WO2016157931A1 - Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member - Google Patents

Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member Download PDF

Info

Publication number
WO2016157931A1
WO2016157931A1 PCT/JP2016/050758 JP2016050758W WO2016157931A1 WO 2016157931 A1 WO2016157931 A1 WO 2016157931A1 JP 2016050758 W JP2016050758 W JP 2016050758W WO 2016157931 A1 WO2016157931 A1 WO 2016157931A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer packaging
vacuum heat
heat insulating
insulating material
packaging material
Prior art date
Application number
PCT/JP2016/050758
Other languages
French (fr)
Japanese (ja)
Inventor
琢 棟田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2016504821A priority Critical patent/JPWO2016157931A1/en
Publication of WO2016157931A1 publication Critical patent/WO2016157931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • the present invention relates to an outer packaging material for a vacuum heat insulating material capable of forming a vacuum heat insulating material capable of maintaining a heat insulating performance for a long period of time.
  • a vacuum heat insulating material means that a core material is placed in a bag body formed of an outer packaging material, and the inside of the bag body in which the core material is placed is depressurized to be in a vacuum state, and the ends of the bag body are thermally welded and sealed. The core material formed by doing so is sealed with the outer packaging material. Since the convection of the gas is blocked by making the inside of the heat insulating material a vacuum state, the vacuum heat insulating material can exhibit high heat insulating performance. Moreover, in order to maintain the heat insulation performance of a vacuum heat insulating material for a long period, it is necessary to maintain the inside of the bag body formed using the outer packaging material in a high vacuum state for a long time.
  • the outer packaging material is required to have various functions such as a gas barrier property for preventing gas from permeating from the outside and a thermal adhesive property for covering and sealing the core material. Therefore, the outer packaging material is configured as a laminate having a plurality of films having these functional characteristics.
  • a heat welding layer, a gas barrier layer, and a protective layer are laminated, and each layer is bonded via an adhesive or the like (see Patent Documents 1 and 2).
  • Patent Document 1 describes that a two-layer nylon film is used as the outer packaging material for the purpose of preventing the vacuum state from being lowered due to the generation of pinholes in the gas barrier layer by skewering or the like.
  • the present invention has been made in view of the above problems, and has as its main object to provide an outer packaging material for a vacuum heat insulating material capable of forming a vacuum heat insulating material capable of maintaining heat insulating performance for a long period of time.
  • the present inventors have obtained a product (hereinafter sometimes referred to as a function M) of the tensile elastic modulus of the outer packaging material and the cube of the thickness of the outer packaging material.
  • a function M the tensile elastic modulus of the outer packaging material
  • the value is less than or equal to a predetermined range
  • the occurrence of cracks in the gas barrier layer at the bent portion can be remarkably suppressed
  • the value of the function M is higher than that of the predetermined range compared to the bent portion of the outer packaging material.
  • the inventors have found that the number of wrinkles formed in the bent portion substantially parallel to the direction along the direction of formation of the bent portion is increased, and the present invention has been completed.
  • the present invention is an outer packaging material for a vacuum heat insulating material in which a heat welding layer, a gas barrier layer, and a protective layer are laminated in this order, and the tensile elastic modulus of the outer packaging material for vacuum heat insulating material and the outer packaging for vacuum heat insulating material
  • An outer packaging material for a vacuum heat insulating material characterized in that the product of the thickness of the material and the cube of the thickness is 3.0 MPa ⁇ mm 3 or less.
  • the vacuum heat insulating material formed using the vacuum heat insulating material of the present invention is used. At this time, it is possible to suppress the occurrence of cracks in the gas barrier layer at a bent portion or the like formed by bending the end portion where the outer packaging materials for vacuum heat insulating materials are bonded together. Therefore, the outer packaging material for a vacuum heat insulating material can form a vacuum heat insulating material that can maintain heat insulating performance for a long period of time.
  • the tensile elastic modulus of the heat-welded layer is 1.0 GPa or more.
  • the vacuum heat insulating material it is possible to further suppress the occurrence of cracks in the gas barrier layer in a bent portion formed by bending the end portion where the outer packaging materials for the vacuum heat insulating material are bonded together. It is. Moreover, it is because generation
  • the present invention is a vacuum heat insulating material having a core material and an outer packaging material for vacuum heat insulating material that encloses the core material, wherein the outer packaging material for vacuum heat insulating material includes a heat welding layer, a gas barrier layer, and a protective layer.
  • the product of the tensile elastic modulus of the vacuum insulation material outer packaging material and the cube of the thickness of the vacuum insulation material outer packaging material is 3.0 MPa ⁇ mm 3 or less.
  • a vacuum heat insulating material is provided.
  • the vacuum heat insulating material can be maintained for a long period of time because the vacuum heat insulating material is the above-described vacuum heat insulating material of the present invention. It can be formed.
  • the present invention is a device having a heat source part or a heat-retained part in the main body or inside, and a device with a vacuum heat insulating material provided with at least a vacuum heat insulating material, wherein the vacuum heat insulating material encloses the core material and the core material.
  • a vacuum heat insulating material outer packaging material wherein the vacuum heat insulating material outer packaging material is a laminate of a heat welding layer, a gas barrier layer and a protective layer in this order.
  • a product with a vacuum heat insulating material is provided, wherein a product of a tensile elastic modulus and a cube of the thickness of the outer packaging material for a vacuum heat insulating material is 3.0 MPa ⁇ mm 3 or less.
  • the vacuum heat insulating material is the above-described vacuum heat insulating material of the present invention and can maintain the heat insulating performance for a long period of time
  • the heat source portion by the vacuum heat insulating material. Insulating the heat from the heat, it is possible to prevent the temperature of the entire device from becoming high.
  • the temperature state of the heat retaining part can be maintained by the vacuum heat insulating material. Thereby, it can be set as the apparatus which has the high energy saving characteristic which suppressed power consumption.
  • an outer packaging material for a vacuum heat insulating material capable of forming a vacuum heat insulating material capable of maintaining a heat insulating performance for a long period of time.
  • the present invention relates to an outer packaging material for a vacuum heat insulating material, a vacuum heat insulating material using the same, and a device with a vacuum heat insulating material.
  • the outer packaging material for a vacuum heat insulating material, the vacuum heat insulating material, and the device with the vacuum heat insulating material of the present invention will be described.
  • the outer packaging material for vacuum heat insulating material may be abbreviated as “the outer packaging material”.
  • the outer packaging material for vacuum heat insulating material of the present invention is an outer packaging material for a vacuum heat insulating material in which a heat welding layer, a gas barrier layer, and a protective layer are laminated in this order, and the tensile elastic modulus of the outer packaging material for a vacuum heat insulating material and the above
  • the product of the outer packaging material for vacuum heat insulating material and the cube of the thickness is 3.0 MPa ⁇ mm 3 or less.
  • FIG. 1 is a schematic cross-sectional view illustrating an example of the outer packaging material for a vacuum heat insulating material according to the present invention.
  • a vacuum heat insulating outer packaging material 10 according to the present invention is obtained by laminating a heat welding layer 1, a gas barrier layer 2 and a protective layer 3 in this order, and the value of the function M is as follows. 3.0 MPa ⁇ mm 3 or less.
  • FIG. 1 shows an example in which the heat welding layer 1 and the gas barrier layer 2, the gas barrier layer 2, and the protective layer 3 are bonded via an interlayer adhesive 4.
  • FIG. 2 is a schematic cross-sectional view showing an example of a vacuum heat insulating material using the vacuum heat insulating material packaging material of the present invention.
  • the vacuum heat insulating material 20 includes a core material 11 and a vacuum heat insulating material envelope 10 that encloses the core material 11, and the vacuum heat insulating material envelope 10. Is the above-described vacuum insulation material outer packaging material of the present invention, and the two outer packaging materials for vacuum insulation material 10 are opposed to each other so that the respective heat-welded layers 1 face the core material 11 side, and the core is interposed therebetween.
  • the material 11 is disposed, and then one end of the outer periphery of the core material 11 is used as an opening, and the remaining three end portions of the outer packaging materials 10 for the vacuum heat insulating material are heat-welded, whereby the two pieces of the vacuum heat insulating material are used.
  • the core material 11 is vacuumed. It is enclosed in a heat insulating material outer packaging material. Note that the reference numerals in FIG. 2 indicate the same members as those in FIG.
  • FIG. 3 is an explanatory view showing an example of the usage state of the vacuum heat insulating material using the outer packaging material of the present invention, and is a cross-sectional view showing an example in which two vacuum heat insulating materials are used side by side.
  • the two vacuum heat insulating materials 20 are arranged in a state in which a bent portion 13 is formed by bending an end portion 12 of the outer packaging material 10 where the outer packaging materials 10 are bonded to each other.
  • the outer packaging material 10 of the outer packaging material 10 in a plan view of the two vacuum heat insulating materials 20 as compared to the case where the end portions 12 of the ten outer packaging materials 10 bonded together are arranged without being bent. The area ratio occupied by the end portions 12 bonded to each other is reduced.
  • the outer packaging material for vacuum heat insulating material has a value of the function M equal to or lower than a predetermined value. Bending part formed by bending the end part bonded together, the surface of the equipment having a curved surface when the vacuum heat insulating material is used by bending it according to the shape of the equipment having a corner part such as 90 °, for example It is possible to suppress the occurrence of cracks in the gas barrier layer at the bent portion or the like formed when bent along the line. Therefore, the outer packaging material can form a vacuum heat insulating material capable of maintaining the heat insulating performance for a long time.
  • the reason why the occurrence of cracks in the gas barrier layer at the bent portion or the like can be suppressed when the value of the function M is equal to or less than a predetermined value is estimated as follows.
  • the object has a property of tensile elastic modulus E
  • the shape is a cuboid having a width b and a thickness h
  • the position where the stress F is applied is a cuboid.
  • the value of the function M is smaller, the amount of deformation when the same stress is applied becomes larger and becomes an index of the softness of the outer packaging material. Therefore, the value of the function M being equal to or less than a predetermined value indicates that the outer packaging material has a predetermined flexibility. Further, as described above, when the value of the function M is equal to or less than a predetermined value, the bent portion is bent when the outer packaging material is bent as compared with a value of the function M that is larger than a predetermined value. In addition, the number of wrinkles formed substantially in parallel with the direction along the formation direction of the bent portion increases.
  • the outer packaging material when the value of the function M is larger than a predetermined value and the outer packaging material is a hard material, the outer packaging material cannot be bent unless a strong stress is applied, and the gas barrier layer If there is even one weak point, stress concentrates and cracks occur at one point to bend, whereas the value of the function M is equal to or less than a predetermined value, In the case of a soft material, since the outer packaging material can be bent with a small stress, even if the gas barrier layer has a weak portion, the gas barrier layer can be bent at other portions without stress concentrating on the weak portion. It is possible to disperse the stress concentration.
  • the stress is dispersed at a plurality of locations and bending occurs at many locations.
  • the number of wrinkles formed at the bent portion is the value of the function M. Is larger than a value larger than a predetermined value.
  • FIG. 4 when the number of bent portions (wrinkles) 13 a in the bent portion 13 is small compared to the case where the bent portions (wrinkles) 13 a in the bent portion 13 are small (FIG. 4A).
  • FIG. 4B shows that the bending angle ⁇ at each bent portion (wrinkle) 13a is small, so that the stress applied to the gas barrier layer at each bent portion (wrinkle) is reduced. Can do. From this point of view, the generation of cracks in the gas barrier layer at the bent portion or the like can be suppressed.
  • the outer packaging material for a vacuum heat insulating material of the present invention has at least a heat welding layer, a gas barrier layer, and a protective layer.
  • a heat welding layer for vacuum heat insulating materials of this invention.
  • the vacuum insulation outer packaging material of the present invention has a function M value of 3.0 MPa ⁇ mm 3 or less.
  • the value of the function M that is, the product of the tensile modulus of the outer packaging material and the cube of the thickness of the outer packaging material is not particularly limited as long as it is 3.0 MPa ⁇ mm 3 or less. It is preferably within the range of 5 MPa ⁇ mm 3 to 2.5 MPa ⁇ mm 3 , and particularly preferably within the range of 0.5 MPa ⁇ mm 3 to 2.0 MPa ⁇ mm 3 , and particularly 0.5 MPa It is preferable to be in the range of mm 3 to 1.0 MPa ⁇ mm 3 . This is because the occurrence of cracks in the gas barrier layer can be more effectively suppressed when the value of the function M is within the above range.
  • the tensile elastic modulus of the outer packaging material is not particularly limited as long as the value of the function M can be a predetermined value or less, but is preferably in the range of 1500 MPa to 5000 MPa. However, it is preferably in the range of 2000 MPa to 4000 MPa, and particularly preferably in the range of 2500 MPa to 3500 MPa. This is because it is easy to set the value of the function M to a predetermined value or less.
  • the tensile modulus was measured in accordance with JIS K7161, after the outer packaging material was cut into a strip shape having a width of 15 mm and a length of 120 mm, and then a distance between chucks of 100 mm and a tensile speed of 100 mm / A method of measuring the tensile modulus in min can be used.
  • the tensile elastic modulus can be measured at 23 ° C. and 55% humidity.
  • a tensile tester for example, a tensile tester (Tensilon universal tester RTC-1250A) can be used.
  • the said tensile elastic modulus is performed using a minimum of 5 test pieces, and the average value of the obtained 5 or more tensile elastic moduli can be used.
  • the said tensile elasticity modulus is the average value of each tensile elasticity modulus of a longitudinal direction (winding direction) and the transversal direction (width direction) orthogonal to a longitudinal direction, when the said outer packaging material is elongate. Can be used.
  • the thickness of the outer packaging material in the function M refers to the thickness of the outer packaging material per sheet.
  • the thickness used for the calculation of M refers to the thickness of the single outer packaging material.
  • the heat-welded layer in the present invention is a portion in contact with the core material in the vacuum heat insulating material. Moreover, it is a site
  • thermoplastic resin As the material for the heat-welding layer, a thermoplastic resin is preferable because it can be melted and fused by heating.
  • polyethylene such as linear short-chain branched polyethylene, unstretched polypropylene (CPP), and the like are preferable.
  • the material is preferably linear short chain branched polyethylene, unstretched polypropylene or polybutylene terephthalate, and particularly preferably polybutylene terephthalate. This is because, when the material is the resin described above, when the vacuum heat insulating material is formed, the generation of cracks in the gas barrier layer can be further suppressed at the end where the outer packaging materials are bonded together. .
  • the heat-welded layer may contain other materials such as an anti-blocking agent, a lubricant, a flame retardant, and an organic filler.
  • the melting point of the heat-welded layer is preferably, for example, in the range of 80 ° C. to 300 ° C., and more preferably in the range of 100 ° C. to 250 ° C.
  • the tensile modulus of the heat-welded layer is not particularly limited as long as the value of the function M can be set to a predetermined value or less, but is preferably 1.0 GPa or more. However, it is preferably in the range of 1.0 GPa to 5.0 GPa, and particularly preferably in the range of 1.5 GPa to 4.0 GPa.
  • the thermal insulation layer has a tensile elastic modulus within the above range, the formation of the vacuum heat insulating material further suppresses the occurrence of cracks in the gas barrier layer at the end where the outer packaging materials are bonded together. Because it can be done.
  • the tensile elastic modulus of the two layers sandwiching the gas barrier layer adjacent to each other is preferably within a predetermined range
  • the tensile elastic modulus of the thermally welded layer is within the above range.
  • the thickness of the heat-welded layer is preferably, for example, in the range of 20 ⁇ m to 100 ⁇ m, more preferably in the range of 25 ⁇ m to 90 ⁇ m, and particularly preferably in the range of 30 ⁇ m to 80 ⁇ m.
  • the thickness of the heat-welded layer is larger than the above range, the gas barrier property of the outer packaging material may be lowered.
  • the thickness is smaller than the above range, the adhesive force may not be obtained.
  • Gas barrier layer The gas barrier layer in this invention is a site
  • the gas barrier layer examples include a metal foil such as aluminum, nickel, stainless steel, iron, copper, and titanium, a vapor deposition film in which an inorganic substance such as metal, metal oxide, and silicon oxide is vapor-deposited on one side of the resin film, and polyvinyl on the vapor deposition film.
  • a metal foil such as aluminum, nickel, stainless steel, iron, copper, and titanium
  • a vapor deposition film in which an inorganic substance such as metal, metal oxide, and silicon oxide is vapor-deposited on one side of the resin film
  • polyvinyl on the vapor deposition film examples of the gas barrier layer.
  • the gas barrier layer is preferably a metal foil, and more preferably an aluminum foil. This is because the effect of the present invention that the generation of cracks can be suppressed can be more effectively exhibited.
  • the gas barrier layer may be a single layer, or a multilayer body in which layers made of the same material or layers made of different materials are laminated.
  • the gas barrier layer may be subjected to surface treatment such as corona discharge treatment from the viewpoint of improving gas barrier performance and adhesion with other layers.
  • the thickness of the gas barrier layer is, for example, preferably in the range of 2 ⁇ m to 50 ⁇ m, and more preferably in the range of 5 ⁇ m to 12 ⁇ m. If the thickness of the gas barrier layer is smaller than the above range, pinholes and the like are likely to occur at the bent portion, and the gas barrier property may be lowered. On the other hand, if the thickness is larger than the above range, the outer packaging material of the present invention is used. This is because heat bridges are likely to occur in the vacuum heat insulating material formed in this way, and the heat insulating performance may be reduced.
  • oxygen permeability is preferably not more than 0.5cc ⁇ m -2 ⁇ day -1, is among others 0.1cc ⁇ m -2 ⁇ day -1 or less . It is preferable that water vapor permeability is not more than 0.2cc ⁇ m -2 ⁇ day -1, is preferably Among them 0.1cc ⁇ m -2 ⁇ day -1 or less.
  • oxygen and water vapor permeability of the gas barrier layer is within the above-described range, it is possible to make it difficult for moisture, gas, and the like that have permeated from the outside to penetrate into the inner core material.
  • the oxygen permeability can be a value measured using an oxygen permeability measuring device under conditions of a temperature of 23 ° C. and a humidity of 60% RH based on JIS-K-7126B.
  • Examples of the oxygen permeability measuring device include OXTRAN manufactured by MOCON (USA).
  • the water vapor transmission rate can be measured using a water vapor transmission rate measuring device under conditions of a temperature of 40 ° C. and a humidity of 90% RH.
  • PERMATRAN manufactured by MOCON (USA) can be used as the water vapor permeability measuring apparatus.
  • the said protective layer is a site
  • the protective layer has sufficient strength to protect the inside of the vacuum heat insulating material when the vacuum heat insulating material is formed using the outer packaging material of the present invention, and has heat resistance, moisture resistance, and pin hole resistance. It is preferable that it has excellent puncture resistance and the like.
  • the protective layer is not particularly limited as long as it uses a resin having a melting point higher than that of the heat welding layer, and may be in the form of a sheet or a film.
  • Examples of such a protective layer include sheets or films of nylon resin, polyester resin, polyamide resin, polypropylene resin, and the like.
  • the protective layer may be a single layer or may be a multilayer formed by laminating layers made of the same material or layers made of different materials.
  • the protective layer may be subjected to a surface treatment such as a corona discharge treatment from the viewpoint of improving the adhesion with other layers.
  • the thickness of the protective layer is not particularly limited as long as it can protect the heat-welded layer and the gas barrier layer, but is generally in the range of 5 ⁇ m to 80 ⁇ m.
  • outer packaging material for vacuum heat insulating material In the outer packaging material of the present invention, the layers constituting the outer packaging material may be laminated in direct contact with each other, or may be laminated via an interlayer adhesive. About an interlayer adhesive agent, the adhesive agent generally used for the outer packaging material for vacuum heat insulating materials can be used.
  • the outer packaging material may have a plurality of protective layers or gas barrier layers.
  • two or more gas barrier layers may be provided between the thermal welding layer and the protective layer, and the first protective layer and the second protective layer are provided on the thermal welding layer and the gas barrier layer.
  • Two or more protective layers may be provided.
  • the outer packaging material may be provided with an inner surface side protective layer between the heat welding layer and the gas barrier layer.
  • the outer packaging material may have an arbitrary layer such as an anchor coat layer or a pinhole-resistant layer. In this invention, it is preferable that the said outer packaging material does not contain the said inner surface side protective layer between the said heat welding layer and the said gas barrier layer. This is because the layer structure of the outer packaging material can be reduced, and the value of the function M can be easily set to a predetermined value or less.
  • the tensile elastic modulus of the two layers sandwiching the gas barrier layer adjacent to each other of the outer packaging material is not particularly limited as long as the value of the function M is a predetermined value or less, but is 1.0 GPa. It is preferably in the range of ⁇ 5.0 GPa, more preferably in the range of 1.5 GPa to 5.0 GPa, and particularly preferably in the range of 2.0 GPa to 4.5 GPa.
  • the difference in tensile elastic modulus between the gas barrier layer and the two layers sandwiching the gas barrier layer is reduced by the tensile modulus of elasticity between the two layers sandwiching the gas barrier layer adjacent to each other. As a result, the occurrence of cracks in the gas barrier layer can be more effectively suppressed.
  • the two layers sandwiching the gas barrier layer adjacent to each other specifically include a thermal welding layer and a protective layer when the outer packaging material has a layer configuration of a thermal welding layer / gas barrier layer / protective layer.
  • the outer packaging material has a layer configuration of a thermal welding layer / gas barrier layer / first protective layer / second protective layer
  • the outer packaging material refers to the thermal welding layer and the first protective layer.
  • the material has a layer configuration of a heat-welded layer / an inner surface protective layer / a gas barrier layer / a protective layer, it refers to an inner surface protective layer and a protective layer.
  • the two layers sandwiching the gas barrier layer adjacent to each other do not include an interlayer adhesive that bonds the gas barrier layer to each layer.
  • the film thickness of the outer packaging material is not particularly limited as long as the value of the function M can be equal to or less than a predetermined value. For example, it is preferably in the range of 30 ⁇ m to 200 ⁇ m. , Preferably in the range of 50 ⁇ m to 150 ⁇ m.
  • the tensile strength of the outer packaging material is preferably 50N or more, and more preferably 80N or more. This is because breakage or the like is less likely to occur when the vacuum heat insulating material formed using the outer packaging material of the present invention is bent.
  • the tensile strength is a value measured based on JIS-Z-1707.
  • the method of laminating the outer packaging material is not particularly limited as long as it is a method that can laminate each layer so that one outermost layer has a protective layer and the other outermost layer has a heat-welded layer, A known method can be used.
  • the lamination method include a dry lamination method in which each layer formed in advance is bonded using the above-described interlayer adhesive, and each material of the heat-melted protective layer and gas barrier layer is extruded using a T die or the like.
  • Examples of the method include bonding, and a method of bonding a heat-welded layer to the obtained laminate through an interlayer adhesive.
  • the vacuum heat insulating material of the present invention includes a core material and an outer packaging material for vacuum heat insulating material that encloses the core material, and the outer packaging material for vacuum heat insulating material includes a heat welding layer, a gas barrier layer, and a protective layer.
  • the product of the tensile elastic modulus of the outer packaging material for vacuum heat insulating material and the cube of the thickness of the outer packaging material for vacuum heat insulating material is 3.0 MPa ⁇ mm 3 or less. It is characterized by.
  • the vacuum heat insulating material of the present invention can be the same as that already illustrated in FIG.
  • the vacuum insulation material is a vacuum insulation material that can maintain heat insulation performance for a long period of time because the vacuum insulation material is the vacuum insulation material of the present invention described above. Can be possible.
  • the vacuum heat insulating material of the present invention has at least a vacuum heat insulating material envelope and a core material.
  • the vacuum heat insulating material of this invention is demonstrated for every structure.
  • the vacuum insulation material outer packaging material of the present invention encloses the core material.
  • the said outer packaging material for vacuum heat insulating materials is the above-mentioned outer packaging material for vacuum heat insulating materials of this invention.
  • Such an outer packaging material for a vacuum heat insulating material can be the same as the contents described in the section of “A. Outer packaging material for a vacuum heat insulating material”, and thus description thereof is omitted here.
  • enclosing means sealing inside the bag formed using the said outer packaging material.
  • Core material The core material in this invention is enclosed with the said outer packaging material for vacuum heat insulating materials.
  • the core material preferably has a low thermal conductivity.
  • the core material is preferably a porous material having a porosity of 50% or more, particularly 90% or more.
  • the powder may be either inorganic or organic, and for example, dry silica, wet silica, agglomerated silica powder, conductive powder, calcium carbonate powder, perlite, clay, talc and the like can be used.
  • dry silica, wet silica, agglomerated silica powder, conductive powder, calcium carbonate powder, perlite, clay, talc and the like can be used.
  • a mixture of dry silica and conductive powder is advantageous when used in a temperature range in which an increase in internal pressure occurs because deterioration in heat insulation performance associated with an increase in internal pressure of the vacuum heat insulating material is small.
  • the infrared absorptivity of the core material can be reduced.
  • examples of the foam include urethane foam, styrene foam, phenol foam, and the like. Among these, a foam that forms open cells is preferable.
  • the fiber body may be inorganic fiber or organic fiber, but it is preferable to use inorganic fiber from the viewpoint of heat insulation performance.
  • inorganic fibers include glass fibers such as glass wool and glass fibers, alumina fibers, silica alumina fibers, silica fibers, ceramic fibers, and rock wool. These inorganic fibers are preferable in that they have low thermal conductivity and are easier to handle than powders.
  • the core material may be the above-mentioned material alone or a composite material in which two or more materials are mixed.
  • Vacuum heat insulating material The vacuum heat insulating material of this invention seals the inside enclosed with the said outer packaging material for vacuum heat insulating materials under reduced pressure, and makes it a vacuum state.
  • the degree of vacuum inside the vacuum heat insulating material is preferably 5 Pa or less.
  • the heat insulation of the said vacuum heat insulating material is low, for example, it is preferable that the heat conductivity (initial heat conductivity) in 25 degreeC of the said vacuum heat insulating material is 15 mW / m * K or less. However, it is preferably 10 mW / m ⁇ K or less, and particularly preferably 5 mW / m ⁇ K or less. This is because by setting the heat conductivity of the vacuum heat insulating material within the above range, the vacuum heat insulating material is less likely to conduct heat to the outside, and therefore, a high heat insulating effect can be achieved.
  • the rate of decrease in the thermal conductivity of the vacuum heat insulating material after 1000 hours of degradation at 130 ° C. with respect to the initial thermal conductivity of the vacuum heat insulating material is preferably 20% or less, and more preferably 10% or less. Preferably there is.
  • the thermal conductivity can be a value measured by a heat flow meter method using a thermal conductivity measuring device according to JIS-A-1412-3. Examples of the thermal conductivity measuring device include a thermal conductivity measuring device Auto Lambda (product name: HC-074, manufactured by Eihiro Seiki Co., Ltd.).
  • the vacuum heat insulating material preferably has a high gas barrier property. This is because it is possible to prevent a decrease in the degree of vacuum due to intrusion of moisture, oxygen, and the like from the outside.
  • the gas barrier property of the vacuum heat insulating material is the same as the oxygen permeability and water vapor permeability described in the above-mentioned section of “A. Outer packaging material for vacuum heat insulating material 3. Gas barrier layer”, and the description thereof is omitted here. To do.
  • Manufacturing method As a manufacturing method of the vacuum heat insulating material of the present invention, a general method can be used.
  • the outer packaging material of the present invention described above is prepared in advance, the two outer packaging materials are opposed to each other so that the respective heat-welded layers face each other, the core material is disposed therebetween, and the above-mentioned by a bag making machine or the like.
  • Prepare a bag body that is formed of the two outer packaging materials by placing one of the outer circumferences of the core material as an opening and heat-welding the ends of the remaining three outer packaging materials, and in which the core material is arranged.
  • the bag body is attached to a vacuum sealing machine, and the opening is sealed in a state where the internal pressure of the bag body is reduced, whereby the core material is sealed with the outer packaging material. Is obtained. Further, in the above manufacturing method, one outer packaging material is opposed so that the heat-welded layer faces inward, the core material is disposed therebetween, and one of the outer circumferences of the core material is opened by a bag making machine or the like.
  • a bag body formed of one outer packaging material and having the core material disposed therein is prepared, and then the bag body Even in a method of obtaining a vacuum heat insulating material in which the core material is enclosed by the outer packaging material by sealing the opening in a state where the internal pressure of the bag body is reduced, while mounting the vacuum sealing machine. good.
  • the vacuum heat insulating material of the present invention has low thermal conductivity and is excellent in heat insulating properties and durability even at high temperatures. Therefore, the said vacuum heat insulating material can be used for the site
  • Applications of the present invention include, for example, equipment described in “C. Equipment with Vacuum Thermal Insulating Material”, cooler box, transportation container, fuel tank such as hydrogen, system bath, hot water tank, heat insulation box, residential wall, automobile, An airplane, a ship, a train, etc. are mentioned.
  • a device with a vacuum heat insulating material of the present invention is a device having a heat source part or a heat retaining portion in the main body or inside, and a device with a vacuum heat insulating material provided with at least a vacuum heat insulating material, wherein the vacuum heat insulating material is a core material, A vacuum heat insulating material enclosing material that encloses the core material, and the vacuum heat insulating material enclosing material is formed by laminating a heat welding layer, a gas barrier layer, and a protective layer in this order, and the vacuum
  • the product of the tensile elastic modulus of the outer packaging material for heat insulating material and the cube of the thickness of the outer packaging material for vacuum heat insulating material is 3.0 MPa ⁇ mm 3 or less.
  • the “heat source section” refers to a portion that generates heat in the apparatus main body or inside the apparatus when the apparatus itself is driven, such as a power source or a motor.
  • the “insulated part” refers to a part that does not have a heat source part in the apparatus main body or inside, but the apparatus is heated by receiving heat from an external heat source.
  • the vacuum heat insulating material is the above-described vacuum heat insulating material of the present invention, and can maintain heat insulating performance for a long period of time.
  • the temperature of the heat retaining portion can be maintained by the vacuum heat insulating material.
  • it can be set as the apparatus which has the high energy saving characteristic which suppressed power consumption.
  • vacuum heat insulating material in the present invention is the same as the content described in the above-mentioned section “B. Vacuum heat insulating material”, description thereof is omitted here.
  • the device in the present invention has a main body or a heat source part or a heat-retained part inside the main body, and in particular, at least a heat source part or a heat-retained part that reaches a high temperature in the range of 100 ° C. to 150 ° C. What has is preferable.
  • the device in the present invention include, for example, natural refrigerant heat pump water heater (registered trademark “Ecocute”), refrigerator, vending machine, rice cooker, pot, microwave oven, commercial oven, IH cooking heater, electrical appliances such as OA equipment, Examples include automobiles.
  • the said apparatus uses the above-mentioned vacuum heat insulating material of this invention for a natural refrigerant
  • a vacuum heat insulating material may be directly attached to a heat source portion or a heat retaining portion of the device, and a vacuum heat insulating material between the heat retaining portion and the heat source portion or an external heat source. It may be mounted so as to sandwich it.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • outer packaging material Prepared on the easy-adhesion surface of a 35 ⁇ m-thick nylon film (ON35, product name: Emblem ONBC, manufactured by Unitika Co., Ltd.), which was subjected to easy-adhesion treatment on both sides as a second protective layer, with the above-mentioned blending ratio.
  • the interlayer adhesive was applied using a die coater so as to have an application amount of 3.5 g / m 2 and dried. Thereafter, a 12 ⁇ m-thick PET film (PET12, product name: Emblet PTMB) manufactured by Unitika Co., Ltd. on both surfaces as a first protective layer was applied to the surface of the second protective layer to which the interlayer adhesive was applied. Laminated.
  • an interlayer adhesive was similarly applied at a coating amount of 3.5 g / m 2 on the PET12 (first protective layer) surface of the obtained two-layer film and dried.
  • a gas barrier layer an Al foil (AL6, product name: 1N30 manufactured by Sumikara Aluminum Foil Co., Ltd.) having a film thickness of 6 ⁇ m was laminated on the surface of the first protective layer to which the interlayer adhesive was applied.
  • an interlayer adhesive was similarly applied at an application amount of 3.5 g / m 2 on the AL6 (gas barrier layer) surface of the obtained three-layer film and dried.
  • PET12 was laminated on the surface of AL6 (gas barrier layer) coated with an interlayer adhesive.
  • an interlayer adhesive was similarly applied to the obtained PET 12 (inner surface side protective layer) surface of the four-layer film at a coating amount of 3.5 g / m 2 and dried.
  • An unstretched polypropylene (CPP50, product name: CPP-SC, manufactured by Mitsui Chemicals, Inc.) is laminated on the surface of PET12 (inner surface protective layer) coated with an interlayer adhesive as a heat-welded layer, and the outer packaging material Got.
  • Example 1 An outer packaging material was obtained in the same manner as in Comparative Example 1, except that a 25 ⁇ m-thick nylon film (ON25, manufactured by Unitika Ltd., product name: ONM) with easy adhesion treatment on both sides was used as the second protective layer. It was.
  • ON25 manufactured by Unitika Ltd., product name: ONM
  • Example 2 An outer packaging material was formed in the same manner as in Comparative Example 1 except that the second protective layer was not formed and unstretched polypropylene having a film thickness of 30 ⁇ m (CPP30, product name: CPP manufactured by Mitsui Chemicals, Inc.) was used as the heat welding layer. Got.
  • Example 3 An outer packaging material was obtained in the same manner as in Example 2 except that polybutylene terephthalate (PBT25, manufactured by Unitika Ltd., product name: Emblet P782) having a film thickness of 25 ⁇ m was used as the heat welding layer.
  • PBT25 polybutylene terephthalate
  • Emblet P782 polybutylene terephthalate having a film thickness of 25 ⁇ m
  • Example 4 Packaging as in Example 3 except that a 15 ⁇ m-thick nylon film (ON15, product name: ONM, manufactured by Unitika Co., Ltd.) with easy adhesion treatment applied to both sides was used as the first protective layer and the inner surface side protective layer. The material was obtained.
  • ON15 product name: ONM, manufactured by Unitika Co., Ltd.
  • Example 5 The same procedure as in Example 3 was used except that a PET film having a film thickness of 16 ⁇ m (PET16, manufactured by Unitika Co., Ltd., product name: PET) having both surfaces subjected to easy adhesion treatment was used as the first protective layer, and the inner surface side protective layer was not formed. The outer packaging material was obtained.
  • PET16 manufactured by Unitika Co., Ltd., product name: PET
  • Example 6 An outer packaging material was obtained in the same manner as in Example 5 except that ON25 was used as the first protective layer.
  • Example 7 An outer packaging material was obtained in the same manner as in Example 4 except that a linear short-chain branched polyethylene (LLDPE30, product name: TUX-HCE, manufactured by Mitsui Chemicals, Inc.) having a film thickness of 30 ⁇ m was used as the heat welding layer.
  • LLDPE30 linear short-chain branched polyethylene
  • TUX-HCE product name: Mitsui Chemicals, Inc.
  • Example 8 An outer packaging material was obtained in the same manner as in Example 8 except that ON25 was used as the first protective layer and the inner surface side protective layer.
  • Example 9 An outer packaging material was obtained in the same manner as in Example 8 except that PET12 was used as the first protective layer and the inner surface side protective layer.
  • FIG. 5 shows a graph showing the relationship between the value of the function M of the outer packaging material and the oxygen barrier property result obtained in “2. Evaluation of barrier property” described later.
  • the measuring method of the tensile elastic modulus of the outer packaging material is based on JIS K7161. After the outer packaging material is cut into a strip shape having a width of 15 mm and a length of 120 mm, a tensile tester is used at 23 ° C. and a humidity of 55%.
  • the tensile modulus was measured using a Tensilon universal testing machine RTC-1250A at a distance between chucks of 100 mm and a tensile speed of 100 mm / min. Moreover, the said tensile elasticity modulus was made into the average value of each tensile elasticity modulus of the longitudinal direction and the transversal direction of the said outer packaging material.

Abstract

The purpose of the present invention is to provide an outer packaging member for a vacuum heat-insulating member, the outer packaging member being capable of forming a vacuum heat-insulating member with which it is possible to maintain heat insulation performance over a long period of time. The present invention achieves this purpose by providing an outer packaging member for a vacuum heat-insulating member, with a heat-welding layer, a gas barrier layer, and a protective layer being laminated in the order listed, the outer packaging member for a vacuum heat-insulating member being characterized in that the product of the tensile elasticity of the outer packaging member for a vacuum heat-insulating member and the thickness cubed of the outer packaging member for a vacuum heat-insulating member is 3.0 MPa・mm3 or less.

Description

真空断熱材用外包材、真空断熱材、および真空断熱材付き機器Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation
 本発明は、長期間断熱性能を維持することができる真空断熱材を形成可能な真空断熱材用外包材に関するものである。 The present invention relates to an outer packaging material for a vacuum heat insulating material capable of forming a vacuum heat insulating material capable of maintaining a heat insulating performance for a long period of time.
 近年、地球温暖化防止のため温室効果ガスの削減が推進されており、電気製品や車両、設備機器ならびに建物等の省エネルギー化が求められている。なかでも、消費電力量低減の観点から、電気製品等への真空断熱材の採用が進められている。電気製品等のように本体内部に発熱部を有する機器や、外部からの熱を利用した保温機能を有する機器においては、真空断熱材を備えることにより機器全体としての断熱性能を向上させることが可能となる。このため、真空断熱材の使用により、電気製品等の機器のエネルギー削減の取り組みがなされている。 In recent years, the reduction of greenhouse gases has been promoted to prevent global warming, and there is a demand for energy saving in electrical products, vehicles, equipment and buildings. Among these, from the viewpoint of reducing power consumption, the use of vacuum heat insulating materials for electrical products is being promoted. In equipment that has a heat generating part inside the main body, such as electrical products, and equipment that has a heat retaining function using heat from the outside, it is possible to improve the heat insulation performance of the equipment as a whole by providing a vacuum heat insulating material It becomes. For this reason, efforts are being made to reduce the energy of devices such as electrical products by using vacuum heat insulating materials.
 真空断熱材とは、外包材により形成された袋体に芯材を配置し上記芯材が配置された袋体の内部を減圧して真空状態とし上記袋体の端部を熱溶着して密封することで形成された、上記芯材が上記外包材により封入されているものである。断熱材内部を真空状態とすることにより、気体の対流が遮断されるため、真空断熱材は高い断熱性能を発揮することができる。
 また、真空断熱材の断熱性能を長期間維持するためには、外包材を用いて形成された袋体の内部を長期にわたり高い真空状態に保持する必要がある。そのため、外包材には、外部からガスが透過することを防止するためのガスバリア性、芯材を覆って密着封止するための熱接着性等の種々の機能が要求される。
 したがって、上記外包材は、これらの各機能特性を有する複数のフィルムを有する積層体として構成されるものとなる。一般的な外包材の態様としては、熱溶着層、ガスバリア層および保護層が積層されてなるものであり、各層間は接着剤等を介して貼り合されている(特許文献1および2参照)。
 また、特許文献1では、串刺し等によるガスバリア層へのピンホールの発生による真空状態の低下防止を目的として、上記外包材として、2層のナイロンフィルムを用いていることが記載されている。
A vacuum heat insulating material means that a core material is placed in a bag body formed of an outer packaging material, and the inside of the bag body in which the core material is placed is depressurized to be in a vacuum state, and the ends of the bag body are thermally welded and sealed. The core material formed by doing so is sealed with the outer packaging material. Since the convection of the gas is blocked by making the inside of the heat insulating material a vacuum state, the vacuum heat insulating material can exhibit high heat insulating performance.
Moreover, in order to maintain the heat insulation performance of a vacuum heat insulating material for a long period, it is necessary to maintain the inside of the bag body formed using the outer packaging material in a high vacuum state for a long time. Therefore, the outer packaging material is required to have various functions such as a gas barrier property for preventing gas from permeating from the outside and a thermal adhesive property for covering and sealing the core material.
Therefore, the outer packaging material is configured as a laminate having a plurality of films having these functional characteristics. As an aspect of a general outer packaging material, a heat welding layer, a gas barrier layer, and a protective layer are laminated, and each layer is bonded via an adhesive or the like (see Patent Documents 1 and 2). .
Further, Patent Document 1 describes that a two-layer nylon film is used as the outer packaging material for the purpose of preventing the vacuum state from being lowered due to the generation of pinholes in the gas barrier layer by skewering or the like.
 また、特許文献2では、上記外包材を用いて真空断熱材を形成した際の、上記外包材同士を貼り合わせた端部においてガスバリア層に屈曲の影響が直接及ばないものとすることを目的として、ガスバリア層の両面に引張弾性率の高い保護層を配置することが記載されている。 Moreover, in patent document 2, when forming a vacuum heat insulating material using the said outer packaging material, it aims at making the influence of a bending not directly exert on a gas barrier layer in the edge part which bonded the said outer packaging materials together. In addition, it is described that protective layers having a high tensile elastic modulus are disposed on both sides of a gas barrier layer.
特開2003-262296号公報JP 2003-262296 A 特開2013-103343号公報JP 2013-103343 A
 しかしながら、特許文献1および特許文献2の外包材では、上記外包材単体では十分なガスバリア性を発揮することが確認できている場合であっても、上記外包材を用いて真空断熱材を形成した場合に十分に真空状態を保てず、長期間の断熱性能を維持することができないといった問題がある。
 特に、上記外包材を用いて形成された真空断熱材を使用する際に上記外包材同士を貼り合わせた端部を折り曲げることにより形成される屈曲部、上記真空断熱材を曲面を有する機器の表面に沿わせて曲げた際に形成される屈曲部等において、上記ガスバリア層にクラックが生じ、真空状態が低下するといった問題がある。
However, in the outer packaging materials of Patent Literature 1 and Patent Literature 2, even when it is confirmed that the outer packaging material alone exhibits a sufficient gas barrier property, a vacuum heat insulating material is formed using the outer packaging material. In such a case, there is a problem that the vacuum state cannot be maintained sufficiently and long-term heat insulation performance cannot be maintained.
In particular, when using a vacuum heat insulating material formed using the outer packaging material, a bent portion formed by bending an end portion where the outer packaging materials are bonded together, and the surface of the device having a curved surface of the vacuum heat insulating material There is a problem that a crack is generated in the gas barrier layer at the bent portion formed when bent along the line, and the vacuum state is lowered.
 本発明は、上記問題点に鑑みてなされたものであり、長期間断熱性能を維持することができる真空断熱材を形成可能な真空断熱材用外包材を提供することを主目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide an outer packaging material for a vacuum heat insulating material capable of forming a vacuum heat insulating material capable of maintaining heat insulating performance for a long period of time.
 本発明者等は、上記課題を解決すべく研究を重ねた結果、上記外包材の引張弾性率と上記外包材の厚みの3乗との積(以下、関数Mと称する場合がある。)の値が所定の範囲以下である場合、上記屈曲部での上記ガスバリア層のクラックの発生を顕著に抑制でき、さらに上記関数Mの値が所定の範囲より大きい外包材の屈曲部と比較して上記屈曲部に上記屈曲部の形成方向に沿った方向と略平行に形成されるしわの数が多くなることを見出し、本発明を完成させるに至ったのである。 As a result of repeated researches to solve the above problems, the present inventors have obtained a product (hereinafter sometimes referred to as a function M) of the tensile elastic modulus of the outer packaging material and the cube of the thickness of the outer packaging material. When the value is less than or equal to a predetermined range, the occurrence of cracks in the gas barrier layer at the bent portion can be remarkably suppressed, and further, the value of the function M is higher than that of the predetermined range compared to the bent portion of the outer packaging material. The inventors have found that the number of wrinkles formed in the bent portion substantially parallel to the direction along the direction of formation of the bent portion is increased, and the present invention has been completed.
 すなわち、本発明は、熱溶着層、ガスバリア層および保護層がこの順で積層された真空断熱材用外包材であって、上記真空断熱材用外包材の引張弾性率と上記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であること特徴とする真空断熱材用外包材を提供する。 That is, the present invention is an outer packaging material for a vacuum heat insulating material in which a heat welding layer, a gas barrier layer, and a protective layer are laminated in this order, and the tensile elastic modulus of the outer packaging material for vacuum heat insulating material and the outer packaging for vacuum heat insulating material An outer packaging material for a vacuum heat insulating material, characterized in that the product of the thickness of the material and the cube of the thickness is 3.0 MPa · mm 3 or less.
 本発明によれば、上記真空断熱材用外包材の上記関数Mの値が所定の値以下であることにより、本発明の真空断熱材用外包材を用いて形成された真空断熱材を使用する際に、上記真空断熱材用外包材同士を貼り合わせた端部を折り曲げることにより形成される屈曲部等における上記ガスバリア層へのクラックの発生を抑制することができる。
 したがって、上記真空断熱材用外包材を、長期間断熱性能を維持することができる真空断熱材を形成可能なものとすることができる。
According to the present invention, when the value of the function M of the vacuum heat insulating material envelope is equal to or less than a predetermined value, the vacuum heat insulating material formed using the vacuum heat insulating material of the present invention is used. At this time, it is possible to suppress the occurrence of cracks in the gas barrier layer at a bent portion or the like formed by bending the end portion where the outer packaging materials for vacuum heat insulating materials are bonded together.
Therefore, the outer packaging material for a vacuum heat insulating material can form a vacuum heat insulating material that can maintain heat insulating performance for a long period of time.
 本発明においては、上記熱溶着層の引張弾性率が1.0GPa以上であることが好ましい。上記真空断熱材を用いる際に、上記真空断熱材用外包材同士を貼り合わせた端部を折り曲げることにより形成される屈曲部等における上記ガスバリア層へのクラックの発生をより抑制することができるからである。また、上記真空断熱材に用いられる芯材からの突き刺しによるピンホールの発生を抑制できるからである。また、上記真空断熱材用外包材を層構成の少ないものとすることができるからである。 In the present invention, it is preferable that the tensile elastic modulus of the heat-welded layer is 1.0 GPa or more. When using the vacuum heat insulating material, it is possible to further suppress the occurrence of cracks in the gas barrier layer in a bent portion formed by bending the end portion where the outer packaging materials for the vacuum heat insulating material are bonded together. It is. Moreover, it is because generation | occurrence | production of the pinhole by the stab from the core material used for the said vacuum heat insulating material can be suppressed. Moreover, it is because the said outer packaging material for vacuum heat insulating materials can be made into a thing with few layer structures.
 本発明は、芯材と、上記芯材を封入する真空断熱材用外包材とを有する真空断熱材であって、上記真空断熱材用外包材は、熱溶着層、ガスバリア層および保護層がこの順で積層されたものであり、上記真空断熱材用外包材の引張弾性率と上記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とする真空断熱材を提供する。 The present invention is a vacuum heat insulating material having a core material and an outer packaging material for vacuum heat insulating material that encloses the core material, wherein the outer packaging material for vacuum heat insulating material includes a heat welding layer, a gas barrier layer, and a protective layer. The product of the tensile elastic modulus of the vacuum insulation material outer packaging material and the cube of the thickness of the vacuum insulation material outer packaging material is 3.0 MPa · mm 3 or less. A vacuum heat insulating material is provided.
 本発明によれば、上記真空断熱材用外包材が、上述の本発明の真空断熱材用外包材であることにより、上記真空断熱材を長期間断熱性能を維持することができる真空断熱材を形成可能なものとすることができる。 According to the present invention, the vacuum heat insulating material can be maintained for a long period of time because the vacuum heat insulating material is the above-described vacuum heat insulating material of the present invention. It can be formed.
 本発明は、本体又は内部に熱源部もしくは被保温部を有する機器、および真空断熱材を少なくとも備える真空断熱材付き機器であって、上記真空断熱材が、芯材と、上記芯材を封入する真空断熱材用外包材とを有するものであり、上記真空断熱材用外包材が、熱溶着層、ガスバリア層および保護層がこの順で積層されたものであり、上記真空断熱材用外包材の引張弾性率と上記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とする真空断熱材付き機器を提供する。 The present invention is a device having a heat source part or a heat-retained part in the main body or inside, and a device with a vacuum heat insulating material provided with at least a vacuum heat insulating material, wherein the vacuum heat insulating material encloses the core material and the core material. A vacuum heat insulating material outer packaging material, wherein the vacuum heat insulating material outer packaging material is a laminate of a heat welding layer, a gas barrier layer and a protective layer in this order. A product with a vacuum heat insulating material is provided, wherein a product of a tensile elastic modulus and a cube of the thickness of the outer packaging material for a vacuum heat insulating material is 3.0 MPa · mm 3 or less.
 本発明によれば、上記真空断熱材が、上述の本発明の真空断熱材であり、長期間断熱性能を維持することができるため、熱源部を有する機器においては、上記真空断熱材により熱源部からの熱を断熱し、機器全体の温度が高温となることを防止し、一方、被保温部を有する機器においては、上記真空断熱材により上記被保温部の温度状態を保つことができる。これにより、消費電力を抑えた高い省エネルギー特性を有する機器とすることができる。 According to the present invention, since the vacuum heat insulating material is the above-described vacuum heat insulating material of the present invention and can maintain the heat insulating performance for a long period of time, in a device having a heat source portion, the heat source portion by the vacuum heat insulating material. Insulating the heat from the heat, it is possible to prevent the temperature of the entire device from becoming high. On the other hand, in a device having a heat retaining part, the temperature state of the heat retaining part can be maintained by the vacuum heat insulating material. Thereby, it can be set as the apparatus which has the high energy saving characteristic which suppressed power consumption.
 本発明においては、長期間断熱性能を維持することができる真空断熱材を形成可能な真空断熱材用外包材を提供できるといった作用効果を奏する。 In the present invention, it is possible to provide an outer packaging material for a vacuum heat insulating material capable of forming a vacuum heat insulating material capable of maintaining a heat insulating performance for a long period of time.
本発明の真空断熱材用外包材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the outer packaging material for vacuum heat insulating materials of this invention. 本発明の真空断熱材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the vacuum heat insulating material of this invention. 本発明の真空断熱材の使用状態を示す説明図である。It is explanatory drawing which shows the use condition of the vacuum heat insulating material of this invention. 屈曲部での屈曲状態を説明する説明図である。It is explanatory drawing explaining the bending state in a bending part. 実施例および比較例で測定した関数Mの値に対する酸素バリア性を示すグラフである。It is a graph which shows the oxygen barrier property with respect to the value of the function M measured in the Example and the comparative example.
 本発明は、真空断熱材用外包材、ならびにそれを用いた真空断熱材および真空断熱材付き機器に関するものである。
 以下、本発明の真空断熱材用外包材、真空断熱材および真空断熱材付き機器について説明する。
 なお、以下の説明において、「真空断熱材用外包材」を「外包材」と略する場合がある。
The present invention relates to an outer packaging material for a vacuum heat insulating material, a vacuum heat insulating material using the same, and a device with a vacuum heat insulating material.
Hereinafter, the outer packaging material for a vacuum heat insulating material, the vacuum heat insulating material, and the device with the vacuum heat insulating material of the present invention will be described.
In the following description, “the outer packaging material for vacuum heat insulating material” may be abbreviated as “the outer packaging material”.
A.真空断熱材用外包材
 まず、本発明の真空断熱材用外包材について説明する。
 本発明の真空断熱材用外包材は、熱溶着層、ガスバリア層および保護層がこの順で積層された真空断熱材用外包材であって、上記真空断熱材用外包材の引張弾性率と上記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とするものである。
A. First, the outer packaging material for vacuum heat insulating material of the present invention will be described.
The outer packaging material for a vacuum heat insulating material according to the present invention is an outer packaging material for a vacuum heat insulating material in which a heat welding layer, a gas barrier layer, and a protective layer are laminated in this order, and the tensile elastic modulus of the outer packaging material for a vacuum heat insulating material and the above The product of the outer packaging material for vacuum heat insulating material and the cube of the thickness is 3.0 MPa · mm 3 or less.
 本発明の真空断熱材用外包材について、図を例示して説明する。図1は、本発明の真空断熱材用外包材の一例を示す概略断面図である。
 図1で例示されるように、本発明の真空断熱材用外包材10は、熱溶着層1、ガスバリア層2および保護層3がこの順で積層されたものであり、上記関数Mの値が、3.0MPa・mm以下であるものである。
 また、図1は、熱溶着層1およびガスバリア層2と、ガスバリア層2および保護層3とが、層間接着剤4を介して接着される例を示すものである。
The outer packaging material for a vacuum heat insulating material of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating an example of the outer packaging material for a vacuum heat insulating material according to the present invention.
As illustrated in FIG. 1, a vacuum heat insulating outer packaging material 10 according to the present invention is obtained by laminating a heat welding layer 1, a gas barrier layer 2 and a protective layer 3 in this order, and the value of the function M is as follows. 3.0 MPa · mm 3 or less.
FIG. 1 shows an example in which the heat welding layer 1 and the gas barrier layer 2, the gas barrier layer 2, and the protective layer 3 are bonded via an interlayer adhesive 4.
 また、図2は、本発明の真空断熱材用外包材を用いた真空断熱材の一例を示す概略断面図である。図2に例示するように、上記真空断熱材20は、芯材11と、上記芯材11を封入する真空断熱材用外包材10とを有するものであって、上記真空断熱材用外包材10が、上述の本発明の真空断熱材料外包材であり、2枚の上記真空断熱材用外包材10をそれぞれの熱溶着層1が上記芯材11側に向き合うように対向させ、その間に上記芯材11を配置し、その後、上記芯材11の外周の一方を開口部とし、残り三方の上記真空断熱材用外包材10同士の端部を熱溶着することで、2枚の上記真空断熱材料外包材により形成され、内部に上記芯材が配置された袋体を準備し、次いで、上記袋体の内部圧力を減圧した状態で上記開口部を密封することにより、上記芯材11が上記真空断熱材料外包材に封入されているものである。
 なお、図2中の符号については、図1と同一の部材を示すものであるので、ここでの説明は省略する。
FIG. 2 is a schematic cross-sectional view showing an example of a vacuum heat insulating material using the vacuum heat insulating material packaging material of the present invention. As illustrated in FIG. 2, the vacuum heat insulating material 20 includes a core material 11 and a vacuum heat insulating material envelope 10 that encloses the core material 11, and the vacuum heat insulating material envelope 10. Is the above-described vacuum insulation material outer packaging material of the present invention, and the two outer packaging materials for vacuum insulation material 10 are opposed to each other so that the respective heat-welded layers 1 face the core material 11 side, and the core is interposed therebetween. The material 11 is disposed, and then one end of the outer periphery of the core material 11 is used as an opening, and the remaining three end portions of the outer packaging materials 10 for the vacuum heat insulating material are heat-welded, whereby the two pieces of the vacuum heat insulating material are used. By preparing a bag body which is formed of an outer packaging material and in which the core material is disposed, and then sealing the opening in a state where the internal pressure of the bag body is reduced, the core material 11 is vacuumed. It is enclosed in a heat insulating material outer packaging material.
Note that the reference numerals in FIG. 2 indicate the same members as those in FIG.
 さらに、図3は、本発明の外包材を用いた真空断熱材の使用状態の一例を示す説明図であり、2枚の真空断熱材を並べて使用する例を示す断面図である。図3では、2枚の上記真空断熱材20は、上記外包材10の上記外包材10同士を貼り合わせた端部12を折り曲げることにより屈曲部13が形成された状態で並べられ、上記外包材10の上記外包材10同士を貼り合わせた端部12を折り曲げないで並べられた場合と比較して、2枚の上記真空断熱材20を平面視した際の上記外包材10の上記外包材10同士を貼り合わせた端部12の占める面積割合が少なくされているものである。 Further, FIG. 3 is an explanatory view showing an example of the usage state of the vacuum heat insulating material using the outer packaging material of the present invention, and is a cross-sectional view showing an example in which two vacuum heat insulating materials are used side by side. In FIG. 3, the two vacuum heat insulating materials 20 are arranged in a state in which a bent portion 13 is formed by bending an end portion 12 of the outer packaging material 10 where the outer packaging materials 10 are bonded to each other. The outer packaging material 10 of the outer packaging material 10 in a plan view of the two vacuum heat insulating materials 20 as compared to the case where the end portions 12 of the ten outer packaging materials 10 bonded together are arranged without being bent. The area ratio occupied by the end portions 12 bonded to each other is reduced.
 本発明によれば、上記真空断熱材用外包材が上記関数Mの値が所定の値以下であることにより、上記外包材を用いて形成された真空断熱材を使用する際に上記外包材同士を貼り合わせた端部を折り曲げることにより形成される屈曲部、上記真空断熱材を、例えば、90°等の角部を有する機器の形状に合わせて折り曲げて用いた際や曲面を有する機器の表面に沿わせて曲げた際に形成される屈曲部等における上記ガスバリア層へのクラックの発生を抑制することができる。
 したがって、上記外包材を、長期間断熱性能を維持することができる真空断熱材を形成可能なものとすることができる。
 ここで、上記関数Mの値が所定の値以下であることにより、上記屈曲部等における上記ガスバリア層へのクラックの発生を抑制できる理由については明らかではないが、以下のように推察される。
According to the present invention, the outer packaging material for vacuum heat insulating material has a value of the function M equal to or lower than a predetermined value. Bending part formed by bending the end part bonded together, the surface of the equipment having a curved surface when the vacuum heat insulating material is used by bending it according to the shape of the equipment having a corner part such as 90 °, for example It is possible to suppress the occurrence of cracks in the gas barrier layer at the bent portion or the like formed when bent along the line.
Therefore, the outer packaging material can form a vacuum heat insulating material capable of maintaining the heat insulating performance for a long time.
Here, the reason why the occurrence of cracks in the gas barrier layer at the bent portion or the like can be suppressed when the value of the function M is equal to or less than a predetermined value is estimated as follows.
 すなわち、物体に対して応力を加えた場合の変形量については、物体が引張弾性率Eの特性を有し、その形状が幅b、厚みhの直方体であり、応力Fが加えられる位置が直方体形状の物体を支持する端部から距離Lの位置である場合、その変形量vは、一般的にv=4FL/(bEh)で表わされる。
 一方、上記外包材の引張弾性率Eと上記外包材の厚みhの3乗との積である上記関数Mは、M=Ehで表わされ、上記変形量vとの間で、反比例の関係にある。このため、上記関数Mの値は、その値が小さいほど、同じ応力が加わった際の変形量が大きくなる関係になり、上記外包材の柔らかさの指標となる。
 したがって、上記関数Mの値が所定の値以下であるとは、上記外包材が所定の柔軟性を有していることを示すものである。
 また、上述のように、上記関数Mの値が所定の値以下である場合、上記関数Mの値が所定の値より大きいものと比較して、上記外包材を屈曲させた際に上記屈曲部に上記屈曲部の形成方向に沿った方向と略平行に形成されるしわの数が多くなる。
 このようなことから、上記関数Mの値が所定の値より大きく、上記外包材が硬い材料である場合には、強い応力を加えないと上記外包材を屈曲させることができず、上記ガスバリア層に強度の弱い箇所が1点でもあると、その1点で屈曲しようと応力が集中してクラックが発生するのに対して、上記関数Mの値が所定の値以下であり、上記外包材が柔らかい材料である場合には、上記外包材は小さい応力で屈曲できることから、上記ガスバリア層に強度の弱い箇所があるとしても、その強度の弱い箇所に応力が集中することなくその他の箇所でも屈曲が可能となり、応力の集中を分散させることができると考えられる。そして、上記関数Mの値が所定の値より小さいものは、複数箇所に応力が分散され、多くの箇所で屈曲が生じる結果、上記屈曲部に形成されるしわの数が、上記関数Mの値が所定の値より大きいものと比較して多くなるのである。
 また、図4に例示するように、上記屈曲部13における屈曲箇所(しわ)13aが少ない場合(図4(a))と比較して、上記屈曲部13における屈曲箇所(しわ)13aが多い場合(図4(b))には、それぞれの屈曲箇所(しわ)13aでの屈曲の角度αが小さいものとなる結果、それぞれの屈曲箇所(しわ)においてガスバリア層に加わる応力を小さいものとすることができる。このような観点からも、上記屈曲部等での上記ガスバリア層へのクラックの発生を抑制できるのである。
That is, with respect to the amount of deformation when stress is applied to an object, the object has a property of tensile elastic modulus E, the shape is a cuboid having a width b and a thickness h, and the position where the stress F is applied is a cuboid. In the case of a position at a distance L from the end that supports the shaped object, the deformation amount v is generally represented by v = 4FL 3 / (bEh 3 ).
On the other hand, the function M, which is the product of the tensile modulus E of the outer packaging material and the cube of the thickness h of the outer packaging material, is expressed by M = Eh 3 and is inversely proportional to the deformation amount v. There is a relationship. For this reason, as the value of the function M is smaller, the amount of deformation when the same stress is applied becomes larger and becomes an index of the softness of the outer packaging material.
Therefore, the value of the function M being equal to or less than a predetermined value indicates that the outer packaging material has a predetermined flexibility.
Further, as described above, when the value of the function M is equal to or less than a predetermined value, the bent portion is bent when the outer packaging material is bent as compared with a value of the function M that is larger than a predetermined value. In addition, the number of wrinkles formed substantially in parallel with the direction along the formation direction of the bent portion increases.
Therefore, when the value of the function M is larger than a predetermined value and the outer packaging material is a hard material, the outer packaging material cannot be bent unless a strong stress is applied, and the gas barrier layer If there is even one weak point, stress concentrates and cracks occur at one point to bend, whereas the value of the function M is equal to or less than a predetermined value, In the case of a soft material, since the outer packaging material can be bent with a small stress, even if the gas barrier layer has a weak portion, the gas barrier layer can be bent at other portions without stress concentrating on the weak portion. It is possible to disperse the stress concentration. When the value of the function M is smaller than a predetermined value, the stress is dispersed at a plurality of locations and bending occurs at many locations. As a result, the number of wrinkles formed at the bent portion is the value of the function M. Is larger than a value larger than a predetermined value.
In addition, as illustrated in FIG. 4, when the number of bent portions (wrinkles) 13 a in the bent portion 13 is small compared to the case where the bent portions (wrinkles) 13 a in the bent portion 13 are small (FIG. 4A). (FIG. 4B) shows that the bending angle α at each bent portion (wrinkle) 13a is small, so that the stress applied to the gas barrier layer at each bent portion (wrinkle) is reduced. Can do. From this point of view, the generation of cracks in the gas barrier layer at the bent portion or the like can be suppressed.
 本発明の真空断熱材用外包材は、熱溶着層、ガスバリア層および保護層を少なくとも有するものである。以下、本発明の真空断熱材用外包材の各構成について説明する。 The outer packaging material for a vacuum heat insulating material of the present invention has at least a heat welding layer, a gas barrier layer, and a protective layer. Hereinafter, each structure of the outer packaging material for vacuum heat insulating materials of this invention is demonstrated.
1.真空断熱材用外包材の特性について
 本発明の真空断熱材用外包材は、上記関数Mの値が3.0MPa・mm以下であるものである。
 上記関数Mの値、すなわち、上記外包材の引張弾性率と上記外包材の厚みの3乗との積は、3.0MPa・mm以下であれば特に限定されるものではないが、0.5MPa・mm~2.5MPa・mmの範囲内であることが好ましく、なかでも、0.5MPa・mm~2.0MPa・mmの範囲内であることが好ましく、特に、0.5MPa・mm~1.0MPa・mmの範囲内であることが好ましい。上記関数Mの値が上述の範囲内であることにより、上記ガスバリア層へのクラックの発生をより効果的に抑制できるからである。
1. Characteristics of vacuum insulation outer packaging material The vacuum insulation outer packaging material of the present invention has a function M value of 3.0 MPa · mm 3 or less.
The value of the function M, that is, the product of the tensile modulus of the outer packaging material and the cube of the thickness of the outer packaging material is not particularly limited as long as it is 3.0 MPa · mm 3 or less. It is preferably within the range of 5 MPa · mm 3 to 2.5 MPa · mm 3 , and particularly preferably within the range of 0.5 MPa · mm 3 to 2.0 MPa · mm 3 , and particularly 0.5 MPa It is preferable to be in the range of mm 3 to 1.0 MPa · mm 3 . This is because the occurrence of cracks in the gas barrier layer can be more effectively suppressed when the value of the function M is within the above range.
 上記外包材の引張弾性率は、上記関数Mの値を所定の値以下とすることができるものであれば特に限定されるものではないが、1500MPa~5000MPaの範囲内であることが好ましく、なかでも、2000MPa~4000MPaの範囲内であることが好ましく、特に、2500MPa~3500MPaの範囲内であることが好ましい。上記関数Mの値を所定の値以下とすることが容易だからである。
 なお、上記引張弾性率の測定方法は、JIS K7161に準拠し、上記外包材を幅15mm、長さ120mmに短冊状にカットした後、引張試験機を用いてチャック間距離100mm、引張速度100mm/minで引張弾性率を測定する方法を用いることができる。上記引張弾性率の測定条件は23℃、湿度55%の条件とすることができる。上記引張試験機としては、例えば、引張試験機(テンシロン万能試験機RTC-1250A)を用いることができる。
 また、上記引張弾性率は、最低5個の試験片を用いて行い、得られた5個以上の引張弾性率の平均値を用いることができる。
 また、上記引張弾性率は、上記外包材が長尺状である場合には、長手方向(巻きだし方向)および長手方向に直交する短手方向(幅方向)のそれぞれの引張弾性率の平均値を用いることができる。
The tensile elastic modulus of the outer packaging material is not particularly limited as long as the value of the function M can be a predetermined value or less, but is preferably in the range of 1500 MPa to 5000 MPa. However, it is preferably in the range of 2000 MPa to 4000 MPa, and particularly preferably in the range of 2500 MPa to 3500 MPa. This is because it is easy to set the value of the function M to a predetermined value or less.
The tensile modulus was measured in accordance with JIS K7161, after the outer packaging material was cut into a strip shape having a width of 15 mm and a length of 120 mm, and then a distance between chucks of 100 mm and a tensile speed of 100 mm / A method of measuring the tensile modulus in min can be used. The tensile elastic modulus can be measured at 23 ° C. and 55% humidity. As the tensile tester, for example, a tensile tester (Tensilon universal tester RTC-1250A) can be used.
Moreover, the said tensile elastic modulus is performed using a minimum of 5 test pieces, and the average value of the obtained 5 or more tensile elastic moduli can be used.
Moreover, the said tensile elasticity modulus is the average value of each tensile elasticity modulus of a longitudinal direction (winding direction) and the transversal direction (width direction) orthogonal to a longitudinal direction, when the said outer packaging material is elongate. Can be used.
 上記関数Mにおける上記外包材の厚みは、1枚当たりの上記外包材の厚みをいうものであり、例えば、2枚の上記外包材を用いて形成された上記真空断熱材における上記外包材の関数Mの計算に用いる厚みは、1枚の上記外包材の厚みをいうものである。 The thickness of the outer packaging material in the function M refers to the thickness of the outer packaging material per sheet. For example, the function of the outer packaging material in the vacuum heat insulating material formed using two outer packaging materials. The thickness used for the calculation of M refers to the thickness of the single outer packaging material.
2.熱溶着層
 本発明における熱溶着層は、上記真空断熱材において芯材と接する部位である。
 また、対向する外包材同士の端部を熱溶着する熱溶着面を形成する部位である。
2. Heat-welded layer The heat-welded layer in the present invention is a portion in contact with the core material in the vacuum heat insulating material.
Moreover, it is a site | part which forms the heat welding surface which heat-welds the edge part of the outer packaging materials which oppose.
 上記熱溶着層の材料としては、加熱によって溶融し、融着することが可能であることから熱可塑性樹脂が好ましく、例えば直鎖状短鎖分岐ポリエチレン等のポリエチレンや未延伸ポリプロピレン(CPP)等のポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ウレタン樹脂等が挙げられる。
 本発明においては、なかでも、上記材料が、直鎖状短鎖分岐ポリエチレン、未延伸ポリプロピレンまたはポリブチレンテレフタレートであることが好ましく、特に、ポリブチレンテレフタレートであることが好ましい。上記材料が上述の樹脂であることにより、上記真空断熱材を形成した際に、上記外包材同士を貼り合わせた端部において上記ガスバリア層へのクラックの発生をより抑制することができるからである。
As the material for the heat-welding layer, a thermoplastic resin is preferable because it can be melted and fused by heating. For example, polyethylene such as linear short-chain branched polyethylene, unstretched polypropylene (CPP), and the like are preferable. Polyolefin resins, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resins such as polybutylene terephthalate (PBT), polyvinyl acetate resins, polyvinyl chloride resins, poly (meth) acrylic resins, urethane Examples thereof include resins.
In the present invention, the material is preferably linear short chain branched polyethylene, unstretched polypropylene or polybutylene terephthalate, and particularly preferably polybutylene terephthalate. This is because, when the material is the resin described above, when the vacuum heat insulating material is formed, the generation of cracks in the gas barrier layer can be further suppressed at the end where the outer packaging materials are bonded together. .
 また、上記熱溶着層は、上述した樹脂の他に、アンチブロッキング剤、滑剤、難燃化剤、有機充填剤等の他の材料を含んでいてもよい。 In addition to the above-described resin, the heat-welded layer may contain other materials such as an anti-blocking agent, a lubricant, a flame retardant, and an organic filler.
 上記熱溶着層の融点としては、例えば80℃~300℃の範囲内であることが好ましく、なかでも100℃~250℃の範囲内であることが好ましい。熱溶着層の融点を上記範囲内とすることにより、本発明の外包材を用いて形成された真空断熱材の使用環境下において、外包材の封止面の剥離を抑制することができる。 The melting point of the heat-welded layer is preferably, for example, in the range of 80 ° C. to 300 ° C., and more preferably in the range of 100 ° C. to 250 ° C. By setting the melting point of the heat-sealing layer within the above range, peeling of the sealing surface of the outer packaging material can be suppressed under the usage environment of the vacuum heat insulating material formed using the outer packaging material of the present invention.
 上記熱溶着層の引張弾性率としては、上記関数Mの値を所定の値以下とすることができるものであれば特に限定されるものではないが、1.0GPa以上であることが好ましく、なかでも、1.0GPa~5.0GPaの範囲内であることが好ましく、特に、1.5GPa~4.0 GPaの範囲内であることが好ましい。上記熱溶着層の引張弾性率が上述の範囲内であることにより、上記真空断熱材を形成した際に、上記外包材同士を貼り合わせた端部において上記ガスバリア層へのクラックの発生をより抑制することができるからである。また、上記真空断熱材に用いられる芯材からの突き刺しによるピンホールの発生を抑制できるからである。
 また、後述するように、上記ガスバリア層を隣接して挟持する2つの層の引張弾性率が所定の範囲内であることが好ましいとの観点から、上記熱溶着層の引張弾性率が上述の範囲内であることにより、上記熱溶着層を、上記ガスバリア層を隣接して挟持する2つの層の一方として用いることが可能となる。したがって、上記ガスバリア層を隣接して挟持する2つの層の一方として所定の引張弾性率の内面側保護層等を上記ガスバリア層および上記熱溶着層の間に配置すること等を不要とすることができ、上記外包材を層構成の少ないものとすることができるからである。また、その結果、上記関数Mの値を所定の値以下とすることが容易になるからである。
The tensile modulus of the heat-welded layer is not particularly limited as long as the value of the function M can be set to a predetermined value or less, but is preferably 1.0 GPa or more. However, it is preferably in the range of 1.0 GPa to 5.0 GPa, and particularly preferably in the range of 1.5 GPa to 4.0 GPa. When the thermal insulation layer has a tensile elastic modulus within the above range, the formation of the vacuum heat insulating material further suppresses the occurrence of cracks in the gas barrier layer at the end where the outer packaging materials are bonded together. Because it can be done. Moreover, it is because generation | occurrence | production of the pinhole by the stab from the core material used for the said vacuum heat insulating material can be suppressed.
Further, as will be described later, from the viewpoint that the tensile elastic modulus of the two layers sandwiching the gas barrier layer adjacent to each other is preferably within a predetermined range, the tensile elastic modulus of the thermally welded layer is within the above range. By being inside, it becomes possible to use the said heat welding layer as one of the two layers which pinch | interpose the said gas barrier layer adjacently. Therefore, it is unnecessary to dispose an inner surface side protective layer or the like having a predetermined tensile modulus between the gas barrier layer and the heat welding layer as one of the two layers sandwiching the gas barrier layer adjacent to each other. This is because the outer packaging material can have a small layer structure. As a result, the value of the function M can be easily set to a predetermined value or less.
 上記熱溶着層の厚さとしては、例えば20μm~100μmの範囲内が好ましく、なかでも25μm~90μmの範囲内が好ましく、特に30μm~80μmの範囲内が好ましい。熱溶着層の厚さが上記範囲よりも大きいと、外包材のガスバリア性が低下する場合等があり、一方、上記範囲よりも小さいと、接着力が得られない場合がある。 The thickness of the heat-welded layer is preferably, for example, in the range of 20 μm to 100 μm, more preferably in the range of 25 μm to 90 μm, and particularly preferably in the range of 30 μm to 80 μm. When the thickness of the heat-welded layer is larger than the above range, the gas barrier property of the outer packaging material may be lowered. On the other hand, when the thickness is smaller than the above range, the adhesive force may not be obtained.
3.ガスバリア層
 本発明におけるガスバリア層は、通常、熱溶着層と保護層との間に形成される部位である。
3. Gas barrier layer The gas barrier layer in this invention is a site | part normally formed between a heat welding layer and a protective layer.
 上記ガスバリア層としては、例えばアルミニウム、ニッケル、ステンレス、鉄、銅、チタニウム等の金属箔、金属、金属酸化物、酸化珪素等の無機物等を樹脂フィルムの片面に蒸着した蒸着フィルム、蒸着フィルムにポリビニルアルコール系樹脂およびエチレンビニルアルコール共重合体の少なくともいずれかを含有するガスバリア性組成物によるガスバリア性塗布膜を設けたもの等、一般にガスバリア層として使用されるものを用いることもできる。
 本発明においては、上記ガスバリア層が、金属箔であることが好ましく、なかでも、アルミニウム箔であることが好ましい。クラックの発生を抑制できるとの本発明の効果をより効果的に発揮できるからである。
Examples of the gas barrier layer include a metal foil such as aluminum, nickel, stainless steel, iron, copper, and titanium, a vapor deposition film in which an inorganic substance such as metal, metal oxide, and silicon oxide is vapor-deposited on one side of the resin film, and polyvinyl on the vapor deposition film. Those generally used as a gas barrier layer such as those provided with a gas barrier coating film of a gas barrier composition containing at least one of an alcohol-based resin and an ethylene vinyl alcohol copolymer can also be used.
In the present invention, the gas barrier layer is preferably a metal foil, and more preferably an aluminum foil. This is because the effect of the present invention that the generation of cracks can be suppressed can be more effectively exhibited.
 上記ガスバリア層は、単層であってもよく、同一材料から成る層または異なる材料から成る層を積層させた多層体であってもよい。
 また、上記ガスバリア層は、ガスバリア性能および他の層との密着性の向上が図れるという点から、コロナ放電処理等の表面処理が施されていてもよい。
The gas barrier layer may be a single layer, or a multilayer body in which layers made of the same material or layers made of different materials are laminated.
The gas barrier layer may be subjected to surface treatment such as corona discharge treatment from the viewpoint of improving gas barrier performance and adhesion with other layers.
 上記ガスバリア層の厚さとしては、例えば、2μm~50μmの範囲内、なかでも5μm~12μmの範囲内であることが好ましい。上記ガスバリア層の厚さが上記範囲よりも小さいと、屈曲部でピンホール等が生じやすくなり、ガスバリア性が低下する場合があり、一方、上記範囲よりも大きいと、本発明の外包材を用いて形成された真空断熱材においてヒートブリッジが生じやすくなり、断熱性能が低下する場合があるからである。 The thickness of the gas barrier layer is, for example, preferably in the range of 2 μm to 50 μm, and more preferably in the range of 5 μm to 12 μm. If the thickness of the gas barrier layer is smaller than the above range, pinholes and the like are likely to occur at the bent portion, and the gas barrier property may be lowered. On the other hand, if the thickness is larger than the above range, the outer packaging material of the present invention is used. This is because heat bridges are likely to occur in the vacuum heat insulating material formed in this way, and the heat insulating performance may be reduced.
 上記ガスバリア層のガスバリア性としては、酸素透過度が0.5cc・m-2・day-1以下であることが好ましく、なかでも0.1cc・m-2・day-1以下であることが好ましい。また、水蒸気透過度が0.2cc・m-2・day-1以下であることが好ましく、なかでも0.1cc・m-2・day-1以下であることが好ましい。上記ガスバリア層の酸素および水蒸気透過度が上述の範囲内であることにより、外部より浸透した水分やガス等を内部の芯材まで浸透しにくくすることができる。
 なお、上記酸素透過度は、JIS-K-7126Bに基づき、温度23℃、湿度60%RHの条件下において酸素透過度測定装置を用いて測定した値とすることができる。上記酸素透過度測定装置としては、米国モコン(MOCON)社製、オクストラン(OXTRAN)を挙げることができる。 また、上記水蒸気透過度は、温度40℃、湿度90%RHの条件で、水蒸気透過度測定装置を用いて測定することができる。上記水蒸気透過度測定装置としては、米国モコン(MOCON)社製、パ-マトラン(PERMATRAN)を用いることができる。
The gas barrier properties of the gas barrier layer, it is preferable oxygen permeability is preferably not more than 0.5cc · m -2 · day -1, is among others 0.1cc · m -2 · day -1 or less . It is preferable that water vapor permeability is not more than 0.2cc · m -2 · day -1, is preferably Among them 0.1cc · m -2 · day -1 or less. When the oxygen and water vapor permeability of the gas barrier layer is within the above-described range, it is possible to make it difficult for moisture, gas, and the like that have permeated from the outside to penetrate into the inner core material.
The oxygen permeability can be a value measured using an oxygen permeability measuring device under conditions of a temperature of 23 ° C. and a humidity of 60% RH based on JIS-K-7126B. Examples of the oxygen permeability measuring device include OXTRAN manufactured by MOCON (USA). The water vapor transmission rate can be measured using a water vapor transmission rate measuring device under conditions of a temperature of 40 ° C. and a humidity of 90% RH. As the water vapor permeability measuring apparatus, PERMATRAN manufactured by MOCON (USA) can be used.
4.保護層
 上記保護層は、本発明の外包材において最外層(最表層)となる部位である。上記保護層は、本発明の外包材を用いて真空断熱材を形成した際に、真空断熱材の内部を保護するのに十分な強度を有し、耐熱性、防湿性、耐ピンホ-ル性、耐突き刺し性等に優れたものであることが好ましい。
4). Protective layer The said protective layer is a site | part used as the outermost layer (outermost layer) in the outer packaging material of this invention. The protective layer has sufficient strength to protect the inside of the vacuum heat insulating material when the vacuum heat insulating material is formed using the outer packaging material of the present invention, and has heat resistance, moisture resistance, and pin hole resistance. It is preferable that it has excellent puncture resistance and the like.
 上記保護層としては、熱溶着層よりも高融点の樹脂を用いたものであればよく、シート状でもフィルム状でもよい。このような保護層として、例えば、ナイロン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリプロピレン系樹脂等のシートまたはフィルム等が挙げられる。 The protective layer is not particularly limited as long as it uses a resin having a melting point higher than that of the heat welding layer, and may be in the form of a sheet or a film. Examples of such a protective layer include sheets or films of nylon resin, polyester resin, polyamide resin, polypropylene resin, and the like.
 上記保護層は、単層であってもよく、同一材料から成る層または異なる材料から成る層を積層させて多層としたものであってもよい。
 また上記保護層は、他の層との密着性の向上が図れるという点から、コロナ放電処理等の表面処理が施されていてもよい。
The protective layer may be a single layer or may be a multilayer formed by laminating layers made of the same material or layers made of different materials.
The protective layer may be subjected to a surface treatment such as a corona discharge treatment from the viewpoint of improving the adhesion with other layers.
 上記保護層の厚さとしては、熱溶着層およびガスバリア層を保護することができる厚さであれば特に限定されるものではないが、一般的に5μm~80μmの範囲内程度である。 The thickness of the protective layer is not particularly limited as long as it can protect the heat-welded layer and the gas barrier layer, but is generally in the range of 5 μm to 80 μm.
5.真空断熱材用外包材
 本発明の外包材は、上記外包材を構成する各層が、直接接触して積層されていてもよく、層間接着剤を介して積層されていてもよい。層間接着剤については、一般に真空断熱材用の外包材に使用される接着剤を用いることができる。
5. Outer packaging material for vacuum heat insulating material In the outer packaging material of the present invention, the layers constituting the outer packaging material may be laminated in direct contact with each other, or may be laminated via an interlayer adhesive. About an interlayer adhesive agent, the adhesive agent generally used for the outer packaging material for vacuum heat insulating materials can be used.
 上記外包材は、保護層またはガスバリア層を複数有するものであってもよい。上記外包材は、例えば、熱溶着層と保護層との間にガスバリア層を2層以上設けてもよく、熱溶着層およびガスバリア層の上に、第1保護層および第2保護層のように保護層を2層以上設けてもよい。また、上記外包材は、熱溶着層とガスバリア層との間に内面側保護層が設けられてもよい。
 また、上記外包材は、アンカーコート層、耐ピンホール層等の任意の層を有していても良い。
 本発明においては、上記外包材は、上記熱溶着層と上記ガスバリア層との間に上記内面側保護層を含まないことが好ましい。上記外包材の層構成を少ないものとすることができ、さらに、上記関数Mの値を所定の値以下とすることが容易になるからである。
The outer packaging material may have a plurality of protective layers or gas barrier layers. In the outer packaging material, for example, two or more gas barrier layers may be provided between the thermal welding layer and the protective layer, and the first protective layer and the second protective layer are provided on the thermal welding layer and the gas barrier layer. Two or more protective layers may be provided. Further, the outer packaging material may be provided with an inner surface side protective layer between the heat welding layer and the gas barrier layer.
The outer packaging material may have an arbitrary layer such as an anchor coat layer or a pinhole-resistant layer.
In this invention, it is preferable that the said outer packaging material does not contain the said inner surface side protective layer between the said heat welding layer and the said gas barrier layer. This is because the layer structure of the outer packaging material can be reduced, and the value of the function M can be easily set to a predetermined value or less.
 上記外包材の上記ガスバリア層を隣接して挟持する2つの層の引張弾性率は、上記関数Mの値を所定の値以下とするものであれば特に限定されるものではないが、1.0GPa~5.0GPaの範囲内であることが好ましく、なかでも、1.5GPa~5.0GPaの範囲内であることが好ましく、特に2.0GPa~4.5GPaの範囲内であることが好ましい。上記ガスバリア層を隣接して挟持する2つの層の引張弾性率が上述の範囲内であることにより、上記ガスバリア層とそれを隣接して挟持する2つの層との引張弾性率の差を小さくすることができる結果、上記ガスバリア層へのクラックの発生をより効果的に抑制できるからである。
 なお、上記ガスバリア層を隣接して挟持する2つの層は、具体的には、上記外包材が熱溶着層/ガスバリア層/保護層の層構成である場合には、熱溶着層および保護層をいうものであり、上記外包材が熱溶着層/ガスバリア層/第1保護層/第2保護層の層構成である場合には、熱溶着層および第1保護層をいうものであり、上記外包材が熱溶着層/内面保護層/ガスバリア層/保護層の層構成である場合には、内面保護層および保護層をいうものである。
 また、上記ガスバリア層を隣接して挟持する2つの層には、ガスバリア層と各層との間を接着する層間接着剤は含まないものである。
The tensile elastic modulus of the two layers sandwiching the gas barrier layer adjacent to each other of the outer packaging material is not particularly limited as long as the value of the function M is a predetermined value or less, but is 1.0 GPa. It is preferably in the range of ˜5.0 GPa, more preferably in the range of 1.5 GPa to 5.0 GPa, and particularly preferably in the range of 2.0 GPa to 4.5 GPa. The difference in tensile elastic modulus between the gas barrier layer and the two layers sandwiching the gas barrier layer is reduced by the tensile modulus of elasticity between the two layers sandwiching the gas barrier layer adjacent to each other. As a result, the occurrence of cracks in the gas barrier layer can be more effectively suppressed.
Note that the two layers sandwiching the gas barrier layer adjacent to each other specifically include a thermal welding layer and a protective layer when the outer packaging material has a layer configuration of a thermal welding layer / gas barrier layer / protective layer. In the case where the outer packaging material has a layer configuration of a thermal welding layer / gas barrier layer / first protective layer / second protective layer, the outer packaging material refers to the thermal welding layer and the first protective layer. In the case where the material has a layer configuration of a heat-welded layer / an inner surface protective layer / a gas barrier layer / a protective layer, it refers to an inner surface protective layer and a protective layer.
Further, the two layers sandwiching the gas barrier layer adjacent to each other do not include an interlayer adhesive that bonds the gas barrier layer to each layer.
 上記外包材の膜厚としては、上記関数Mの値を所定の値以下とすることができるものであれば特に限定されるものではないが、例えば、30μm~200μmの範囲内であることが好ましく、50μm~150μmの範囲内であることが好ましい。 The film thickness of the outer packaging material is not particularly limited as long as the value of the function M can be equal to or less than a predetermined value. For example, it is preferably in the range of 30 μm to 200 μm. , Preferably in the range of 50 μm to 150 μm.
 上記外包材の引張強度としては、50N以上であることが好ましく、なかでも80N以上であることが好ましい。本発明の外包材を用いて形成された真空断熱材を屈曲させる際に破断等が生じにくくなるためである。なお、上記引張強度は、JIS-Z-1707に基づいて測定した値である。 The tensile strength of the outer packaging material is preferably 50N or more, and more preferably 80N or more. This is because breakage or the like is less likely to occur when the vacuum heat insulating material formed using the outer packaging material of the present invention is bent. The tensile strength is a value measured based on JIS-Z-1707.
 上記外包材の積層方法としては、特に限定されるものではなく、一方の最表層に保護層を有し、他方の最表層に熱溶着層を有するように各層を積層できる方法であればよく、公知の方法を用いることができる。
 上記積層方法としては、予め成膜した各層を上述した層間接着剤を使用して貼り合せるドライラミネーション法や、熱溶融させた保護層およびガスバリア層の各材料をTダイ等を用いて押出しして貼り合せ、得られた積層体に層間接着剤を介して熱溶着層を貼り合せる方法等が挙げられる。
The method of laminating the outer packaging material is not particularly limited as long as it is a method that can laminate each layer so that one outermost layer has a protective layer and the other outermost layer has a heat-welded layer, A known method can be used.
Examples of the lamination method include a dry lamination method in which each layer formed in advance is bonded using the above-described interlayer adhesive, and each material of the heat-melted protective layer and gas barrier layer is extruded using a T die or the like. Examples of the method include bonding, and a method of bonding a heat-welded layer to the obtained laminate through an interlayer adhesive.
B.真空断熱材
 次に、本発明の真空断熱材について説明する。本発明の真空断熱材は、芯材と、上記芯材を封入する真空断熱材用外包材とを有するものであって、上記真空断熱材用外包材は、熱溶着層、ガスバリア層および保護層がこの順で積層されたものであり、上記真空断熱材用外包材の引張弾性率と上記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とするものである。
B. Next, the vacuum heat insulating material of the present invention will be described. The vacuum heat insulating material of the present invention includes a core material and an outer packaging material for vacuum heat insulating material that encloses the core material, and the outer packaging material for vacuum heat insulating material includes a heat welding layer, a gas barrier layer, and a protective layer. Are laminated in this order, and the product of the tensile elastic modulus of the outer packaging material for vacuum heat insulating material and the cube of the thickness of the outer packaging material for vacuum heat insulating material is 3.0 MPa · mm 3 or less. It is characterized by.
 本発明の真空断熱材については、既に説明した図2に例示するものと同様とすることができる。 The vacuum heat insulating material of the present invention can be the same as that already illustrated in FIG.
 本発明によれば、上記真空断熱材用外包材が上述の本発明の真空断熱材用外包材であることにより、上記真空断熱材を長期間断熱性能を維持することができる真空断熱材を形成可能なものとすることができる。 According to the present invention, the vacuum insulation material is a vacuum insulation material that can maintain heat insulation performance for a long period of time because the vacuum insulation material is the vacuum insulation material of the present invention described above. Can be possible.
 本発明の真空断熱材は、真空断熱材用外包材および芯材を少なくとも有するものである。
 以下、本発明の真空断熱材について、構成ごとに説明する。
The vacuum heat insulating material of the present invention has at least a vacuum heat insulating material envelope and a core material.
Hereinafter, the vacuum heat insulating material of this invention is demonstrated for every structure.
1.真空断熱材用外包材
 本発明の真空断熱材用外包材は、上記芯材を封入するものである。また、上記真空断熱材用外包材は、上述の本発明の真空断熱材用外包材である。このような真空断熱材用外包材については、「A.真空断熱材用外包材」の項に記載した内容と同様とすることができるので、ここでの説明は省略する。
 なお、封入するとは、上記外包材を用いて形成された袋体の内部に密封されることをいうものである。
1. Vacuum insulation material outer packaging material The vacuum insulation material outer packaging material of the present invention encloses the core material. Moreover, the said outer packaging material for vacuum heat insulating materials is the above-mentioned outer packaging material for vacuum heat insulating materials of this invention. Such an outer packaging material for a vacuum heat insulating material can be the same as the contents described in the section of “A. Outer packaging material for a vacuum heat insulating material”, and thus description thereof is omitted here.
In addition, enclosing means sealing inside the bag formed using the said outer packaging material.
2.芯材
 本発明における芯材は、上記真空断熱材用外包材により封入されるものである。
 上記芯材としては、熱伝導度の低いものであることが好ましい。上記芯材は、その空隙率が50%以上、特に90%以上の多孔質材であることが好ましい。
2. Core material The core material in this invention is enclosed with the said outer packaging material for vacuum heat insulating materials.
The core material preferably has a low thermal conductivity. The core material is preferably a porous material having a porosity of 50% or more, particularly 90% or more.
 上記芯材を構成する材料としては、粉体、発泡体、繊維体等を用いることができる。
 上記粉体としては、無機系、有機系のいずれでもよく、例えば、乾式シリカ、湿式シリカ、凝集シリカ粉末、導電性粉体、炭酸カルシウム粉末、パーライト、クレー、タルク等を用いることができる。なかでも乾式シリカと導電性粉体との混合物は、真空断熱材の内圧上昇に伴う断熱性能の劣化が小さいため、内圧上昇が生じる温度範囲で使用する際に有利である。さらに、上述の材料に酸化チタンや酸化アルミニウムやインジウムドープ酸化錫等の赤外線吸収率が小さい物質を輻射抑制材として添加すると、芯材の赤外線吸収率を小さくすることができる。
As a material constituting the core material, powder, foam, fiber, or the like can be used.
The powder may be either inorganic or organic, and for example, dry silica, wet silica, agglomerated silica powder, conductive powder, calcium carbonate powder, perlite, clay, talc and the like can be used. Among these, a mixture of dry silica and conductive powder is advantageous when used in a temperature range in which an increase in internal pressure occurs because deterioration in heat insulation performance associated with an increase in internal pressure of the vacuum heat insulating material is small. Furthermore, when a substance having a small infrared absorptance such as titanium oxide, aluminum oxide or indium-doped tin oxide is added as a radiation suppressing material to the above-described material, the infrared absorptivity of the core material can be reduced.
 また、上記発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等があり、これらのなかでも連続気泡を形成する発泡体が好ましい。 Also, examples of the foam include urethane foam, styrene foam, phenol foam, and the like. Among these, a foam that forms open cells is preferable.
 また、上記繊維体としては、無機繊維でもよく有機繊維でもよいが、断熱性能の観点から無機繊維を用いることが好ましい。このような無機繊維としては、グラスウールやグラスファイバー等のガラス繊維、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、セラミック繊維、ロックウール等を挙げることができる。これらの無機繊維は、熱伝導率が低く、粉体よりも取り扱いが容易である点で好ましい。 The fiber body may be inorganic fiber or organic fiber, but it is preferable to use inorganic fiber from the viewpoint of heat insulation performance. Examples of such inorganic fibers include glass fibers such as glass wool and glass fibers, alumina fibers, silica alumina fibers, silica fibers, ceramic fibers, and rock wool. These inorganic fibers are preferable in that they have low thermal conductivity and are easier to handle than powders.
 上記芯材は、上述した材料を単独で使用してもよく、2種以上の材料を混合した複合材であってもよい。 The core material may be the above-mentioned material alone or a composite material in which two or more materials are mixed.
3.真空断熱材
 本発明の真空断熱材は、上記真空断熱材用外包材で封入された内部を減圧密封し、真空状態としたものである。上記真空断熱材内部の真空度としては、5Pa以下であることが好ましい。真空断熱材内部の真空度を上記範囲内とすることにより、内部に残存する空気の対流による熱伝導を小さいものとすることができ、優れた断熱性を発揮することが可能となる。
3. Vacuum heat insulating material The vacuum heat insulating material of this invention seals the inside enclosed with the said outer packaging material for vacuum heat insulating materials under reduced pressure, and makes it a vacuum state. The degree of vacuum inside the vacuum heat insulating material is preferably 5 Pa or less. By setting the degree of vacuum inside the vacuum heat insulating material within the above range, heat conduction due to convection of air remaining inside can be reduced, and excellent heat insulation can be exhibited.
 また、上記真空断熱材の熱伝導率は低いことが好ましく、例えば、上記真空断熱材の25℃における熱伝導率(初期熱伝導率)は、15mW/m・K以下であることが好ましく、なかでも10mW/m・K以下であることが好ましく、特に5mW/m・K以下であることが好ましい。真空断熱材の熱伝導率を上記範囲とすることにより、上記真空断熱材は熱を外部に伝導しにくくなることから、高い断熱効果を奏することができるからである。
 また、上記真空断熱材の初期熱伝導率に対し、130℃、1000時間劣化後の上記真空断熱材の熱伝導率の低下率は、20%以下であることが好ましく、なかでも10%以下であることが好ましい。
 なお、上記熱伝導率は、JIS-A-1412-3に従い、熱伝導率測定装置を用いて熱流計法により測定された値とすることができる。上記熱伝導率測定装置としては、熱伝導率測定装置オートラムダ(製品名 HC-074、英弘精機製)を挙げることができる。
Moreover, it is preferable that the heat insulation of the said vacuum heat insulating material is low, for example, it is preferable that the heat conductivity (initial heat conductivity) in 25 degreeC of the said vacuum heat insulating material is 15 mW / m * K or less. However, it is preferably 10 mW / m · K or less, and particularly preferably 5 mW / m · K or less. This is because by setting the heat conductivity of the vacuum heat insulating material within the above range, the vacuum heat insulating material is less likely to conduct heat to the outside, and therefore, a high heat insulating effect can be achieved.
In addition, the rate of decrease in the thermal conductivity of the vacuum heat insulating material after 1000 hours of degradation at 130 ° C. with respect to the initial thermal conductivity of the vacuum heat insulating material is preferably 20% or less, and more preferably 10% or less. Preferably there is.
The thermal conductivity can be a value measured by a heat flow meter method using a thermal conductivity measuring device according to JIS-A-1412-3. Examples of the thermal conductivity measuring device include a thermal conductivity measuring device Auto Lambda (product name: HC-074, manufactured by Eihiro Seiki Co., Ltd.).
 上記真空断熱材はガスバリア性が高いことが好ましい。外部からの水分や酸素等の侵入による真空度の低下を防止することができるからである。
 上記真空断熱材のガスバリア性については、上述した「A.真空断熱材用外包材 3.ガスバリア層」の項で説明した酸素透過度および水蒸気透過度と同様であるため、ここでの説明は省略する。
The vacuum heat insulating material preferably has a high gas barrier property. This is because it is possible to prevent a decrease in the degree of vacuum due to intrusion of moisture, oxygen, and the like from the outside.
The gas barrier property of the vacuum heat insulating material is the same as the oxygen permeability and water vapor permeability described in the above-mentioned section of “A. Outer packaging material for vacuum heat insulating material 3. Gas barrier layer”, and the description thereof is omitted here. To do.
4.製造方法
 本発明の真空断熱材の製造方法としては、一般的な方法を用いることができる。例えば、予め上述の本発明の外包材を準備し、2枚の上記外包材をそれぞれの熱溶着層が内側に向き合う様に対向させ、その間に上記芯材を配置し、製袋機等によって上記芯材の外周の一方を開口部とし、残り三方の外包材同士の端部を熱溶着することで、2枚の上記外包材により形成され、内部に上記芯材が配置された袋体を準備し、次いで、上記袋体を真空封止機に装着し、上記袋体の内部圧力を減圧した状態で上記開口部を密封することにより、上記芯材が上記外包材により封入された真空断熱材が得られる。
 また、上記製造方法は、1枚の上記外包材を熱溶着層が内側に向き合う様に対向させ、その間に上記芯材を配置し、製袋機等によって上記芯材の外周の一方を開口部とし、残り二方の上記外包材同士の端部を熱溶着することで、1枚の上記外包材により形成され、内部に上記芯材が配置された袋体を準備し、次いで、上記袋体を真空封止機に装着し、上記袋体の内部圧力を減圧した状態で上記開口部を密封することにより、上記芯材が上記外包材により封入された真空断熱材を得る方法であっても良い。
4). Manufacturing method As a manufacturing method of the vacuum heat insulating material of the present invention, a general method can be used. For example, the outer packaging material of the present invention described above is prepared in advance, the two outer packaging materials are opposed to each other so that the respective heat-welded layers face each other, the core material is disposed therebetween, and the above-mentioned by a bag making machine or the like. Prepare a bag body that is formed of the two outer packaging materials by placing one of the outer circumferences of the core material as an opening and heat-welding the ends of the remaining three outer packaging materials, and in which the core material is arranged. Then, the bag body is attached to a vacuum sealing machine, and the opening is sealed in a state where the internal pressure of the bag body is reduced, whereby the core material is sealed with the outer packaging material. Is obtained.
Further, in the above manufacturing method, one outer packaging material is opposed so that the heat-welded layer faces inward, the core material is disposed therebetween, and one of the outer circumferences of the core material is opened by a bag making machine or the like. Then, by heat-welding the ends of the remaining two outer packaging materials, a bag body formed of one outer packaging material and having the core material disposed therein is prepared, and then the bag body Even in a method of obtaining a vacuum heat insulating material in which the core material is enclosed by the outer packaging material by sealing the opening in a state where the internal pressure of the bag body is reduced, while mounting the vacuum sealing machine. good.
5.用途
 本発明の真空断熱材は、熱伝導率が低く、高温下においても断熱性および耐久性に優れるものである。従って、上記真空断熱材は、熱源を有し発熱する部位や、外部から加熱されることにより高温となる部位に用いることができる。本発明の用途としては、例えば、「C.真空断熱材付き機器」で説明する機器、クーラーボックス、輸送用コンテナ、水素等の燃料タンク、システムバス、温水タンク、保温庫、住宅壁、自動車、飛行機、船舶、列車等が挙げられる。
5. Applications The vacuum heat insulating material of the present invention has low thermal conductivity and is excellent in heat insulating properties and durability even at high temperatures. Therefore, the said vacuum heat insulating material can be used for the site | part which has a heat source and generate | occur | produces heat, or the site | part which becomes high temperature by being heated from the outside. Applications of the present invention include, for example, equipment described in “C. Equipment with Vacuum Thermal Insulating Material”, cooler box, transportation container, fuel tank such as hydrogen, system bath, hot water tank, heat insulation box, residential wall, automobile, An airplane, a ship, a train, etc. are mentioned.
C.真空断熱材付き機器
 次に、本発明の真空断熱材付き機器について説明する。本発明の真空断熱材付き機器は、本体又は内部に熱源部もしくは被保温部を有する機器、および真空断熱材を少なくとも備える真空断熱材付き機器であって、上記真空断熱材が、芯材と、上記芯材を封入する真空断熱材用外包材とを有するものであり、上記真空断熱材用外包材が、熱溶着層、ガスバリア層および保護層がこの順で積層されたものであり、上記真空断熱材用外包材の引張弾性率と上記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とするものである。
C. Next, the apparatus with a vacuum heat insulating material of the present invention will be described. A device with a vacuum heat insulating material of the present invention is a device having a heat source part or a heat retaining portion in the main body or inside, and a device with a vacuum heat insulating material provided with at least a vacuum heat insulating material, wherein the vacuum heat insulating material is a core material, A vacuum heat insulating material enclosing material that encloses the core material, and the vacuum heat insulating material enclosing material is formed by laminating a heat welding layer, a gas barrier layer, and a protective layer in this order, and the vacuum The product of the tensile elastic modulus of the outer packaging material for heat insulating material and the cube of the thickness of the outer packaging material for vacuum heat insulating material is 3.0 MPa · mm 3 or less.
 ここで、「熱源部」とは、機器自体が駆動することにより、当該機器本体または機器内部において発熱する部位をいうものであり、例えば電源やモーター等をいう。また、「被保温部」とは、機器本体または内部に熱源部を有さないが、上記機器が外部の熱源から熱を受けて、高温になる部位をいうものである。 Here, the “heat source section” refers to a portion that generates heat in the apparatus main body or inside the apparatus when the apparatus itself is driven, such as a power source or a motor. The “insulated part” refers to a part that does not have a heat source part in the apparatus main body or inside, but the apparatus is heated by receiving heat from an external heat source.
 本発明によれば、上記真空断熱材が上述の本発明の真空断熱材であり、長期間断熱性能を維持することができるため、熱源部を有する機器においては、上記真空断熱材により熱源部からの熱を断熱し、機器全体の温度が高温となることを防止し、一方、被保温部を有する機器においては、上記真空断熱材により上記被保温部の温度状態を保つことができる。これにより、消費電力を抑えた高い省エネルギー特性を有する機器とすることができる。 According to the present invention, the vacuum heat insulating material is the above-described vacuum heat insulating material of the present invention, and can maintain heat insulating performance for a long period of time. In the device having the heat retaining portion, the temperature of the heat retaining portion can be maintained by the vacuum heat insulating material. Thereby, it can be set as the apparatus which has the high energy saving characteristic which suppressed power consumption.
 本発明における真空断熱材については、上述した「B.真空断熱材」の項で説明した内容と同様であるため、ここでの説明は省略する。 Since the vacuum heat insulating material in the present invention is the same as the content described in the above-mentioned section “B. Vacuum heat insulating material”, description thereof is omitted here.
 本発明における機器とは、本体又は本体の内部に熱源部もしくは被保温部を有するものであるが、なかでも、100℃~150℃の範囲内程度の高温に達する熱源部または被保温部を少なくとも有するものが好ましい。本発明における機器としては、例えば、自然冷媒ヒートポンプ給湯機(登録商標「エコキュート」)、冷蔵庫、自動販売機、炊飯ジャー、ポット、電子レンジ、業務用オーブン、IHクッキングヒーター、OA機器等の電化機器、自動車等が挙げられる。なかでも本発明においては、上記機器が、自然冷媒ヒートポンプ給湯機、業務用オーブン、電子レンジ、自動車に上述の本発明の真空断熱材を用いることが好ましい。 The device in the present invention has a main body or a heat source part or a heat-retained part inside the main body, and in particular, at least a heat source part or a heat-retained part that reaches a high temperature in the range of 100 ° C. to 150 ° C. What has is preferable. Examples of the device in the present invention include, for example, natural refrigerant heat pump water heater (registered trademark “Ecocute”), refrigerator, vending machine, rice cooker, pot, microwave oven, commercial oven, IH cooking heater, electrical appliances such as OA equipment, Examples include automobiles. Especially in this invention, it is preferable that the said apparatus uses the above-mentioned vacuum heat insulating material of this invention for a natural refrigerant | coolant heat pump water heater, a commercial oven, a microwave oven, and a motor vehicle.
 上記真空断熱材を機器に装着する態様としては、当該機器の熱源部もしくは被保温部に直接真空断熱材を貼り付けてもよく、被保温部と熱源部または外部熱源との間に真空断熱材を挟みこむようにして装着してもよい。 As an aspect of mounting the vacuum heat insulating material on a device, a vacuum heat insulating material may be directly attached to a heat source portion or a heat retaining portion of the device, and a vacuum heat insulating material between the heat retaining portion and the heat source portion or an external heat source. It may be mounted so as to sandwich it.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
 以下に実施例を示して、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[比較例1]
1.層間接着剤の調製
 ポリエステルを主成分とする主剤と脂肪族系ポリイソシアネートを含む硬化剤、および酢酸エチルを、重量配合比が主剤:硬化剤:酢酸エチル=10:1:14となるように混合し、2液硬化型接着剤(以下、層間接着剤と称する。)を調製した。
[Comparative Example 1]
1. Preparation of Interlaminar Adhesive Mixing a main component mainly composed of polyester, a curing agent containing an aliphatic polyisocyanate, and ethyl acetate so that the weight blending ratio is main agent: curing agent: ethyl acetate = 10: 1: 14. A two-component curable adhesive (hereinafter referred to as an interlayer adhesive) was prepared.
2.外包材の作製
 第2保護層として両面に易接着処理が施された膜厚35μmのナイロンフィルム(ON35、ユニチカ株式会社製 製品名:エンブレム ONBC)の易接着面に、上述の配合比で調製した層間接着剤を塗布量3.5g/mとなるようにダイコーターを用いて塗布し乾燥させた。その後、第1保護層として両面を易接着処理された膜厚12μmのPETフィルム(PET12、ユニチカ株式会社製 製品名:エンブレット PTMB)を、層間接着剤が塗布された第2保護層の表面にラミネートした。
 次に、得られた2層フィルムのPET12(第1保護層)面に、同様に層間接着剤を塗布量3.5g/mで塗布し乾燥させた。ガスバリア層として膜厚6μmのAl箔(AL6、住軽アルミ箔株式会社製 製品名:1N30)を、層間接着剤が塗布された第1保護層の表面にラミネートした。
 続いて、得られた3層フィルムのAL6(ガスバリア層)面に、同様に層間接着剤を塗布量3.5g/mで塗布し乾燥させた。内面側保護層としてPET12を、層間接着剤が塗布されたAL6(ガスバリア層)の表面にラミネートした。
 次に得られた、4層フィルムのPET12(内面側保護層)面に、同様に層間接着剤を塗布量3.5g/mで塗布し乾燥させた。熱溶着層として膜厚50μmの未延伸ポリプロピレン(CPP50、三井化学東セロ株式会社製 製品名:CPP-SC)を、層間接着剤が塗布されたPET12(内面保護層)の表面にラミネートし、外包材を得た。
2. Preparation of outer packaging material Prepared on the easy-adhesion surface of a 35 μm-thick nylon film (ON35, product name: Emblem ONBC, manufactured by Unitika Co., Ltd.), which was subjected to easy-adhesion treatment on both sides as a second protective layer, with the above-mentioned blending ratio. The interlayer adhesive was applied using a die coater so as to have an application amount of 3.5 g / m 2 and dried. Thereafter, a 12 μm-thick PET film (PET12, product name: Emblet PTMB) manufactured by Unitika Co., Ltd. on both surfaces as a first protective layer was applied to the surface of the second protective layer to which the interlayer adhesive was applied. Laminated.
Next, an interlayer adhesive was similarly applied at a coating amount of 3.5 g / m 2 on the PET12 (first protective layer) surface of the obtained two-layer film and dried. As a gas barrier layer, an Al foil (AL6, product name: 1N30 manufactured by Sumikara Aluminum Foil Co., Ltd.) having a film thickness of 6 μm was laminated on the surface of the first protective layer to which the interlayer adhesive was applied.
Subsequently, an interlayer adhesive was similarly applied at an application amount of 3.5 g / m 2 on the AL6 (gas barrier layer) surface of the obtained three-layer film and dried. As an inner surface side protective layer, PET12 was laminated on the surface of AL6 (gas barrier layer) coated with an interlayer adhesive.
Next, an interlayer adhesive was similarly applied to the obtained PET 12 (inner surface side protective layer) surface of the four-layer film at a coating amount of 3.5 g / m 2 and dried. An unstretched polypropylene (CPP50, product name: CPP-SC, manufactured by Mitsui Chemicals, Inc.) is laminated on the surface of PET12 (inner surface protective layer) coated with an interlayer adhesive as a heat-welded layer, and the outer packaging material Got.
[実施例1]
 第2保護層として、両面に易接着処理が施された膜厚25μmのナイロンフィルム(ON25、ユニチカ株式会社製 製品名:ONM)を用いた以外は、比較例1と同様にして外包材を得た。
[Example 1]
An outer packaging material was obtained in the same manner as in Comparative Example 1, except that a 25 μm-thick nylon film (ON25, manufactured by Unitika Ltd., product name: ONM) with easy adhesion treatment on both sides was used as the second protective layer. It was.
[実施例2]
 第2保護層を形成せず、熱溶着層として、膜厚30μmの未延伸ポリプロピレン(CPP30、三井化学東セロ株式会社製 製品名:CPP)を用いた以外は、比較例1と同様にして外包材を得た。
[Example 2]
An outer packaging material was formed in the same manner as in Comparative Example 1 except that the second protective layer was not formed and unstretched polypropylene having a film thickness of 30 μm (CPP30, product name: CPP manufactured by Mitsui Chemicals, Inc.) was used as the heat welding layer. Got.
[実施例3]
 熱溶着層として、膜厚25μmのポリブチレンテレフタレート(PBT25、ユニチカ株式会社製 製品名: エンブレット P782)を用いた以外は、実施例2と同様にして外包材を得た。
[Example 3]
An outer packaging material was obtained in the same manner as in Example 2 except that polybutylene terephthalate (PBT25, manufactured by Unitika Ltd., product name: Emblet P782) having a film thickness of 25 μm was used as the heat welding layer.
[実施例4]
 第1保護層および内面側保護層として両面に易接着処理が施された膜厚15μmのナイロンフィルム(ON15、ユニチカ株式会社製 製品名:ONM)を用いた以外は実施例3と同様にして外包材を得た。
[Example 4]
Packaging as in Example 3 except that a 15 μm-thick nylon film (ON15, product name: ONM, manufactured by Unitika Co., Ltd.) with easy adhesion treatment applied to both sides was used as the first protective layer and the inner surface side protective layer. The material was obtained.
[実施例5]
 第1保護層として両面を易接着処理された膜厚16μmのPETフィルム(PET16、ユニチカ株式会社製 製品名:PET)を用い、内面側保護層を形成しなかった以外は実施例3と同様にして外包材を得た。
[Example 5]
The same procedure as in Example 3 was used except that a PET film having a film thickness of 16 μm (PET16, manufactured by Unitika Co., Ltd., product name: PET) having both surfaces subjected to easy adhesion treatment was used as the first protective layer, and the inner surface side protective layer was not formed. The outer packaging material was obtained.
[実施例6]
 第1保護層としてON25を用いた以外は実施例5と同様にして外包材を得た。
[Example 6]
An outer packaging material was obtained in the same manner as in Example 5 except that ON25 was used as the first protective layer.
[実施例7]
 熱溶着層として、膜厚30μmの直鎖状短鎖分岐ポリエチレン(LLDPE30、三井化学東セロ社製 製品名:TUX-HCE)を用いた以外は、実施例4と同様にして外包材を得た。
[Example 7]
An outer packaging material was obtained in the same manner as in Example 4 except that a linear short-chain branched polyethylene (LLDPE30, product name: TUX-HCE, manufactured by Mitsui Chemicals, Inc.) having a film thickness of 30 μm was used as the heat welding layer.
[実施例8]
 第1保護層および内面側保護層としてON25を用いた以外は、実施例8と同様にして外包材を得た。
[Example 8]
An outer packaging material was obtained in the same manner as in Example 8 except that ON25 was used as the first protective layer and the inner surface side protective layer.
[実施例9]
 第1保護層および内面側保護層としてPET12を用いた以外は、実施例8と同様にして外包材を得た。
[Example 9]
An outer packaging material was obtained in the same manner as in Example 8 except that PET12 was used as the first protective layer and the inner surface side protective layer.
[評価]
 実施例および比較例で得られた外包材についての関数Mの計算およびバリア性の評価、ならびに、上記外包材の形成に用いられた各材料の引張弾性率の測定を行った。
[Evaluation]
The calculation of the function M and the evaluation of the barrier properties of the outer packaging materials obtained in the examples and comparative examples, and the measurement of the tensile modulus of each material used for the formation of the outer packaging material were performed.
1.外包材の関数Mの計算
 実施例および比較例で得られた外包材について、厚みおよび引張弾性率を測定し、関数Mの値を計算した。結果を下記表1に示す。
 また、外包材の関数Mの値と、後述する「2.バリア性評価」で得られた酸素バリア性の結果との関係を示すグラフを図5に示す。
 なお、外包材の引張弾性率の測定方法は、JIS K7161に準拠し、上記外包材を幅15mm、長さ120mmに短冊状にカットした後、23℃、湿度55%の条件で、引張試験機としてテンシロン万能試験機RTC-1250Aを用いてチャック間距離100mm、引張速度100mm/minで引張弾性率を測定した。また、上記引張弾性率は、上記外包材の長手方向および短手方向のそれぞれの引張弾性率の平均値とした。
1. Calculation of the function M of the outer packaging material For the outer packaging materials obtained in the examples and comparative examples, the thickness and the tensile modulus were measured, and the value of the function M was calculated. The results are shown in Table 1 below.
Further, FIG. 5 shows a graph showing the relationship between the value of the function M of the outer packaging material and the oxygen barrier property result obtained in “2. Evaluation of barrier property” described later.
In addition, the measuring method of the tensile elastic modulus of the outer packaging material is based on JIS K7161. After the outer packaging material is cut into a strip shape having a width of 15 mm and a length of 120 mm, a tensile tester is used at 23 ° C. and a humidity of 55%. The tensile modulus was measured using a Tensilon universal testing machine RTC-1250A at a distance between chucks of 100 mm and a tensile speed of 100 mm / min. Moreover, the said tensile elasticity modulus was made into the average value of each tensile elasticity modulus of the longitudinal direction and the transversal direction of the said outer packaging material.
2.バリア性評価
 実施例および比較例で得られた外包材について、ゲルボフレックステスタ- により3回屈曲処理を実施後に、温度23℃、湿度60%RHの条件で、米国、モコン(MOCON)社製の測定機〔機種名、オクストラン(OX-TRAN)〕にて酸素透過度を測定して評価した。結果を下記表1に示す。
2. Barrier property evaluation The outer packaging materials obtained in the examples and comparative examples were bent three times with a gelbo flex tester, and then manufactured by MOCON, USA under the conditions of a temperature of 23 ° C. and a humidity of 60% RH. The oxygen permeability was measured and evaluated using a measuring instrument [model name, OX-TRAN]. The results are shown in Table 1 below.
3.外包材の構成材料の引張弾性率測定
 実施例および比較例で外包材の形成に用いた、ON35、PET12、CPP30およびPBT25、LLDPE30について上記「1.外包材の関数Mの計算」の項に記載の外包材の引張弾性率の測定方法と同様の方法を用いて引張弾性率を測定した。結果を下記表2に示す。
3. Measurement of tensile modulus of constituent material of outer packaging material For ON35, PET12, CPP30, PBT25, and LLDPE30 used for forming the outer packaging material in Examples and Comparative Examples, as described in the above section “1. Calculation of function M of outer packaging material” The tensile modulus was measured using the same method as the method for measuring the tensile modulus of the outer packaging material. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
4.まとめ
 表1より、関数Mの値が3.0MPa・mm以下である実施例1~10では、酸素バリア性に優れたものとすることが確認できた。
 また、実施例3および実施例5の比較等から、引張弾性率が1.0GPa以上の熱溶着層を用いることにより、クラックの発生を抑制した状態で、上記外包材の層構成を少ないものとすることができることが確認できた。
4). Summary From Table 1, it was confirmed that in Examples 1 to 10 in which the value of the function M was 3.0 MPa · mm 3 or less, the oxygen barrier property was excellent.
Further, from the comparison of Example 3 and Example 5 and the like, the use of a heat-welded layer having a tensile elastic modulus of 1.0 GPa or more reduces the layer structure of the outer packaging material in a state in which generation of cracks is suppressed. I can confirm that I can do it.
 1 … 熱溶着層
 2 … ガスバリア層
 3 … 保護層
 4 … 層間接着剤
 10 … 真空断熱材用外包材
 11 … 芯材
 20 … 真空断熱材
DESCRIPTION OF SYMBOLS 1 ... Thermal welding layer 2 ... Gas barrier layer 3 ... Protective layer 4 ... Interlayer adhesive 10 ... Outer packaging material for vacuum heat insulating materials 11 ... Core material 20 ... Vacuum heat insulating materials

Claims (4)

  1.  熱溶着層、ガスバリア層および保護層がこの順で積層された真空断熱材用外包材であって、
     前記真空断熱材用外包材の引張弾性率と前記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であること特徴とする真空断熱材用外包材。
    A heat insulation layer, a gas barrier layer, and a protective layer are laminated in this order, and are outer packaging materials for a vacuum heat insulating material,
    A vacuum insulation material outer packaging material, wherein a product of a tensile elastic modulus of the vacuum insulation material outer packaging material and a cube of the thickness of the vacuum insulation material outer packaging material is 3.0 MPa · mm 3 or less.
  2.  前記熱溶着層の引張弾性率が1.0GPa以上であることを特徴とする請求項1に記載の真空断熱用外包材。 The vacuum insulation outer packaging material according to claim 1, wherein the heat-bonded layer has a tensile elastic modulus of 1.0 GPa or more.
  3.  芯材と、前記芯材を封入する真空断熱材用外包材とを有する真空断熱材であって、
     前記真空断熱材用外包材は、熱溶着層、ガスバリア層および保護層がこの順で積層されたものであり、
     前記真空断熱材用外包材の引張弾性率と前記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とする真空断熱材。
    A vacuum heat insulating material having a core material and a vacuum heat insulating material encapsulating the core material,
    The outer packaging material for a vacuum heat insulating material is a layer in which a heat welding layer, a gas barrier layer and a protective layer are laminated in this order,
    A vacuum heat insulating material, wherein a product of a tensile elastic modulus of the vacuum heat insulating material and a cube of the thickness of the vacuum heat insulating material is 3.0 MPa · mm 3 or less.
  4.  本体又は内部に熱源部もしくは被保温部を有する機器、および真空断熱材を少なくとも備える真空断熱材付き機器であって、
     前記真空断熱材が、芯材と、前記芯材を封入する真空断熱材用外包材とを有するものであり、
     前記真空断熱材用外包材が、熱溶着層、ガスバリア層および保護層がこの順で積層されたものであり、
     前記真空断熱材用外包材の引張弾性率と前記真空断熱材用外包材の厚みの3乗との積が、3.0MPa・mm以下であることを特徴とする真空断熱材付き機器。
    A device having a heat source part or a heat-retained part in the main body or inside, and a device with a vacuum heat insulating material comprising at least a vacuum heat insulating material,
    The vacuum heat insulating material has a core material and an outer packaging material for a vacuum heat insulating material that encloses the core material,
    The outer packaging material for the vacuum heat insulating material is a laminate in which a heat-welded layer, a gas barrier layer, and a protective layer are laminated in this order,
    A device with a vacuum heat insulating material, wherein a product of a tensile elastic modulus of the vacuum insulating material outer packaging material and a cube of the thickness of the vacuum heat insulating material outer packaging material is 3.0 MPa · mm 3 or less.
PCT/JP2016/050758 2015-03-30 2016-01-13 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member WO2016157931A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504821A JPWO2016157931A1 (en) 2015-03-30 2016-01-13 Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069668 2015-03-30
JP2015-069668 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016157931A1 true WO2016157931A1 (en) 2016-10-06

Family

ID=57004438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050758 WO2016157931A1 (en) 2015-03-30 2016-01-13 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member

Country Status (2)

Country Link
JP (2) JPWO2016157931A1 (en)
WO (1) WO2016157931A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202174B1 (en) * 2016-09-30 2017-09-27 大日本印刷株式会社 Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP7045141B2 (en) * 2017-06-12 2022-03-31 東芝ライフスタイル株式会社 refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021429A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2007040391A (en) * 2005-08-03 2007-02-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and heat insulating housing using the same
JP2008106532A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Vacuum heat insulation material
JP2013103343A (en) * 2011-11-10 2013-05-30 Toppan Printing Co Ltd Covering material for vacuum heat insulating material, and vacuum heat insulating material using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021429A (en) * 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
JP2007040391A (en) * 2005-08-03 2007-02-15 Matsushita Electric Ind Co Ltd Vacuum heat insulating material and heat insulating housing using the same
JP2008106532A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Vacuum heat insulation material
JP2013103343A (en) * 2011-11-10 2013-05-30 Toppan Printing Co Ltd Covering material for vacuum heat insulating material, and vacuum heat insulating material using the same

Also Published As

Publication number Publication date
JPWO2016157931A1 (en) 2017-04-27
JP2016191468A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
KR101286342B1 (en) Core material for vacuum insulation panel, method for fabricating the same and vacuum insulation panel using the same
JP6123927B1 (en) Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation
JP6210149B2 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2015504503A (en) High temperature vacuum insulation
JP2019095065A (en) Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
KR102201266B1 (en) Vacuum thermal insulation material
JP6776618B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and equipment with vacuum heat insulating material
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP5907204B2 (en) Manufacturing method of vacuum insulation
WO2018016351A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member
JP7238566B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2017133568A (en) Vacuum heat insulation material and equipment with vacuum heat insulation material
JP6401721B2 (en) Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation
WO2018062047A1 (en) Outer packaging material for vacuum insulation material, vacuum insulation material, and article provided with vacuum insulation material
JP2020008084A (en) Outer packaging material for vacuum insulation material, vacuum heat insulation material, and articles with vacuum insulation material
JP2018135995A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP6187719B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP6642605B2 (en) Outer packaging material for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP5600469B2 (en) Vacuum insulation film and vacuum insulation film
JP7305922B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2017149475A (en) External package material for vacuum heat insulation material, vacuum heat insulation material, and device with vacuum heat insulation material
JP2015003427A (en) Sheath material of vacuum heat insulation material
JP2017101806A (en) Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, device with vacuum heat insulation material, method for designing outer packaging material for vacuum heat insulation material, and method for manufacturing outer packaging material for vacuum heat insulation material
JP2023065501A (en) External capsule material for vacuum heat insulating material, vacuum heat insulating material, and article with vacuum heat insulating material
JP2017150666A (en) Vacuum insulation material outer packaging material, vacuum insulation material, and apparatus with vacuum insulation material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016504821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771817

Country of ref document: EP

Kind code of ref document: A1