WO2016161708A1 - 一种在非授权频段应用drx的方法及装置 - Google Patents

一种在非授权频段应用drx的方法及装置 Download PDF

Info

Publication number
WO2016161708A1
WO2016161708A1 PCT/CN2015/082959 CN2015082959W WO2016161708A1 WO 2016161708 A1 WO2016161708 A1 WO 2016161708A1 CN 2015082959 W CN2015082959 W CN 2015082959W WO 2016161708 A1 WO2016161708 A1 WO 2016161708A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency band
unlicensed
cca time
drx
Prior art date
Application number
PCT/CN2015/082959
Other languages
English (en)
French (fr)
Inventor
李明菊
朱亚军
雷艺学
张云飞
Original Assignee
宇龙计算机通信科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇龙计算机通信科技(深圳)有限公司 filed Critical 宇龙计算机通信科技(深圳)有限公司
Publication of WO2016161708A1 publication Critical patent/WO2016161708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for applying DRX in an unlicensed frequency band.
  • LTE Assisted Access LTE
  • LTE Long Term Evolution
  • the WiFi technology on the unlicensed band eliminates interference between different WiFi devices through Carrier Sense Multiple Access/Collision Detection (CSMA/CA).
  • CSMA/CA Carrier Sense Multiple Access/Collision Detection
  • the WiFi device Before the data is sent, the WiFi device first listens. Whether the channel is idle, if the channel is idle, it is backed off, generating a random number M, and M is subtracted by 1 every time the channel is detected to be idle, otherwise M is unchanged. When M becomes 0, the backoff time ends and the user can start signaling or data.
  • M there is no carrier monitoring mechanism in the LTE technology, and if the LTE technology is used in the unlicensed frequency band, the WiFi device will be greatly interfered.
  • 3GPP introduced a Listen Before Talk (LBT) mechanism in LAA for LTE devices. Listening and detecting idle channels on unlicensed bands.
  • LBT Listen Before Talk
  • the inventor of the present invention found in the theoretical research that the LBT mechanism needs to monitor and detect the channel of the unlicensed frequency band in the Clear Channel Assessment (CAA) time, which will greatly increase the power consumption of the terminal, thereby increasing the user equipment (User Equipment, UE) The cost and overhead of use on unlicensed bands.
  • the discontinuous reception (DRX) technology in the unlicensed frequency band can effectively reduce the power consumption of the UE.
  • the embodiment of the invention discloses a method for applying DRX in an unlicensed frequency band.
  • the technical solution provided by the embodiment of the present invention can combine the LBT mechanism with the DRX mechanism of the LTE in the LAA technology of the unlicensed frequency band, so that the UE can Wake up at the CCA time to listen to the channel of the unlicensed band, and at the same time effectively reduce the power consumption of the UE in the unlicensed band.
  • the technical solution of the embodiment of the present invention combines the LBT mechanism with the DRX mechanism of the LTE in the LAA technology of the unlicensed frequency band, and the base station controls the UE to wake up to listen to the unlicensed frequency band, that is, the base station sends the first indication information to the UE. Instruct the UE to wake up in the unlicensed band CCA time, even during the DRX sleep time.
  • the UE can effectively monitor the channel of the unlicensed band and reduce the power consumption of the UE in the unlicensed band, which is beneficial to the LTE device and the WiFi device to enjoy the fairness of the UE while reducing the power consumption of the UE in the unlicensed band.
  • Authorized band resources are beneficial to the LTE device and the WiFi device to enjoy the fairness of the UE while reducing the power consumption of the UE in the unlicensed band.
  • FIG. 1 is a schematic diagram of a frame structure based LBT mechanism according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a load-based LBT mechanism according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for applying DRX in an unlicensed frequency band according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic flowchart of another method for applying DRX in an unlicensed frequency band according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic flowchart of another method for applying DRX in an unlicensed frequency band according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic flowchart of another method for applying DRX in an unlicensed frequency band according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic flowchart of another method for applying DRX in an unlicensed frequency band according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic flowchart of another method for applying DRX in an unlicensed frequency band according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic diagram of a base station device according to Embodiment 7 of the present invention.
  • FIG. 10 is a schematic diagram of a terminal device according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic diagram of another base station device according to Embodiment 9 of the present invention.
  • FIG. 12 is a schematic diagram of another terminal device according to Embodiment 10 of the present invention.
  • LBT Listen Before Talk
  • the LBT mechanism is mainly divided into a frame structure based LBT mechanism and a load based LBT mechanism.
  • a clear channel detection period includes a periodic CCA time, a channel occupation time, and an idle time, and a periodic CCA time is located at the beginning of each idle channel detection period.
  • the LTE device monitors whether the channel is idle during the period CCA time before transmitting the data, and if the channel idles to transmit data in the subsequent channel occupation time, releases the channel during the idle time of the detection period; if the channel is detected in the period CCA time If you are busy, you cannot send data during the subsequent channel occupation time.
  • the periodic CCA time occupies one or more symbols at the beginning of the subframe. As shown in FIG. 1, the CCA starts at the first symbol of subframe 0.
  • the idle channel detection of the LTE device has no fixed period, and before the data is transmitted, the LTE device immediately monitors whether the channel is idle at the next available initial CCA time. If the channel is idle, the data is transmitted during the subsequent channel occupation time, otherwise no data is transmitted; if the listening channel is busy at the initial CCA time or the data is not transmitted within the channel occupation time, the extended CCA time is started, at each extended CCA. During the time interval, it is detected whether the channel is idle, and the extended CCA time interval is the same as the initial CCA time length.
  • N is an integer from 1 to q, where q is the contention window length of the extended CCA time, greater than or equal to 4 and less than or equal to 32.
  • the embodiment of the invention discloses a method for applying DRX in an unlicensed frequency band.
  • the technical solution provided by the embodiment of the present invention can combine the LBT mechanism with the DRX mechanism of the LTE in the LAA technology of the unlicensed frequency band, according to the DRX of the UE.
  • the activation time, the DRX sleep time, and the unlicensed frequency band CCA time control the time when the UE wakes up to listen to the unlicensed frequency band, so that the terminal effectively monitors the channel of the unlicensed frequency band, and effectively reduces the power consumption of the UE in the unlicensed frequency band.
  • the purpose of making the LTE device and the WiFi device use the channel more equitably in the unlicensed band is achieved, and the cost and overhead of the UE using the unlicensed band are reduced.
  • FIG. 3 is a schematic flowchart of a method for applying DRX in an unlicensed frequency band according to an embodiment of the present invention.
  • the method provided in Embodiment 1 of the present invention may include:
  • the UE configured with the DRX function periodically turns on the receiver in the connection state to listen to the Physical Downlink Control Channel (PDCCH), without the UE continuously listening to the downlink channel continuously, thereby reducing the terminal.
  • the power consumption of the device The base station device controls the DRX activation time of the UE by configuring a DRX-related period and a timer, and the UE turns on the receiver to receive the downlink signal during the DRX activation time.
  • the timer includes an On-Duration Timer, a Drx-Inactivity Timer, and a Drx-Retransmission Timer, and each Hybrid Automatic Repeat Request (Hybrid Automatic Repeat Request).
  • the HARQ process has separate Drx-Retransmission Timers.
  • the DRX related period includes a DRX long period (LongDRXCycle) and a DRX short period (ShortDRXCycle), and the UE uses a DRX short period during the DRX short period timer start, when the UE does not monitor for use during the DRX short period timer startup.
  • the PDCCH of the uplink and downlink grant is sent, the UE transits from the short period to the DRX long period until the UE enters the DRX activation time and resumes using the DRX short period.
  • the UE During each DRX short period and each DRX long period, the UE has an On-Duration time for continuously monitoring the PDCCH, which is determined by the On-Duration Timer.
  • the UE has the same mechanism when using the DRX short period and the DRX long period, and the UE consumes less power during the DRX long period than when using the DRX short period.
  • the DRX activation time of the UE includes:
  • SR Schedule Request
  • the UE has uplink data that fails to be transmitted, and has buffered uplink data.
  • the base station can adopt the DRX configuration parameters of the UE, including On-Duration Timer, Drx-Inactivity Timer, and Drx-Retransmission Timer, LongDRXCycle length, ShortDRXCycle length, and On-Duration time. Parameters such as a starting subframe offset and the uplink and downlink data transmission conditions of the UE determine a DRX activation time and a DRX sleep time of the UE.
  • the base station may configure different DRX parameters for the UE, and send the DRX parameters to the UE by using downlink signaling to control the UE to wake up to monitor the downlink channel at different activation times. With this method, the base station can maintain the DRX state information of the UE by using the DRX parameter and the uplink and downlink data transmission of the UE, so as to facilitate uplink and downlink scheduling for the UE.
  • S102 Set information about an unlicensed band CCA time of the UE, and send first indication information to the UE, where the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time, and listens to the non-monitoring The channel of the licensed band.
  • the base station first configures the unlicensed band CCA time of the UE, and may set different CCA times for different UEs.
  • the base station can support configuring the CCA time under the frame structure based LBT mechanism and under the load based LBT mechanism.
  • the unlicensed band CCA time can be determined by the periodic CCA time length, the periodic CCA time offset, the channel occupation time length, and the idle time length.
  • the start time of the period CCA time can be determined by the following formula, and when the frame number and the subframe number satisfy the formula, the period of entering the period CCA is started:
  • the N CCA_Cycle is the number of subframes occupied by the sum of the period CCA length, the channel occupation time length, and the idle time length; N CCA_Offset is the period CCA start time offset.
  • the CCA time information of the unlicensed band is configured by the base station, including: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length.
  • the CCA time information is sent to the UE, where the first indication information is used to carry the unlicensed frequency band CCA of the UE. Information between the two to inform the UE of the unlicensed band CCA time.
  • the UE learns the information of the unlicensed frequency band CCA time from the first indication information, so that the starting time of the CCA time of each period can be determined by the above formula.
  • the initial CCA time length, the initial CCA time start time, the channel occupation time length, and the extended CCA time contention window length q where q is greater than or equal to 4 and less than or equal to 32.
  • An integer to determine the unlicensed band CCA time including the initial CCA time and the extended CCA time.
  • the UE randomly selects an integer N between 1 and q.
  • N is subtracted by 1, otherwise N is unchanged, and when N is reduced to 0, the CCA time is extended. End, enter the channel occupation time, start to send data.
  • the CCA time information of the unlicensed band is configured by the base station, and includes: an initial CCA time length and a channel occupation time competition window length q.
  • the CCA time information is sent to the UE, where the first indication information is used to carry the UE.
  • the information of the non-authorized frequency band CCA time is obtained by the UE from the first indication information, so as to determine the CCA time.
  • the start time of the initial CCA time is determined by the UE after generating the uplink buffer data, and the starting time of the extended CCA time is after the initial CCA time or after the channel occupation time.
  • the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time and listens to the channel of the unlicensed frequency band.
  • the UE may learn the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission situation of the UE, and the UE does not monitor the downlink channel during the DRX sleep time.
  • the CCA time may be in the DRX sleep time of the UE, and when the CCA time is in the DRX sleep time of the UE, the UE is turned on.
  • a receiver in order to monitor whether the channel of the unlicensed band is idle; when the CCA time is at the DRX activation time of the UE, since the UE has turned on the receiver during the DRX activation time, it is only necessary to inform the physical layer at the CCA Monitor the channel of the unlicensed band during the time.
  • the base station In order to ensure the accuracy of the UE detecting the idle channel on the unlicensed frequency band, the base station first determines the unlicensed frequency band CCA time of the UE, and the DRX activation time and sleep time of the UE.
  • the UE is suspended in the CCA time of the UE and sent to other UEs except the UE. Data or signaling;
  • the UE is suspended in the CCA time of the UE and in addition to the UE Other UEs outside send data or signaling.
  • the base station may learn the DRX activation time and the DRX sleep time of the UE according to the DRX parameters configured for the UE, and obtain the unlicensed band CCA time of the UE according to the unlicensed band CCA time information configured for the UE.
  • the base station can obtain the periodic CCA time according to the configured unlicensed band CCA time information. If the LBT mechanism on the unlicensed frequency band is a load-based LBT mechanism, the initial time of the initial CCA time is determined by the UE generating the uplink buffer data, and the base station cannot know the start time of the initial CCA time, and the extended CCA time length is determined by the UE. The integer N selected randomly between 1 and q determines that the base station cannot know the extended CCA time length.
  • the UE may notify the base station to listen to the unlicensed channel by using the uplink scheduling request, and the base station sends an instruction to the UE to indicate the start time of the initial CCA time; or, after the UE determines the start time of the initial CCA time, notify the base station by using the uplink indication information. So that the base station knows the start time of the initial CCA time.
  • the extended CCA time start time is after the initial CCA time or after the channel occupation time.
  • the base station may learn that the extended CCA time of the UE has ended by using the uplink data sent by the UE at the end of the extended CCA time.
  • the base station may use the initial CCA time start time, the extended CCA time start time, and the extended CCA time end time, and obtain the unlicensed band CCA of the UE according to the unlicensed band CCA time information configured for the UE.
  • Time including initial CCA time and extended CCA time.
  • the technical solution of the embodiment of the present invention effectively combines the LBT mechanism and the DRX mechanism in the LAA technology on the unlicensed frequency band, and the DRX mechanism can effectively reduce the power consumption of the UE in the unlicensed frequency band, and the base station passes the An indication message indicates that the UE wakes up in the unlicensed band CCA time and listens to the unlicensed channel, so that the UE can also wake up to listen to the channel during the DRX sleep time, thereby allowing the LTE device and the WiFi device to share the channel resources of the unlicensed band more fairly.
  • the purpose is to reduce the power consumption of the UE working in the unlicensed frequency band, and at the same time enable the UE to effectively monitor the channel of the unlicensed frequency band.
  • FIG. 4 is a schematic flowchart of Embodiment 2 of the present invention.
  • the base station device controls the DRX activation time of the UE by configuring a DRX-related period and a timer, and the UE turns on the receiver to receive the downlink signal during the DRX activation time.
  • the timer includes an On-Duration Timer, a Drx-Inactivity Timer, and a Drx-Retransmission Timer, and each Hybrid Automatic Repeat Request (Hybrid Automatic Repeat Request).
  • the HARQ process has separate Drx-Retransmission Timers.
  • the DRX related period includes a DRX long period (LongDRXCycle) and a DRX short period (ShortDRXCycle), and the UE uses a DRX short period during the DRX short period timer start, when the UE does not monitor for use during the DRX short period timer startup.
  • the PDCCH of the uplink and downlink grant is sent, the UE transits from the short period to the DRX long period until the UE enters the DRX activation time and resumes using the DRX short period.
  • the UE has a DRX activation time for continuously monitoring the PDCCH, which is determined by the timer On-Duration Timer; and also enters the DRX when the UE receives the HARQ initial transmission grant.
  • the activation time is determined by the timer Drx-Inactivity Timer; when the UE sends the downlink HARQ retransmission, it also enters the DRX activation time, which is determined by the timer Drx-Retransmission Timer.
  • the UE performs uplink data transmission and retransmission, it also enters the DRX activation time.
  • the UE may use the same DRX mechanism in the licensed band and in the unlicensed band, or may adopt different DRX mechanisms.
  • the base station configures a set of DRX parameters for the UE, and can simultaneously control the DRX activation state and DRX of the UE on the licensed frequency band and on the unlicensed frequency.
  • the sleep state for example, if a downlink HARQ retransmission occurs on the licensed band, the UE starts a timer Drx-Retransmission Timer, and during the running of the timer, the UE is simultaneously activated on the licensed band and the unlicensed band.
  • the base station may separately control the DRX activation of the UE on the licensed frequency band and on the unlicensed frequency for the two sets of DRX parameters of the UE.
  • Status and DRX sleep state for example, the UE turns on the receiver on the licensed band at the On-Duration time of the licensed band, turns off the receiver on the unlicensed band, and the UE turns on the unlicensed band within the On-Duration time of the unlicensed band On the receiver, turn off the receiver on the licensed band.
  • the base station sends the DRX parameters to the UE through downlink signaling to control the UE to wake up to monitor the downlink channel at different activation times.
  • the base station can also maintain the DRX state information of the UE by using the DRX parameter and the uplink and downlink data transmission of the UE, so as to facilitate uplink and downlink scheduling for the UE.
  • S202 Set information about an unlicensed band period CCA time of the UE, and send first indication information to the UE, where the first indication information is used to indicate that the UE wakes up during the periodic CCA time, and the monitoring is not authorized.
  • the channel of the band is used to indicate that the UE wakes up during the periodic CCA time, and the monitoring is not authorized.
  • the base station first configures the periodic CCA time of the UE, and may set different periodic CCA times for different UEs.
  • the unlicensed band CCA time can be determined by the periodic CCA time length, the periodic CCA time offset, the channel occupation time length, and the idle time length.
  • the start time of the period CCA time can be determined by the following formula, and when the frame number and the subframe number satisfy the formula, the period of entering the period CCA is started:
  • the N CCA_Cycle is the number of subframes occupied by the sum of the period CCA length, the channel occupation time length, and the idle time length, that is, the period of the period CCA time; N CCA_Offset is the period CCA start time offset.
  • the CCA time information of the unlicensed band is configured by the base station, including: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length.
  • the CCA time information is sent to the UE, and the first indication information is used to carry information about the unlicensed frequency band CCA time of the UE to notify the UE of the unlicensed frequency band CCA time.
  • the UE learns the information of the unlicensed frequency band CCA time from the first indication information, so that the starting time of the CCA time of each period can be determined by the above formula.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the first indication information is used to indicate that the UE wakes up at a periodic CCA time and listens to a channel of an unlicensed frequency band. Specifically, when the periodic CCA time is at the DRX sleep time of the UE, the UE turns on the receiver to facilitate monitoring whether the channel of the unlicensed band is idle; when the periodic CCA time is at the DRX activation time of the UE Because the UE has turned on the receiver during the DRX activation time, so only The physical layer needs to be informed to listen to the channel of the unlicensed band during the CCA time.
  • the base station may configure the periodic CCA time of the UE in the unlicensed frequency band DRX activation time, for example, configure the periodic CCA time in the On-Duration time of the unlicensed frequency band.
  • the periodic CCA time period is shorter than the unlicensed frequency band DRX.
  • the cycles are the same and the same starting period offset is used. In this way, according to the first indication information, the UE can minimize the power consumption of the UE by not turning on the receiver to listen to the channel of the unlicensed band in the DRX sleep time of the unlicensed band.
  • the base station may also configure the periodic CCA time of the UE in the unlicensed frequency band DRX sleep time. According to the first indication information, the UE needs to open the receiver to monitor the channel during the period CCA sleep time of the DRX sleep time, thus bringing more More power consumption.
  • the UE enters the active or sleep state synchronously in the licensed band and the unlicensed band.
  • the first indication information indicates that the UE wakes up simultaneously on the licensed frequency band and the unlicensed frequency band in the unlicensed frequency band CCA time, and listens to the channel of the unlicensed frequency band and the channel of the licensed frequency band.
  • the first indication information indicates that the UE wakes up at the CCA time on the unlicensed frequency band, monitors the channel of the unlicensed frequency band, and can monitor the channel without waking up on the licensed frequency band, so that the power can be better saved.
  • S203 Perform data transmission according to a periodic CCA time of the UE, a DRX activation time of the UE, and a DRX sleep time.
  • the base station In order to ensure the accuracy of the UE detecting the idle channel on the unlicensed frequency band, the base station first determines the periodic CCA time of the UE, and the DRX activation time and sleep time of the UE.
  • the periodic CCA time of the UE is located in the unlicensed band DRX sleep time interval of the UE, on the unlicensed band, the data or the message is sent to other UEs except the UE in the period CCA of the UE. make;
  • the UE If the periodic CCA time of the UE is located in the unlicensed band DRX activation time interval of the UE, on the unlicensed band, the UE is suspended and the UE is removed in the period CCA of the UE. Other UEs outside send data or signaling.
  • the technical solution of the embodiment of the present invention effectively combines the LBT mechanism and the DRX mechanism in the LAA technology on the unlicensed frequency band, and the DRX mechanism can effectively reduce the power consumption of the UE in the unlicensed frequency band, and the base station passes the An indication message indicates that the UE wakes up at the periodic CCA time and listens to the unlicensed channel, so that the UE can also wake up to listen to the channel during the DRX sleep time, thereby allowing the LTE device and the WiFi device to share the channel resources of the unlicensed band more fairly.
  • the purpose is to reduce the power consumption of the UE working in the unlicensed frequency band, and at the same time enable the UE to effectively monitor the channel of the unlicensed frequency band.
  • FIG. 4 is a schematic flowchart of Embodiment 3 of the present invention, where the method provided by Embodiment 3 of the present invention includes:
  • the UE may use the same DRX mechanism in the licensed band and in the unlicensed band, or may adopt different DRX mechanisms.
  • the base station configures a set of DRX parameters for the UE, and can simultaneously control the DRX activation state and DRX of the UE on the licensed frequency band and on the unlicensed frequency.
  • the sleep state for example, if a downlink HARQ retransmission occurs on the licensed band, the UE starts a timer Drx-Retransmission Timer, and during the running of the timer, the UE is simultaneously activated on the licensed band and the unlicensed band.
  • the base station may separately control the DRX activation state and DRX sleep of the UE on the licensed frequency band and on the unlicensed frequency for the two sets of DRX parameters of the UE. For example, the UE turns on the receiver on the licensed band at the On-Duration time of the licensed band, turns off the receiver on the unlicensed band, and the UE turns on the receiver in the unlicensed band within the On-Duration time of the unlicensed band. , turn off the receiver on the licensed band.
  • the base station sends the DRX parameters to the UE through downlink signaling to control the UE to wake up to monitor the downlink channel at different activation times.
  • the base station can also maintain the DRX state information of the UE by using the DRX parameter and the uplink and downlink data transmission of the UE, so as to facilitate uplink and downlink scheduling for the UE.
  • the base station first configures the unlicensed band CCA time of the UE, and may set different CCA times for different UEs.
  • the initial CCA time length, the initial CCA time start time, the channel occupation time length, and the extended CCA time contention window length q where q is an integer greater than or equal to 4 and less than or equal to 32,
  • Authorized band CCA time including initial CCA time and extended CCA time.
  • the UE randomly selects an integer N between 1 and q.
  • N is subtracted by 1, otherwise N is unchanged, and when N is reduced to 0, the CCA time is extended. End, enter the channel occupation time, start to send data.
  • the CCA time information of the unlicensed band is configured by the base station, and includes: an initial CCA time length, a channel occupation time length, and an extended CCA time contention window length q.
  • the CCA time information is sent to the UE, and the first indication information is used.
  • the information about the CCA time of the unlicensed band is obtained from the first indication information, so as to determine the CCA time.
  • the start time of the initial CCA time is determined by the UE after generating the uplink buffer data, and the starting time of the extended CCA time is after the initial CCA time or after the channel occupation time.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time and listens to the channel of the unlicensed frequency band. For example, according to the configuration of the unlicensed band CCA time of the UE by the base station, the initial CCA time or the extended CCA time of the UE may be in the DRX sleep time of the UE, when the initial CCA time or the extended CCA time is in the UE.
  • the UE turns on the receiver to facilitate monitoring whether the channel of the unlicensed band is idle; when the initial CCA time or the extended CCA time is at the DRX activation time of the UE, because the UE is activated in DRX
  • the receiver is turned on within the time, so it is only necessary to inform the physical layer to listen to the channel of the unlicensed band during the CCA time.
  • the UE If the unlicensed band and the licensed band use the same DRX mechanism, the UE enters the active or sleep state synchronously in the licensed band and the unlicensed band. Therefore, in the unlicensed frequency band CCA time, the UE should wake up simultaneously on the licensed frequency band and the unlicensed frequency band, and listen to the channel of the unlicensed frequency band and the channel of the licensed frequency band.
  • the UE If the unlicensed band and the licensed band use different DRX mechanisms, because in the licensed band and non-authorized The UE does not need to enter the active or sleep state at the same time. Therefore, the UE wakes up at the CCA time in the unlicensed frequency band, monitors the channel of the unlicensed frequency band, and can monitor the channel without waking up in the licensed frequency band, thereby better saving power consumption.
  • the initial time of the initial CCA time is determined by the UE generating the uplink buffer data, and the base station cannot know the start time of the initial CCA time.
  • the UE may notify the base station to listen to the unlicensed channel by using the uplink scheduling request, determine the starting time of the initial CCA time of the UE by the base station, or notify the base station after the UE determines the starting time of the initial CCA time.
  • the base station when receiving the uplink scheduling request SR signaling sent by the UE, the base station determines a start time of the initial CCA time of the UE, and sends second indication information to the UE, where the second indication is The information is used to indicate the start time of the initial CCA time of the UE, and the second indication information may be MAC CE signaling or PDCCH signaling sent by the base station on the licensed band or the unlicensed band; or the UE is determined by the UE.
  • the base station receives the third indication information sent by the UE, where the third indication information carries a start time of the initial CCA time, and the base station obtains the initial CCA from the third indication information. The starting moment of time.
  • S304 Determine a start time of the extended CCA time of the UE, and when receiving uplink data of the UE, determine an extended CCA time end time of the UE.
  • the start time of the extended CCA time of the UE may be determined, and the start time of the extended CCA time is after the end of the initial CCA time or after the end of the channel occupation time.
  • the base station Since the extended CCA time length is determined by the N randomly selected by the UE between 1 and q, the base station cannot obtain the extended CCA time length. However, the base station can transmit by the UE at the end of the extended CCA time. The uplink data is learned that the extended CCA time of the UE has ended.
  • the base station uses the initial CCA time start time, the extended CCA time start time, and the extended CCA time end time, and combines the unlicensed band CCA time information configured for the UE to obtain the unlicensed band CCA time of the UE. , including initial CCA time and extended CCA time.
  • the base station In order to ensure the accuracy of the UE detecting the idle channel on the unlicensed frequency band, the base station first determines the initial CCA time, the extended CCA time of the UE, and the DRX activation time and sleep time of the UE.
  • the UE If the initial CCA time or the extended CCA time of the UE is located in the unlicensed band DRX sleep time interval of the UE, on the unlicensed band, the UE is suspended in the initial CCA time or the extended CCA time of the UE.
  • Other UEs send data or signaling;
  • the UE is suspended in the initial CCA time or the extended CCA time of the UE, and Other UEs other than the UE transmit data or signaling.
  • the base station may resume transmitting data or signaling to the UE and other UEs.
  • the technical solution of the embodiment of the present invention effectively combines the LBT mechanism and the DRX mechanism in the LAA technology on the unlicensed frequency band, and the DRX mechanism can effectively reduce the power consumption of the UE in the unlicensed frequency band, and the base station passes the An indication message indicates that the UE wakes up at the periodic CCA time and listens to the unlicensed channel, so that the UE can also wake up to listen to the channel during the DRX sleep time, thereby allowing the LTE device and the WiFi device to share the channel resources of the unlicensed band more fairly.
  • the purpose is to reduce the power consumption of the UE working in the unlicensed frequency band, and at the same time enable the UE to effectively monitor the channel of the unlicensed frequency band.
  • Embodiment 4 provides a method for applying DRX in an unlicensed frequency band. The method is applied to a UE operating in an unlicensed frequency band.
  • FIG. 6 is a schematic flowchart of Embodiment 4 of the present invention. The method provided in Embodiment 4 of the present invention includes:
  • the UE configured with the DRX function periodically turns on the receiver in the connection state to listen to the Physical Downlink Control Channel (PDCCH), without the UE continuously listening to the downlink channel continuously, thereby reducing the terminal.
  • the power consumption of the device The base station device controls the DRX activation time of the UE by configuring a DRX-related period and a timer, and the UE turns on the receiver to receive the downlink signal during the DRX activation time.
  • the timer includes an On-Duration Timer, a Drx-Inactivity Timer, and a Drx-Retransmission Timer, and each Hybrid Automatic Repeat Request (Hybrid Automatic Repeat Request).
  • the HARQ process has separate Drx-Retransmission Timers.
  • the DRX related period includes a DRX long period (LongDRXCycle) and a DRX short period (ShortDRXCycle), and the UE uses a DRX short period during the DRX short period timer start, when the UE does not monitor for use during the DRX short period timer startup.
  • the PDCCH of the uplink and downlink grant is sent, the UE transits from the short period to the DRX long period until the UE enters the DRX activation time and resumes using the DRX short period.
  • the UE During each DRX short period and each DRX long period, the UE has an On-Duration time for continuously monitoring the PDCCH, which is determined by the On-Duration Timer.
  • the UE has the same mechanism when using the DRX short period and the DRX long period, and the UE consumes less power during the DRX long period than when using the DRX short period.
  • the UE When the UE receives the PDCCH grant of the initial transmission of the HARQ, it is expected to receive the subsequent PDCCH authorization, so the Drx-Inactivity Timer is started or restarted, and the UE continuously monitors the downlink signal during the operation of the Drx-Inactivity Timer, when the Drx-Inactivity Timer stops. The UE stops listening to the downlink signal.
  • the downlink HARQ retransmission occurs, the UE is expected to receive the downlink retransmission PDCCH grant, and thus the Drx-Retransmission Timer is started, and the UE continuously monitors the downlink signal during the operation of the Drx-Retransmission Timer until the HARQ process is received.
  • the Drx-Retransmission Timer is stopped after the downlink authorization.
  • the base station may configure different DRX parameters for the UE, and send the DRX parameters to the UE by using downlink signaling, where the UE receives the DRX parameters sent by the base station, and determines the DRX parameters and the uplink and downlink data transmission conditions.
  • the DRX activation time and DRX sleep time of the UE may be configured to configure different DRX parameters for the UE, and send the DRX parameters to the UE by using downlink signaling, where the UE receives the DRX parameters sent by the base station, and determines the DRX parameters and the uplink and downlink data transmission conditions.
  • the DRX activation time and DRX sleep time of the UE may be configured to the UE by using downlink signaling, where the UE receives the DRX parameters sent by the base station, and determines the DRX parameters and the uplink and downlink data transmission conditions.
  • S402. Receive first indication information sent by the base station, and obtain information about an unlicensed frequency band CCA time from the first indication information.
  • the base station first configures the unlicensed band CCA time of the UE, and may set different CCA times for different UEs.
  • the base station can support configuring the CCA time under the frame structure based LBT mechanism and under the load based LBT mechanism.
  • the unlicensed band CCA time can be determined by the periodic CCA time length, the periodic CCA time offset, the channel occupation time length, and the idle time length.
  • the start time of the period CCA time can be determined by the following formula, and when the frame number and the subframe number satisfy the formula, the period of entering the period CCA is started:
  • the N CCA_Cycle is the number of subframes occupied by the sum of the period CCA length, the channel occupation time length, and the idle time length; N CCA_Offset is the period CCA start time offset.
  • the CCA time information of the unlicensed band is configured by the base station, including: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length.
  • the CCA time information is sent to the UE, and the first indication information is used to carry information about the unlicensed frequency band CCA time of the UE to notify the UE of the unlicensed frequency band CCA time.
  • the UE learns the information of the unlicensed frequency band CCA time from the first indication information, so that the starting time of the CCA time of each period can be determined by the above formula.
  • the initial CCA time length, the initial CCA time start time, the channel occupation time length, and the extended CCA time contention window length q where q is greater than or equal to 4 and less than or equal to 32.
  • An integer to determine the unlicensed band CCA time including the initial CCA time and the extended CCA time.
  • the UE randomly selects an integer N between 1 and q.
  • N is subtracted by 1, otherwise N is unchanged, and when N is reduced to 0, the CCA time is extended. End, enter the channel occupation time, start to send data.
  • the CCA time information of the unlicensed band is configured by the base station, and includes: an initial CCA time length, a channel occupation time length, and an extended CCA time contention window length q.
  • the CCA time information is sent to the UE, and the first indication information is used.
  • the information about the CCA time of the unlicensed band is obtained from the first indication information, so as to determine the CCA time.
  • Initial CCA time The starting time is determined by the UE after generating the uplink buffer data, and the starting time of the extended CCA time is after the initial CCA time or after the channel occupation time.
  • the first indication information may be RRC signaling sent by the base station on the licensed frequency band.
  • the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time and listens to the channel of the unlicensed frequency band.
  • the UE performs channel monitoring of the unlicensed frequency band according to the indication of the first indication information.
  • the base station configures the DRX function for the UE on the unlicensed frequency band
  • the UE may learn the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission situation of the UE, and the UE does not monitor the downlink channel during the DRX sleep time.
  • the CCA time may be in the DRX sleep time of the UE, and when the CCA time is in the DRX sleep time of the UE, the UE is turned on.
  • a receiver in order to monitor whether the channel of the unlicensed band is idle; when the CCA time is at the DRX activation time of the UE, since the UE has turned on the receiver during the DRX activation time, it is only necessary to inform the physical layer at the CCA Monitor the channel of the unlicensed band during the time.
  • the fifth embodiment provides a method for applying DRX in an unlicensed frequency band, and the method is applied to a UE operating in an unlicensed frequency band.
  • FIG. 7 is a flowchart of Embodiment 5 of the present invention.
  • the method provided in Embodiment 5 of the present invention includes:
  • S501 Receive a DRX parameter sent by the base station to obtain a DRX activation time and a DRX sleep time of the UE.
  • the UE may use the same DRX mechanism in the licensed band and in the unlicensed band, or may adopt different DRX mechanisms.
  • the base station configures a set of DRX parameters for the UE, and can simultaneously control the DRX activation state and DRX of the UE on the licensed frequency band and on the unlicensed frequency.
  • the sleep state for example, if a downlink HARQ retransmission occurs on the licensed band, the UE starts a timer Drx-Retransmission Timer, and during the running of the timer, the UE is simultaneously activated on the licensed band and the unlicensed band.
  • the base station may separately control the DRX activation of the UE on the licensed frequency band and on the unlicensed frequency for the two sets of DRX parameters of the UE.
  • Status and DRX sleep state for example, the UE turns on the receiver on the licensed band at the On-Duration time of the licensed band, turns off the receiver on the unlicensed band, and the UE turns on the unlicensed band within the On-Duration time of the unlicensed band On the receiver, turn off the receiver on the licensed band.
  • the base station sends the DRX parameter to the UE through the downlink signaling, and the UE receives the DRX parameter sent by the base station, and determines the DRX activation time and the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission conditions.
  • the unlicensed band CCA time can be determined by the periodic CCA time length, the periodic CCA time offset, the channel occupation time length, and the idle time length.
  • the start time of the period CCA time can be determined by the following formula, and when the frame number and the subframe number satisfy the formula, the period of entering the period CCA is started:
  • the N CCA_Cycle is the number of subframes occupied by the sum of the period CCA length, the channel occupation time length, and the idle time length; N CCA_Offset is the period CCA start time offset.
  • the CCA time information of the unlicensed band is configured by the base station, including: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length.
  • the CCA time information is sent to the UE, and the first indication information is used to carry information about the unlicensed frequency band CCA time of the UE to notify the UE of the unlicensed frequency band CCA time.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the UE learns the information of the unlicensed frequency band CCA time from the first indication information, so that the starting time of the CCA time of each period can be determined by the above formula.
  • the first indication information is used to indicate that the UE wakes up at the periodic CCA time and listens to the channel of the unlicensed frequency band.
  • the UE performs channel monitoring of the unlicensed frequency band according to the indication of the first indication information.
  • the base station configures the DRX function for the UE on the unlicensed frequency band
  • the UE may learn the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission situation of the UE, and the UE does not monitor the downlink channel during the DRX sleep time.
  • the period The CCA time may be in the DRX sleep time of the UE, when the periodic CCA time is in the DRX sleep time of the UE, the UE turns on the receiver, so as to monitor whether the channel of the unlicensed band is idle; when the period CCA time is in the
  • the UE's DRX activation time since the UE has turned on the receiver during the DRX activation time, it is only necessary to inform the physical layer to listen to the channel of the unlicensed band during the periodic CCA time.
  • the UE If the unlicensed band and the licensed band use the same DRX mechanism, the UE enters the active or sleep state synchronously in the licensed band and the unlicensed band. Therefore, during the unlicensed frequency band CCA, the UE wakes up simultaneously on the licensed frequency band and the unlicensed frequency band, and listens to the channel of the unlicensed frequency band and the channel of the licensed frequency band.
  • the UE does not need to enter the active or sleep state at the same time in the licensed band and the unlicensed band.
  • the UE wakes up at the CCA time on the unlicensed frequency band, listens to the channel of the unlicensed frequency band, and can listen to the channel without waking up in the licensed frequency band, so that the power consumption can be better saved.
  • the sixth embodiment provides a method for applying DRX in an unlicensed frequency band, and the method is applied to a UE operating in an unlicensed frequency band.
  • FIG. 8 is a flowchart of Embodiment 6 of the present invention.
  • the method provided in Embodiment 6 of the present invention includes:
  • the UE may use the same DRX mechanism in the licensed band and in the unlicensed band, or may adopt different DRX mechanisms.
  • the base station configures a set of DRX parameters for the UE, and can simultaneously control the DRX activation state and DRX of the UE on the licensed frequency band and on the unlicensed frequency.
  • the sleep state for example, if a downlink HARQ retransmission occurs on the licensed band, the UE starts a timer Drx-Retransmission Timer, and during the running of the timer, the UE is simultaneously activated on the licensed band and the unlicensed band.
  • the base station may separately control the DRX activation state and DRX sleep of the UE on the licensed frequency band and on the unlicensed frequency for the two sets of DRX parameters of the UE.
  • the UE turns on the grant frequency on the On-Duration time of the licensed band
  • the receiver on the segment turns off the receiver on the unlicensed band
  • the UE turns on the receiver in the unlicensed band within the On-Duration time of the unlicensed band, and turns off the receiver on the licensed band.
  • the base station sends the DRX parameter to the UE through the downlink signaling, and the UE receives the DRX parameter sent by the base station, and determines the DRX activation time and the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission conditions.
  • S602. Receive first indication information sent by the base station, and obtain information about an initial CCA time and an extended CCA time from the first indication information.
  • the initial CCA time length, the initial CCA time start time, the channel occupation time length, and the extended CCA time contention window length q may be determined.
  • Unlicensed band CCA time including initial CCA time and extended CCA time.
  • the UE randomly selects an integer N between 1 and q.
  • N is subtracted by 1, otherwise N is unchanged, and when N is reduced to 0, the CCA time is extended. End, enter the channel occupation time, start to send data.
  • the CCA time information of the unlicensed band is configured by the base station, and includes: an initial CCA time length, a channel occupation time length, and an extended CCA time contention window length q.
  • the CCA time information is sent to the UE, and the first indication information is used.
  • the information about the CCA time of the unlicensed band is obtained from the first indication information, so as to determine the CCA time.
  • the start time of the initial CCA time is determined by the UE after generating the uplink buffer data, and the starting time of the extended CCA time is after the initial CCA time or after the channel occupation time.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the initial time of the initial CCA time is determined by the UE generating the uplink buffer data, and the base station cannot know the start time of the initial CCA time, and the extended CCA time length is determined by the UE.
  • the integer N selected randomly between 1 and q determines that the base station cannot know the extended CCA time length.
  • the UE may notify the base station to start listening to the unlicensed channel by using the uplink scheduling request, and the base station determines the starting time of the initial CCA time of the UE, and the base station sends the start time of the initial CCA time to the UE, or is determined by the UE. Inform the base after the initial CCA time station. In order for the base station to obtain the extended CCA time length, after the extended CCA time is over, the UE may send uplink data to the base station to indicate that the base station extended CCA time has expired.
  • the UE sends the uplink SR signaling to the base station to indicate that the base station is to start listening to the channel of the unlicensed frequency band, and the base station determines the start time of the initial CCA time of the UE, and sends the second indication information to the UE, where the second indication is The information includes a start time of the initial CCA time; the second indication information may be MAC CE signaling or PDCCH signaling sent by the base station on the licensed band or the unlicensed band.
  • the UE determines the start time of the initial CCA time, and sends a third indication information to the base station, where the third indication information includes a start time of the initial CCA time, and is used by the base station to obtain the start of the initial CCA time. time.
  • uplink data is sent to the base station to indicate that the base station extended CCA time has ended.
  • the UE may obtain the start time of the extended CCA time according to the start time of the initial CCA time determined by the above step, and the start time of the extended CCA time is after the initial CCA time or after the channel occupation time.
  • the uplink data is sent to the base station to indicate that the base station extended CCA time has ended.
  • the first indication information is used to indicate that the UE wakes up at an initial CCA time and an extended CCA time, and listens to a channel of an unlicensed frequency band.
  • the UE performs channel monitoring of the unlicensed frequency band according to the indication of the first indication information.
  • the base station configures the DRX function for the UE on the unlicensed frequency band
  • the UE may learn the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission situation of the UE, and the UE does not monitor the downlink channel during the DRX sleep time.
  • the configuration of the CCA time, the initial CCA time or the extended CCA time may be at the DRX sleep time of the UE, and when the initial CCA time or the extended CCA time is in the DRX sleep time of the UE, the UE turns on the receiver to facilitate the monitoring.
  • the channel of the unlicensed band is idle; when the initial CCA time or the extended CCA time is at the DRX activation time of the UE, since the UE has turned on the receiver during the DRX activation time, it is only necessary to inform the physical layer at the CCA time The channel that listens to the unlicensed band.
  • the UE stops listening to the unlicensed band channel and can transmit data.
  • the technical solution of the embodiment of the present invention effectively combines the LBT mechanism and the DRX mechanism in the LAA technology on the unlicensed frequency band, and the DRX mechanism can effectively reduce the power consumption of the UE in the unlicensed frequency band, and the base station passes the An indication message indicates that the UE wakes up at the periodic CCA time and listens to the unlicensed channel, so that the UE can also wake up to listen to the channel during the DRX sleep time, thereby allowing the LTE device and the WiFi device to share the channel resources of the unlicensed band more fairly.
  • the purpose is to reduce the power consumption of the UE working in the unlicensed frequency band, and at the same time enable the UE to effectively monitor the channel of the unlicensed frequency band.
  • the seventh embodiment of the present invention provides a base station device that applies DRX in an unlicensed frequency band.
  • the base station device a00 may include:
  • the processing unit a10 is configured to configure, for the UE, a discontinuous reception DRX parameter, to obtain a DRX activation time and a DRX sleep time of the UE;
  • a sending unit a20 configured to send the DRX parameter to the UE
  • the processing unit a10 is further configured to set information about an unlicensed band channel CCA time of the UE;
  • the sending unit a20 is further configured to send the first indication information to the UE, where the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time, and listens to a channel of an unlicensed frequency band;
  • the sending unit a20 is further configured to perform data transmission according to the unlicensed band CCA time of the UE, the DRX activation time of the UE, and the DRX sleep time.
  • the base station device may further include a receiving unit a30, configured to receive third indication information sent by the UE.
  • the processing unit a10 configures a set of DRX parameters for the UE, and can simultaneously control the UE on the licensed band and the unlicensed frequency.
  • the DRX activation state and the DRX sleep state for example, if a downlink HARQ retransmission occurs on the licensed band, the UE starts a timer Drx-Retransmission Timer, and during the running of the timer, the UE is on the licensed band and the unlicensed band. At the same time it is active.
  • the processing unit a10 may control the DRX activation state of the UE on the licensed frequency band and on the unlicensed frequency, respectively, for the two sets of DRX parameters of the UE.
  • the DRX sleep state for example, the UE turns on the receiver on the licensed band at the On-Duration time of the licensed band, turns off the receiver on the unlicensed band, and the UE turns on the unlicensed band within the On-Duration time of the unlicensed band.
  • the receiver turns off the receiver on the licensed band.
  • the CCA time information configured by the processing unit a10 for the UE includes: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length; If the load-based LBT mechanism is adopted on the unlicensed frequency band, the CCA time information configured by the processing unit a10 for the UE includes: an initial CCA time length, a channel occupation time length, and an extended CCA time contention window length q, where q is An integer greater than or equal to 4 and less than or equal to 32.
  • the information about the CCA time is sent by the sending unit a20 to the UE by using the first indication information, where the first indication information carries information about the unlicensed frequency band CCA time of the UE, and the UE
  • the information of the unlicensed frequency band CCA time is obtained from the first indication information to facilitate determining the CCA time.
  • the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time and listens to the channel of the unlicensed frequency band; if the unlicensed frequency band CCA time overlaps with the DRX sleep time, the UE will wake up during the DRX sleep time, Monitor the channel of the unlicensed band.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the initial time of the initial CCA time is determined by the UE generating the uplink buffer data, and the base station cannot know the start time of the initial CCA time, and the extended CCA time length is determined. For the random number N between 1 and q, the base station cannot know the extended CCA time length.
  • the base station device can learn that the UE needs to listen to the unlicensed channel by using the uplink scheduling request, and the sending unit a20 sends an instruction to the UE to indicate the starting time of the initial CCA time; or, after the UE determines the starting time of the initial CCA time, the uplink indication is adopted.
  • the information informs the base station to let the base station know the starting time of the initial CCA time.
  • the extended CCA time start time is after the initial CCA time or after the channel occupation time.
  • the processing unit a10 can receive the UE in the extension through the receiving unit a30
  • the uplink data sent after the end of the CCA time is obtained at the end time of the extended CCA time.
  • the processor a10 may obtain the initial CCA time and the extended CCA time by using the initial CCA time start time and the extended CCA time start time in combination with the unlicensed band CCA time information configured for the UE.
  • the processing unit a10 determines the starting time of the initial CCA time of the UE, and sends the second indication information to the UE by using the sending unit a20.
  • the second indication information is used to indicate a start time of the initial CCA time of the UE; or, the UE determines a start time of the initial CCA time of the UE, and the receiving unit a30 receives the third indication sent by the UE.
  • the third indication information carries a starting time of an initial CCA time.
  • the receiving unit a30 receives the uplink data transmitted by the UE after the end of the extended CCA time, so that the processing unit a10 obtains the extended CCA time end time.
  • the sending unit a20 is in the unlicensed frequency band, in the UE.
  • the CCA time is suspended to send data or signaling to other UEs other than the UE; if the CCA time of the UE is located in the unlicensed frequency band DRX activation time interval of the UE, the sending unit a20 is on the unlicensed frequency band. And transmitting data or signaling to the UE and other UEs except the UE during the CCA time of the UE.
  • the UE enters the active or sleep state synchronously in the licensed band and the unlicensed band. Therefore, during the unlicensed frequency band CCA, the first indication information indicates that the UE wakes up simultaneously on the licensed frequency band and the unlicensed frequency band, and listens to the channel of the unlicensed frequency band and the channel of the licensed frequency band.
  • the first indication information indicates that the UE wakes up at the CCA time on the unlicensed frequency band, monitors the channel of the unlicensed frequency band, and can monitor the channel without waking up on the licensed frequency band, so that the power can be better saved.
  • the eighth embodiment of the present invention provides a terminal device that applies DRX in an unlicensed frequency band.
  • the terminal device b00 may include:
  • the receiving unit b10 is configured to receive the DRX parameter sent by the base station, to obtain the DRX activation time and the DRX sleep time of the UE, and to receive the first indication information sent by the base station, and obtain the unauthorized information from the first indication information.
  • the processing unit b20 is configured to: according to the indication of the first indication information, cause the receiver to wake up in the unlicensed frequency band CCA time and listen to the channel of the unlicensed frequency band;
  • the terminal device further includes a sending unit b30, configured to send third indication information to the base station, where the third indication information includes a start time of the initial CCA time of the UE.
  • the receiving unit b10 receives the DRX parameter sent by the base station, and the UE may determine the DRX activation time and the DRX sleep time of the UE according to the DRX parameter and the uplink and downlink data transmission conditions.
  • the receiving unit b10 receives a set of DRX parameters configured by the base station for the UE, and can simultaneously control the DRX of the UE on the licensed frequency band and on the unlicensed frequency.
  • the activation state and the DRX sleep state for example, if a downlink HARQ retransmission occurs on the licensed band, the UE starts a timer Drx-Retransmission Timer, and during the running of the timer, the UE is activated simultaneously on the licensed band and the unlicensed band. status.
  • the receiving unit b10 receives two sets of DRX parameters configured by the base station for the UE, respectively controlling the DRX activation of the UE on the licensed frequency band and on the unlicensed frequency.
  • Status and DRX sleep state for example, the UE turns on the receiver on the licensed band at the On-Duration time of the licensed band, turns off the receiver on the unlicensed band, and the UE turns on the unlicensed band within the On-Duration time of the unlicensed band On the receiver, turn off the receiver on the licensed band.
  • the CCA time information of the unlicensed band is configured by the base station, including: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length.
  • the information about the CCA time is sent to the UE by using the first indication information to notify the UE of the unlicensed frequency band CCA time.
  • the receiving unit b10 obtains information of the unlicensed band CCA time from the first indication information, so that the processing unit b20 determines the CCA time.
  • the first indication information is used to indicate that the processing unit b20 should wake up in the unlicensed frequency band CCA time to listen to the channel of the unlicensed frequency band; if the unlicensed frequency band CCA time overlaps with the DRX sleep time, the processing unit b20 makes the receiver Wake up during DRX sleep time, listening to channels in unlicensed bands.
  • the first indication information is sent by the base station on a licensed frequency band. RRC signaling.
  • the CCA time information configured by the receiving unit b10 includes: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length;
  • the load-based LBT mechanism is adopted on the unlicensed frequency band, and the receiving unit b10 receives the CCA time information configured by the base station for the UE, including: an initial CCA time length, a channel occupation time length, and an extended CCA time contention window length q, where q is greater than An integer equal to 4 or less than 32.
  • the processing unit b20 may obtain the periodic CCA time by using the CCA time information in the first indication information. If the LBT mechanism on the unlicensed frequency band is a load-based LBT mechanism, the receiving unit b10 needs to receive the second indication information sent by the base station, in order to keep the CCA time synchronized with the base station, where the second indication information is in the Receiving, after the base station sends the uplink SR signaling, the processing unit b20 obtains the start time of the initial CCA time; or, the processing unit b20 determines the start time of the initial CCA time, and sends the unit to the location by the sending unit a30. The base station sends the third indication information, where the third indication information is used to indicate the start time of the initial CCA time of the base station.
  • the processing unit b20 stops listening to the channel of the unlicensed band, and the transmitting unit b30 can start transmitting data.
  • the transmitting unit b30 transmits uplink data at the end of the extended CCA time
  • the base station can know the end time of the extended CCA time.
  • the processing unit b20 causes the receiver to wake up simultaneously on the licensed band and the unlicensed band, and listens to the channel of the unlicensed band and The channel of the licensed band;
  • the processing unit b20 wakes up the CCA time of the receiver on the unlicensed band and listens to the channel of the unlicensed band.
  • the embodiment of the present invention further provides a base station device that applies DRX in an unlicensed frequency band.
  • the base station device c00 provided in Embodiment 9 of the present invention may include: at least one processor c10, a bus c20, and at least a bus connected thereto.
  • the memory c30 is configured to store a computer execution instruction, and the processor c10 calls a computer execution instruction stored in the memory c30 through the bus c20 and executes the instruction.
  • the communication interface c40 is used to receive data from the external device, write to the memory c30 via the bus c20, and then process the data written to the memory d30 by the processor c10; when transmitting data to the external device, the processor c10 The processed data is written to the memory c30 via the bus, and then the processed data is transmitted to the communication interface c40 via the bus c20, and finally the communication interface c40 transmits the data to the external device.
  • the base station apparatus is configured to perform the methods as in Embodiments 4 to 6 and Embodiment 8.
  • the processor c10 is configured to configure the UE with discontinuous reception DRX parameters, and send signaling to the UE through the communication interface c40 to enable the UE to obtain the DRX activation time and the DRX sleep time.
  • the processor c10 sets the information of the unlicensed band channel CCA time of the UE, and sends the first indication information to the UE through the communication interface c40, where the first indication information is used to indicate that the UE is in the unlicensed band CCA time. Wake up and listen to the channel in the unlicensed band.
  • the processing unit c10 transmits data to the UE through the communication interface c40 according to the unlicensed band CCA time of the UE, the DRX activation time of the UE, and the DRX sleep time. If the load-based LBT mechanism is adopted, the communication interface c40 may also receive the third indication information sent by the UE.
  • the first indication information carries information about the unlicensed frequency band CCA time of the UE, and the UE learns the information of the unlicensed frequency band CCA time from the first indication information, so as to determine the CCA time.
  • the first indication information is used to indicate that the UE wakes up in the unlicensed frequency band CCA time and listens to the channel of the unlicensed frequency band; if the unlicensed frequency band CCA time overlaps with the DRX sleep time, the UE will wake up during the DRX sleep time, Monitor the channel of the unlicensed band.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the initial time of the initial CCA time is determined by the UE generating the uplink buffer data, and the base station cannot know the start time of the initial CCA time, and the extended CCA time length is determined. For the random number N between 1 and q, the base station cannot know the extended CCA time length.
  • the processor c10 may determine a start time of the initial CCA time of the UE, and send, by using the communication interface c40, second indication information to the UE, where The second indication information is used to indicate the start time of the initial CCA time of the UE; or the UE determines the start time of the initial CCA time of the UE, and the communication interface c40 receives the third indication information sent by the UE, and then delivers Processing by the processing unit, the third indication information carries a starting time of the initial CCA time.
  • the communication interface c40 receives the uplink data sent by the UE at the end of the extended CCA time, so that the processor c10 obtains the end time of the extended CCA time of the UE, thereby obtaining The extended CCA time of the UE.
  • the processing unit c10 may control the communication interface c40 in the unlicensed frequency band.
  • the UE transmits data or signaling to the UE other than the UE during the CCA time of the UE; if the CCA time of the UE is located in the unlicensed frequency band DRX activation time interval of the UE, the processing is performed on the unlicensed frequency band.
  • the controller c10 may control the communication interface c40 to suspend transmission of data or signaling to the UE and other UEs other than the UE during the CCA time of the UE.
  • the embodiment of the present invention further provides a terminal device that applies DRX in an unlicensed frequency band.
  • the terminal device d00 provided in Embodiment 10 of the present invention may include: at least one processor d10, a bus d20, and at least a bus connected to the bus.
  • the memory d30 is used to store a computer execution instruction, and the processor d10 calls a computer execution instruction stored in the memory d30 through the bus d20 and executes the instruction.
  • the communication interface d40 is used to receive data from the external device, write to the memory d30 via the bus d20, and then process the data written to the memory d30 by the processor d10; send data to the external device
  • the processor c10 writes the processed data to the memory d30 via the bus, and then transmits the processed data to the communication interface d40 via the bus d20, and finally the communication interface d40 transmits the data to the external device.
  • the terminal device performs the methods as in Embodiments 1 to 3 and Embodiment 7.
  • the communication interface d40 receives the DRX parameter sent by the base station, so that the processor d10 obtains the DRX activation time and the DRX sleep time from the DRX parameter; the communication interface d40 further receives the first indication information sent by the base station, so that the processor d10 is from the Information indicating the time of the unlicensed band CCA in the indication information.
  • the processor d10 instructs the receiver to wake up in the unlicensed frequency band CCA time according to the first indication information, and listen to the channel of the unlicensed frequency band. If the load-based LBT mechanism is adopted, the communication interface d10 also needs to send third indication information to the base station, where the third indication information includes a start time of the initial CCA time of the UE determined by the processor.
  • the CCA time information of the unlicensed band is configured by the base station, including: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length.
  • the information about the CCA time is sent to the UE by using the first indication information to notify the UE of the unlicensed frequency band CCA time.
  • the communication interface d40 receives the first indication information carrying the unlicensed band CCA time information from the base station, so that the processor d10 determines the CCA time.
  • the first indication information is used to indicate that the processor receiver should Wake up in the unlicensed band CCA time to listen to the channel of the unlicensed band; if the unlicensed band CCA time overlaps with the DRX sleep time, the processor d10 instructs the receiver to wake up during the DRX sleep time to listen to the channel of the unlicensed band.
  • the first indication information is RRC signaling sent by the base station on the licensed frequency band.
  • the CCA time information configured by the base station received by the communication interface d40 includes: a periodic CCA time length, a periodic CCA time offset, a channel occupation time length, and an idle time length;
  • the load-based LBT mechanism is adopted on the unlicensed frequency band.
  • the CCA time information received by the communication interface d40 for the UE includes: an initial CCA time length, a channel occupation time length, and an extended CCA time contention window length q, where q is greater than An integer equal to 4 or less than 32.
  • the processor d10 may obtain the periodic CCA time by using the CCA time information in the first indication information. If the LBT mechanism on the unlicensed frequency band is a load-based LBT mechanism, the communication interface d40 needs to receive the second indication information sent by the base station, where the second indication information is in the After the base station sends the uplink SR signaling, it is received by the processor d10 to obtain the start time of the initial CCA time; or the processor d10 determines the start time of the initial CCA time, and is sent to the The base station sends a third indication information, where the third indication information is used to indicate a starting moment of the initial CCA time of the base station.
  • the processor d10 causes the receiver to stop listening to the channel of the unlicensed band, and can start transmitting data through the communication interface d40.
  • the base station can know the end time of the extended CCA time by using the received uplink data.
  • the processor d10 wakes up the receiver simultaneously on the licensed band and the unlicensed band, and listens to the channel and the licensed band of the unlicensed band.
  • Channel
  • the processor d10 wakes up the receiver at the CCA time on the unlicensed band and listens to the channel of the unlicensed band.
  • aspects of the present invention, or possible implementations of various aspects may be embodied as a system, method, or computer program product.
  • aspects of the invention, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.
  • the computer readable medium can be a computer readable data medium or a computer readable storage medium.
  • the computer readable storage medium includes, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing, such as random access memory (RAM), read only memory (ROM), Erase programmable read-only memory (EPROM or flash memory), optical fiber, portable read-only memory (CD-ROM).
  • the processor in the computer reads the computer readable program code stored in the computer readable medium such that the processor is capable of performing the various functional steps specified in each step of the flowchart, or a combination of steps; A device that functions as specified in each block, or combination of blocks.
  • the computer readable program code can execute entirely on the user's computer, partly on the user's computer, as a separate software package, partly on the user's own computer and partly on the remote computer, or entirely on the remote computer or server Execute on. It should also be noted that in some alternative implementations, the functions noted in the various steps in the flowcharts or in the blocks in the block diagrams may not occur in the order noted. For example, two steps, or two blocks, shown in succession may be executed substantially concurrently or the blocks may be executed in the reverse order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种在非授权频段应用非连续接收DRX的方法,包括:为用户设备UE配置非连续接收DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间,将所述DRX参数发送给所述UE;设置所述UE的非授权频段空闲信道检测CCA时间的信息,向所述UE发送第一指示信息,用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道;根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送。本发明实施例的技术方案有利于在降低UE在非授权频段的耗电量的同时,让UE有效监听非授权频段的信道,让LTE设备和WiFi设备更公平的享有非授权频段资源。

Description

一种在非授权频段应用DRX的方法及装置
本申请要求于2015年04月10日提交中国专利局,申请号为CN 201510170648.8、发明名称为“一种在非授权频段应用DRX的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种在非授权频段应用DRX的方法及装置。
背景技术
随着移动通信业务量的急剧增加,3GPP网络中的授权频段越来越不满足日益增加的业务量,为了在有限的频率资源上进一步提高频率资源利于效率,3GPP组织转向非授权频段的接入技术研究,引入了LTE辅助接入(LTE Assisted Access,LAA)技术,以期借助授权频段上的长期演进(Long Term Evolution,LTE)接入技术辅助使用非授权频段。相比工作在非授权频段的WiFi,LTE接入技术能够提供更高的频率效率和更全面的位置覆盖,更好的服务质量和移动性支持。
在非授权频段上的WiFi技术是通过载波监听多址接入/冲突检测(Carrier Sense Multiple Access/Collision Detection,CSMA/CA)消除不同WiFi设备之间的干扰,在发送数据之前,WiFi设备先监听信道是否空闲,如果信道空闲则进行退避,生成一个随机数M,每检测到信道空闲时M减去1,否则M不变。当M变为0时退避时间结束,用户可以开始发送信令或数据。但是在LTE技术中没有载波监听机制,如果在非授权频段使用LTE技术将对WiFi设备带来极大干扰。
为了在非授权频段上让LTE设备和WiFi设备更公平的享有资源,3GPP在LAA中引入了先听后说(Listen Before Talk,LBT)机制,用于LTE设备 在非授权频段上的监听和检测空闲信道。
本发明的发明人在理论研究中发现,LBT机制需要在空闲信道检测(Clear Channel Assessment,CAA)时间监听和检测非授权频段的信道,将大大增加终端的耗电量,从而增加用户设备(User Equipment,UE)在非授权频段上使用的代价和开销。在非授权频段采用非连续接收(Discontinuous Reception,DRX)技术可以有效降低UE的耗电量,但目前还没有将LBT机制与DRX机制相结合的有效方法。
发明内容
本发明实施例公开了一种在非授权频段应用DRX的方法,使用本发明实施例提供的技术方案,可以在非授权频段的LAA技术中将LBT机制与LTE的DRX机制相结合,使UE可以在CCA时间醒来监听非授权频段的信道,同时可以有效降低UE在非授权频段上的耗电量。
可以看出,本发明实施例的技术方案在非授权频段的LAA技术中将LBT机制与LTE的DRX机制相结合,由基站控制UE醒来监听非授权频段,即基站向UE发送第一指示信息指示UE在非授权频段CCA时间内醒来,即使在DRX睡眠时间。可以让UE有效监听非授权频段的信道,同时降低UE在非授权频段上的耗电量,有利于在降低UE在非授权频段的耗电量的同时让LTE设备和WiFi设备更公平的享有非授权频段资源。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的基于帧结构的LBT机制的示意图;
图2是本发明实施例提供的基于负载的LBT机制的示意图;
图3是本发明实施例一提供的一种在非授权频段应用DRX的方法的流程示意图;
图4是本发明实施例二提供的另一种在非授权频段应用DRX的方法的流程示意图;
图5是本发明实施例三提供的另一种在非授权频段应用DRX的方法的流程示意图;
图6是本发明实施例四提供的另一种在非授权频段应用DRX的方法的流程示意图;
图7是本发明实施例五提供的另一种在非授权频段应用DRX的方法的流程示意图;
图8是本发明实施例六提供的另一种在非授权频段应用DRX的方法的流程示意图;
图9是本发明实施例七提供的一种基站设备的示意图;
图10是本发明实施例八提供的一种终端设备的示意图;
图11是本发明实施例九提供的另一种基站设备的示意图;
图12是本发明实施例十提供的另一种终端设备的示意图。
具体实施方式
为了在非授权频段上让LTE设备和WiFi设备更公平的享有资源,3GPP在LAA中引入了先听后说(Listen Before Talk,LBT)机制,用于LTE设备在非授权频段上的监听和检测空闲信道。目前LBT机制主要分为基于帧结构的LBT机制和基于负载的LBT机制。
基于帧结构的LBT机制的原理参见图1,如图1所示,一个空闲信道检测周期包含周期CCA时间、信道占用时间和空闲时间,周期CCA时间位于每个空闲信道检测周期的最开始。LTE设备在发送数据之前,在周期CCA时间内监听信道是否空闲,如果信道空闲在随后的信道占用时间内发送数据,在该检测周期的空闲时间内释放信道;如果在周期CCA时间内检测到信道繁忙则不能在随后的信道占用时间内发送数据。周期CCA时间占用子帧开始的一个或多个符号,如图1所示,CCA开始于子帧0的第一个符号。基于帧结构的LBT机制的优点是实现方式简单,缺点是数据传输时延较大。
基于负载的LBT机制的原理参见图2,在基于负载的LBT机制中,LTE设备的空闲信道检测无固定周期,在发送数据之前,LTE设备立即在下一个可用的初始CCA时间上监听信道是否空闲,如果信道空闲在随后的信道占用时间内发送数据,否则不发送数据;如果在初始CCA时间上监听信道为繁忙或者在信道占用时间内数据未发送完,则开始扩展CCA时间,在每个扩展CCA时间间隔内检测信道是否空闲,扩展CCA时间间隔与初始CCA时间长度相同,若检测到信道空闲,记一次信道空闲,当记到N次信道空闲时在随后的信道占用时间内发送数据,否则不发送数据。其中N取值为1至q的整数,其中q为扩展CCA时间的竞争窗口长度,大于等于4并且小于等于32。基于负载的LBT基站的优点是在负载较重时性能较好,数据传输时延较小。
本发明实施例公开了一种在非授权频段应用DRX的方法,使用本发明实施例提供的技术方案可以在非授权频段的LAA技术中将LBT机制与LTE的DRX机制相结合,根据UE的DRX激活时间、DRX睡眠时间和非授权频段CCA时间控制UE醒来监听非授权频段的时间,从而使终端有效监听非授权频段的信道,同时有效降低UE在非授权频段上的耗电量,能够同时达到使LTE设备和WiFi设备在非授权频段更公平地使用信道,并且降低UE使用非授权频段的代价和开销的目的。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好的理解本发明实施例,以下分别对每个实施例进行说明。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
参见图3,图3为本发明实施例一提供在非授权频段应用DRX的方法的流程示意图,其中,如图3所示,本发明实施例一提供的方法可以包括:
S101、为UE配置DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;将所述DRX参数发送给所述UE。
LTE技术中,配置DRX功能的UE在连接状态周期性地打开接收机,监听物理层下行控制信道(Physical Downlink Control Channel,PDCCH),而不需要UE持续不间断地监听下行信道,从而可以降低终端设备的耗电量。基站设备通过配置DRX相关的周期和定时器来控制UE的DRX激活时间,在所述DRX激活时间内所述UE打开接收机接收下行信号。所述定时器包括持续时间定时器(On-Duration Timer)、非激活定时器(Drx-Inactivity Timer)、重传定时器(Drx-Retransmission Timer),每个混合自动重传(Hybrid Automatic Repeat Request,HARQ)进程有相互独立的Drx-Retransmission Timer。所述DRX相关的周期包括DRX长周期(LongDRXCycle)和DRX短周期(ShortDRXCycle),UE在DRX短周期定时器启动期间使用DRX短周期,当UE在DRX短周期定时器启动期间未监测到用于发送上下行授权的PDCCH,则UE从短周期转为使用DRX长周期,直到UE进入DRX激活时间后恢复使用DRX短周期。
每个DRX短周期和每个DRX长周期内,UE有一段持续监听PDCCH的On-Duration时间,该时间长度由On-Duration Timer决定。UE在使用DRX短周期和DRX长周期时的机制相同,使用DRX长周期期间相比使用DRX短周期期间UE的耗电量更低。
所述UE的DRX激活时间包括:
所述UE的On-Duration Timer运行时间、Drx-Inactivity Timer运行时间、Drx-Retransmission Timer运行时间;
所述UE发送调度请求(SR,Schedule Request)后等待上行授权期间;
所述UE有发送失败的上行数据,并且有缓存的上行数据时。
对于本领域技术人员来说,可以理解的是,基站可以通过所述UE的DRX配置参数,包括On-Duration Timer、Drx-Inactivity Timer和Drx-Retransmission Timer,LongDRXCycle长度、ShortDRXCycle长度和On-Duration时间起始子帧偏移等参数,以及所述UE的上下行数据传输情况确定所述UE的DRX激活时间和DRX睡眠时间。基站可为UE配置不同的DRX参数,将DRX参数通过下行信令发送给UE,以控制UE在不同的激活时间醒来监测下行信道。通过该方法,基站通过DRX参数和UE的上下行数据传输情况,可维护UE的DRX状态信息,以便于对UE进行上下行调度。
S102、设置所述UE的非授权频段CCA时间的信息;向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道。
基站首先配置所述UE的非授权频段CCA时间,可对不同的UE设置不同的CCA时间。基站可支持在基于帧结构的LBT机制下和在基于负载的LBT机制下配置CCA时间。
举例来说,在基于帧结构的LBT机制下,可通过周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度来确定非授权频段CCA时间。周期CCA时间的起始时刻可通过以下公式确定,当帧号和子帧号满足该公式时开始进入周期CCA时间:
[(FrameNum×10)+SFN]%NCCA_Cycle=NCCA_Offset
其中,NCCA_Cycle为周期CCA长度、信道占用时间长度和空闲时间长度的总和占用的子帧数;NCCA_Offset为周期CCA起始时间偏移。
非授权频段CCA时间的信息由基站配置,包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度。基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时 间的信息,以告知所述UE非授权频段CCA时间。UE从第一指示信息中获知所述非授权频段CCA时间的信息,从而通过以上公式可确定每个周期CCA时间的起始时刻。
又举例来所,在基于负载的LBT机制下,可通过初始CCA时间长度、初始CCA时间起始时刻、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4小于等于32的整数,来确定非授权频段CCA时间,包括初始CCA时间和扩展CCA时间。UE在1至q之间随机选取一个整数N,在接下来的扩展CCA检测时间内,若检测到信道空闲,使N减去1,否则N不变,当N减为0时,扩展CCA时间结束,进入信道占用时间,开始发送数据。非授权频段CCA时间的信息由基站配置,包括:初始CCA时间长度、信道占用时间竞争窗口长度q;基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,UE从第一指示信息中获知所述非授权频段CCA时间的信息,以便于确定CCA时间。初始CCA时间的起始时刻由UE产生上行缓存数据后确定,扩展CCA时间的起始时刻为初始CCA时间之后或信道占用时间之后。
所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道。当基站在非授权频段上为UE配置DRX功能时,UE可根据DRX参数和所述UE的上下行数据传输情况获知所述UE的DRX睡眠时间,所述UE在DRX睡眠时间不监听下行信道。举例来说,根据基站对所述UE的非授权频段CCA时间的配置,所述CCA时间可能处于所述UE的DRX睡眠时间,当CCA时间处于所述UE的DRX睡眠时间时,所述UE打开接收机,以便于监听非授权频段的信道是否空闲;当CCA时间处在所述UE的DRX激活时间时,因所述UE在DRX激活时间内已打开接收机,因此只需告知物理层在CCA时间内监听非授权频段的信道。
S103、根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送。
为了保证UE在非授权频段上检测空闲信道的准确性,基站首先确定所述UE的非授权频段CCA时间,以及所述UE的DRX激活时间和睡眠时间。
若所述UE的非授权频段CCA时间位于所述UE的非授权频段DRX睡眠时间区间,在非授权频段上,在所述UE的所述CCA时间内中止向除所述UE之外其他UE发送数据或信令;
若所述UE的非授权频段CCA时间位于所述UE的非授权频段DRX激活时间区间,在非授权频段上,在所述UE的所述CCA时间内中止向所述UE以及除所述UE之外的其它UE发送数据或信令。
基站可根据为所述UE配置的DRX参数获知所述UE的DRX激活时间和DRX睡眠时间,根据为所述UE配置的非授权频段CCA时间信息获知所述UE的非授权频段CCA时间。
若在非授权频段上的LBT机制为基于帧结构的LBT机制,基站可根据配置的非授权频段CCA时间信息获得周期CCA时间。若在非授权频段上的LBT机制为基于负载的LBT机制,初始CCA时间的起始时刻由UE产生上行缓存数据后确定,基站无法获知初始CCA时间的起始时刻,扩展CCA时间长度由UE在1到q之间随机选取的整数N决定,基站也无法获知扩展CCA时间长度。UE可通过上行调度请求SR告知基站需要监听非授权信道,由基站向UE发送指令指示初始CCA时间的起始时刻;或者,由UE确定初始CCA时间的起始时刻后,通过上行指示信息告知基站,以使基站获知所述初始CCA时间的起始时刻。扩展CCA时间起始时刻为所述初始CCA时间后或信道占用时间之后。基站可以通过UE在扩展CCA时间结束时发送的上行数据,获知所述UE的扩展CCA时间已结束。基站可使用所述初始CCA时间起始时刻、所述扩展CCA时间起始时刻和扩展CCA时间结束时刻,结合为所述UE配置的非授权频段CCA时间信息,获得所述UE的非授权频段CCA时间,包括初始CCA时间和扩展CCA时间。
可以看出,本发明实施例的技术方案在非授权频段上有效结合了LAA技术中的LBT机制和DRX机制,使用DRX机制能够有效降低UE在非授权频段上的耗电量,同时基站通过第一指示信息指示UE在非授权频段CCA时间醒来,监听非授权信道,使得在DRX睡眠时间UE也能够醒来监听信道,从而让LTE设备和WiFi设备更加公平地共享非授权频段的信道资源。达到了降低UE在非授权频段上工作的耗电量,同时使UE能够有效监听非授权频段的信道的目的。
本发明的又一实施例,实施例二提供了一种在非授权频段应用DRX的方法,参见图4,图4为本发明实施例二的流程示意图,本发明实施例二提供的方法包括:
S201、为用户设备UE配置非连续接收DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;将所述DRX参数发送给所述UE。
基站设备通过配置DRX相关的周期和定时器来控制UE的DRX激活时间,在所述DRX激活时间内所述UE打开接收机接收下行信号。所述定时器包括持续时间定时器(On-Duration Timer)、非激活定时器(Drx-Inactivity Timer)、重传定时器(Drx-Retransmission Timer),每个混合自动重传(Hybrid Automatic Repeat Request,HARQ)进程有相互独立的Drx-Retransmission Timer。所述DRX相关的周期包括DRX长周期(LongDRXCycle)和DRX短周期(ShortDRXCycle),UE在DRX短周期定时器启动期间使用DRX短周期,当UE在DRX短周期定时器启动期间未监测到用于发送上下行授权的PDCCH,则UE从短周期转为使用DRX长周期,直到UE进入DRX激活时间后恢复使用DRX短周期。
每个DRX短周期和每个DRX长周期内,UE有一段持续监听PDCCH的DRX激活时间,该时间长度由定时器On-Duration Timer决定;同时在UE收到HARQ初始传输授权时也会进入DRX激活时间,由定时器Drx-Inactivity Timer决定;在UE发送下行HARQ重传时也会进入DRX激活时间,由定时器Drx-Retransmission Timer决定。当UE进行上行数据传输和重传时同样会进入DRX激活时间。
UE在授权频段和在非授权频段可以采用相同的DRX机制,也可以采用不同的DRX机制。当在授权频段和在非授权频段采用相同的DRX机制时,基站为所述UE配置一套DRX参数,能够同时控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,如果在授权频段上发生下行HARQ重传时,UE会启动定时器Drx-Retransmission Timer,在该定时器运行期间,UE在授权频段和非授权频段上同时处于激活状态。
当在授权频段和在非授权频段使用不同的DRX机制时,基站可以为所述UE两套DRX参数,分别控制所述UE在授权频段上和在非授权频度上的DRX激活 状态和DRX睡眠状态;例如,UE在授权频段的On-Duration时间上打开授权频段上的接收机,关闭非授权频段上的接收机,UE在非授权频段的On-Duration时间内打开非授权频段上的接收机,关闭授权频段上的接收机。
基站将DRX参数通过下行信令发送给UE,以控制UE在不同的激活时间醒来监测下行信道。基站也可以通过DRX参数和UE的上下行数据传输情况,维护UE的DRX状态信息,以便于对UE进行上下行调度。
S202、设置所述UE的非授权频段周期CCA时间的信息;向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE在所述周期CCA时间醒来,监听非授权频段的信道。
基站首先配置所述UE的周期CCA时间,可对不同的UE设置不同的周期CCA时间。
在基于帧结构的LBT机制下,可通过周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度来确定非授权频段CCA时间。周期CCA时间的起始时刻可通过以下公式确定,当帧号和子帧号满足该公式时开始进入周期CCA时间:
[(FrameNum×10)+SFN]%NCCA_Cycle=NCCA_Offset
其中,NCCA_Cycle为周期CCA长度、信道占用时间长度和空闲时间长度的总和占用的子帧数,即周期CCA时间的周期;NCCA_Offset为周期CCA起始时间偏移。
非授权频段CCA时间的信息由基站配置,包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度。基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,以告知所述UE非授权频段CCA时间。UE从第一指示信息中获知所述非授权频段CCA时间的信息,从而通过以上公式可确定每个周期CCA时间的起始时刻。
所述第一指示信息为基站在授权频段上发送的RRC信令。
所述第一指示信息用于指示所述UE在周期CCA时间醒来,监听非授权频段的信道。具体地说,当周期CCA时间处于所述UE的DRX睡眠时间时,所述UE打开接收机,以便于监听非授权频段的信道是否空闲;当周期CCA时间处在所述UE的DRX激活时间时,因所述UE在DRX激活时间内已打开接收机,因此只 需告知物理层在CCA时间内监听非授权频段的信道。
基站可将UE的周期CCA时间配置在非授权频段DRX激活时间内,例如,将周期CCA时间配置在非授权频段的On-Duration时间内,举例来说,周期CCA时间周期与非授权频段DRX短周期相同,并且使用相同的起始周期偏移。这样,根据所述第一指示信息,所述UE在非授权频段的DRX睡眠时间,不用开启接收机监听非授权频段的信道,可以最大程度的降低UE的耗电量。
基站也可将UE的周期CCA时间配置在非授权频段DRX睡眠时间内,根据所示第一指示信息,UE需要在DRX睡眠时间内的周期CCA时间打开接收机以监听信道,因此会带来更多的耗电量。
若非授权频段与授权频段采用相同的DRX机制,在授权频段和非授权频段上UE同步进入激活或睡眠状态。所述第一指示信息指示UE在所述非授权频段CCA时间内,在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道。
若非授权频段与授权频段采用不同的DRX机制,在授权频段和非授权频段上UE不用同时进入激活或睡眠状态。第一指示信息指示UE在非授权频段上的CCA时间醒来,监听非授权频段的信道,而在授权频段上可以不醒来监听信道,可以更好地节省电量。
S203、根据所述UE的周期CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送。
为了保证UE在非授权频段上检测空闲信道的准确性,基站首先确定所述UE的周期CCA时间,以及所述UE的DRX激活时间和睡眠时间。
若所述UE的周期CCA时间位于所述UE的非授权频段DRX睡眠时间区间,在非授权频段上,在所述UE的周期CCA时间内中止向除所述UE之外其他UE发送数据或信令;
若所述UE的周期CCA时间位于所述UE的非授权频段DRX激活时间区间,在非授权频段上,在所述UE的周期CCA时间内中止向所述UE以及除所述UE 之外的其它UE发送数据或信令。
可以看出,本发明实施例的技术方案在非授权频段上有效结合了LAA技术中的LBT机制和DRX机制,使用DRX机制能够有效降低UE在非授权频段上的耗电量,同时基站通过第一指示信息指示UE在周期CCA时间醒来,监听非授权信道,使得在DRX睡眠时间UE也能够醒来监听信道,从而让LTE设备和WiFi设备更加公平地共享非授权频段的信道资源。达到了降低UE在非授权频段上工作的耗电量,同时使UE能够有效监听非授权频段的信道的目的。
本发明的又一实施例,实施例三提供了一种在非授权频段应用DRX的方法,参见图5,图4为本发明实施例三的流程示意图,本发明实施例三提供的方法包括:
S301、为用户设备UE配置非连续接收DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;将所述DRX参数发送给所述UE。
UE在授权频段和在非授权频段可以采用相同的DRX机制,也可以采用不同的DRX机制。当在授权频段和在非授权频段采用相同的DRX机制时,基站为所述UE配置一套DRX参数,能够同时控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,如果在授权频段上发生下行HARQ重传时,UE会启动定时器Drx-Retransmission Timer,在该定时器运行期间,UE在授权频段和非授权频段上同时处于激活状态。
当在授权频段和在非授权频段使用不同的DRX机制时,基站可以为所述UE两套DRX参数,分别控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,UE在授权频段的On-Duration时间上打开授权频段上的接收机,关闭非授权频段上的接收机,UE在非授权频段的On-Duration时间内打开非授权频段上的接收机,关闭授权频段上的接收机。
基站将DRX参数通过下行信令发送给UE,以控制UE在不同的激活时间醒来监测下行信道。基站也可以通过DRX参数和UE的上下行数据传输情况,维护UE的DRX状态信息,以便于对UE进行上下行调度。
S302、设置所述UE的非授权频段CCA时间信息;向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE在所述初始CCA时间和扩展CCA时间醒来,监听非授权频段的信道。
基站首先配置所述UE的非授权频段CCA时间,可对不同的UE设置不同的CCA时间。
在基于负载的LBT机制下,可通过初始CCA时间长度、初始CCA时间起始时刻、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4小于等于32的整数,来确定非授权频段CCA时间,包括初始CCA时间和扩展CCA时间。UE在1至q之间随机选取一个整数N,在接下来的扩展CCA检测时间内,若检测到信道空闲,使N减去1,否则N不变,当N减为0时,扩展CCA时间结束,进入信道占用时间,开始发送数据。非授权频段CCA时间的信息由基站配置,包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q;基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,UE从第一指示信息中获知所述非授权频段CCA时间的信息,以便于确定CCA时间。初始CCA时间的起始时刻由UE产生上行缓存数据后确定,扩展CCA时间的起始时刻为初始CCA时间之后或信道占用时间之后。所述第一指示信息为基站在授权频段上发送的RRC信令。
所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道。举例来说,根据基站对所述UE的非授权频段CCA时间的配置,UE的初始CCA时间或扩展CCA时间可能处于所述UE的DRX睡眠时间,当初始CCA时间或扩展CCA时间处于所述UE的DRX睡眠时间时,所述UE打开接收机,以便于监听非授权频段的信道是否空闲;当初始CCA时间或扩展CCA时间处在所述UE的DRX激活时间时,因所述UE在DRX激活时间内已打开接收机,因此只需告知物理层在CCA时间内监听非授权频段的信道。
若非授权频段与授权频段采用相同的DRX机制,因为在授权频段和非授权频段上UE同步进入激活或睡眠状态。因此在所述非授权频段CCA时间内,UE要在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道。
若非授权频段与授权频段采用不同的DRX机制,因为在授权频段和非授权 频段上UE不用同时进入激活或睡眠状态。所以UE在非授权频段上的CCA时间醒来,监听非授权频段的信道,而在授权频段上可以不醒来监听信道,可以更好地节省耗电量。
S303、当接收到所述UE发送的上行调度请求SR信令时,确定所述UE的初始CCA时间的起始时刻,向所述UE发送第二指示信息;或者,接收所述UE发送的第三指示信息,以获得所述UE的初始CCA时间的起始时刻。
若在非授权频段上的LBT机制为基于负载的LBT机制,初始CCA时间的起始时刻由UE产生上行缓存数据后确定,基站无法获知初始CCA时间的起始时刻。UE可通过上行调度请求SR告知基站需要监听非授权信道,由基站确定所述UE的初始CCA时间的起始时刻,或由UE确定初始CCA时间的起始时刻后告知基站。
具体来说,当接收到所述UE发送的上行调度请求SR信令时,由基站确定所述UE的初始CCA时间的起始时刻,向所述UE发送第二指示信息,所述第二指示信息用以指示所述UE初始CCA时间的起始时刻,该第二指示信息可以是基站在授权频段或非授权频段上发送的MAC CE信令或PDCCH信令;或者,由UE确定所述UE的初始CCA时间的起始时刻,基站接收所述UE发送的第三指示信息,所述第三指示信息携带初始CCA时间的起始时刻,基站从所述第三指示信息中获得所述初始CCA时间的起始时刻。
S304、确定所述UE的扩展CCA时间的起始时刻,当收到所述UE的上行数据时,确定所述UE的扩展CCA时间结束时刻。
确定所述UE的初始CCA时间的起始时刻后,可确定所述UE的扩展CCA时间的起始时刻,扩展CCA时间的起始时刻在初始CCA时间结束之后或在信道占用时间结束后。
由于扩展CCA时间长度由UE在1到q之间随机选取的N决定,基站无法得到扩展CCA时间长度。但是,基站可以通过UE在扩展CCA时间结束时发送的 上行数据,获知所述UE的扩展CCA时间已结束。
基站使用所述初始CCA时间起始时刻、所述扩展CCA时间起始时刻和扩展CCA时间结束时刻,结合为所述UE配置的非授权频段CCA时间信息,获得所述UE的非授权频段CCA时间,包括初始CCA时间和扩展CCA时间。
S305、根据所述UE的初始CCA时间、扩展CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送。
为了保证UE在非授权频段上检测空闲信道的准确性,基站首先确定所述UE的初始CCA时间、扩展CCA时间,以及所述UE的DRX激活时间和睡眠时间。
若所述UE的初始CCA时间或扩展CCA时间位于所述UE的非授权频段DRX睡眠时间区间,在非授权频段上,在所述UE的初始CCA时间或扩展CCA时间内中止向除所述UE之外其他UE发送数据或信令;
若所述UE的初始CCA时间或扩展CCA时间位于所述UE的非授权频段DRX激活时间区间,在非授权频段上,在所述UE的初始CCA时间或扩展CCA时间内中止向所述UE以及除所述UE之外的其它UE发送数据或信令。
当初始CCA时间结束或扩展CCA时间结束后,基站可恢复向所述UE以及其他UE发送数据或信令。
可以看出,本发明实施例的技术方案在非授权频段上有效结合了LAA技术中的LBT机制和DRX机制,使用DRX机制能够有效降低UE在非授权频段上的耗电量,同时基站通过第一指示信息指示UE在周期CCA时间醒来,监听非授权信道,使得在DRX睡眠时间UE也能够醒来监听信道,从而让LTE设备和WiFi设备更加公平地共享非授权频段的信道资源。达到了降低UE在非授权频段上工作的耗电量,同时使UE能够有效监听非授权频段的信道的目的。
本发明的再一个实施例,实施例四提供了一种在非授权频段应用DRX的方 法,该方法应用于工作在非授权频段的UE,参见图6,图6为本发明实施例四的流程示意图,本发明实施例四提供的方法包括:
S401、接收基站发送的DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间。
LTE技术中,配置DRX功能的UE在连接状态周期性地打开接收机,监听物理层下行控制信道(Physical Downlink Control Channel,PDCCH),而不需要UE持续不间断地监听下行信道,从而可以降低终端设备的耗电量。基站设备通过配置DRX相关的周期和定时器来控制UE的DRX激活时间,在所述DRX激活时间内所述UE打开接收机接收下行信号。所述定时器包括持续时间定时器(On-Duration Timer)、非激活定时器(Drx-Inactivity Timer)、重传定时器(Drx-Retransmission Timer),每个混合自动重传(Hybrid Automatic Repeat Request,HARQ)进程有相互独立的Drx-Retransmission Timer。所述DRX相关的周期包括DRX长周期(LongDRXCycle)和DRX短周期(ShortDRXCycle),UE在DRX短周期定时器启动期间使用DRX短周期,当UE在DRX短周期定时器启动期间未监测到用于发送上下行授权的PDCCH,则UE从短周期转为使用DRX长周期,直到UE进入DRX激活时间后恢复使用DRX短周期。
每个DRX短周期和每个DRX长周期内,UE有一段持续监听PDCCH的On-Duration时间,该时间长度由On-Duration Timer决定。UE在使用DRX短周期和DRX长周期时的机制相同,使用DRX长周期期间相比使用DRX短周期期间UE的耗电量更低。
在UE收到HARQ初始传输的PDCCH授权时,预期接收后续PDCCH授权,因此启动或重新启动Drx-Inactivity Timer,在Drx-Inactivity Timer运行期间所述UE连续监听下行信号,当Drx-Inactivity Timer停止后所述UE中止监听下行信号。当发生下行HARQ重传时,所述UE预期接收下行重传PDCCH授权,因此启动Drx-Retransmission Timer,在所述Drx-Retransmission Timer运行期间所述UE连续监听下行信号,直至收到该HARQ进程的下行授权后停止所述Drx-Retransmission Timer。
基站可为UE配置不同的DRX参数,将DRX参数通过下行信令发送给UE,UE接收基站发送的DRX参数,根据DRX参数和上下行数据传输情况确定所述 UE的DRX激活时间和DRX睡眠时间。
S402、接收基站发送的第一指示信息,从所述第一指示信息中获得非授权频段CCA时间的信息。
基站首先配置所述UE的非授权频段CCA时间,可对不同的UE设置不同的CCA时间。基站可支持在基于帧结构的LBT机制下和在基于负载的LBT机制下配置CCA时间。
举例来说,在基于帧结构的LBT机制下,可通过周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度来确定非授权频段CCA时间。周期CCA时间的起始时刻可通过以下公式确定,当帧号和子帧号满足该公式时开始进入周期CCA时间:
[(FrameNum×10)+SFN]%NCCA_Cycle=NCCA_Offset
其中,NCCA_Cycle为周期CCA长度、信道占用时间长度和空闲时间长度的总和占用的子帧数;NCCA_Offset为周期CCA起始时间偏移。
非授权频段CCA时间的信息由基站配置,包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度。基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,以告知所述UE非授权频段CCA时间。UE从第一指示信息中获知所述非授权频段CCA时间的信息,从而通过以上公式可确定每个周期CCA时间的起始时刻。
又举例来所,在基于负载的LBT机制下,可通过初始CCA时间长度、初始CCA时间起始时刻、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4小于等于32的整数,来确定非授权频段CCA时间,包括初始CCA时间和扩展CCA时间。UE在1至q之间随机选取一个整数N,在接下来的扩展CCA检测时间内,若检测到信道空闲,使N减去1,否则N不变,当N减为0时,扩展CCA时间结束,进入信道占用时间,开始发送数据。非授权频段CCA时间的信息由基站配置,包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q;基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,UE从第一指示信息中获知所述非授权频段CCA时间的信息,以便于确定CCA时间。初始CCA时间 的起始时刻由UE产生上行缓存数据后确定,扩展CCA时间的起始时刻为初始CCA时间之后或信道占用时间之后。
所述第一指示信息可以为基站在授权频段上发送的RRC信令。
S403、根据所述第一指示信息的指示,在所述非授权CCA时间醒来,监听非授权频段的信道。
所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道。UE根据所述第一指示信息的指示进行非授权频段的信道监听。当基站在非授权频段上为UE配置DRX功能时,UE可根据DRX参数和所述UE的上下行数据传输情况获知所述UE的DRX睡眠时间,所述UE在DRX睡眠时间不监听下行信道。举例来说,根据基站对所述UE的非授权频段CCA时间的配置,所述CCA时间可能处于所述UE的DRX睡眠时间,当CCA时间处于所述UE的DRX睡眠时间时,所述UE打开接收机,以便于监听非授权频段的信道是否空闲;当CCA时间处在所述UE的DRX激活时间时,因所述UE在DRX激活时间内已打开接收机,因此只需告知物理层在CCA时间内监听非授权频段的信道。
本发明的再一个实施例,实施例五提供了一种在非授权频段应用DRX的方法,该方法应用于工作在非授权频段的UE,参见图7,图7为本发明实施例五的流程示意图,本发明实施例五提供的方法包括:
S501、接收基站发送的DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间。
UE在授权频段和在非授权频段可以采用相同的DRX机制,也可以采用不同的DRX机制。当在授权频段和在非授权频段采用相同的DRX机制时,基站为所述UE配置一套DRX参数,能够同时控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,如果在授权频段上发生下行HARQ重传时,UE会启动定时器Drx-Retransmission Timer,在该定时器运行期间,UE在授权频段和非授权频段上同时处于激活状态。
当在授权频段和在非授权频段使用不同的DRX机制时,基站可以为所述UE两套DRX参数,分别控制所述UE在授权频段上和在非授权频度上的DRX激活 状态和DRX睡眠状态;例如,UE在授权频段的On-Duration时间上打开授权频段上的接收机,关闭非授权频段上的接收机,UE在非授权频段的On-Duration时间内打开非授权频段上的接收机,关闭授权频段上的接收机。
基站将DRX参数通过下行信令发送给UE,UE接收基站发送的DRX参数,根据DRX参数和上下行数据传输情况确定所述UE的DRX激活时间和DRX睡眠时间。
S502、接收基站发送的第一指示信息,从所述第一指示信息中获得周期CCA时间的信息。
在基于帧结构的LBT机制下,可通过周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度来确定非授权频段CCA时间。周期CCA时间的起始时刻可通过以下公式确定,当帧号和子帧号满足该公式时开始进入周期CCA时间:
[(FrameNum×10)+SFN]%NCCA_Cycle=NCCA_Offset
其中,NCCA_Cycle为周期CCA长度、信道占用时间长度和空闲时间长度的总和占用的子帧数;NCCA_Offset为周期CCA起始时间偏移。
非授权频段CCA时间的信息由基站配置,包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度。基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,以告知所述UE非授权频段CCA时间。该第一指示信息为基站在授权频段上发送的RRC信令。
UE从第一指示信息中获知所述非授权频段CCA时间的信息,从而通过以上公式可确定每个周期CCA时间的起始时刻。
S503、根据所述第一指示信息的指示,在所述周期CCA时间醒来,监听非授权频段的信道。
第一指示信息用于指示所述UE在周期CCA时间醒来,监听非授权频段的信道。UE根据所述第一指示信息的指示进行非授权频段的信道监听。当基站在非授权频段上为UE配置DRX功能时,UE可根据DRX参数和所述UE的上下行数据传输情况获知所述UE的DRX睡眠时间,所述UE在DRX睡眠时间不监听下行信道。举例来说,根据基站对所述UE的非授权频段CCA时间的配置,周期 CCA时间可能处于所述UE的DRX睡眠时间,当周期CCA时间处于所述UE的DRX睡眠时间时,UE打开接收机,以便于监听非授权频段的信道是否空闲;当周期CCA时间处在所述UE的DRX激活时间时,因所述UE在DRX激活时间内已打开接收机,因此只需告知物理层在周期CCA时间内监听非授权频段的信道。
若非授权频段与授权频段采用相同的DRX机制,因为在授权频段和非授权频段上UE同步进入激活或睡眠状态。因此在所述非授权频段CCA时间内,UE在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道。
若非授权频段与授权频段采用不同的DRX机制,因为在授权频段和非授权频段上UE不用同时进入激活或睡眠状态。UE在非授权频段上的CCA时间醒来,监听非授权频段的信道,而在授权频段上可以不醒来监听信道,可以更好地节省耗电量。
本发明的再一个实施例,实施例六提供了一种在非授权频段应用DRX的方法,该方法应用于工作在非授权频段的UE,参见图8,图8为本发明实施例六的流程示意图,本发明实施例六提供的方法包括:
S601、接收基站发送的DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间。
UE在授权频段和在非授权频段可以采用相同的DRX机制,也可以采用不同的DRX机制。当在授权频段和在非授权频段采用相同的DRX机制时,基站为所述UE配置一套DRX参数,能够同时控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,如果在授权频段上发生下行HARQ重传时,UE会启动定时器Drx-Retransmission Timer,在该定时器运行期间,UE在授权频段和非授权频段上同时处于激活状态。
当在授权频段和在非授权频段使用不同的DRX机制时,基站可以为所述UE两套DRX参数,分别控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,UE在授权频段的On-Duration时间上打开授权频 段上的接收机,关闭非授权频段上的接收机,UE在非授权频段的On-Duration时间内打开非授权频段上的接收机,关闭授权频段上的接收机。
基站将DRX参数通过下行信令发送给UE,UE接收基站发送的DRX参数,根据DRX参数和上下行数据传输情况确定所述UE的DRX激活时间和DRX睡眠时间。
S602、接收基站发送的第一指示信息,从所述第一指示信息中获得初始CCA时间和扩展CCA时间的信息。
在基于负载的LBT机制下,可通过初始CCA时间长度、初始CCA时间起始时刻、信道占用时间长度和扩展CCA时间内竞争窗口长度q,其中q为大于等于4小于等于32的整数,来确定非授权频段CCA时间,包括初始CCA时间和扩展CCA时间。UE在1至q之间随机选取一个整数N,在接下来的扩展CCA检测时间内,若检测到信道空闲,使N减去1,否则N不变,当N减为0时,扩展CCA时间结束,进入信道占用时间,开始发送数据。非授权频段CCA时间的信息由基站配置,包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q;基站配置完成后将上述CCA时间的信息发送给UE,第一指示信息用于携带所述UE非授权频段CCA时间的信息,UE从第一指示信息中获知所述非授权频段CCA时间的信息,以便于确定CCA时间。初始CCA时间的起始时刻由UE产生上行缓存数据后确定,扩展CCA时间的起始时刻为初始CCA时间之后或信道占用时间之后。该第一指示信息为基站在授权频段上发送的RRC信令。
S603、向基站发送上行SR信令之后,接收基站发送的第二指示信息,以获得初始CCA时间的起始时刻;或者,向所述基站发送第三指示信息,以指示基站初始CCA时间的起始时刻。
若在非授权频段上的LBT机制为基于负载的LBT机制,初始CCA时间的起始时刻由UE产生上行缓存数据后确定,基站无法获知初始CCA时间的起始时刻,扩展CCA时间长度由UE在1到q之间随机选取的整数N决定,基站也无法获知扩展CCA时间长度。UE可通过上行调度请求SR告知基站需要开始监听非授权信道,由基站确定所述UE的初始CCA时间的起始时刻,基站将所述初始CCA时间的起始时刻发送给UE,或由UE确定初始CCA时间的起始时刻后告知基 站。为了基站获得扩展CCA时间长度,UE在扩展CCA时间结束后,可以向基站发送上行数据,以指示基站扩展CCA时间已结束。
具体来说,UE向基站发送上行SR信令以指示基站要开始监听非授权频段的信道,基站确定所述UE的初始CCA时间的起始时刻,向UE发送第二指示信息,该第二指示信息中包含初始CCA时间的起始时刻;该第二指示信息可以是基站在授权频段或非授权频段上发送的MAC CE信令或PDCCH信令。或者,由UE确定初始CCA时间的起始时刻,向所述基站发送第三指示信息,该第三指示信息中包含初始CCA时间的起始时刻,用于基站获得所述初始CCA时间的起始时刻。当结束扩展CCA时间时,向所述基站发送上行数据,以指示所述基站扩展CCA时间已结束。
S604、确定所述扩展CCA时间的起始时刻,当结束扩展CCA时间时,向所述基站发送上行数据,以指示所述基站扩展CCA时间已结束。
UE可以根据以上步骤确定的所述初始CCA时间的起始时刻获得所述扩展CCA时间的起始时刻,扩展CCA时间的起始时刻为初始CCA时间之后或信道占用时间之后。
为了让基站获知扩展CCA时间的结束时刻,当结束扩展CCA时间时,向所述基站发送上行数据,以指示所述基站扩展CCA时间已结束。
S605、根据所述第一指示信息的指示,在所述初始CCA时间和扩展CCA时间醒来,监听非授权频段的信道。
所述第一指示信息用于指示所述UE在初始CCA时间和扩展CCA时间醒来,监听非授权频段的信道。UE根据所述第一指示信息的指示进行非授权频段的信道监听。当基站在非授权频段上为UE配置DRX功能时,UE可根据DRX参数和所述UE的上下行数据传输情况获知所述UE的DRX睡眠时间,所述UE在DRX睡眠时间不监听下行信道。举例来说,根据基站对所述UE的非授权频段 CCA时间的配置,初始CCA时间或扩展CCA时间可能处于所述UE的DRX睡眠时间,当初始CCA时间或扩展CCA时间处于所述UE的DRX睡眠时间时,所述UE打开接收机,以便于监听非授权频段的信道是否空闲;当初始CCA时间或扩展CCA时间处在所述UE的DRX激活时间时,因所述UE在DRX激活时间内已打开接收机,因此只需告知物理层在CCA时间内监听非授权频段的信道。
当初始CCA时间结束后或扩展CCA时间结束后,UE停止监听非授权频段信道,可以发送数据。
可以看出,本发明实施例的技术方案在非授权频段上有效结合了LAA技术中的LBT机制和DRX机制,使用DRX机制能够有效降低UE在非授权频段上的耗电量,同时基站通过第一指示信息指示UE在周期CCA时间醒来,监听非授权信道,使得在DRX睡眠时间UE也能够醒来监听信道,从而让LTE设备和WiFi设备更加公平地共享非授权频段的信道资源。达到了降低UE在非授权频段上工作的耗电量,同时使UE能够有效监听非授权频段的信道的目的。
本发明实施例七提供了一种在非授权频段应用DRX的基站设备,参见图9,所述基站设备a00可包括:
处理单元a10,用于为UE配置非连续接收DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;
发送单元a20,用于将所述DRX参数发送给所述UE;
所述处理单元a10还用于设置所述UE的非授权频段信道CCA时间的信息;
所述发送单元a20还用于向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道;
所述发送单元a20还用于根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送;
若采用基于负载的LBT机制,所述基站设备还可能包括接收单元a30,用于接收UE发送的第三指示信息。
当在授权频段和在非授权频段采用相同的DRX机制时,处理单元a10为所述UE配置一套DRX参数,能够同时控制所述UE在授权频段上和在非授权频度 上的DRX激活状态和DRX睡眠状态;例如,如果在授权频段上发生下行HARQ重传时,UE会启动定时器Drx-Retransmission Timer,在该定时器运行期间,UE在授权频段和非授权频段上同时处于激活状态。
当在授权频段和在非授权频段使用不同的DRX机制时,处理单元a10可以为所述UE两套DRX参数,分别控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,UE在授权频段的On-Duration时间上打开授权频段上的接收机,关闭非授权频段上的接收机,UE在非授权频段的On-Duration时间内打开非授权频段上的接收机,关闭授权频段上的接收机。
若在非授权频段上采用基于帧结构的LBT机制,所述处理单元a10为所述UE配置的CCA时间信息包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度;若在非授权频段上采用基于负载的LBT机制,所述处理单元a10为所述UE配置的CCA时间信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4小于等于32的整数。
处理单元a10配置完CCA时间信息后,由发送单元a20将上述CCA时间的信息通过所述第一指示信息发送给UE,第一指示信息中携带所述UE非授权频段CCA时间的信息,UE从第一指示信息中获知所述非授权频段CCA时间的信息,以便于确定CCA时间。所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道;若非授权频段CCA时间与DRX睡眠时间重叠,UE将在DRX睡眠时间醒来,监听非授权频段的信道。所述第一指示信息为基站在授权频段上发送的RRC信令。
若在非授权频段上的LBT机制为基于负载的LBT机制,初始CCA时间的起始时刻由UE产生上行缓存数据后确定,基站无法获知初始CCA时间的起始时刻,扩展CCA时间长度由取值为1到q之间的随机数N决定,基站也无法获知扩展CCA时间长度。基站设备可通过上行调度请求SR获知UE需要监听非授权信道,由发送单元a20向UE发送指令指示初始CCA时间的起始时刻;或者,由UE确定初始CCA时间的起始时刻后,通过上行指示信息告知基站,以使基站获知所述初始CCA时间的起始时刻。扩展CCA时间起始时刻为所述初始CCA时间之后或信道占用时间之后。处理单元a10可以通过接收单元a30接收UE在扩展 CCA时间结束后发送的上行数据,获得扩展CCA时间结束时刻。处理器a10可使用所述初始CCA时间起始时刻和所述扩展CCA时间起始时刻,结合为所述UE配置的非授权频段CCA时间信息,获得初始CCA时间和扩展CCA时间。
具体来说,当接收到所述UE发送的上行调度请求SR信令时,由处理单元a10确定所述UE的初始CCA时间的起始时刻,通过发送单元a20向所述UE发送第二指示信息,所述第二指示信息用以指示所述UE初始CCA时间的起始时刻;或者,由UE确定所述UE的初始CCA时间的起始时刻,接收单元a30接收所述UE发送的第三指示信息,所述第三指示信息携带初始CCA时间的起始时刻。接收单元a30接收UE在扩展CCA时间结束后发送的上行数据,以使得处理单元a10获得扩展CCA时间结束时刻。
为了保证UE在非授权频段上检测空闲信道的准确性,若所述UE的CCA时间位于所述UE的非授权频段DRX睡眠时间区间,所述发送单元a20在非授权频段上,在所述UE的CCA时间内中止向除所述UE之外其他UE发送数据或信令;若所述UE的CCA时间位于所述UE的非授权频段DRX激活时间区间,所述发送单元a20在非授权频段上,在所述UE的CCA时间内中止向所述UE以及除所述UE之外的其它UE发送数据或信令。
若非授权频段与授权频段采用相同的DRX机制,在授权频段和非授权频段上UE同步进入激活或睡眠状态。因此在所述非授权频段CCA时间内,第一指示信息指示UE在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道。
若非授权频段与授权频段采用不同的DRX机制,在授权频段和非授权频段上UE不用同时进入激活或睡眠状态。第一指示信息指示UE在非授权频段上的CCA时间醒来,监听非授权频段的信道,而在授权频段上可以不醒来监听信道,可以更好地节省电量。
本发明实施例八提供了一种在非授权频段应用DRX的终端设备,参见图10,所述终端设备b00可包括:
接收单元b10,用于接收基站发送的DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间,还用于接收基站发送的第一指示信息,从所述第一指示信息中获得非授权频段CCA时间的信息;
处理单元b20,用于根据所述第一指示信息的指示,使接收机在所述非授权频段CCA时间醒来,监听非授权频段的信道;
若采用基于负载的LBT机制,所述终端设备还包括发送单元b30,用于向基站发送第三指示信息,该第三指示信息包含UE的初始CCA时间的起始时刻。
接收单元b10接收基站发送的DRX参数,UE可根据DRX参数和上下行数据传输情况确定所述UE的DRX激活时间和DRX睡眠时间。
当在授权频段和在非授权频段采用相同的DRX机制时,接收单元b10收到基站为UE配置的一套DRX参数,能够同时控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,如果在授权频段上发生下行HARQ重传时,UE会启动定时器Drx-Retransmission Timer,在该定时器运行期间,UE在授权频段和非授权频段上同时处于激活状态。
当在授权频段和在非授权频段使用不同的DRX机制时,接收单元b10收到基站为UE配置的两套DRX参数,分别控制所述UE在授权频段上和在非授权频度上的DRX激活状态和DRX睡眠状态;例如,UE在授权频段的On-Duration时间上打开授权频段上的接收机,关闭非授权频段上的接收机,UE在非授权频段的On-Duration时间内打开非授权频段上的接收机,关闭授权频段上的接收机。
非授权频段CCA时间的信息由基站配置,包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度。基站配置完成后将上述CCA时间的信息通过第一指示信息发送给UE,以告知所述UE非授权频段CCA时间。接收单元b10从第一指示信息中获得所述非授权频段CCA时间的信息,以便于处理单元b20确定CCA时间。所述第一指示信息用于指示处理单元b20接收机应在所述非授权频段CCA时间醒来,监听非授权频段的信道;若非授权频段CCA时间与DRX睡眠时间重叠,处理单元b20使接收机在DRX睡眠时间醒来,监听非授权频段的信道。所述第一指示信息是基站在授权频段上发送的 RRC信令。
若在非授权频段上采用基于帧结构的LBT机制,接收单元b10收到的基站配置的CCA时间信息包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度;若在非授权频段上采用基于负载的LBT机制,接收单元b10收到基站为所述UE配置的CCA时间信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4小于等于32的整数。
若在非授权频段上的LBT机制为基于帧结构的LBT机制,处理单元b20可通过第一指示信息中的CCA时间信息获得周期CCA时间。若在非授权频段上的LBT机制为基于负载的LBT机制,为了与基站保持同步的CCA时间,所述接收单元b10还需接收基站发送的第二指示信息,所述第二指示信息在向所述基站发送上行SR信令之后接收到,用于处理单元b20获得所述初始CCA时间的起始时刻;或者,由处理单元b20确定所述初始CCA时间的起始时刻,通过发送单元a30向所述基站发送第三指示信息,所述第三指示信息用于指示基站所述初始CCA时间的起始时刻。
当初始CCA时间结束后或当该扩展CCA时间结束后,处理单元b20停止监听非授权频段的信道,发送单元b30可以开始发送数据。通过所述发送单元b30在扩展CCA时间结束时发送上行数据,基站可以获知扩展CCA时间的结束时刻。
若非授权频段与授权频段采用相同的DRX机制,在所述非授权频段CCA时间内,所述处理单元b20使接收机在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道;
若非授权频段与授权频段采用不同的DRX机制,所述处理单元b20使接收机在非授权频段上的CCA时间醒来,监听非授权频段的信道。
本发明实施例又提供了一种在非授权频段应用DRX的基站设备,参见图11,本发明实施例九提供的基站设备c00可包括:至少一个处理器c10、总线c20、与总线相连的至少一个与存储器c30和通信接口c40。
其中,所述存储器c30用于存储计算机执行指令,处理器c10通过总线c20,调用存储器c30中存储的计算机执行指令并执行该指令。接收外部设备发送的 数据时,由所述通信接口c40用于从外部设备接收数据,通过总线c20写入存储器c30,然后由处理器c10对写入存储器d30的数据进行处理;向外部设备发送数据时,处理器c10把处理完成的数据通过总线写入存储器c30,然后通过总线c20把处理完成的数据发送给通信接口c40,最后通信接口c40把所述数据发送给外部设备。以使基站设备执行如实施例四至六及实施例八中的方法。
处理器c10为为UE配置非连续接收DRX参数,通过通信接口c40向UE发送信令以使UE得到的DRX激活时间和DRX睡眠时间。
处理器c10设置所述UE的非授权频段信道CCA时间的信息,通过通信接口c40向所述发送第一指示信息,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道。处理单元c10根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,通过通信接口c40向UE发送数据。若采用基于负载的LBT机制,通信接口c40还可能接收UE发送的第三指示信息。
第一指示信息中携带所述UE非授权频段CCA时间的信息,UE从第一指示信息中获知所述非授权频段CCA时间的信息,以便于确定CCA时间。所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道;若非授权频段CCA时间与DRX睡眠时间重叠,UE将在DRX睡眠时间醒来,监听非授权频段的信道。第一指示信息是基站在授权频段上发送的RRC信令。
若在非授权频段上的LBT机制为基于负载的LBT机制,初始CCA时间的起始时刻由UE产生上行缓存数据后确定,基站无法获知初始CCA时间的起始时刻,扩展CCA时间长度由取值为1到q之间的随机数N决定,基站也无法获知扩展CCA时间长度。当接收到所述UE发送的上行调度请求SR信令时,可以由处理器c10确定所述UE的初始CCA时间的起始时刻,通过通信接口c40向所述UE发送第二指示信息,所述第二指示信息用以指示所述UE初始CCA时间的起始时刻;或者,由UE确定所述UE的初始CCA时间的起始时刻,通信接口c40接收所述UE发送的第三指示信息后交由处理单元处理,所述第三指示信息携带初始CCA时间的起始时刻。通信接口c40接收UE在扩展CCA时间结束时发送的上行数据,以使处理器c10获得所述UE的扩展CCA时间的结束时刻,从而获得 所述UE的扩展CCA时间。
为了保证UE在非授权频段上检测空闲信道的准确性,若所述UE的CCA时间位于所述UE的非授权频段DRX睡眠时间区间,在非授权频段上,处理单元c10可控制通信接口c40在所述UE的CCA时间内中止向除所述UE之外其他UE发送数据或信令;若所述UE的CCA时间位于所述UE的非授权频段DRX激活时间区间,在非授权频段上,处理器c10可控制通信接口c40在所述UE的CCA时间内中止向所述UE以及除所述UE之外的其它UE发送数据或信令。
本发明实施例又提供了一种在非授权频段应用DRX的终端设备,参见图12,本发明实施例十提供的终端设备d00可包括:至少一个处理器d10、总线d20、与总线相连的至少一个与存储器d30和通信接口d40。
其中,所述存储器d30用于存储计算机执行指令,处理器d10通过总线d20,调用存储器d30中存储的计算机执行指令并执行该指令。接收外部设备发送的数据时,由所述通信接口d40用于从外部设备接收数据,通过总线d20写入存储器d30,然后由处理器d10对写入存储器d30的数据进行处理;向外部设备发送数据时,处理器c10把处理完成的数据通过总线写入存储器d30,然后通过总线d20把处理完成的数据发送给通信接口d40,最后通信接口d40把所述数据发送给外部设备。以使终端设备执行如实施例一至三及实施例七中的方法。
通信接口d40接收到基站发送的DRX参数,以使处理器d10由DRX参数得到DRX激活时间和DRX睡眠时间;通信接口d40还接收基站发送的第一指示信息,以使处理器d10从所述第一指示信息中获得非授权频段CCA时间的信息。
处理器d10根据第一指示信息,指示接收机在所述非授权频段CCA时间醒来,监听非授权频段的信道。若采用基于负载的LBT机制,通信接口d10还需要向基站发送第三指示信息,该第三指示信息包含由处理器确定的UE的初始CCA时间的起始时刻。
非授权频段CCA时间的信息由基站配置,包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度。基站配置完成后将上述CCA时间的信息通过第一指示信息发送给UE,以告知所述UE非授权频段CCA时间。通信接口d40从基站接收携带非授权频段CCA时间信息的第一指示信息,以便于处理器d10确定CCA时间。所述第一指示信息用于指示处理器接收机应 在所述非授权频段CCA时间醒来,监听非授权频段的信道;若非授权频段CCA时间与DRX睡眠时间重叠,处理器d10指示接收机在DRX睡眠时间醒来,监听非授权频段的信道。第一指示信息是基站在授权频段上发送的RRC信令。
若在非授权频段上采用基于帧结构的LBT机制,通信接口d40收到的基站配置的CCA时间信息包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度;若在非授权频段上采用基于负载的LBT机制,通信接口d40收到的为所述UE配置的CCA时间信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4小于等于32的整数。
若在非授权频段上的LBT机制为基于帧结构的LBT机制,处理器d10可通过第一指示信息中的CCA时间信息获得周期CCA时间。若在非授权频段上的LBT机制为基于负载的LBT机制,为了UE与基站保持同步的CCA时间,通信接口d40还需接收基站发送的第二指示信息,所述第二指示信息在向所述基站发送上行SR信令之后接收到,用于处理器d10获得所述初始CCA时间的起始时刻;或者,由处理器d10确定所述初始CCA时间的起始时刻,通过通信接口d40向所述基站发送第三指示信息,所述第三指示信息用于指示基站所述初始CCA时间的起始时刻。
当初始CCA时间结束后或当扩展CCA时间结束后,处理器d10令接收机停止监听非授权频段的信道,并可以通过通信接口d40开始发送数据。基站可通过接收到的上行数据,获知扩展CCA时间的结束时刻。
若非授权频段与授权频段采用相同的DRX机制,在所述非授权频段CCA时间内,处理器d10使接收机在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道;
若非授权频段与授权频段采用不同的DRX机制,处理器d10使接收机在非授权频段上的CCA时间醒来,监听非授权频段的信道。
本领域普通技术人员将会理解,本发明的各个方面、或各个方面的可能实现方式可以被具体实施为***、方法或者计算机程序产品。此外,本发明的各方面、或各个方面的可能实现方式可以采用计算机程序产品的形式,计算机程序产品是指存储在计算机可读介质中的计算机可读程序代码。
计算机可读介质可以是计算机可读数据介质或者计算机可读存储介质。计算机可读存储介质包含但不限于电子、磁性、光学、电磁、红外或半导体***、设备或者装置,或者前述的任意适当组合,如随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者快闪存储器)、光纤、便携式只读存储器(CD-ROM)。
计算机中的处理器读取存储在计算机可读介质中的计算机可读程序代码,使得处理器能够执行在流程图中每个步骤、或各步骤的组合中规定的功能动作;生成实施在框图的每一块、或各块的组合中规定的功能动作的装置。
计算机可读程序代码可以完全在用户的计算机上执行、部分在用户的计算机上执行、作为单独的软件包、部分在用户的本的计算机上并且部分在远程计算机上,或者完全在远程计算机或者服务器上执行。也应该注意,在某些替代实施方案中,在流程图中各步骤、或框图中各块所注明的功能可能不按图中注明的顺序发生。例如,依赖于所涉及的功能,接连示出的两个步骤、或两个块实际上可能被大致同时执行,或者这些块有时候可能被以相反顺序执行。
以上对本发明实施例公开的一种非授权频段的数据传输的方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (32)

  1. 一种在非授权频段应用非连续接收DRX的方法,该方法适用于工作在非授权频段的基站设备,其特征在于,包括:
    为用户设备UE配置非连续接收DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;将所述DRX参数发送给所述UE;
    设置所述UE的非授权频段空闲信道检测CCA时间的信息;向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道;
    根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息还用于携带所述UE非授权频段CCA时间的信息,以告知所述UE非授权频段CCA时间。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,包括:
    所述第一指示信息用于指示所述UE在所述非授权频段CCA时间与所述DRX睡眠时间重叠的时间内醒来。
  4. 根据权利要求2所述的方法,其特征在于,所述第一指示信息携带所述UE非授权频段CCA时间的信息,其中,
    若在非授权频段上的LBT机制为基于帧结构的LBT机制,所述非授权频段CCA时间的信息包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度;
    若在非授权频段上的LBT机制为基于负载的LBT机制,所述非授权频段CCA时间的信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间内竞争窗口长度q,其中q为大于等于4并且小于等于32的整数。
  5. 根据权利要求1或2所述的方法,其特征在于,所述向所述UE发送第一指示信息,具体为:通过无线资源控制RRC信令在授权频段向所述UE发送第一指示信息。
  6. 根据权利要求4所述的方法,其特征在于,若在非授权频段上的LBT机制为基于负载的LBT机制,向所述UE发送第一指示信息之后,所述方法还包括:
    当接收到所述UE发送的上行调度请求SR信令时,确定所述UE的初始CCA时间的起始时刻,向所述UE发送第二指示信息,所述第二指示信息用以指示所述UE初始CCA时间的起始时刻;或者,
    接收所述UE发送的第三指示信息,所述第三指示信息用以确定所述UE的初始CCA时间起始时刻;
    所述第二指示信息为在授权频段或非授权频段上发送的媒体接入控制MACCE信令或物理层下行控制信道PDCCH信令。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述UE的初始CCA时间起始时刻,所述方法还包括:
    确定所述UE的扩展CCA时间的起始时刻;
    当收到所述UE的上行数据时,确定所述UE的扩展CCA时间的结束时刻。
  8. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示所述UE在非授权频段CCA时间醒来,监听非授权频段的信道,包括:
    若非授权频段与授权频段采用相同的DRX机制,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间内,在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道;
    若非授权频段与授权频段采用不同的DRX机制,所述第一指示信息用于指示所述UE在非授权频段上的CCA时间醒来,监听非授权频段的信道。
  9. 根据权利要求1所述的方法,其特征在于,所述根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送,包括:
    若所述UE的非授权频段CCA时间位于所述UE的非授权频段DRX睡眠时间区间,在非授权频段上,在所述UE的CCA时间内中止向除所述UE之外其他UE发送数据或信令;
    若所述UE的非授权频段CCA时间位于所述UE的非授权频段DRX激活时间区间,在非授权频段上,在所述UE的CCA时间内中止向所述UE以及除所述 UE之外的其它UE发送数据或信令。
    所述CCA时间包括周期CCA时间、初始CCA时间或扩展CCA时间。
  10. 一种在非授权频段应用DRX的方法,该方法应用于工作在非授权频段的UE,其特征在于,包括:
    接收基站发送的DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;
    接收基站发送的第一指示信息,从所述第一指示信息中获得非授权频段CCA时间的信息;
    根据所述第一指示信息的指示,在所述非授权频段CCA时间醒来,监听非授权频段的信道。
  11. 根据权利要求10所述的方法,其特征在于,所述在所述非授权CCA时间醒来,监听非授权频段的信道,包括:
    在所述非授权频段CCA时间与所述DRX睡眠时间重叠的时间内醒来,监听非授权频段的信道。
  12. 根据权利要求10所述的方法,其特征在于,
    若在非授权频段上的LBT机制为基于帧结构的LBT机制,所述非授权频段CCA时间的信息包括:周期CCA时间偏移、周期CCA时间长度、信道占用时间长度和空闲时间长度;
    若在非授权频段上的LBT机制为基于负载的LBT机制,所述非授权频段CCA时间的信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间内竞争窗口长度q,其中q为大于等于4并且小于等于32的整数。
  13. 根据权利要求10所述的方法,其特征在于,所述接收基站发送的第一指示信息,具体为:通过接收基站在授权频段上发送的RRC信令接收所述第一指示信息。
  14. 根据权利要求12所述的方法,其特征在于,若在非授权频段上的LBT机制为基于负载的LBT机制,从所述第一指示信息中获得非授权频段CCA时间的信息之后,所述方法还包括:
    当向所述基站发送上行SR信令之后,接收基站发送的第二指示信息,以确定所述初始CCA时间的起始时刻;或者,
    确定所述初始CCA时间的起始时刻,向所述基站发送第三指示信息,所述第三指示信息用于指示所述基站所述初始CCA时间的起始时刻;
    所述第二指示信息为基站在授权频段或非授权频段上发送的MACCE信令或PDCCH信令。
  15. 根据权利要求14所述的方法,其特征在于,确定所述初始CCA时间的起始时刻之后,所述方法还包括:
    确定所述扩展CCA时间的起始时刻;
    当结束扩展CCA时间时,向所述基站发送上行数据,以指示所述基站扩展CCA时间已结束。
  16. 根据权利要求10所述的方法,其特征在于,在所述非授权CCA时间醒来,监听非授权频段的信道,包括:
    若非授权频段与授权频段采用相同的DRX机制,在所述非授权频段CCA时间内,在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道;
    若非授权频段与授权频段采用不同的DRX机制,在非授权频段上的CCA时间醒来,监听非授权频段的信道。
  17. 一种在非授权频段应用DRX的基站设备,其特征在于,包括:
    处理单元,用于为用户设备UE配置非连续接收DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间;
    发送单元,用于将所述DRX参数发送给所述UE;
    所述处理单元还用于设置所述UE的非授权频段CCA时间的信息;
    所述发送单元还用于向所述UE发送第一指示信息,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间醒来,监听非授权频段的信道;
    所述发送单元还用于根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送。
  18. 根据权利要求17所述的设备,其特征在于,所述第一指示信息还用于携带所述UE非授权频段CCA时间的信息,以告知所述UE非授权频段CCA时间。
  19. 根据权利要求17或18所述的设备,其特征在于,所述第一指示信息用 于指示所述UE在所述非授权频段CCA时间醒来,包括:
    所述第一指示信息用于指示所述UE在所述非授权频段CCA时间与所述DRX睡眠时间重叠的时间内醒来。
  20. 根据权利要求18所述的设备,其特征在于,所述第一指示信息携带所述UE非授权频段CCA时间的信息,其中,
    若在非授权频段上的LBT机制为基于帧结构的LBT机制,所述非授权频段CCA时间的信息包括:周期CCA时间长度、周期CCA时间偏移、信道占用时间长度和空闲时间长度;
    若在非授权频段上的LBT机制为基于负载的LBT机制,所述非授权频段CCA时间的信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间内竞争窗口长度q,其中q为大于等于4并且小于等于32的整数。
  21. 根据权利要求17或18所述的设备,其特征在于,所述发送单元还用于向所述UE发送第一指示信息,包括:
    所述发送单元还用于通过RRC信令在授权频段上向所述UE发送第一指示信息。
  22. 根据权利要求20所述的设备,其特征在于,若在非授权频段上的LBT机制为基于负载的LBT机制,所述配置单元还用于当接收到所述UE发送的上行调度请求SR信令时,确定所述UE的初始CCA时间的起始时刻,
    所述发送单元还用于向所述UE发送第二指示信息,所述第二指示信息用以指示所述UE初始CCA时间的起始时刻;或者,
    所述设备还包括接收单元,用于接收所述UE发送的第三指示信息,所述第三指示信息用以确定初始CCA时间的起始时刻;
    所述第二指示信息为在授权频段或非授权频段上发送的MAC CE信令或PDCCH信令。
  23. 根据权利要求22所述的设备,其特征在于,所述处理单元还用于:
    确定所述UE的扩展CCA时间的起始时刻;
    当收到所述UE的上行数据时,确定所述UE的扩展CCA时间的结束时刻。
  24. 根据权利要求17所述的设备,其特征在于,所述第一指示信息用于指示所述UE在非授权频段CCA时间醒来,监听非授权频段的信道,包括:
    若非授权频段与授权频段采用相同的DRX机制,所述第一指示信息用于指示所述UE在所述非授权频段CCA时间内,在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道;
    若非授权频段与授权频段采用不同的DRX机制,所述第一指示信息用于指示所述UE在非授权频段上的CCA时间醒来,监听非授权频段的信道。
  25. 根据权利要求17所述的设备,其特征在于,所述发送单元根据所述UE的非授权频段CCA时间、所述UE的DRX激活时间和DRX睡眠时间,进行数据发送,包括:
    若所述UE的非授权频段CCA时间位于所述UE的非授权频段DRX睡眠时间区间,所述发送单元在非授权频段上,在所述UE的CCA时间内中止向除所述UE之外其他UE发送数据或信令;
    若所述UE的非授权频段CCA时间位于所述UE的非授权频段DRX激活时间区间,所述发送单元在非授权频段上,在所述UE的CCA时间内中止向所述UE以及除所述UE之外的其它UE发送数据或信令。
    所述CCA时间包括周期CCA时间、初始CCA时间或扩展CCA时间。
  26. 一种在非授权频段应用DRX的终端设备,其特征在于,包括:
    接收单元,用于接收基站发送的DRX参数,以得到所述UE的DRX激活时间和DRX睡眠时间,还用于接收基站发送的第一指示信息,从所述第一指示信息中获得非授权频段CCA时间的信息;
    处理单元,用于根据所述第一指示信息的指示,使接收机在所述非授权频段CCA时间醒来,监听非授权频段的信道。
  27. 根据权利要求26所述的设备,其特征在于,所述处理单元使接收机在所述非授权CCA时间醒来,监听非授权频段的信道,包括:
    所述处理单元使接收机在所述非授权频段CCA时间与所述DRX睡眠时间重叠的时间内醒来,监听非授权频段的信道。
  28. 根据权利要求26所述的设备,其特征在于,若在非授权频段上的LBT机制为基于帧结构的LBT机制,所述非授权频段CCA时间的信息包括:周期CCA时间偏移、周期CCA时间长度、信道占用时间长度和空闲时间长度;
    若在非授权频段上的LBT机制为基于负载的LBT机制,所述非授权频段 CCA时间的信息包括:初始CCA时间长度、信道占用时间长度和扩展CCA时间竞争窗口长度q,其中q为大于等于4并且小于等于32的整数。
  29. 根据权利要求26所述的设备,其特征在于,所述接收单元还用于接收基站发送的第一指示信息,包括:
    所述接收单元还用于通过接收所述基站在授权频段上发送的RRC信令,接收所述基站发送的第一指示信息。
  30. 根据权利要求28所述的设备,其特征在于,若在非授权频段上的LBT机制为基于负载的LBT机制,所述接收单元还用于,当向所述基站发送上行SR信令之后,接收基站发送的第二指示信息,以确定所述初始CCA时间的起始时刻;或者,
    所述处理单元还用于,确定所述初始CCA时间的起始时刻,所述设备还包括发送单元,用于向所述基站发送第三指示信息,所述第三指示信息用于指示所述基站所述初始CCA时间的起始时刻;
    所述第二指示信息为基站在授权频段或非授权频段上发送的MAC CE信令或PDCCH信令。
  31. 根据权利要求30所述的设备,其特征在于,
    所述处理单元还用于,确定所述扩展CCA时间的起始时刻;
    所述发送单元还用于,当结束扩展CCA时间时,向所述基站发送上行数据,以指示所述基站扩展CCA时间已结束。
  32. 根据权利要求26所述的设备,其特征在于,所述处理单元用于在所述非授权CCA时间醒来,监听非授权频段的信道,包括:
    若非授权频段与授权频段采用相同的DRX机制,在所述非授权频段CCA时间内,所述处理单元用于使接收机在授权频段上和非授权频段上同时醒来,监听非授权频段的信道和授权频段的信道;
    若非授权频段与授权频段采用不同的DRX机制,所述处理单元用于使接收机在非授权频段上的CCA时间醒来,监听非授权频段的信道。
PCT/CN2015/082959 2015-04-10 2015-06-30 一种在非授权频段应用drx的方法及装置 WO2016161708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510170648.8A CN104812032B (zh) 2015-04-10 2015-04-10 一种在非授权频段应用drx的方法及装置
CN201510170648.8 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016161708A1 true WO2016161708A1 (zh) 2016-10-13

Family

ID=53696391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082959 WO2016161708A1 (zh) 2015-04-10 2015-06-30 一种在非授权频段应用drx的方法及装置

Country Status (2)

Country Link
CN (1) CN104812032B (zh)
WO (1) WO2016161708A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201584A1 (zh) * 2017-05-03 2018-11-08 华为技术有限公司 基于竞争的传输方法和设备
CN109644454A (zh) * 2018-11-27 2019-04-16 北京小米移动软件有限公司 终端唤醒控制方法、装置及存储介质
CN110495242A (zh) * 2019-06-28 2019-11-22 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置
WO2020030175A1 (zh) * 2018-08-10 2020-02-13 中兴通讯股份有限公司 接收配置和控制方法、装置、终端、基站及存储介质
CN111436100A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 通信方法和装置
CN112335322A (zh) * 2018-08-09 2021-02-05 松下电器(美国)知识产权公司 涉及改进的非授权小区的不连续接收的用户设备和基站

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10201016B2 (en) * 2015-02-18 2019-02-05 Qualcomm Incorporated Techniques for cell access using an unlicensed radio frequency spectrum band
CN105634859B (zh) * 2015-07-31 2019-08-02 宇龙计算机通信科技(深圳)有限公司 基于负载的lbt信道检测方法及***、基站和终端
CN106454881B (zh) * 2015-08-06 2021-05-11 中兴通讯股份有限公司 数据发送、接收方法及装置
CN106455117B (zh) * 2015-08-07 2021-07-23 中兴通讯股份有限公司 一种竞争接入方法和装置
CN106454854A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 一种非授权频谱的频谱共享方法和装置
WO2017026981A1 (en) 2015-08-13 2017-02-16 Intel IP Corporation Energy detection threshold adaptation for licensed assisted access of lte in unlicensed band
CN107113636B (zh) * 2015-08-14 2020-12-15 华为技术有限公司 一种确定信道质量的方法及装置
CN107079520A (zh) * 2015-08-14 2017-08-18 华为技术有限公司 基站在授权频谱辅助接入小区中的数据传输方法及基站
CN105050190B (zh) * 2015-08-14 2018-11-30 宇龙计算机通信科技(深圳)有限公司 基于非授权频段的发现参考信号配置方法、装置和基站
RU2679897C1 (ru) * 2015-08-14 2019-02-14 Телефонактиеболагет Лм Эрикссон (Пабл) Конфигурация доступа к каналу
CN106257959B (zh) * 2015-08-19 2020-04-14 北京智谷技术服务有限公司 确定信道占用的方法和装置
CN106559906B (zh) * 2015-09-21 2021-11-02 中兴通讯股份有限公司 数据传输方法、指示信息的发送方法及装置
CN115426657A (zh) * 2015-09-25 2022-12-02 中兴通讯股份有限公司 一种确定lbt模式的方法、装置和实现lbt模式切换的方法
CN106559882B (zh) * 2015-09-25 2021-12-10 中兴通讯股份有限公司 一种授权协助接入设备竞争接入参数配置的方法及装置
CN105338651A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 配置有defer period的信道检测方法及装置
CN105338652B (zh) * 2015-09-25 2019-02-01 宇龙计算机通信科技(深圳)有限公司 基于竞争窗口的信道检测方法及装置
CN111526528B (zh) * 2015-10-28 2024-04-05 中兴通讯股份有限公司 竞争窗调整方法和装置
CN107113873B (zh) * 2015-10-30 2020-07-31 诸暨市元畅信息技术咨询服务部 一种上行数据传输方法及ue
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及***
CN105611540A (zh) * 2015-12-17 2016-05-25 深圳市金立通信设备有限公司 一种信道检测的控制方法及相关设备
CN105682101B (zh) * 2016-01-05 2019-03-08 宇龙计算机通信科技(深圳)有限公司 一种信道占用的判决方法及判决装置
CN106961742B (zh) * 2016-01-08 2019-06-28 上海朗帛通信技术有限公司 一种上行laa的通信方法和装置
US10368372B2 (en) * 2016-01-12 2019-07-30 Qualcomm Incorporated Listen-before-talk techniques for uplink transmissions
CN106992847B (zh) 2016-01-20 2021-01-26 中兴通讯股份有限公司 上行数据发送、接收方法、装置、终端及基站
CN105722097B (zh) * 2016-01-21 2017-09-08 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测装置和终端
WO2017132829A1 (zh) * 2016-02-02 2017-08-10 华为技术有限公司 数据传输的方法、用户设备和基站
US10687288B2 (en) 2016-02-02 2020-06-16 Qualcomm Incorporated Synchronization across transmitting nodes using shared radio frequency spectrum
US10045376B2 (en) 2016-02-16 2018-08-07 Mediatek Inc. Channel access procedure and QoS provisioning for uplink LAA
US10292182B2 (en) 2016-02-16 2019-05-14 Hfi Innovation Inc. Listen before talk channel access procedure for uplink LAA
CN105827253B (zh) * 2016-03-30 2017-08-15 维沃移动通信有限公司 一种射频信号接收装置及移动终端
CN107295672B (zh) * 2016-03-30 2023-04-07 中兴通讯股份有限公司 上行cca检测方法及装置、终端
CN107294663B (zh) * 2016-03-31 2020-07-21 展讯通信(上海)有限公司 上行传输的harq反馈方法、装置及接收方法
CN108886807B (zh) 2016-04-01 2021-01-15 华为技术有限公司 发送上行信息的方法和装置及接收上行信息的方法和装置
CN107318171B (zh) * 2016-04-26 2020-03-27 北京佰才邦技术有限公司 一种上行传输方法、装置、用户终端及基站
CN106130701B (zh) * 2016-07-14 2019-08-02 宇龙计算机通信科技(深圳)有限公司 非授权频段上的harq进程传输方法及装置、基站和终端
WO2018076307A1 (en) * 2016-10-29 2018-05-03 Huawei Technologies Co., Ltd. Methods and systems for access to unlicensed spectrum by transmit points
US10225798B2 (en) * 2016-12-12 2019-03-05 Qualcomm Incorporated Techniques and apparatuses for power efficient alignment of CDRX and SC-PTM DRX schedules
CN108696919A (zh) * 2017-02-15 2018-10-23 华为技术有限公司 一种发送信息的方法和装置及接收信息的方法和装置
CN110463283B (zh) * 2017-05-05 2021-06-22 华为技术有限公司 寻呼指示方法及装置
WO2019127138A1 (zh) * 2017-12-27 2019-07-04 Oppo广东移动通信有限公司 管理定时器的方法和终端设备
CN110461008A (zh) * 2018-05-08 2019-11-15 索尼公司 用户设备、电子设备、无线通信方法和存储介质
KR102408453B1 (ko) * 2018-08-10 2022-06-15 주식회사 케이티 비면허 대역에서 데이터를 송수신하는 방법 및 장치
US11228979B2 (en) 2018-09-20 2022-01-18 Mediatek Singapore Pte. Ltd. Method and apparatus for reducing power consumption with wake-up mechanism in mobile communications
CN110932829B (zh) * 2018-09-20 2022-04-01 维沃移动通信有限公司 非授权频段的传输时间指示方法、网络设备和终端
WO2020092054A1 (en) * 2018-10-30 2020-05-07 Idac Holdings, Inc. Methods for bandwidth part and supplementary uplink operation in wireless systems
JP7226563B2 (ja) * 2019-01-10 2023-02-21 富士通株式会社 ページング機会の構成決定方法、装置及びシステム
CN111294935B (zh) * 2019-01-11 2022-07-29 展讯通信(上海)有限公司 一种初始信号处理方法、设备及存储介质
WO2020155062A1 (zh) * 2019-01-31 2020-08-06 北京小米移动软件有限公司 目标下行信号的接收方法、装置、设备及***
WO2020164031A1 (zh) * 2019-02-13 2020-08-20 富士通株式会社 上行配置方法、上行选择方法及其装置、通信***
CN111972041B (zh) * 2019-03-19 2022-03-11 Oppo广东移动通信有限公司 非授权频谱上非连续接收的方法、设备、芯片及存储介质
EP3958489A4 (en) * 2019-08-15 2022-04-13 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR MONITORING DOWNLINK CONTROL INFORMATION
CN112738903B (zh) * 2019-10-28 2022-08-09 普天信息技术有限公司 Drx实现方法、用户终端及基站
US20240147362A1 (en) * 2019-11-07 2024-05-02 Qualcomm Incorporated Cdrx wakeup signal for unlicensed spectrum
WO2023207576A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 一种通信方法以及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052095A (zh) * 2011-10-11 2013-04-17 普天信息技术研究院有限公司 频谱检测方法和***
WO2015023909A2 (en) * 2013-08-16 2015-02-19 Qualcomm Incorporated Uplink procedures for lte/lte-a communication systems with unlicensed spectrum
CN104469914A (zh) * 2014-12-10 2015-03-25 宇龙计算机通信科技(深圳)有限公司 信道检测方法及***、基站和终端
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102316560A (zh) * 2010-07-06 2012-01-11 中兴通讯股份有限公司 一种动态配置不连续接收的装置及方法
CN103945505B (zh) * 2013-01-23 2017-09-08 中国电信股份有限公司 长期演进***非连续接收参数的配置方法与***
US9949292B2 (en) * 2013-09-11 2018-04-17 Qualcomm Incorporated Coupling uplink and downlink CCA in LTE-U

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052095A (zh) * 2011-10-11 2013-04-17 普天信息技术研究院有限公司 频谱检测方法和***
WO2015023909A2 (en) * 2013-08-16 2015-02-19 Qualcomm Incorporated Uplink procedures for lte/lte-a communication systems with unlicensed spectrum
CN104469914A (zh) * 2014-12-10 2015-03-25 宇龙计算机通信科技(深圳)有限公司 信道检测方法及***、基站和终端
CN104486013A (zh) * 2014-12-19 2015-04-01 宇龙计算机通信科技(深圳)有限公司 信道检测方法、信道检测***、终端和基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Status Report to TSG", 3GPP TSG RAN MEETING #67 RP-150271, 12 March 2015 (2015-03-12), XP050932050 *
HUAWEI; ET AL.: "LS to RANI: Considerations of Introducing Licensed-Assisted Access to Unlicensed Spectrum and Importance of Licensed Spectrum", 3GPP TSG-RAN WG4 MEETING #74 R4-151257, 13 February 2015 (2015-02-13), XP050955847 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201584A1 (zh) * 2017-05-03 2018-11-08 华为技术有限公司 基于竞争的传输方法和设备
CN112335322A (zh) * 2018-08-09 2021-02-05 松下电器(美国)知识产权公司 涉及改进的非授权小区的不连续接收的用户设备和基站
CN112335322B (zh) * 2018-08-09 2024-03-26 松下电器(美国)知识产权公司 涉及改进的非授权小区的不连续接收的用户设备和基站
WO2020030175A1 (zh) * 2018-08-10 2020-02-13 中兴通讯股份有限公司 接收配置和控制方法、装置、终端、基站及存储介质
CN109644454A (zh) * 2018-11-27 2019-04-16 北京小米移动软件有限公司 终端唤醒控制方法、装置及存储介质
CN109644454B (zh) * 2018-11-27 2023-06-30 北京小米移动软件有限公司 终端唤醒控制方法、装置及存储介质
CN111436100A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 通信方法和装置
CN111436100B (zh) * 2019-01-11 2024-04-12 华为技术有限公司 通信方法和装置
CN110495242A (zh) * 2019-06-28 2019-11-22 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置
WO2020258273A1 (zh) * 2019-06-28 2020-12-30 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置
CN110495242B (zh) * 2019-06-28 2023-12-19 北京小米移动软件有限公司 检测非授权频段的方法和检测非授权频段的装置

Also Published As

Publication number Publication date
CN104812032B (zh) 2018-09-07
CN104812032A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2016161708A1 (zh) 一种在非授权频段应用drx的方法及装置
US20230403681A1 (en) Data transmission method, device and terminal
US9185737B2 (en) Method for controlling multiple communication systems to implement communication and user equipment
KR101984848B1 (ko) Lte 라이센스 지원형 액세스 동작에서의 drx 핸들링
WO2016187954A1 (zh) 一种非授权频段信道占用时间的配置方法及装置
JP6381660B2 (ja) 免許不要周波数域がリリースされた後にデータを処理するための方法、およびユーザ機器
TWI399115B (zh) 改善不連續接收功能的方法及通訊裝置
WO2016197366A1 (zh) 一种drx实现方法、配置方法及相关设备
US20160088681A1 (en) Method and apparatus for determining active time of ue
WO2017148214A1 (zh) 非连续接收控制方法及装置
WO2021057319A1 (zh) 信令发送、接收方法及装置、存储介质、基站、终端
CN113711529B (zh) 涉及监视下行链路控制信道的用户设备
WO2014101043A1 (zh) 传输控制方法、传输方法及设备
WO2014134954A1 (zh) 业务数据的传输处理、传输方法及装置
WO2013020401A1 (zh) 一种非连续接收方法及***
WO2021127866A1 (en) Methods for communication, terminal device, network device, and computer readable media
RU2697931C2 (ru) Способ, терминал и система для снижения энергопотребления терминала кластера в широкополосной кластерной системе
WO2017100094A1 (en) Macro and micro discontinuous transmission
WO2021007790A1 (zh) Drx定时器控制方法、装置、终端及存储介质
CN114258162A (zh) 非连续接收的配置方法及装置、终端和可读存储介质
WO2015113199A1 (zh) 一种非连续接收的控制方法及装置
WO2021128341A1 (zh) 非连续接收控制方法、设备及存储介质
WO2017193386A1 (zh) 一种计数方法及装置
WO2016090560A1 (zh) 非连续接收的配置方法、装置以及通信***
CN104871575A (zh) 用于基于cqi掩码处理csi报告的方法、装置及计算机程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888263

Country of ref document: EP

Kind code of ref document: A1