information of the precoding matrix set of the vertical dimension to the UE.
  • the UE determines a precoding matrix that is available in the vertical dimension based on the configuration information, and selects a precoding matrix that optimizes system performance according to the result of the channel estimation, and feeds back the PMI of the selected vertical dimension precoding matrix to the downlink channel information.
  • the base station also feeds back the horizontal dimension PMI.
  • the base station may determine, according to the PMI of the vertical dimension fed back by the UE and the PMI of the horizontal dimension, the correspondence between the precoding matrix and the PMI of the pre-stored vertical dimension, and the correspondence between the precoding matrix of the horizontal dimension and the PMI, A precoding matrix of a vertical dimension and a precoding matrix of a horizontal dimension, based on the precoding matrix W V of the vertical dimension and the precoding matrix W H of the horizontal dimension, the composite precoding matrix is determined by Kronecher product A signal transmitted to the UE is precoded based on the synthesized precoding matrix.
  • the base station may determine configuration information of the precoding matrix set of the UE in a vertical dimension for a specific UE, and may also determine configuration information of a precoding matrix set of all UEs in a vertical dimension in the small cell for the entire cell. That is, the base station determines configuration information of the precoding matrix set of the UE in the vertical dimension, including:
  • the base station determines configuration information of the same precoding matrix set in the vertical dimension for all UEs in the cell.
  • the configuration information determined by the different UEs in the cell may be the same or different. If the base station uniformly determines the configuration information for all UEs in the cell, All UEs in the cell use the same configuration information. The configuration information used by UEs in different cells may be the same or different.
  • the base station separately determines the configuration information for each UE in the cell, if different UEs in the same cell feed back the same vertical dimension
  • the PMI of the PMI the precoding matrix indicated by the PMI may be the same or different; if the base station uniformly determines the configuration information for all the UEs in the cell, if the different UEs in the same cell feed back the PMI of the same vertical dimension, the PMI
  • the indicated precoding matrices are the same precoding matrix.
  • the precoding matrices indicated by the PMIs of the same vertical dimension fed back by the UEs of different cells may be the same or different.
  • the determining, by the base station, configuration information of a precoding matrix set of the UE in a vertical dimension including:
  • the base station determines an angular range of a signal direction of the UE in a vertical dimension
  • the base station determines configuration information of the precoding matrix set of the UE in a vertical dimension based on the determined range of angles.
  • the base station and the UE may use a (Discrete Fourier Transform (DFT) codebook or other codebook based on the DFT codebook (such as a linear combination of multiple DFT codebooks) as a vertical dimension in 3D-MIMO.
  • DFT Discrete Fourier Transform
  • codebook based on the DFT codebook (such as a linear combination of multiple DFT codebooks) as a vertical dimension in 3D-MIMO.
  • Codebook Since the distribution of the UE in the vertical dimension is generally limited to a certain range of angles instead of 360 degrees, when determining the configuration information of the precoding matrix set of the vertical dimension for the UE, it is necessary to consider the signal direction of the UE in the vertical dimension. The range of angles.
  • the base station determines an angular range of the signal direction of the UE in a vertical dimension, including:
  • the base station determines an angular range of the signal direction of the UE in a vertical dimension based on the determined uplink channel information.
  • the UE sends an uplink SRS
  • the base station uses the SRS to estimate the uplink channel information of the UE, and uses the uplink channel information to determine the distribution of the angle at which the UE sends the uplink signal.
  • the oversampling factor of the modified DFT codebook style may be first determined based on the range of angles, where Where ⁇ is an angular range of the signal direction of the UE in the vertical dimension; when the base station specifically determines the configuration information for the specific UE, ⁇ is an angular range of the signal transmitted by the UE, when the base station determines the configuration information for the entire cell , ⁇ is the total angular range in which signals are transmitted by all UEs in the cell.
  • the oversampling factor to be determined, the number of antennas in the vertical dimension of the base station The number of precoding matrices N v in the precoding matrix set and the positive integer m (0 ⁇ m ⁇ ⁇ N v -1) corresponding to the precoding matrix are substituted into the following formula:
  • m has a value of N v , corresponding to a precoding matrix of N v vertical dimensions.
  • the UE sent by the base station may include one or more of the following information in the configuration information of the precoding matrix set of the vertical dimension:
  • the parameter information includes: an oversampling factor ⁇ related to a size range of a signal direction of the UE in a vertical dimension; and/or N v positive integers m, wherein each m value and a signal of the UE The angles have a corresponding relationship in the angle range of the vertical dimension, and each m value is used to determine one precoding matrix in the precoding matrix set, and N v is the number of precoding matrices in the precoding matrix set.
  • the configuration information sent by the base station to the UE may include a precoding matrix set directly indicated to the UE, and may also include parameter information for determining the precoding matrix set, for example, the reference information may include an oversampling factor. And/or a set of m values including N v kinds of m values, where m is a positive integer in the interval [0, ⁇ N v -1], the value of which is related to the determined angle of the signal direction of the UE, for example, the UE When the signal direction is 0 degrees in the vertical dimension, the corresponding m value is 0.
  • the precoding matrix number N v and the like in the precoding matrix set may be indicated by the configuration information, or may be indicated by the base station to the UE by other information, or may be pre-agreed.
  • the base station since the UE needs to feed back the PMI of the vertical dimension to the base station, the base station needs to determine the precoding matrix of the vertical dimension based on the PMI. Therefore, the UE and the base station need to have the correspondence between the PMI of the vertical dimension and the precoding matrix.
  • the base station may indicate the corresponding relationship to the UE through the configuration information, or may not indicate to the UE, and the UE determines the PMI corresponding to the precoding matrix of the vertical dimension according to a pre-agreed manner, for example, the UE is based on being small to large. After the m values are sequentially determined for each precoding matrix, each precoding matrix is sequentially numbered from 0 to N v -1 in the order of the corresponding m values from small to large, that is, the PMI corresponding to each precoding matrix.
  • the above-mentioned channel information feedback method is further introduced by the UE side of the user equipment, and the specific implementation is not repeated here.
  • a flowchart of a channel information feedback method includes the following steps:
  • S201 The UE determines a precoding matrix set in a vertical dimension
  • S202 The UE performs downlink channel information feedback based on the precoding matrix set.
  • the UE performs downlink channel information feedback based on the precoding matrix set, including:
  • the UE selects a precoding matrix of a vertical dimension in the precoding matrix set according to the result of performing channel estimation on the base station, and feeds back a codebook index indicating PMI corresponding to the precoding matrix.
  • the UE selects a precoding matrix of a vertical dimension that optimizes system performance in a precoding matrix set according to the result of performing channel estimation on the base station, and feeds back the codebook index indicating PMI corresponding to the precoding matrix.
  • the UE determines a precoding matrix set in a vertical dimension, including:
  • the UE receives configuration information of a precoding matrix set of the UE in a vertical dimension sent by the base station; and determines a precoding matrix set in a vertical dimension based on the configuration information.
  • the precoding matrix set may be pre-agreed by the base station and the UE, or may be determined by the UE based on pre-agreed parameter information for determining a precoding matrix set.
  • the precoding matrix set may be sent by the base station to the UE by using configuration information.
  • the method before the receiving, by the UE, the configuration information sent by the base station, the method further includes:
  • the UE sends a sounding reference signal SRS for the base station to determine an angular range of the signal direction of the UE in a vertical dimension, and determines configuration information of the precoding matrix set of the UE in a vertical dimension based on the angular range.
  • the configuration information includes one or more of the following information:
  • the parameter information includes: an oversampling factor ⁇ related to a size range of a signal direction of the UE in a vertical dimension; and/or N v positive integers m, wherein each m value and a signal of the UE The angles have a corresponding relationship in the angle range of the vertical dimension, and each m value is used to determine one precoding matrix in the precoding matrix set, and N v is the number of precoding matrices in the precoding matrix set.
  • the UE determines a precoding matrix set in a vertical dimension, including:
  • the UE determines a precoding matrix set in a vertical dimension according to preset parameter information used to determine a precoding matrix set.
  • the UE determines each precoding matrix in the precoding matrix set according to the following formula:
  • N v is the number of precoding matrices in the precoding matrix set
  • is the oversampling factor ⁇ related to the angular extent of the signal direction of the UE in the vertical dimension
  • m is a positive integer
  • 0 ⁇ m ⁇ ⁇ N v -1 different precoding matrices in the precoding matrix set correspond to different m.
  • the oversampling factor Where ⁇ is the angular extent of the signal direction of the UE in the vertical dimension.
  • the base station separately determines configuration information for the precoding matrix set in the vertical dimension for each UE within the cell.
  • a flowchart of a channel information feedback method includes the following steps:
  • the base station determines, according to the sounding reference signal SRS sent by the UE, the uplink channel information of the UE, and determines, according to the determined uplink channel information, an angular range of the direction in which the UE sends the signal in a vertical dimension.
  • the base station configures the precoding matrix set of the UE in the vertical dimension according to the direction of the direction in which the UE sends the signal in the vertical dimension, and sends the configuration information of the precoding matrix set to the UE.
  • S303 The any UE determines a precoding matrix set in a vertical dimension based on the configuration information.
  • S304 The UE selects a precoding matrix of a vertical dimension in the determined precoding matrix set of the vertical dimension based on a result of performing channel estimation on the base station.
  • S305 The UE feeds back downlink channel information to the base station, where the codebook index corresponding to the selected precoding matrix of the vertical dimension indicates the PMI.
  • the base station selects, according to the PMI, a stored correspondence between a precoding matrix and a PMI of a vertical dimension of the UE, from the determined precoding matrix set, to perform a signal sent to the any UE.
  • the base station and the UE determine each precoding matrix in the precoding matrix set according to the following formula:
  • N v is the number of precoding matrices in the precoding matrix set
  • is the oversampling factor ⁇ related to the angular extent of the signal direction of the UE in the vertical dimension, Where ⁇ is the angular extent of the signal direction of the UE in the vertical dimension
  • m is a positive integer, and 0 ⁇ m ⁇ N v -1, and different precoding matrices in the precoding matrix set correspond to different m.
  • the UEs in the cell 1 covered by the base station 1 include UF1, UE2, and UE3, and the UEs in the cell 2 include UE4, UE5, and UE6, and the base station 1 determines the direction in which the signals sent by UF1, UE2, and UE3 are in the vertical dimension.
  • the angular range is [ ⁇ 1 L , ⁇ 1 H ] (angle range size is ⁇ 1 ), [ ⁇ 2 L , ⁇ 2 H ] (angle range size is ⁇ 2 ), and [ ⁇ 3 L , ⁇ 3 H ] (the angular range size is ⁇ 3 ); based on the obtained angular range, the base station 1 determines that the oversampling factors of the vertical dimension precoding matrices used by UF1, UE2, and UE3 are respectively Similarly, the oversampling factors of the precoding matrix of the vertical dimension used by the base station 2 to obtain the UE4, the UE5, and the UE6 are respectively
  • Base station 1 or base station 2 determines N v m values corresponding to N v vertical dimension precoding matrices for UEi (i ⁇ 1 ⁇ 6), here denoted mi:
  • ⁇ i is an oversampling factor corresponding to UEi.
  • the above ⁇ i , mi , and the number of antennas in the vertical dimension of the base station The above ⁇ i , mi , and the number of antennas in the vertical dimension of the base station
  • the number of precoding matrices N v in the precoding matrix set is substituted into the above precoding matrix for determining UEi
  • the formula is to get the UEi precoding matrix set.
  • the base station uniformly determines configuration information of the precoding matrix set in the vertical dimension for all UEs in the cell.
  • a flowchart of a channel information feedback method includes the following steps:
  • the base station determines, according to the sounding reference signal SRS sent by multiple UEs in the cell, uplink channel information of each UE, and determines, according to the determined uplink channel information of each UE, a total direction of the signal sent by multiple UEs in a vertical dimension. Angle range.
  • the base station may calculate, for all UEs currently accessing the base station, a total range of angles in which the directions of the signals transmitted by all the UEs are in the vertical dimension, or may select only a plurality of UEs, and calculate the selected multiple UEs to send signals.
  • the total angular extent of the direction in the vertical dimension may be calculated, for all UEs currently accessing the base station, a total range of angles in which the directions of the signals transmitted by all the UEs are in the vertical dimension, or may select only a plurality of UEs, and calculate the selected multiple UEs to send signals.
  • the total angular extent of the direction in the vertical dimension may be calculated, for all UEs currently accessing the base station, a total range of angles in which the directions of the signals transmitted by all the UEs are in the vertical dimension, or may select only a plurality of UEs, and calculate the selected multiple UEs to send signals. The total angular extent of the direction in the vertical dimension.
  • the base station determines, according to the determined total range of the range, a precoding matrix set of the UE in the vertical dimension in the cell, and sends configuration information of the precoding matrix set to the UE in the cell.
  • Any UE in the cell determines a precoding matrix set in a vertical dimension based on the configuration information.
  • the UE selects a precoding matrix of a vertical dimension in the determined precoding matrix set of the vertical dimension based on a result of performing channel estimation on the base station.
  • S505 The UE forwards the downlink channel information to the base station, where the codebook index corresponding to the selected precoding matrix of the vertical dimension indicates the PMI.
  • the base station selects, according to the PMI, a stored correspondence between a precoding matrix and a PMI of a vertical dimension of the entire cell, and selects, from the determined precoding matrix set, a signal sent to the any UE.
  • the base station and the UE determine each precoding matrix in the precoding matrix set according to the following formula:
  • N v is the number of precoding matrices in the precoding matrix set
  • is the oversampling factor ⁇ related to the angular extent of the signal direction of the UE in the vertical dimension, Where ⁇ is the angular extent of the signal direction of the UE in the vertical dimension
  • m is a positive integer, and 0 ⁇ m ⁇ N v -1, and different precoding matrices in the precoding matrix set correspond to different m.
  • the UEs in the cell 1 covered by the base station 1 include UF1, UE2, UE3, and UE4, and the UEs in the cell 2 include UE5, UE6, UE7, and UE8, and the base station 1 determines that UF1, UE2, UE3, and UE4 transmit
  • multiple direction angles of the signal sent by the UE may be detected, an angular range of the signal sent by the UE may be determined, and then a total range of angles including an angular range of signals transmitted by each UE in the cell may be determined.
  • the base station 1 determines that the oversampling factor of the vertical dimension precoding matrix used by all UEs in the cell 1 is Similarly, the base station 2 determines that the oversampling factor of the vertical dimension precoding matrix used by all UEs in the cell 2 is
  • the base station 1 determines N v m values corresponding to N v vertical dimensional precoding matrices for the UEs in the cell 1, here denoted as m1, m 1 ⁇ ⁇ 1 N v - M 1 , ⁇ 1 N v - M 1 +1,..., ⁇ 1 N v -1,0,1,2,...,N v -M 1 -1 ⁇ , ⁇ 1 is an oversampling factor corresponding to cell 1.
  • the base station 2 determines N v m values corresponding to N v vertical dimensional precoding matrices for the UEs in the cell 2, here denoted m2, m 2 ⁇ ⁇ 2 N v - M 2 , ⁇ 2 N v - M 2 +1,..., ⁇ 2 N v -1,0,1,2,...,N v -M 2 -1 ⁇ , ⁇ 2 is an oversampling factor corresponding to cell 2.
  • the number of antennas in the vertical dimension of ⁇ 1 , m1 and base station 1 described above The number of precoding matrices N v in the precoding matrix set is substituted into the above determined precoding matrix
  • the formula, that is, the precoding matrix set of the cell 1 is obtained; the number of antennas of the above ⁇ 2 , m 2 , and the base station 2 in the vertical dimension is obtained.
  • the number of precoding matrices N v in the precoding matrix set is substituted into the above determined precoding matrix
  • the formula, that is, the precoding matrix set of the cell 2 is obtained.
  • a channel information feedback device corresponding to the channel information feedback method is also provided in the embodiment of the present disclosure, and the channel information of the embodiment of the present disclosure is The feedback method is similar, so the implementation of the device can be referred to the implementation of the method, and the repeated description will not be repeated.
  • FIG. 7 is a schematic structural diagram of a channel information feedback apparatus according to some embodiments of the present disclosure, including:
  • a determining module 71 configured to determine configuration information of a precoding matrix set of the user equipment UE in a vertical dimension
  • the sending module 72 is configured to send the configuration information to the UE, so that the UE performs downlink channel information feedback based on the configuration information.
  • the determining module 71 is specifically configured to:
  • the determining module 71 is specifically configured to:
  • the determining module 71 is specifically configured to:
  • the configuration information of the same precoding matrix set in the vertical dimension is determined for all UEs in the cell.
  • the device further includes:
  • the receiving module 73 is configured to: after the transmitting module 72 sends the configuration information to the UE, receive downlink channel information that is fed back by the UE, where the downlink channel information includes a codebook index indication PMI of a vertical dimension;
  • a selecting module 74 configured to: according to the PMI, and a correspondence between each precoding matrix and the PMI in the precoding matrix set, select a vertical dimension used to precode the signal sent to the UE Precoding matrix.
  • the configuration information includes one or more of the following information:
  • the parameter information includes: an oversampling factor ⁇ related to a size range of a signal direction of the UE in a vertical dimension; and/or N v positive integers m, wherein each m value and a signal of the UE The angles have a corresponding relationship in the angle range of the vertical dimension, and each m value is used to determine one precoding matrix in the precoding matrix set, and N v is the number of precoding matrices in the precoding matrix set.
  • the determining module 71 is specifically configured to determine each precoding matrix in the precoding matrix set according to the following formula:
  • N v is the number of precoding matrices in the precoding matrix set
  • is the oversampling factor ⁇ related to the angular extent of the signal direction of the UE in the vertical dimension
  • m is a positive integer
  • 0 ⁇ m ⁇ ⁇ N v -1 different precoding matrices in the precoding matrix set correspond to different m.
  • the oversampling is due to Where ⁇ is the angular extent of the signal direction of the UE in the vertical dimension.
  • FIG. 8 is a schematic structural diagram of a channel information feedback apparatus according to some embodiments of the present disclosure, including:
  • a determining module 81 configured to determine a precoding matrix set in a vertical dimension
  • the sending module 82 is configured to perform downlink channel information feedback based on the precoding matrix set.
  • the sending module 82 is specifically configured to:
  • the determining module 81 is specifically configured to:
  • the sending module 82 is further configured to:
  • the configuration information includes one or more of the following information:
  • the parameter information includes: an oversampling factor ⁇ related to a size range of a signal direction of the UE in a vertical dimension; and/or N v positive integers m, wherein each m value and a signal of the UE The angles have a corresponding relationship in the angle range of the vertical dimension, and each m value is used to determine one precoding matrix in the precoding matrix set, and N v is the number of precoding matrices in the precoding matrix set.
  • the determining module 81 is specifically configured to:
  • the determining module 81 is specifically configured to determine each precoding matrix in the precoding matrix set according to the following formula:
  • N v is the number of precoding matrices in the precoding matrix set
  • is the oversampling factor ⁇ related to the angular extent of the signal direction of the UE in the vertical dimension
  • m is a positive integer
  • 0 ⁇ m ⁇ ⁇ N v -1 different precoding matrices in the precoding matrix set correspond to different m.
  • the oversampling factor Where ⁇ is the angular extent of the signal direction of the UE in the vertical dimension.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开揭露一种信道信息反馈方法及装置。所述信道信息反馈方法包括:基站确定UE在垂直维度的预编码矩阵集合的配置信息;向所述UE发送所述配置信息,用于所述UE基于所述配置信息进行下行信道信息反馈。UE可以基于该配置信息确定在垂直维度的预编码矩阵集合,也即获知在垂直维度可用的预编码矩阵,从而可以实现支持3D-MIMO中的下行信道信息反馈。

Description

一种信道信息反馈方法及装置
相关申请的交叉引用
本申请主张在2015年4月8日在中国提交的中国专利申请号No.201510164074.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种信道信息反馈方法及装置。
背景技术
在相关技术中的通信***中,基站的天线一般部署成水平排列方式,数量比较少,比如,在长期演进(Long Term Evolution,LTE)***中,基站天线端口数量现在为1、2、4或8。在多输入多输出(Multiple-Input Multiple-Output,MIMO)传输方式中,基站可以使用多个天线端口与用户设备(User Equipment,UE)之间进行数据传输。
基站需要基于UE反馈的下行信道信息进行下行数据调度,因此,UE需要进行信道测量,并反馈下行信道信息,其中包括信道轶指示(Rank Indicator,RI)信息、码本索引指示(Precoding Matrix Indicator,PMI)信息和信道质量指示(Channel Quality Indicator,CQI)信息;为了反馈PMI,UE需要获知包含多个可用的预编码矩阵的码本集合,并根据信道估计的结果,在码本集合中选择使***性能最好的预编码矩阵。
基于目前天线的水平排列方式,在天线端口数确定后,码本集合也就确定了。因此,基站可以通过向UE指示进行MIMO传输的天线端口数,来使UE获知具体可以使用的预编码矩阵。
随着天线技术的发展,天线阵列会由现在一维的天线阵列增强到二维的天线阵列,基站的天线数量也会因此而急剧增加,比如增加到16、32、64、128、甚至更多。基于一维天线阵列的MIMO演变为基于二维天线阵列的三维MIMO (3D-MIMO)方式,传统MIMO方案中的码本及信道信息的测量和反馈将无法满足3D-MIMO的需求。在3D-MIMO中,一种主流的码本设计方案是将码本分为水平码本WH和垂直码本WV,然后通过克罗内克(Kronecher)积来计算合成的码本
Figure PCTCN2016078799-appb-000001
其中,水平码本可以采用现有的基于一维水平天线阵列的码本,而垂直码本却无法采用现有的码本。
综上,由于UE无法获得可用的垂直码本,将无法在3D-MIMO中进行下行信道信息反馈。
发明内容
本公开实施例提供一种信道信息反馈方法及装置,用以解决相关技术中UE无法获得可用的垂直码本,将无法在3D-MIMO中进行下行信道信息反馈的问题。
本公开实施例提供一种信道信息反馈方法,包括:
基站确定用户设备UE在垂直维度的预编码矩阵集合的配置信息;
所述基站向所述UE发送所述配置信息,用于所述UE基于所述配置信息进行下行信道信息反馈。
可选地,所述基站确定UE在垂直维度的预编码矩阵集合的配置信息,包括:
所述基站确定UE的信号方向在垂直维度的角度范围;
所述基站基于确定的角度范围,确定所述UE在垂直维度的预编码矩阵集合的配置信息。
可选地,所述基站确定UE的信号方向在垂直维度的角度范围,包括:
所述基站基于所述UE发送的探测参考信号SRS,确定所述UE的上行信道信息;
所述基站基于确定的上行信道信息,确定所述UE的信号方向在垂直维度的角度范围。
可选地,所述基站确定UE在垂直维度的预编码矩阵集合的配置信息,包括:
所述基站针对本小区内任一UE,为该UE单独确定在垂直维度的预编码矩阵集合的配置信息;或者,
所述基站为本小区内的所有UE确定相同的在垂直维度的预编码矩阵集合的配置信息。
可选地,所述基站向所述UE发送所述配置信息之后,还包括:
所述基站接收所述UE反馈的下行信道信息,其中所述下行信道信息包括垂直维度的码本索引指示PMI;
所述基站基于所述PMI,以及所述预编码矩阵集合中的每个预编码矩阵与PMI的对应关系,选择用于对发送给所述UE的信号进行预编码的垂直维度的预编码矩阵。
可选地,所述配置信息包括以下信息中的一种或多种:
预编码矩阵集合;
用于确定预编码矩阵集合的参数信息;
指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
可选地,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
可选地,所述基站根据以下公式确定预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000002
Figure PCTCN2016078799-appb-000003
其中,
Figure PCTCN2016078799-appb-000004
为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编 码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
可选地,所述过采样因了
Figure PCTCN2016078799-appb-000005
其中,Δθ为UE的信号方向在垂直维度的角度范围大小。
本公开另一实施例提供一种信道信息反馈方法,包括:
用户设备UE确定在垂直维度的预编码矩阵集合;
所述UE基于所述预编码矩阵集合,进行下行信道信息反馈。
可选地,所述UE基于所述预编码矩阵集合,进行下行信道信息反馈,包括:
所述UE根据对基站进行信道估计的结果,在所述预编码矩阵集合中选择垂直维度的预编码矩阵,并反馈该预编码矩阵对应的码本索引指示PMI。
可选地,所述UE确定在垂直维度的预编码矩阵集合,包括:
所述UE接收基站发送的该UE在垂直维度的预编码矩阵集合的配置信息;
所述UE基于所述配置信息,确定在垂直维度的预编码矩阵集合。
本公开实施例提供一种信道信息反馈装置,包括:
确定模块,用于确定用户设备UE在垂直维度的预编码矩阵集合的配置信息;
发送模块,用于向所述UE发送所述配置信息,以使所述UE基于所述配置信息进行下行信道信息反馈。
本公开另一实施例提供一种信道信息反馈装置,包括:
确定模块,用于确定在垂直维度的预编码矩阵集合;
发送模块,用于基于所述预编码矩阵集合,进行下行信道信息反馈。
本公开实施例中,基站可以确定用户设备UE在垂直维度的预编码矩阵集合的配置信息,并向所述UE发送所述配置信息,UE可以基于所述配置信息确定在垂直维度的预编码矩阵集合,也即获知在垂直维度可用的预编码矩阵,从 而可以实现支持3D-MIMO中的下行信道信息反馈。
附图说明
图1为本公开一些实施例提供的信道信息反馈方法流程图;
图2为本公开一些实施例提供的信道信息反馈方法流程图;
图3为本公开一些实施例提供的信道信息反馈方法流程图;
图4为UE发送上行信号示意图;
图5为本公开一些实施例提供的信道信息反馈方法流程图;
图6为UE发送上行信号示意图;
图7为本公开一些实施例提供的信道信息反馈装置结构示意图;
图8为本公开一些实施例提供的信道信息反馈装置结构示意图。
具体实施方式
本公开实施例中,基站可以确定用户设备UE在垂直维度的预编码矩阵集合的配置信息,并向所述UE发送所述配置信息,UE可以基于所述配置信息确定在垂直维度的预编码矩阵集合,也即获知在垂直维度可用的预编码矩阵,从而可以实现支持3D-MIMO中的下行信道信息反馈。
下面结合说明书附图对本公开实施例作进一步详细描述。
如图1所示,为本公开一些实施例提供的信道信息反馈方法流程图,包括以下步骤:
S101:基站确定用户设备UE在垂直维度的预编码矩阵集合的配置信息。
S102:基站向所述UE发送所述配置信息,用于所述UE基于所述配置信息进行下行信道信息反馈。
可选地,所述基站向所述UE发送所述配置信息之后,还包括:
所述基站接收所述UE反馈的下行信道信息,其中所述下行信道信息包括垂直维度的码本索引指示PMI;
所述基站基于所述PMI,以及所述预编码矩阵集合中的每个预编码矩阵与 PMI的对应关系,选择用于对发送给所述UE的信号进行预编码的垂直维度的预编码矩阵。
本公开实施例中,基站为UE配置在垂直维度的预编码矩阵集合,并将该垂直维度的预编码矩阵集合的配置信息发送给UE。UE基于该配置信息确定在垂直维度可用的预编码矩阵,并根据信道估计的结果从中选择使***性能最优的预编码矩阵,将选择的垂直维度的预编码矩阵的PMI通过下行信道信息反馈给基站,同时反馈的还有水平维度的PMI。基站可以基于UE反馈的垂直维度的PMI和水平维度的PMI,以及预先存储的垂直维度的预编码矩阵与PMI的对应关系,和水平维度的预编码矩阵与PMI的对应关系,确定UE所采用的垂直维度的预编码矩阵和水平维度的预编码矩阵,基于该垂直维度的预编码矩阵WV和水平维度的预编码矩阵WH,采用克罗内克(Kronecher)乘积确定合成的预编码矩阵
Figure PCTCN2016078799-appb-000006
基于该合成的预编码矩阵对发送给所述UE的信号进行预编码。
在具体实施中,基站可以针对特定UE确定该UE在垂直维度的预编码矩阵集合的配置信息,也可以针对整个小区确定小内所有UE在垂直维度的预编码矩阵集合的配置信息。也即,基站确定UE在垂直维度的预编码矩阵集合的配置信息,包括:
所述基站针对本小区内任一UE,为该UE单独确定在垂直维度的预编码矩阵集合的配置信息;或者,
所述基站为本小区内的所有UE确定相同的在垂直维度的预编码矩阵集合的配置信息。
在上述方式中,若基站针对小区内每个UE单独确定所述配置信息,则为小区内不同UE确定的配置信息可以相同,也可以不同,若基站针对小区内所有UE统一确定配置信息,则小区内所有UE采用相同的配置信息。不同小区内的UE所采用的配置信息可以相同、也可以不同。相应地,若基站针对小区内每个UE单独确定所述配置信息,则若同一小区内不同UE反馈了相同的垂直维 度的PMI,该PMI所指示的预编码矩阵可以相同,也可以不同;若基站针对小区内所有UE统一确定配置信息,则若同一小区内不同UE反馈了相同的垂直维度的PMI,该PMI所指示的预编码矩阵为同一预编码矩阵。而不同小区的UE所反馈的相同的垂直维度的PMI所指示的预编码矩阵可能相同,也可能不同。
可选地,所述基站确定UE在垂直维度的预编码矩阵集合的配置信息,包括:
所述基站确定UE的信号方向在垂直维度的角度范围;
所述基站基于确定的角度范围,确定所述UE在垂直维度的预编码矩阵集合的配置信息。
在具体实施过程中,基站和UE可以采用(Discrete Fourier Transform,DFT)码本或者以DFT码本为基础的其它码本(比如多个DFT码本的线性组合)作为3D-MIMO中的垂直维码本。由于UE在垂直维的分布一般局限在一定的角度范围内,而不是360度范围内,因此,在为UE确定垂直维度的预编码矩阵集合的配置信息时,需考虑UE的信号方向在垂直维度的角度范围。
进一步地,所述基站确定UE的信号方向在垂直维度的角度范围,包括:
所述基站基于所述UE发送的探测参考信号(Sounding Reference Signal,SRS),确定所述UE的上行信道信息;
所述基站基于确定的上行信道信息,确定所述UE的信号方向在垂直维度的角度范围。
在具体实施中,UE发送上行SRS,基站利用SRS估计UE的上行信道信息,并利用上行信道信息确定UE发送上行信号的角度的分布情况。
在确定UE的信号方向在垂直维度的角度范围后,可以首先基于该角度范围,确定修正DFT码本样式的过采样因子,这里,
Figure PCTCN2016078799-appb-000007
其中,Δθ为UE的信号方向在垂直维度的角度范围大小;当基站专门针对特定UE确定所述配置信息时,Δθ为该UE发送信号的角度范围,当基站针对整个小区确定所述配置信息时,Δθ为该小区内所有UE发送信号的总的角度范围。
将确定的过采样因子、基站在垂直维度的天线个数
Figure PCTCN2016078799-appb-000008
预编码矩阵集合中的预编码矩阵个数Nv、以及与预编码矩阵对应的正整数m(0≤m≤βNv-1)代入以下公式:
Figure PCTCN2016078799-appb-000009
即可得到预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000010
这里,m有Nv种取值,对应于Nv个垂直维度的预编码矩阵。
可选地,基站所发送的UE在垂直维度的预编码矩阵集合的配置信息中,可以包括以下信息中的一种或多种:
预编码矩阵集合;
用于确定预编码矩阵集合的参数信息;
指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
可选地,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
在具体实施过程中,基站发送给UE的配置信息中,可以包括直接指示给UE的预编码矩阵集合,也可以包括用于确定该预编码矩阵集合的参数信息,比如参考信息可以包括过采样因子和/或包括Nv种m值的m值集合,这里的m为区间[0,βNv-1]中的正整数,其取值与确定的UE的信号方向的角度有关,比如,UE的信号方向在垂直维度的角度为0度时,对应m值为0。其它参数信息,如基站在垂直维度的天线个数
Figure PCTCN2016078799-appb-000011
预编码矩阵集合中的预编码矩阵个数Nv等,可以是通过所述配置信息指示的,也可以是基站通过其它信息指示给UE的,也可以是预先约定的。
除此之外,由于UE需要向基站反馈垂直维度的PMI,基站需要基于该PMI确定垂直维度的预编码矩阵,因此,UE和基站需要对垂直维度的PMI和预编码矩阵的对应关系有着一致的理解。基站可以将该对应关系通过所述配置信息指示给UE,也可以不指示给UE,UE根据预先约定的方式来确定垂直维度的预编码矩阵所对应的PMI,比如,UE在基于从小到大的m值依次确定出各个预编码矩阵后,将各个预编码矩阵按照对应的m值从小到大的顺序依次编号为0~Nv-1,即为各个预编码矩阵所对应的PMI。
下面通过用户设备UE侧进一步介绍上述信道信息反馈方法,具体实施与上述实施例重复之处,不再赘述。
如图2所示,为本公开一些实施例提供的信道信息反馈方法流程图,包括以下步骤:
S201:UE确定在垂直维度的预编码矩阵集合;
S202:UE基于所述预编码矩阵集合,进行下行信道信息反馈。
可选地,所述UE基于所述预编码矩阵集合,进行下行信道信息反馈,包括:
所述UE根据对基站进行信道估计的结果,在所述预编码矩阵集合中选择垂直维度的预编码矩阵,并反馈该预编码矩阵对应的码本索引指示PMI。
在具体实施中,UE根据对基站进行信道估计的结果,在预编码矩阵集合中选择使***性能最优的垂直维度的预编码矩阵,并反馈该预编码矩阵对应的码本索引指示PMI。
可选地,所述UE确定在垂直维度的预编码矩阵集合,包括:
所述UE确定存储的预设的在垂直维度的预编码矩阵集合;或者,
所述UE根据预设的用于确定预编码矩阵集合的参数信息,确定在垂直维度的预编码矩阵集合;或者,
所述UE接收基站发送的该UE在垂直维度的预编码矩阵集合的配置信息;基于所述配置信息,确定在垂直维度的预编码矩阵集合。
在具体实施中,预编码矩阵集合可以是基站与UE预先约定的,也可以是UE基于预先约定的用于确定预编码矩阵集合的参数信息确定的。优选地,该预编码矩阵集合可以是基站通过配置信息发送给UE的。
可选地,所述UE接收所述基站发送的所述配置信息之前,还包括:
所述UE发送探测参考信号SRS,用于所述基站确定UE的信号方向在垂直维度的角度范围,并基于该角度范围确定所述UE在垂直维度的预编码矩阵集合的配置信息。
可选地,所述配置信息中包括以下信息中的一种或多种:
预编码矩阵集合;
用于确定预编码矩阵集合的参数信息;
指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
可选地,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
可选地,所述UE确定在垂直维度的预编码矩阵集合,包括:
所述UE确定存储的预设的在垂直维度的预编码矩阵集合;或者,
所述UE根据预设的用于确定预编码矩阵集合的参数信息,确定在垂直维度的预编码矩阵集合。
可选地,所述UE根据以下公式确定预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000012
Figure PCTCN2016078799-appb-000013
其中,
Figure PCTCN2016078799-appb-000014
为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因 子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
可选地,所述过采样因子
Figure PCTCN2016078799-appb-000015
其中,Δθ为UE的信号方向在垂直维度的角度范围大小。
下面通过两个具体的实施例对本公开进行信道信息反馈的方法作进一步说明。
本公开一些实施例中,基站为小区内的每个UE单独确定在垂直维度的预编码矩阵集合的配置信息。
如图3所示,为本公开一些实施例提供的信道信息反馈方法流程图,包括以下步骤:
S301:针对小区内任一UE,基站基于该UE发送的探测参考信号SRS,确定该UE的上行信道信息,基于确定的上行信道信息,确定UE发送信号的方向在垂直维度的角度范围。
S302:基站基于该UE发送信号的方向在垂直维度的角度范围,配置该UE在垂直维度的预编码矩阵集合,并将该预编码矩阵集合的配置信息发送给UE。
S303:所述任一UE基于所述配置信息,确定在垂直维度的预编码矩阵集合。
S304:该UE基于对所述基站进行信道估计的结果,在确定的垂直维度的预编码矩阵集合中选择垂直维度的预编码矩阵。
S305:该UE向基站反馈下行信道信息,其中包含选择的该垂直维度的预编码矩阵对应的码本索引指示PMI。
S306:基站基于所述PMI,以及存储的针对该UE的垂直维度的预编码矩阵与PMI的对应关系,从确定的预编码矩阵集合中,选择用于对发送给所述任一UE的信号进行预编码的垂直维度的预编码矩阵。
在具体实施中,基站和UE根据以下公式确定预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000016
Figure PCTCN2016078799-appb-000017
其中,
Figure PCTCN2016078799-appb-000018
为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β,
Figure PCTCN2016078799-appb-000019
其中,Δθ为UE的信号方向在垂直维度的角度范围大小;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
如图4所示,基站1覆盖下的小区1中的UE包括UF1、UE2和UE3,小区2中的UE包括UE4、UE5和UE6,基站1确定UF1、UE2和UE3发送信号的方向在垂直维度的角度范围分别为[θ1 L,θ1 H](角度范围大小为Δθ1)、[θ2 L,θ2 H](角度范围大小为Δθ2)、和[θ3 L,θ3 H](角度范围大小为Δθ3);基站1基于得到的角度范围,确定UF1、UE2、UE3使用的垂直维度的预编码矩阵的过采样因子分别为
Figure PCTCN2016078799-appb-000020
同理,基站2得到UE4、UE5、UE6使用的垂直维度的预编码矩阵的过采样因子分别为
Figure PCTCN2016078799-appb-000021
基站1或基站2为UEi(i∈1~6)确定对应于Nv个垂直维预编码矩阵的Nv个m值,这里表示为mi:
mi∈{βiNv-Mi,βiNv-Mi+1,...,βiNv-1,0,1,2,...,Nv-Mi-1},βi为对应UEi的过采样因子。
将上述βi、mi、及基站在垂直维度的天线个数
Figure PCTCN2016078799-appb-000022
预编码矩阵集合中的预编码矩阵个数Nv代入上述确定UEi的预编码矩阵
Figure PCTCN2016078799-appb-000023
的公式,即得到UEi的预编码矩阵集合。
本公开一些实施例中,基站为小区内的所有UE统一确定在垂直维度的预编码矩阵集合的配置信息。
如图5所示,为本公开一些实施例提供的信道信息反馈方法流程图,包括以下步骤:
S501:基站基于小区内多个UE发送的探测参考信号SRS,确定每个UE的上行信道信息,基于确定的每个UE的上行信道信息,确定多个UE发送信号的方向在垂直维度的总的角度范围。
这里,基站可以针对当前接入该基站的所有UE,计算这所有UE发送信号的方向在垂直维度的总的角度范围,也可以只选择其中的多个UE,计算选择的多个UE发送信号的方向在垂直维度的总的角度范围。
S502:基站基于确定的所述总的角度范围,确定小区内的UE在垂直维度的预编码矩阵集合,并将该预编码矩阵集合的配置信息发送给小区内的UE。
S503:小区内任一UE基于所述配置信息,确定在垂直维度的预编码矩阵集合。
S504:该任一UE基于对所述基站进行信道估计的结果,在确定的垂直维度的预编码矩阵集合中选择垂直维度的预编码矩阵。
S505:该任一UE向基站反馈下行信道信息,其中包含选择的该垂直维度的预编码矩阵对应的码本索引指示PMI。
S506:基站基于所述PMI,以及存储的针对整个小区的垂直维度的预编码矩阵与PMI的对应关系,从确定的预编码矩阵集合中,选择用于对发送给所述任一UE的信号进行预编码的垂直维度的预编码矩阵。
在具体实施中,基站和UE根据以下公式确定预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000024
Figure PCTCN2016078799-appb-000025
其中,
Figure PCTCN2016078799-appb-000026
为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β,
Figure PCTCN2016078799-appb-000027
其中,Δθ为UE的信号方向在垂直维度的角度范围大小;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
如图6所示,基站1覆盖下的小区1中的UE包括UF1、UE2、UE3和UE4,小区2中的UE包括UE5、UE6、UE7和UE8,基站1确定UF1、UE2、UE3和UE4发送信号的方向角(相比参考方向)分别为θ1、θ2、θ3和θ4,则基站1确定小区1中的UE发送信号的角度范围Δθ1=|θ14|,这里,考虑误差的存在,可以将Δθ1适当调大;同理,基站2确定UE5、UE6、UE7和UE8发送信号的方向角(相比参考方向)分别为θ5、θ6、θ7和θ8,则基站2确定小区2中的UE发送信号的角度范围Δθ2=|θ58|,这里,考虑误差的存在,可以将Δθ2适当调大。在具体实施中,可以针对同一UE,探测该UE发送信号的多个方向角,确定该UE发送信号的角度范围,再确定包含小区内各个UE发送信号的角度范围的总的角度范围。
基于得到的角度范围,基站1确定小区1内所有UE使用的垂直维度的预编码矩阵的过采样因子为
Figure PCTCN2016078799-appb-000028
同理,基站2确定小区2内所有UE使用的垂直维度的预编码矩阵的过采样因子为
Figure PCTCN2016078799-appb-000029
基站1为小区1内的UE确定对应于Nv个垂直维预编码矩阵的Nv个m值,这里表示为m1,m1∈{β1Nv-M1,β1Nv-M1+1,...,β1Nv-1,0,1,2,...,Nv-M1-1},β1为对应小区1的过采样因子。基站2为小区2内的UE确定对应于Nv个垂直维预编码矩阵的Nv个m值,这里表示为m2,m2∈{β2Nv-M2,β2Nv-M2+1,...,β2Nv-1,0,1,2,...,Nv-M2-1},β2为对应小区2的过采样因子。
将上述β1、m1、及基站1在垂直维度的天线个数
Figure PCTCN2016078799-appb-000030
预编码矩阵集合中的预编码矩阵个数Nv代入上述确定预编码矩阵
Figure PCTCN2016078799-appb-000031
的公式,即得到小区1的预编码矩阵集合;将上述β2、m2、及基站2在垂直维度的天线个数
Figure PCTCN2016078799-appb-000032
预编码矩阵集合中的预编码矩阵个数Nv代入上述确定预编码矩阵
Figure PCTCN2016078799-appb-000033
的公式,即得到小区2的预编码矩阵集合。
基于同一公开构思,本公开实施例中还提供了一种与信道信息反馈方法对应的信道信息反馈装置,由于该装置解决问题的原理与本公开实施例信道信息 反馈方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
如图7所示,为本公开一些实施例提供的信道信息反馈装置结构示意图,包括:
确定模块71,用于确定用户设备UE在垂直维度的预编码矩阵集合的配置信息;
发送模块72,用于向所述UE发送所述配置信息,以使所述UE基于所述配置信息进行下行信道信息反馈。
可选地,所述确定模块71具体用于:
确定UE的信号方向在垂直维度的角度范围,基于确定的角度范围,确定所述UE在垂直维度的预编码矩阵集合的配置信息。
可选地,所述确定模块71具体用于:
基于所述UE发送的探测参考信号SRS,确定所述UE的上行信道信息;基于确定的上行信道信息,确定所述UE的信号方向在垂直维度的角度范围。
可选地,所述确定模块71具体用于:
针对本小区内任一UE,为该UE单独确定在垂直维度的预编码矩阵集合的配置信息;或者,
为本小区内的所有UE确定相同的在垂直维度的预编码矩阵集合的配置信息。
可选地,所述装置还包括:
接收模块73,用于在所述发送模块72向所述UE发送所述配置信息之后,接收所述UE反馈的下行信道信息,其中所述下行信道信息包括垂直维度的码本索引指示PMI;
选择模块74,用于基站基于所述PMI,以及所述预编码矩阵集合中的每个预编码矩阵与PMI的对应关系,选择用于对发送给所述UE的信号进行预编码的垂直维度的预编码矩阵。
可选地,所述配置信息包括以下信息中的一种或多种:
预编码矩阵集合;
用于确定预编码矩阵集合的参数信息;
指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
可选地,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
可选地,所述确定模块71具体用于根据以下公式确定预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000034
Figure PCTCN2016078799-appb-000035
其中,
Figure PCTCN2016078799-appb-000036
为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
可选地,所述过采样因了
Figure PCTCN2016078799-appb-000037
其中,Δθ为UE的信号方向在垂直维度的角度范围大小。
如图8所示,为本公开一些实施例提供的信道信息反馈装置结构示意图,包括:
确定模块81,用于确定在垂直维度的预编码矩阵集合;
发送模块82,用于基于所述预编码矩阵集合,进行下行信道信息反馈。
可选地,所述发送模块82具体用于:
根据对基站进行信道估计的结果,在所述预编码矩阵集合中选择垂直维度的预编码矩阵,并反馈该预编码矩阵对应的码本索引指示PMI。
可选地,所述确定模块81具体用于:
接收基站发送的该UE在垂直维度的预编码矩阵集合的配置信息;基于所述配置信息,确定在垂直维度的预编码矩阵集合。
可选地,所述发送模块82还用于:
发送探测参考信号SRS,用于所述基站确定UE的信号方向在垂直维度的角度范围,并基于该角度范围确定所述UE在垂直维度的预编码矩阵集合的配置信息。
可选地,所述配置信息中包括以下信息中的一种或多种:
预编码矩阵集合;
用于确定预编码矩阵集合的参数信息;
指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
可选地,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
可选地,所述确定模块81具体用于:
确定存储的预设的在垂直维度的预编码矩阵集合;或者,根据预设的用于确定预编码矩阵集合的参数信息,确定在垂直维度的预编码矩阵集合。
可选地,所述确定模块81具体用于根据以下公式确定预编码矩阵集合中的每个预编码矩阵
Figure PCTCN2016078799-appb-000038
Figure PCTCN2016078799-appb-000039
其中,
Figure PCTCN2016078799-appb-000040
为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
可选地,所述过采样因子
Figure PCTCN2016078799-appb-000041
其中,Δθ为UE的信号方向在垂直维度的角度范围大小。
本领域内的技术人员应明白,本公开的实施例可提供为方法、***、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、装置(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公 开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (31)

  1. 一种信道信息反馈方法,包括:
    基站确定用户设备(UE)在垂直维度的预编码矩阵集合的配置信息;
    所述基站向所述UE发送所述配置信息,用于所述UE基于所述配置信息进行下行信道信息反馈。
  2. 如权利要求1所述的方法,其中,所述基站确定UE在垂直维度的预编码矩阵集合的配置信息的步骤包括:
    所述基站确定UE的信号方向在垂直维度的角度范围;
    所述基站基于确定的角度范围,确定所述UE在垂直维度的预编码矩阵集合的配置信息。
  3. 如权利要求2所述的方法,其中,所述基站确定UE的信号方向在垂直维度的角度范围的步骤包括:
    所述基站基于所述UE发送的探测参考信号(SRS),确定所述UE的上行信道信息;
    所述基站基于确定的上行信道信息,确定所述UE的信号方向在垂直维度的角度范围。
  4. 如权利要求1至3任一所述的方法其中,所述基站确定UE在垂直维度的预编码矩阵集合的配置信息的步骤包括:
    所述基站针对本小区内任一UE,为该UE单独确定在垂直维度的预编码矩阵集合的配置信息;或者,
    所述基站为本小区内的所有UE确定相同的在垂直维度的预编码矩阵集合的配置信息。
  5. 如权利要求1所述的方法,其中,在所述基站向所述UE发送所述配置信息之后,所述方法还包括:
    所述基站接收所述UE反馈的下行信道信息,其中所述下行信道信息包括 垂直维度的码本索引指示(PMI);
    所述基站基于所述PMI,以及所述预编码矩阵集合中的每个预编码矩阵与PMI的对应关系,选择用于对发送给所述UE的信号进行预编码的垂直维度的预编码矩阵。
  6. 如权利要求1所述的方法,其中,所述配置信息包括以下信息中的一种或多种:
    预编码矩阵集合;
    用于确定预编码矩阵集合的参数信息;以及
    指示预编码矩阵集合中每个预编码矩阵与码本索引指示(PMI)的对应关系的信息。
  7. 如权利要求6所述的方法,其中,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
  8. 如权利要求1所述的方法,其中,所述基站根据以下公式确定预编码矩阵集合中的每个预编码矩阵
    Figure PCTCN2016078799-appb-100001
    Figure PCTCN2016078799-appb-100002
    其中,
    Figure PCTCN2016078799-appb-100003
    为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
  9. 如权利要求7或8所述的方法,其中,所述过采样因子
    Figure PCTCN2016078799-appb-100004
    Δθ为UE的信号方向在垂直维度的角度范围大小。
  10. 一种信道信息反馈方法,包括:
    用户设备(UE)确定在垂直维度的预编码矩阵集合;
    所述UE基于所述预编码矩阵集合,进行下行信道信息反馈。
  11. 如权利要求10所述的方法,其中,所述UE基于所述预编码矩阵集合,进行下行信道信息反馈的步骤包括:
    所述UE根据对基站进行信道估计的结果,在所述预编码矩阵集合中选择垂直维度的预编码矩阵,并反馈该预编码矩阵对应的码本索引指示(PMI)。
  12. 如权利要求10所述的方法,其中,所述UE确定在垂直维度的预编码矩阵集合的步骤包括:
    所述UE接收基站发送的该UE在垂直维度的预编码矩阵集合的配置信息;
    所述UE基于所述配置信息,确定在垂直维度的预编码矩阵集合。
  13. 如权利要求12所述的方法,其中,在所述UE接收所述基站发送的所述配置信息之前,所述方法还包括:
    所述UE发送探测参考信号(SRS),用于所述基站确定UE的信号方向在垂直维度的角度范围,并基于该角度范围确定所述UE在垂直维度的预编码矩阵集合的配置信息。
  14. 如权利要求12所述的方法,其中,所述配置信息中包括以下信息中的一种或多种:
    预编码矩阵集合;
    用于确定预编码矩阵集合的参数信息;以及
    指示预编码矩阵集合中每个预编码矩阵与码本索引指示(PMI)的对应关系的信息。
  15. 如权利要求14所述的方法,其中,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
  16. 如权利要求10所述的方法,其中,所述UE确定在垂直维度的预编码矩阵集合的步骤包括:
    所述UE确定存储的预设的在垂直维度的预编码矩阵集合;或者,
    所述UE根据预设的用于确定预编码矩阵集合的参数信息,确定在垂直维度的预编码矩阵集合。
  17. 如权利要求10所述的方法,其中,所述UE根据以下公式确定预编码矩阵集合中的每个预编码矩阵
    Figure PCTCN2016078799-appb-100005
    Figure PCTCN2016078799-appb-100006
    其中,
    Figure PCTCN2016078799-appb-100007
    为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
  18. 如权利要求15或17所述的方法,其中,所述过采样因子
    Figure PCTCN2016078799-appb-100008
    Δθ为UE的信号方向在垂直维度的角度范围大小。
  19. 一种信道信息反馈装置,包括:
    确定模块,用于确定用户设备(UE)在垂直维度的预编码矩阵集合的配置信息;
    发送模块,用于向所述UE发送所述配置信息,以使所述UE基于所述配置信息进行下行信道信息反馈。
  20. 如权利要求19所述的装置,其中,所述确定模块用于:
    确定UE的信号方向在垂直维度的角度范围,基于确定的角度范围,确定所述UE在垂直维度的预编码矩阵集合的配置信息。
  21. 如权利要求19或20所述的装置,其中,所述确定模块用于:
    针对本小区内任一UE,为该UE单独确定在垂直维度的预编码矩阵集合的配置信息;或者,
    为本小区内的所有UE确定相同的在垂直维度的预编码矩阵集合的配置信息。
  22. 如权利要求19所述的装置,其中,所述配置信息包括以下信息中的一种或多种:
    预编码矩阵集合;
    用于确定预编码矩阵集合的参数信息;以及
    指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
  23. 如权利要求22所述的装置,其中,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
  24. 如权利要求19所述的装置,其中,所述确定模块用于根据以下公式确定预编码矩阵集合中的每个预编码矩阵
    Figure PCTCN2016078799-appb-100009
    Figure PCTCN2016078799-appb-100010
    其中,
    Figure PCTCN2016078799-appb-100011
    为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
  25. 一种信道信息反馈装置,包括:
    确定模块,用于确定在垂直维度的预编码矩阵集合;
    发送模块,用于基于所述预编码矩阵集合,进行下行信道信息反馈。
  26. 如权利要求25所述的装置,其中,所述发送模块具体用于:
    根据对基站进行信道估计的结果,在所述预编码矩阵集合中选择垂直维度 的预编码矩阵,并反馈该预编码矩阵对应的码本索引指示PMI。
  27. 如权利要求25所述的装置,其中,所述确定模块用于:
    接收基站发送的该UE在垂直维度的预编码矩阵集合的配置信息;基于所述配置信息,确定在垂直维度的预编码矩阵集合。
  28. 如权利要求27所述的装置,其中,所述配置信息中包括以下信息中的一种或多种:
    预编码矩阵集合;
    用于确定预编码矩阵集合的参数信息;以及
    指示预编码矩阵集合中每个预编码矩阵与码本索引指示PMI的对应关系的信息。
  29. 如权利要求25所述的装置,其中,所述确定模块用于:
    确定存储的预设的在垂直维度的预编码矩阵集合;或者,根据预设的用于确定预编码矩阵集合的参数信息,确定在垂直维度的预编码矩阵集合。
  30. 如权利要求28或29所述的装置,其中,所述参数信息包括:与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;和/或,Nv个正整数m,其中,每个m值与UE的信号方向在垂直维度的角度范围内的角度具有对应关系,且每个m值用于确定预编码矩阵集合中的一个预编码矩阵,Nv为预编码矩阵集合中的预编码矩阵个数。
  31. 如权利要求25所述的装置,其中,所述确定模块用于根据以下公式确定预编码矩阵集合中的每个预编码矩阵
    Figure PCTCN2016078799-appb-100012
    Figure PCTCN2016078799-appb-100013
    其中,
    Figure PCTCN2016078799-appb-100014
    为基站在垂直维度的天线个数;Nv为预编码矩阵集合中的预编码矩阵个数;β为与UE的信号方向在垂直维度的角度范围大小相关的过采样因子β;m为正整数,且0≤m≤βNv-1,预编码矩阵集合中的不同的预编码矩阵对应不同的m。
PCT/CN2016/078799 2015-04-08 2016-04-08 一种信道信息反馈方法及装置 WO2016161962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510164074.3A CN106160824A (zh) 2015-04-08 2015-04-08 一种信道信息反馈方法及装置
CN201510164074.3 2015-04-08

Publications (1)

Publication Number Publication Date
WO2016161962A1 true WO2016161962A1 (zh) 2016-10-13

Family

ID=57072291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078799 WO2016161962A1 (zh) 2015-04-08 2016-04-08 一种信道信息反馈方法及装置

Country Status (2)

Country Link
CN (1) CN106160824A (zh)
WO (1) WO2016161962A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634085A (zh) * 2012-08-27 2014-03-12 电信科学技术研究院 一种反馈和接收pmi的方法、***及设备
CN103780347A (zh) * 2014-01-23 2014-05-07 东南大学 一种基于3d-mimo码本设计的多用户调度传输方法
CN103929280A (zh) * 2014-03-31 2014-07-16 电信科学技术研究院 多级码本的生成方法和装置、以及码本反馈方法和装置
WO2014142504A1 (ko) * 2013-03-11 2014-09-18 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
WO2015021596A1 (en) * 2013-08-13 2015-02-19 Nec(China) Co., Ltd. Methods and apparatuses for channel estimation and feedback in a three-dimensional multiple input and multiple ouput system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258002B2 (ja) * 2010-02-10 2013-08-07 マーベル ワールド トレード リミテッド Mimo通信システムにおける装置、移動通信端末、チップセット、およびその方法
CN102821393B (zh) * 2011-06-09 2014-11-05 华为技术有限公司 处理小区间干扰的方法及装置
CN102868477B (zh) * 2011-07-05 2017-04-05 中兴通讯股份有限公司 一种基于分组波束的多用户预编码方法和装置
JP5753022B2 (ja) * 2011-08-15 2015-07-22 株式会社Nttドコモ 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
CN103152140B (zh) * 2013-03-05 2016-03-02 东南大学 一种基于直积码书的三维多用户mimo有限反馈方法
CN103281110B (zh) * 2013-04-26 2016-02-03 大唐移动通信设备有限公司 波束赋形方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634085A (zh) * 2012-08-27 2014-03-12 电信科学技术研究院 一种反馈和接收pmi的方法、***及设备
WO2014142504A1 (ko) * 2013-03-11 2014-09-18 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
WO2015021596A1 (en) * 2013-08-13 2015-02-19 Nec(China) Co., Ltd. Methods and apparatuses for channel estimation and feedback in a three-dimensional multiple input and multiple ouput system
CN103780347A (zh) * 2014-01-23 2014-05-07 东南大学 一种基于3d-mimo码本设计的多用户调度传输方法
CN103929280A (zh) * 2014-03-31 2014-07-16 电信科学技术研究院 多级码本的生成方法和装置、以及码本反馈方法和装置

Also Published As

Publication number Publication date
CN106160824A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US10735161B2 (en) Channel state information based processing method, and relevant devices and computer storage medium
CN106411374B (zh) 一种fd mimo***信道状态信息反馈方法及相关设备
TWI580210B (zh) Method, system and equipment for channel status information measurement
CN104735691B (zh) 信道状态信息汇报的方法及装置
CN106160821B (zh) 一种信道状态信息反馈、获取方法及装置
JP6581216B2 (ja) チャネル状態情報フィードバック方法および端末
WO2017020730A1 (zh) 一种反馈和接收信道状态信息csi的方法及装置
CN103634085A (zh) 一种反馈和接收pmi的方法、***及设备
US9369849B2 (en) Three-dimensional beamforming in a mobile communications network
CN106301692B (zh) 一种信道状态信息获取方法及装置
CN105530037B (zh) 一种信道状态信息的反馈、获取方法及装置
CN105871515B (zh) 一种信道状态信息反馈方法、下行参考信号方法及装置
CN102291228A (zh) 信道状态信息的反馈、接收方法和设备
US10660075B2 (en) Channel state information CSI sending method, channel state information CSI receiving method, terminal, and base station
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
WO2016161963A1 (zh) 一种csi反馈方法、装置和相关设备
WO2016026350A1 (zh) 一种三维信道状态信息确定方法及装置
CN105322989B (zh) Mimo***中的导频发送方法、测量方法及装置
CN105391479A (zh) 一种lte网络中终端反馈码本的方法、基站及***
WO2016124078A1 (zh) 一种信道测量方法及装置
WO2017076208A1 (zh) 一种信道状态信息反馈、数据传输方法及装置
CN105871435B (zh) 信道状态信息反馈方法、装置及用户设备
CN105207740B (zh) 一种信道状态信息的传输方法和相关设备
KR102279499B1 (ko) 2차원 안테나를 사용하는 무선 통신 시스템에서 피드백 신호 제공 방법 및 장치
CN108631844B (zh) 一种获取信道状态信息的方法、终端和网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776137

Country of ref document: EP

Kind code of ref document: A1